Science.gov

Sample records for protein tdp-43 promotes

  1. TDP-43 regulates endogenous retrovirus-K viral protein accumulation.

    PubMed

    Manghera, Mamneet; Ferguson-Parry, Jennifer; Douville, Renée N

    2016-10-01

    The concomitant expression of neuronal TAR DNA binding protein 43 (TDP-43) and human endogenous retrovirus-K (ERVK) is a hallmark of ALS. Since the involvement of TDP-43 in retrovirus replication remains controversial, we sought to evaluate whether TDP-43 exerts an effect on ERVK expression. In this study, TDP-43 bound the ERVK promoter in the context of inflammation or proteasome inhibition, with no effect on ERVK transcription. However, over-expression of ALS-associated aggregating forms of TDP-43, but not wild-type TDP-43, significantly enhanced ERVK viral protein accumulation. Human astrocytes and neurons further demonstrated cell-type specific differences in their ability to express and clear ERVK proteins during inflammation and proteasome inhibition. Astrocytes, but not neurons, were able to clear excess ERVK proteins through stress granule formation and autophagy. In vitro findings were validated in autopsy motor cortex tissue from patients with ALS and neuro-normal controls. We further confirmed marked enhancement of ERVK in cortical neurons of patients with ALS. Despite evidence of enhanced stress granule and autophagic response in ALS cortical neurons, these cells failed to clear excess ERVK protein accumulation. This highlights how multiple cellular pathways, in conjunction with disease-associated mutations, can converge to modulate the expression and clearance of viral gene products from genomic elements such as ERVK. In ALS, ERVK protein aggregation is a novel aspect of TDP-43 misregulation contributing towards the pathology of this neurodegenerative disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. TDP-43 suppresses tau expression via promoting its mRNA instability.

    PubMed

    Gu, Jianlan; Wu, Feng; Xu, Wen; Shi, Jianhua; Hu, Wen; Jin, Nana; Qian, Wei; Wang, Xinglong; Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei

    2017-06-02

    In the brains of individuals with Alzheimer's disease (AD) and chronic traumatic encephalopathy, tau pathology is accompanied usually by intracellular aggregation of transactive response DNA-binding protein 43 (TDP-43). However, the role of TDP-43 in tau pathogenesis is not understood. Here, we investigated the role of TDP-43 in tau expression in vitro and in vivo. We found that TDP-43 suppressed tau expression by promoting its mRNA instability through the UG repeats of its 3΄-untranslated region (3΄-UTR). The C-terminal region of TDP-43 was required for this function. Neurodegenerative diseases-causing TDP-43 mutations affected tau mRNA instability differentially, in that some promoted and others did not significantly affect tau mRNA instability. The expression levels of tau and TDP-43 were inverse in the frontal cortex and the cerebellum. Accompanied with cytoplasmic accumulation of TDP-43, tau expression was elevated in TDP-43M337V transgenic mouse brains. The level of TDP-43, which is decreased in AD brains, was found to correlate negatively with the tau level in human brain. Our findings indicate that TDP-43 suppresses tau expression by promoting the instability of its mRNA. Down-regulation of TDP-43 may be involved in the tau pathology in AD and related neurodegenerative disorders. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. TDP-43 suppresses tau expression via promoting its mRNA instability

    PubMed Central

    Gu, Jianlan; Wu, Feng; Xu, Wen; Shi, Jianhua; Hu, Wen; Jin, Nana; Qian, Wei; Wang, Xinglong; Iqbal, Khalid; Gong, Cheng-Xin

    2017-01-01

    Abstract In the brains of individuals with Alzheimer's disease (AD) and chronic traumatic encephalopathy, tau pathology is accompanied usually by intracellular aggregation of transactive response DNA-binding protein 43 (TDP-43). However, the role of TDP-43 in tau pathogenesis is not understood. Here, we investigated the role of TDP-43 in tau expression in vitro and in vivo. We found that TDP-43 suppressed tau expression by promoting its mRNA instability through the UG repeats of its 3΄-untranslated region (3΄-UTR). The C-terminal region of TDP-43 was required for this function. Neurodegenerative diseases-causing TDP-43 mutations affected tau mRNA instability differentially, in that some promoted and others did not significantly affect tau mRNA instability. The expression levels of tau and TDP-43 were inverse in the frontal cortex and the cerebellum. Accompanied with cytoplasmic accumulation of TDP-43, tau expression was elevated in TDP-43M337V transgenic mouse brains. The level of TDP-43, which is decreased in AD brains, was found to correlate negatively with the tau level in human brain. Our findings indicate that TDP-43 suppresses tau expression by promoting the instability of its mRNA. Down-regulation of TDP-43 may be involved in the tau pathology in AD and related neurodegenerative disorders. PMID:28335005

  4. Heat Shock-induced Phosphorylation of TAR DNA-binding Protein 43 (TDP-43) by MAPK/ERK Kinase Regulates TDP-43 Function.

    PubMed

    Li, Wen; Reeb, Ashley N; Lin, Binyan; Subramanian, Praveen; Fey, Erin E; Knoverek, Catherine R; French, Rachel L; Bigio, Eileen H; Ayala, Yuna M

    2017-03-24

    TAR DNA-binding protein (TDP-43) is a highly conserved and essential DNA- and RNA-binding protein that controls gene expression through RNA processing, in particular, regulation of splicing. Intracellular aggregation of TDP-43 is a hallmark of amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. This TDP-43 pathology is also present in other types of neurodegeneration including Alzheimer's disease. We report here that TDP-43 is a substrate of MEK, a central kinase in the MAPK/ERK signaling pathway. TDP-43 dual phosphorylation by MEK, at threonine 153 and tyrosine 155 (p-T153/Y155), was dramatically increased by the heat shock response (HSR) in human cells. HSR promotes cell survival under proteotoxic conditions by maintaining protein homeostasis and preventing protein misfolding. MEK is activated by HSR and contributes to the regulation of proteome stability. Phosphorylated TDP-43 was not associated with TDP-43 aggregation, and p-T153/Y155 remained soluble under conditions that promote protein misfolding. We found that active MEK significantly alters TDP-43-regulated splicing and that phosphomimetic substitutions at these two residues reduce binding to GU-rich RNA. Cellular imaging using a phospho-specific p-T153/Y155 antibody showed that phosphorylated TDP-43 was specifically recruited to the nucleoli, suggesting that p-T153/Y155 regulates a previously unappreciated function of TDP-43 in the processing of nucleolar-associated RNA. These findings highlight a new mechanism that regulates TDP-43 function and homeostasis through phosphorylation and, therefore, may contribute to the development of strategies to prevent TDP-43 aggregation and to uncover previously unexplored roles of TDP-43 in cell metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Tau Tubulin Kinases TTBK1/2 Promote Accumulation of Pathological TDP-43

    PubMed Central

    Liachko, Nicole F.; Loomis, Elaine; Greenup, Lynne; Murrell, Jill R.; Ghetti, Bernardino; Raskind, Murray A.; Montine, Thomas J.; Bird, Thomas D.; Leverenz, James B.; Kraemer, Brian C.

    2014-01-01

    Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP. PMID:25473830

  6. Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes.

    PubMed

    Russo, Arianna; Scardigli, Raffaella; La Regina, Federico; Murray, Melissa E; Romano, Nicla; Dickson, Dennis W; Wolozin, Benjamin; Cattaneo, Antonino; Ceci, Marcello

    2017-04-15

    TDP-43 is a well known RNA binding protein involved in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Dementia (FTLD). In physiological conditions, TDP-43 mainly localizes in the nucleus and shuttles, at least in neurons, to the cytoplasm to form TDP-43 RNA granules. In the nucleus, TDP-43 participates to the expression and splicing of RNAs, while in the cytoplasm its functions range from transport to translation of specific mRNAs. However, if loss or gain of these TDP-43 functions are affected in ALS/FTLD pathogenesis is not clear. Here, we report that TDP-43 localizes on ribosomes not only in primary neurons but also in SH-SY5Y human neuroblastoma cells. We find that binding of TDP-43 to the translational machinery is mediated by an interaction with a specific ribosomal protein, RACK1, and that an increase in cytoplasmic TDP-43 represses global protein synthesis, an effect which is rescued by overexpression of RACK1. Ribosomal loss of RACK1, which excludes TDP-43 from the translational machinery, remarkably reduces formation of TDP-43 cytoplasmic inclusions in neuroblastoma cells. Finally, we corroborate the interaction between TDP-43 and RACK1 on polyribosomes of neuroblastoma cells with mis-localization of RACK1 on TDP-43 positive cytoplasmic inclusions in motor neurons of ALS patients. In conclusions, results from this study suggest that TDP-43 represents a translational repressor not only for specific mRNAs but for overall translation and that its binding to polyribosomes through RACK1 may promote, under conditions inducing ALS pathogenesis, the formation of cytoplasmic inclusions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity

    SciTech Connect

    Chang, Chung-ke; Wu, Tzong-Huah; Wu, Chu-Ya; Chiang, Ming-hui; Toh, Elsie Khai-Woon; Hsu, Yin-Chih; Lin, Ku-Feng; Liao, Yu-heng; Huang, Tai-huang; Huang, Joseph Jen-Tse

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer The N-terminus of TDP-43 contains an independently folded structural domain (NTD). Black-Right-Pointing-Pointer The structural domains of TDP-43 are arranged in a beads-on-a-string fashion. Black-Right-Pointing-Pointer The NTD promotes TDP-43 oligomerization in a concentration-dependent manner. Black-Right-Pointing-Pointer The NTD may assist nucleic acid-binding activity of TDP-43. -- Abstract: TDP-43 is a DNA/RNA-binding protein associated with different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Here, the structural and physical properties of the N-terminus on TDP-43 have been carefully characterized through a combination of nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence anisotropy studies. We demonstrate for the first time the importance of the N-terminus in promoting TDP-43 oligomerization and enhancing its DNA-binding affinity. An unidentified structural domain in the N-terminus is also disclosed. Our findings provide insights into the N-terminal domain function of TDP-43.

  8. RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response

    PubMed Central

    Zhang, Tao; Baldie, Gerard; Periz, Goran; Wang, Jiou

    2014-01-01

    Protein homeostasis is critical for cell survival and functions during stress and is regulated at both RNA and protein levels. However, how the cell integrates RNA-processing programs with post-translational protein quality control systems is unknown. Transactive response DNA-binding protein (TARDBP/TDP-43) is an RNA-processing protein that is involved in the pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we report a conserved role for TDP-43, from C. elegans to mammals, in the regulation of protein clearance via activation of FOXO transcription factors. In response to proteotoxic insults, TDP-43 redistributes from the nucleus to the cytoplasm, promoting nuclear translocation of FOXOs and relieving an inhibition of FOXO activity in the nucleus. The interaction between TDP-43 and the FOXO pathway in mammalian cells is mediated by their competitive binding to 14-3-3 proteins. Consistent with FOXO-dependent protein quality control, TDP-43 regulates the levels of misfolded proteins. Therefore, TDP-43 mediates stress responses and couples the regulation of RNA metabolism and protein quality control in a FOXO-dependent manner. The results suggest that compromising the function of TDP-43 in regulating protein homeostasis may contribute to the pathogenesis of related neurodegenerative diseases. PMID:25329970

  9. RNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response.

    PubMed

    Zhang, Tao; Baldie, Gerard; Periz, Goran; Wang, Jiou

    2014-10-01

    Protein homeostasis is critical for cell survival and functions during stress and is regulated at both RNA and protein levels. However, how the cell integrates RNA-processing programs with post-translational protein quality control systems is unknown. Transactive response DNA-binding protein (TARDBP/TDP-43) is an RNA-processing protein that is involved in the pathogenesis of major neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we report a conserved role for TDP-43, from C. elegans to mammals, in the regulation of protein clearance via activation of FOXO transcription factors. In response to proteotoxic insults, TDP-43 redistributes from the nucleus to the cytoplasm, promoting nuclear translocation of FOXOs and relieving an inhibition of FOXO activity in the nucleus. The interaction between TDP-43 and the FOXO pathway in mammalian cells is mediated by their competitive binding to 14-3-3 proteins. Consistent with FOXO-dependent protein quality control, TDP-43 regulates the levels of misfolded proteins. Therefore, TDP-43 mediates stress responses and couples the regulation of RNA metabolism and protein quality control in a FOXO-dependent manner. The results suggest that compromising the function of TDP-43 in regulating protein homeostasis may contribute to the pathogenesis of related neurodegenerative diseases.

  10. TDP-43 aggregation mirrors TDP-43 knockdown, affecting the expression levels of a common set of proteins

    PubMed Central

    Prpar Mihevc, S.; Baralle, Marco; Buratti, Emanuele; Rogelj, Boris

    2016-01-01

    TDP-43 protein plays an important role in regulating transcriptional repression, RNA metabolism, and splicing. Typically it shuttles between the nucleus and the cytoplasm to perform its functions, while abnormal cytoplasmic aggregation of TDP-43 has been associated with neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). For the purpose of this study we selected a set of proteins that were misregulated following silencing of TDP-43 and analysed their expression in a TDP-43-aggregation model cell line HEK293 Flp-in Flag-TDP-43-12x-Q/N F4L. Following TDP-43 sequestration in insoluble aggregates, we observed higher nuclear levels of EIF4A3, and POLDIP3β, whereas nuclear levels of DNMT3A, HNRNPA3, PABPC1 and POLDIP3α dropped, and cytoplasmic levels of RANBP1 dropped. In addition, immunofluorescence signal intensity quantifications showed increased nuclear expression of HNRNPL and YARS, and downregulation of cytoplasmic DPCD. Furthermore, cytoplasmic levels of predominantly nuclear protein ALYREF increased. In conclusion, by identifying a common set of proteins that are differentially expressed in a similar manner in these two different conditions, we show that TDP-43 aggregation has a comparable effect to TDP-43 knockdown. PMID:27665936

  11. Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies.

    PubMed

    Gu, Jianlan; Chen, Feng; Iqbal, Khalid; Gong, Cheng-Xin; Wang, Xinglong; Liu, Fei

    2017-06-23

    Hyperphosphorylation and aggregation of the neuronal protein tau are responsible for neurodegenerative diseases called tauopathies. Dysregulation of the alternative splicing of tau exon 10 results in alterations of the ratio of two tau isoforms, 3R-tau and 4R-tau, which have been seen in several tauopathies. Transactive response DNA-binding protein of 43 kDa (TDP-43) is involved in the regulation of RNA processing, including splicing. Cytoplasmic aggregation of TDP-43 has been observed in the brains of individuals with chronic traumatic encephalopathy or Alzheimer's disease, diseases in which neurofibrillary tangles of hyperphosphorylated tau are hallmarks. Here, we investigated the role of TDP-43 in tau exon 10 splicing. We found that TDP-43 promoted tau exon 10 inclusion, which increased production of the 4R-tau isoform. Moreover, TDP-43 could bind to intron 9 of tau pre-mRNA. Deletion of the TDP-43 N or C terminus promoted its cytoplasmic aggregation and abolished or diminished TDP-43-promoted tau exon 10 inclusion. Several TDP-43 mutations associated with amyotrophic lateral sclerosis or frontotemporal lobar degeneration with ubiquitin inclusions promoted tau exon 10 inclusion more effectively than wild-type TDP-43 but did not affect TDP-43 cytoplasmic aggregation in cultured cells. The ratio of 3R-tau/4R-tau was decreased in transgenic mouse brains expressing human TDP-43 and increased in the brains expressing the disease-causing mutation TDP-43(M337V), in which cytoplasmic TDP-43 was increased. These findings suggest that TDP-43 promotes tau exon 10 inclusion and 4R-tau expression and that disease-related changes of TDP-43, truncations and mutations, affect its function in tau exon 10 splicing, possibly because of TDP-43 mislocalization to the cytoplasm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice.

    PubMed

    Rodriguez-Ortiz, Carlos J; Hoshino, Hitomi; Cheng, David; Liu-Yescevitz, Liqun; Blurton-Jones, Mathew; Wolozin, Benjamin; LaFerla, Frank M; Kitazawa, Masashi

    2013-08-01

    Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition.

  13. Phosphorylation promotes neurotoxicity in a C. elegans model of TDP-43 proteinopathy

    PubMed Central

    Liachko, Nicole F.; Guthrie, Chris R.; Kraemer, Brian C.

    2010-01-01

    Neurodegenerative disorders characterized by neuronal and glial lesions containing aggregated pathological TDP-43 protein in the cytoplasm, nucleus, or neurites are collectively referred to as TDP-43 proteinopathies. Lesions containing aggregated TDP-43 protein are a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). In addition, mutations in human TDP-43 cause ALS. We have developed a C. elegans model of TDP-43 proteinopathies to study the cellular, molecular, and genetic underpinnings of TDP-43 mediated neurotoxicity. Expression of normal human TDP-43 in all C. elegans neurons causes moderate motor defects, while ALS-mutant G290A, A315T, or M337V TDP-43 transgenes cause severe motor dysfunction. The model recapitulates some characteristic features of ALS and FTLD-U including age-induced decline in motor function, decreased lifespan, and degeneration of motor neurons accompanied by hyperphosphorylation, truncation, and ubiquitination of TDP-43 protein that accumulates in detergent insoluble protein deposits. In C. elegans, TDP-43 neurotoxicity is independent of activity of the cell death caspase CED-3. Furthermore, phosphorylation of TDP-43 at serine residues 409/410 drives mutant TDP-43 toxicity. This model provides a tractable system for further dissection of the cellular and molecular mechanisms underlying TDP-43 neuropathology. PMID:21123567

  14. Phosphorylation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Truncated Casein Kinase 1δ Triggers Mislocalization and Accumulation of TDP-43.

    PubMed

    Nonaka, Takashi; Suzuki, Genjiro; Tanaka, Yoshinori; Kametani, Fuyuki; Hirai, Shinobu; Okado, Haruo; Miyashita, Tomoyuki; Saitoe, Minoru; Akiyama, Haruhiko; Masai, Hisao; Hasegawa, Masato

    2016-03-11

    Intracellular aggregates of phosphorylated TDP-43 are a major component of ubiquitin-positive inclusions in the brains of patients with frontotemporal lobar degeneration and ALS and are considered a pathological hallmark. Here, to gain insight into the mechanism of intracellular TDP-43 accumulation, we examined the relationship between phosphorylation and aggregation of TDP-43. We found that expression of a hyperactive form of casein kinase 1 δ (CK1δ1-317, a C-terminally truncated form) promotes mislocalization and cytoplasmic accumulation of phosphorylated TDP-43 (ubiquitin- and p62-positive) in cultured neuroblastoma SH-SY5Y cells. Insoluble phosphorylated TDP-43 prepared from cells co-expressing TDP-43 and CK1δ1-317 functioned as seeds for TDP-43 aggregation in cultured cells, indicating that CK1δ1-317-induced aggregated TDP-43 has prion-like properties. A striking toxicity and alterations of TDP-43 were also observed in yeast expressing TDP-43 and CK1δ1-317. Therefore, abnormal activation of CK1δ causes phosphorylation of TDP-43, leading to the formation of cytoplasmic TDP-43 aggregates, which, in turn, may trigger neurodegeneration. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation

    NASA Astrophysics Data System (ADS)

    Chang, Hsiang-Yu; Hou, Shin-Chen; Way, Tzong-Der; Wong, Chi-Huey; Wang, I.-Fan

    2013-11-01

    Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.

  16. Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation.

    PubMed

    Nagata, Eiichiro; Nonaka, Takashi; Moriya, Yusuke; Fujii, Natsuko; Okada, Yoshinori; Tsukamoto, Hideo; Itoh, Johbu; Okada, Chisa; Satoh, Tadayuki; Arai, Tetsuaki; Hasegawa, Masato; Takizawa, Shunya

    2016-10-01

    TAR DNA-binding protein 43 (TDP-43) has been identified as a major component of ubiquitin-positive inclusions in the brains and spinal cords of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) or amyotrophic lateral sclerosis (ALS). The phosphorylated C-terminal fragment of TDP-43 forms aggregates in the neuronal cytoplasm, possibly resulting in neuronal cell death in patients with FTLD-U or ALS. The inositol pyrophosphate known as diphosphoinositol pentakisphosphate (InsP7) contains highly energetic pyrophosphate bonds. We previously reported that inositol hexakisphosphate kinase type 2 (InsP6K2), which converts inositol hexakisphosphate (InsP6) to InsP7, mediates cell death in mammalian cells. Moreover, InsP6K2 is translocated from the nucleus to the cytosol during apoptosis. In this study, we verified that phosphorylated TDP-43 co-localized and co-bound with InsP6K2 in the cytoplasm of anterior horn cells of the spinal cord. Furthermore, we verified that cell death was augmented in the presence of cytoplasmic TDP-43 aggregations and activated InsP6K2. However, cells with only cytoplasmic TDP-43 aggregation survived because Akt activity increased. In the presence of both TDP-43 aggregation and activated InsP6K2 in the cytoplasm of cells, the expression levels of HSP90 and casein kinase 2 decreased, as the activity of Akt decreased. These conditions may promote cell death. Thus, InsP6K2 could cause neuronal cell death in patients with FTLD-U or ALS. Moreover, InsP6K2 plays an important role in a novel cell death pathway present in FTLD-U and ALS.

  17. UBE2E Ubiquitin-conjugating Enzymes and Ubiquitin Isopeptidase Y Regulate TDP-43 Protein Ubiquitination*

    PubMed Central

    Hans, Friederike; Fiesel, Fabienne C.; Strong, Jennifer C.; Jäckel, Sandra; Rasse, Tobias M.; Geisler, Sven; Springer, Wolfdieter; Schulz, Jörg B.; Voigt, Aaron; Kahle, Philipp J.

    2014-01-01

    Trans-activation element DNA-binding protein of 43 kDa (TDP-43) characterizes insoluble protein aggregates in distinct subtypes of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 mediates many RNA processing steps within distinct protein complexes. Here we identify novel TDP-43 protein interactors found in a yeast two-hybrid screen using an adult human brain cDNA library. We confirmed the TDP-43 interaction of seven hits by co-immunoprecipitation and assessed their co-localization in HEK293E cells. As pathological TDP-43 is ubiquitinated, we focused on the ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase Y (UBPY). When cells were treated with proteasome inhibitor, ubiquitinated and insoluble TDP-43 species accumulated. All three UBE2E family members could enhance the ubiquitination of TDP-43, whereas catalytically inactive UBE2E3C145S was much less efficient. Conversely, silencing of UBE2E3 reduced TDP-43 ubiquitination. We examined 15 of the 48 known disease-associated TDP-43 mutants and found that one was excessively ubiquitinated. This strong TDP-43K263E ubiquitination was further enhanced by proteasomal inhibition as well as UBE2E3 expression. Conversely, UBE2E3 silencing and expression of UBPY reduced TDP-43K263E ubiquitination. Moreover, wild-type but not active site mutant UBPY reduced ubiquitination of TDP-43 C-terminal fragments and of a nuclear import-impaired mutant. In Drosophila melanogaster, UBPY silencing enhanced neurodegenerative TDP-43 phenotypes and the accumulation of insoluble high molecular weight TDP-43 and ubiquitin species. Thus, UBE2E3 and UBPY participate in the regulation of TDP-43 ubiquitination, solubility, and neurodegeneration. PMID:24825905

  18. Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils*

    PubMed Central

    Shimonaka, Shotaro; Nonaka, Takashi; Suzuki, Genjiro; Hisanaga, Shin-ichi; Hasegawa, Masato

    2016-01-01

    TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as the major component of ubiquitin-positive neuronal and glial inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Aggregation of TDP-43 to amyloid-like fibrils and spreading of the aggregates are suggested to account for the pathogenesis and progression of these diseases. To investigate the molecular mechanisms of TDP-43 aggregation, we attempted to identify the amino acid sequence required for the aggregation. By expressing a series of deletion mutants lacking 20 amino acid residues in the C-terminal region in SH-SY5Y cells, we established that residues 274–313 in the glycine-rich region are essential for aggregation. In vitro aggregation experiments using synthetic peptides of 40 amino acids from this sequence and adjacent regions showed that peptides 274–313 and 314–353 formed amyloid-like fibrils. Transduction of these fibrils induced seed-dependent aggregation of TDP-43 in cells expressing wild-type TDP-43 or TDP-43 lacking nuclear localization signal. These cells showed different phosphorylated C-terminal fragments of TDP-43 and different trypsin-resistant bands. These results suggest that residues 274–353 are responsible for the conversion of TDP-43 to amyloid-like fibrils and that templated aggregation of TDP-43 by seeding with different peptides induces various types of TDP-43 pathologies, i.e. the peptides appear to act like prion strains. PMID:26887947

  19. Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils.

    PubMed

    Shimonaka, Shotaro; Nonaka, Takashi; Suzuki, Genjiro; Hisanaga, Shin-Ichi; Hasegawa, Masato

    2016-04-22

    TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as the major component of ubiquitin-positive neuronal and glial inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Aggregation of TDP-43 to amyloid-like fibrils and spreading of the aggregates are suggested to account for the pathogenesis and progression of these diseases. To investigate the molecular mechanisms of TDP-43 aggregation, we attempted to identify the amino acid sequence required for the aggregation. By expressing a series of deletion mutants lacking 20 amino acid residues in the C-terminal region in SH-SY5Y cells, we established that residues 274-313 in the glycine-rich region are essential for aggregation. In vitro aggregation experiments using synthetic peptides of 40 amino acids from this sequence and adjacent regions showed that peptides 274-313 and 314-353 formed amyloid-like fibrils. Transduction of these fibrils induced seed-dependent aggregation of TDP-43 in cells expressing wild-type TDP-43 or TDP-43 lacking nuclear localization signal. These cells showed different phosphorylated C-terminal fragments of TDP-43 and different trypsin-resistant bands. These results suggest that residues 274-353 are responsible for the conversion of TDP-43 to amyloid-like fibrils and that templated aggregation of TDP-43 by seeding with different peptides induces various types of TDP-43 pathologies, i.e. the peptides appear to act like prion strains. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Accelerated Disease Onset with Stabilized Familial Amyotrophic Lateral Sclerosis (ALS)-linked Mutant TDP-43 Proteins*

    PubMed Central

    Watanabe, Shoji; Kaneko, Kumi; Yamanaka, Koji

    2013-01-01

    Abnormal protein accumulation is a pathological hallmark of neurodegenerative diseases, including accumulation of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS). Dominant mutations in the TDP-43 gene are causative for familial ALS; however, the relationship between mutant protein biochemical phenotypes and disease course and their significance to disease pathomechanism are not known. Here, we found that longer half-lives of mutant proteins correlated with accelerated disease onset. Based on our findings, we established a cell model in which chronic stabilization of wild-type TDP-43 protein provoked cytotoxicity and recapitulated pathogenic protein cleavage and insolubility to the detergent Sarkosyl, TDP-43 properties that have been observed in sporadic ALS lesions. Furthermore, these cells showed proteasomal impairment and dysregulation of their own mRNA levels. These results suggest that chronically increased stability of mutant or wild-type TDP-43 proteins results in a gain of toxicity through abnormal proteostasis. PMID:23235148

  1. PABPN1 suppresses TDP-43 toxicity in ALS disease models

    PubMed Central

    Chou, Ching-Chieh; Alexeeva, Olga M.; Yamada, Shizuka; Pribadi, Amy; Zhang, Yi; Mo, Bi; Williams, Kathryn R.; Zarnescu, Daniela C.; Rossoll, Wilfried

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) is a major disease protein in amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases. Both the cytoplasmic accumulation of toxic ubiquitinated and hyperphosphorylated TDP-43 fragments and the loss of normal TDP-43 from the nucleus may contribute to the disease progression by impairing normal RNA and protein homeostasis. Therefore, both the removal of pathological protein and the rescue of TDP-43 mislocalization may be critical for halting or reversing TDP-43 proteinopathies. Here, we report poly(A)-binding protein nuclear 1 (PABPN1) as a novel TDP-43 interaction partner that acts as a potent suppressor of TDP-43 toxicity. Overexpression of full-length PABPN1 but not a truncated version lacking the nuclear localization signal protects from pathogenic TDP-43-mediated toxicity, promotes the degradation of pathological TDP-43 and restores normal solubility and nuclear localization of endogenous TDP-43. Reduced levels of PABPN1 enhances the phenotypes in several cell culture and Drosophila models of ALS and results in the cytoplasmic mislocalization of TDP-43. Moreover, PABPN1 rescues the dysregulated stress granule (SG) dynamics and facilitates the removal of persistent SGs in TDP-43-mediated disease conditions. These findings demonstrate a role for PABPN1 in rescuing several cytopathological features of TDP-43 proteinopathy by increasing the turnover of pathologic proteins. PMID:26130692

  2. Tar DNA-binding protein-43 (TDP-43) regulates axon growth in vitro and in vivo☆

    PubMed Central

    Tripathi, Vineeta Bhasker; Baskaran, Pranetha; Shaw, Christopher E.; Guthrie, Sarah

    2014-01-01

    Intracellular inclusions of the TAR-DNA binding protein 43 (TDP-43) have been reported in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD-TDP). Rare mutations in TARDBP have been linked to both ALS and FTD-TDP suggesting that TDP-43 dysfunction is mechanistic in causing disease. TDP-43 is a predominantly nuclear protein with roles in regulating RNA transcription, splicing, stability and transport. In ALS, TDP-43 aberrantly accumulates in the cytoplasm of motor neurons where it forms aggregates. However it has until recently been unclear whether the toxic effects of TDP-43 involve recruitment to motor axons, and what effects this might have on axonal growth and integrity. Here we use chick embryonic motor neurons, in vivo and in vitro, to model the acute effects of TDP-43. We show that wild-type and two TDP-43 mutant proteins cause toxicity in chick embryonic motor neurons in vivo. Moreover, TDP-43 is increasingly mislocalised to axons over time in vivo, axon growth to peripheral targets is truncated, and expression of neurofilament-associated antigen is reduced relative to control motor neurons. In primary spinal motor neurons in vitro, a progressive translocation of TDP-43 to the cytoplasm occurs over time, similar to that observed in vivo. This coincides with the appearance of cytoplasmic aggregates, a reduction in the axonal length, and cellular toxicity, which was most striking for neurons expressing TDP-43 mutant forms. These observations suggest that the capacity of spinal motor neurons to produce and maintain an axon is compromised by dysregulation of TDP-43 and that the disruption of cytoskeletal integrity may play a role in the pathogenesis of ALS and FTD-TDP. PMID:24423647

  3. An acetylation switch controls TDP-43 function and aggregation propensity

    PubMed Central

    Cohen, Todd J.; Hwang, Andrew W.; Restrepo, Clark R.; Yuan, Chao-Xing; Trojanowski, John Q.; Lee, Virginia M.Y.

    2015-01-01

    TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA-binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signaling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies. PMID:25556531

  4. Tyrosine kinase inhibition reverses TDP-43 effects on synaptic protein expression, astrocytic function and amino acid dis-homeostasis.

    PubMed

    Heyburn, Lanier; Hebron, Michaeline L; Smith, Jacqueline; Winston, Charisse; Bechara, John; Li, Zhaoxia; Lonskaya, Irina; Burns, Mark P; Harris, Brent T; Moussa, Charbel E-H

    2016-11-01

    The trans-activating response of DNA/RNA-binding protein (TDP)-43 pathology is associated with many neurodegenerative diseases via unknown mechanisms. Here, we use a transgenic mouse model over-expressing human wild-type neuronal TDP-43 to study the effects of TDP-43 pathology on glutamate metabolism and synaptic function. We found that neuronal TDP-43 over-expression affects synaptic protein expression, including Synapsin I, and alters surrounding astrocytic function. TDP-43 over-expression is associated with an increase in glutamate and γ-amino butyric acid and reduction of glutamine and aspartate levels, indicating impairment of presynaptic terminal. TDP-43 also decreases tricarboxylic acid cycle metabolism and induces oxidative stress via lactate accumulation. Neuronal TDP-43 does not alter microglia activity or significantly changes systemic and brain inflammatory markers compared to control. We previously demonstrated that brain-penetrant tyrosine kinase inhibitors (TKIs), nilotinib and bosutinib, reduce TDP-43-induced cell death in transgenic mice. Here, we show that TKIs reverse the effects of TDP-43 on synaptic proteins, increase astrocytic function and restore glutamate and neurotransmitter balance in TDP-43 mice. Nilotinib, but not bosutinib, reverses mitochondrial impairment and oxidative metabolism. Taken together, these data suggest that TKIs can attenuate TDP-43 toxicity and improve synaptic and astrocytic function, independent of microglial or other inflammatory effects. In conclusion, our data demonstrate novel mechanisms of the effects of neuronal TDP-43 over-expression on synaptic protein expression and alteration of astrocytic function. © 2016 International Society for Neurochemistry.

  5. Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS.

    PubMed

    Gijselinck, Ilse; Sleegers, Kristel; Engelborghs, Sebastiaan; Robberecht, Wim; Martin, Jean-Jacques; Vandenberghe, Rik; Sciot, Raf; Dermaut, Bart; Goossens, Dirk; van der Zee, Julie; De Pooter, Tim; Del-Favero, Jurgen; Santens, Patrick; De Jonghe, Peter; De Deyn, Peter P; Van Broeckhoven, Christine; Cruts, Marc

    2009-08-01

    The nuclear TAR DNA binding protein (TDP-43) is deposited in ubiquitin-positive inclusions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two clinicopathologically overlapping neurodegenerative diseases. In this study we excluded mutations and copy number variations in the gene encoding TDP-43 (TARDBP) from an extended series of 173 FTD and 237 ALS patients. Further, we did not identify association of common genetic variants in these patients. Our data implicate that TDP-43 has no primary genetic role in the pathophysiological mechanisms underlying central nervous system neurodegeneration in these diseases.

  6. TDP-43 protein variants as biomarkers in amyotrophic lateral sclerosis.

    PubMed

    Williams, Stephanie M; Khan, Galam; Harris, Brent T; Ravits, John; Sierks, Michael R

    2017-01-25

    TDP-43 aggregates accumulate in individuals affected by amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, representing potential diagnostic and therapeutic targets. Using an atomic force microscopy based biopanning protocol developed in our lab, we previously isolated 23 TDP-43 reactive antibody fragments with preference for human ALS brain tissue relative to frontotemporal dementia, a related neurodegeneration, and healthy samples from phage-displayed single chain antibody fragment (scFv) libraries. Here we further characterize the binding specificity of these different scFvs and identify which ones have promise for detecting ALS biomarkers in human brain tissue and plasma samples. We developed a sensitive capture ELISA for detection of different disease related TDP-43 variants using the scFvs identified from the ALS biopanning. We show that a wide variety of disease selective TDP-43 variants are present in ALS as the scFvs show different reactivity profiles amongst the ALS cases. When assaying individual human brain tissue cases, three scFvs (ALS-TDP6, ALS-TDP10 and ALS-TDP14) reacted with all the ALS cases and 12 others reacted with the majority of the ALS cases, and none of the scFvs reacted with any control samples. When assaying individual human plasma samples, 9 different scFvs reacted with all the sporadic ALS samples and again none of them reacted with any control samples. These 9 different scFvs had different patterns of reactivity with plasma samples obtained from chromosome 9 open reading frame 72 (c9orf72) cases indicating that these familial ALS genetic variants may display different TDP-43 pathology than sporadic ALS cases. These results indicated that a range of disease specific TDP-43 variants are generated in ALS patients with different variants being generated in sporadic and familial cases. We show that a small panel of scFvs recognizing different TDP-43 variants can generate a neuropathological and plasma biomarker

  7. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits and early mortality in transgenic mice

    PubMed Central

    Xu, Ya-Fei; Gendron, Tania F.; Zhang, Yong-Jie; Lin, Wen-Lang; D’Alton, Simon; Sheng, Hong; Casey, Monica Castanedes; Tong, Jimei; Knight, Joshua; Yu, Xin; Rademakers, Rosa; Boylan, Kevin; Hutton, Mike; McGowan, Eileen; Dickson, Dennis W.; Lewis, Jada; Petrucelli, Leonard

    2011-01-01

    Transactivation response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene encoding TDP-43, are associated with sporadic and familial ALS, yet multiple neurodegenerative diseases exhibit TDP-43 pathology without known TARDBP mutations. While TDP-43 has been ascribed a number of roles in normal biology, including mRNA splicing and transcription regulation, elucidating disease mechanisms associated with this protein is hindered by the lack of models to dissect such functions. We have generated transgenic (TDP-43PrP) mice expressing full-length human TDP-43 (hTDP-43) driven by the mouse prion promoter to provide a tool to analyze the role of wild-type hTDP-43 in the brain and spinal cord. Expression of hTDP-43 caused a dose dependant down regulation of mouse TDP-43 RNA and protein. Moderate overexpression of hTDP-43 resulted in TDP-43 truncation, increased cytoplasmic and nuclear ubiquitin levels, as well as intranuclear and cytoplasmic aggregates that were immunopositive for phosphorylated TDP-43. Of note, abnormal juxtanuclear aggregates of mitochondria were observed, accompanied by enhanced levels of Fis1 and phosphorylated DLP1, key components of the mitochondrial fission machinery. Conversely, a marked reduction in mitofusin 1 expression, which plays an essential role in mitochondrial fusion, was observed in TDP-43PrP mice. Finally, TDP-43PrP mice showed reactive gliosis, axonal and myelin degeneration, gait abnormalities and early lethality. This TDP-43 transgenic line provides a valuable tool for identifying potential roles of wild-type TDP-43 within the central nervous system and for studying TDP-43-associated neurotoxicity. PMID:20702714

  8. Point mutations in the N-terminal domain of transactive response DNA-binding protein 43 kDa (TDP-43) compromise its stability, dimerization, and functions.

    PubMed

    Mompeán, Miguel; Romano, Valentina; Pantoja-Uceda, David; Stuani, Cristiana; Baralle, Francisco E; Buratti, Emanuele; Laurents, Douglas V

    2017-07-14

    Transactive response DNA-binding protein 43 (TDP-43) performs multiple tasks in mRNA processing, transport, and translational regulation, but it also forms aggregates implicated in amyotrophic lateral sclerosis. TDP-43's N-terminal domain (NTD) is important for these activities and dysfunctions; however, there is an open debate about whether or not it adopts a specifically folded, stable structure. Here, we studied NTD mutations designed to destabilize its structure utilizing NMR and fluorescence spectroscopies, analytical ultracentrifugation, splicing assays, and cell microscopy. The substitutions V31R and T32R abolished TDP-43 activity in splicing and aggregation processes, and even the rather mild L28A mutation severely destabilized the NTD, drastically reducing TDP-43's in vitro splicing activity and inducing aberrant localization and aggregation in cells. These findings strongly support the idea that a stably folded NTD is essential for correct TDP-43 function. The stably folded NTD also promotes dimerization, which is pertinent to the protein's activities and pathological aggregation, and we present an atomic-level structural model for the TDP-43 dimer based on NMR data. Leu-27 is evolutionarily well conserved even though it is exposed in the monomeric NTD. We found here that Leu-27 is buried in the dimer and that the L27A mutation promotes monomerization. In conclusion, our study sheds light on the structural and biological properties of the TDP-43 NTD, indicating that the NTD must be stably folded for TDP-43's physiological functions, and has implications for understanding the mechanisms promoting the pathological aggregation of this protein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program.

    PubMed

    Wang, Ping; Wander, Connor M; Yuan, Chao-Xing; Bereman, Michael S; Cohen, Todd J

    2017-07-19

    TDP-43 pathology marks a spectrum of multisystem proteinopathies including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and sporadic inclusion body myositis. Surprisingly, it has been challenging to recapitulate this pathology, highlighting an incomplete understanding of TDP-43 regulatory mechanisms. Here we provide evidence supporting TDP-43 acetylation as a trigger for disease pathology. Using cultured cells and mouse skeletal muscle, we show that TDP-43 acetylation-mimics promote TDP-43 phosphorylation and ubiquitination, perturb mitochondria, and initiate degenerative inflammatory responses that resemble sporadic inclusion body myositis pathology. Analysis of functionally linked amyotrophic lateral sclerosis proteins revealed recruitment of p62, ubiquilin-2, and optineurin to TDP-43 aggregates. We demonstrate that TDP-43 acetylation-mimic pathology is potently suppressed by an HSF1-dependent mechanism that disaggregates TDP-43. Our study illustrates bidirectional TDP-43 processing in which TDP-43 aggregation is targeted by a coordinated chaperone response. Thus, activation or restoration of refolding mechanisms may alleviate TDP-43 aggregation in tissues that are uniquely susceptible to TDP-43 proteinopathies.TDP-43 aggregation is linked to various diseases including amyotrophic lateral sclerosis. Here the authors show that acetylation of the protein triggers TDP-43 pathology in cultured cells and mouse skeletal muscle, which can be cleared through an HSF1-dependent chaperone mechanism that disaggregates the protein.

  10. Immunolocalization of TAR DNA-binding protein of 43 kDa (TDP-43) in mouse seminiferous epithelium.

    PubMed

    Osuru, Hari Prasad; Pramoonjago, Patcharin; Abhyankar, Mayuresh M; Swanson, Eric; Roker, LaToya Ann; Cathro, Helen; Reddi, Prabhakara P

    2017-08-01

    TAR DNA-binding protein of 43 kDa (TDP-43) is an evolutionarily conserved, ubiquitously expressed, multi-functional DNA/RNA-binding protein with roles in gene transcription, mRNA splicing, stability, transport, micro RNA biogenesis, and suppression of transposons. Aberrant expression of TDP-43 in testis and sperm was recently shown to be associated with male infertility, which highlights the need to understand better the expression of TDP-43 in the testis. We previously cloned TDP-43 from a mouse testis cDNA library, and showed that it functions as a transcriptional repressor and regulates the precise spatiotemporal expression of the Acrv1 gene, which encodes the acrosomal protein SP-10, during spermatogenesis. Here, we performed immunoblotting and immunohistochemistry of the mouse testis using four separate antibodies recognizing the amino and carboxyl termini of TDP-43. TDP-43 is present in the nuclei of germ cells as well as Sertoli cells. TDP-43 expression begins in type B/intermediate spermatogonia, peaks in preleptotene spermatocytes, and becomes undetectable in leptotene and zygotene spermatocytes. Pachytene spermatocytes and early round spermatids again express TDP-43, but its abundance diminishes later in spermatids (at steps 5-8). Interestingly, two of the four antibodies showed TDP-43 expression in spermatids at steps 9-10, which coincides with the initial phase of the histone-to-protamine transition. Immunoreactivity patterns observed in the study suggest that TDP-43 assumes different conformational states at different stages of spermatogenesis. TDP-43 pathology has been extensively studied in the context of neurodegenerative diseases; its role in spermatogenesis warrants further detailed investigation of the involvement of TDP-43 in male infertility. © 2017 Wiley Periodicals, Inc.

  11. TDP-43/HDAC6 axis promoted tumor progression and regulated nutrient deprivation-induced autophagy in glioblastoma.

    PubMed

    Lin, Tzu-Wei; Chen, Ming-Teh; Lin, Liang-Ting; Huang, Pin-I; Lo, Wen-Liang; Yang, Yi-Ping; Lu, Kai-Hsi; Chen, Yi-Wei; Chiou, Shih-Hwa; Wu, Cheng-Wen

    2017-08-22

    Glioblastoma Multiforme (GBM) is a lethal primary brain tumor with poor survival lifespan and dismal outcome. Surgical resection of GBM is greatly limited due to the biological significance of brain, giving rise to tumor relapse in GBM patients. Transactive response DNA binding protein-43 (TDP-43) is a DNA/RNA-binding protein known for causing neurodegenerative diseases through post-translational modification; but little is known about its involvement in cancer development. In this study, we found that nutrient deprivation in GBM cell lines elevated TDP-43 expression by a mechanism of evasion from ubiquitin-dependent proteolytic pathway, and subsequently activated the autophagy process. Exogenous overexpression of TDP-43 consistently activated autophagy and suppressed stress-induced apoptosis. The inhibition of autophagy in TDP-43-overexpressing cells effectively increased the apoptotic population under nutrition shortage. Furthermore, we demonstrated that HDAC6 was involved in the activation of autophagy in TDP-43-overexpressing GBM cell lines. The treatment with SAHA, a universal HDAC inhibitor, significantly reduced TDP-43-mediated anti-apoptotic effect. Additionally, the results of immunohistochemistry showed that TDP-43 and HDAC6 collaborated in GBM-tumor lesions and negatively correlated with the relapse-free survival of GBM patients. Taken together, our results suggest that the TDP-43-HDAC6 signaling axis functions as a stress responsive pathway in GBM tumorigenesis and combats nutrient deprivation stress via activating autophagy, while inhibition of HDAC6 overpowers the pathway and provides a novel therapeutic strategy against GBM.

  12. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.

    PubMed

    Hirano, Arisa; Nakagawa, Tomoki; Yoshitane, Hikari; Oyama, Masaaki; Kozuka-Hata, Hiroko; Lanjakornsiripan, Darin; Fukada, Yoshitaka

    2016-01-01

    Mammalian Cryptochromes, CRY1 and CRY2, function as principal regulators of a transcription-translation-based negative feedback loop underlying the mammalian circadian clockwork. An F-box protein, FBXL3, promotes ubiquitination and degradation of CRYs, while FBXL21, the closest paralog of FBXL3, ubiquitinates CRYs but leads to stabilization of CRYs. Fbxl3 knockout extremely lengthened the circadian period, and deletion of Fbxl21 gene in Fbxl3-deficient mice partially rescued the period-lengthening phenotype, suggesting a key role of CRY protein stability for maintenance of the circadian periodicity. Here, we employed a proteomics strategy to explore regulators for the protein stability of CRYs. We found that ubiquitin-specific protease 7 (USP7 also known as HAUSP) associates with CRY1 and CRY2 and stabilizes CRYs through deubiquitination. Treatment with USP7-specific inhibitor or Usp7 knockdown shortened the circadian period of the cellular rhythm. We identified another CRYs-interacting protein, TAR DNA binding protein 43 (TDP-43), an RNA-binding protein. TDP-43 stabilized CRY1 and CRY2, and its knockdown also shortened the circadian period in cultured cells. The present study identified USP7 and TDP-43 as the regulators of CRY1 and CRY2, underscoring the significance of the stability control process of CRY proteins for period determination in the mammalian circadian clockwork.

  13. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock

    PubMed Central

    Yoshitane, Hikari; Oyama, Masaaki; Kozuka-Hata, Hiroko; Lanjakornsiripan, Darin; Fukada, Yoshitaka

    2016-01-01

    Mammalian Cryptochromes, CRY1 and CRY2, function as principal regulators of a transcription-translation-based negative feedback loop underlying the mammalian circadian clockwork. An F-box protein, FBXL3, promotes ubiquitination and degradation of CRYs, while FBXL21, the closest paralog of FBXL3, ubiquitinates CRYs but leads to stabilization of CRYs. Fbxl3 knockout extremely lengthened the circadian period, and deletion of Fbxl21 gene in Fbxl3-deficient mice partially rescued the period-lengthening phenotype, suggesting a key role of CRY protein stability for maintenance of the circadian periodicity. Here, we employed a proteomics strategy to explore regulators for the protein stability of CRYs. We found that ubiquitin-specific protease 7 (USP7 also known as HAUSP) associates with CRY1 and CRY2 and stabilizes CRYs through deubiquitination. Treatment with USP7-specific inhibitor or Usp7 knockdown shortened the circadian period of the cellular rhythm. We identified another CRYs-interacting protein, TAR DNA binding protein 43 (TDP-43), an RNA-binding protein. TDP-43 stabilized CRY1 and CRY2, and its knockdown also shortened the circadian period in cultured cells. The present study identified USP7 and TDP-43 as the regulators of CRY1 and CRY2, underscoring the significance of the stability control process of CRY proteins for period determination in the mammalian circadian clockwork. PMID:27123980

  14. Major hnRNP proteins act as general TDP-43 functional modifiers both in Drosophila and human neuronal cells.

    PubMed

    Appocher, Chiara; Mohagheghi, Fatemeh; Cappelli, Sara; Stuani, Cristiana; Romano, Maurizio; Feiguin, Fabian; Buratti, Emanuele

    2017-07-27

    Nuclear factor TDP-43 is known to play an important role in several neurodegenerative pathologies. In general, TDP-43 is an abundant protein within the eukaryotic nucleus that binds to many coding and non-coding RNAs and influence their processing. Using Drosophila, we have performed a functional screening to establish the ability of major hnRNP proteins to affect TDP-43 overexpression/depletion phenotypes. Interestingly, we observed that lowering hnRNP and TDP-43 expression has a generally harmful effect on flies locomotor abilities. In parallel, our study has also identified a distinct set of hnRNPs that is capable of powerfully rescuing TDP-43 toxicity in the fly eye (Hrb27c, CG42458, Glo and Syp). Most importantly, removing the human orthologs of Hrb27c (DAZAP1) in human neuronal cell lines can correct several pre-mRNA splicing events altered by TDP-43 depletion. Moreover, using RNA sequencing analysis we show that DAZAP1 and TDP-43 can co-regulate an extensive number of biological processes and molecular functions potentially important for the neuron/motor neuron pathophysiology. Our results suggest that changes in hnRNP expression levels can significantly modulate TDP-43 functions and affect pathological outcomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. HIV-1 replication in human immune cells is independent of TAR DNA binding protein 43 (TDP-43) expression.

    PubMed

    Nehls, Julia; Koppensteiner, Herwig; Brack-Werner, Ruth; Floss, Thomas; Schindler, Michael

    2014-01-01

    The TAR DNA binding protein (TDP-43) was originally identified as a host cell factor binding to the HIV-1 LTR and thereby suppressing HIV-1 transcription and gene expression (Ou et al., J.Virol. 1995, 69(6):3584). TDP-43 is a global regulator of transcription, can influence RNA metabolism in many different ways and is ubiquitously expressed. Thus, TDP-43 could be a major factor restricting HIV-1 replication at the level of LTR transcription and gene expression. These facts prompted us to revisit the role of TDP-43 for HIV-1 replication. We utilized established HIV-1 cell culture systems as well as primary cell models and performed a comprehensive analysis of TDP-43 function and investigated its putative impact on HIV-1 gene expression. In HIV-1 infected cells TDP-43 was neither degraded nor sequestered from the nucleus. Furthermore, TDP-43 overexpression as well as siRNA mediated knockdown did not affect HIV-1 gene expression and virus production in T cells and macrophages. In summary, our experiments argue against a restricting role of TDP-43 during HIV-1 replication in immune cells.

  16. HIV-1 Replication in Human Immune Cells Is Independent of TAR DNA Binding Protein 43 (TDP-43) Expression

    PubMed Central

    Nehls, Julia; Koppensteiner, Herwig; Brack-Werner, Ruth; Floss, Thomas; Schindler, Michael

    2014-01-01

    The TAR DNA binding protein (TDP-43) was originally identified as a host cell factor binding to the HIV-1 LTR and thereby suppressing HIV-1 transcription and gene expression (Ou et al., J.Virol. 1995, 69(6):3584). TDP-43 is a global regulator of transcription, can influence RNA metabolism in many different ways and is ubiquitously expressed. Thus, TDP-43 could be a major factor restricting HIV-1 replication at the level of LTR transcription and gene expression. These facts prompted us to revisit the role of TDP-43 for HIV-1 replication. We utilized established HIV-1 cell culture systems as well as primary cell models and performed a comprehensive analysis of TDP-43 function and investigated its putative impact on HIV-1 gene expression. In HIV-1 infected cells TDP-43 was neither degraded nor sequestered from the nucleus. Furthermore, TDP-43 overexpression as well as siRNA mediated knockdown did not affect HIV-1 gene expression and virus production in T cells and macrophages. In summary, our experiments argue against a restricting role of TDP-43 during HIV-1 replication in immune cells. PMID:25127017

  17. The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth.

    PubMed

    Fallini, Claudia; Bassell, Gary J; Rossoll, Wilfried

    2012-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease specifically affecting cortical and spinal motor neurons. Cytoplasmic inclusions containing hyperphosphorylated and ubiquitinated TDP-43 are a pathological hallmark of ALS, and mutations in the gene encoding TDP-43 have been directly linked to the development of the disease. TDP-43 is a ubiquitous DNA/RNA-binding protein with a nuclear role in pre-mRNA splicing. However, the selective vulnerability and axonal degeneration of motor neurons in ALS pose the question of whether TDP-43 may have an additional role in the regulation of the cytoplasmic and axonal fate of mRNAs, processes important for neuron function. To investigate this possibility, we have characterized TDP-43 localization and dynamics in primary cultured motor neurons. Using a combination of cell imaging and biochemical techniques, we demonstrate that TDP-43 is localized and actively transported in live motor neuron axons, and that it co-localizes with well-studied axonal mRNA-binding proteins. Expression of the TDP-43 C-terminal fragment led to the formation of hyperphosphorylated and ubiquitinated inclusions in motor neuron cell bodies and neurites, and these inclusions specifically sequestered the mRNA-binding protein HuD. Additionally, we showed that overexpression of full-length or mutant TDP-43 in motor neurons caused a severe impairment in axon outgrowth, which was dependent on the C-terminal protein-interacting domain of TDP-43. Taken together, our results suggest a role of TDP-43 in the regulation of axonal growth, and suggest that impairment in the post-transcriptional regulation of mRNAs in the cytoplasm of motor neurons may be a major factor in the development of ALS.

  18. Tau Rather than TDP-43 Proteins are Potential Cerebrospinal Fluid Biomarkers for Frontotemporal Lobar Degeneration Subtypes: A Pilot Study.

    PubMed

    Kuiperij, H Bea; Versleijen, Alexandra A M; Beenes, Marijke; Verwey, Nicolaas A; Benussi, Luisa; Paterlini, Anna; Binetti, Giuliano; Teunissen, Charlotte E; Raaphorst, Joost; Schelhaas, Helenius J; Küsters, Benno; Pijnenburg, Yolande A L; Ghidoni, Roberta; Verbeek, Marcel M

    2017-01-01

    Frontotemporal dementia (FTD) is a heterogeneous disease both at the clinical, genetic, and pathobiological level. The underlying pathological spectrum (termed FTLD, frontotemporal lobar degeneration) is in most cases defined by accumulation of either tau (FTLD-tau) or TDP-43 proteins (FTLD-TDP). Biomarkers to differentiate these subtypes are not yet available, whereas these are essential requirements to study the natural course of disease and for homogeneous inclusion of patients in clinical studies. To study if a combination of total (t-) and phosphorylated (p-)tau, and t-TDP-43 and p-TDP-43 proteins in cerebrospinal fluid (CSF) is suitable to discriminate FTLD-tau and FTLD-TDP subtypes. We developed immunoassays for the quantification of t-TDP-43 and p-TDP-43 proteins and used commercially available assays for the quantification of t-tau and p-tau proteins. We quantified these proteins in ventricular CSF samples from neuropathologically defined FTLD-tau and FTLD-TDP cases to study the reflection of underlying brain pathology in CSF composition, and in lumbar CSF samples from FTLD-tau and FTLD-TDP patients to study the diagnostic potential of CSF biomarkers. In ventricular CSF, t-TDP-43 and t-tau levels, when combined into one model, were significantly different between neuropathologically-defined FTLD-tau and FTLD-TDP cases. In a pilot study using lumbar CSF, the p-tau/t-tau ratio, but not t-TDP-43 levels, were significantly different between FTLD-TDP and FTLD-tau patients. We conclude that with current available methods, CSF tau, rather than TDP-43 proteins, may have diagnostic value in the differentiation of FTLD patients with either tau or TDP-43 pathology.

  19. Altered localization and functionality of TAR DNA Binding Protein 43 (TDP-43) in niemann- pick disease type C.

    PubMed

    Dardis, A; Zampieri, S; Canterini, S; Newell, K L; Stuani, C; Murrell, J R; Ghetti, B; Fiorenza, M T; Bembi, B; Buratti, E

    2016-05-18

    Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by the occurrence of visceral and neurological symptoms. At present, the molecular mechanisms causing neurodegeneration in this disease are unknown. Here we report the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both NPC mouse and in a human neuronal model of the disease. We also report the neuropathologic study of a NPC patient's brain, showing that while TDP-43 is below immunohistochemical detection in nuclei of cerebellar Purkinje cells, it has a predominant localization in the cytoplasm of these cells. From a functional point of view, the TDP-43 mislocalization, that occurs in a human experimental neuronal model system, is associated with specific alterations in TDP-43 controlled genes. Most interestingly, treatment with N-Acetyl-cysteine (NAC) or beta-cyclodextrin (CD) can partially restore TDP-43 nuclear localization. Taken together, the results of these studies extend the role of TDP-43 beyond the Amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD)/Alzheimer disease (AD) spectrum. These findings may open novel research/therapeutic avenues for a better understanding of both NPC disease and the TDP-43 proteinopathy disease mechanism.

  20. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.

    PubMed

    Morgan, Brittany R; Zitzewitz, Jill A; Massi, Francesca

    2017-08-08

    Amyotrophic lateral sclerosis (ALS) is the most common adult degenerative motor neuron disease. Experimental evidence indicates a direct role of transactive-response DNA-binding protein 43 (TDP-43) in the pathology of ALS and other neurodegenerative diseases. TDP-43 has been identified as a major component of cytoplasmic inclusions in patients with sporadic ALS; however, the molecular basis of the disease mechanism is not yet fully understood. Fragmentation within the second RNA recognition motif (RRM2) of TDP-43 has been observed in patient tissues and may play a role in the formation of aggregates in disease. To determine the structural and dynamical changes resulting from the truncation that could lead to aggregation and toxicity, we performed molecular dynamics simulations of the full-length RRM2 domain (the stability core of TDP-43) and of a truncated variant (where residues 189-207 are deleted to mimic a site of cleavage within RRM2 found in ALS patients). Our simulations show heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain compared to the full-length domain, consistent with previous experimental results. The decreased stability and structural reorganization in the truncated RRM2 result in a higher probability of protein-protein interactions through altered electrostatic surface charges and increased accessibility of hydrophobic residues (including the nuclear export sequence), providing a rationale for the increased cytoplasmic aggregation of RRM2 fragments seen in sporadic ALS patients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila.

    PubMed

    Li, Zhaodong; Lu, Yubing; Xu, Xia-Lian; Gao, Fen-Biao

    2013-01-15

    TDP-43 is an evolutionarily conserved RNA-binding protein currently under intense investigation for its involvement in the molecular pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is normally localized in the nucleus, but translocated to the cytoplasm in diseased neurons. The endogenous functions of TDP-43 in the nervous system remain poorly understood. Here, we show that the loss of Drosophila TDP-43 (dTDP-43) results in an increased production of sensory bristles and sensory organ precursor (SOP) cells on the notum of some but not all flies. The location of ectopic SOPs varies among mutant flies. The penetrance of this novel phenotype is dependent on the gender and sensitive to environmental influences. A similar SOP phenotype was also observed on the wing and in the embryos. Overexpression of dTDP-43 causes both loss and ectopic production of SOPs. Ectopic expression of ALS-associated mutant human TDP-43 (hTDP-43(M337V) and hTDP-43(Q331K)) produces a less severe SOP phenotype than hTDP-43(WT), indicating a partial loss of function of mutant hTDP-43. In dTDP-43 mutants, miR-9a expression is significantly reduced. Genetic interaction studies further support the notion that dTDP-43 acts through miR-9a to control the precision of SOP specification. These findings reveal a novel role for endogenous TDP-43 in neuronal specification and suggest that the FTD/ALS-associated RNA-binding protein TDP-43 functions to ensure the robustness of genetic control programs.

  2. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins.

    PubMed

    Ratti, Antonia; Buratti, Emanuele

    2016-08-01

    The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and

  3. Structural Transformation of the Amyloidogenic Core Region of TDP-43 Protein Initiates Its Aggregation and Cytoplasmic Inclusion*

    PubMed Central

    Jiang, Lei-Lei; Che, Mei-Xia; Zhao, Jian; Zhou, Chen-Jie; Xie, Mu-Yun; Li, Hai-Yin; He, Jian-Hua; Hu, Hong-Yu

    2013-01-01

    TDP-43 (TAR DNA-binding protein of 43 kDa) is a major deposited protein in amyotrophic lateral sclerosis and frontotemporal dementia with ubiquitin. A great number of genetic mutations identified in the flexible C-terminal region are associated with disease pathologies. We investigated the molecular determinants of TDP-43 aggregation and its underlying mechanisms. We identified a hydrophobic patch (residues 318–343) as the amyloidogenic core essential for TDP-43 aggregation. Biophysical studies demonstrated that the homologous peptide formed a helix-turn-helix structure in solution, whereas it underwent structural transformation from an α-helix to a β-sheet during aggregation. Mutation or deletion of this core region significantly reduced the aggregation and cytoplasmic inclusions of full-length TDP-43 (or TDP-35 fragment) in cells. Thus, structural transformation of the amyloidogenic core initiates the aggregation and cytoplasmic inclusion formation of TDP-43. This particular core region provides a potential therapeutic target to design small-molecule compounds for mitigating TDP-43 proteinopathies. PMID:23689371

  4. Regulation of nuclear TDP-43 by NR2A-containing NMDA receptors and PTEN

    PubMed Central

    Zheng, Mei; Liao, Mingxia; Cui, Tianyuan; Tian, Honglin; Fan, Dong-Sheng; Wan, Qi

    2012-01-01

    The dysfunction of TAR DNA-binding protein-43 (TDP-43) is implicated in neurodegenerative diseases. However, the function of TDP-43 is not fully elucidated. Here we show that the protein level of endogenous TDP-43 in the nucleus is increased in mouse cortical neurons in the early stages, but return to basal level in the later stages after glutamate accumulation-induced injury. The elevation of TDP-43 results from a downregulation of phosphatase and tensin homolog (PTEN). We further demonstrate that activation of NR2A-containing NMDA receptors (NR2ARs) leads to PTEN downregulation and subsequent reduction of PTEN import from the cytoplasm to the nucleus after glutamate accumulation. The decrease of PTEN in the nucleus contributes to its reduced association with TDP-43, and thereby mediates the elevation of nuclear TDP-43. We provide evidence that the elevation of nuclear TDP-43, mediated by NR2AR activation and PTEN downregulation, confers protection against cortical neuronal death in the late stages after glutamate accumulation. Thus, this study reveals a NR2AR–PTEN–TDP-43 signaling pathway by which nuclear TDP-43 promotes neuronal survival. These results suggest that upregulation of nuclear TDP-43 represents a self-protection mechanism to delay neurodegeneration in the early stages after glutamate accumulation and that prolonging the upregulation process of nuclear TDP-43 might have therapeutic significance. PMID:22526419

  5. Profilin 1 mutants form aggregates that induce accumulation of prion-like TDP-43.

    PubMed

    Tanaka, Yoshinori; Hasegawa, Masato

    2016-07-03

    Mutations in the profilin 1 (PFN1) gene have been identified as a cause of familial amyotrophic lateral sclerosis (ALS), and neuropathological studies indicate that TDP-43 is accumulated in brains of patients with PFN1 mutation. Here, we investigated the role of PFN1 mutations in the formation of prion-like abnormal TDP-43. Expression of PFN1 with pathogenic mutations resulted in the formation of cytoplasmic aggregates positive for p62 and ubiquitin, and these aggregates sequestered endogenous TDP-43. TDP-43 accumulation was facilitated in the presence of proteasome or lysosome inhibitor. Co-expression of mutant PFN1 and TDP-43 increased the levels of detergent-insoluble and phosphorylated TDP-43, and this increase required the C-terminal region of TDP-43. Moreover, detergent-insoluble fractions prepared from cells expressing ALS-linked mutant PFN1 induced seed-dependent accumulation of TDP-43. These findings indicate that expression of PFN1 mutants induces accumulation of TDP-43, and promotes conversion of normal TDP-43 into an abnormal form. These results provide new insight into the mechanisms of TDP-43 proteinopathies and other diseases associated with amyloid-like protein deposition.

  6. Heterogeneous ribonuclear protein E2 (hnRNP E2) is associated with TDP-43-immunoreactive neurites in Semantic Dementia but not with other TDP-43 pathological subtypes of Frontotemporal Lobar Degeneration.

    PubMed

    Davidson, Yvonne S; Robinson, Andrew C; Flood, Louis; Rollinson, Sara; Benson, Bridget C; Asi, Yasmine T; Richardson, Anna; Jones, Matthew; Snowden, Julie S; Pickering-Brown, Stuart; Lashley, Tammaryn; Mann, David M A

    2017-06-30

    Frontotemporal Lobar Degeneration (FTLD) encompasses certain related neurodegenerative disorders which alter personality and cognition. Heterogeneous ribonuclear proteins (hnRNPs) maintain RNA metabolism and changes in their function may underpin the pathogenesis of FTLD. Immunostaining for hnRNP E2 was performed on sections of frontal and temporal cortex with hippocampus from 80 patients with FTLD, stratified by pathology into FTLD-tau and FTLD-TDP type A, B and C subtypes, and by genetics into patients with C9orf72 expansions, MAPT or GRN mutations, or those with no known mutation, and on 10 healthy controls. Semi-quantitative analysis assessed hnRNP staining in frontal and temporal cortex, and in dentate gyrus (DG) of hippocampus, in the different pathology and genetic groups. We find that hnRNP E2 immunostaining detects the TDP-43 positive dystrophic neurites (DN) within frontal and temporal cortex, and the neuronal cytoplasmic inclusions (NCI) seen in DG granule cells, characteristic of patients with Semantic Dementia (SD) and type C TDP-43 pathology, but did not detect TDP-43 or tau inclusions in any of the other pathological or genetic variants of FTLD. Double immunofluorescence for hnRNP E2 and TDP-43 showed most TDP-43 immunopositive DN to contain hnRNP E2. Present findings indicate an association between TDP-43 and hnRNP E2 which might underlie the pathogenetic mechanism of this form of FTLD.

  7. Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination

    PubMed Central

    Dammer, Eric B.; Fallini, Claudia; Gozal, Yair M.; Duong, Duc M.; Rossoll, Wilfried; Xu, Ping; Lah, James J.; Levey, Allan I.; Peng, Junmin; Bassell, Gary J.; Seyfried, Nicholas T.

    2012-01-01

    TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization. PMID:22761693

  8. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span

    PubMed Central

    Wang, Ji-Wu; Brent, Jonathan R.; Tomlinson, Andrew; Shneider, Neil A.; McCabe, Brian D.

    2011-01-01

    The fatal adult motor neuron disease amyotrophic lateral sclerosis (ALS) shares some clinical and pathological overlap with frontotemporal dementia (FTD), an early-onset neurodegenerative disorder. The RNA/DNA-binding proteins fused in sarcoma (FUS; also known as TLS) and TAR DNA binding protein-43 (TDP-43) have recently been shown to be genetically and pathologically associated with familial forms of ALS and FTD. It is currently unknown whether perturbation of these proteins results in disease through mechanisms that are independent of normal protein function or via the pathophysiological disruption of molecular processes in which they are both critical. Here, we report that Drosophila mutants in which the homolog of FUS is disrupted exhibit decreased adult viability, diminished locomotor speed, and reduced life span compared with controls. These phenotypes were fully rescued by wild-type human FUS, but not ALS-associated mutant FUS proteins. A mutant of the Drosophila homolog of TDP-43 had similar, but more severe, deficits. Through cross-rescue analysis, we demonstrated that FUS acted together with and downstream of TDP-43 in a common genetic pathway in neurons. Furthermore, we found that these proteins associated with each other in an RNA-dependent complex. Our results establish that FUS and TDP-43 function together in vivo and suggest that molecular pathways requiring the combined activities of both of these proteins may be disrupted in ALS and FTD. PMID:21881207

  9. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD.

    PubMed

    Ling, Jonathan P; Pletnikova, Olga; Troncoso, Juan C; Wong, Philip C

    2015-08-07

    Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.

  10. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models.

    PubMed

    Colombrita, Claudia; Onesto, Elisa; Buratti, Emanuele; de la Grange, Pierre; Gumina, Valentina; Baralle, Francisco E; Silani, Vincenzo; Ratti, Antonia

    2015-12-01

    The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.

  11. Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation

    PubMed Central

    Chiang, Chien-Hao; Grauffel, Cédric; Wu, Lien-Szu; Kuo, Pan-Hsien; Doudeva, Lyudmila G.; Lim, Carmay; Shen, Che-Kun James; Yuan, Hanna S.

    2016-01-01

    The RNA-binding protein TDP-43 forms intracellular inclusions in amyotrophic lateral sclerosis (ALS). While TDP-43 mutations have been identified in ALS patients, how these mutations are linked to ALS remains unclear. Here we examined the biophysical properties of six ALS-linked TDP-43 mutants and found that one of the mutants, D169G, had higher thermal stability than wild-type TDP-43 and that it was cleaved by caspase 3 more efficiently, producing increased levels of the C-terminal 35 kD fragments (TDP-35) in vitro and in neuroblastoma cells. The crystal structure of the TDP-43 RRM1 domain containing the D169G mutation in complex with DNA along with molecular dynamics simulations reveal that the D169G mutation induces a local conformational change in a β turn and increases the hydrophobic interactions in the RRM1 core, thus enhancing the thermal stability of the RRM1 domain. Our results provide the first crystal structure of TDP-43 containing a disease-linked D169G mutation and a disease-related mechanism showing that D169G mutant is more susceptible to proteolytic cleavage by caspase 3 into the pathogenic C-terminal 35-kD fragments due to its increased stability in the RRM1 domain. Modulation of TDP-43 stability and caspase cleavage efficiency could present an avenue for prevention and treatment of TDP-43-linked neurodegeneration. PMID:26883171

  12. Divergent Phenotypes in Mutant TDP-43 Transgenic Mice Highlight Potential Confounds in TDP-43 Transgenic Modeling

    PubMed Central

    D’Alton, Simon; Altshuler, Marcelle; Cannon, Ashley; Dickson, Dennis W.; Petrucelli, Leonard; Lewis, Jada

    2014-01-01

    The majority of cases of frontotemporal lobar degeneration and amyotrophic lateral sclerosis are pathologically defined by the cleavage, cytoplasmic redistribution and aggregation of TAR DNA binding protein of 43 kDa (TDP-43). To examine the contribution of these potentially toxic mechanisms in vivo, we generated transgenic mice expressing human TDP-43 containing the familial amyotrophic lateral sclerosis-linked M337V mutation and identified two lines that developed neurological phenotypes of differing severity and progression. The first developed a rapid cortical neurodegenerative phenotype in the early postnatal period, characterized by fragmentation of TDP-43 and loss of endogenous murine Tdp-43, but entirely lacking aggregates of ubiquitin or TDP-43. A second, low expressing line was aged to 25 months without a severe neurodegenerative phenotype, despite a 30% loss of mouse Tdp-43 and accumulation of lower molecular weight TDP-43 species. Furthermore, TDP-43 fragments generated during neurodegeneration were not C-terminal, but rather were derived from a central portion of human TDP-43. Thus we find that aggregation is not required for cell loss, loss of murine Tdp-43 is not necessarily sufficient in order to develop a severe neurodegenerative phenotype and lower molecular weight TDP-43 positive species in mouse models should not be inherently assumed to be representative of human disease. Our findings are significant for the interpretation of other transgenic studies of TDP-43 proteinopathy. PMID:24466128

  13. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

    PubMed

    Kapeli, Katannya; Pratt, Gabriel A; Vu, Anthony Q; Hutt, Kasey R; Martinez, Fernando J; Sundararaman, Balaji; Batra, Ranjan; Freese, Peter; Lambert, Nicole J; Huelga, Stephanie C; Chun, Seung J; Liang, Tiffany Y; Chang, Jeremy; Donohue, John P; Shiue, Lily; Zhang, Jiayu; Zhu, Haining; Cambi, Franca; Kasarskis, Edward; Hoon, Shawn; Ares, Manuel; Burge, Christopher B; Ravits, John; Rigo, Frank; Yeo, Gene W

    2016-07-05

    The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3' untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism.

  14. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses

    PubMed Central

    Kapeli, Katannya; Pratt, Gabriel A.; Vu, Anthony Q.; Hutt, Kasey R.; Martinez, Fernando J.; Sundararaman, Balaji; Batra, Ranjan; Freese, Peter; Lambert, Nicole J.; Huelga, Stephanie C.; Chun, Seung J.; Liang, Tiffany Y.; Chang, Jeremy; Donohue, John P.; Shiue, Lily; Zhang, Jiayu; Zhu, Haining; Cambi, Franca; Kasarskis, Edward; Hoon, Shawn; Ares Jr., Manuel; Burge, Christopher B.; Ravits, John; Rigo, Frank; Yeo, Gene W.

    2016-01-01

    The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3′ untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism. PMID:27378374

  15. Effects of mutant TDP-43 on the Nrf2/ARE pathway and protein expression of MafK and JDP2 in NSC-34 cells.

    PubMed

    Tian, Y P; Che, F Y; Su, Q P; Lu, Y C; You, C P; Huang, L M; Wang, S G; Wang, L; Yu, J X

    2017-05-10

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons and lacks an effective treatment. The disease pathogenesis has not been clarified at present. Pathological transactive response DNA-binding protein 43 (TDP-43) plays an important role in the pathogenesis of ALS. Nuclear translocation of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is found in a mutant TDP-43 transgenic cell model, but its downstream antioxidant enzyme expression is decreased. To elucidate the specific mechanism of Nrf2/ARE (antioxidant responsive element) signaling dysfunction, we constructed an ALS cell model with human mutant TDP-43 using the NSC-34 cell line to evaluate the impact of the TDP-43 mutation on the Nrf2/ARE pathway. We found the nuclear translocation of Nrf2, but the expression of total Nrf2, cytoplasmic Nrf2, and downstream phase II detoxifying enzyme (NQO1) was decreased in NSC-34 cells transfected with the TDP-43-M337V plasmid. Besides, TDP-43-M337V plasmid-transfected NSC-34 cells were rounded with reduced neurites, shortened axons, increased levels of intracellular lipid peroxidation products, and decreased viability, which suggests that the TDP-43-M337V plasmid weakened the antioxidant capacity of NSC-34 cells and increased their susceptibility to oxidative damage. We further showed that expression of the MafK protein and the Jun dimerization protein 2 (JDP2) was reduced in TDP-43-M337V plasmid-transfected NSC-34 cells, which might cause accumulation of Nrf2 in nuclei but a decrease in NQO1 expression. Taken together, our results confirmed that TDP-43-M337V impaired the Nrf2/ARE pathway by reducing the expression of MafK and JDP2 proteins, and provided information for further research on the molecular mechanisms of TDP-43-M337V in ALS.

  16. A novel Drosophila model of TDP-43 proteinopathies: N-terminal sequences combined with the Q/N domain induce protein functional loss and locomotion defects.

    PubMed

    Langellotti, Simona; Romano, Valentina; Romano, Giulia; Klima, Raffaella; Feiguin, Fabian; Cragnaz, Lucia; Romano, Maurizio; Baralle, Francisco E

    2016-06-01

    Transactive response DNA-binding protein 43 kDa (TDP-43, also known as TBPH in Drosophila melanogaster and TARDBP in mammals) is the main protein component of the pathological inclusions observed in neurons of patients affected by different neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). The number of studies investigating the molecular mechanisms underlying neurodegeneration is constantly growing; however, the role played by TDP-43 in disease onset and progression is still unclear. A fundamental shortcoming that hampers progress is the lack of animal models showing aggregation of TDP-43 without overexpression. In this manuscript, we have extended our cellular model of aggregation to a transgenic Drosophila line. Our fly model is not based on the overexpression of a wild-type TDP-43 transgene. By contrast, we engineered a construct that includes only the specific TDP-43 amino acid sequences necessary to trigger aggregate formation and capable of trapping endogenous Drosophila TDP-43 into a non-functional insoluble form. Importantly, the resulting recombinant product lacks functional RNA recognition motifs (RRMs) and, thus, does not have specific TDP-43-physiological functions (i.e. splicing regulation ability) that might affect the animal phenotype per se. This novel Drosophila model exhibits an evident degenerative phenotype with reduced lifespan and early locomotion defects. Additionally, we show that important proteins involved in neuromuscular junction function, such as syntaxin (SYX), decrease their levels as a consequence of TDP-43 loss of function implying that the degenerative phenotype is a consequence of TDP-43 sequestration into the aggregates. Our data lend further support to the role of TDP-43 loss-of-function in the pathogenesis of neurodegenerative disorders. The novel transgenic Drosophila model presented in this study will help to gain further insight into the molecular

  17. Exosome secretion is a key pathway for clearance of pathological TDP-43.

    PubMed

    Iguchi, Yohei; Eid, Lara; Parent, Martin; Soucy, Geneviève; Bareil, Christine; Riku, Yuichi; Kawai, Kaori; Takagi, Shinnosuke; Yoshida, Mari; Katsuno, Masahisa; Sobue, Gen; Julien, Jean-Pierre

    2016-12-01

    Cytoplasmic TDP-43 aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Here we investigated the role of exosomes in the secretion and propagation of TDP-43 aggregates. TDP-43 was detected in secreted exosomes from Neuro2a cells and primary neurons but not from astrocytes or microglia. Evidence is presented that protein aggregation and autophagy inhibition are factors that promote exosomal secretion of TDP-43. We also report that levels of exosomal TDP-43 full length and C-terminal fragment species are upregulated in human amyotrophic lateral sclerosis brains. Exposure of Neuro2a cells to exosomes from amyotrophic lateral sclerosis brain, but not from control brain, caused cytoplasmic redistribution of TDP-43, suggesting that secreted exosomes might contribute to propagation of TDP-43 proteinopathy. Yet, inhibition of exosome secretion by inactivation of neutral sphingomyelinase 2 with GW4869 or by silencing RAB27A provoked formation of TDP-43 aggregates in Neuro2a cells. Moreover, administration of GW4869 exacerbated the disease phenotypes of transgenic mice expressing human TDP-43(A315T) mutant. Thus, even though results suggest that exosomes containing pathological TDP-43 may play a key role in the propagation of TDP-43 proteinopathy, a therapeutic strategy for amyotrophic lateral sclerosis based on inhibition of exosome production would seem inappropriate, as in vivo data suggest that exosome secretion plays an overall beneficial role in neuronal clearance of pathological TDP-43. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Aberrant Assembly of RNA Recognition Motif 1 Links to Pathogenic Conversion of TAR DNA-binding Protein of 43 kDa (TDP-43)*

    PubMed Central

    Shodai, Akemi; Morimura, Toshifumi; Ido, Akemi; Uchida, Tsukasa; Ayaki, Takashi; Takahashi, Rina; Kitazawa, Soichiro; Suzuki, Sakura; Shirouzu, Mikako; Kigawa, Takanori; Muto, Yutaka; Yokoyama, Shigeyuki; Takahashi, Ryosuke; Kitahara, Ryo; Ito, Hidefumi; Fujiwara, Noriko; Urushitani, Makoto

    2013-01-01

    Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS. PMID:23558684

  19. Neurodegeneration-associated TDP-43 interacts with fragile X mental retardation protein (FMRP)/Staufen (STAU1) and regulates SIRT1 expression in neuronal cells.

    PubMed

    Yu, Zhipeng; Fan, Dongsheng; Gui, Bin; Shi, Lei; Xuan, Chenghao; Shan, Lin; Wang, Qian; Shang, Yongfeng; Wang, Yan

    2012-06-29

    Despite the identification of the 43 kDa transactive response DNA-binding protein (TDP-43) as a major pathological signatory protein in a wide range of neurodegenerative diseases, the mechanistic role of TDP-43 in neurodegenerative disorders is still poorly understood. Here, we report that TDP-43 is physically associated with fragile X mental retardation protein (FMRP) and Staufen (STAU1) to form a functional complex. Differential microarray analysis revealed that the expression of a collection of functionally important genes including Sirtuin (SIRT1) is regulated by this complex. RNA-immunoprecipitation (RIP) and RNA pull-down assays demonstrated that TDP-43/FMRP/STAU1 specifically binds to the 3'-UTR of SIRT1 mRNA, and that knockdown the expression of any one of these three proteins resulted in the reduction of SIRT1 mRNA and protein. SIRT1 is implicated in double-stranded DNA break repair and is required for cell survival. Indeed, depletion of TDP-43/FMRP/STAU1 sensitizes cells to apoptosis and DNA damages. Collectively, our results revealed a molecular mechanism for the cellular function of TDP-43 and might shed new light on the understanding of the mechanistic role of TDP-43 in neurodegenerative diseases.

  20. Transcription and Splicing Factor TDP-43: Role in Regulation of Gene Expression in Testis.

    PubMed

    Reddi, Prabhakara P

    2017-03-01

    TDP-43 (TAR DNA binding Protein of 43 kD) is a transcription factor and RNA-binding protein with diverse functions. We cloned TDP-43 from the mouse testis in a screen for promoter-binding proteins and showed that it functions as a transcriptional repressor. TDP-43 plays a role in maintaining the precise pattern of spatiotemporal expression of the spermatid-specific Acrv1 gene during spermatogenesis by facilitating RNA polymerase II pausing at the promoter. We also showed that TDP-43 plays a partial role in preventing somatic cell expression of the Acrv1 gene by acting as an insulator-binding protein. Since the discovery of a causative link to several neurodegenerative diseases 10 years ago, TDP-43 has emerged as a protein of major human health relevance. Aberrant posttranslational modifications, nuclear exit, and cytoplasmic aggregate formation contribute to loss of neuronal function in patients. Interestingly, aberrant TDP-43 expression has also been reported in the testis and sperm of infertile men. Finally, our unpublished work shows that TDP-43 is indispensable for sperm formation and male fertility. The potential role of TDP-43 in male germ cells and fertility is discussed in this review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity

    PubMed Central

    Crippa, Valeria; Cicardi, Maria Elena; Ramesh, Nandini; Seguin, Samuel J.; Ganassi, Massimo; Bigi, Ilaria; Diacci, Chiara; Zelotti, Elena; Baratashvili, Madina; Gregory, Jenna M.; Dobson, Christopher M.; Cereda, Cristina; Pandey, Udai Bhan; Poletti, Angelo; Carra, Serena

    2016-01-01

    Aggregation of TAR-DNA-binding protein 43 (TDP-43) and of its fragments TDP-25 and TDP-35 occurs in amyotrophic lateral sclerosis (ALS). TDP-25 and TDP-35 act as seeds for TDP-43 aggregation, altering its function and exerting toxicity. Thus, inhibition of TDP-25 and TDP-35 aggregation and promotion of their degradation may protect against cellular damage. Upregulation of HSPB8 is one possible approach for this purpose, since this chaperone promotes the clearance of an ALS associated fragments of TDP-43 and is upregulated in the surviving motor neurones of transgenic ALS mice and human patients. We report that overexpression of HSPB8 in immortalized motor neurones decreased the accumulation of TDP-25 and TDP-35 and that protection against mislocalized/truncated TDP-43 was observed for HSPB8 in Drosophila melanogaster. Overexpression of HSP67Bc, the functional ortholog of human HSPB8, suppressed the eye degeneration caused by the cytoplasmic accumulation of a TDP-43 variant with a mutation in the nuclear localization signal (TDP-43-NLS). TDP-43-NLS accumulation in retinal cells was counteracted by HSP67Bc overexpression. According with this finding, downregulation of HSP67Bc increased eye degeneration, an effect that is consistent with the accumulation of high molecular weight TDP-43 species and ubiquitinated proteins. Moreover, we report a novel Drosophila model expressing TDP-35, and show that while TDP-43 and TDP-25 expression in the fly eyes causes a mild degeneration, TDP-35 expression leads to severe neurodegeneration as revealed by pupae lethality; the latter effect could be rescued by HSP67Bc overexpression. Collectively, our data demonstrate that HSPB8 upregulation mitigates TDP-43 fragment mediated toxicity, in mammalian neuronal cells and flies. PMID:27466192

  2. TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway.

    PubMed

    Moujalled, Diane; Grubman, Alexandra; Acevedo, Karla; Yang, Shu; Ke, Yazi D; Moujalled, Donia M; Duncan, Clare; Caragounis, Aphrodite; Perera, Nirma D; Turner, Bradley J; Prudencio, Mercedes; Petrucelli, Leonard; Blair, Ian; Ittner, Lars M; Crouch, Peter J; Liddell, Jeffrey R; White, Anthony R

    2017-05-01

    TAR DNA binding protein 43 (TDP-43) is a major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous studies found a direct association between TDP-43 and heterogeneous nuclear ribonucleoprotein K (hnRNP K). In this study, utilizing ALS patient fibroblasts harboring a TDP-43M337V mutation and NSC-34 motor neuronal cell line expressing TDP-43Q331K mutation, we show that hnRNP K expression is impaired in urea soluble extracts from mutant TDP-43 cell models. This was confirmed in vivo using TDP-43Q331K and inducible TDP-43A315T murine ALS models. We further investigated the potential pathological effects of mutant TDP-43-mediated changes to hnRNP K metabolism by RNA binding immunoprecipitation analysis. hnRNP K protein was bound to antioxidant NFE2L2 transcripts encoding Nrf2 antioxidant transcription factor, with greater enrichment in TDP-43M337V patient fibroblasts compared to healthy controls. Subsequent gene expression profiling revealed an increase in downstream antioxidant transcript expression of Nrf2 signaling in the spinal cord of TDP-43Q331K mice compared to control counterparts, yet the corresponding protein expression was not up-regulated in transgenic mice. Despite the elevated expression of antioxidant transcripts, we observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. Our findings indicate that further exploration of the interplay between hnRNP K (or other hnRNPs) and Nrf2-mediated antioxidant signaling is warranted and may be an important driver for motor neuron degeneration in ALS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP.

    PubMed

    Majumder, Pritha; Chu, Jen-Fei; Chatterjee, Biswanath; Swamy, Krishna B S; Shen, Che-Kun James

    2016-11-01

    For proper mammalian brain development and functioning, the translation of many neuronal mRNAs needs to be repressed without neuronal activity stimulations. We have discovered that the expression of a subclass of neuronal proteins essential for neurodevelopment and neuron plasticity is co-regulated at the translational level by TDP-43 and the Fragile X Syndrome protein FMRP. Using molecular, cellular and imaging approaches, we show that these two RNA-binding proteins (RBP) co-repress the translation initiation of Rac1, Map1b and GluR1 mRNAs, and consequently the hippocampal spinogenesis. The co-repression occurs through binding of TDP-43 to mRNA(s) at specific UG/GU sequences and recruitment of the inhibitory CYFIP1-FMRP complex by its glycine-rich domain. This novel regulatory scenario could be utilized to silence a significant portion of around 160 common target mRNAs of the two RBPs. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases.

  4. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome.

    PubMed

    Zhao, Weihua; Beers, David R; Bell, Shaughn; Wang, Jinghong; Wen, Shixiang; Baloh, Robert H; Appel, Stanley H

    2015-11-01

    Transactive response DNA-binding protein-43 (TDP-43) is a multifunctional nucleic acid binding protein present in ubiquitinated inclusions in tissues of patients with amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). The ALS-associated mutations in the glycine-rich C-terminal domain of TDP-43 established a causal link between TDP-43 and disease, and conferred both loss- and gain-of-function properties in neurons. Since it has not been established whether these intra-neuronal changes are sufficient to cause ALS or whether non-cell autonomous neuronal-glial signaling could be involved, we investigated the extracellular effects of TDP-43 proteins on microglial activation and motoneuron toxicity. Wild-type, truncated 25kD C-terminal fragments, or mutant forms of TDP-43 all activated microglia and upregulated NOX2, TNF-α, and IL-1β, with WT forms being significantly less effective in activating microglia. This response to TDP-43 was mediated by its interaction with the microglial surface CD14 receptor and subsequent stimulation of the NF-κB and AP-1 pathways, as well as the intracellular inflammasome. At the cell surface, CD14 blocking antibodies suppressed microglial NF-κB activation and proinflammatory cytokine production mediated by TDP-43. Intracellularly, the NLRP3 inflammasome was induced and functional caspase-1 was produced augmenting the release of mature IL-1β. Further, TDP-43-mediated activation of microglia caused a proinflammatory cascade that was toxic to motoneurons. In the absence of microglia, TDP-43 was not toxic to motoneurons. The ability of TDP-43 to promote CD14-mediated activation of microglial NF-κB and AP-1 pathways, as well as the NLRP3 inflammasome, suggests the involvement of a non-cell autonomous proinflammatory signaling that enhances motoneuron injury, and may offer novel therapeutic targets in ALS. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs

    PubMed Central

    Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Hutt, Kasey R; Vu, Anthony Q; Baughn, Michael; Huelga, Stephanie C; Clutario, Kevin M; Ling, Shuo-Chien; Liang, Tiffany Y; Mazur, Curt; Wancewicz, Edward; Kim, Aneeza S; Watt, Andy; Freier, Sue; Hicks, Geoffrey G; Donohue, John Paul; Shiue, Lily; Bennett, C Frank; Ravits, John; Cleveland, Don W; Yeo, Gene W

    2013-01-01

    FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate–containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS. PMID:23023293

  6. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs.

    PubMed

    Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Hutt, Kasey R; Vu, Anthony Q; Baughn, Michael; Huelga, Stephanie C; Clutario, Kevin M; Ling, Shuo-Chien; Liang, Tiffany Y; Mazur, Curt; Wancewicz, Edward; Kim, Aneeza S; Watt, Andy; Freier, Sue; Hicks, Geoffrey G; Donohue, John Paul; Shiue, Lily; Bennett, C Frank; Ravits, John; Cleveland, Don W; Yeo, Gene W

    2012-11-01

    FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate-containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.

  7. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice

    PubMed Central

    2014-01-01

    Background Intraneuronal inclusions of TAR DNA-binding protein 43 (TDP-43) have been found in the majority of Amyotrophic Lateral Sclerosis (ALS) patients. Mutations in the gene encoding TDP-43 cause familial ALS. Transgenic mice expressing mutant TDP-43 with one such mutation (TDP-43 (A315T)) under control of the murine prion promoter develop motor symptoms, but their use is currently hampered by sudden death. We aimed to understand and overcome the cause of sudden death in TDP-43 (A315T) mice. Since intestinal obstruction was suspected to be the cause, intestinal motility of TDP-43 (A315T) mice was studied in an ex-vivo pellet propulsion assay. The effect on the enteric and motor phenotype was assessed, both in animals on normal chow or on a jellified fiber deprived diet, aimed at preventing intestinal obstruction. Results The frequency of the propulsive motor complexes was significantly reduced in the colon of TDP-43 (A315T) compared to non transgenic (NTG) mice. Immunohistochemistry revealed significant enlargement in size and reduction in number of the nitric oxide synthase (NOS) neurons in the myenteric plexus of TDP-43 (A315T) mice. Prevention of intestinal obstruction by jellified food abolished sudden death, allowing the motor phenotype to develop and slowly progress with a more pronounced degeneration of upper and lower motor axons. A downregulation of endogenous TDP-43 mRNA and protein levels was observed prior to neurodegeneration. Conclusion TDP-43 (A315T) mice suffer from intestinal dysmotility due to degeneration of NOS neurons in the myenteric plexus. Feeding the mice jellified food prevents sudden death and allows the motor phenotype to progress. PMID:24938805

  8. TDP-43 is intercellularly transmitted across axon terminals

    PubMed Central

    Feiler, Marisa S.; Strobel, Benjamin; Freischmidt, Axel; Helferich, Anika M.; Kappel, Julia; Brewer, Bryson M.; Li, Deyu; Thal, Dietmar R.; Walther, Paul; Ludolph, Albert C.; Danzer, Karin M.

    2015-01-01

    Transactive response DNA-binding protein 43 kD (TDP-43) is an aggregation-prone prion-like domain-containing protein and component of pathological intracellular aggregates found in most amyotrophic lateral sclerosis (ALS) patients. TDP-43 oligomers have been postulated to be released and subsequently nucleate TDP-43 oligomerization in recipient cells, which might be the molecular correlate of the systematic symptom spreading observed during ALS progression. We developed a novel protein complementation assay allowing quantification of TDP-43 oligomers in living cells. We demonstrate the exchange of TDP-43 between cell somata and the presence of TDP-43 oligomers in microvesicles/exosomes and show that microvesicular TDP-43 is preferentially taken up by recipient cells where it exerts higher toxicity than free TDP-43. Moreover, studies using microfluidic neuronal cultures suggest both anterograde and retrograde trans-synaptic spreading of TDP-43. Finally, we demonstrate TDP-43 oligomer seeding by TDP-43–containing material derived from both cultured cells and ALS patient brain lysate. Thus, using an innovative detection technique, we provide evidence for preferentially microvesicular uptake as well as both soma-to-soma “horizontal” and bidirectional “vertical” synaptic intercellular transmission and prion-like seeding of TDP-43. PMID:26598621

  9. Splicing factors act as genetic modulators of TDP-43 production in a new autoregulatory TDP-43 Drosophila model.

    PubMed

    Pons, Marine; Miguel, Laetitia; Miel, Camille; Avequin, Tracey; Juge, François; Frebourg, Thierry; Campion, Dominique; Lecourtois, Magalie

    2017-09-01

    TDP-43 is a critical RNA-binding factor associated with RNA metabolism. In the physiological state, maintaining normal TDP-43 protein levels is critical for proper physiological functions of the cells. As such, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. TDP-43 is a major disease-causing protein in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Several studies argue for a pathogenic role of elevated TDP-43 levels in these disorders. Modulating the cycle of TDP-43 production might therefore provide a new therapeutic strategy. In this study, we developed a new transgenic Drosophila model mimicking the TDP-43 autoregulatory feedback loop in order to identify genetic modulators of TDP-43 protein steady-state levels in vivo. First, we showed that our TDP-43_TDPBR Drosophila model recapitulates key features of the TDP-43 autoregulatory processes previously described in mammalian and cellular models, namely alternative splicing events, differential usage of polyadenylation sites, nuclear retention of the transcript and a decrease in steady-state mRNA levels. Using this new Drosophila model, we identified several splicing factors, including SF2, Rbp1 and Sf3b1, as genetic modulators of TDP-43 production. Interestingly, our data indicate that these three RNA-binding proteins regulate TDP-43 protein production, at least in part, by controlling mRNA steady-state levels. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor

    PubMed Central

    Mohagheghi, Fatemeh; Prudencio, Mercedes; Stuani, Cristiana; Cook, Casey; Jansen-West, Karen; Dickson, Dennis W.; Petrucelli, Leonard; Buratti, Emanuele

    2016-01-01

    The aggregation and mislocalization of RNA-binding proteins leads to the aberrant regulation of RNA metabolism and is a key feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. However, the pathological consequences of abnormal deposition of TDP-43 and other RNA-binding proteins remain unclear, as the specific molecular events that drive neurodegeneration have been difficult to identify and continue to be elusive. Here, we provide novel insight into the complexity of the RNA-binding protein network by demonstrating that the inclusion of exon 17b in the SORT1 mRNA, a pathologically relevant splicing event known to be regulated by TDP-43, is also considerably affected by additional RNA-binding proteins, such as hnRNP L, PTB/nPTB and hnRNP A1/A2. Most importantly, the expression of hnRNP A1/A2 and PTB/nPTB is significantly altered in patients with frontotemporal dementia with TDP-43-positive inclusions (FTLD-TDP), indicating that perturbations in RNA metabolism and processing in FTLD-TDP are not exclusively driven by a loss of TDP-43 function. These results also suggest that a comprehensive assessment of the RNA-binding protein network will dramatically advance our current understanding of the role of TDP-43 in disease pathogenesis, as well as enhance both diagnostic and therapeutic capabilities. PMID:26614389

  11. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43.

    PubMed

    Arnold, Eveline S; Ling, Shuo-Chien; Huelga, Stephanie C; Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Ditsworth, Dara; Kordasiewicz, Holly B; McAlonis-Downes, Melissa; Platoshyn, Oleksandr; Parone, Philippe A; Da Cruz, Sandrine; Clutario, Kevin M; Swing, Debbie; Tessarollo, Lino; Marsala, Martin; Shaw, Christopher E; Yeo, Gene W; Cleveland, Don W

    2013-02-19

    Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.

  12. Astrocytic TDP-43 pathology in Alexander disease.

    PubMed

    Walker, Adam K; Daniels, Christine M LaPash; Goldman, James E; Trojanowski, John Q; Lee, Virginia M-Y; Messing, Albee

    2014-05-07

    Alexander disease (AxD) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic inclusions known as Rosenthal fibers (RFs) within astrocytes, and is caused by dominant mutations in the coding region of the gene encoding glial fibrillary acidic protein (GFAP). GFAP is the major astrocytic intermediate filament, and in AxD patient brain tissue GFAP is a major component of RFs. TAR DNA binding protein of 43 kDa (TDP-43) is the major pathological protein in almost all cases of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and ∼50% of frontotemporal lobar degeneration (FTLD), designated as FTLD-TDP. In ALS and FTLD-TDP, TDP-43 becomes insoluble, ubiquitinated, and pathologically phosphorylated and accumulates in cytoplasmic inclusions in both neurons and glia of affected brain and spinal cord regions. Previously, TDP-43 was detected in RFs of human pilocytic astrocytomas; however, involvement of TDP-43 in AxD has not been determined. Here we show that TDP-43 is present in RFs in AxD patient brains, and that insoluble phosphorylated full-length and high molecular weight TDP-43 accumulates in white matter of such brains. Phosphorylated TDP-43 also accumulates in the detergent-insoluble fraction from affected brain regions of Gfap(R236H/+) knock-in mice, which harbor a GFAP mutation homologous to one that causes AxD in humans, and TDP-43 colocalizes with astrocytic RF pathology in Gfap(R236H/+) mice and transgenic mice overexpressing human wild-type GFAP. These findings suggest common pathogenic mechanisms in ALS, FTLD, and AxD, and this is the first report of TDP-43 involvement in a neurological disorder primarily affecting astrocytes.

  13. The Role of TDP-43 in Alzheimer's Disease.

    PubMed

    Chang, Xiao-Long; Tan, Meng-Shan; Tan, Lan; Yu, Jin-Tai

    2016-07-01

    The transactive response DNA binding protein (TDP-43) has long been characterized as a main hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U, also known as FTLD-TDP). Several studies have indicated TDP-43 deposits in Alzheimer's disease (AD) brains and have robust connection with AD clinical phenotype. FTLD-U, which was symptomatically connected with AD, may be predictable for the comprehension of the role TDP-43 in AD. TDP-43 may contribute to AD through both β-amyloid (Aβ)-dependent and Aβ-independent pathways. In this article, we summarize the latest studies concerning the role of TDP-43 in AD and explore TDP-43 modulation as a potential therapeutic strategy for AD. However, to date, little of pieces of the research on TDP-43 have been performed to investigate the role in AD; more investigations need to be confirmed in the future.

  14. Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD.

    PubMed

    Yamashita, Takenari; Teramoto, Sayaka; Kwak, Shin

    2016-06-01

    TAR DNA-binding protein-43 (TDP-43) pathology, which includes the presence of abnormal TDP-43-containing inclusions with a loss of nuclear TDP-43 in affected neurons, is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobar degeneration (FTLD). TDP-43 in the pathological brains and spinal cords of ALS/FTLD patients is abnormally fragmented and phosphorylated. It is believed that the generation of aggregation-prone TDP-43 fragments initiates TDP-43 pathology, and we previously reported that calpain has an important role in the generation of such aggregation-prone TDP-43 fragments. However, the role of phosphorylation in TDP-43 pathology has not been largely elucidated, despite previous observations that several kinases and their kinases are involved in TDP-43 phosphorylation. Here, we investigated the role of TDP-43 phosphorylation in the calpain-dependent cleavage of TDP-43 and found that phosphorylated, full-length TDP-43 and calpain-dependent TDP-43 fragments were more resistant to cleavage by calpain than endogenous full-length TDP-43 was. These results suggest that both phosphorylated and calpain-cleaved TDP-43 fragments persist intracellularly for a length of time that is sufficient for self-aggregation, thereby serving as seeds for inclusions. Copyright © 2015 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  15. Rodent models of TDP-43: Recent advances

    PubMed Central

    Tsao, William; Jeong, Yun Ha; Lin, Sophie; Ling, Jonathan; Price, Donald L.; Chiang, Po-Min; Wong, Philip C.

    2013-01-01

    Recently, missense mutations in the gene TARDBP encoding TDP-43 have been linked to familial ALS. The discovery of genes encoding these RNA binding proteins, such as TDP-43 and FUS/TLS, raised the notion that altered RNA metabolism is a major factor underlying the pathogenesis of ALS. To begin to unravel how mutations in TDP-43 cause dysfunction and death of motor neurons, investigators have employed both gain- and loss-of-function studies in rodent model systems. Here, we will summarize major findings from the initial sets of TDP-43 transgenic and knockout rodent models, identify their limitations, and point to future directions toward clarification of disease mechanism(s) and testing of therapeutic strategies that ultimately may lead to novel therapy for this devastating disease. PMID:22608070

  16. Phase to Phase with TDP-43.

    PubMed

    Sun, Yulong; Chakrabartty, Avijit

    2017-02-14

    TDP-43 is a dimeric nuclear protein that plays a central role in RNA metabolism. In recent years, this protein has become a focal point of research in the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, as pathognomonic inclusions within affected neurons contain post-translationally modified TDP-43. A key question in TDP-43 research involves determining the mechanisms and triggers that cause TDP-43 to form pathological aggregates. This review gives a brief overview of the physiological and pathological roles of TDP-43 and focuses on the structural features of its protein domains and how they may contribute to normal protein function and to disease. A special emphasis is placed on the C-terminal prion-like region thought to be implicated in pathology, as it is where nearly all ALS/FTD-associated mutations reside. Recent structural studies of this domain revealed its crucial role in the formation of phase-separated liquid droplets through a partially populated α-helix. This new discovery provides further support for the theory that liquid droplets such as stress granules may be precursors to pathological aggregates, linking environmental effects such as stress to the potential etiology of the disease. The transition of TDP-43 among soluble, droplet, and aggregate phases and the implications of these transitions for pathological aggregation are summarized and discussed.

  17. The proteinopathy of D169G and K263E mutants at the RNA Recognition Motif (RRM) domain of tar DNA binding protein (tdp43) causing neurological disorders: A computational study.

    PubMed

    Bhandare, Vishwambhar Vishnu; Ramaswamy, Amutha

    2017-03-22

    One of the multitasking proteins, transactive response DNA-binding protein 43 (tdp43) plays a key role in RNA regulation and the two pathogenic mutations such as D169G and K263E, located at the RNA Recognition Motif (RRM) of tdp43, are reported to cause neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and Fronto Temporal Lobar Degeneration (FTLD). As the exploration of the proteinopathy demands both structural and functional characterization of mutants, a comparative analysis on the wild type and mutant tdp43 (D169G and K263E) and their complexes with RNA have been performed using computational approaches. Molecular dynamics simulations revealed comparatively stable mutant structures compared to wild type tdp43. Both mutants show lesser binding affinity towards RNA molecule when compared to the wild type tdp43. Some of the observed features, including the increased solvent accessible surface area, conformational flexibility as well as unfolding of tdp43 and the altered RNA conformation in tp43-RNA complex, reveal the susceptibility of these mutants to induce conformational changes in tdp43 for a possible aggregation in the cytoplasm. Particularly, the enhanced aggregation propensity of both mutants also evidences the higher probability of cytoplasmic aggregation of tdp43 mutants. Hence, the present analysis highlighting the structural and functional aspects of wild and mutant tdp43 will form the basis to gain insight into the proteinopathy of tdp43 and the related structure based drug discovery. Thus, tdp43 can be used as target to develop novel therapeutic approaches or drug designing.

  18. Pallidonigral TDP-43 pathology in Perry syndrome

    PubMed Central

    Wider, Christian; Dickson, Dennis W.; Jon Stoessl, A.; Tsuboi, Yoshio; Chapon, Françoise; Gutmann, Ludwig; Lechevalier, Bernard; Calne, Donald B.; Personett, David A.; Hulihan, Mary; Kachergus, Jennifer; Rademakers, Rosa; Baker, Matthew C.; Grantier, Linda L.; Sujith, O. K.; Brown, Laura; Calne, Susan; Farrer, Matthew J.; Wszolek, Zbigniew K.

    2009-01-01

    Objective Autosomal dominant parkinsonism, hypoventilation, depression and severe weight loss (Perry syndrome) is an early-onset rapidly progressive disease. At autopsy, previous studies have found severe neuronal loss in the substantia nigra without Lewy bodies. Transactive response DNA-binding protein of 43 kDa (TDP-43) has recently been identified as a major ubiquitinated constituent of neuronal and glial inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis. This study reports clinical, genetic and neuropathologic investigations of Perry syndrome. Methods Clinical data and autopsy brain tissue samples were collected from eight patients from four genealogically unrelated kindreds with Perry syndrome. Brain tissue was studied with immunohistochemistry and biochemistry for TDP-43. Patients were screened for mutations in the progranulin (GRN) and TDP-43 (TARDBP) genes. Results The mean age at onset was 47 years (range: 40-56), and the mean age at death was 52 years (range: 44-64). In all patients, we identified TDP-43-positive neuronal inclusions, dystrophic neurites and axonal spheroids in a predominantly pallidonigral distribution, and we demonstrated changes in solubility and electrophoretic mobility of TDP-43 in brain tissue. The inclusions were highly pleomorphic and predominated in the extrapyramidal system, sparing the cortex, hippocampus and motor neurons. There were no mutations in GRN or TARDBP. Interpretation Perry syndrome displays unique TDP-43 pathology that is selective for the extrapyramidal system and spares the neocortex and motor neurons. PMID:18723384

  19. The phosphatase calcineurin regulates pathological TDP-43 phosphorylation.

    PubMed

    Liachko, Nicole F; Saxton, Aleen D; McMillan, Pamela J; Strovas, Timothy J; Currey, Heather N; Taylor, Laura M; Wheeler, Jeanna M; Oblak, Adrian L; Ghetti, Bernardino; Montine, Thomas J; Keene, C Dirk; Raskind, Murray A; Bird, Thomas D; Kraemer, Brian C

    2016-10-01

    Detergent insoluble inclusions of TDP-43 protein are hallmarks of the neuropathology in over 90 % of amyotrophic lateral sclerosis (ALS) cases and approximately half of frontotemporal dementia (FTLD-TDP) cases. In TDP-43 proteinopathy disorders, lesions containing aggregated TDP-43 protein are extensively post-translationally modified, with phosphorylated TDP-43 (pTDP) being the most consistent and robust marker of pathological TDP-43 deposition. Abnormally phosphorylated TDP-43 has been hypothesized to mediate TDP-43 toxicity in many neurodegenerative disease models. To date, several different kinases have been implicated in the genesis of pTDP, but no phosphatases have been shown to reverse pathological TDP-43 phosphorylation. We have identified the phosphatase calcineurin as an enzyme binding to and catalyzing the removal of pathological C-terminal phosphorylation of TDP-43 in vitro. In C. elegans models of TDP-43 proteinopathy, genetic elimination of calcineurin results in accumulation of excess pTDP, exacerbated motor dysfunction, and accelerated neurodegenerative changes. In cultured human cells, treatment with FK506 (tacrolimus), a calcineurin inhibitor, results in accumulation of pTDP species. Lastly, calcineurin co-localizes with pTDP in degenerating areas of the central nervous system in subjects with FTLD-TDP and ALS. Taken together, these findings suggest calcineurin acts on pTDP as a phosphatase in neurons. Furthermore, patient treatment with calcineurin inhibitors may have unappreciated adverse neuropathological consequences.

  20. Clinical Significance of TDP-43 Neuropathology in Amyotrophic Lateral Sclerosis.

    PubMed

    Cykowski, Matthew D; Powell, Suzanne Z; Peterson, Leif E; Appel, Joan W; Rivera, Andreana L; Takei, Hidehiro; Chang, Ellen; Appel, Stanley H

    2017-05-01

    To determine the significance of TAR DNA binding protein 43 kDa (TDP-43) pathology in amyotrophic lateral sclerosis (ALS), we examined the whole brains and spinal cords of 57 patients (35 men; 22 women; mean age 63.3 years; 15 patients with c9orf72-associated ALS [c9ALS]). TDP-43 pathologic burden was determined relative to symptom onset site, disease duration, progression rate, cognitive status, and c9ALS status. There was a trend for greater TDP-43 pathologic burden in cognitively impaired patients (p = 0.07), though no association with disease duration or progression rate was seen. Shorter disease duration (p = 0.0016), more severe striatal pathology (p = 0.0029), and a trend toward greater whole brain TDP-43 pathology (p = 0.059) were found in c9ALS. Cluster analysis identified "TDP43-limited," "TDP43-moderate," and "TDP43-severe" subgroups. The TDP43-limited group contained more cognitively intact (p = 0.005) and lower extremity onset site (p = 0.019) patients, while other subgroups contained more cognitively impaired patients. We conclude that TDP-43 pathologic burden in ALS is associated with cognitive impairment and c9ALS, but not duration of disease or rate of progression. Further, we demonstrate a subgroup of patients with low TDP-43 burden, lower extremity onset, and intact cognition, which requires further investigation. © 2017 American Association of Neuropathologists, Inc.

  1. Differential expression of TAR DNA-binding protein (TDP-43) in the central nervous system of horses afflicted with equine motor neuron disease (EMND): a preliminary study of a potential pathologic marker.

    PubMed

    El-Assaad, Iqbal; Di Bari, Jeremy A; Yasuda, Koji; Divers, Thomas J; Summers, Brian A; de Lahunta, Alexander; Mohammed, Hussni

    2012-12-01

    Equine motor neuron disease (EMND) is a neurodegenerative disorder of unknown etiology affecting horses worldwide. Trans-Active Response DNA Binding Protein of 43 kDa (TDP-43) has been reported in the central nervous system (CNS) of several neurodegenerative conditions in humans including Amyotrophic Lateral Sclerosis (ALS) and assumed to play role in the disease. We examined whether horses afflicted with EMND express the TDP-43 in CNS. Ten horses with EMND and 6 controls of different ages and breed we enrolled. Detection of presence of TDP-43 protein in the CNS was analyzed by immunohistochemical staining using rabbit anti-human TARDBP (TDP-43) polyclonal antibody. Formalin fixed neuronal tissues from medulla, cervical, and lumbar spinal cord were harvested from EMND and from control horses. Sections were assigned randomly to TDP-43 treated or rabbit anti-IgG as control. Nuclear staining of TDP-43 was detected in one of the neural tissues of 75 % of EMND-positive and 0 of 0 % of control horses in the central nervous system (medulla, and/or cervical spinal cord and/or lumbar spinal cord). TDP-43 antibody was detected in the nucleus of EMND horses and no cytoplasmic staining was noted. As in ALS, there was no pattern of age clustering associated with the detection of TDP-43. This is the first report on the staining of TDP-43 in neuronal tissues of horses and suggests that TDP-43 may play a role in the pathogenesis of EMND. Further studies are needed to elucidate the etiologic role of this protein in the diseases.

  2. Distinct pathways leading to TDP-43-induced cellular dysfunctions.

    PubMed

    Yamashita, Makiko; Nonaka, Takashi; Hirai, Shinobu; Miwa, Akiko; Okado, Haruo; Arai, Tetsuaki; Hosokawa, Masato; Akiyama, Haruhiko; Hasegawa, Masato

    2014-08-15

    TAR DNA-binding protein of 43 kDa (TDP-43) is the major component protein of inclusions found in brains of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the molecular mechanisms by which TDP-43 causes neuronal dysfunction and death remain unknown. Here, we report distinct cytotoxic effects of full-length TDP-43 (FL-TDP) and its C-terminal fragment (CTF) in SH-SY5Y cells. When FL-TDP was overexpressed in the cells using a lentiviral system, exogenous TDP-43, like endogenous TDP-43, was expressed mainly in nuclei of cells without any intracellular inclusions. However, these cells showed striking cell death, caspase activation and growth arrest at G2/M phase, indicating that even simple overexpression of TDP-43 induces cellular dysfunctions leading to apoptosis. On the other hand, cells expressing TDP-43 CTF showed cytoplasmic aggregates but without significant cell death, compared with cells expressing FL-TDP. Confocal microscopic analyses revealed that RNA polymerase II (RNA pol II) and several transcription factors, such as specificity protein 1 and cAMP-response-element-binding protein, were co-localized with the aggregates of TDP-43 CTF, suggesting that sequestration of these factors into TDP-43 aggregates caused transcriptional dysregulation. Indeed, accumulation of RNA pol II at TDP-43 inclusions was detected in brains of patients with FTLD-TDP. Furthermore, apoptosis was not observed in affected neurons of FTLD-TDP brains containing phosphorylated and aggregated TDP-43 pathology. Our results suggest that different pathways of TDP-43-induced cellular dysfunction may contribute to the degeneration cascades involved in the onset of ALS and FTLD-TDP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Inhibition of TDP-43 Aggregation by Nucleic Acid Binding

    PubMed Central

    Huang, Yi-Chen; Lin, Ku-Feng; He, Ruei-Yu; Tu, Pang-Hsien; Koubek, Jiri; Hsu, Yin-Chih; Huang, Joseph Jen-Tse

    2013-01-01

    The aggregation of TAR DNA-binding protein (TDP-43) has been shown as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) since 2006. While evidence has suggested that mutation or truncation in TDP-43 influences its aggregation process, nevertheless, the correlation between the TDP-43 aggregation propensity and its binding substrates has not been fully established in TDP-43 proteinopathy. To address this question, we have established a platform based on the in vitro protein expression system to evaluate the solubility change of TDP-43 in response to factors such as nucleotide binding and temperature. Our results suggest that the solubility of TDP-43 is largely influenced by its cognate single-strand DNA (ssDNA) or RNA (ssRNA) rather than hnRNP, which is known to associate with TDP-43 C-terminus. The direct interaction between the refolded TDP-43, purified from E.coli, and ssDNA were further characterized by Circular Dichroism (CD) as well as turbidity and filter binding assay. In addition, ssDNA or ssRNA failed to prevent the aggregation of the F147L/F149L double mutant or truncated TDP-43 (TDP208–414). Consistently, these two mutants form aggregates, in contrast with the wild-type TDP-43, when expressed in Neuro2a cells. Our results demonstrate an intimate relationship between the solubility of TDP-43 and its DNA or RNA binding affinity, which may shed light on the role of TDP-43 in ALS and FTLD. PMID:23737961

  4. ALS-Linked Mutations Enlarge TDP-43-Enriched Neuronal RNA Granules in the Dendritic Arbor

    PubMed Central

    Liu-Yesucevitz, LiQun; Lin, Amy Y.; Ebata, Atsushi; Boon, Joon Y.; Reid, Whitney; Xu, Ya-Fei; Kobrin, Kendra; Murphy, George J.; Petrucelli, Leonard

    2014-01-01

    Trans-activating response region (TAR) DNA-binding protein of 43 kDa (TDP-43) is an RNA-binding protein that is mutated in familial amyotrophic lateral sclerosis (ALS). Disease-linked mutations in TDP-43 increase the tendency of TDP-43 to aggregate, leading to a corresponding increase in formation of stress granules, cytoplasmic protein/RNA complexes that form in response to stress. Although the field has focused on stress granules, TDP-43 also forms other types of RNA granules. For example, TDP-43 is associated with RNA granules that are prevalent throughout the dendritic arbor in neurons. Because aggregation of TDP-43 is also important for the formation of these neuronal RNA granules, we hypothesized that disease-linked mutations might alter granule formation even in the absence of stress. We now report that ALS-linked mutations in TDP-43 (A315T and Q343R) increase the size of neuronal TDP-43 granules in the dendritic arbor of rat hippocampal neurons. The mutations correspondingly reduce the granule density, movement, and mobility of TDP-43 granules. Depolarization of rat hippocampal neurons with KCl stimulates TDP-43 granule migration into dendrites, but A315T and Q343R TDP-43 granules migrate shorter distances and into fewer dendrites than wild-type TDP-43. These findings highlight novel elements of TDP-43 biology that are affected by disease-linked mutations and suggest a neuronally selective mechanism through which TDP-43 mutations might elicit neuronal dysfunction. PMID:24647938

  5. The extreme N-terminus of TDP-43 mediates the cytoplasmic aggregation of TDP-43 and associated toxicity in vivo.

    PubMed

    Sasaguri, Hiroki; Chew, Jeannie; Xu, Ya-Fei; Gendron, Tania F; Garrett, Aliesha; Lee, Chris W; Jansen-West, Karen; Bauer, Peter O; Perkerson, Emilie A; Tong, Jimei; Stetler, Caroline; Zhang, Yong-Jie

    2016-09-15

    Inclusions of Tar DNA- binding protein 43 (TDP-43) are a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP). Pathological TDP-43 exhibits the disease-specific biochemical signatures, which include its ubiquitination, phosphorylation and truncation. Recently, we demonstrated that the extreme N-terminus of TDP-43 regulates formation of abnormal cytoplasmic TDP-43 aggregation in cultured cells and primary neurons. However, it remained unclear whether this N-terminal domain mediates TDP-43 aggregation and the associated toxicity in vivo. To investigate this, we expressed a GFP-tagged TDP-43 with a nuclear localization signal mutation (GFP-TDP-43NLSm) and a truncated form without the extreme N-terminus (GFP-TDP-4310-414-NLSm) by adeno-associated viral (AAV) vectors in mouse primary cortical neurons and murine central nervous system. Compared to neurons containing GFP alone, expression of GFP-TDP-43NLSm resulted in the formation of ubiquitin-positive cytoplasmic inclusions and activation of caspase-3, an indicator of cell death. Moreover, mice expressing GFP-TDP-43NLSm proteins show reactive gliosis and develop neurological abnormalities. However, by deletion of TDP-43's extreme N-terminus, these pathological alterations can be abrogated. Together, our study provides further evidence confirming the critical role of the extreme N-terminus of TDP-43 in regulating protein structure as well as mediating toxicity associated with its aggregation. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Identification of Genetic Modifiers of TDP-43 Neurotoxicity in Drosophila

    PubMed Central

    Kim, Sang Hwa; Tare, Apeksha; Tibbetts, Randal S.

    2013-01-01

    Cytosolic aggregation of the nuclear RNA-binding protein TDP-43 is a histopathologic signature of degenerating neurons in amyotrophic lateral sclerosis (ALS), and mutations in the TARDBP gene encoding TDP-43 cause dominantly inherited forms of this condition. To understand the relationship between TDP-43 misregulation and neurotoxicity, we and others have used Drosophila as a model system, in which overexpression of either wild-type TDP-43 or its ALS-associated mutants in neurons is sufficient to induce neurotoxicity, paralysis, and early death. Using microarrays, we have examined gene expression patterns that accompany TDP-43-induced neurotoxicity in the fly system. Constitutive expression of TDP-43 in the Drosophila compound eye elicited widespread gene expression changes, with strong upregulation of cell cycle regulatory genes and genes functioning in the Notch intercellular communication pathway. Inducible expression of TDP-43 specifically in neurons elicited significant expression differences in a more restricted set of genes. Genes that were upregulated in both paradigms included SpindleB and the Notch target Hey, which appeared to be a direct TDP-43 target. Mutations that diminished activity of Notch or disrupted the function of downstream Notch target genes extended the lifespan of TDP-43 transgenic flies, suggesting that Notch activation was deleterious in this model. Finally, we showed that mutation of the nucleoporin Nup50 increased the lifespan of TDP-43 transgenic flies, suggesting that nuclear events contribute to TDP-43-dependent neurotoxicity. The combined findings identified pathways whose deregulation might contribute to TDP-43-induced neurotoxicity in Drosophila. PMID:23468938

  7. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43

    PubMed Central

    Arnold, Eveline S.; Ling, Shuo-Chien; Huelga, Stephanie C.; Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Ditsworth, Dara; Kordasiewicz, Holly B.; McAlonis-Downes, Melissa; Platoshyn, Oleksandr; Parone, Philippe A.; Da Cruz, Sandrine; Clutario, Kevin M.; Swing, Debbie; Tessarollo, Lino; Marsala, Martin; Shaw, Christopher E.; Yeo, Gene W.; Cleveland, Don W.

    2013-01-01

    Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43Q331K and TDP-43M337V), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43Q331K, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43Q331K enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. PMID:23382207

  8. Identification of TDP-43 as an oncogene in melanoma and its function during melanoma pathogenesis.

    PubMed

    Zeng, Qinghai; Cao, Ke; Liu, Rui; Huang, Jinhua; Xia, Kun; Tang, Jintian; Chen, Xiang; Zhou, Ming; Xie, Huiqing; Zhou, Jianda

    2017-01-02

    Although recent studies have revealed TAR (trans-activating response region) DNA binding protein (TDP-43) as a potential therapeutic target for cancers, its role and clinical association with melanoma have not been explored. To identify the role and function of TDP-43 during melanoma pathogenesis. Firstly, the relationship between TDP-43 expression and patient survival was explored. Then TDP-43 expression level in melanoma tissue and different melanoma cell lines was measured. After silencing TDP-43 expression in melanoma cells, the impacts of TDP-43 on cellular proliferation, metastasis, glucose uptake, and glucose transporters levels were studied. In the end, effect of TDP-43 depletion on tumorigenicity of melanoma cells was tested in vivo. Our results showed that TDP-43 was overexpressed in melanoma paraffin samples compared with that in nevi tissues. The high expression level of TDP-43 was associated with poor patient survival. By silencing TDP-43, we saw significant inhibition of cell proliferation and metastasis in A375 and WM451 cells. TDP-43 knockdown could suppress glucose transporter type-4 (GLUT4) expression and reduce glucose uptake. And downregulation of GLUT4 in melanoma cells induced inhibition of cell proliferation and metastasis. TDP-43 knockdown significantly slowed down tumor growth and decreased GLUT4 expression in vivo. TDP-43 is a novel oncogene in melanoma and regulates melanoma proliferation and metastasis potentially through modulation of glucose metabolism.

  9. Coexisting adult polyglucosan body disease with frontotemporal lobar degeneration with transactivation response DNA-binding protein-43 (TDP-43)-positive neuronal inclusions.

    PubMed

    Farmer, Jill G; Crain, Barbara J; Harris, Brent T; Turner, R Scott

    2013-01-01

    Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) is one of the most common pathological findings associated with the clinical FTLD syndromes. However, molecular characterization with genetic sequencing and protein expression techniques are recognizing many new subtypes for FTLDs. FTLDs are diverse and new nomenclature schemes have been proposed based on the molecular defects that are being discovered ( Mackenzie et al., 2010 , Acta Neuropathologica, 119, 1). Adult polyglucosan body disease (APBD) is a very rare disorder associated with systemic neurological signs and symptoms including progressive dementia with executive dysfunction and motor neuron disease. We report the clinical course of an individual with a clinical FTLD and the as yet unreported findings of coexistent APBD with FTLD-U and transactivation response DNA-binding protein-43 (TDP-43)-positive inclusions at autopsy (or more accurately, FTLD-TDP). It is unclear if these distinct findings are coincidental in this individual, or if pathogenic pathways may intersect to promote these coexisting pathologies.

  10. TDP-43 pathology in Alzheimer's disease, dementia with Lewy bodies and ageing.

    PubMed

    McAleese, Kirsty E; Walker, Lauren; Erskine, Daniel; Thomas, Alan J; McKeith, Ian G; Attems, Johannes

    2017-07-01

    Intracellular inclusions consisting of TAR DNA binding protein-43 (TDP-43 pathology) are present in up to 57% of Alzheimer's disease (AD) cases and follow a distinct topographical pattern of progression described in the TDP-43 in AD staging scheme. This scheme has not been applied to the assessment of TDP-43 pathology in dementia with Lewy bodies (DLB) and aged controls. We investigated TDP-43 pathology prevalence and severity in AD, DLB, mixed AD/DLB (Mx AD/DLB) and aged controls. One hundred and nineteen human post-mortem brains were included, neuropathologically diagnosed as AD: 46, DLB: 15, Mx AD/DLB: 19 and aged controls: 39. Paraffin sections inclusive of the amygdala, hippocampus, striatum and neocortex were immunohistochemically stained with antibodies against phosphorylated TDP-43 and staged according to the TDP-43 in AD staging scheme. TDP-43 pathology was present in all groups: AD: 73.9%, DLB: 33.3%, Mx AD/DLB: 52.6% and controls: 17.9%. Prevalence of TDP-43 pathology was significantly higher in AD and Mx AD/DLB compared to controls. In controls, higher age at death was associated with prevalence of TDP-43 pathology and higher TDP-43 in AD stage, suggesting that this type of TDP-43 pathology may partly be an age-associated phenomenon. Significantly higher prevalence of TDP-43 pathology in the AD group indicates that AD pathology possibly triggers and aggravates TDP-43 pathology. The validity of the TDP-43 in AD staging scheme is not limited to AD and should be applied to assess TDP-43 pathology in post mortem brains of aged individuals to further elucidate the role of TDP-43 pathology in age associated neurodegeneration. © 2016 International Society of Neuropathology.

  11. TDP-43 expression influences amyloidβ plaque deposition and tau aggregation.

    PubMed

    Davis, Stephani A; Gan, Kok Ann; Dowell, James A; Cairns, Nigel J; Gitcho, Michael A

    2017-07-01

    Although the main focus in Alzheimer's disease (AD) has been an investigation of mechanisms causing Aβ plaque deposition and tau tangle formation, recent studies have shown that phosphorylated TDP-43 pathology is present in up to 50% of sporadic cases. Furthermore, elevated phosphorylated TDP-43 has been associated with more severe AD pathology. Therefore, we hypothesized that TDP-43 may regulate amyloid-beta precursor protein (APP) trafficking and tau phosphorylation/aggregation. In order to examine the role of TDP-43 in AD, we developed a transgenic mouse that overexpresses hippocampal and cortical neuronal TDP-43 in a mouse expressing familial mutations (K595N and M596L) in APP and presenilin 1 (PSEN1ΔE9). In our model, increased TDP-43 was related to increased tau aggregation as evidenced by thioflavin S-positive phosphorylated tau, which may implicate TDP-43 expression in pre-tangle formation. In addition, there was increased endosomal/lysosomal localization of APP and reduced Aβ plaque formation with increased TDP-43. Furthermore, there was decreased calcineurin with elevated TDP-43 expression. Since calcineurin is a phosphatase for TDP-43, the decreased calcineurin expression may be one mechanism leading to an increase in accumulation of diffuse phosphorylated TDP-43 in the hippocampus and cortex. We further show that when TDP-43 is knocked down there is an increase in calcineurin. In our model of selective TDP-43 overexpression in an APP/PSEN1 background, we show that TDP-43 decreases Aβ plaque deposition while increasing abnormal tau aggregation. These observations indicate that TDP-43 may play a role in regulating APP trafficking and tau aggregation. Our data suggest that TDP-43 could be a putative target for therapeutic intervention in AD affecting both Aβ plaque formation and tauopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Quantitative analysis of cryptic splicing associated with TDP-43 depletion.

    PubMed

    Humphrey, Jack; Emmett, Warren; Fratta, Pietro; Isaacs, Adrian M; Plagnol, Vincent

    2017-05-26

    Reliable exon recognition is key to the splicing of pre-mRNAs into mature mRNAs. TDP-43 is an RNA-binding protein whose nuclear loss and cytoplasmic aggregation are a hallmark pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). TDP-43 depletion causes the aberrant inclusion of cryptic exons into a range of transcripts, but their extent, relevance to disease pathogenesis and whether they are caused by other RNA-binding proteins implicated in ALS/FTD are unknown. We developed an analysis pipeline to discover and quantify cryptic exon inclusion and applied it to publicly available human and murine RNA-sequencing data. We detected widespread cryptic splicing in TDP-43 depletion datasets but almost none in another ALS/FTD-linked protein FUS. Sequence motif and iCLIP analysis of cryptic exons demonstrated that they are bound by TDP-43. Unlike the cryptic exons seen in hnRNP C depletion, those repressed by TDP-43 cannot be linked to transposable elements. Cryptic exons are poorly conserved and inclusion overwhelmingly leads to nonsense-mediated decay of the host transcript, with reduced transcript levels observed in differential expression analysis. RNA-protein interaction data on 73 different RNA-binding proteins showed that, in addition to TDP-43, 7 specifically bind TDP-43 linked cryptic exons. This suggests that TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. Our quantitative analysis pipeline confirms the presence of cryptic exons during the depletion of TDP-43 but not FUS providing new insight into to RNA-processing dysfunction as a cause or consequence in ALS/FTD.

  13. TDP-43/FUS in motor neuron disease: Complexity and challenges.

    PubMed

    Guerrero, Erika N; Wang, Haibo; Mitra, Joy; Hegde, Pavana M; Stowell, Sara E; Liachko, Nicole F; Kraemer, Brian C; Garruto, Ralph M; Rao, K S; Hegde, Muralidhar L

    Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Axonal TDP-43 aggregates in sporadic amyotrophic lateral sclerosis.

    PubMed

    Onozato, T; Nakahara, A; Suzuki-Kouyama, E; Hineno, A; Yasude, T; Nakamura, T; Yahikozawa, H; Watanabe, M; Kayanuma, K; Makishita, H; Ohara, S; Hashimoto, T; Higuchi, K; Sakai, T; Asano, K; Hashimoto, T; Kanno, H; Nakayama, J; Oyanagi, K

    2016-10-01

    Axonal aggregates of phosphorylated (p-) transactive response DNA-binding protein 43 kDa (TDP-43) in sporadic amyotrophic lateral sclerosis (sALS) were examined in relation to propagation of the protein in the nervous system. Brains and spinal cords of Japanese patients with sALS and control subjects were examined immunohistochemically using formalin-fixed paraffin-embedded specimens with special reference to the topographical distribution, microscopic features, presynaptic aggregates, and correlation between the aggregates in axons and the clinical course. (i) Aggregates of p-TDP-43 were frequently present in axons of the hypoglossal and facial nerve fibres and the spinal anterior horn cells. (ii) Aggregates of p-TDP-43 in the axons showed two characteristic microscopic features - dash-like granuloreticular aggregates (GRAs) and massive aggregates (MAs). (iii) MAs were surrounded by p-neurofilaments, but p-neurofilament immunnoreactivity decreased at the inside of axons with GRAs. (iv) Patients showing MAs and GRAs had a relatively shorter clinical course than patients without the aggregates. (v) Some neurones in the red nucleus in patients were surrounded by synapses containing p- and p-independent (i)-TDP-43, and almost all neurones had lost their nuclear TDP-43 immunoreactivity; 17% of those neurones in the red nucleus also had TDP-43-immunopositive neuronal cytoplasmic inclusions, but no postsynaptic p-TDP-43 deposition was evident. There are two types of axonal p-TDP-43 aggregates, MAs and GRAs, located predominantly in the facial and hypoglossal nuclei and anterior horn cells. These aggregates may influence the function of neurones, and presynaptic aggregates of the protein induce loss of p-i-TDP-43 in the nuclei of postsynaptic neurones. © 2016 British Neuropathological Society.

  15. TDP-43 stabilises the processing intermediates of mitochondrial transcripts.

    PubMed

    Izumikawa, Keiichi; Nobe, Yuko; Yoshikawa, Harunori; Ishikawa, Hideaki; Miura, Yutaka; Nakayama, Hiroshi; Nonaka, Takashi; Hasegawa, Masato; Egawa, Naohiro; Inoue, Haruhisa; Nishikawa, Kouki; Yamano, Koji; Simpson, Richard J; Taoka, Masato; Yamauchi, Yoshio; Isobe, Toshiaki; Takahashi, Nobuhiro

    2017-08-09

    The 43-kDa trans-activating response region DNA-binding protein 43 (TDP-43) is a product of a causative gene for amyotrophic lateral sclerosis (ALS). Despite of accumulating evidence that mitochondrial dysfunction underlies the pathogenesis of TDP-43-related ALS, the roles of wild-type TDP-43 in mitochondria are unknown. Here, we show that the small TDP-43 population present in mitochondria binds directly to a subset of mitochondrial tRNAs and precursor RNA encoded in L-strand mtDNA. Upregulated expression of TDP-43 stabilised the processing intermediates of mitochondrial polycistronic transcripts and their products including the components of electron transport and 16S mt-rRNA, similar to the phenotype observed in cells deficient for mitochondrial RNase P. Conversely, TDP-43 deficiency reduced the population of processing intermediates and impaired mitochondrial function. We propose that TDP-43 has a novel role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts.

  16. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain

    PubMed Central

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A.; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-01-01

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology. PMID:24381309

  17. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.

    PubMed

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-05-15

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.

  18. Enhancement of native and phosphorylated TDP-43 immunoreactivity by proteinase K treatment following autoclave heating.

    PubMed

    Mori, Fumiaki; Tanji, Kunikazu; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2011-08-01

    TDP-43 is a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). To evaluate the effectiveness of proteinase K (PK) treatment in antigen retrieval for native and phosphorylated TDP-43 protein, we examined the temporal cortex and spinal cord from patients with sporadic ALS and FTLD-TDP and control subjects. PK treatment following heat retrieval enhanced the immunoreactivity for native TDP-43 in controls as well as for native and phosphorylated TDP-43 in ALS and FTLD-TDP. A significant number of TDP-43-positive neuropil threads were demonstrated in lesions, in which routine immunohistochemistry revealed that the predominant inclusions are cytoplasmic. This retrieval method is the best of immunohistochemical techniques for demonstrating TDP-43 pathology, especially in the neuropil. © 2010 Japanese Society of Neuropathology.

  19. The Inhibition of TDP-43 Mitochondrial Localization Blocks Its Neuronal Toxicity

    PubMed Central

    Wang, Wenzhang; Wang, Luwen; Lu, Junjie; Siedlak, Sandra L.; Fujioka, Hisashi; Liang, Jingjing; Jiang, Sirui; Ma, Xiaopin; Jiang, Zhen; da Rocha, Edroaldo Lummertz; Sheng, Max; Choi, Heewon; Lerou, Paul H.; Li, Hu; Wang, Xinglong

    2016-01-01

    Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the increased presence of TDP-43 in the cytoplasm is a prominent histopathological feature of degenerating neurons in various neurodegenerative diseases. However, the molecular mechanisms by which TDP-43 contributes to ALS pathophysiology remain elusive. Here, we have found that TDP-43 accumulates in mitochondria in neurons of subjects with ALS or frontotemporal dementia (FTD). Disease-associated mutations increase TDP-43 mitochondrial localization. Within mitochondria, wild type (WT) and mutant TDP-43 preferentially bind mitochondria-transcribed messenger RNAs (mRNAs) encoding respiratory complex I subunit ND3 and ND6, impair their expression and specifically cause complex I disassembly. Suppression of TDP-43 mitochondrial localization abolishes WT and mutant TDP-43-induced mitochondrial dysfunction and neuronal loss, and improves phenotypes of transgenic mutant TDP-43 mice. Thus, our studies link TDP-43 toxicity directly to mitochondrial bioenergetics and propose targeting TDP-43 mitochondrial localization as a promising therapeutic approach for neurodegeneration. PMID:27348499

  20. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    PubMed

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Quantification of the Relative Contributions of Loss-of-function and Gain-of-function Mechanisms in TAR DNA-binding Protein 43 (TDP-43) Proteinopathies.

    PubMed

    Cascella, Roberta; Capitini, Claudia; Fani, Giulia; Dobson, Christopher M; Cecchi, Cristina; Chiti, Fabrizio

    2016-09-09

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U) are two clinically distinct neurodegenerative conditions sharing a similar histopathology characterized by the nuclear clearance of TDP-43 and its associated deposition into cytoplasmic inclusions in different areas of the central nervous system. Given the concomitant occurrence of TDP-43 nuclear depletion and cytoplasmic accumulation, it has been proposed that TDP-43 proteinopathies originate from either a loss-of-function (LOF) mechanism, a gain-of-function (GOF) process, or both. We have addressed this issue by transfecting murine NSC34 and N2a cells with siRNA for endogenous murine TDP-43 and with human recombinant TDP-43 inclusion bodies (IBs). These two strategies allowed the depletion of nuclear TDP-43 and the accumulation of cytoplasmic TDP-43 aggregates to occur separately and independently. Endogenous and exogenous TDP-43 were monitored and quantified using both immunofluorescence and Western blotting analysis, and nuclear functional TDP-43 was measured by monitoring the sortilin 1 mRNA splicing activity. Various degrees of TDP-43 cytoplasmic accumulation and nuclear TDP-43 depletion were achieved and the resulting cellular viability was evaluated, leading to a quantitative global analysis on the relative effects of LOF and GOF on the overall cytotoxicity. These were found to be ∼55% and 45%, respectively, in both cell lines and using both readouts of cell toxicity, showing that these two mechanisms are likely to contribute apparently equally to the pathologies of ALS and FTLD-U. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Characterization of β-domains in C-terminal fragments of TDP-43 by scanning tunneling microscopy.

    PubMed

    Xu, Meng; Zhu, Li; Liu, Jianghong; Yang, Yanlian; Wu, Jane Y; Wang, Chen

    2013-01-01

    The TAR DNA-binding protein 43 (TDP-43) has been identified as a critical player in a range of neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Recent discoveries demonstrate the important role of carboxyl-terminal fragments of TDP-43 in its proteinopathy. Herein, we report the characterization of β-domains in the C-terminal fragments of TDP-43 using scanning tunneling microscopy (STM). Careful comparison of the wild-type TDP-43 (Wt) and the three mutant TDP-43 peptides: an ALS-related mutant peptide: phosphorylated A315T mutant TDP-43 (A315T(p)) and two model peptides: A315T mutant TDP-43 (A315T), A315E mutant TDP-43 (A315E) reveals that A315T(p) has a longer core region of the β-domain than Wt. A315E possesses the longest core region of the β-domain and A315T(p) mutant TDP-43 has the second longest core region of the β-domain. The core regions of the β-domains for A315T and Wt TDP-43 have the same length. This observation provides a supportive evidence of a higher tendency in beta-sheet formation of A315T(p) containing TDP-43 fragment, and structural mechanism for the higher cytotoxicity and accelerated fibril formation of the A315T(p) mutation-containing TDP-43 peptide as compared with Wt TDP-43.

  3. Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization.

    PubMed

    Wang, Wenzhang; Arakawa, Hiroyuki; Wang, Luwen; Okolo, Ogoegbunam; Siedlak, Sandra L; Jiang, Yinfei; Gao, Ju; Xie, Fei; Petersen, Robert B; Wang, Xinglong

    2017-01-04

    Dominant missense mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the cytoplasmic accumulation of TDP-43 represents a pathological hallmark in ALS and frontotemporal lobar degeneration (FTD). Behavioral investigation of the transgenic mouse model expressing the disease-causing human TDP-43 M337V mutant (TDP-43(M337V) mice) is encumbered by premature death in homozygous transgenic mice and a reported lack of phenotype assessed by tail elevation and footprint in hemizygous transgenic mice. Here, using a battery of motor-coordinative and cognitive tests, we report robust motor-coordinative and cognitive deficits in hemizygous TDP-43(M337V) mice by 8 months of age. After 12 months of age, cortical neurons are significantly affected by the mild expression of mutant TDP-43, characterized by cytoplasmic TDP-43 mislocalization, mitochondrial dysfunction, and neuronal loss. Compared with age-matched non-transgenic mice, TDP-43(M337V) mice demonstrate a similar expression of total TDP-43 but higher levels of TDP-43 in mitochondria. Interestingly, a TDP-43 mitochondrial localization inhibitory peptide abolishes cytoplasmic TDP-43 accumulation, restores mitochondrial function, prevents neuronal loss, and alleviates motor-coordinative and cognitive deficits in adult hemizygous TDP-43(M337V) mice. Thus, this study suggests hemizygous TDP-43(M337V) mice as a useful animal model to study TDP-43 toxicity and further consolidates mitochondrial TDP-43 as a novel therapeutic target for TDP-43-linked neurodegenerative diseases. Published by Elsevier Inc.

  4. Glutathione monoethyl ester prevents TDP-43 pathology in motor neuronal NSC-34 cells.

    PubMed

    Chen, Tong; Turner, Bradley J; Beart, Philip M; Sheehan-Hennessy, Lucy; Elekwachi, Chinasom; Muyderman, Hakan

    2017-08-14

    Oxidative stress is recognised as central in a range of neurological diseases including Amyotrophic lateral sclerosis (ALS), a disease characterised by fast progressing death of motor neurons in the brain and spinal cord. Cellular pathology includes cytosolic protein aggregates in motor neurons and glia of which potentially cytotoxic hyper-phosphorylated fragments of the Transactive response DNA Binding Protein 43 kDa (TDP-43) constitute a major component. This is closely associated with an additional loss of nuclear TDP-43 expression indicating a "loss of function" mechanism, accelerating motor neuron (MN) loss. Furthermore, mutations in TDP-43 cause familial ALS and ALS-like disease in animal models. In this study, we investigated the role of glutathione (GSH) in modulating oxidative stress responses in TDP-43 pathology in motor neuron NSC-34 cells. Results demonstrate that depletion of GSH produces pathology similar to that of mutant TDP-43, including occurrence of cytosolic aggregates, TDP-43 phosphorylation and nuclear clearing of endogenous TDP-43. We also demonstrate that introduction of mutant TDP-43(A315T) and silencing of endogenous TDP-43, but not overexpression of wild-type TDP-43, result in similar pathology, including depletion of intracellular GSH, possibly resulting from a decreased expression of a regulatory subunit of ɣ-glutamylcysteine ligase (GCLM), a rate limiting enzyme in GSH synthesis. Importantly, treatment of mutant cells with GSH monoethyl ester (GSHe) that directly increases intracellular GSH and bypasses the need for GSH synthesis, protected against mutant-induced TDP-43 pathology, including reducing aggregate formation, nuclear clearance, reactive oxygen species (ROS) production and cell death. Our data strongly suggest that oxidative stress is central to TDP-43 pathology and may result from a loss of function affecting GSH synthesis and that treatments directly aimed at restoring cellular GSH content may be beneficial in preventing

  5. TDP-43 and FUS/TLS: cellular functions and implications for neurodegeneration.

    PubMed

    Fiesel, Fabienne C; Kahle, Philipp J

    2011-10-01

    TDP-43 (transactive response binding protein of 43 kDa) and FUS (fused in sarcoma) comprise the neuropathological protein aggregates of distinct subtypes of the neurodegenerative diseases frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Moreover, the genes encoding TDP-43 and FUS are linked to these diseases. Both TDP-43 and FUS contain RNA binding motifs, and specific targets are being identified. Potential actions of TDP-43 and FUS include transcriptional regulation, mRNA processing and micro RNA biogenesis. These activities are probably modulated by interacting proteins in cell type specific manners as well as distinctly within the nucleus and cytosol, as both proteins shuttle between these compartments. In this minireview the specific functions of TDP-43 and FUS are described and discussed in the context of how TDP-43 and FUS may contribute to the pathogenesis of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. © 2011 The Authors Journal compilation © 2011 FEBS.

  6. Regionally different immunoreactivity for Smurf2 and pSmad2/3 in TDP-43-positive inclusions of amyotrophic lateral sclerosis.

    PubMed

    Nakamura, M; Kaneko, S; Wate, R; Asayama, S; Nakamura, Y; Fujita, K; Ito, H; Kusaka, H

    2013-02-01

    Smad ubiquitination regulatory factor-2 (Smurf2), an E3 ubiquitin ligase, can interact with Smad proteins and promote their ubiquitin-dependent degradation, thereby controlling the cellular levels of these signalling mediators. We previously reported that phosphorylated Smad2/3 (pSmad2/3) was sequestered in transactive response DNA-binding protein-43 (TDP-43) inclusions in the spinal cord of patients with amyotrophic lateral sclerosis (ALS). Recent biochemical and immunohistochemical studies on spinal cord and brain of ALS patients demonstrated that the composition of the TDP-43 inclusions is regionally distinct, suggesting different underlying pathogenic processes. We aimed to elucidate regional differences in pathomechanisms and composition of TDP-43 inclusions in relation to pSmad2/3 and Smurf2. The spinal cord and brain tissues of 13 sporadic ALS (SALS) patients were investigated using immunohistochemical analysis. TDP-43-positive inclusions in lower motor neurones of SALS patients were immunopositive for Smurf2 and pSmad2/3. Multiple immunofluorescence staining for Smurf2, pSmad2/3, TDP-43 and ubiquitin revealed co-localization of these four proteins within the inclusions in lower motor neurones of SALS patients. Furthermore, the loss of nuclear pSmad2/3 immunoreactivity was observed in cells bearing TDP-43 inclusions. In contrast, TDP-43-positive inclusions in the extramotor neurones in the brain of SALS patients were noticeably negative for Smurf2 and pSmad2/3. In addition, pSmad2/3 immunoreactivity was preserved in the nuclei of inclusion-bearing cells. This regional difference in the expression of Smurf2 and pSmad2/3 within TDP-43-positive inclusions might be one of the pathomechanisms underlying the loss of lower motor neurones and comparatively spared cortical neurones seen in ALS. © 2012 The Authors. Neuropathology and Applied Neurobiology © 2012 British Neuropathological Society.

  7. Mutant TDP-43 does not impair mitochondrial bioenergetics in vitro and in vivo.

    PubMed

    Kawamata, Hibiki; Peixoto, Pablo; Konrad, Csaba; Palomo, Gloria; Bredvik, Kirsten; Gerges, Meri; Valsecchi, Federica; Petrucelli, Leonard; Ravits, John M; Starkov, Anatoly; Manfredi, Giovanni

    2017-05-08

    Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative phosphorylation impairment associated with respiratory chain defects and that these effects were caused by mitochondrial localization of the mutant protein. Here, we investigated the presence of bioenergetic defects in the brain of transgenic mice expressing human mutant TDP-43 (TDP-43(A315T) mice), patient derived fibroblasts, and human cells expressing mutant forms of TDP-43. In the brain of TDP-43(A315T) mice, TDP-43 mutant fibroblasts, and cells expressing mutant TDP-43, we tested several bioenergetics parameters, including mitochondrial respiration, ATP synthesis, and calcium handling. Differences between mutant and control samples were evaluated by student t-test or by ANOVA, followed by Bonferroni correction, when more than two groups were compared. Mitochondrial localization of TDP-43 was investigated by immunocytochemistry in fibroblasts and by subcellular fractionation and western blot of mitochondrial fractions in mouse brain. We did not observe defects in any of the mitochondrial bioenergetic functions that were tested in TDP-43 mutants. We detected a small amount of TDP-43(A315T) peripherally associated with brain mitochondria. However, there was no correlation between TDP-43 associated with mitochondria and respiratory chain dysfunction. In addition, we observed increased calcium uptake in mitochondria from TDP-43(A315T) mouse

  8. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  9. Disease Animal Models of TDP-43 Proteinopathy and Their Pre-Clinical Applications

    PubMed Central

    Liu, Yu-Chih; Chiang, Po-Min; Tsai, Kuen-Jer

    2013-01-01

    Frontotemperal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are two common neurodegenerative diseases. TDP-43 is considered to be a major disease protein in FTLD/ALS, but it’s exact role in the pathogenesis and the effective treatments remains unknown. To address this question and to determine a potential treatment for FTLD/ALS, the disease animal models of TDP-43 proteinopathy have been established. TDP-43 proteinopathy is the histologic feature of FTLD/ALS and is associated with disease progression. Studies on the disease animal models with TDP-43 proteinopathy and their pre-clinical applications are reviewed and summarized. Through these disease animal models, parts of TDP-43 functions in physiological and pathological conditions will be better understood and possible treatments for FTLD/ALS with TDP-43 proteinopathy may be identified for possible clinical applications in the future. PMID:24113586

  10. Lack of association between TDP-43 pathology and tau mis-splicing in Alzheimer's disease.

    PubMed

    Niblock, Michael; Hortobágyi, Tibor; Troakes, Claire; Al-Sarraj, Safa; Spickett, Carl; Jones, Rebecca; Shaw, Christopher E; Gallo, Jean-Marc

    2016-01-01

    A proportion of Alzheimer's disease cases displays inclusions of the RNA-binding protein, TDP-43. Considering the pathogenic role of tau mis-splicing, we compared tau isoform expression between Alzheimer's disease cases with or without TDP-43 inclusions. The average ratio of tau isoforms containing or lacking exon 10 (4R/3R ratio) or the total level of tau mRNA was not significantly different between cases with or without TDP-43 pathology in any of the brain regions examined. Although TDP-43 functions may be affected, TDP-43 does not critically regulate expression or splicing of tau in Alzheimer's disease suggesting that TDP-43 contributes to Alzheimer's disease through mechanisms independent of tau. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models.

    PubMed

    Tan, Qiumin; Yalamanchili, Hari Krishna; Park, Jeehye; De Maio, Antonia; Lu, Hsiang-Chih; Wan, Ying-Wooi; White, Joshua J; Bondar, Vitaliy V; Sayegh, Layal S; Liu, Xiuyun; Gao, Yan; Sillitoe, Roy V; Orr, Harry T; Liu, Zhandong; Zoghbi, Huda Y

    2016-12-01

    Splicing regulation is an important step of post-transcriptional gene regulation. It is a highly dynamic process orchestrated by RNA-binding proteins (RBPs). RBP dysfunction and global splicing dysregulation have been implicated in many human diseases, but the in vivo functions of most RBPs and the splicing outcome upon their loss remain largely unexplored. Here we report that constitutive deletion of Rbm17, which encodes an RBP with a putative role in splicing, causes early embryonic lethality in mice and that its loss in Purkinje neurons leads to rapid degeneration. Transcriptome profiling of Rbm17-deficient and control neurons and subsequent splicing analyses using CrypSplice, a new computational method that we developed, revealed that more than half of RBM17-dependent splicing changes are cryptic. Importantly, RBM17 represses cryptic splicing of genes that likely contribute to motor coordination and cell survival. This finding prompted us to re-analyze published datasets from a recent report on TDP-43, an RBP implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as it was demonstrated that TDP-43 represses cryptic exon splicing to promote cell survival. We uncovered a large number of TDP-43-dependent splicing defects that were not previously discovered, revealing that TDP-43 extensively regulates cryptic splicing. Moreover, we found a significant overlap in genes that undergo both RBM17- and TDP-43-dependent cryptic splicing repression, many of which are associated with survival. We propose that repression of cryptic splicing by RBPs is critical for neuronal health and survival. CrypSplice is available at www.liuzlab.org/CrypSplice. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Flow cytometric measurement of the cellular propagation of TDP-43 aggregation.

    PubMed

    Zeineddine, Rafaa; Whiten, Daniel R; Farrawell, Natalie E; McAlary, Luke; Hanspal, Maya A; Kumita, Janet R; Wilson, Mark R; Yerbury, Justin J

    2017-05-04

    Amyotrophic lateral sclerosis is a devastating neuromuscular degenerative disease characterized by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology including TAR DNA-binding protein of 43 kDa (TDP-43) aggregates. Previous work suggests that TDP-43 can move between cells. Here we used a novel flow cytometry technique (FloIT) to analyze TDP-43 inclusions and propagation. When cells were transfected to express either mutant G294A TDP-43 fused to GFP or wild type TDP-43fused to tomato red and then co-cultured, flow cytometry detected intact cells containing both fusion proteins and using FloIT detected an increase in the numbers of inclusions in lysates from cells expressing wild type TDP-43-tomato. Furthermore, in this same model, FloIT analyses detected inclusions containing both fusion proteins. These results imply the transfer of TDP-43 fusion proteins between cells and that this process can increase aggregation of wild-type TDP-43 by a mechanism involving co-aggregation with G294A TDP-43.

  13. Enhancing Mitofusin/Marf ameliorates neuromuscular dysfunction in Drosophila models of TDP-43 proteinopathies.

    PubMed

    Khalil, Bilal; Cabirol-Pol, Marie-Jeanne; Miguel, Laetitia; Whitworth, Alexander J; Lecourtois, Magalie; Liévens, Jean-Charles

    2017-06-01

    Transactive response DNA-binding protein 43 kDa (TDP-43) is considered a major pathological protein in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The precise mechanisms by which TDP-43 dysregulation leads to toxicity in neurons are not fully understood. Using TDP-43-expressing Drosophila, we examined whether mitochondrial dysfunction is a central determinant in TDP-43 pathogenesis. Expression of human wild-type TDP-43 in Drosophila neurons results in abnormally small mitochondria. The mitochondrial fragmentation is correlated with a specific decrease in the mRNA and protein levels of the Drosophila profusion gene mitofusin/marf. Importantly, overexpression of Marf ameliorates defects in spontaneous walking activity and startle-induced climbing response of TDP-43-expressing flies. Partial inactivation of the mitochondrial profission factor, dynamin-related protein 1, also mitigates TDP-43-induced locomotor deficits. Expression of TDP-43 impairs neuromuscular junction transmission upon repetitive stimulation of the giant fiber circuit that controls flight muscles, which is also ameliorated by Marf overexpression. We show here for the first time that enhancing the profusion gene mitofusin/marf is beneficial in an in vivo model of TDP-43 proteinopathies, serving as a potential therapeutic target. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans

    PubMed Central

    Vaccaro, Alexandra; Tauffenberger, Arnaud; Aggad, Dina; Rouleau, Guy; Drapeau, Pierre; Parker, J. Alex

    2012-01-01

    Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening. PMID:22363618

  15. The molecular links between TDP-43 dysfunction and neurodegeneration.

    PubMed

    Buratti, Emanuele; Baralle, Francisco E

    2009-01-01

    TDP-43 nuclear protein is involved in several major neurodegenerative diseases that include frontotemporal lobar degeneration with ubiquitin (FTLD-U) bodies and amyotrophic lateral sclerosis (ALS). As a consequence, the role played by this protein in both normal and diseased cellular metabolism has come under very close scrutiny. In the neuronal tissues of affected individuals TDP-43 undergoes aberrant localization to the cytoplasm to form insoluble aggregates. Furthermore, it is subject to degradation, ubiquitination, and phosphorylation. Understanding the pathways that lead to these changes will be crucial to define the functional role played by this protein in disease. Several recent biochemical and molecular studies have provided new information regarding the potential physiological consequences of these modifications. Moreover, the discovery of TDP-43 mutations associated with disease in a limited number of cases and the data from existing animal models have strengthened the proposed links between this protein and disease. In this review we will discuss the available data regarding the biochemical and functional changes that transform the wild-type endogenous TDP-43 in its pathological form. Furthermore, we will concentrate on examining the potential pathological mechanisms mediated by TDP-43 in different gain- versus loss-of-function scenarios. In the near future, this knowledge will hopefully increase our knowledge on disease progression and development. Moreover, it will allow the design of innovative therapeutic strategies for these pathologies based on the specific molecular defects causing the disease.

  16. In vitro prion-like behaviour of TDP-43 in ALS.

    PubMed

    Smethurst, Phillip; Newcombe, Jia; Troakes, Claire; Simone, Roberto; Chen, Yun-Ru; Patani, Rickie; Sidle, Katie

    2016-12-01

    Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease (MND), and >95% of familial and sporadic cases involve the deposition of insoluble aggregated, phosphorylated and cleaved TDP-43 protein. Accumulating clinical and biological evidence now indicates that ALS bears a number of similarities to the prion diseases, with TDP-43 acting as a misfolded 'prion-like' protein demonstrating similar underlying pathobiology. Here we systematically address the hypothesis that ALS is a prion-like disorder. First we demonstrate that TDP-43 demonstrates seeded polymerisation in vitro directly from both ALS brain and spinal cord. We next show that the seeding of TDP-43 results in the formation of characteristic insoluble, aggregated, and phosphorylated TDP-43 pathology that directly recapitulates the morphological diversity of TDP-43 inclusions detected in ALS patient CNS tissue. We next demonstrate that this reaction can be serially propagated to produce increasing amounts of phosphorylated TDP-43 pathology, and that aggregates can spread from cell to cell in an analogous fashion to that seen in the prion diseases. Finally, we reproduced our findings in a murine motor neuron-like cell line (NSC-34), where the seeding of TDP-43 induces the formation of TDP-43 oligomers and reduced cell viability. These findings may guide therapeutic strategies in this rapidly progressive and invariably fatal disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Reappraisal of TDP-43 pathology in FTLD-U subtypes.

    PubMed

    Mackenzie, Ian R; Neumann, Manuela

    2017-07-01

    Frontotemporal lobar degeneration with tau-negative, ubiquitin-immunoreactive (-ir) pathology (FTLD-U) is subclassified based on the type and cortical laminar distribution of neuronal inclusions. Following the discovery of the transactive response DNA-binding protein Mr 43 kD (TDP-43) as the ubiquitinated protein in most FTLD-U, the same pathological criteria have been used to classify FTLD cases based on TDP-43-ir changes. However, the fact that immunohistochemistry (IHC) for ubiquitin and TDP-43 each recognizes slightly different pathological changes in these cases means that the original FTLD-U subtype criteria may not be directly applicable for use with TDP-43 IHC. We formally re-evaluated the TDP-43-ir pathological features that characterize the different FTLD-U subtypes to see if the current classification could be refined. In our series of 78 cases, 81% were classified as one of the common FTLD-U subtypes (29% A, 35% B, 17% C). With TDP-43 IHC, each subtype demonstrated consistent intra-group pathological features and clear inter-group differences. The TDP-43-ir changes that characterized type A and C cases were similar to those seen with ubiquitin IHC; specifically, compact neuronal cytoplasmic inclusions (NCI), short thick dystrophic neurites (DN), and lentiform neuronal intranuclear inclusions concentrated in cortical layer II in type A cases, and a predominance of long thick DN in type C. However, type B cases showed significant differences with TDP-43 compared with ubiquitin IHC; with many diffuse granular NCI and wispy thread and dots-like profiles in all cortical layers. The remaining 15 cases (12 with C9orf72 mutations) showed changes that were consistent with combined type A and type B pathology. These findings suggest that the pathological criteria for subtyping FTLD cases based on TDP-43 IHC might benefit from some refinement that recognizes differences in the morphologies of NCI and neurites. Furthermore, there is a significant subset of cases

  18. TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress.

    PubMed

    Higashi, Shinji; Kabuta, Tomohiro; Nagai, Yoshitaka; Tsuchiya, Yukihiro; Akiyama, Haruhiko; Wada, Keiji

    2013-07-01

    TAR DNA-binding protein 43 (TDP-43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the physiological roles of TDP-43 in the complex translational regulation mechanisms, we exposed cultured cells to oxidative stress induced by sodium arsenite (ARS) for different periods of time, leading to non-lethal or sublethal injury. Polysome profile analysis revealed that ARS-induced stress caused the association of TDP-43 with stalled ribosomes via binding to mRNA, which was not found under the steady-state condition. When the cells were exposed to short-term/non-lethal stress, TDP-43 associating with ribosomes localized to stress granules (SGs); this association was transient because it was immediately dissolved by the removal of the stress. In contrast, when the cells were exposed to long-term/sublethal stress, TDP-43 was excluded from SGs and shifted to the heavy fractions independent of any binding to mRNA. In these severely stressed cells, biochemical alterations of TDP-43, such as increased insolubility and disulfide bond formation, were irreversible. TDP-43 was finally phosphorylated via the ARS-induced c-jun N-terminal kinase pathway. In TDP-43-silenced cells, stalled mRNA and poly (A)(+) RNA stability was disturbed and cytotoxicity increased under sublethal stress. Thus, TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress.

  19. Perry Syndrome: A Distinctive Type of TDP-43 Proteinopathy.

    PubMed

    Mishima, Takayasu; Koga, Shunsuke; Lin, Wen-Lang; Kasanuki, Koji; Castanedes-Casey, Monica; Wszolek, Zbigniew K; Oh, Shin J; Tsuboi, Yoshio; Dickson, Dennis W

    2017-08-01

    Perry syndrome is a rare atypical parkinsonism with depression, apathy, weight loss, and central hypoventilation caused by mutations in dynactin p150glued (DCTN1). A rare distal hereditary motor neuropathy, HMN7B, also has mutations in DCTN1. Perry syndrome has TAR DNA-binding protein of 43 kDa (TDP-43) inclusions as a defining feature. Other TDP-43 proteinopathies include amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with and without motor neuron disease (FTLD-MND). TDP-43 forms aggregates in neuronal cytoplasmic inclusions (NCIs), neuronal intranuclear inclusions, dystrophic neurites (DNs), as well as axonal spheroids, oligodendroglial cytoplasmic inclusions, and perivascular astrocytic inclusions (PVIs). We performed semiquantitative assessment of these lesions and presence of dynactin subunit p50 lesions in 3 cases of Perry syndrome and one of HMN7B. We compared them with 3 cases of FTLD-MND, 3 of ALS, and 3 of hippocampal sclerosis (HpScl). Perry syndrome had NCIs, DNs, and frequent PVIs and spheroids. Perry syndrome cases were similar, but different from ALS, FTLD-MND, and HpScl. TDP-43 pathology was not detected in HMN7B. Dynactin p50 inclusions were observed in both Perry syndrome and HMN7B, but not in the other conditions. These results suggest that Perry syndrome may be distinctive type of TDP-43 proteinopathy. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  20. Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species

    PubMed Central

    Scotter, Emma L.; Vance, Caroline; Nishimura, Agnes L.; Lee, Youn-Bok; Chen, Han-Jou; Urwin, Hazel; Sardone, Valentina; Mitchell, Jacqueline C.; Rogelj, Boris; Rubinsztein, David C.; Shaw, Christopher E.

    2014-01-01

    ABSTRACT TAR DNA-binding protein (TDP-43, also known as TARDBP) is the major pathological protein in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Large TDP-43 aggregates that are decorated with degradation adaptor proteins are seen in the cytoplasm of remaining neurons in ALS and FTD patients post mortem. TDP-43 accumulation and ALS-linked mutations within degradation pathways implicate failed TDP-43 clearance as a primary disease mechanism. Here, we report the differing roles of the ubiquitin proteasome system (UPS) and autophagy in the clearance of TDP-43. We have investigated the effects of inhibitors of the UPS and autophagy on the degradation, localisation and mobility of soluble and insoluble TDP-43. We find that soluble TDP-43 is degraded primarily by the UPS, whereas the clearance of aggregated TDP-43 requires autophagy. Cellular macroaggregates, which recapitulate many of the pathological features of the aggregates in patients, are reversible when both the UPS and autophagy are functional. Their clearance involves the autophagic removal of oligomeric TDP-43. We speculate that, in addition to an age-related decline in pathway activity, a second hit in either the UPS or the autophagy pathway drives the accumulation of TDP-43 in ALS and FTD. Therapies for clearing excess TDP-43 should therefore target a combination of these pathways. PMID:24424030

  1. Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis

    PubMed Central

    Fung, G; Shi, J; Deng, H; Hou, J; Wang, C; Hong, A; Zhang, J; Jia, W; Luo, H

    2015-01-01

    We have previously demonstrated that infection by coxsackievirus B3 (CVB3), a positive-stranded RNA enterovirus, results in the accumulation of insoluble ubiquitin–protein aggregates, which resembles the common feature of neurodegenerative diseases. The importance of protein aggregation in viral pathogenesis has been recognized; however, the underlying regulatory mechanisms remain ill-defined. Transactive response DNA-binding protein-43 (TDP-43) is an RNA-binding protein that has an essential role in regulating RNA metabolism at multiple levels. Cleavage and cytoplasmic aggregation of TDP-43 serves as a major molecular marker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration and contributes significantly to disease progression. In this study, we reported that TDP-43 is translocated from the nucleus to the cytoplasm during CVB3 infection through the activity of viral protease 2A, followed by the cleavage mediated by viral protease 3C. Cytoplasmic translocation of TDP-43 is accompanied by reduced solubility and increased formation of protein aggregates. The cleavage takes place at amino-acid 327 between glutamine and alanine, resulting in the generation of an N- and C-terminal cleavage fragment of ~35 and ~8 kDa, respectively. The C-terminal product of TDP-43 is unstable and quickly degraded through the proteasome degradation pathway, whereas the N-terminal truncation of TDP-43 acts as a dominant-negative mutant that inhibits the function of native TDP-43 in alternative RNA splicing. Lastly, we demonstrated that knockdown of TDP-43 results in an increase in viral titers, suggesting a protective role for TDP-43 in CVB3 infection. Taken together, our findings suggest a novel model by which cytoplasmic redistribution and cleavage of TDP-43 as a consequence of CVB3 infection disrupts the solubility and transcriptional activity of TDP-43. Our results also reveal a mechanism evolved by enteroviruses to support efficient viral infection. PMID

  2. TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases.

    PubMed

    Iguchi, Yohei; Katsuno, Masahisa; Niwa, Jun-ichi; Yamada, Shin-ichi; Sone, Jun; Waza, Masahiro; Adachi, Hiroaki; Tanaka, Fumiaki; Nagata, Koh-ichi; Arimura, Nariko; Watanabe, Takashi; Kaibuchi, Kozo; Sobue, Gen

    2009-08-14

    The 43-kDa TAR DNA-binding protein (TDP-43) is known to be a major component of the ubiquitinated inclusions characteristic of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Although TDP-43 is a nuclear protein, it disappears from the nucleus of affected neurons and glial cells, implicating TDP-43 loss of function in the pathogenesis of neurodegeneration. Here we show that the knockdown of TDP-43 in differentiated Neuro-2a cells inhibited neurite outgrowth and induced cell death. In knockdown cells, the Rho family members RhoA, Rac1, and Cdc42 GTPases were inactivated, and membrane localization of these molecules was reduced. In addition, TDP-43 depletion significantly suppressed protein geranylgeranylation, a key regulating factor of Rho family activity and intracellular localization. In contrast, overexpression of TDP-43 mitigated the cellular damage caused by pharmacological inhibition of geranylgeranylation. Furthermore administration of geranylgeranyl pyrophosphate partially restored cell viability and neurite outgrowth in TDP-43 knockdown cells. In summary, our data suggest that TDP-43 plays a key role in the maintenance of neuronal cell morphology and survival possibly through protein geranylgeranylation of Rho family GTPases.

  3. Overlapping but distinct TDP-43 and tau pathologic patterns in aged hippocampi.

    PubMed

    Smith, Vanessa D; Bachstetter, Adam D; Ighodaro, Eseosa; Roberts, Kelly; Abner, Erin L; Fardo, David W; Nelson, Peter T

    2017-03-09

    Intracellular proteinaceous aggregates (inclusion bodies) are almost always detectable at autopsy in brains of elderly individuals. Inclusion bodies composed of TDP-43 and tau proteins often coexist in the same brain, and each of these pathologic biomarkers is associated independently with cognitive impairment. However, uncertainties remain about how the presence and neuroanatomical distribution of inclusion bodies correlate with underlying diseases including Alzheimer's disease (AD). To address this knowledge gap, we analyzed data from the University of Kentucky AD Center autopsy series (n = 247); none of the brains had frontotemporal lobar degeneration. A specific question for this study was whether neurofibrillary tangle (NFT) pathology outside of the Braak NFT staging scheme is characteristic of brains with TDP-43 pathology but lacking AD, that is those with cerebral age-related TDP-43 with sclerosis (CARTS). We also tested whether TDP-43 pathology is associated with comorbid AD pathology, and whether argyrophilic grains are relatively likely to be present in cases with, vs. without, TDP-43 pathology. Consistent with prior studies, hippocampal TDP-43 pathology was associated with advanced AD - Braak NFT stages V/VI. However, argyrophilic grain pathology was not more common in cases with TDP-43 pathology in this data set. In brains with CARTS (TDP-43[+]/AD[-] cases), there were more NFTs in dentate granule neurons than were seen in TDP-43[-]/AD[-] cases. These dentate granule cell NFTs could provide a proxy indicator of CARTS pathology in cases lacking substantial AD pathology. Immunofluorescent experiments in a subsample of cases found that, in both advanced AD and CARTS, approximately 1% of dentate granule neurons were PHF-1 immunopositive, whereas ∼25% of TDP-43 positive cells showed colocalized PHF-1 immunoreactivity. We conclude that NFTs in hippocampal dentate granule neurons are often present in CARTS, and TDP-43 pathology may be secondary to or

  4. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice.

    PubMed

    Becker, Lindsay A; Huang, Brenda; Bieri, Gregor; Ma, Rosanna; Knowles, David A; Jafar-Nejad, Paymaan; Messing, James; Kim, Hong Joo; Soriano, Armand; Auburger, Georg; Pulst, Stefan M; Taylor, J Paul; Rigo, Frank; Gitler, Aaron D

    2017-04-20

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.

  5. Updated TDP-43 in Alzheimer's disease staging scheme.

    PubMed

    Josephs, Keith A; Murray, Melissa E; Whitwell, Jennifer L; Tosakulwong, Nirubol; Weigand, Stephen D; Petrucelli, Leonard; Liesinger, Amanda M; Petersen, Ronald C; Parisi, Joseph E; Dickson, Dennis W

    2016-04-01

    In this study, we update the TDP-43 in Alzheimer's disease staging scheme by assessing the topography of TDP-43 in 193 cases of Alzheimer's disease, in 14 different brain regions (eight previously described plus six newly reported) and use conditional probability to model the spread of TDP-43 across the 14 brain regions. We show that in addition to the eight original regions we previously reported [amygdala, entorhinal cortex, subiculum, dentate gyrus of the hippocampus, occipitotemporal cortex, inferior temporal cortex, middle frontal cortex and basal ganglia (putamen/globus pallidum)] that TDP-43 is also deposited in the insular cortex, ventral striatum, basal forebrain, substantia nigra, midbrain tectum, and the inferior olive of the medulla oblongata, in Alzheimer's disease. The conditional probability analysis produced six significantly different stages (P < 0.01), and suggests that TDP-43 deposition begins in the amygdala (stage 1), then moves to entorhinal cortex and subiculum (stage 2); to the dentate gyrus of the hippocampus and occipitotemporal cortex (stage 3); insular cortex, ventral striatum, basal forebrain and inferior temporal cortex (stage 4); substantia nigra, inferior olive and midbrain tectum (stage 5); and finally to basal ganglia and middle frontal cortex (stage 6). This updated staging scheme is superior to our previous staging scheme, classifying 100% of the cases (versus 94% in the old scheme), based on criteria provided, and shows clinical significance with some regions and with increasing stage. We discuss the relevance of the updated staging scheme, as well as its impact on the prion-like hypothesis of protein spread in neurodegenerative disease. We also address the issue of whether frontotemporal lobar degeneration with TDP-43 could be the primary pathology in stage 6.

  6. TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation.

    PubMed

    Di Carlo, Valerio; Grossi, Elena; Laneve, Pietro; Morlando, Mariangela; Dini Modigliani, Stefano; Ballarino, Monica; Bozzoni, Irene; Caffarelli, Elisa

    2013-12-01

    TDP-43 (TAR DNA-binding protein 43) is an RNA-binding protein implicated in RNA metabolism at several levels. Even if ubiquitously expressed, it is considered as a neuronal activity-responsive factor and a major signature for neurological pathologies, making the comprehension of its activity in the nervous system a very challenging issue. TDP-43 has also been described as an accessory component of the Drosha-DGCR8 (DiGeorge syndrome critical region gene 8) microprocessor complex, which is crucially involved in basal and tissue-specific RNA processing events. In the present study, we exploited in vitro neuronal differentiation systems to investigate the TDP-43 demand for the microprocessor function, focusing on both its canonical microRNA biosynthetic activity and its alternative role as a post-transcriptional regulator of gene expression. Our findings reveal a novel role for TDP-43 as an essential factor that controls the stability of Drosha protein during neuronal differentiation, thus globally affecting the production of microRNAs. We also demonstrate that TDP-43 is required for the Drosha-mediated regulation of Neurogenin 2, a master gene orchestrating neurogenesis, whereas post-transcriptional control of Dgcr8, another Drosha target, resulted to be TDP-43-independent. These results implicate a previously uncovered contribution of TDP-43 in regulating the abundance and the substrate specificity of the microprocessor complex and provide new insights into TDP-43 as a key player in neuronal differentiation.

  7. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS).

    PubMed

    Volkening, Kathryn; Leystra-Lantz, Cheryl; Yang, Wenchang; Jaffee, Howard; Strong, Michael J

    2009-12-11

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by progressive motor neuron degeneration in association with neurofilament (NF) aggregate formation. This process is accompanied by an alteration in the stoichiometry of NF subunit protein expression such that the steady state levels of the low molecular weight NF (NFL) mRNA levels are selectively suppressed. We have previously shown that each of TDP-43, 14-3-3 and mutant SOD1 can function as NFL mRNA 3'UTR binding proteins that directly affect the stability of NFL transcripts. In this study, we demonstrate that the interaction of TDP-43 with the NFL mRNA 3' UTR involves ribonucleotide (UG) motifs present on stem loops of the 3'UTR as well as the RRM1 and RRM2 motifs of TDP-43. Ex vivo, TDP-43, 14-3-3 and SOD1 proteins interact to modulate NFL mRNA stability, although in vivo, only TDP-43 and either mutant or wild-type SOD1 co-localize in ALS motor neurons. TDP-43 was observed to co-localize to RNA transport granules (Staufen immunoreactive) in both control and ALS spinal motor neurons. In contrast, both stress granules (TIA-1 immunoreactive) and processing bodies (P-bodies; XRN-1 immunoreactive) were more prevalent in ALS motor neurons than in controls and demonstrated strong co-localization with TDP-43. Using RNA-IP-PCR, we further demonstrate that NFL mRNA is preferentially sequestered to both stress granules and P-bodies in ALS. These data suggest that NFL mRNA processing is fundamentally altered in ALS spinal motor neurons to favour compartmentalization within both stress granules and P-bodies, and that TDP-43 plays a fundamental role in this process.

  8. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion.

    PubMed

    Xia, Qin; Wang, Hongfeng; Hao, Zongbing; Fu, Cheng; Hu, Qingsong; Gao, Feng; Ren, Haigang; Chen, Dong; Han, Junhai; Ying, Zheng; Wang, Guanghui

    2016-01-18

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration. © 2015 The Authors.

  9. Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy

    PubMed Central

    Tang, Helen; Atherton, Joe; Cairns, Nigel J.

    2009-01-01

    TAR DNA-binding protein of 43 kDa (TDP-43) is a major component of the pathological inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy, also called FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U), and motor neuron disease (MND). TDP-43 is predominantly expressed in the nucleus and regulates gene expression and splicing. In FTLD with TDP-43 proteinopathy, neuronal inclusions present variably as cytoplasmic inclusions (NCIs), dystrophic neurites (DNs), and intranuclear inclusions (NIIs), leading to a fourfold neuropathological classification correlating with genotype. There have been few fine structural studies of these inclusions. Thus, we undertook an immunoelectron microscopic study of FTLD with TDP-43 proteinopathy, including sporadic and familial cases with progranulin (GRN) mutation. TDP-43-immunoreactive inclusions comprised two components: granular and filamentous. Filament widths, expressed as mean (range) were: NCI, 9 nm (4–16 nm); DN, 10 nm (5–16 nm); NII, 18 nm (9–50 nm). Morphologically distinct inclusion components may reflect the process of TDP-43 aggregation and interaction with other proteins: determining these latter may contribute towards understanding the heterogeneous pathogenesis of FTLD with TDP-43 proteinopathy. PMID:18974920

  10. The N-terminal dimerization is required for TDP-43 splicing activity.

    PubMed

    Jiang, Lei-Lei; Xue, Wei; Hong, Jun-Ye; Zhang, Jun-Ting; Li, Min-Jun; Yu, Shao-Ning; He, Jian-Hua; Hu, Hong-Yu

    2017-07-21

    TDP-43 is a nuclear factor that functions in promoting pre-mRNA splicing. Deletion of the N-terminal domain (NTD) and nuclear localization signal (NLS) (i.e., TDP-35) results in mislocalization to cytoplasm and formation of inclusions. However, how the NTD functions in TDP-43 activity and proteinopathy remains largely unknown. Here, we studied the structure and function of the NTD in inclusion formation and pre-mRNA splicing of TDP-43 by using biochemical and biophysical approaches. We found that TDP-43 NTD forms a homodimer in solution in a concentration-dependent manner, and formation of intermolecular disulfide results in further tetramerization. Based on the NMR structure of TDP-43 NTD, the dimerization interface centered on Leu71 and Val72 around the β7-strand was defined by mutagenesis and size-exclusion chromatography. Cell experiments revealed that the N-terminal dimerization plays roles in protecting TDP-43 against formation of cytoplasmic inclusions and enhancing pre-mRNA splicing activity of TDP-43 in nucleus. This study may provide mechanistic insights into the physiological function of TDP-43 and its related proteinopathies.

  11. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis

    PubMed Central

    Park, Sei-Kyoung; Hong, Joo Y.; Arslan, Fatih; Tietsort, Alex; Tank, Elizabeth M. H.; Li, Xingli

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. PMID:28531192

  12. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis.

    PubMed

    Park, Sei-Kyoung; Hong, Joo Y; Arslan, Fatih; Kanneganti, Vydehi; Patel, Basant; Tietsort, Alex; Tank, Elizabeth M H; Li, Xingli; Barmada, Sami J; Liebman, Susan W

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43's effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS.

  13. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models

    PubMed Central

    Armakola, Maria; Higgins, Matthew J.; Figley, Matthew D.; Barmada, Sami J.; Scarborough, Emily A.; Diaz, Zamia; Fang, Xiaodong; Shorter, James; Krogan, Nevan J.; Finkbeiner, Steven; Farese, Robert V.; Gitler, Aaron D.

    2012-01-01

    ALS is a devastating neurodegenerative disease primarily affecting motor neurons. Mutations in TDP-43 cause some forms of the disease, and cytoplasmic TDP-43 aggregates accumulate in degenerating neurons of most ALS patients. Thus, strategies aimed at targeting the toxicity of cytoplasmic TDP-43 aggregates may be effective. Here we report results from two genome-wide loss-of-function TDP-43 toxicity suppressor screens in yeast. The strongest suppressor of TDP-43 toxicity was deletion of Dbr1, which encodes RNA lariat debranching enzyme. We show that in the absence of Dbr1 enzymatic activity intronic lariats accumulate in the cytoplasm and likely act as decoys to sequester TDP-43 away from interfering with essential cellular RNAs and RNA-binding proteins. Knockdown of Dbr1 in a human neuronal cell line or in primary rodent neurons is also sufficient to rescue TDP-43 toxicity. Our findings provide insight into TDP-43 cytotoxicity and suggest decreasing Dbr1 activity could be a potential therapeutic approach for ALS. PMID:23104007

  14. Significance and limitation of the pathological classification of TDP-43 proteinopathy.

    PubMed

    Arai, Tetsuaki

    2014-12-01

    Based on the cerebral tans-activation response DNA protein 43 (TDP-43) immunohistochemistry, frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) is classified into four subtypes: type A has numerous neuronal cytoplasmic inclusions (NCIs) and dystrophic neurites (DNs); type B has numerous NCIs with few DNs; type C is characterized by DNs which are often longer and thicker than DNs in type A, with few NCIs; and type D has numerous neuronal intranuclear inclusions and DNs with few NCIs. The relevance of this classification system is supported by clinical, biochemical and genetic correlations, although there is still significant heterogeneity, especially in cases with type A pathology. The subtypes of TDP-43 pathology should be determined in cases with other neurodegenerative disorders, including Alzheimer's disease and dementia with Lewy bodies, to evaluate the pathological significance of TDP-43 abnormality in them. The results of the biochemical analyses of the diseased brains and the cellular models suggest that different strains of TDP-43 with different conformations may determine the clinicopathological phenotypes of TDP-43 proteinopathy, like prion disease. Clarifying the mechanism of the conformational changes of TDP-43 leading to the formation of multiple abnormal strains may be important for differential diagnosis and developing disease-modifying therapy for TDP-43 proteinopathy.

  15. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain.

    PubMed

    Wang, Guohao; Yang, Huaqiang; Yan, Sen; Wang, Chuan-En; Liu, Xudong; Zhao, Bentian; Ouyang, Zhen; Yin, Peng; Liu, Zhaoming; Zhao, Yu; Liu, Tao; Fan, Nana; Guo, Lin; Li, Shihua; Li, Xiao-Jiang; Lai, Liangxue

    2015-09-03

    TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43. We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains. Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.

  16. TDP-43 A315T Mutation in Familial Motor Neuron Disease

    PubMed Central

    Gitcho, Michael A.; Baloh, Robert H.; Chakraverty, Sumi; Mayo, Kevin; Norton, Joanne B.; Levitch, Denise; Hatanpaa, Kimmo J.; White, Charles L.; Bigio, Eileen H.; Caselli, Richard; Baker, Matt; Al-Lozi, Muhammad T.; Morris, John C.; Pestronk, Alan; Rademakers, Rosa; Goate, Alison M.; Cairns, Nigel J.

    2009-01-01

    To identify novel causes of familial neurodegenerative diseases, we extended our previous studies of TAR DNA-binding protein 43 (TDP-43) proteinopathies to investigate TDP-43 as a candidate gene in familial cases of motor neuron disease. Sequencing of the TDP-43 gene led to the identification of a novel missense mutation, Ala-315-Thr, which segregates with all affected members of an autosomal dominant motor neuron disease family. The mutation was not found in 1,505 healthy control subjects. The discovery of a missense mutation in TDP-43 in a family with dominantly inherited motor neuron disease provides evidence of a direct link between altered TDP-43 function and neurodegeneration. PMID:18288693

  17. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin

    PubMed Central

    Amlie-Wolf, Alexandre; Ryvkin, Paul; Tong, Rui; Dragomir, Isabelle; Suh, EunRan; Xu, Yan; Van Deerlin, Vivianna M.; Gregory, Brian D.; Kwong, Linda K.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Wang, Li-San; Lee, Edward B.

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) is normally a nuclear RNA-binding protein that exhibits a range of functions including regulation of alternative splicing, RNA trafficking, and RNA stability. However, in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved, and is mislocalized to the cytoplasm where it forms distinctive aggregates. We previously developed a mouse model expressing human TDP-43 with a mutation in its nuclear localization signal (ΔNLS-hTDP-43) so that the protein preferentially localizes to the cytoplasm. These mice did not exhibit a significant number of cytoplasmic aggregates, but did display dramatic changes in gene expression as measured by microarray, suggesting that cytoplasmic TDP-43 may be associated with a toxic gain-of-function. Here, we analyze new RNA-sequencing data from the ΔNLS-hTDP-43 mouse model, together with published RNA-sequencing data obtained previously from TDP-43 antisense oligonucleotide (ASO) knockdown mice to investigate further the dysregulation of gene expression in the ΔNLS model. This analysis reveals that the transcriptomic effects of the overexpression of the ΔNLS-hTDP-43 transgene are likely due to a gain of cytoplasmic function. Moreover, cytoplasmic TDP-43 expression alters transcripts that regulate chromatin assembly, the nucleolus, lysosomal function, and histone 3’ untranslated region (UTR) processing. These transcriptomic alterations correlate with observed histologic abnormalities in heterochromatin structure and nuclear size in transgenic mouse and human brains. PMID:26510133

  18. Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS

    PubMed Central

    Chatterjee, Nabanita; Hearn, Stephen; Morrill, Kathleen; Prazak, Lisa; Rozhkov, Nikolay; Theodorou, Delphine; Hammell, Molly; Dubnau, Josh

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ~40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD. PMID:28301478

  19. Quantitative assessment of the degradation of aggregated TDP-43 mediated by the ubiquitin proteasome system and macroautophagy.

    PubMed

    Cascella, Roberta; Fani, Giulia; Capitini, Claudia; Rusmini, Paola; Poletti, Angelo; Cecchi, Cristina; Chiti, Fabrizio

    2017-08-25

    Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are neurodegenerative disorders that share the cytosolic deposition of TDP-43 (TAR DNA-binding protein 43) in the CNS. TDP-43 is well known as being actively degraded by both the proteasome and macroautophagy. The well-documented decrease in the efficiency of these clearance systems in aging and neurodegeneration, as well as the genetic evidence that many of the familial forms of TDP-43 proteinopathies involve genes that are associated with them, suggest that a failure of these protein degradation systems is a major factor that contributes to the onset of TDP-43-associated disorders. Here, we inserted preformed human TDP-43 aggregates in the cytosol of murine NSC34 and N2a cells in diffuse form and observed their degradation under conditions in which exogenous TDP-43 is not expressed and endogenous nuclear TDP-43 is not recruited, thereby allowing a time zero to be established in TDP-43 degradation and to observe its disposal kinetically and analytically. TDP-43 degradation was observed in the absence and presence of selective inhibitors and small interfering RNAs against the proteasome and autophagy. We found that cytosolic diffuse aggregates of TDP-43 can be distinguished in 3 different classes on the basis of their vulnerability to degradation, which contributed to the definition-with previous reports-of a total of 6 distinct classes of misfolded TDP-43 species that range from soluble monomer to undegradable macroaggregates. We also found that the proteasome and macroautophagy-degradable pools of TDP-43 are fully distinguishable, rather than in equilibrium between them on the time scale required for degradation, and that a significant crosstalk exists between the 2 degradation processes.-Cascella, R., Fani, G., Capitini, C., Rusmini, P., Poletti, A., Cecchi, C., Chiti, F. Quantitative assessment of the degradation of aggregated TDP-43 mediated by the ubiquitin

  20. Mislocalization of TDP-43 in the G93A mutant SOD1 transgenic mouse model of ALS.

    PubMed

    Shan, Xiaoyang; Vocadlo, David; Krieger, Charles

    2009-07-17

    Previous evidence demonstrates that TAR DNA binding protein (TDP-43) mislocalization is a key pathological feature of amyotrophic lateral sclerosis (ALS). TDP-43 normally shows nuclear localization, but in CNS tissue from patients who died with ALS this protein mislocalizes to the cytoplasm. Disease specific TDP-43 species have also been reported to include hyperphosphorylated TDP-43, as well as a C-terminal fragment. Whether these abnormal TDP-43 features are present in patients with SOD1-related familial ALS (fALS), or in mutant SOD1 over-expressing transgenic mouse models of ALS remains controversial. Here we investigate TDP-43 pathology in transgenic mice expressing the G93A mutant form of SOD1. In contrast to previous reports we observe redistribution of TDP-43 to the cytoplasm of motor neurons in mutant SOD1 transgenic mice, but this is seen only in mice having advanced disease. Furthermore, we also observe rounded TDP-43 immunoreactive inclusions associated with intense ubiquitin immunoreactivity in lumbar spinal cord at end stage disease in mSOD mice. These data indicate that TDP-43 mislocalization and ubiquitination are present in end stage mSOD mice. However, we do not observe C-terminal TDP-43 fragments nor TDP-43 hyperphosphorylated species in these end stage mSOD mice. Our findings indicate that G93A mutant SOD1 transgenic mice recapitulate some key pathological, but not all biochemical hallmarks, of TDP-43 pathology previously observed in human ALS. These studies suggest motor neuron degeneration in the mutant SOD1 transgenic mice is associated with TDP-43 histopathology.

  1. TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD.

    PubMed

    Nag, Sukriti; Yu, Lei; Wilson, Robert S; Chen, Er-Yun; Bennett, David A; Schneider, Julie A

    2017-02-14

    To investigate the association of TAR DNA-binding protein 43 (TDP-43) pathology with memory, other cognitive domains, and dementia in community-dwelling elders without pathologic diagnoses of Alzheimer disease (AD) or frontotemporal lobar degeneration (FTLD). Of 1,058 autopsied participants, 343 (32.4%) did not have pathologic diagnoses of AD or FTLD. Diagnosis of dementia was based on clinical evaluation and cognitive performance tests, which were used to create summary measures of global cognition and of 5 cognitive domains. TDP-43 pathology evaluated in 6 brain regions by immunohistochemistry was converted into a summary measure of TDP-43 severity. Of 343 participants, 135 (39.4%) had TDP-43 pathology with a mean TDP-43 severity score of 0.394 (SD 0.490). TDP-43 inclusions were confined to the amygdala (stage 1) in 43.7% of participants, 40% showed additional involvement of the hippocampus or entorhinal cortex (stages 2), while fewer (16.3%) showed additional TDP-43 pathology in the temporal and frontal cortices (stage 3). Severity of TDP-43 pathology was independently related to lower function in global cognition and episodic and semantic memory while increased odds of dementia was only a trend. When participants with hippocampal sclerosis (HS) were excluded from the models, TDP-43 pathology remained associated with lower episodic memory but relationships with global cognition, semantic memory, and dementia were attenuated. TDP-43 pathology in elders, without pathologic diagnoses of AD or FTLD, is common and independently associated with lower function in episodic memory, while its associations with global cognitive impairment and dementia are difficult to separate from HS. © 2017 American Academy of Neurology.

  2. Incidence and extent of TDP-43 accumulation in aging human brain.

    PubMed

    Uchino, Akiko; Takao, Masaki; Hatsuta, Hiroyuki; Sumikura, Hiroyuki; Nakano, Yuta; Nogami, Akane; Saito, Yuko; Arai, Tomio; Nishiyama, Kazutoshi; Murayama, Shigeo

    2015-06-20

    The transactivation response element DNA-binding protein 43 kDa (TDP-43) is a major component of the ubiquitin-positive and tau-negative inclusions in frontotemporal lobar degeneration and sporadic amyotrophic lateral sclerosis (ALS). TDP-43 may accumulate in cases of Alzheimer's disease (AD), Lewy body disease (LBD), and argyrophilic grain disease (AGD). However, few studies have focused on the incidence and extent of TDP-43 deposition in aging. We analyzed 286 consecutive autopsy brains neuropathologically. Of these, 136 brains with pathologically minimal senile changes were designated as control elderly brains (78.5 ± 9.7 y). For comparison, we selected 29 AD, 11 LBD, and 11 AGD patients from this series of autopsy brains. Sections of the hippocampus, amygdala, medulla oblongata, and lumbar spinal cord were immunostained with anti-phosphorylated TDP-43 antibody (PSer409/410). TDP-43 immunoreactive structures were classified into four types: dystrophic neurites (DNs), neuronal or glial cytoplasmic inclusions, and intranuclear inclusions. TDP-43 immunoreactive structures were observed in 55/136 control elderly (40.0%), 21/29 AD (72.4%), 8/11 LBD (72.7%), and 6/11 AGD (54.5%) brains. TDP-43 immunoreactive structures in control elderly brains were mostly DNs. These DNs were predominantly present in the uncus of the anterior hippocampus over age 65. The frequency of cases with DNs in the amygdala of control elderly brains was less than that of AD, LBD, and AGD brains. The mean age at death was significantly higher in cases with TDP-43 immunoreactive structures than cases without them. In conclusion, TDP-43 immunoreactive DNs may develop as a consequence of aging processes in the human brain. In particular, the uncus of the anterior hippocampus is an area highly susceptible to TDP-43 accumulation over age 65.

  3. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer’s Disease

    PubMed Central

    Nag, Sukriti; Yu, Lei; Capuano, Ana W.; Wilson, Robert S.; Leurgans, Sue E.; Bennett, David A.; Schneider, Julie A.

    2015-01-01

    Objective To investigate the association of hippocampal sclerosis (HS) with TAR-DNA binding protein of 43 kDa (TDP-43) and other common age-related pathologies, dementia, probable Alzheimer’s disease (AD), mild cognitive impairment (MCI) and cognitive domains in community-dwelling older subjects. Methods Diagnoses of dementia, probable AD and MCI in 636 autopsied subjects from the Religious Order Study and the Rush Memory and Aging Project were based on clinical evaluation and cognitive performance tests. HS was defined as severe neuronal loss and gliosis in the hippocampal CA1and/or subiculum. The severity and distribution of TDP-43 was assessed and other age-related pathologies were also documented. Results HS was more common in those aged > 90 years (18.0%) compared to younger subjects (9.2%). HS cases commonly coexisted with TDP-43 pathology (86%), which was more severe (p < 0.001) in HS cases. Although, HS also commonly coexisted with AD and Lewy body (LB) pathology; only TDP-43 pathology increased the odds of HS (OR=2.63; 95% CI 2.07-3.34). In logistic regression models accounting for age, TDP-43 and other common age-related pathologies; HS cases had higher odds of dementia (OR=3.71; 95% CI=1.93-7.16), MCI and probable AD (OR=3.75; 95% CI=2.01-7.02). In linear regression models, including an interaction term for HS and TDP-43 pathology; HS with coexisting TDP-43 was associated with lower function in multiple cognitive domains while HS without TDP-43 did not have statistically significant associations. TDP-43 without HS was separately related to lower episodic memory. Interpretation The combined role of hippocampal sclerosis and TDP-43 pathology are significant factors underlying global cognitive impairment and probable AD in older subjects. PMID:25707479

  4. TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies.

    PubMed

    Goossens, Joery; Vanmechelen, Eugeen; Trojanowski, John Q; Lee, Virginia M Y; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan

    2015-04-01

    Frontotemporal lobar degeneration (FTLD) is one of the leading causes of dementia after Alzheimer's disease. A high-ranking candidate to become a diagnostic marker for a major pathological subtype of FTLD is the transactive response DNA binding protein of 43 kDa (TDP-43). The main objective is to elucidate which antibodies are specific for pathological TDP-43, with special interest in its modified isoforms. Indeed, TDP-43 has been shown to be hyperphosphorylated and truncated in disease. A secondary objective is to review existing immunoassays that quantify TDP-43 in biofluids. A systematic review of literature was performed by searching PubMed and Web of Science using predefined keywords. Of considered research papers the methods section was reviewed to select publications that enabled us to answer our learning objective. After quality assessment, antibody characteristics and related outcomes were extracted. We identified a series of well-characterized antibodies based on a scoring system that assessed the ability of each antibody to detect TDP-43 pathology. A selection of 29 unique antibodies was made comprising 10 high-ranking antibodies which were reported multiple times to detect TDP-43 pathology in both immunostaining and immunoblotting experiments and 19 additional antibodies which detected TDP-43 pathology but were only scored once. This systematic review provides an overview of antibodies that are reported to detect pathological TDP-43. These antibodies can be used in future studies of TDP-43 proteinopathies. Additionally, selected antibodies hold the potential to be used in the development of novel immunoassays for the quantification of TDP-43 in biofluids, as a possible biomarker for FTLD-TDP.

  5. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones.

    PubMed

    Udan-Johns, Maria; Bengoechea, Rocio; Bell, Shaughn; Shao, Jieya; Diamond, Marc I; True, Heather L; Weihl, Conrad C; Baloh, Robert H

    2014-01-01

    TDP-43 aggregation in the cytoplasm or nucleus is a key feature of the pathology of amyotrophic lateral sclerosis and frontotemporal dementia and is observed in numerous other neurodegenerative diseases, including Alzheimer's disease. Despite this fact, the inciting events leading to TDP-43 aggregation remain unclear. We observed that endogenous TDP-43 undergoes reversible aggregation in the nucleus after the heat shock and that this behavior is mediated by the C-terminal prion domain. Substitution of the prion domain from TIA-1 or an authentic yeast prion domain from RNQ1 into TDP-43 can completely recapitulate heat shock-induced aggregation. TDP-43 is constitutively bound to members of the Hsp40/Hsp70 family, and we found that heat shock-induced TDP-43 aggregation is mediated by the availability of these chaperones interacting with the inherently disordered C-terminal prion domain. Finally, we observed that the aggregation of TDP-43 during heat shock led to decreased binding to hnRNPA1, and a change in TDP-43 RNA-binding partners suggesting that TDP-43 aggregation alters its function in response to misfolded protein stress. These findings indicate that TDP-43 shares properties with physiologic prions from yeast, in that self-aggregation is mediated by a Q/N-rich disordered domain, is modulated by chaperone proteins and leads to altered function of the protein. Furthermore, they indicate that TDP-43 aggregation is regulated by chaperone availability, explaining the recurrent observation of TDP-43 aggregates in degenerative diseases of both the brain and muscle where protein homeostasis is disrupted.

  6. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones

    PubMed Central

    Udan-Johns, Maria; Bengoechea, Rocio; Bell, Shaughn; Shao, Jieya; Diamond, Marc I.; True, Heather L.; Weihl, Conrad C.; Baloh, Robert H.

    2014-01-01

    TDP-43 aggregation in the cytoplasm or nucleus is a key feature of the pathology of amyotrophic lateral sclerosis and frontotemporal dementia and is observed in numerous other neurodegenerative diseases, including Alzheimer's disease. Despite this fact, the inciting events leading to TDP-43 aggregation remain unclear. We observed that endogenous TDP-43 undergoes reversible aggregation in the nucleus after the heat shock and that this behavior is mediated by the C-terminal prion domain. Substitution of the prion domain from TIA-1 or an authentic yeast prion domain from RNQ1 into TDP-43 can completely recapitulate heat shock-induced aggregation. TDP-43 is constitutively bound to members of the Hsp40/Hsp70 family, and we found that heat shock-induced TDP-43 aggregation is mediated by the availability of these chaperones interacting with the inherently disordered C-terminal prion domain. Finally, we observed that the aggregation of TDP-43 during heat shock led to decreased binding to hnRNPA1, and a change in TDP-43 RNA-binding partners suggesting that TDP-43 aggregation alters its function in response to misfolded protein stress. These findings indicate that TDP-43 shares properties with physiologic prions from yeast, in that self-aggregation is mediated by a Q/N-rich disordered domain, is modulated by chaperone proteins and leads to altered function of the protein. Furthermore, they indicate that TDP-43 aggregation is regulated by chaperone availability, explaining the recurrent observation of TDP-43 aggregates in degenerative diseases of both the brain and muscle where protein homeostasis is disrupted. PMID:23962724

  7. Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis

    PubMed Central

    Rutherford, Nicola J.; Zhang, Yong-Jie; Baker, Matt; Gass, Jennifer M.; Finch, NiCole A.; Xu, Ya-Fei; Stewart, Heather; Kelley, Brendan J.; Kuntz, Karen; Crook, Richard J. P.; Sreedharan, Jemeen; Vance, Caroline; Sorenson, Eric; Lippa, Carol; Bigio, Eileen H.; Geschwind, Daniel H.; Knopman, David S.; Mitsumoto, Hiroshi; Petersen, Ronald C.; Cashman, Neil R.; Hutton, Mike; Shaw, Christopher E.; Boylan, Kevin B.; Boeve, Bradley; Graff-Radford, Neill R.; Wszolek, Zbigniew K.; Caselli, Richard J.; Dickson, Dennis W.; Mackenzie, Ian R.; Petrucelli, Leonard; Rademakers, Rosa

    2008-01-01

    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43–positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the ∼25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis. PMID:18802454

  8. TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes.

    PubMed

    Tan, Rachel H; Kril, Jillian J; Fatima, Manaal; McGeachie, Andrew; McCann, Heather; Shepherd, Claire; Forrest, Shelley L; Affleck, Andrew; Kwok, John B J; Hodges, John R; Kiernan, Matthew C; Halliday, Glenda M

    2015-10-01

    The pathological sequestration of TAR DNA-binding protein 43 (TDP-43, encoded by TARDBP) into cytoplasmic pathological inclusions characterizes the distinct clinical syndromes of amyotrophic lateral sclerosis and behavioural variant frontotemporal dementia, while also co-occurring in a proportion of patients with Alzheimer's disease, suggesting that the regional concentration of TDP-43 pathology has most relevance to specific clinical phenotypes. This has been reflected in the three different pathological staging schemes for TDP-43 pathology in these different clinical syndromes, with none of these staging schemes including a preclinical phase similar to that which has proven beneficial in other neurodegenerative diseases. To apply each of these three staging schemes for TDP-43 pathology, the clinical phenotype must be known undermining the potential predictive value of the pathological examination. The present study set out to test whether a more unified approach could accurately predict clinical phenotypes based solely on the regional presence and severity of TDP-43 pathology. The selection of brain regions of interest was based on key regions routinely sampled for neuropathological assessment under current consensus criteria that have also been used in the three TDP-43 staging schemes. The severity of TDP-43 pathology in these regions of interest was assessed in four clinicopathological phenotypes: amyotrophic lateral sclerosis (n = 27, 47-78 years, 15 males), behavioural variant frontotemporal dementia (n = 15, 49-82 years, seven males), Alzheimer's disease (n = 26, 51-90 years, 11 males) and cognitively normal elderly individuals (n = 17, 80-103 years, nine males). Our results demonstrate that the presence of TDP-43 in the hypoglossal nucleus discriminates patients with amyotrophic lateral sclerosis with an accuracy of 98%. The severity of TDP-43 deposited in the anterior cingulate cortex identifies patients with behavioural variant frontotemporal dementia

  9. Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice.

    PubMed

    Perera, Nirma D; Sheean, Rebecca K; Crouch, Peter J; White, Anthony R; Horne, Malcolm K; Turner, Bradley J

    2016-09-15

    Defects in the RNA-binding proteins survival motor neuron (SMN) and TAR DNA-binding protein 43 (TDP-43) cause progressive motor neuron degeneration in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), respectively. While low levels of SMN protein in motor neurons result in SMA, recent studies implicate abnormal SMN levels and function in ALS pathogenesis. Here, we determine that SMN protein is upregulated early and progressively in spinal and cortical motor neurons of male transgenic mutant TDP-43(A315T) mice. Cytoplasmic SMN aggregates that contain TDP-43 and HuR were identified in motor neurons of TDP-43(A315T) mice, consistent with the incorporation of SMN into stress granules. To test the impact of augmenting SMN levels in TDP-43 proteinopathy, we demonstrate that neuronal overexpression of human SMN in TDP-43(A315T) mice delayed symptom onset and prolonged survival. SMN upregulation also countered motor neuron degeneration, attenuated activation of astrocytes and microglia and restored AMP kinase activation in spinal cords of TDP-43(A315T) mice. We also reveal that expression of another factor conferring motor neuron vulnerability, androgen receptor (AR), is reduced in spinal cords of male TDP-43(A315T) mice. These results establish that SMN overexpression in motor neurons slows disease onset and outcome by ameliorating pathological signs in this model of mutant TDP-43-mediated ALS. Further approaches to augment SMN levels using pharmacological or gene therapy agents may therefore be warranted in ALS. Our data also reinforce a novel potential link between ALS and spinal bulbar muscular atrophy (SBMA), another motor neurodegenerative disease mediated by reduced AR function in motor neurons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

    PubMed

    Neumann, Manuela; Sampathu, Deepak M; Kwong, Linda K; Truax, Adam C; Micsenyi, Matthew C; Chou, Thomas T; Bruce, Jennifer; Schuck, Theresa; Grossman, Murray; Clark, Christopher M; McCluskey, Leo F; Miller, Bruce L; Masliah, Eliezer; Mackenzie, Ian R; Feldman, Howard; Feiden, Wolfgang; Kretzschmar, Hans A; Trojanowski, John Q; Lee, Virginia M-Y

    2006-10-06

    Ubiquitin-positive, tau- and alpha-synuclein-negative inclusions are hallmarks of frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Although the identity of the ubiquitinated protein specific to either disorder was unknown, we showed that TDP-43 is the major disease protein in both disorders. Pathologic TDP-43 was hyper-phosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments and was recovered only from affected central nervous system regions, including hippocampus, neocortex, and spinal cord. TDP-43 represents the common pathologic substrate linking these neurodegenerative disorders.

  11. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS

    PubMed Central

    Uchida, Tsukasa; Tamaki, Yoshitaka; Ayaki, Takashi; Shodai, Akemi; Kaji, Seiji; Morimura, Toshifumi; Banno, Yoshinori; Nishitsuji, Kazuchika; Sakashita, Naomi; Maki, Takakuni; Yamashita, Hirofumi; Ito, Hidefumi; Takahashi, Ryosuke; Urushitani, Makoto

    2016-01-01

    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS. PMID:26751167

  12. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS.

    PubMed

    Uchida, Tsukasa; Tamaki, Yoshitaka; Ayaki, Takashi; Shodai, Akemi; Kaji, Seiji; Morimura, Toshifumi; Banno, Yoshinori; Nishitsuji, Kazuchika; Sakashita, Naomi; Maki, Takakuni; Yamashita, Hirofumi; Ito, Hidefumi; Takahashi, Ryosuke; Urushitani, Makoto

    2016-01-11

    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS.

  13. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways

    PubMed Central

    Swarup, Vivek; Phaneuf, Daniel; Dupré, Nicolas; Petri, Susanne; Strong, Michael; Kriz, Jasna

    2011-01-01

    TDP-43 (TAR DNA-binding protein 43) inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). In this study, we report that TDP-43 and nuclear factor κB (NF-κB) p65 messenger RNA and protein expression is higher in spinal cords in ALS patients than healthy individuals. TDP-43 interacts with and colocalizes with p65 in glial and neuronal cells from ALS patients and mice expressing wild-type and mutant TDP-43 transgenes but not in cells from healthy individuals or nontransgenic mice. TDP-43 acted as a co-activator of p65, and glial cells expressing higher amounts of TDP-43 produced more proinflammatory cytokines and neurotoxic mediators after stimulation with lipopolysaccharide or reactive oxygen species. TDP-43 overexpression in neurons also increased their vulnerability to toxic mediators. Treatment of TDP-43 mice with Withaferin A, an inhibitor of NF-κB activity, reduced denervation in the neuromuscular junction and ALS disease symptoms. We propose that TDP-43 deregulation contributes to ALS pathogenesis in part by enhancing NF-κB activation and that NF-κB may constitute a therapeutic target for the disease. PMID:22084410

  14. A new cellular model of pathological TDP-43: The neurotoxicity of stably expressed CTF25 of TDP-43 depends on the proteasome.

    PubMed

    Liu, Y; Duan, W; Guo, Y; Li, Z; Han, H; Zhang, S; Yuan, P; Li, C

    2014-12-05

    The C-terminal fragments-25(CTF25) of TDP-43 is a fragment of TAR DNA-binding protein 43kDa (TDP-43), which is involved in RNA metabolism, neurite outgrowth, and neuronal development and stress granules. Not until recently did evidence suggest that CTF25 might play an important role in amyotrophic lateral sclerosis (ALS) pathogenesis. However, mechanical details on CTF25 causing motor neuron degeneration still remain unknown. To study the toxicity of CTF25 of TDP-43, we established a cellular model stably expressing CTF25 of TDP-43. Herein, we found that stably expressed CTF25 could induce significant oxidative stress and was mainly degraded by the proteasome pathway in cells. Furthermore, the neurotoxicity of CTF25 of TDP-43 was dependent on proteasome activity. In addition, electron microscopy showed mitochondrial swelling and cristae dilation in cells expressing CTF25 and that CTF25 aggregates were characterized by filamentous bundles and electron dense granular material. In conclusion, the new cellular model mimics classical toxic TDP-43 cellular model and interestingly the toxicity of CTF25 is dependent on the proteasome.

  15. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    PubMed Central

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  16. TDP-43 Inhibits NF-κB Activity by Blocking p65 Nuclear Translocation

    PubMed Central

    Zhu, Jingyan; Cynader, Max S.; Jia, William

    2015-01-01

    TDP-43 (TAR DNA binding protein 43) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been found to play an important role in neurodegenerative diseases. TDP-43’s involvement in nuclear factor-kappaB pathways has been reported in both neurons and microglial cells. The NF-κB pathway targets hundreds of genes, many of which are involved in inflammation, immunity and cancer. p50/p65 (p50/RelA) heterodimers, as the major Rel complex in the NF-κB family, are induced by diverse external physiological stimuli and modulate transcriptional activity in almost all cell types. Both p65 and TDP-43 translocation occur through the classic nuclear transportation system. In this study, we report that TDP-43 overexpression prevents TNF-α induced p65 nuclear translocation in a dose dependent manner, and that this further inhibits p65 transactivation activity. The inhibition by TDP-43 does not occur through preventing IκB degradation but probably by competing for the nuclear transporter-importin α3 (KPNA4). This competition is dependent on the presence of the nuclear localization signal (NLS) in TDP-43. Silencing TDP-43 using a specific siRNA also increased p65 nuclear localization upon TNF-α stimulation, suggesting that endogenous TDP-43 may be a default suppressor of the NF-κB pathway. Our results indicate that TDP-43 may play an important role in regulating the levels of NF-κB activity by controlling the nuclear translocation of p65. PMID:26571498

  17. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    PubMed Central

    Estes, Patricia S.; Daniel, Scott G.; Mccallum, Abigail P.; Boehringer, Ashley V.; Sukhina, Alona S.; Zwick, Rebecca A.; Zarnescu, Daniela C.

    2013-01-01

    SUMMARY Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies. PMID:23471911

  18. TDP-43 pathology, cognitive decline, and dementia in old age.

    PubMed

    Wilson, Robert S; Yu, Lei; Trojanowski, John Q; Chen, Er-Yun; Boyle, Patricia A; Bennett, David A; Schneider, Julie A

    2013-11-01

    Cognitive decline is a leading cause of disability and death in old age but its neurobiological bases are not well understood. To test the hypothesis that transactive response DNA-binding protein 43 (TDP-43) is related to late-life cognitive decline. Longitudinal clinical-pathologic cohort study involving more than 40 Catholic groups across the United States. A total of 130 older Catholic nuns, priests, and monks underwent annual clinical evaluations, including detailed cognitive testing, for a mean of 10.1 years prior to death. On neuropathologic examination, we collected semiquantitative measures of TDP-43 pathology, density of neuronal neurofibrillary tangles, area occupied by amyloid-beta plaques, and the presence of alpha-synuclein Lewy bodies from multiple brain regions. Gross and microscopic cerebral infarcts and hippocampal sclerosis were also identified. Annual rate of change in a previously established composite measure of global cognition during a mean of 10.1 years of annual observation before death. Transactive response DNA-binding protein 43 pathology, ranging from sparse to severe, was identified in 46% of participants and was associated with amyloid plaques, tangles, and hippocampal sclerosis but not neocortical Lewy bodies or cerebral infarcts. After controlling for amyloid plaques, tangles, and hippocampal sclerosis, TDP-43 pathology was associated with more rapid cognitive decline and accounted for nearly as much of the variability in rates of global cognitive decline as did tangles. Transactive response DNA-binding protein 43 pathology had a distinct cognitive profile that differed from other neuropathologic processes (related to decline in episodic and working memory but not in other cognitive domains), and it was elevated in those who developed dementia but not in those with mild cognitive impairment. The results suggest that TDP-43 is an important brain pathology underlying cognitive decline and dementia in old age.

  19. Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43.

    PubMed

    Stribl, Carola; Samara, Aladin; Trümbach, Dietrich; Peis, Regina; Neumann, Manuela; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Beckers, Johannes; Horsch, Marion; Neff, Frauke; Kremmer, Elisabeth; Koob, Sebastian; Reichert, Andreas S; Hans, Wolfgang; Rozman, Jan; Klingenspor, Martin; Aichler, Michaela; Walch, Axel Karl; Becker, Lore; Klopstock, Thomas; Glasl, Lisa; Hölter, Sabine M; Wurst, Wolfgang; Floss, Thomas

    2014-04-11

    The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43(A315TKi) mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43(A315TKi) animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration.

  20. Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43*

    PubMed Central

    Stribl, Carola; Samara, Aladin; Trümbach, Dietrich; Peis, Regina; Neumann, Manuela; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Beckers, Johannes; Horsch, Marion; Neff, Frauke; Kremmer, Elisabeth; Koob, Sebastian; Reichert, Andreas S.; Hans, Wolfgang; Rozman, Jan; Klingenspor, Martin; Aichler, Michaela; Walch, Axel Karl; Becker, Lore; Klopstock, Thomas; Glasl, Lisa; Hölter, Sabine M.; Wurst, Wolfgang; Floss, Thomas

    2014-01-01

    The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43A315TKi mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43A315TKi animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration. PMID:24515116

  1. Maple Syrup Decreases TDP-43 Proteotoxicity in a Caenorhabditis elegans Model of Amyotrophic Lateral Sclerosis (ALS).

    PubMed

    Aaron, Catherine; Beaudry, Gabrielle; Parker, J Alex; Therrien, Martine

    2016-05-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing death of the motor neurons. Proteotoxicity caused by TDP-43 protein is an important aspect of ALS pathogenesis, with TDP-43 being the main constituent of the aggregates found in patients. We have previously tested the effect of different sugars on the proteotoxicity caused by the expression of mutant TDP-43 in Caenorhabditis elegans. Here we tested maple syrup, a natural compound containing many active molecules including sugars and phenols, for neuroprotective activity. Maple syrup decreased several age-dependent phenotypes caused by the expression of TDP-43(A315T) in C. elegans motor neurons and requires the FOXO transcription factor DAF-16 to be effective.

  2. TDP-43 Inclusion Bodies Formed in Bacteria Are Structurally Amorphous, Non-Amyloid and Inherently Toxic to Neuroblastoma Cells

    PubMed Central

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein. PMID:24497973

  3. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    PubMed

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  4. An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice

    PubMed Central

    Walker, Adam K.; Tripathy, Kalyan; Restrepo, Clark R.; Ge, Guanghui; Xu, Yan; Kwong, Linda K.; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2015-01-01

    Frontotemporal dementia (FTD) causes progressive personality, behavior and/or language disturbances and represents the second most common form of dementia under the age of 65. Over half of all FTD cases are classified pathologically as frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein of 43 kDa (TDP-43) pathology (FTLD-TDP). In FTLD-TDP brains, TDP-43 is phosphorylated, C-terminally cleaved, lost from the nucleus and accumulates in the cytoplasm and processes of neurons and glia. However, the contribution of TDP-43 C-terminal fragments (CTFs) to pathogenesis remains poorly understood. Here, we developed transgenic (Tg) mice with forebrain Camk2a-controlled doxycycline-suppressible expression of a TDP-43 CTF (amino acids 208–414, designated 208 TDP-43 CTF), previously identified in FTLD-TDP brains. In these 208 TDP-43 Tg mice, detergent-insoluble 208 TDP-43 CTF was present in a diffuse punctate pattern in neuronal cytoplasm and dendrites without forming large cytoplasmic inclusions. Remarkably, the hippocampus showed progressive neuron loss and astrogliosis in the dentate gyrus (DG). This was accompanied by phosphorylated TDP-43 in the CA1 subfield, and ubiquitin and mitochondria accumulations in the stratum lacunosum moleculare (SLM) layer, without loss of endogenous nuclear TDP-43. Importantly, 208 TDP-43 CTF and phosphorylated TDP-43 were rapidly cleared when CTF expression was suppressed in aged Tg mice, which ameliorated neuron loss in the DG despite persistence of ubiquitin accumulation in the SLM. Our results demonstrate that Camk2a-directed 208 TDP-43 CTF overexpression is sufficient to cause hippocampal pathology and neurodegeneration in vivo, suggesting an active role for TDP-43 CTFs in the pathogenesis of FTLD-TDP and related TDP-43 proteinopathies. PMID:26476406

  5. Augmented quantal release of acetylcholine at the vertebrate neuromuscular junction following tdp-43 depletion.

    PubMed

    Dzieciolowska, Stefania; Drapeau, Pierre; Armstrong, Gary Alan Barclay

    2017-01-01

    TAR DNA binding protein (TDP-43) is a 43 kD, predominately nuclear, protein involved in RNA metabolism. Of clinical significance is that the majority of amyotrophic lateral sclerosis (ALS) patients display abnormal accumulation of misfolded TDP-43 in the cytoplasm, which is coincident with a loss of nuclear localization in the afflicted regions of the central nervous system. Little is known about defects that arise in loss-of-function models, in particular synaptic defects that arise at the neuromuscular junction (NMJ). In this report, we examined abnormalities arising at the NMJ following depletion of tdp-43 using a previously characterized mutant tardbp (encoding tdp-43) zebrafish line containing a premature stop codon (Y220X) that results in an unstable and degraded protein. Homozygous tardbpY220X/Y220X zebrafish do not produce tdp-43 but develop normally due to expression of an alternative splice variant of tardbpl (tardbp paralog). Using an antisense morpholino oligonucleotide to knockdown expression of the tardbpl in tardbpY220X/Y220X embryos, we examined locomotor defects, NMJ structural abnormalities and release of quantal synaptic vesicles at the NMJ. As in previous reports, larvae depleted of tdp-43 display reduced survival, gross morphological defects and severely impaired locomotor activity. These larvae also displayed an increased number of orphaned pre- and postsynaptic NMJ markers but surprisingly, we observed a significant increase (3.5 times) in the frequency of quantal acetylcholine release at the NMJ in larvae depleted of tdp-43. These results indicate that reduced TDP-43 levels alter quantal vesicle release at the NMJ during vertebrate development and may be relevant for understanding synaptic dysfunction in ALS.

  6. Higher Prevalence of TDP-43 Proteinopathy in Cognitively Normal Asians: A Clinicopathological Study on a Multiethnic Sample.

    PubMed

    Nascimento, Camila; Suemoto, Claudia K; Rodriguez, Roberta D; Alho, Ana Tereza Di Lorenzo; Leite, Renata P; Farfel, Jose Marcelo; Pasqualucci, Carlos Augusto Gonçalves; Jacob-Filho, Wilson; Grinberg, Lea T

    2016-03-01

    Transactive response DNA binding protein 43 (TDP-43) proteinopathy is the major hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. It is also present in a subset of Alzheimer's disease cases. Recently, few reports showed TDP-43 changes in cognitively normal elderly. In Caucasians, TDP-43 proteinopathy independently correlate with cognitive decline. However, it is challenging to establish direct links between cognitive and/or neuropsychiatric symptoms and protein inclusions in neurodegenerative diseases because individual cognitive reserves modify the threshold for clinical disease expression. Cognitive reserve is influenced by demographic, environmental and genetic factors. We investigated the relationships between demographic, clinical and neuropathological variables and TDP-43 proteinopathy in a large multiethnic sample of cognitively normal elderly. TDP-43 proteinopathy was identified in 10.5%, independently associated with older age (P = 0.03) and Asian ethnicity (P = 0.002). Asians showed a higher prevalence of TDP-43 proteinopathy than Caucasians, even after adjustment for sex, age, Braak stage and schooling (odds ratio = 3.50, confidence interval 1.41-8.69, P = 0.007). These findings suggested that Asian older adults may be protected from the clinical manifestation of brain TDP-43 proteinopathy. Future studies are needed to identify possible race-related protective factors against clinical expression of TDP-43 proteinopathies. © 2015 International Society of Neuropathology.

  7. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43

    PubMed Central

    Koyama, Akihide; Sugai, Akihiro; Kato, Taisuke; Ishihara, Tomohiko; Shiga, Atsushi; Toyoshima, Yasuko; Koyama, Misaki; Konno, Takuya; Hirokawa, Sachiko; Yokoseki, Akio; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi; Onodera, Osamu

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder. In motor neurons of ALS, TAR DNA binding protein-43 (TDP-43), a nuclear protein encoded by TARDBP, is absent from the nucleus and forms cytoplasmic inclusions. TDP-43 auto-regulates the amount by regulating the TARDBP mRNA, which has three polyadenylation signals (PASs) and three additional alternative introns within the last exon. However, it is still unclear how the autoregulatory mechanism works and how the status of autoregulation in ALS motor neurons without nuclear TDP-43 is. Here we show that TDP-43 inhibits the selection of the most proximal PAS and induces splicing of multiple alternative introns in TARDBP mRNA to decrease the amount of cytoplasmic TARDBP mRNA by nonsense-mediated mRNA decay. When TDP-43 is depleted, the TARDBP mRNA uses the most proximal PAS and is increased in the cytoplasm. Finally, we have demonstrated that in ALS motor neurons—especially neurons with mislocalized TDP-43—the amount of TARDBP mRNA is increased in the cytoplasm. Our observations indicate that nuclear TDP-43 contributes to the autoregulation and suggests that the absence of nuclear TDP-43 induces an abnormal autoregulation and increases the amount of TARDBP mRNA. The vicious cycle might accelerate the disease progression of ALS. PMID:27257061

  8. HIGHER PREVALENCE OF TDP-43 PROTEINOPATHY IN COGNITIVELY NORMAL ASIANS: A CLINICOPATHOLOGICAL STUDY ON A MULTIETHNIC SAMPLE

    PubMed Central

    Nascimento, Camila; Suemoto, Claudia K.; Rodriguez, Roberta D.; Di Lorenzo Alho, Ana Tereza; Leite, Renata P.; Farfel, Jose Marcelo; Pasqualucci, Carlos Alberto; Jacob-Filho, Wilson; Grinberg, Lea T.

    2015-01-01

    Transactive response DNA binding-protein 43 (TDP-43) proteinopathy is the major hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. It is also present in a subset of Alzheimer’s disease cases. Recently, few reports showed TDP-43 changes in cognitively normal elderly. In Caucasians, TDP-43 proteinopathy independently correlate with cognitive decline. However, it is challenging to establish direct links between cognitive and/or neuropsychiatric symptoms and protein inclusions in neurodegenerative diseases because individual cognitive reserves modify the threshold for clinical disease expression. Cognitive reserve is influenced by demographic, environmental and genetic factors. We investigated the relationships between demographic, clinical, and neuropathological variables and TDP-43 proteinopathy in a large multiethnic sample of cognitively normal elderly. TDP-43 proteinopathy were identified in 10.5%, independently associated with older age (p = 0.03) and Asian ethnicity (p = 0.002). Asians showed a higher prevalence of TDP-43 proteinopathy than Caucasians, even after adjustment for sex, age, Braak stage, and schooling (odds ratio = 3.50, confidence interval 1.41–8.69, p = 0.007). These findings suggested Asians older adults may be protected from the clinical manifestation of brain TDP-43 proteinopathy. Future studies are needed to identify possible race-related protective factors against clinical expression of TDP-43 proteinopathies. PMID:26260327

  9. Analysis of RNA metabolism in peripheral WBCs of TDP-43 KI mice identifies novel biomarkers of ALS.

    PubMed

    Hasegawa, Minami; Hara-Miyauchi, Chikako; Ohta, Hiroki; Sakimura, Kenji; Okano, Hideyuki; Okano, Hirotaka James

    2016-05-01

    Diagnostic biomarkers for amyotrophic lateral sclerosis (ALS) have yet to be identified. One of the causes of neuronal cell death in neurodegenerative diseases is abnormal RNA metabolism, although the mechanisms by which this occurs are unclear. Detection of abnormal RNA metabolism in white blood cells (WBCs) could lead to a new biomarker of ALS onset. TAR DNA-binding protein 43kDa (TDP-43) is an RNA-binding protein that regulates RNA metabolism. We previously developed a mouse model of ALS that exhibits adult-onset motor dysfunction; these mutant TDP-43 knock in (KI) mice heterozygously express mutant human TDP-43 (A382T or G348C). In the present study, we examined TDP-43 mRNA levels in WBCs of KI mice and found that A382T mutant mRNA is significantly higher than G348C. Our results suggest that each mutant TDP-43 induces distinct RNA metabolism, and that the expression of total TDP-43 alone in WBC is not suitable as an ALS biomarker. To identify additional candidates, we focused on survival and apoptosis-related factors and examined their mRNA metabolism in WBCs. mRNA levels of both Smn1 and Naip5 correlated with TDP-43 levels and also differed between A382T and G348C. Together, TDP-43 and these factors may enable detection of abnormalities in individual ALS pathologies. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation.

    PubMed

    Zeineddine, Rafaa; Farrawell, Natalie E; Lambert-Smith, Isabella A; Yerbury, Justin J

    2017-05-30

    ALS is characterised by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology throughout the nervous system, resulting in paralysis and death generally within a few years after diagnosis. The aberrant release and uptake of toxic proteins including SOD1 and TDP-43 and their subsequent propagation, accumulation and deposition in motor neurons may explain such a pattern of pathology. Previous work has suggested that the internalization of aggregates triggers stress granule formation. Given the close association of stress granules and TDP-43, we wondered whether internalisation of SOD1 aggregates stimulated TDP-43 cytosolic aggregate structures. Addition of recombinant mutant G93A SOD1 aggregates to NSC-34 cells was found to trigger a rapid shift of TDP-43 to the cytoplasm where it was still accumulated after 48 h. In addition, SOD1 aggregates also triggered cleavage of TDP-43 into fragments including a 25 kDa fragment. Collectively, this study suggests a role for protein aggregate uptake in TDP-43 pathology.

  11. Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior.

    PubMed

    Feiguin, Fabian; Godena, Vinay K; Romano, Giulia; D'Ambrogio, Andrea; Klima, Raffaella; Baralle, Francisco E

    2009-05-19

    Pathological modifications in the highly conserved and ubiquitously expressed heterogeneous ribonucleoprotein TDP-43 were recently associated to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), a late-onset disorder that affects predominantly motoneurons [Neumann, M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133, Sreedharan, J. et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672, Kabashi, E. et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572-574]. However, the function of TDP-43 in vivo is unknown and a possible direct role in neurodegeneration remains speculative. Here, we report that flies lacking Drosophila TDP-43 appeared externally normal but presented deficient locomotive behaviors, reduced life span and anatomical defects at the neuromuscular junctions. These phenotypes were rescued by expression of the human protein in a restricted group of neurons including motoneurons. Our results demonstrate the role of this protein in vivo and suggest an alternative explanation to ALS pathogenesis that may be more due to the lack of TDP 43 function than to the toxicity of the aggregates.

  12. TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord

    PubMed Central

    Brettschneider, Johannes; Arai, Kimihito; Del Tredici, Kelly; Toledo, Jon B.; Robinson, John L.; Lee, Edward B.; Kuwabara, Satoshi; Shibuya, Kazumoto; Irwin, David J.; Fang, Lubin; Van Deerlin, Vivianna M.; Elman, Lauren; McCluskey, Leo; Ludolph, Albert C.; Lee, Virginia M.-Y.; Braak, Heiko

    2015-01-01

    We examined the phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) inclusions as well as neuronal loss in full-length spinal cords and five selected regions of the central nervous system from 36 patients with amyotrophic lateral sclerosis (ALS) and 10 age-matched normal controls. The most severe neuronal loss and pTDP-43 lesions were seen in lamina IX motor nuclei columns 4, 6, and 8 of lower cervical segments and in columns 9–11 of lumbosacral segments. Severity of pTDP-43 pathology and neuronal loss correlated closely with gray and white matter oligodendroglial involvement and was linked to onset of disease, with severe involvement of columns 4, 6, and 8 of upper extremity onset cases and severe involvement of columns of 9, 10, and 11 in cases with lower extremity onset. Severe TDP-43 lesions and neuronal loss were observed in stage 4 cases and sometimes included Onuf’s nucleus. Notably, three cases displayed pTDP-43 aggregates in the midbrain oculomotor nucleus, which we had not seen previously even in cases with advanced (i.e., stage 4) pathology. pTDP-43 aggregates were observed in neurons of Clarke’s column in 30.6 % of cases but rarely in the intermediolateral nucleus (IML). Gray matter oligodendroglial pTDP-43 inclusions were present in areas devoid of neuronal pTDP-43 aggregates and neuronal loss. Taken together, our findings indicate that (1) the dorsolateral motor nuclei columns of the cervical and lumbosacral anterior horn may be the earliest foci of pTDP-43 pathology in the spinal cord, (2) gray matter oligodendroglial involvement is an early event in the ALS disease process that possibly heralds subsequent involvement of neurons by pTDP-43 pathology, and (3) in some very advanced cases, there is oculomotor nucleus involvement, which may constitute an additional neuropathological stage (designated here as stage 5) of pTDP-43 pathology in ALS. PMID:24916269

  13. Inhibition of TDP-43 Accumulation by Bis(thiosemicarbazonato)-Copper Complexes

    PubMed Central

    James, Janine L.; Liddell, Jeffrey R.; Nonaka, Takashi; Hasegawa, Masato; Kanninen, Katja M.; Lim, SinChun; Paterson, Brett M.; Donnelly, Paul S.; Crouch, Peter J.; White, Anthony R.

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, motor neuron disease with no effective long-term treatment options. Recently, TDP-43 has been identified as a key protein in the pathogenesis of some cases of ALS. Although the role of TDP-43 in motor neuron degeneration is not yet known, TDP-43 has been shown to accumulate in RNA stress granules (SGs) in cell models and in spinal cord tissue from ALS patients. The SG association may be an early pathological change to TDP-43 metabolism and as such a potential target for therapeutic intervention. Accumulation of TDP-43 in SGs induced by inhibition of mitochondrial activity can be inhibited by modulation of cellular kinase activity. We have also found that treatment of cells and animal models of neurodegeneration, including an ALS model, with bioavailable bis(thiosemicarbazonato)copperII complexes (CuII(btsc)s) can modulate kinase activity and induce neuroprotective effects. In this study we examined the effect of diacetylbis(-methylthiosemicarbazonato)copperII (CuII(atsm)) and glyoxalbis(-methylthiosemicarbazonato)copperII (CuII(gtsm)) on TDP-43-positive SGs induced in SH-SY5Y cells in culture. We found that the CuII(btsc)s blocked formation of TDP-43-and human antigen R (HuR)-positive SGs induced by paraquat. The CuII(btsc)s protected neurons from paraquat-mediated cell death. These effects were associated with inhibition of ERK phosphorylation. Co-treatment of cultures with either CuII(atsm) or an ERK inhibitor, PD98059 both prevented ERK activation and blocked formation of TDP-43-and HuR-positive SGs. CuII(atsm) treatment or ERK inhibition also prevented abnormal ubiquitin accumulation in paraquat-treated cells suggesting a link between prolonged ERK activation and abnormal ubiquitin metabolism in paraquat stress and inhibition by Cu. Moreover, CuII(atsm) reduced accumulation of C-terminal (219–414) TDP-43 in transfected SH-SY5Y cells. These results demonstrate that CuII(btsc) complexes could

  14. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice.

    PubMed

    Guo, Yansu; Wang, Qian; Zhang, Kunxi; An, Ting; Shi, Pengxiao; Li, Zhongyao; Duan, Weisong; Li, Chunyan

    2012-06-15

    TAR DNA-binding protein 43 (TDP-43) has been found to be related to the pathogenesis of amyotrophic lateral sclerosis (ALS). TDP-43 A315T transgenic mice develop degeneration of specific motor neurons, and accumulation of ubiquitinated proteins has been observed in the pyramidal cells of motor cortex of these mice. In this study, we found stress-responsive HO-1 induction and no autophagic alteration in motor cortex of TDP-43 A315T transgenic mice. Glial activation, especially astrocytic proliferation, occurred in cortical layer 5 and sub-meningeal region. Interestingly, we noticed that progressively thinned colon, swollen small intestine and reduced food intake, rather than severe muscle weakness, contributed to the death of TDP-43 A315T transgenic mice. Increased TDP-43 accumulation in the myenteric nerve plexus and increased thickness of muscular layer of colon were related to the intestinal dysfunction. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. An Amyloid-Like Pathological Conformation of TDP-43 Is Stabilized by Hypercooperative Hydrogen Bonds.

    PubMed

    Mompeán, Miguel; Baralle, Marco; Buratti, Emanuele; Laurents, Douglas V

    2016-01-01

    TDP-43 is an essential RNA-binding protein forming aggregates in almost all cases of sporadic amyotrophic lateral sclerosis (ALS) and many cases of frontotemporal lobar dementia (FTLD) and other neurodegenerative diseases. TDP-43 consists of a folded N-terminal domain with a singular structure, two RRM RNA-binding domains, and a long disordered C-terminal region which plays roles in functional RNA regulatory assemblies as well as pernicious aggregation. Evidence from pathological mutations and seeding experiments strongly suggest that TDP-43 aggregates are pathologically relevant through toxic gain-of-harmful-function and/or harmful loss-of-native-function mechanisms. Recent, but not early, microscopy studies and the ability of TDP-43 aggregates to resist harsh treatment and to seed new pathological aggregates in vitro and in cells strongly suggest that TDP-43 aggregates have a self-templating, amyloid-like structure. Based on the importance of the Gln/Asn-rich 341-367 residue segment for efficient aggregation of endogenous TDP-43 when presented as a 12X-repeat and extensive spectroscopic and computational experiments, we recently proposed that this segment adopts a beta-hairpin structure that assembles in a parallel with a beta-turn configuration to form an amyloid-like structure. Here, we propose that this conformer is stabilized by an especially strong class of hypercooperative hydrogen bonding unique to Gln and Asn sidechains. The clinical existence of this conformer is supported by very recent LC-MS/MS characterization of TDP-43 from ex vivo aggregates, which show that residues 341-367 were protected in vivo from Ser phosphorylation, Gln/Asn deamidation and Met oxidation. Its distinct pattern of SDS-PAGE bands allows us to link this conformer to the exceptionally stable seed of the Type A TDP-43 proteinopathy.

  16. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD)

    PubMed Central

    Grossman, Murray; Robinson, John L.; Toledo, Jon B.; Fang, Lubin; Van Deerlin, Vivianna M.; Ludolph, Albert C.; Lee, Virginia M.-Y.; Braak, Heiko; Trojanowski, John Q.

    2014-01-01

    We examined regional distribution patterns of phosphorylated 43-kDa TAr DNA-binding protein (pTDP-43) intraneuronal inclusions in frontotemporal lobar degeneration (FTLD). Immunohistochemistry was performed on 70 μm sections from FTLD-TDP autopsy cases (n = 39) presenting with behavioral variant frontotemporal dementia. Two main types of cortical pTDP-43 pathology emerged, characterized by either predominantly perikaryal pTDP-43 inclusions (cytoplasmic type, cFTLD) or long aggregates in dendrites (neuritic type, nFTLD). Cortical involvement in nFTLD was extensive and frequently reached occipital areas, whereas cases with cFTLD often involved bulbar somatomotor neurons and the spinal cord. We observed four patterns indicative of potentially sequential dissemination of pTDP-43: cases with the lowest burden of pathology (pattern I) were characterized by widespread pTDP-43 lesions in the orbital gyri, gyrus rectus, and amygdala. With increasing burden of pathology (pattern II) pTDP-43 lesions emerged in the middle frontal and anterior cingulate gyrus as well as in anteromedial temporal lobe areas, the superior and medial temporal gyri, striatum, red nucleus, thalamus, and precerebellar nuclei. More advanced cases showed a third pattern (III) with involvement of the motor cortex, bulbar somatomotor neurons, and the spinal cord anterior horn, whereas cases with the highest burden of pathology (pattern IV) were characterized by pTDP-43 lesions in the visual cortex. We interpret the four neuropathological patterns in bvFTD to be consistent with the hypothesis that pTDP-43 pathology can spread sequentially and may propagate along axonal pathways. PMID:24407427

  17. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations.

    PubMed

    Mackenzie, Ian R A; Bigio, Eileen H; Ince, Paul G; Geser, Felix; Neumann, Manuela; Cairns, Nigel J; Kwong, Linda K; Forman, Mark S; Ravits, John; Stewart, Heather; Eisen, Andrew; McClusky, Leo; Kretzschmar, Hans A; Monoranu, Camelia M; Highley, J Robin; Kirby, Janine; Siddique, Teepu; Shaw, Pamela J; Lee, Virginia M-Y; Trojanowski, John Q

    2007-05-01

    Amyotrophic lateral sclerosis (ALS) is a common, fatal motor neuron disorder with no effective treatment. Approximately 10% of cases are familial ALS (FALS), and the most common genetic abnormality is superoxide dismutase-1 (SOD1) mutations. Most ALS research in the past decade has focused on the neurotoxicity of mutant SOD1, and this knowledge has directed therapeutic strategies. We recently identified TDP-43 as the major pathological protein in sporadic ALS. In this study, we investigated TDP-43 in a larger series of ALS cases (n = 111), including familial cases with and without SOD1 mutations. Ubiquitin and TDP-43 immunohistochemistry was performed on postmortem tissue from sporadic ALS (n = 59), ALS with SOD1 mutations (n = 15), SOD-1-negative FALS (n = 11), and ALS with dementia (n = 26). Biochemical analysis was performed on representative cases from each group. All cases of sporadic ALS, ALS with dementia, and SOD1-negative FALS had neuronal and glial inclusions that were immunoreactive for both ubiquitin and TDP-43. Cases with SOD1 mutations had ubiquitin-positive neuronal inclusions; however, no cases were immunoreactive for TDP-43. Biochemical analysis of postmortem tissue from sporadic ALS and SOD1-negative FALS demonstrated pathological forms of TDP-43 that were absent in cases with SOD1 mutations. These findings implicate pathological TDP-43 in the pathogenesis of sporadic ALS. In contrast, the absence of pathological TDP-43 in cases with SOD1 mutations implies that motor neuron degeneration in these cases may result from a different mechanism, and that cases with SOD1 mutations may not be the familial counterpart of sporadic ALS.

  18. An Amyloid-Like Pathological Conformation of TDP-43 Is Stabilized by Hypercooperative Hydrogen Bonds

    PubMed Central

    Mompeán, Miguel; Baralle, Marco; Buratti, Emanuele; Laurents, Douglas V.

    2016-01-01

    TDP-43 is an essential RNA-binding protein forming aggregates in almost all cases of sporadic amyotrophic lateral sclerosis (ALS) and many cases of frontotemporal lobar dementia (FTLD) and other neurodegenerative diseases. TDP-43 consists of a folded N-terminal domain with a singular structure, two RRM RNA-binding domains, and a long disordered C-terminal region which plays roles in functional RNA regulatory assemblies as well as pernicious aggregation. Evidence from pathological mutations and seeding experiments strongly suggest that TDP-43 aggregates are pathologically relevant through toxic gain-of-harmful-function and/or harmful loss-of-native-function mechanisms. Recent, but not early, microscopy studies and the ability of TDP-43 aggregates to resist harsh treatment and to seed new pathological aggregates in vitro and in cells strongly suggest that TDP-43 aggregates have a self-templating, amyloid-like structure. Based on the importance of the Gln/Asn-rich 341–367 residue segment for efficient aggregation of endogenous TDP-43 when presented as a 12X-repeat and extensive spectroscopic and computational experiments, we recently proposed that this segment adopts a beta-hairpin structure that assembles in a parallel with a beta-turn configuration to form an amyloid-like structure. Here, we propose that this conformer is stabilized by an especially strong class of hypercooperative hydrogen bonding unique to Gln and Asn sidechains. The clinical existence of this conformer is supported by very recent LC-MS/MS characterization of TDP-43 from ex vivo aggregates, which show that residues 341–367 were protected in vivo from Ser phosphorylation, Gln/Asn deamidation and Met oxidation. Its distinct pattern of SDS-PAGE bands allows us to link this conformer to the exceptionally stable seed of the Type A TDP-43 proteinopathy. PMID:27909398

  19. Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates.

    PubMed

    Garnier, Cyrille; Devred, François; Byrne, Deborah; Puppo, Rémy; Roman, Andrei Yu; Malesinski, Soazig; Golovin, Andrey V; Lebrun, Régine; Ninkina, Natalia N; Tsvetkov, Philipp O

    2017-07-28

    Aggregation of TDP-43 (transactive response DNA binding protein 43 kDa) is a hallmark of certain forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Moreover, intracellular TDP-43-positive inclusions are often found in other neurodegenerative diseases. Recently it was shown that zinc ions can provoke the aggregation of endogenous TDP-43 in cells, allowing to assume a direct interaction of TDP-43 with zinc ions. In this work, we investigated zinc binding to the 102-269 TDP-43 fragment, which comprise the two RNA recognition motifs. Using isothermal titration calorimetry, mass spectrometry, and differential scanning fluorimetry, we showed that zinc binds to this TDP-43 domain with a dissociation constant in the micromolar range and modifies its tertiary structure leading to a decrease of its thermostability. Moreover, the study by dynamic light scattering and negative stain electron microscopy demonstrated that zinc ions induce auto-association process of this TDP-43 fragment into rope-like structures. These structures are thioflavin-T-positive allowing to hypothesize the direct implication of zinc ions in pathological aggregation of TDP-43.

  20. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model.

    PubMed

    LaClair, Katherine D; Donde, Aneesh; Ling, Jonathan P; Jeong, Yun Ha; Chhabra, Resham; Martin, Lee J; Wong, Philip C

    2016-12-01

    TDP-43 proteinopathy, initially associated with ALS and FTD, is also found in 30-60% of Alzheimer's disease (AD) cases and correlates with worsened cognition and neurodegeneration. A major component of this proteinopathy is depletion of this RNA-binding protein from the nucleus, which compromises repression of non-conserved cryptic exons in neurodegenerative diseases. To test whether nuclear depletion of TDP-43 may contribute to the pathogenesis of AD cases with TDP-43 proteinopathy, we examined the impact of depletion of TDP-43 in populations of neurons vulnerable in AD, and on neurodegeneration in an AD-linked context. Here, we show that some populations of pyramidal neurons that are selectively vulnerable in AD are also vulnerable to TDP-43 depletion in mice, while other forebrain neurons appear spared. Moreover, TDP-43 depletion in forebrain neurons of an AD mouse model exacerbates neurodegeneration, and correlates with increased prefibrillar oligomeric Aβ and decreased Aβ plaque burden. These findings support a role for nuclear depletion of TDP-43 in the pathogenesis of AD and provide strong rationale for developing novel therapeutics to alleviate the depletion of TDP-43 and functional antemortem biomarkers associated with its nuclear loss.

  1. TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity

    PubMed Central

    Kaur, Kavita; Müller, Daniel; Karsten, Peter; Weber, Stephanie S.; Kahle, Philipp J.; Marquardt, Till; Schulz, Jörg B.

    2010-01-01

    Alteration and/or mutations of the ribonucleoprotein TDP-43 have been firmly linked to human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The relative impacts of TDP-43 alteration, mutation, or inherent protein function on neural integrity, however, remain less clear—a situation confounded by conflicting reports based on transient and/or random-insertion transgenic expression. We therefore performed a stringent comparative investigation of impacts of these TDP-43 modifications on neural integrity in vivo. To achieve this, we systematically screened ALS/FTLD-associated and synthetic TDP-43 isoforms via same-site gene insertion and neural expression in Drosophila; followed by transposon-based motor neuron-specific transgenesis in a chick vertebrate system. Using this bi-systemic approach we uncovered a requirement of inherent TDP-43 RNA-binding function—but not ALS/FTLD-linked mutation, mislocalization, or truncation—for TDP-43-mediated neurotoxicity in vivo. PMID:20806063

  2. TDP-43 Proteinopathy and Motor Neuron Disease in Chronic Traumatic Encephalopathy

    PubMed Central

    McKee, Ann C.; Gavett, Brandon E.; Stern, Robert A.; Nowinski, Christopher J.; Cantu, Robert C.; Kowall, Neil W.; Perl, Daniel P.; Hedley-Whyte, E. Tessa; Price, Bruce; Sullivan, Chris; Morin, Peter; Lee, Hyo-Soon; Kubilus, Caroline A.; Daneshvar, Daniel H.; Wulff, Megan; Budson, Andrew E.

    2010-01-01

    Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of β-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43 kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43–positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease. PMID:20720505

  3. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy.

    PubMed

    McKee, Ann C; Gavett, Brandon E; Stern, Robert A; Nowinski, Christopher J; Cantu, Robert C; Kowall, Neil W; Perl, Daniel P; Hedley-Whyte, E Tessa; Price, Bruce; Sullivan, Chris; Morin, Peter; Lee, Hyo-Soon; Kubilus, Caroline A; Daneshvar, Daniel H; Wulff, Megan; Budson, Andrew E

    2010-09-01

    Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of β-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43-positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease.

  4. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration

    PubMed Central

    Liachko, Nicole F.; McMillan, Pamela J.; Guthrie, Chris R.; Bird, Thomas D.; Leverenz, James B.; Kraemer, Brian C.

    2013-01-01

    Objective Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 drives neurotoxicity in disease models; therefore, TDP-43 specific kinases are candidate targets for intervention. Methods To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic C. elegans. Results We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In FTLD-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43 dependent neurodegeneration in TDP-43 transgenic animals. Interpretation Taken together these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies including FTLD-TDP and ALS. PMID:23424178

  5. Cerebrospinal Fluid TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis Patients with and without the C9ORF72 Hexanucleotide Expansion.

    PubMed

    Junttila, Anna; Kuvaja, Mari; Hartikainen, Päivi; Siloaho, Maritta; Helisalmi, Seppo; Moilanen, Virpi; Kiviharju, Anna; Jansson, Lilja; Tienari, Pentti J; Remes, Anne Marja; Herukka, Sanna-Kaisa

    2016-01-01

    TDP-43 is the main protein component of ubiquitinated inclusions in a subgroup of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) patients. The C9ORF72 hexanucleotide expansion is one of the main mutations associated with TDP-43 pathology in FTLD and ALS. Our aim was to analyze cerebrospinal fluid (CSF) TDP-43 levels and Alzheimer's disease biomarkers in FTLD and ALS patients and to test whether the C9ORF72 expansion carrier status affects these variables. The patient cohort consisted of 90 clinically well-characterized FTLD (n = 69) and ALS (n = 21) patients. There were 30 patients with the C9ORF72 expansion and 60 patients without the expansion. CSF TDP-43, AΒ1-42, t-tau, and phospho-tau levels were measured using commercial ELISA kits. There was no difference in CSF TDP-43 levels between the C9ORF72 expansion carriers and the noncarriers. CSF TDP-43 levels were higher in ALS patients than in FTLD patients, and this finding was independent of the C9ORF72 expansion carrier status. Males had significantly higher TDP-43 levels than females (p = 0.008 in the total cohort). CSF TDP-43 does not seem to distinguish the C9ORF72 expansion carriers from noncarriers. However, higher CSF TDP-43 levels were detected in ALS than in FTLD, which might be an indicator of a more rapid progression of TDP-43 pathology in ALS.

  6. Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD

    PubMed Central

    Diaper, Danielle C.; Adachi, Yoshitsugu; Lazarou, Luke; Greenstein, Max; Simoes, Fabio A.; Di Domenico, Angelique; Solomon, Daniel A.; Lowe, Simon; Alsubaie, Rawan; Cheng, Daryl; Buckley, Stephen; Humphrey, Dickon M.; Shaw, Christopher E.; Hirth, Frank

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that are characterized by cytoplasmic aggregates and nuclear clearance of TAR DNA-binding protein 43 (TDP-43). Studies in Drosophila, zebrafish and mouse demonstrate that the neuronal dysfunction of TDP-43 is causally related to disease formation. However, TDP-43 aggregates are also observed in glia and muscle cells, which are equally affected in ALS and FTLD; yet, it is unclear whether glia- or muscle-specific dysfunction of TDP-43 contributes to pathogenesis. Here, we show that similar to its human homologue, Drosophila TDP-43, Tar DNA-binding protein homologue (TBPH), is expressed in glia and muscle cells. Muscle-specific knockdown of TBPH causes age-related motor abnormalities, whereas muscle-specific gain of function leads to sarcoplasmic aggregates and nuclear TBPH depletion, which is accompanied by behavioural deficits and premature lethality. TBPH dysfunction in glia cells causes age-related motor deficits and premature lethality. In addition, both loss and gain of Drosophila TDP-43 alter mRNA expression levels of the glutamate transporters Excitatory amino acid transporter 1 (EAAT1) and EAAT2. Taken together, our results demonstrate that both loss and gain of TDP-43 function in muscle and glial cells can lead to cytological and behavioural phenotypes in Drosophila that also characterize ALS and FTLD and identify the glutamate transporters EAAT1/2 as potential direct targets of TDP-43 function. These findings suggest that together with neuronal pathology, glial- and muscle-specific TDP-43 dysfunction may directly contribute to the aetiology and progression of TDP-43-related ALS and FTLD. PMID:23727833

  7. Opposing roles of p38 and JNK in a Drosophila model of TDP-43 proteinopathy reveal oxidative stress and innate immunity as pathogenic components of neurodegeneration

    PubMed Central

    Zhan, Lihong; Xie, Qijing; Tibbetts, Randal S.

    2015-01-01

    Pathological aggregation and mutation of the 43-kDa TAR DNA-binding protein (TDP-43) are strongly implicated in the pathogenesis amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 neurotoxicity has been extensively modeled in mice, zebrafish, Caenorhabditis elegans and Drosophila, where selective expression of TDP-43 in motoneurons led to paralysis and premature lethality. Through a genetic screen aimed to identify genetic modifiers of TDP-43, we found that the Drosophila dual leucine kinase Wallenda (Wnd) and its downstream kinases JNK and p38 influenced TDP-43 neurotoxicity. Reducing Wnd gene dosage or overexpressing its antagonist highwire partially rescued TDP-43-associated premature lethality. Downstream of Wnd, the JNK and p38 kinases played opposing roles in TDP-43-associated neurodegeneration. LOF alleles of the p38b gene as well as p38 inhibitors diminished TDP-43-associated premature lethality, whereas p38b GOF caused phenotypic worsening. In stark contrast, disruptive alleles of Basket (Bsk), the Drosophila homologue of JNK, exacerbated longevity shortening, whereas overexpression of Bsk extended lifespan. Among possible mechanisms, we found motoneuron-directed expression of TDP-43 elicited oxidative stress and innate immune gene activation that were exacerbated by p38 GOF and Bsk LOF, respectively. A key pathologic role for innate immunity in TDP-43-associated neurodegeneration was further supported by the finding that genetic suppression of the Toll/Dif and Imd/Relish inflammatory pathways dramatically extended lifespan of TDP-43 transgenic flies. We propose that oxidative stress and neuroinflammation are intrinsic components of TDP-43-associated neurodegeneration and that the balance between cytoprotective JNK and cytotoxic p38 signaling dictates phenotypic outcome to TDP-43 expression in Drosophila. PMID:25281658

  8. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure.

    PubMed

    Ding, Xuebing; Ma, Mingming; Teng, Junfang; Teng, Robert K F; Zhou, Shuang; Yin, Jingzheng; Fonkem, Ekokobe; Huang, Jason H; Wu, Erxi; Wang, Xuejing

    2015-09-15

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devastating neurodegenerative diseases, characterized by transactive response DNA-binding protein of 43 kDa (TDP-43) aggregates accumulation throughout the nervous system. Despite rapidly emerging evidence suggesting the hypothesis of 'prion-like propagation' of TDP-43 positive inclusion in the regional spread of ALS symptoms, whether and how TDP-43 aggregates spread between cells is not clear. Herein, we established a cerebrospinal fluid (CSF)-cultured cell model to dissect mechanisms governing TDP-43 aggregates formation and propagation. Remarkably, intracellular TDP-43 mislocalization and aggregates were induced in the human glioma U251 cells following exposure to ALS-FTD-CSF but not ALS-CSF and normal control (NC) -CSF for 21 days. The exosomes derived from ALS-FTD-CSF were enriched in TDP-43 C-terminal fragments (CTFs). Incubation of ALS-FTD-CSF induced the increase of mislocated TDP-43 positive exosomes in U251 cells. We further demonstrated that exposure to ALS-FTD-CSF induced the generations of tunneling nanotubes (TNTs)-like structure and exosomes at different stages, which mediated the propagation of TDP-43 aggregates in the cultured U251 cells. Moreover, immunoblotting analyses revealed that abnormal activations of apoptosis and autophagy were induced in U251 cells, following incubation of ALS-CSF and ALS-FTD-CSF. Taken together, our data provide direct evidence that ALS-FTD-CSF has prion-like transmissible properties. TNTs-like structure and exosomes supply the routes for the transfer of TDP-43 aggregates, and selective inhibition of their over-generations may interrupt the progression of TDP-43 proteinopathy.

  9. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis

    PubMed Central

    Chen, Han-Jou; Mitchell, Jacqueline C.; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L.; Scotter, Emma L.; Vance, Caroline A.; Cheetham, Michael E.

    2016-01-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  10. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis.

    PubMed

    Chen, Han-Jou; Mitchell, Jacqueline C; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L; Scotter, Emma L; Vance, Caroline A; Cheetham, Michael E; Shaw, Christopher E

    2016-05-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  11. Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS.

    PubMed

    Ke, Yazi D; van Hummel, Annika; Stevens, Claire H; Gladbach, Amadeus; Ippati, Stefania; Bi, Mian; Lee, Wei S; Krüger, Sarah; van der Hoven, Julia; Volkerling, Alexander; Bongers, Andre; Halliday, Glenda; Haass, Nikolas K; Kiernan, Matthew; Delerue, Fabien; Ittner, Lars M

    2015-11-01

    The nuclear transactive response DNA-binding protein 43 (TDP-43) undergoes relocalization to the cytoplasm with formation of cytoplasmic deposits in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Pathogenic mutations in the TDP-43-encoding TARDBP gene in familial ALS as well as non-mutant human TDP-43 have been utilized to model FTD/ALS in cell culture and animals, including mice. Here, we report novel A315T mutant TDP-43 transgenic mice, iTDP-43(A315T), with controlled neuronal over-expression. Constitutive expression of human TDP-43(A315T) resulted in pronounced early-onset and progressive neurodegeneration, which was associated with compromised motor performance, spatial memory and disinhibition. Muscle atrophy resulted in reduced grip strength. Cortical degeneration presented with pronounced astrocyte activation. Using differential protein extraction from iTDP-43(A315T) brains, we found cytoplasmic localization, fragmentation, phosphorylation and ubiquitination and insolubility of TDP-43. Surprisingly, suppression of human TDP-43(A315T) expression in mice with overt neurodegeneration for only 1 week was sufficient to significantly improve motor and behavioral deficits, and reduce astrogliosis. Our data suggest that functional deficits in iTDP-43(A315T) mice are at least in part a direct and transient effect of the presence of TDP-43(A315T). Furthermore, it illustrates the compensatory capacity of compromised neurons once transgenic TDP-43 is removed, with implications for future treatments.

  12. Cryptic exon incorporation occurs in Alzheimer's brain lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43.

    PubMed

    Sun, Mingkuan; Bell, William; LaClair, Katherine D; Ling, Jonathan P; Han, Heather; Kageyama, Yusuke; Pletnikova, Olga; Troncoso, Juan C; Wong, Philip C; Chen, Liam L

    2017-06-01

    Abnormal accumulation of TDP-43 into cytoplasmic or nuclear inclusions with accompanying nuclear clearance, a common pathology initially identified in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), has also been found in Alzheimer' disease (AD). TDP-43 serves as a splicing repressor of nonconserved cryptic exons and that such function is compromised in brains of ALS and FTD patients, suggesting that nuclear clearance of TDP-43 underlies its inability to repress cryptic exons. However, whether TDP-43 cytoplasmic aggregates are a prerequisite for the incorporation of cryptic exons is not known. Here, we assessed hippocampal tissues from 34 human postmortem brains including cases with confirmed diagnosis of AD neuropathologic changes along with age-matched controls. We found that cryptic exon incorporation occurred in all AD cases exhibiting TDP-43 pathology. Furthermore, incorporation of cryptic exons was observed in the hippocampus when TDP-43 inclusions was restricted only to the amygdala, the earliest stage of TDP-43 progression. Importantly, cryptic exon incorporation could be detected in AD brains lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43. These data supports the notion that the functional consequence of nuclear depletion of TDP-43 as determined by cryptic exon incorporation likely occurs as an early event of TDP-43 proteinopathy and may have greater contribution to the pathogenesis of AD than currently appreciated. Early detection and effective repression of cryptic exons in AD patients may offer important diagnostic and therapeutic implications for this devastating illness of the elderly.

  13. Monocytes of patients with amyotrophic lateral sclerosis linked to gene mutations display altered TDP-43 subcellular distribution.

    PubMed

    De Marco, G; Lomartire, A; Calvo, A; Risso, A; De Luca, E; Mostert, M; Mandrioli, J; Caponnetto, C; Borghero, G; Manera, U; Canosa, A; Moglia, C; Restagno, G; Fini, N; Tarella, C; Giordana, M T; Rinaudo, M T; Chiò, A

    2017-02-01

    Cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP-43-coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP-43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS-linked mutant genes. TDP-43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin-containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2). TDP-43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP-43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP-43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP-43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes. In ALS forms characterized by TDP-43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments. © 2016 British Neuropathological Society.

  14. Methylene Blue Protects against TDP-43 and FUS Neuronal Toxicity in C. elegans and D. rerio

    PubMed Central

    Vaccaro, Alexandra; Patten, Shunmoogum A.; Ciura, Sorana; Maios, Claudia; Therrien, Martine; Drapeau, Pierre; Kabashi, Edor; Parker, J. Alex

    2012-01-01

    The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress. PMID:22848727

  15. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease.

    PubMed

    Matej, Radoslav; Botond, Gergö; László, Lajos; Kopitar-Jerala, Natasa; Rusina, Robert; Budka, Herbert; Kovacs, Gabor G

    2010-09-01

    Sporadic motor neuron disease (MND) is characterized by progressive degeneration of motor neurons and intraneuronal cytoplasmic translocation and deposition of the nuclear protein TDP-43. There is a paucity of data on the subcellular mechanisms of the nuclear-cytoplasmic trafficking of TDP-43, particularly about the precise role of the endosomal-lysosomal system (ELS). In the present study, using a neuron-specific morphometric approach, we examined the expression of the early endosomal marker Rab5 and lysosomal cathepsins B, D, F, and L as well as PAS-stained structures in the anterior horn cells in 11 individuals affected by sporadic MND and 5 age-matched controls. This was compared with the expression of ubiquitin, p62 and TDP-43 and its phosphorylated form. The principal finding was the increased expression of the endosomal marker Rab5 and lysosomal cathepsin D, and of PAS-positive structures in motor neurons of MND cases. Furthermore, the area-portion of Rab5 immunoreactivity correlated well with the intracellular accumulation of ubiquitin, p62 and (phosphorylated) TDP-43. However, double immunolabelling and immunogold electron microscopy excluded colocalization of phosphorylated TDP-43 with the ELS. These data contrast with observations on neuronal cytopathology in Alzheimer's or prion diseases where the disease-specific proteins are processed within endosomes, and suggest a distinct role of the ELS in MND.

  16. Targeting TDP-43 phosphorylation by Casein Kinase-1δ inhibitors: a novel strategy for the treatment of frontotemporal dementia.

    PubMed

    Alquezar, Carolina; Salado, Irene G; de la Encarnación, Ana; Pérez, Daniel I; Moreno, Fermín; Gil, Carmen; de Munain, Adolfo López; Martínez, Ana; Martín-Requero, Ángeles

    2016-04-30

    Mutations in the progranulin gene (GRN) are the most common cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). TDP-43 pathology is characterized by the hyperphosphorylation of the protein at Serine 409/410 residues. Casein kinase-1δ (CK-1δ) was reported to phosphorylate TDP-43 directly. Previous works from our laboratory described the presence of CDK6/pRb-dependent cell cycle alterations, and cytosolic accumulation of TDP-43 protein in lymphoblast from FTLD-TDP patients carriers of a loss-of function mutation in GRN gene (c.709-1G > A). In this work, we have investigated the effects of two brain penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27) designed and synthetized in our laboratory on cell proliferation, TDP-43 phosphorylation and subcellular localization, as well as their effects on the known nuclear TDP-43 function repressing the expression of CDK6. We report here that both CK-1δ inhibitors (IGS-2.7 and IGS-3.27) normalized the proliferative activity of PGRN-deficient lymphoblasts by preventing the phosphorylation of TDP-43 fragments, its nucleo-cytosol translocation and the overactivation of the CDK6/pRb cascade. Moreover, ours results show neuroprotective effects of CK-1δ inhibitors in a neuronal cell model of induced TDP-43 phosphorylation. Our results suggest that modulating CK-1δ activity could be considered a novel therapeutic approach for the treatment of FTLD-TDP and other TDP-43 proteinopathies.

  17. On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia.

    PubMed

    Geser, F; Prvulovic, D; O'Dwyer, L; Hardiman, O; Bede, P; Bokde, A L W; Trojanowski, J Q; Hampel, H

    2011-12-01

    Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice

    PubMed Central

    Coughlan, Karen S.; Halang, Luise; Woods, Ina

    2016-01-01

    ABSTRACT Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077

  19. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice.

    PubMed

    Coughlan, Karen S; Halang, Luise; Woods, Ina; Prehn, Jochen H M

    2016-09-01

    Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43(A315T) mice. Similar to our recent results in SOD1(G93A) mice, TDP-43(A315T) mice fed a standard pellet diet showed increased 5' adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43(A315T) mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43(A315T) model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS.

  20. Drosophila lines with mutant and wild type human TDP-43 replacing the endogenous gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects

    PubMed Central

    Chang, Jer-Cherng

    2017-01-01

    Mutations in TDP-43 are associated with proteinaceous inclusions in neurons and are believed to be causative in neurodegenerative diseases such as frontotemporal dementia or amyotrophic lateral sclerosis. Here we describe a Drosophila system where we have engineered the genome to replace the endogenous TDP-43 orthologue with wild type or mutant human TDP-43(hTDP-43). In contrast to other models, these flies express both mutant and wild type hTDP-43 at similar levels to those of the endogenous gene and importantly, no age-related TDP-43 accumulation observed among all the transgenic fly lines. Immunoprecipitation of TDP-43 showed that flies with hTDP-43 mutations had increased levels of ubiquitination and phosphorylation of the hTDP-43 protein. Furthermore, histologically, flies expressing hTDP-43 M337V showed global, robust neuronal staining for phospho-TDP. All three lines: wild type hTDP-43, -G294A and -M337V were homozygous viable, with no defects in development, life span or behaviors observed. The primary behavioral defect was that flies expressing either hTDP-43 G294A or M337V showed a faster decline with age in negative geotaxis. Together, these observations implied that neurons could handle these TDP-43 mutations by phosphorylation- and ubiquitin-dependent proteasome systems, even in a background without the wild type TDP-43. Our findings suggest that these two specific TDP-43 mutations are not inherently toxic, but may require additional environmental or genetic factors to affect longevity or survival. PMID:28686708

  1. Drosophila lines with mutant and wild type human TDP-43 replacing the endogenous gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects.

    PubMed

    Chang, Jer-Cherng; Morton, David B

    2017-01-01

    Mutations in TDP-43 are associated with proteinaceous inclusions in neurons and are believed to be causative in neurodegenerative diseases such as frontotemporal dementia or amyotrophic lateral sclerosis. Here we describe a Drosophila system where we have engineered the genome to replace the endogenous TDP-43 orthologue with wild type or mutant human TDP-43(hTDP-43). In contrast to other models, these flies express both mutant and wild type hTDP-43 at similar levels to those of the endogenous gene and importantly, no age-related TDP-43 accumulation observed among all the transgenic fly lines. Immunoprecipitation of TDP-43 showed that flies with hTDP-43 mutations had increased levels of ubiquitination and phosphorylation of the hTDP-43 protein. Furthermore, histologically, flies expressing hTDP-43 M337V showed global, robust neuronal staining for phospho-TDP. All three lines: wild type hTDP-43, -G294A and -M337V were homozygous viable, with no defects in development, life span or behaviors observed. The primary behavioral defect was that flies expressing either hTDP-43 G294A or M337V showed a faster decline with age in negative geotaxis. Together, these observations implied that neurons could handle these TDP-43 mutations by phosphorylation- and ubiquitin-dependent proteasome systems, even in a background without the wild type TDP-43. Our findings suggest that these two specific TDP-43 mutations are not inherently toxic, but may require additional environmental or genetic factors to affect longevity or survival.

  2. TDP-43 loss-of-function causes neuronal loss due to defective steroid receptor-mediated gene program switching in Drosophila.

    PubMed

    Vanden Broeck, Lies; Naval-Sánchez, Marina; Adachi, Yoshitsugu; Diaper, Danielle; Dourlen, Pierre; Chapuis, Julien; Kleinberger, Gernot; Gistelinck, Marc; Van Broeckhoven, Christine; Lambert, Jean-Charles; Hirth, Frank; Aerts, Stein; Callaerts, Patrick; Dermaut, Bart

    2013-01-31

    TDP-43 proteinopathy is strongly implicated in the pathogenesis of amyotrophic lateral sclerosis and related neurodegenerative disorders. Whether TDP-43 neurotoxicity is caused by a novel toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased and decreased expression of TDP-43 (dTDP-43) in Drosophila. Although upregulation of dTDP-43 induced neuronal ubiquitin and dTDP-43-positive inclusions, both up- and downregulated dTDP-43 resulted in selective apoptosis of bursicon neurons and highly similar transcriptome alterations at the pupal-adult transition. Gene network analysis and genetic validation showed that both up- and downregulated dTDP-43 directly and dramatically increased the expression of the neuronal microtubule-associated protein Map205, resulting in cytoplasmic accumulations of the ecdysteroid receptor (EcR) and a failure to switch EcR-dependent gene programs from a pupal to adult pattern. We propose that dTDP-43 neurotoxicity is caused by a loss of its normal function.

  3. Conserved Acidic Amino Acid Residues in a Second RNA Recognition Motif Regulate Assembly and Function of TDP-43

    PubMed Central

    Fujiwara, Noriko; Ayaki, Takashi; Morimura, Toshifumi; Oono, Miki; Uchida, Tsukasa; Takahashi, Ryosuke; Ito, Hidefumi; Urushitani, Makoto

    2012-01-01

    Accumulating evidence suggests that pathogenic TAR DNA-binding protein (TDP)-43 fragments contain a partial RNA-recognition motif domain 2 (RRM2) in amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration. However, the molecular basis for how this domain links to the conformation and function of TDP-43 is unclear. Previous crystal analyses have documented that the RRM2-DNA complex dimerizes under acidic and high salt conditions, mediated by the intermolecular hydrogen bonds of Glu246-Ile249 and Asp247-Asp247. The aims of this study were to investigate the roles of Glu246 and Asp247 in the molecular assembly of RRM2 under physiological conditions, and to evaluate their potential use as markers for TDP-43 misfolding due to the aberrantly exposed dimer interface. Unexpectedly, gel filtration analyses showed that, regardless of DNA interaction, the RRM2 domain remained as a stable monomer in phosphate-buffered saline. Studies using substitution mutants revealed that Glu246 and, especially, Asp247 played a crucial role in preserving the functional RRM2 monomers. Substitution to glycine at Glu246 or Asp247 induced the formation of fibrillar oligomers of RRM2 accompanied by the loss of DNA-binding affinity, which also affected the conformation and the RNA splicing function of full-length TDP-43. A novel monoclonal antibody against peptides containing Asp247 was found to react with TDP-43 inclusions of ALS patients and mislocalized cytosolic TDP-43 in cultured cells, but not with nuclear wild-type TDP-43. Our findings indicate that Glu246 and Asp247 play pivotal roles in the proper conformation and function of TDP-43. In particular, Asp247 should be studied as a molecular target with an aberrant conformation related to TDP-43 proteinopathy. PMID:23300771

  4. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration

    PubMed Central

    Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Cleveland, Don W.

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration. PMID:20400460

  5. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements

    PubMed Central

    Misulovin, Ziva; Gause, Maria; Rickels, Ryan A; Shilatifard, Ali

    2016-01-01

    The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers. PMID:27662615

  6. TDP-43 and FUS en route from the nucleus to the cytoplasm.

    PubMed

    Ederle, Helena; Dormann, Dorothee

    2017-06-01

    Misfolded or mislocalized RNA-binding proteins (RBPs) and, consequently, altered mRNA processing, can cause neuronal dysfunction, eventually leading to neurodegeneration. Two prominent examples are the RBPs TAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS), which form pathological messenger ribonucleoprotein aggregates in patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating neurodegenerative disorders. Here, we review the multiple functions of TDP-43 and FUS in mRNA processing, both in the nucleus and in the cytoplasm. We discuss how TDP-43 and FUS may exit the nucleus and how defects in both nuclear and cytosolic mRNA processing events, and possibly nuclear export defects, may contribute to neurodegeneration and ALS/FTD pathogenesis. © 2017 Federation of European Biochemical Societies.

  7. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.

    PubMed

    Polymenidou, Magdalini; Lagier-Tourenne, Clotilde; Hutt, Kasey R; Huelga, Stephanie C; Moran, Jacqueline; Liang, Tiffany Y; Ling, Shuo-Chien; Sun, Eveline; Wancewicz, Edward; Mazur, Curt; Kordasiewicz, Holly; Sedaghat, Yalda; Donohue, John Paul; Shiue, Lily; Bennett, C Frank; Yeo, Gene W; Cleveland, Don W

    2011-04-01

    We used cross-linking and immunoprecipitation coupled with high-throughput sequencing to identify binding sites in 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein that, when mutated, causes amyotrophic lateral sclerosis. Massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs were changed (including Fus (Tls), progranulin and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events were detected (including in sortilin, the receptor for progranulin) following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels were most depleted by reduction in TDP-43 were derived from genes with very long introns and that encode proteins involved in synaptic activity. Lastly, we found that TDP-43 autoregulates its synthesis, in part by directly binding and enhancing splicing of an intron in the 3' untranslated region of its own transcript, thereby triggering nonsense-mediated RNA degradation.

  8. TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia.

    PubMed

    James, Bryan D; Wilson, Robert S; Boyle, Patricia A; Trojanowski, John Q; Bennett, David A; Schneider, Julie A

    2016-09-30

    Hyperphosphorylated transactive response DNA-binding protein 43 (TDP-43, encoded by TARDBP) proteinopathy has recently been described in ageing and in association with cognitive impairment, especially in the context of Alzheimer's disease pathology. To explore the role of mixed Alzheimer's disease and TDP-43 pathologies in clinical Alzheimer's-type dementia, we performed a comprehensive investigation of TDP-43, mixed pathologies, and clinical Alzheimer's-type dementia in a large cohort of community-dwelling older subjects. We tested the hypotheses that TDP-43 with Alzheimer's disease pathology is a common mixed pathology; is related to increased likelihood of expressing clinical Alzheimer's-type dementia; and that TDP-43 pathologic stage is an important determinant of clinical Alzheimer's-type dementia. Data came from 946 older adults with (n = 398) and without dementia (n = 548) from the Rush Memory and Aging Project and Religious Orders Study. TDP-43 proteinopathy (cytoplasmic inclusions) was present in 496 (52%) subjects, and the pattern of deposition was classified as stage 0 (none; 48%), stage 1 (amygdala; 18%), stage 2 (extension to hippocampus/entorhinal; 21%), or stage 3 (extension to neocortex; 14%). TDP-43 pathology combined with a pathologic diagnosis of Alzheimer's disease was a common mixed pathology (37% of all participants), and the proportion of subjects with clinical Alzheimer's-type dementia formerly labelled 'pure pathologic diagnosis of Alzheimer's disease' was halved when TDP-43 was considered. In logistic regression models adjusted for age, sex, and education, TDP-43 pathology was associated with clinical Alzheimer's-type dementia (odds ratio = 1.51, 95% confidence interval = 1.11, 2.05) independent of pathological Alzheimer's disease (odds ratio = 4.30, 95% confidence interval = 3.08, 6.01) or other pathologies (infarcts, arteriolosclerosis, Lewy bodies, and hippocampal sclerosis). Mixed Alzheimer's disease and TDP-43 pathologies were

  9. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury.

    PubMed

    Moisse, Katie; Mepham, Jennifer; Volkening, Kathryn; Welch, Ian; Hill, Tracy; Strong, Michael J

    2009-11-03

    TAR DNA binding protein (TDP-43) mislocalization has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). We have recently reported that TDP-43 and PGRN expression is altered in response to axotomy in C57BL6 mice and that normal expression is restored following recovery. We have performed axotomies in two different presymptomatic models of motor neuron degeneration, low molecular weight neurofilament knockout (NFL(-/-)) mice and mutant SOD1(G93A) transgenic (mtSOD1(G93A)) mice aged 6 weeks, and observed TDP-43 and PGRN expression patterns in axotomized spinal motor neurons over 28 days. In contrast to both C57BL6 mice and mtSOD1(G93A) mice, behavioural deficits in NFL(-/-) mice were sustained. We did not observe differences in TDP-43 or PGRN expression between C57BL6 mice and mtSOD1(G93A) mice throughout the observation period. However, compared to C57BL6 mice and mtSOD1(G93A) mice, NFL(-/-) mice exhibited late upregulation of cytosolic TDP-43 expression and persistent downregulation of neuronal PGRN expression accompanied by caspase 3 activation on post-injury day 28. By post-injury day 42, no cytosolic TDP-43-positive neurons remained in NFL(-/-) mice, suggesting that they had undergone apoptotic cell death. These findings suggest that whereas TDP-43 expression is normally upregulated transiently following axotomy, in the absence of NFL this response is delayed and associated with caspase 3 activation and neuronal death. These results further support that TDP-43 is involved in neurofilament mRNA metabolism and transport, and provide insight into the pathogenesis of motor neuron death in ALS in which NFL mRNA levels are selectively suppressed.

  10. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  11. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice

    PubMed Central

    Alfieri, Julio A.; Silva, Pablo R.; Igaz, Lionel M.

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies. PMID:28066234

  12. Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress.

    PubMed

    Moujalled, Diane; James, Janine L; Parker, Sarah J; Lidgerwood, Grace E; Duncan, Clare; Meyerowitz, Jodi; Nonaka, Takashi; Hasegawa, Masato; Kanninen, Katja M; Grubman, Alexandra; Liddell, Jeffrey R; Crouch, Peter J; White, Anthony R

    2013-01-01

    Abnormal processing of TAR DNA binding protein 43 (TDP-43) has been identified as a major factor in neuronal degeneration during amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). It is unclear how changes to TDP-43, including nuclear to cytosolic translocation and subsequent accumulation, are controlled in these diseases. TDP-43 is a member of the heterogeneous ribonucleoprotein (hnRNP) RNA binding protein family and is known to associate with cytosolic RNA stress granule proteins in ALS and FTLD. hnRNP trafficking and accumulation is controlled by the action of specific kinases including members of the mitogen-activated protein kinase (MAPK) pathway. However, little is known about how kinase pathways control TDP-43 movement and accumulation. In this study, we used an in vitro model of TDP-43-positve stress granule formation to screen for the effect of kinase inhibitors on TDP-43 accumulation. We found that while a number of kinase inhibitors, particularly of the MAPK pathways modulated both TDP-43 and the global stress granule marker, human antigen R (HuR), multiple inhibitors were more specific to TDP-43 accumulation, including inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3 (GSK3). Close correlation was observed between effects of these inhibitors on TDP-43, hnRNP K and TIAR, but often with different effects on HuR accumulation. This may indicate a potential interaction between TDP-43, hnRNP K and TIAR. CDK inhibitors were also found to reverse pre-formed TDP-43-positive stress granules and both CDK and GSK3 inhibitors abrogated the accumulation of C-terminal TDP-43 (219-414) in transfected cells. Further studies are required to confirm the specific kinases involved and whether their action is through phosphorylation of the TDP-43 binding partner hnRNP K. This knowledge provides a valuable insight into the mechanisms controlling abnormal cytoplasmic TDP-43 accumulation and may herald new opportunities

  13. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons

    PubMed Central

    Takei, Hidehiro; Van Eldik, Linda J.; Schmitt, Frederick A.; Jicha, Gregory A.; Powell, Suzanne Z.; Nelson, Peter T.

    2016-01-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). PMID:26971127

  14. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T

    2016-05-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD). © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  15. A molecular mechanism realizing sequence-specific recognition of nucleic acids by TDP-43

    PubMed Central

    Furukawa, Yoshiaki; Suzuki, Yoh; Fukuoka, Mami; Nagasawa, Kenichi; Nakagome, Kenta; Shimizu, Hideaki; Mukaiyama, Atsushi; Akiyama, Shuji

    2016-01-01

    TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein containing two consecutive RNA recognition motifs (RRM1 and RRM2) in tandem. Functional abnormality of TDP-43 has been proposed to cause neurodegeneration, but it remains obscure how the physiological functions of this protein are regulated. Here, we show distinct roles of RRM1 and RRM2 in the sequence-specific substrate recognition of TDP-43. RRM1 was found to bind a wide spectrum of ssDNA sequences, while no binding was observed between RRM2 and ssDNA. When two RRMs are fused in tandem as in native TDP-43, the fused construct almost exclusively binds ssDNA with a TG-repeat sequence. In contrast, such sequence-specificity was not observed in a simple mixture of RRM1 and RRM2. We thus propose that the spatial arrangement of multiple RRMs in DNA/RNA binding proteins provides steric effects on the substrate-binding site and thereby controls the specificity of its substrate nucleotide sequences. PMID:26838063

  16. TDP-1/TDP-43 Regulates Stress Signaling and Age-Dependent Proteotoxicity in Caenorhabditis elegans

    PubMed Central

    Vaccaro, Alexandra; Tauffenberger, Arnaud; Ash, Peter E. A.; Carlomagno, Yari; Petrucelli, Leonard; Parker, J. Alex

    2012-01-01

    TDP-43 is a multifunctional nucleic acid binding protein linked to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia. To learn more about the normal biological and abnormal pathological role of this protein, we turned to Caenorhabditis elegans and its orthologue TDP-1. We report that TDP-1 functions in the Insulin/IGF pathway to regulate longevity and the oxidative stress response downstream from the forkhead transcription factor DAF-16/FOXO3a. However, although tdp-1 mutants are stress-sensitive, chronic upregulation of tdp-1 expression is toxic and decreases lifespan. ALS–associated mutations in TDP-43 or the related RNA binding protein FUS activate the unfolded protein response and generate oxidative stress leading to the daf-16–dependent upregulation of tdp-1 expression with negative effects on neuronal function and lifespan. Consistently, deletion of endogenous tdp-1 rescues mutant TDP-43 and FUS proteotoxicity in C. elegans. These results suggest that chronic induction of wild-type TDP-1/TDP-43 by cellular stress may propagate neurodegeneration and decrease lifespan. PMID:22792076

  17. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis

    SciTech Connect

    Arai, Tetsuaki . E-mail: arai@prit.go.jp; Hasegawa, Masato . E-mail: masato@prit.go.jp; Akiyama, Haruhiko; Ikeda, Kenji; Nonaka, Takashi; Mori, Hiroshi; Mann, David; Tsuchiya, Kuniaki; Yoshida, Mari; Hashizume, Yoshio; Oda, Tatsuro

    2006-12-22

    Ubiquitin-positive tau-negative neuronal cytoplasmic inclusions and dystrophic neurites are common pathological features in frontotemporal lobar degeneration (FTLD) with or without symptoms of motor neuron disease and in amyotrophic lateral sclerosis (ALS). Using biochemical and immunohistochemical analyses, we have identified a TAR DNA-binding protein of 43 kDa (TDP-43), a nuclear factor that functions in regulating transcription and alternative splicing, as a component of these structures in FTLD. Furthermore, skein-like inclusions, neuronal intranuclear inclusions, and glial inclusions in the spinal cord of ALS patients are also positive for TDP-43. Dephosphorylation treatment of the sarkosyl insoluble fraction has shown that abnormal phosphorylation takes place in accumulated TDP-43. The common occurrence of intracellular accumulations of TDP-43 supports the hypothesis that these disorders represent a clinicopathological entity of a single disease, and suggests that they can be newly classified as a proteinopathy of TDP-43.

  18. TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1

    PubMed Central

    He, Fang; Krans, Amy; Freibaum, Brian D.; Taylor, J. Paul; Todd, Peter K.

    2014-01-01

    Nucleotide repeat expansions can elicit neurodegeneration as RNA by sequestering specific RNA-binding proteins, preventing them from performing their normal functions. Conversely, mutations in RNA-binding proteins can trigger neurodegeneration at least partly by altering RNA metabolism. In Fragile X-associated tremor/ataxia syndrome (FXTAS), a CGG repeat expansion in the 5′UTR of the fragile X gene (FMR1) leads to progressive neurodegeneration in patients and CGG repeats in isolation elicit toxicity in Drosophila and other animal models. Here, we identify the amyotrophic lateral sclerosis (ALS)-associated RNA-binding protein TAR DNA-binding protein (TDP-43) as a suppressor of CGG repeat-induced toxicity in a Drosophila model of FXTAS. The rescue appears specific to TDP-43, as co-expression of another ALS-associated RNA-binding protein, FUS, exacerbates the toxic effects of CGG repeats. Suppression of CGG RNA toxicity was abrogated by disease-associated mutations in TDP-43. TDP-43 does not co-localize with CGG RNA foci and its ability to bind RNA is not required for rescue. TDP-43-dependent rescue does, however, require fly hnRNP A2/B1 homologues Hrb87F and Hrb98DE. Deletions in the C-terminal domain of TDP-43 that preclude interactions with hnRNP A2/B1 abolish TDP-43-dependent rescue of CGG repeat toxicity. In contrast, suppression of CGG repeat toxicity by hnRNP A2/B1 is not affected by RNAi-mediated knockdown of the fly TDP-43 orthologue, TBPH. Lastly, TDP-43 suppresses CGG repeat-triggered mis-splicing of an hnRNP A2/B1-targeted transcript. These data support a model in which TDP-43 suppresses CGG-mediated toxicity through interactions with hnRNP A2/B1 and suggest a convergence of pathogenic cascades between repeat expansion disorders and RNA-binding proteins implicated in neurodegenerative disease. PMID:24920338

  19. TDP-43 Toxicity Proceeds via Calcium Dysregulation and Necrosis in Aging Caenorhabditis elegans Motor Neurons

    PubMed Central

    Aggad, Dina; Vérièpe, Julie; Tauffenberger, Arnaud

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with either sporadic or genetic origins characterized by the progressive degeneration of motor neurons. At the cellular level, ALS neurons show protein misfolding and aggregation phenotypes. Transactive response DNA-binding protein 43 (TDP-43) has recently been shown to be associated with ALS, but the early pathophysiological deficits causing impairment in motor function are unknown. Here we used Caenorhabditis elegans expressing mutant TDP-43A315T in motor neurons and explored the potential influences of calcium (Ca2+). Using chemical and genetic approaches to manipulate the release of endoplasmic reticulum (ER) Ca2+stores, we observed that the reduction of intracellular Ca2+ ([Ca2+]i) rescued age-dependent paralysis and prevented the neurodegeneration of GABAergic motor neurons. Our data implicate elevated [Ca2+]i as a driver of TDP-43-mediated neuronal toxicity. Furthermore, we discovered that neuronal degeneration is independent of the executioner caspase CED-3, but instead requires the activity of the Ca2+-regulated calpain protease TRA-3, and the aspartyl protease ASP-4. Finally, chemically blocking protease activity protected against mutant TDP-43A315T-associated neuronal toxicity. This work both underscores the potential of the C. elegans system to identify key targets for therapeutic intervention and suggests that a focused effort to regulate ER Ca2+ release and necrosis-like degeneration consequent to neuronal injury may be of clinical importance. PMID:25186754

  20. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia.

    PubMed

    Leal-Lasarte, María M; Franco, Jaime M; Labrador-Garrido, Adahir; Pozo, David; Roodveldt, Cintia

    2017-07-01

    Dysregulated microglial responses are central in neurodegenerative proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar disease (FTLD). Pathologic TDP-43, which is typically found in intracellular inclusions, is a misfolding protein with emerging roles in ALS and FTLD. Recently, TDP-43 species have been found in extracellular fluids of patients; however, the overall implications of TDP-43-mediated signaling linked to neuroinflammation are poorly understood. Our work-the first, to our knowledge, to focus on innate immunity responses to TDP-43 aggregates-shows that such species are internalized by microglia and cause abnormal mobilization of endogenous TDP-43. Exposure to TDP-43 aggregates elicited not only IL-1β, but also NLRP3-dependent and noncanonical IL-18 processing. Moreover, we report a link between TDP-43 and neuronal loss via the apoptosis-independent emerging roles of caspase-3 in neurotoxic inflammation. Our results further support the view of noncell autonomous neurodegenerative mechanisms in ALS. Remarkably, we demonstrate that TDP-43 aggregates bind to and colocalize with MAPK/MAK/MRK overlapping kinase (MOK) and show that its phosphorylation status is disrupted. Finally, we show that this TDP-43-caused activation state can be altered by exogenous Hsp27 and Hsp70 chaperones. Our study provides new insight into the immune phenotype, mechanisms, and signaling pathways that operate in microglial neurotoxic activation in ALS.-Leal-Lasarte, M. M., Franco, J. M., Labrador-Garrido, A., Pozo, D., Roodveldt, C. Extracellular TDP-43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspase-3/IL-18 signaling in microglia. © FASEB.

  1. Pathological and immunoblot analysis of phosphorylated TDP-43 in sporadic amyotrophic lateral sclerosis with pallido-nigro-luysian degeneration.

    PubMed

    Uchino, Akiko; Ogino, Mieko; Takahashi-Fujigasaki, Junko; Oonuma, Saori; Kanazawa, Naomi; Kajita, Sabine; Ichinoe, Masaaki; Hasegawa, Masato; Nishiyama, Kazutoshi; Murayama, Shigeo

    2017-09-14

    Transactivation response DNA-binding protein 43 kDa (TDP-43) is a key protein of sporadic amyotrophic lateral sclerosis (ALS), and phosphorylated form of TDP-43 (p-TDP-43) is a major pathological protein that accumulates in sporadic ALS. p-TDP-43 is found not only in primary motor neurons, but often propagates to non-motor systems as well. However, pallido-nigro-luysian (PNL) degeneration (PNLD) is rarely associated with ALS. We describe here a 68-year-old ALS patient presenting severe PNLD. He had difficulty walking due to poor movement of his right leg, and was diagnosed as having Parkinson's disease because of akinesia. About 2 years after onset, weakness of his left hand and leg led to a diagnosis of ALS. Tube feeding and non-invasive positive-pressure ventilation were initiated. He died of respiratory failure at the age of 71. There was no family history of either neurological disorders or dementia. Neuropathological examination revealed severe loss of neurons and gliosis in the PNL system in addition to the upper and lower motor neuron system. p-TDP-43 pathology was widespread in the PNL and motor neuron systems and also in the amygdala and hippocampus where no significant gliosis or neuronal loss was detected. Synuclein pathology was not observed in the investigated areas. Immunoblot analysis of p-TDP-43 C-terminal fragments showed a type B band pattern consistent with sporadic ALS. This is the first case of ALS with PNLD, in which p-TDP-43 distribution was widespread in the hippocampal formation (Nishihira type 2 and Brettschneider stage 4), and the type B immunoblot pattern was confirmed. Our case indicated that the PNL system can be involved in the disease process in sporadic ALS cases, although rarely. We also reviewed previous autopsy cases of ALS with PNLD to clarify the clinicopathological features. © 2017 Japanese Society of Neuropathology.

  2. HIPPOCAMPAL SCLEROSIS, HIPPOCAMPAL NEURON LOSS PATTERNS AND TDP-43 IN THE AGED POPULATION.

    PubMed

    Hokkanen, Suvi R K; Hunter, Sally; Polvikoski, Tuomo M; Keage, Hannah A D; Minett, Thais; Matthews, Fiona E; Brayne, Carol

    2017-08-18

    Hippocampal neuron loss is a common neuropathological feature in old age with various underlying aetiologies. Hippocampal sclerosis of aging (HS-Aging) is neuropathologically characterized by severe CA1 neuronal loss and frequent presence of transactive response DNA-binding protein of 43kDa (TDP-43) aggregations. Its aetiology is unclear and currently no standardized approaches to measure HS-Aging exist. We developed a semi-quantitative protocol, which captures various hippocampal neuron loss patterns, and compared their occurrence in the context of HS-Aging, TDP-43, vascular and tau pathology in 672 brains (TDP-43 staining n=642/672, 96%) donated for the population-based Cambridge City over-75s Cohort and the Cognitive Function and Ageing Study. HS-Aging was first evaluated independently from the protocol using the most common criteria defined in literature, and then described in detail through examination of neuron loss patterns and associated pathologies. 34 (5%) cases were identified, with a maximum of five pyramidal neurons in each of over half CA1 fields-of-view (x200 magnification), no vascular damage, no neuron loss in CA2-CA4, but consistent TDP-43 neuronal solid inclusions and neurites. We also report focal CA1 neuron loss with vascular pathology to affect predominantly CA1 bordering CA2 (Fisher's exact, p=0.009), whereas neuron loss in the subicular end of CA1 was associated with TDP-43 inclusions (Fisher's exact, p<0.001) and high Braak stage (Fisher's exact, p=0.001). Hippocampal neuron loss in CA4-CA2 was not associated with TDP-43. We conclude that hippocampal neuron loss patterns are associated with different aetiologies within CA1, and propose that these patterns can be used to form objective criteria for HS-Aging diagnosis. Finally, based on our results we hypothesize that neuron loss leading to HS-Aging starts from the subicular end of CA1 when it is associated with TDP-43 pathology, and that this neurodegenerative process is likely to be

  3. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Schulz, Paul E; Appel, Stanley H; Powell, Suzanne Z

    2014-12-24

    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized clinically by motor symptoms including limb weakness, dysarthria, dysphagia, and respiratory compromise, and pathologically by inclusions of transactive response DNA-binding protein 43 kDa (TDP-43). Patients with amyotrophic lateral sclerosis also may demonstrate non-motor symptoms and signs of autonomic and energy dysfunction as hypermetabolism and weight loss that suggest the possibility of pathology in the forebrain, including hypothalamus. However, this region has received little investigation in amyotrophic lateral sclerosis. In this study, the frequency, topography, and clinical associations of TDP-43 inclusion pathology in the basal forebrain and hypothalamus were examined in 33 patients with amyotrophic lateral sclerosis: 25 men and 8 women; mean age at death of 62.7 years, median disease duration of 3.1 years (range of 1.3 to 9.8 years). TDP-43 pathology was present in 11 patients (33.3%), including components in both basal forebrain (n=10) and hypothalamus (n=7). This pathology was associated with non-motor system TDP-43 pathology (Χ2=17.5, p=0.00003) and bulbar symptoms at onset (Χ2=4.04, p=0.044), but not age or disease duration. Furthermore, TDP-43 pathology in the lateral hypothalamic area was associated with reduced body mass index (W=11, p=0.023). This is the first systematic demonstration of pathologic involvement of the basal forebrain and hypothalamus in amyotrophic lateral sclerosis. Furthermore, the findings suggest that involvement of the basal forebrain and hypothalamus has significant phenotypic associations in amyotrophic lateral sclerosis, including site of symptom onset, as well as deficits in energy metabolism with loss of body mass index.

  4. Activation of ER Stress and Autophagy Induced by TDP-43 A315T as Pathogenic Mechanism and the Corresponding Histological Changes in Skin as Potential Biomarker for ALS with the Mutation.

    PubMed

    Wang, Xuejing; Zhou, Shuang; Ding, Xuebing; Ma, Mingming; Zhang, Jiewen; Zhou, Yue; Wu, Erxi; Teng, Junfang

    2015-01-01

    TAR DNA binding protein 43 (TDP-43) A315T mutation (TDP-43(A315T)) has been found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) as a disease causing mutation with enhanced protein aggregation, formation of protease-resistant fragments, and neurotoxicity. However, the molecular mechanisms for its pathogenic effects are largely unknown. In this study, we demonstrate that TDP-43(A315T) enhanced neuronal toxicity via activating endoplasmic reticulum (ER) stress-mediated apoptosis in SH-SY5Y cells. Moreover, autophagy was activated by overexpression of TDP-43(A315T) in a self-defensive manner to decrease neuronal toxicity. Inhibition of autophagy attenuates TDP-43(A315T) induced neuronal cell death. Furthermore, the expression levels of TDP-43, ER chaperone 78 kDa glucose-regulated protein (GRP-78), and autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3) in the skin tissues from ALS patients with TDP-43(A315T) mutation were markedly higher than those from the healthy control. Thus, our findings provide new molecular evidence for TDP-43(A315T) neuropathology. In addition, the pathological change in the skin tissues of the patients with TDP-43(A315T) mutation can be used as a quick diagnostic biomarker.

  5. Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells.

    PubMed

    Bozzo, F; Salvatori, I; Iacovelli, F; Mirra, A; Rossi, S; Cozzolino, M; Falconi, M; Valle, C; Carrì, M T

    2016-10-01

    TDP-43 is aggregated in patients with ALS and FLTD through mechanisms still incompletely understood. Since aggregation in the cytosol is most probably responsible for the delocalization and loss of proper RNA-binding function of TDP-43 in the nucleus, interception of the formation of aggregates may represent a useful therapeutic option. In this study, we investigated the relative importance of the N-terminal and C-terminal moieties of TDP-43 in the aggregation process and the weight of each of the six cysteine residues in determining unfolding and aggregation of the different domains. We report that cytoplasmic inclusions formed by WT and mutant TDP-43 in motor neuron-like NSC34 cells are redox-sensitive only in part, and contain at least two components, i.e. oligomers and large aggregates, that are made of different molecular species. The two N-terminal cysteine residues contribute to the seeding for the first step in oligomerization, which is then accomplished by mechanisms depending on the four cysteines in the RNA-recognition motifs. Cysteine-independent large aggregates contain unfolded isoforms of the protein, held together by unspecific hydrophobic interactions. Interestingly, truncated isoforms are entrapped exclusively in oligomers. Ab initio modeling of TDP-43 structure, molecular dynamics and molecular docking analysis indicate a differential accessibility of cysteine residues that contributes to aggregation propensity. We propose a model of TDP-43 aggregation involving cysteine-dependent and cysteine-independent stages that may constitute a starting point to devise strategies counteracting the formation of inclusions in TDP-43 proteinopathies. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons.

    PubMed

    Gopal, Pallavi P; Nirschl, Jeffrey J; Klinman, Eva; Holzbaur, Erika L F

    2017-03-21

    Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid-liquid phase separation and liquid-like non-membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation.

  7. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis.

    PubMed

    Jackson, K L; Dayton, R D; Orchard, E A; Ju, S; Ringe, D; Petsko, G A; Maquat, L E; Klein, R L

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43 kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms.

  8. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons

    PubMed Central

    Gopal, Pallavi P.; Nirschl, Jeffrey J.; Holzbaur, Erika L. F.

    2017-01-01

    Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid–liquid phase separation and liquid-like non–membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation. PMID:28265061

  9. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis

    PubMed Central

    Jackson, KL; Dayton, RD; Orchard, EA; Ju, S; Ringe, D; Petsko, GA; Maquat, LE; Klein, RL

    2016-01-01

    Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43 kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms. PMID:25354681

  10. Development of a novel nonradiometric assay for nucleic acid binding to TDP-43 suitable for high-throughput screening using AlphaScreen technology.

    PubMed

    Cassel, Joel A; Blass, Benjamin E; Reitz, Allen B; Pawlyk, Aaron C

    2010-10-01

    TAR DNA binding protein 43 (TDP-43) is a nucleic acid binding protein that is associated with the pathology of cystic fibrosis and neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. We have developed a robust, quantitative, nonradiometric high-throughput assay measuring oligonucleotide binding to TDP-43 using AlphaScreen technology. Biotinylated single-stranded TAR DNA (bt-TAR-32) and 6 TG repeats (bt-TG6) bound with high affinity to TDP-43, with K(D) values of 0.75 nM and 0.63 nM, respectively. Both oligonucleotides exhibited slow dissociation rates, with half-lives of 750 min for bt-TAR-32 and 150 min for bt-TG6. The affinities of unlabeled oligonucleotides, as determined by displacement of either bt-TAR-32 or bt-TG6, were consistent with previous reports of nucleic acid interactions with TDP-43, where increasing TG or UG repeats yield greater affinity. A diversity library of 7360 compounds was screened for inhibition of TDP-43 binding to bt-TAR-32, and a series of compounds was discovered with nascent SAR and IC(50) values ranging from 100 nM to 10 µM. These compounds may prove to be useful biochemical tools to elucidate the function of TDP-43 and may lead to novel therapeutics for indications where the TDP-43 nucleic acid interaction is causal to the associated pathology.

  11. Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis.

    PubMed

    Braak, Heiko; Ludolph, Albert C; Neumann, Manuela; Ravits, John; Del Tredici, Kelly

    2017-01-01

    Two nerve cells types, Betz cells in layer Vb of the primary motor neocortex and α-motoneurons of the lower brainstem and spinal cord, become involved at the beginning of the pathological cascade underlying sporadic amyotrophic lateral sclerosis (sALS). In both neuronal types, the cell nuclei forfeit their normal (non-phosphorylated) expression of the 43-kDa transactive response DNA-binding protein (TDP-43). Here, we present initial evidence that in α-motoneurons the loss of normal nuclear TDP-43 expression is followed by the formation of phosphorylated TDP-43 aggregates (pTDP-43) within the cytoplasm, whereas in Betz cells, by contrast, the loss of normal nuclear TDP-43 expression remains mostly unaccompanied by the development of cytoplasmic aggregations. We discuss some implications of this phenomenon of nuclear clearing in the absence of cytoplasmic inclusions, namely, abnormal but soluble (and, thus, probably toxic) cytoplasmic TDP-43 could enter the axoplasm of Betz cells, and following its transmission to the corresponding α-motoneurons in the lower brainstem and spinal cord, possibly contribute in recipient neurons to the dysregulation of the normal nuclear protein. Because the cellular mechanisms that possibly inhibit the aggregation of TDP-43 in the cytoplasm of involved Betz cells are unknown, insight into such mechanisms could disclose a pathway by which the development of aggregates in this cell population could be accelerated, thereby opening an avenue for a causally based therapy.

  12. Tdp-43 cryptic exons are highly variable between cell types.

    PubMed

    Jeong, Yun Ha; Ling, Jonathan P; Lin, Sophie Z; Donde, Aneesh N; Braunstein, Kerstin E; Majounie, Elisa; Traynor, Bryan J; LaClair, Katherine D; Lloyd, Thomas E; Wong, Philip C

    2017-02-02

    TDP-43 proteinopathy is a prominent pathological feature that occurs in a number of human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and inclusion body myositis (IBM). Our recent finding that TDP-43 represses nonconserved cryptic exons led us to ask whether cell type-specific cryptic exons could exist to impact unique molecular pathways in brain or muscle. In the present work, we investigated TDP-43's function in various mouse tissues to model disease pathogenesis. We generated mice to conditionally delete TDP-43 in excitatory neurons or skeletal myocytes and identified the cell type-specific cryptic exons associated with TDP-43 loss of function. Comparative analysis of nonconserved cryptic exons in various mouse cell types revealed that only some cryptic exons were common amongst stem cells, neurons, and myocytes; the majority of these nonconserved cryptic exons were cell type-specific. Our results suggest that in human disease, TDP-43 loss of function may impair cell type-specific pathways.

  13. TDP-43 upregulation mediated by the NLRP3 inflammasome induces cognitive impairment in 2 2',4,4'-tetrabromodiphenyl ether (BDE-47)-treated mice.

    PubMed

    Zhuang, Juan; Wen, Xin; Zhang, Yan-Qiu; Shan, Qun; Zhang, Zi-Feng; Zheng, Gui-Hong; Fan, Shao-Hua; Li, Meng-Qiu; Wu, Dong-Mei; Hu, Bin; Lu, Jun; Zheng, Yuan-Lin

    2017-10-01

    It is now commonly known that exposure to polybrominated diphenyl ethers (PBDEs) may cause neurotoxicity and cognitive deficits in children as well as adults, but the underlying mechanisms are still not clear. In the present study, we aimed to elucidate the potential underlying mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-induced neurotoxicity and cognitive impairment. Our results showed that BDE-47-treated mice exhibited impaired cognition and robust upregulation of nuclear TDP-43 in the hippocampus. Hippocampus-specific TDP-43 knockdown attenuated hippocampal apoptosis, restored synaptic protein levels and thus improved cognitive dysfunction in BDE-47-treated mice. Furthermore, our data demonstrated that NLRP3 inflammasome activation played a distinct role in the upregulation of nuclear TDP-43 by downregulating Parkin in the hippocampus of BDE-47-treated mice. Knocking down NLRP3 in the hippocampus or inhibiting caspase 1 activity in BDE-47-treated mice effectively increased Parkin expression in the hippocampus, which decreased the levels of nuclear TDP-43 and ultimately abrogated TDP-43-induced neurotoxic effects. Taken together, our data indicate that TDP-43 upregulation mediated by NLRP3 inflammasome activation via Parkin downregulation in the hippocampus induces cognitive decline in BDE-47-treated mice, and suggest that inhibition of NLRP3 or TDP-43 may be a potential strategy for the prevention or treatment of cognitive impairment in BDE-47-induced neurotoxicity and brain diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD.

    PubMed

    Khosravi, Bahram; Hartmann, Hannelore; May, Stephanie; Möhl, Christoph; Ederle, Helena; Michaelsen, Meike; Schludi, Martin H; Dormann, Dorothee; Edbauer, Dieter

    2016-12-30

    A repeat expansion in the non-coding region of C9orf72 gene is the most common mutation causing frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Sense and antisense transcripts are translated into aggregating dipeptide repeat (DPR) proteins in all reading frames (poly-GA,-GP,-GR,-PA and -PR) through an unconventional mechanism. How these changes contribute to cytoplasmic mislocalization and aggregation of TDP-43 and thereby ultimately lead to neuron loss remains unclear. The repeat RNA itself and poly-GR/PR have been linked to impaired nucleocytoplasmic transport. Here, we show that compact cytoplasmic poly-GA aggregates impair nuclear import of a reporter containing the TDP-43 nuclear localization (NLS) signal. However, a reporter containing a non-classical PY-NLS was not affected. Moreover, poly-GA expression prevents TNFα induced nuclear translocation of p65 suggesting that poly-GA predominantly impairs the importin-α/β-dependent pathway. In neurons, prolonged poly-GA expression induces partial mislocalization of TDP-43 into cytoplasmic granules. Rerouting poly-GA to the nucleus prevented TDP-43 mislocalization, suggesting a cytoplasmic mechanism. In rescue experiments, expression of importin-α (KPNA3, KPNA4) or nucleoporins (NUP54, NUP62) restores the nuclear localization of the TDP reporter. Taken together, inhibition of nuclear import of TDP-43 by cytoplasmic poly-GA inclusions causally links the two main aggregating proteins in C9orf72 ALS/FTLD pathogenesis.

  15. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones.

    PubMed

    Highley, J Robin; Kirby, Janine; Jansweijer, Joeri A; Webb, Philip S; Hewamadduma, Channa A; Heath, Paul R; Higginbottom, Adrian; Raman, Rohini; Ferraiuolo, Laura; Cooper-Knock, Johnathan; McDermott, Christopher J; Wharton, Stephen B; Shaw, Pamela J; Ince, Paul G

    2014-10-01

    Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone-like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurones obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. We found altered expression of spliceosome components in motor neurones and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43-depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, which were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurones, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. © 2014 British Neuropathological Society.

  16. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43

    PubMed Central

    Lanson, Nicholas A.; Maltare, Astha; King, Hanna; Smith, Rebecca; Kim, Ji Han; Taylor, J. Paul; Lloyd, Thomas E.; Pandey, Udai Bhan

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder characterized by the loss of motor neurons. Fused in sarcoma/translated in liposarcoma (FUS/TLS) and TAR DNA-binding protein (TDP)-43 are DNA/RNA-binding proteins found to be mutated in sporadic and familial forms of ALS. Ectopic expression of human ALS-causing FUS/TLS mutations in Drosophila caused an accumulation of ubiquitinated proteins, neurodegeneration, larval-crawling defect and early lethality. Mutant FUS/TLS localized to both the cytoplasm and nucleus, whereas wild-type FUS/TLS localized only to the nucleus, suggesting that the cytoplasmic localization of FUS/TLS is required for toxicity. Furthermore, we found that deletion of the nuclear export signal strongly suppressed toxicity, suggesting that cytoplasmic localization is necessary for neurodegeneration. Interestingly, we observed that FUS/TLS genetically interacts with TDP-43 in a mutation-dependent fashion to cause neurodegeneration in vivo. In summary, we demonstrate that ALS-associated mutations in FUS/TLS cause adult-onset neurodegeneration via a gain-of-toxicity mechanism that involves redistribution of the protein from the nucleus to the cytoplasm and is likely to involve an interaction with TDP-43. PMID:21487023

  17. Distinct partitioning of ALS associated TDP-43, FUS and SOD1 mutants into cellular inclusions

    PubMed Central

    Farrawell, Natalie E.; Lambert-Smith, Isabella A.; Warraich, Sadaf T.; Blair, Ian P.; Saunders, Darren N.; Hatters, Danny M.; Yerbury, Justin J.

    2015-01-01

    Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease associated with protein misfolding and aggregation. Most cases are characterized by TDP-43 positive inclusions, while a minority of familial ALS cases are instead FUS and SOD1 positive respectively. Cells can generate inclusions of variable type including previously characterized aggresomes, IPOD or JUNQ structures depending on the misfolded protein. SOD1 invariably forms JUNQ inclusions but it remains unclear whether other ALS protein aggregates arise as one of these previously described inclusion types or form unique structures. Here we show that FUS variably partitioned to IPOD, JUNQ or alternate structures, contain a mobile fraction, were not microtubule dependent and initially did not contain ubiquitin. TDP-43 inclusions formed in a microtubule independent manner, did not contain a mobile fraction but variably colocalized to JUNQ inclusions and another alternate structure. We conclude that the RNA binding proteins TDP-43 and FUS do not consistently fit the currently characterised inclusion models suggesting that cells have a larger repertoire for generating inclusions than currently thought, and imply that toxicity in ALS does not stem from a particular aggregation process or aggregate structure. PMID:26293199

  18. An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model.

    PubMed

    Cragnaz, L; Klima, R; De Conti, L; Romano, G; Feiguin, F; Buratti, E; Baralle, M; Baralle, F E

    2015-12-17

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The average age of onset of both sporadic and familial cases is 50-60 years of age. The presence of cytoplasmic inclusions of the RNA-binding protein TAR DNA-binding protein-43 (TDP-43) in the affected neurons is seen in 95% of the ALS cases, which results in TDP-43 nuclear clearance and loss of function. The Drosophila melanogaster ortholog of TDP-43 (TBPH) shares many characteristics with the human protein. Using a TDP-43 aggregation inducer previously developed in human cells, we created a transgenic fly that shows an adult locomotive defect. Phenotype onset correlates with a physiologically age-related drop of TDP-43/TBPH mRNA and protein levels, seen both in mice and flies. Artificial reduction of mRNA levels, in vivo, anticipates the locomotion defect to the larval stage. Our study links, for the first time, aggregation and the age-related, evolutionary conserved reduction of TDP-43/TBPH levels with the onset of an ALS-like locomotion defect in a Drosophila model. A similar process might trigger the human disease. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Mutation in the RRM2 domain of TDP-43 in Amyotrophic Lateral Sclerosis with rapid progression associated with ubiquitin positive aggregates in cultured motor neurons.

    PubMed

    Maurel, Cindy; Madji-Hounoum, Blandine; Thepault, Rose-Anne; Marouillat, Sylviane; Brulard, Céline; Danel-Brunaud, Véronique; Camdessanche, Jean-Philippe; Blasco, Helene; Corcia, Philippe; Andres, Christian R; Vourc'h, Patrick

    2017-07-13

    Mutations in the TAR-DNA Binding Protein-43 (TDP-43) encoding the TARDBP gene are present in amyotrophic lateral sclerosis (ALS). TDP-43 is the major component of ubiquitin-positive inclusions in motor neurons in ALS patients. We report here a novel heterozygous missense mutation in TARDBP in an ALS patient presenting a rapid form of ALS. This mutation p.N259S is located within the RNA recognition motif 2 (RRM2) in very close proximity with nucleotides in RNA. It is the first time a mutation was reported in this RRM2 domain of TDP-43. Expression of TDP-43(N259S) in neuronal cells NSC-34 and in primary cultures of motor neurons was associated with cytoplasmic TDP-43/ubiquitin positive inclusions. Our findings identified for the first time a mutation in ALS in the RRM2 domain of TDP-43, reinforcing the link between this RNA-binding protein, perturbations in RNA metabolism, disruption in protein homeostasis and ALS.

  20. Interaction with Polyglutamine Aggregates Reveals a Q/N-rich Domain in TDP-43*

    PubMed Central

    Fuentealba, Rodrigo A.; Udan, Maria; Bell, Shaughn; Wegorzewska, Iga; Shao, Jieya; Diamond, Marc I.; Weihl, Conrad C.; Baloh, Robert H.

    2010-01-01

    The identification of pathologic TDP-43 aggregates in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, followed by the discovery of dominantly inherited point mutations in TDP-43 in familial ALS, have been critical insights into the mechanism of these untreatable neurodegenerative diseases. However, the biochemical basis of TDP-43 aggregation and the mechanism of how mutations in TDP-43 lead to disease remain enigmatic. In efforts to understand how TDP-43 alters its cellular localization in response to proteotoxic stress, we found that TDP-43 is sequestered into polyglutamine aggregates. Furthermore, we found that binding to polyglutamine aggregates requires a previously uncharacterized glutamine/asparagine (Q/N)-rich region in the C-terminal domain of TDP-43. Sequestration into polyglutamine aggregates causes TDP-43 to be cleared from the nucleus and become detergent-insoluble. Finally, we observed that sequestration into polyglutamine aggregates led to loss of TDP-43-mediated splicing in the nucleus and that polyglutamine toxicity could be partially rescued by increasing expression of TDP-43. These data indicate pathologic sequestration into polyglutamine aggregates, and loss of nuclear TDP-43 function may play an unexpected role in polyglutamine disease pathogenesis. Furthermore, as Q/N domains have a strong tendency to self-aggregate and in some cases can function as prions, the identification of a Q/N domain in TDP-43 has important implications for the mechanism of pathologic aggregation of TDP-43 in ALS and other neurodegenerative diseases. PMID:20554523

  1. Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43.

    PubMed

    Fuentealba, Rodrigo A; Udan, Maria; Bell, Shaughn; Wegorzewska, Iga; Shao, Jieya; Diamond, Marc I; Weihl, Conrad C; Baloh, Robert H

    2010-08-20

    The identification of pathologic TDP-43 aggregates in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, followed by the discovery of dominantly inherited point mutations in TDP-43 in familial ALS, have been critical insights into the mechanism of these untreatable neurodegenerative diseases. However, the biochemical basis of TDP-43 aggregation and the mechanism of how mutations in TDP-43 lead to disease remain enigmatic. In efforts to understand how TDP-43 alters its cellular localization in response to proteotoxic stress, we found that TDP-43 is sequestered into polyglutamine aggregates. Furthermore, we found that binding to polyglutamine aggregates requires a previously uncharacterized glutamine/asparagine (Q/N)-rich region in the C-terminal domain of TDP-43. Sequestration into polyglutamine aggregates causes TDP-43 to be cleared from the nucleus and become detergent-insoluble. Finally, we observed that sequestration into polyglutamine aggregates led to loss of TDP-43-mediated splicing in the nucleus and that polyglutamine toxicity could be partially rescued by increasing expression of TDP-43. These data indicate pathologic sequestration into polyglutamine aggregates, and loss of nuclear TDP-43 function may play an unexpected role in polyglutamine disease pathogenesis. Furthermore, as Q/N domains have a strong tendency to self-aggregate and in some cases can function as prions, the identification of a Q/N domain in TDP-43 has important implications for the mechanism of pathologic aggregation of TDP-43 in ALS and other neurodegenerative diseases.

  2. Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord.

    PubMed

    Braak, Heiko; Ludolph, Albert; Thal, Dietmar R; Del Tredici, Kelly

    2010-07-01

    Skein-like and spherical inclusions within the somatodendritic compartment of a few types of susceptible neurons in the human nervous system are the currently acknowledged pathological hallmarks of amyotrophic lateral sclerosis (ALS). These inclusions consist chiefly of an aggregated, phosphorylated, and ultimately ubiquitinated intranuclear protein, TDP-43. To investigate the development of these inclusions, a single neuronal type that is susceptible to the ALS-associated pathological process, i.e., the class of large multipolar somatomotor neurons in the lower brainstem and spinal cord, was studied in four cases of sporadic ALS and four age-matched controls using immunoreactions against phosphorylated TDP-43 (pTDP-43), p62, and ubiquitin. In these neurons, the protein TDP-43, after its displacement outside of the cell nucleus and abnormal phosphorylation, forms light microscopically visible dash-like aggregates which were dispersed throughout their entire somatodendritic domain and even extended into the proximal portions of the axon. Many motor neurons contained these lesions, which were not detectable with anti-TDP-43 and anti-p62. In an additional step, a small number of the neurons that contain the dash-like lesions displayed a clustering of the aggregated material, which forms thick net-like (potential precursors of the skein-like inclusions) and spherical inclusions. This material, in turn, was ubiquitinated and p62-immunopositive. Thus, dash-like pTDP-43 aggregates are regularly seen in motor neurons in ALS and may represent the initial cellular lesion in this disease. Because these aggregates were not stained with antibodies against p62 and non-phosphorylated TDP-43, it is possible that phosphorylation of TDP-43 is required for its aggregation in sporadic ALS.

  3. Human TDP-43 and FUS selectively affect motor neuron maturation and survival in a murine cell model of ALS by non-cell-autonomous mechanisms.

    PubMed

    Wächter, Nicole; Storch, Alexander; Hermann, Andreas

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) were recently found to cause familial and sporadic amyotrophic lateral sclerosis (ALS). The mechanisms by which mutations within these genes cause ALS are not understood. We established murine embryonic stem cell (ESC)-based cell models that stably express the human wild-type (WT) and various ALS causing mutations of TDP-43 (A315T) and FUS (R514S, R521C and P525L). We investigated their effect on pan-neuron as well as motor neuron degeneration. Finally, non-cell-autonomous mediated neurodegeneration by muscle cells was investigated. Expression of mutant hTDP-43, but not wild-type TDP-43, as well as wild-type and mutant hFUS proteins induced neuronal degeneration with partial selectivity for motor neurons. Motor neuron loss was accompanied by abnormal neurite morphology and length. In chimeric coculture experiments with control motor neurons and mutant muscle cells (as their major target cells), we detected that mutant hTDP-43 A315T as well as wild-type and hFUS P525L expression only in muscle cells is sufficient to exert degenerative effects on control motor neurons. In conclusion, our data indicate that a selective vulnerability of motor neurons expressing the pathogenic ALS-causing genes TDP-43 and FUS, is, at least in part, mediated through non-cell-autonomous mechanisms.

  4. Neurotrophic effects of progranulin in vivo in reversing motor neuron defects caused by over or under expression of TDP-43 or FUS.

    PubMed

    Chitramuthu, Babykumari P; Kay, Denis G; Bateman, Andrew; Bennett, Hugh P J

    2017-01-01

    Progranulin (PGRN) is a glycoprotein with multiple roles in normal and disease states. Mutations within the GRN gene cause frontotemporal lobar degeneration (FTLD). The affected neurons display distinctive TAR DNA binding protein 43 (TDP-43) inclusions. How partial loss of PGRN causes TDP-43 neuropathology is poorly understood. TDP-43 inclusions are also found in affected neurons of patients with other neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. In ALS, TDP-43 inclusions are typically also immunoreactive for fused in sarcoma (FUS). Mutations within TDP-43 or FUS are themselves neuropathogenic in ALS and some cases of FTLD. We used the outgrowth of caudal primary motor neurons (MNs) in zebrafish embryos to investigate the interaction of PGRN with TDP-43 and FUS in vivo. As reported previously, depletion of zebrafish PGRN-A (zfPGRN-A) is associated with truncated primary MNs and impaired motor function. Here we found that depletion of zfPGRN-A results in primary MNs outgrowth stalling at the horizontal myoseptum, a line of demarcation separating the myotome into dorsal and ventral compartments that is where the final destination of primary motor is assigned. Successful axonal outgrowth beyond the horizontal myoseptum depends in part upon formation of acetylcholine receptor clusters and this was found to be disorganized upon depletion of zfPGRN-A. PGRN reversed the effects of zfPGRN-A knockdown, but a related gene, zfPGRN-1, was without effect. Both knockdown of TDP-43 or FUS, as well as expression of humanTDP-43 and FUS mutants results in MN abnormalities that are reversed by co-expression of hPGRN mRNA. Neither TDP-43 nor FUS reversed MN phenotypes caused by the depletion of PGRN. Thus TDP-43 and FUS lie upstream of PGRN in a gene complementation pathway. The ability of PGRN to override TDP-43 and FUS neurotoxicity due to partial loss of function or mutation in the corresponding genes may have therapeutic

  5. Neurotrophic effects of progranulin in vivo in reversing motor neuron defects caused by over or under expression of TDP-43 or FUS

    PubMed Central

    Chitramuthu, Babykumari P.; Kay, Denis G.; Bateman, Andrew; Bennett, Hugh P. J.

    2017-01-01

    Progranulin (PGRN) is a glycoprotein with multiple roles in normal and disease states. Mutations within the GRN gene cause frontotemporal lobar degeneration (FTLD). The affected neurons display distinctive TAR DNA binding protein 43 (TDP-43) inclusions. How partial loss of PGRN causes TDP-43 neuropathology is poorly understood. TDP-43 inclusions are also found in affected neurons of patients with other neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. In ALS, TDP-43 inclusions are typically also immunoreactive for fused in sarcoma (FUS). Mutations within TDP-43 or FUS are themselves neuropathogenic in ALS and some cases of FTLD. We used the outgrowth of caudal primary motor neurons (MNs) in zebrafish embryos to investigate the interaction of PGRN with TDP-43 and FUS in vivo. As reported previously, depletion of zebrafish PGRN-A (zfPGRN-A) is associated with truncated primary MNs and impaired motor function. Here we found that depletion of zfPGRN-A results in primary MNs outgrowth stalling at the horizontal myoseptum, a line of demarcation separating the myotome into dorsal and ventral compartments that is where the final destination of primary motor is assigned. Successful axonal outgrowth beyond the horizontal myoseptum depends in part upon formation of acetylcholine receptor clusters and this was found to be disorganized upon depletion of zfPGRN-A. PGRN reversed the effects of zfPGRN-A knockdown, but a related gene, zfPGRN-1, was without effect. Both knockdown of TDP-43 or FUS, as well as expression of humanTDP-43 and FUS mutants results in MN abnormalities that are reversed by co-expression of hPGRN mRNA. Neither TDP-43 nor FUS reversed MN phenotypes caused by the depletion of PGRN. Thus TDP-43 and FUS lie upstream of PGRN in a gene complementation pathway. The ability of PGRN to override TDP-43 and FUS neurotoxicity due to partial loss of function or mutation in the corresponding genes may have therapeutic

  6. Valproate Attenuates 25-kDa C-Terminal Fragment of TDP-43-Induced Neuronal Toxicity via Suppressing Endoplasmic Reticulum Stress and Activating Autophagy

    PubMed Central

    Wang, Xuejing; Ma, Mingming; Teng, Junfang; Che, Xiangqian; Zhang, Wenwen; Feng, Shuman; Zhou, Shuang; Zhang, Ying; Wu, Erxi; Ding, Xuebing

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease. To date, there is no any effective pharmacological treatment for improving patients' symptoms and quality of life. Rapidly emerging evidence suggests that C-terminal fragments (CTFs) of TAR DNA-binding protein of 43 kDa (TDP-43), including TDP-35 and TDP-25, may play an important role in ALS pathogenesis. Valproate (VPA), a widely used antiepileptic drug, has neuroprotective effects on neurodegenerative disorders. As for ALS, preclinical studies also provide encouraging evidence for multiple beneficial effects in ALS mouse models. However, the potential molecular mechanisms have not been explored. Here, we show protective effects of VPA against TDP-43 CTFs-mediated neuronal toxicity and its underlying mechanisms in vitro. Remarkably, TDP-43 CTFs induced neuronal damage via endoplastic reticulum (ER) stress-mediated apoptosis. Furthermore, autophagic self-defense system was activated to reduce TDP-43 CTFs-induced neuronal death. Finally, VPA attenuated TDP-25-induced neuronal toxicity via suppressing ER stress-mediated apoptosis and enhancing autophagy. Taken together, these results demonstrate that VPA exerts neuroprotective effects against TDP-43 CTFs-induced neuronal damage. Thus, we provide new molecular evidence for VPA treatment in patients with ALS and other TDP-43 proteinopathies. PMID:26078717

  7. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death.

    PubMed

    Xiao, Shangxi; Sanelli, Teresa; Chiang, Helen; Sun, Yulong; Chakrabartty, Avijit; Keith, Julia; Rogaeva, Ekaterina; Zinman, Lorne; Robertson, Janice

    2015-07-01

    The presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATG(Met85)), denoted here as Met(85)-TDP-35. Met(85)-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation. Furthermore, Met(85)-TDP-35 sequestered full-length TDP-43 from the nucleus to form cytoplasmic aggregates. Expression of Met(85)-TDP-35 in primary motor neurons resulted in the formation of Met(85)-TDP-35-positive cytoplasmic aggregates and motor neuron death. A neo-epitope antibody specific for Met(85)-TDP-35 labeled the 35-kDa lower molecular weight species on immunoblots of urea-soluble extracts from ALS-FTLD disease-affected tissues and co-labeled TDP-43-positive inclusions in ALS spinal cord sections, confirming the physiological relevance of this species. These results show that the 35-kDa low molecular weight species in ALS-FTLD can be generated from an abnormal splicing event and use of a downstream initiation codon and may represent a mechanism by which TDP-43 elicits its pathogenicity.

  8. FUS and TDP43 genetic variability in FTD and CBS.

    PubMed

    Huey, Edward D; Ferrari, Raffaele; Moreno, Jorge H; Jensen, Christopher; Morris, Christopher M; Potocnik, Felix; Kalaria, Rajesh N; Tierney, Michael; Wassermann, Eric M; Hardy, John; Grafman, Jordan; Momeni, Parastoo

    2012-05-01

    This study aimed to evaluate genetic variability in the FUS and TDP-43 genes, known to be mainly associated with amyotrophic lateral sclerosis (ALS), in patients with the diagnoses of frontotemporal lobar degeneration (FTLD) and corticobasal syndrome (CBS). We screened the DNA of 228 patients for all the exons and flanking introns of FUS and TDP-43 genes. We identified 2 novel heterozygous missense mutations in FUS: P106L (g.22508384C>T) in a patient with behavioral variant frontotemporal dementia (bvFTD) and Q179H in several members of a family with behavioral variant FTD. We also identified the N267S mutation in TDP-43 in a CBS patient, previously only reported in 1 ALS family and 1 FTD patient. Additionally, we identified 2 previously reported heterozygous insertion and deletion mutations in Exon 5 of FUS; Gly174-Gly175 del GG (g. 4180-4185 delGAGGTG) in an FTD patient and Gly175-Gly176 ins GG (g. 4185-4186 insGAGGTG) in a patient with diagnosis of CBS. Not least, we have found a series of variants in FUS also in neurologically normal controls. In summary, we report that genetic variability in FUS and TDP-43 encompasses a wide range of phenotypes (including ALS, FTD, and CBS) and that there is substantial genetic variability in FUS gene in neurologically normal controls.

  9. Evidence that TDP-43 is not the major ubiquitinated target within the pathological inclusions of amyotrophic lateral sclerosis.

    PubMed

    Sanelli, Teresa; Xiao, Shangxi; Horne, Patrick; Bilbao, Juan; Zinman, Lorne; Robertson, Janice

    2007-12-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the presence of various types of ubiquitinated inclusions in the cytoplasm of affected motor neurons. The identification of the ubiquitinated targets within these inclusions has represented a major challenge, as this may provide new gene candidates and/or clues to understanding the neurodegenerative mechanism(s) underlying the disease. As such, the nuclear factor TAR DNA-binding protein (TDP-43) was recently identified as a component of ubiquitinated skein-like inclusions and round inclusions in ALS. This identification combined with biochemical evidence led to the suggestion that TDP-43 is the key ubiquitinated target and major disease protein in ALS. Here, using 3-dimensional deconvolution imaging, we have obtained remarkable resolution of skein-like inclusions and round inclusions in ALS. Surprisingly we have found that in contrast to current thinking, TDP-43 is not the major ubiquitinated target within these types of inclusions. These findings raise the possibility that TDP-43 may not necessarily be the key disease protein in ALS and indicate that the major target(s) of ubiquitination remain to be identified.

  10. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43

    PubMed Central

    Polymenidou, Magdalini; Lagier-Tourenne, Clotilde; Hutt, Kasey R.; Huelga, Stephanie C.; Moran, Jacqueline; Liang, Tiffany Y.; Ling, Shuo-Chien; Sun, Eveline; Wancewicz, Edward; Mazur, Curt; Kordasiewicz, Holly; Sedaghat, Yalda; Donohue, John Paul; Shiue, Lily; Bennett, C. Frank; Yeo, Gene W.; Cleveland, Don W.

    2011-01-01

    Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3′ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. (147 words) PMID:21358643

  11. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models

    PubMed Central

    Barmada, Sami J.; Serio, Andrea; Arjun, Arpana; Bilican, Bilada; Daub, Aaron; Ando, D. Michael; Tsvetkov, Andrey; Pleiss, Michael; Li, Xingli; Peisach, Daniel; Shaw, Christopher; Chandran, Siddharthan; Finkbeiner, Steven

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology—cytoplasmic inclusions rich in TDP43. Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we showed that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity, and discovered that pathogenic mutations significantly shorten TDP43 half-life. Novel compounds that stimulate autophagy improved TDP43 clearance and localization, and enhanced survival in primary murine neurons and in human stem cell–derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance. PMID:24974230

  12. A Nonsense Mutation in Mouse Tardbp Affects TDP43 Alternative Splicing Activity and Causes Limb-Clasping and Body Tone Defects

    PubMed Central

    Fratta, Pietro; de Oliveira, Hugo M.; Kent, Rosie; Phatak, Vinaya; Brandner, Sebastian; Blanco, Gonzalo; Greensmith, Linda; Acevedo-Arozena, Abraham; Fisher, Elizabeth M. C.

    2014-01-01

    Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised TardbpQ101X mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the TardbpQ101X mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp+/Q101X) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp+/Q101X mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp+/Q101X mice were crossed with the SOD1G93Adl transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the TardbpQ101X mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are

  13. Increased metal content in the TDP-43A315T transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis

    PubMed Central

    Dang, Theresa N. T.; Lim, Nastasia K. H.; Grubman, Alexandra; Li, Qiao-Xin; Volitakis, Irene; White, Anthony R.; Crouch, Peter J.

    2014-01-01

    Disrupted metal homeostasis is a consistent feature of neurodegenerative disease in humans and is recapitulated in mouse models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis (ALS) and neuronal ceriod lipofuscinosis. While the definitive pathogenesis of neurodegenerative disease in humans remains to be fully elucidated, disease-like symptoms in the mouse models are all driven by the presence or over-expression of a putative pathogenic protein, indicating an in vivo relationship between expression of these proteins, disrupted metal homeostasis and the symptoms of neuronal failure. Recently it was established that mutant TAR DNA binding protein-43 (TDP-43) is associated with the development of frontotemporal lobar degeneration and ALS. Subsequent development of transgenic mice that express human TDP-43 carrying the disease-causing A315T mutation has provided new opportunity to study the underlying mechanisms of TDP-43-related neurodegenerative disease. We assessed the cognitive and locomotive phenotype of TDP-43 A315T mice and their wild-type littermates and also assessed bulk metal content of brain and spinal cord tissues. Metal levels in the brain were not affected by the expression of mutant TDP-43, but zinc, copper, and manganese levels were all increased in the spinal cords of TDP-43 A315T mice when compared to wild-type littermates. Performance of the TDP-43 A315T mice in the Y-maze test for cognitive function was not significantly different to wild-type mice. By contrast, performance of the TDP-43 A315T in the rotarod test for locomotive function was consistently worse than wild-type mice. These preliminary in vivo data are the first to show that expression of a disease-causing form of TDP-43 is sufficient to disrupt metal ion homeostasis in the central nervous system. Disrupted metal ion homeostasis in the spinal cord but not the brain may explain why the TDP-43 A315T mice show symptoms of locomotive decline and not cognitive

  14. TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA.

    PubMed

    Saldi, Tassa K; Ash, Peter Ea; Wilson, Gavin; Gonzales, Patrick; Garrido-Lecca, Alfonso; Roberts, Christine M; Dostal, Vishantie; Gendron, Tania F; Stein, Lincoln D; Blumenthal, Thomas; Petrucelli, Leonard; Link, Christopher D

    2014-12-17

    Caenorhabditis elegans mutants deleted for TDP-1, an ortholog of the neurodegeneration-associated RNA-binding protein TDP-43, display only mild phenotypes. Nevertheless, transcriptome sequencing revealed that many RNAs were altered in accumulation and/or processing in the mutant. Analysis of these transcriptional abnormalities demonstrates that a primary function of TDP-1 is to limit formation or stability of double-stranded RNA. Specifically, we found that deletion of tdp-1: (1) preferentially alters the accumulation of RNAs with inherent double-stranded structure (dsRNA); (2) increases the accumulation of nuclear dsRNA foci; (3) enhances the frequency of adenosine-to-inosine RNA editing; and (4) dramatically increases the amount of transcripts immunoprecipitable with a dsRNA-specific antibody, including intronic sequences, RNAs with antisense overlap to another transcript, and transposons. We also show that TDP-43 knockdown in human cells results in accumulation of dsRNA, indicating that suppression of dsRNA is a conserved function of TDP-43 in mammals. Altered accumulation of structured RNA may account for some of the previously described molecular phenotypes (e.g., altered splicing) resulting from reduction of TDP-43 function.

  15. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models.

    PubMed

    Magrané, Jordi; Cortez, Czrina; Gan, Wen-Biao; Manfredi, Giovanni

    2014-03-15

    Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been investigated in vivo. To address this question, we crossed SOD1 (wild-type SOD1(WT) and mutant SOD1(G93A)) or TDP43 (mutant TDP43(A315T)) transgenic mice with mice expressing the fluorescent protein Dendra targeted to mitochondria in neurons (mitoDendra). At different time points during the disease course, we studied mitochondrial transport in the intact sciatic nerve of living mice and analyzed axonal mitochondrial morphology at multiple sites, spanning from the spinal cord to the motor terminals. Defects of retrograde mitochondrial transport were detected at 45 days of age, before the onset of symptoms, in SOD1(G93A) and TDP43(A315T) mice, but not in SOD1(WT). At later disease stages, also anterograde mitochondrial transport was affected in both mutant mouse lines. In SOD1(G93A) mice, mitochondrial morphological abnormalities were apparent at 15 days of age, thus preceding transport abnormalities. Conversely, in TDP43(A315T) mice, morphological abnormalities appeared after the onset of transport defects. Taken together, these findings demonstrate that neuronal mitochondrial transport and morphology abnormalities occur in vivo and that they are common denominators of different genetic forms of the ALS. At the same time, differences in the temporal and spatial manifestation of mitochondrial abnormalities between the two mouse models of familial ALS imply that different molecular mechanisms may be involved.

  16. PROGRESSIVE SUPRANUCLEAR PALSY IN A FAMILY WITH TDP-43 PATHOLOGY

    PubMed Central

    Kertesz, A; Finger, E; Murrell, J; Chertkow, H; Ang, L.C.; Baker, M; Ravenscroft, T; Rademakers, R; Munoz, D. G.

    2014-01-01

    A member of a family with an autosomal dominant pattern of frontotemporal dementia (FTD) with a TDP-43 pathological substrate in other members and no mutations in FTD-associated genes, developed behavioral variant FTD followed by Progressive Supranuclear Palsy. Autopsy revealed a pure tauopathy of PSP pattern. Conclusions: The findings raise the possibility of shared pathogenic pathways and a proximal genetic abnormality between PSP and FTLD-43. PMID:24479957

  17. Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS.

    PubMed

    Soo, Kai Y; Halloran, Mark; Sundaramoorthy, Vinod; Parakh, Sonam; Toth, Reka P; Southam, Katherine A; McLean, Catriona A; Lock, Peter; King, Anna; Farg, Manal A; Atkin, Julie D

    2015-11-01

    Several diverse proteins are linked genetically/pathologically to neurodegeneration in amyotrophic lateral sclerosis (ALS) including SOD1, TDP-43 and FUS. Using a variety of cellular and biochemical techniques, we demonstrate that ALS-associated mutant TDP-43, FUS and SOD1 inhibit protein transport between the endoplasmic reticulum (ER) and Golgi apparatus in neuronal cells. ER-Golgi transport was also inhibited in embryonic cortical and motor neurons obtained from a widely used animal model (SOD1(G93A) mice), validating this mechanism as an early event in disease. Each protein inhibited transport by distinct mechanisms, but each process was dependent on Rab1. Mutant TDP-43 and mutant FUS both inhibited the incorporation of secretory protein cargo into COPII vesicles as they bud from the ER, and inhibited transport from ER to the ER-Golgi intermediate (ERGIC) compartment. TDP-43 was detected on the cytoplasmic face of the ER membrane, whereas FUS was present within the ER, suggesting that transport is inhibited from the cytoplasm by mutant TDP-43, and from the ER by mutant FUS. In contrast, mutant SOD1 destabilised microtubules and inhibited transport from the ERGIC compartment to Golgi, but not from ER to ERGIC. Rab1 performs multiple roles in ER-Golgi transport, and over-expression of Rab1 restored ER-Golgi transport, and prevented ER stress, mSOD1 inclusion formation and induction of apoptosis, in cells expressing mutant TDP-43, FUS or SOD1. Rab1 also co-localised extensively with mutant TDP-43, FUS and SOD1 in neuronal cells, and Rab1 formed inclusions in motor neurons of spinal cords from sporadic ALS patients, which were positive for ubiquitinated TDP-43, implying that Rab1 is misfolded and dysfunctional in sporadic disease. These results demonstrate that ALS-mutant forms of TDP-43, FUS, and SOD1 all perturb protein transport in the early secretory pathway, between ER and Golgi compartments. These data also imply that restoring Rab1-mediated ER

  18. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons.

    PubMed

    Schwenk, Benjamin M; Hartmann, Hannelore; Serdaroglu, Alperen; Schludi, Martin H; Hornburg, Daniel; Meissner, Felix; Orozco, Denise; Colombo, Alessio; Tahirovic, Sabina; Michaelsen, Meike; Schreiber, Franziska; Haupt, Simone; Peitz, Michael; Brüstle, Oliver; Küpper, Clemens; Klopstock, Thomas; Otto, Markus; Ludolph, Albert C; Arzberger, Thomas; Kuhn, Peer-Hendrik; Edbauer, Dieter

    2016-11-02

    Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased β2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  19. TDP-43 and pathological subtype of Alzheimer’s disease impact clinical features

    PubMed Central

    Josephs, Keith A.; Whitwell, Jennifer L.; Tosakulwong, Nirubol; Weigand, Stephen D.; Murray, Melissa E.; Serie, Amanda M.; Petrucelli, Leonard; Senjem, Matthew L.; Ivnik, Robert J.; Parisi, Joseph E.; Petersen, Ronald C.; Dickson, Dennis W.

    2015-01-01

    Objective To determine whether the frequency of TDP-43 deposition in Alzheimer’s disease (AD) differs across pathologically defined AD subtypes (Hippocampal sparing [HpSp]; Typical and Limbic), and to further examine the relationship between TDP-43, pathological subtype, and clinical features in AD. Methods We identified all cases with pathologically-confirmed AD (NIA-Reagan intermediate-high probability, Braak stage IV–VI) independent of cognitive status (n=188). Neurofibrillary tangle counts were performed using thioflavin-S microscopy in hippocampus and three neocortical regions, and all cases were subtyped: HpSp AD Pathology (n=19); Typical AD Pathology (n=136); Limbic AD Pathology (n=33). TDP-43 immunoreactivity was performed in multiple brain regions to assess for the presence of TDP-43 and TDP-43 stage. All cases were clinically sub-classified at presentation as Amnestic AD Dementia versus Atypical AD Dementia. Statistical analysis was performed using linear and penalized logistic regression to assess associations with pathological subtype, and the effects of TDP-43, accounting for possible interactions between pathological subtype and TDP-43. Results TDP-43 deposition was frequent in Typical (59%) and Limbic AD pathologies (67%), but not HpSp AD Pathology (21%) (p=0.003). The observed associations of TDP-43 with greater memory loss, naming and functional decline, and smaller hippocampal volumes, closest to death, did not differ across AD pathological subtype. Clinical presentation was associated with pathological subtype (p=0.01), but not TDP-43 (p=0.69). Interpretation Although the frequency of TDP-43 deposition in AD varies by pathological subtype, the observed effects of TDP-43 on clinical/MRI features are consistent across pathological subtypes. Clinical presentation in AD is driven by pathological subtype, not by TDP-43. PMID:26224156

  20. Autophagy and Its Impact on Neurodegenerative Diseases: New Roles for TDP-43 and C9orf72

    PubMed Central

    Budini, Mauricio; Buratti, Emanuele; Morselli, Eugenia; Criollo, Alfredo

    2017-01-01

    Autophagy is a catabolic mechanism where intracellular material is degraded by vesicular structures called autophagolysosomes. Autophagy is necessary to maintain the normal function of the central nervous system (CNS), avoiding the accumulation of misfolded and aggregated proteins. Consistently, impaired autophagy has been associated with the pathogenesis of various neurodegenerative diseases. The proteins TAR DNA-binding protein-43 (TDP-43), which regulates RNA processing at different levels, and chromosome 9 open reading frame 72 (C9orf72), probably involved in membrane trafficking, are crucial in the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Additionally, recent studies have identified a role for these proteins in the control of autophagy. In this manuscript, we review what is known regarding the autophagic mechanism and discuss the involvement of TDP-43 and C9orf72 in autophagy and their impact on neurodegenerative diseases. PMID:28611593

  1. An acridine derivative, [4,5-bis{(N-carboxy methyl imidazolium)methyl}acridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models

    PubMed Central

    Prasad, Archana; Raju, Gembali; Sivalingam, Vishwanath; Girdhar, Amandeep; Verma, Meenakshi; Vats, Abhishek; Taneja, Vibha; Prabusankar, Ganesan; Patel, Basant K.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with aggregation of TAR DNA-binding protein-43 (TDP-43) in neuronal cells and manifests as motor neuron dysfunction & muscle atrophy. The carboxyl-terminal prion-like domain of TDP-43 can aggregate in vitro into toxic β-sheet rich amyloid-like structures. So far, treatment options for ALS are very limited and Riluzole, which targets glutamate receptors, is the only but highly ineffective drug. Therefore, great interest exists in developing molecules for ALS treatment. Here, we have examined certain derivatives of acridine containing same side chains at position 4 & 5, for inhibitory potential against TDP-43 aggregation. Among several acridine derivatives examined, AIM4, which contains polar carboxyl groups in the side arms, significantly reduces TDP-43-YFP aggregation in the powerful yeast model cell and also abolishes in vitro amyloid-like aggregation of carboxyl terminal domain of TDP-43, as observed by AFM imaging. Thus, AIM4 can be a lead molecule potentiating further therapeutic research for ALS. PMID:28000730

  2. Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes.

    PubMed

    Diaper, Danielle C; Adachi, Yoshitsugu; Sutcliffe, Ben; Humphrey, Dickon M; Elliott, Christopher J H; Stepto, Alan; Ludlow, Zoe N; Vanden Broeck, Lies; Callaerts, Patrick; Dermaut, Bart; Al-Chalabi, Ammar; Shaw, Christopher E; Robinson, Iain M; Hirth, Frank

    2013-04-15

    Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration.

  3. Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes

    PubMed Central

    Diaper, Danielle C.; Adachi, Yoshitsugu; Sutcliffe, Ben; Humphrey, Dickon M.; Elliott, Christopher J.H.; Stepto, Alan; Ludlow, Zoe N.; Vanden Broeck, Lies; Callaerts, Patrick; Dermaut, Bart; Al-Chalabi, Ammar; Shaw, Christopher E.; Robinson, Iain M.; Hirth, Frank

    2013-01-01

    Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration. PMID:23307927

  4. Chronological requirements of TDP-43 function in synaptic organization and locomotive control.

    PubMed

    Romano, Giulia; Klima, Raffaella; Buratti, Emanuele; Verstreken, Patrik; Baralle, Francisco E; Feiguin, Fabian

    2014-11-01

    Alterations in TDP-43 are commonly found in patients suffering from amyotrophic lateral sclerosis (ALS) and the genetic suppression of the conserved homologue in Drosophila (TBPH) provokes alterations in the functional organization of motoneuron synaptic terminals, resulting in locomotive defects and reduced life span. To gain more insight into this pathological process, it is of fundamental importance to establish when during the fly life cycle the lack of TBPH affects motoneuron activity and whether this is a reversible phenomenon. To achieve this, we conditionally expressed the endogenous protein in TBPH minus Drosophila neurons and found that TBPH is a short lived protein permanently required for Drosophila motility and synaptic assembly through the direct modulation of vesicular proteins, such as Syntaxin 1A, indicating that synaptic transmission defects are early pathological consequences of TBPH dysfunction in vivo. Importantly, TBPH late induction is able to recover synaptogenesis and locomotion in adult flies revealing an unexpected late-stage functional and structural neuronal plasticity. These observations suggest that late therapeutic approaches based on TDP-43 functionality may also be successful for the human pathology.

  5. FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration.

    PubMed

    Urwin, Hazel; Josephs, Keith A; Rohrer, Jonathan D; Mackenzie, Ian R; Neumann, Manuela; Authier, Astrid; Seelaar, Harro; Van Swieten, John C; Brown, Jeremy M; Johannsen, Peter; Nielsen, Jorgen E; Holm, Ida E; Dickson, Dennis W; Rademakers, Rosa; Graff-Radford, Neill R; Parisi, Joseph E; Petersen, Ronald C; Hatanpaa, Kimmo J; White, Charles L; Weiner, Myron F; Geser, Felix; Van Deerlin, Vivianna M; Trojanowski, John Q; Miller, Bruce L; Seeley, William W; van der Zee, Julie; Kumar-Singh, Samir; Engelborghs, Sebastiaan; De Deyn, Peter P; Van Broeckhoven, Christine; Bigio, Eileen H; Deng, Han-Xiang; Halliday, Glenda M; Kril, Jillian J; Munoz, David G; Mann, David M; Pickering-Brown, Stuart M; Doodeman, Valerie; Adamson, Gary; Ghazi-Noori, Shabnam; Fisher, Elizabeth M C; Holton, Janice L; Revesz, Tamas; Rossor, Martin N; Collinge, John; Mead, Simon; Isaacs, Adrian M

    2010-07-01

    Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated.

  6. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    PubMed

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-03-29

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43(Q331K) mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43(Q331K) gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  7. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD.

    PubMed

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E; Ahmed, Zeshan; Parisi, Joseph E; Yen, Shu-Hui C; Dickson, Dennis W

    2013-05-01

    Corticobasal degeneration (CBD) is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon, and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus were comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. In addition, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology.

  8. Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration

    PubMed Central

    Laneve, Pietro; Piacentini, Lucia; Casale, Assunta Maria; Capauto, Davide; Gioia, Ubaldo; Cappucci, Ugo; Di Carlo, Valerio; Bozzoni, Irene; Di Micco, Patrizio; Morea, Veronica; Di Franco, Carmela Antonia; Caffarelli, Elisa

    2017-01-01

    Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function. PMID:28139767

  9. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD

    PubMed Central

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E.; Ahmed, Zeshan; Parisi, Joseph E.; Yen, Shu-Hui C.; Dickson, Dennis W.

    2013-01-01

    CBD is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus was comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. Additionally, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology. PMID:23371366

  10. Developmentally Regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a Nuclear-Cytoplasmic Trafficking Protein, Forms TAR DNA-binding Protein 43 (TDP-43)-mediated Cytoplasmic Aggregates.

    PubMed

    Mashiko, Takafumi; Sakashita, Eiji; Kasashima, Katsumi; Tominaga, Kaoru; Kuroiwa, Kenji; Nozaki, Yasuyuki; Matsuura, Tohru; Hamamoto, Toshiro; Endo, Hitoshi

    2016-07-15

    Cytoplasmic protein aggregates are one of the pathological hallmarks of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several RNA-binding proteins have been identified as components of inclusion bodies. Developmentally regulated RNA-binding protein 1 (Drb1)/RNA-binding motif protein 45 is an RNA-binding protein that was recently described as a component in ALS- and FTLD-related inclusion bodies. However, the molecular mechanism underlying cytoplasmic Drb1 aggregation remains unclear. Here, using an in vitro cellular model, we demonstrated that Drb1 co-localizes with cytoplasmic aggregates mediated by TAR DNA-binding protein 43, a major component of ALS and FTLD-related inclusion bodies. We also defined the domains involved in the subcellular localization of Drb1 to clarify the role of Drb1 in the formation of cytoplasmic aggregates in ALS and FTLD. Drb1 predominantly localized in the nucleus via a classical nuclear localization signal in its carboxyl terminus and is a shuttling protein between the nucleus and cytoplasm. Furthermore, we identify a double leucine motif serving as a nuclear export signal. The Drb1 mutant, presenting mutations in both nuclear localization signal and nuclear export signal, is prone to aggregate in the cytoplasm. The mutant Drb1-induced cytoplasmic aggregates not only recruit TAR DNA-binding protein 43 but also decrease the mitochondrial membrane potential. Taken together, these results indicate that perturbation of Drb1 nuclear-cytoplasmic trafficking induces toxic cytoplasmic aggregates, suggesting that mislocalization of Drb1 is involved in the cause of cytotoxicity in neuronal cells.

  11. Prevalence of TDP-43 proteinopathy in cognitively normal older adults: systematic review and meta-analysis.

    PubMed

    Nascimento, Camila; Di Lorenzo Alho, Ana Tereza; Bazan Conceição Amaral, Caroline; Leite, Renata Elane Paraizo; Nitrini, Ricardo; Jacob-Filho, Wilson; Pasqualucci, Carlos Augusto; Kastehelmi Hokkanen, Suvi Rosa; Hunter, Sally; Keage, Hannah; Kovacs, Gabor G; Grinberg, Lea Tenenholz; Suemoto, Claudia Kimie

    2017-08-09

    To perform a systematic review and meta-analysis on the prevalence of TDP-43 proteinopathy in cognitively normal older adults. We systematically reviewed and performed a meta-analysis on the prevalence of TDP-43 proteinopathy in older adults with normal cognition, evaluated by the Mini-Mental State Examination or the Clinical Dementia Rating. We estimated the overall prevalence of TDP-43 using random-effect models, and stratified by age, sex, sample size, study quality, antibody used to assess TDP-43 aggregates, analyzed brain regions, Braak stage, CERAD score, hippocampal sclerosis, and geographic location. A total of 505 articles were identified in the systematic review, and seven were included in the meta-analysis with 1,196 cognitively normal older adults. We found an overall prevalence of TDP-43 proteinopathy of 24%. Prevalence of TDP-43 proteinopathy varied widely across geographic location (North America: 37%, Asia: 29%, Europe: 14%, and Latin America: 11%). Estimated prevalence of TDP-43 proteinopathy also varied according to study quality (quality score >7: 22% vs. quality score <7: 42%), antibody used to assess TDP-43 proteinopathy (native: 18% vs. hyperphosphorylated: 24%), and presence of hippocampal sclerosis (without 24% vs. with hippocampal sclerosis: 48%). Other stratified analyses by age, sex, analyzed brain regions, sample size, and severity of AD neuropathology showed similar pooled TDP-43 prevalence. Different methodology to access TDP-43, and also differences in lifestyle and genetic factors across different populations could explain our results. Standardization of TDP-43 measurement, and future studies about the impact of genetic and lifestyle characteristics on the development of neurodegenerative diseases are needed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations.

    PubMed

    Zhang, Zhijun; Almeida, Sandra; Lu, Yubing; Nishimura, Agnes L; Peng, Lingtao; Sun, Danqiong; Wu, Bei; Karydas, Anna M; Tartaglia, Maria C; Fong, Jamie C; Miller, Bruce L; Farese, Robert V; Moore, Melissa J; Shaw, Christopher E; Gao, Fen-Biao

    2013-01-01

    Transactive response DNA-binding protein 43 (TDP-43) is a major pathological protein in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). There are many disease-associated mutations in TDP-43, and several cellular and animal models with ectopic overexpression of mutant TDP-43 have been established. Here we sought to study altered molecular events in FTD and ALS by using induced pluripotent stem cell (iPSC) derived patient neurons. We generated multiple iPSC lines from an FTD/ALS patient with the TARDBP A90V mutation and from an unaffected family member who lacked the mutation. After extensive characterization, two to three iPSC lines from each subject were selected, differentiated into postmitotic neurons, and screened for relevant cell-autonomous phenotypes. Patient-derived neurons were more sensitive than control neurons to 100 nM straurosporine but not to other inducers of cellular stress. Three disease-relevant cellular phenotypes were revealed under staurosporine-induced stress. First, TDP-43 was localized in the cytoplasm of a higher percentage of patient neurons than control neurons. Second, the total TDP-43 level was lower in patient neurons with the A90V mutation. Third, the levels of microRNA-9 (miR-9) and its precursor pri-miR-9-2 decreased in patient neurons but not in control neurons. The latter is likely because of reduced TDP-43, as shRNA-mediated TDP-43 knockdown in rodent primary neurons also decreased the pri-miR-9-2 level. The reduction in miR-9 expression was confirmed in human neurons derived from iPSC lines containing the more pathogenic TARDBP M337V mutation, suggesting miR-9 downregulation might be a common pathogenic event in FTD/ALS. These results show that iPSC models of FTD/ALS are useful for revealing stress-dependent cellular defects of human patient neurons containing rare TDP-43 mutations in their native genetic contexts.

  13. Restoration of motor defects caused by loss of Drosophila TDP-43 by expression of the voltage-gated calcium channel, Cacophony, in central neurons.

    PubMed

    Lembke, Kayly M; Scudder, Charles; Morton, David B

    2017-08-28

    Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative disease including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 orthologue TBPH, we previously showed that TBPH null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony, a type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of NMJ physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the NMJ, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in NMJ physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects.SIGNIFICANCE STATEMENTTDP-43 dysfuction is a common feature in neurodegenerative diseases including ALS, FTLD, and Alzheimer's disease. Loss and gain of function models have shown neurons are sensitive to TDP-43 expression levels, but the specific defects caused by TDP-43 loss of function have not been described in

  14. Novel types of frontotemporal lobar degeneration: beyond tau and TDP-43.

    PubMed

    Mackenzie, Ian R A; Neumann, Manuela; Cairns, Nigel J; Munoz, David G; Isaacs, Adrian M

    2011-11-01

    Most cases of frontotemporal lobar degeneration (FTLD) are characterized by the abnormal accumulation of either the microtubule-associated protein tau or the transactive response DNA-binding protein with M(r) 43 kDa, TDP-43 (FTLD-tau and FTLD-TDP, respectively). However, there remain ∼10% of cases, composed of a heterogenous collection of uncommon disorders, for which the molecular basis remains uncertain. In this review, we describe the characteristic genetic, clinical, and pathological features of the major tau/TDP-negative FTLD subtypes, with focus on recent advances in our understanding of their molecular basis. This includes the discovery that the pathological changes in atypical FTLD with ubiquitinated inclusions, neuronal intermediate filament inclusion disease, and basophilic inclusion body disease are immunoreactive for the fused in sarcoma (FUS) protein, resulting in the creation of a new molecular subgroup (FTLD-FUS), and studies clarifying the functional consequences of pathogenic CHMP2B mutations.

  15. Reversible induction of TDP-43 granules in cortical neurons after traumatic injury.

    PubMed

    Wiesner, Diana; Tar, Lilla; Linkus, Birgit; Chandrasekar, Akila; Olde Heuvel, Florian; Dupuis, Luc; Tsao, William; Wong, Philip C; Ludolph, Albert; Roselli, Francesco

    2017-09-21

    Traumatic brain injury (TBI) has been proposed as a risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To determine whether TBI might trigger or exacerbate ALS-relevant pathology, we delivered a mild stab-wound injury to the motor cortex of three different ALS mouse models expressing mutations in SOD1, TDP-43 or FUS and scrutinized the effects on the formation of phospho-TDP-43 (pTDP-43) cytoplasmic granules. Stab-injury induced the formation of cytoplasmic TDP-43 granules in wt animals, peaking at 3dpi; a much larger response was seen in mutant TDP-43 mice, whose response peaked at 7dpi. The pTDP-43 granules did not colocalize with the stress markers TIAR-1 and FUS but colocalized with FMRP (35%) and with p62 (65%), suggesting their involvement in transport granules and their clearance by autophagy. A similar, albeit smaller effect, was seen in mutant FUS mice. In the SOD1(G93A) mouse model, neither increase in pTDP-43 granules nor in SOD1 aggregates were detected. In all cases, pTDP-43 granules were cleared and the number of pTDP-43-positive neurons returned to baseline by 40dpi. Neither injury-related neuronal loss nor motor performance or survival was significantly different in transgenic mice receiving injury vs sham mice. Thus, trauma can trigger ALS-related TDP-43 pathology, the extent of which is modulated by ALS-related mutations. However, the pathological findings prove reversible and do not affect disease progression and neuronal vulnerability. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration.

    PubMed

    Yousef, Ahmed; Robinson, John L; Irwin, David J; Byrne, Matthew D; Kwong, Linda K; Lee, Edward B; Xu, Yan; Xie, Sharon X; Rennert, Lior; Suh, EunRan; Van Deerlin, Vivianna M; Grossman, Murray; Lee, Virginia M-Y; Trojanowski, John Q

    2017-09-06

    Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is associated with the accumulation of pathological neuronal and glial intracytoplasmic inclusions as well as accompanying neuron loss. We explored if cortical neurons detected by NeuN decreased with increasing TDP-43 inclusion pathology in the postmortem brains of 63 patients with sporadic and familial FTLD-TDP. Semi-automated quantitative algorithms to quantify histology in tissue sections stained with antibodies specific for pathological or phosphorylated TDP-43 (pTDP-43) and NeuN were developed and validated in affected (cerebral cortex) and minimally affected (cerebellar cortex) brain regions of FTLD-TDP cases. Immunohistochemistry (IHC) for NeuN and other neuronal markers found numerous neurons lacking reactivity, suggesting NeuN may reflect neuron health rather than neuron loss in FTLD. We found three patterns of NeuN and pTDP-43 reactivity in our sample of cortical tissue representing three intracortical region-specific stages of FTLD-TDP progression: Group 1 showed low levels of pathological pTDP-43 and high levels NeuN, while Group 2 showed increased levels of pTDP-43, and Group 3 tissues were characterized by reduced staining for both pTDP-43 and NeuN. Comparison of non-C9orf72/GRN FTLD-TDP with cases linked to both GRN mutations and C9orf72 expansions showed a significantly increased frequency of Group 3 histopathology in the latter cases, suggesting more advanced cortical disease. Hence, we propose that IHC profiles of pTDP-43 and NeuN reflect the burden of pTDP-43 and its deleterious effects on neuron health.

  17. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene.

    PubMed

    Mercado, Pablo Arrisi; Ayala, Youhna M; Romano, Maurizio; Buratti, Emanuele; Baralle, Francisco E

    2005-01-01

    Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA.

  18. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene

    PubMed Central

    Mercado, Pablo Arrisi; Ayala, Youhna M.; Romano, Maurizio; Buratti, Emanuele; Baralle, Francisco E.

    2005-01-01

    Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA. PMID:16254078

  19. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies

    PubMed Central

    2013-01-01

    Background Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy of the elderly that does not show significant clinical improvement in response to steroid therapy. Distinguishing IBM from polymyositis (PM) is clinically important since PM is steroid-responsive; however, the two conditions can show substantial histologic overlap. Results We performed quantitative immunohistochemistry for (1) autophagic markers LC3 and p62 and (2) protein aggregation marker TDP-43 in 53 subjects with pathologically diagnosed PM, IBM, and two intermediate T cell-mediated inflammatory myopathies (polymyositis with COX-negative fibers and possible IBM). The percentage of stained fibers was significantly higher in IBM than PM for all three immunostains, but the markers varied in sensitivity and specificity. In particular, both LC3 and p62 were sensitive markers of IBM, but the tradeoff between sensitivity and specificity was smaller (and diagnostic utility thus greater) for LC3 than for p62. In contrast, TDP-43 immunopositivity was highly specific for IBM, but the sensitivity of this test was low, with definitive staining present in just 67% of IBM cases. Conclusions To differentiate IBM from PM, we thus recommend using a panel of LC3 and TDP-43 antibodies: the finding of <14% LC3-positive fibers helps exclude IBM, while >7% of TDP-43-positive fibers strongly supports a diagnosis of IBM. These data provide support for the hypothesis that disruption of autophagy and protein aggregation contribute to IBM pathogenesis. PMID:24252466

  20. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies.

    PubMed

    Hiniker, Annie; Daniels, Brianne H; Lee, Han S; Margeta, Marta

    2013-07-01

    Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy of the elderly that does not show significant clinical improvement in response to steroid therapy. Distinguishing IBM from polymyositis (PM) is clinically important since PM is steroid-responsive; however, the two conditions can show substantial histologic overlap. We performed quantitative immunohistochemistry for (1) autophagic markers LC3 and p62 and (2) protein aggregation marker TDP-43 in 53 subjects with pathologically diagnosed PM, IBM, and two intermediate T cell-mediated inflammatory myopathies (polymyositis with COX-negative fibers and possible IBM). The percentage of stained fibers was significantly higher in IBM than PM for all three immunostains, but the markers varied in sensitivity and specificity. In particular, both LC3 and p62 were sensitive markers of IBM, but the tradeoff between sensitivity and specificity was smaller (and diagnostic utility thus greater) for LC3 than for p62. In contrast, TDP-43 immunopositivity was highly specific for IBM, but the sensitivity of this test was low, with definitive staining present in just 67% of IBM cases. To differentiate IBM from PM, we thus recommend using a panel of LC3 and TDP-43 antibodies: the finding of <14% LC3-positive fibers helps exclude IBM, while >7% of TDP-43-positive fibers strongly supports a diagnosis of IBM. These data provide support for the hypothesis that disruption of autophagy and protein aggregation contribute to IBM pathogenesis.

  1. Inter-domain interactions of TDP-43 as decoded by NMR.

    PubMed

    Wei, Yuanyuan; Lim, Liangzhong; Wang, Lu; Song, Jianxing

    2016-04-29

    TDP-43 inclusions have been found in ∼97% ALS as well as an increasing spectrum of other neurodegenerative diseases including Alzheimer's. TDP-43 contains an ubiquitin-like fold, two RRMs and a prion-like domain, but whether they interact with each other remains unknown due to being intrinsically aggregation-prone. Nevertheless, this knowledge is pivotal to understanding physiological functions and pathological roles of TDP-43. Here as facilitated by our previous discovery which allowed NMR characterization of TDP-43 and its five dissected fragments, we successfully decoded that TDP-43 does have dynamic inter-domain interactions, which are coordinated by the intrinsically-disordered prion-like domain. Thus, TDP-43 appears to undergo conformational exchanges between "closed" and "open" states which are needed for its functions. Our study thus offers a mechanism by which cellular processes might control TDP-43 physiology and proteinopathy by mediating its inter-domain interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia.

    PubMed

    Halliday, Glenda M; Kiernan, Matthew C; Kril, Jillian J; Mito, Remika; Masuda-Suzukake, Masami; Hasegawa, Masato; McCann, Heather; Bartley, Lauren; Dobson-Stone, Carol; Kwok, John B J; Hornberger, Michael; Hodges, John R; Tan, Rachel H

    2016-07-15

    The hypoglossal nucleus was recently identified as a key brain region in which the presence of TDP-43 pathology could accurately discriminate TDP-43 proteinopathy cases with clinical amyotrophic lateral sclerosis (ALS). The objective of the present study was to assess the hypoglossal nucleus in behavioral variant frontotemporal dementia (bvFTD), and determine whether TDP-43 in this region is associated with clinical ALS. Twenty-nine cases with neuropathological FTLD-TDP and clinical bvFTD that had not been previously assessed for hypoglossal TDP-43 pathology were included in this study. Of these 29 cases, 41% (n=12) had a dual diagnosis of bvFTD-ALS at presentation, all 100% (n=12) of which demonstrated hypoglossal TDP-43 pathology. Of the 59% (n=17) cohort that presented with pure bvFTD, 35% (n=6) were identified with hypoglossal TDP-43 pathology. Review of the case files of all pure bvFTD cases revealed evidence of possible or probable ALS in 5 of the 6 hypoglossal-positive cases (83%) towards the end of disease, and this was absent from all cases without such pathology. In conclusion, the present study validates grading the presence of TDP-43 in the hypoglossal nucleus for the pathological identification of bvFTD cases with clinical ALS, and extends this to include the identification of cases with possible ALS at end-stage.

  3. Nanoscale Analysis Reveals the Maturation of Neurodegeneration-Associated Protein Aggregates: Grown in mRNA Granules then Released by Stress Granule Proteins.

    PubMed

    Abrakhi, Sanae; Kretov, Dmitry A; Desforges, Bénédicte; Dobra, Ioana; Bouhss, Ahmed; Pastré, David; Hamon, Loic

    2017-07-25

    TDP-43 and FUS are two mRNA-binding proteins associated with neurodegenerative diseases that form cytoplasmic inclusions with prion-like properties in affected neurons. Documenting the early stages of the formation of TDP-43 or FUS protein aggregates and the role of mRNA stress granules that are considered as critical intermediates for protein aggregation is therefore of interest to understand disease propagation. Here, we developed a single molecule approach via atomic force microscopy (AFM), which provides structural information out of reach by fluorescence microscopy. In addition, the aggregation process can be probed in the test tube without separating the interacting partners, which would affect the thermodynamic equilibrium. The results demonstrate that isolated mRNA molecules serve as crucibles to promote TDP-43 and FUS multimerization. Their subsequent merging results in the formation of mRNA granules containing TDP-43 and FUS aggregates. Interestingly, TDP-43 or FUS protein aggregates can be released from mRNA granules by either YB-1 or G3BP1, two stress granule proteins that compete for the binding to mRNA with TDP-43 and FUS. Altogether, the results indicate that age-related successive assembly/disassembly of stress granules in neurons, regulated by mRNA-binding proteins such as YB-1 and G3BP1, could be a source of protein aggregation.

  4. 14-3-3 eta isoform colocalizes TDP-43 on the coarse granules in the anterior horn cells of patients with sporadic amyotrophic lateral sclerosis.

    PubMed

    Umahara, Takahiko; Uchihara, Toshiki; Shibata, Noriyuki; Nakamura, Ayako; Hanyu, Haruo

    2016-09-01

    The immunolocalization of the 14-3-3 eta isoform in the anterior horn cells (AHCs) of patients with sporadic amyotrophic lateral sclerosis (ALS) and controls was examined. Compared with the immunolocalization of other 14-3-3 isoforms, the immunolocalization of the 14-3-3 eta isoform was either synaptic at the periphery of AHCs, spindle-shaped in neurites, or granular in the cytoplasm. By double labeling with phosphorylated (p-)TDP-43, the transactivation response DNA binding protein of 43kDa (TDP-43) demonstrated frequent colocalization of the 14-3-3 eta isoform in granular structures (90%) and spindle-shaped structures (85.4%), but not in p-TDP-43-positive round inclusions. It is speculated that the 14-3-3 eta isoform is associated with not only a synaptic pathology of ALS but also TDP-positive small lesions in the cytoplasm and neurites. The absence of eta-like immunoreactivity in p-TDP-43-positive large inclusions suggests the restricted relevance of the 14-3-3 eta isoform during ALS pathogenesis to some phases of the p-TDP pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS.

    PubMed

    Chang, Cheng-Fu; Lee, Yi-Chao; Lee, Kuen-Haur; Lin, Hui-Ching; Chen, Chia-Ling; Shen, Che-Kun James; Huang, Chi-Chen

    2016-10-21

    In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson's, Huntington's and Alzheimer's diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal

  6. TDP-43 pathology in primary progressive aphasia and frontotemporal dementia with pathologic Alzheimer disease

    PubMed Central

    Mishra, Manjari; Hatanpaa, Kimmo J.; White, Charles L.; Johnson, Nancy; Rademaker, Alfred; Weitner, Bing Bing; Deng, Han-Xiang; Dubner, Steven D.; Weintraub, Sandra; Mesulam, Marsel

    2010-01-01

    The clinical syndrome of primary progressive aphasia (PPA) can be associated with a variety of neuropathologic diagnoses at autopsy. Thirty percent of cases have Alzheimer disease (AD) pathology, most often in the usual distribution, which defies principles of brain–behavior organization, in that aphasia is not symptomatic of limbic disease. The present study investigated whether concomitant TDP-43 pathology could resolve the lack of clinicoanatomic concordance. In this paper, 16 cases of clinical PPA and 10 cases of primarily non-aphasic frontotemporal dementia (FTD), all with AD pathology, were investigated to determine whether their atypical clinical phenotypes reflected the presence of additional TDP-43 pathology. A comparison group consisted of 27 cases of pathologic AD with the typical amnestic clinical phenotype of probable AD. Concomitant TDP-43 pathology was discovered in only three of the FTD and PPA but in more than half of the typical amnestic clinical phenotypes. Hippocampal sclerosis (HS) was closely associated with TDP-43 pathology when all groups were combined for analysis. Therefore, the clinical phenotypes of PPA and FTD in cases with pathologic AD are only rarely associated with TDP-43 proteinopathy. Furthermore, medial temporal TDP-43 pathology is more tightly linked to HS than to clinical phenotype. These findings challenge the current notions about clinicopathologic correlation, especially about the role of multiple pathologies. PMID:20361198

  7. Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro studies.

    PubMed

    Jayakumar, Arumugam Radhakrishnan; Tong, Xiao Y; Shamaladevi, Nagarajarao; Barcelona, Stephanie; Gaidosh, Gabriel; Agarwal, Apeksha; Norenberg, Michael D

    2017-02-01

    Transactivating DNA-binding protein-43 (TDP-43) inclusions and the accumulation of phosphorylated and ubiquitinated tau proteins (p-tau) have been identified in postmortem brain specimens from patients with chronic traumatic encephalopathy (CTE). To examine whether these proteins contribute to the development of CTE, we utilized an in vitro trauma system known to reproduce many of the findings observed in humans and experimental animals with traumatic brain injury. Accordingly, we examined the role of TDP-43 and Tau in an in vitro model of trauma, and determined whether these proteins contribute to the defective neuronal integrity associated with CNS trauma. Single or multiple episodes of trauma to cultured neurons resulted in a time-dependent increase in cytosolic levels of phosphorylated TDP-43 (p-TDP-43). Trauma to cultured neurons also caused an increase in levels of casein kinase 1 epsilon (CK1ε), and ubiquitinated p-TDP-43, along with a decrease in importin-β (all factors known to mediate the "TDP-43 proteinopathy"). Defective neuronal integrity, as evidenced by a reduction in levels of the NR1 subunit of the NMDA receptor, and in PSD95, along with increased levels of phosphorylated tau were also observed. Additionally, increased levels of intra- and extracellular thrombospondin-1 (TSP-1) (a factor known to regulate neuronal integrity) were observed in cultured astrocytes at early stages of trauma, while at later stages decreased levels were identified. The addition of recombinant TSP-1, conditioned media from cultured astrocytes at early stages of trauma, or the CK1ε inhibitor PF4800567 hydrochloride to traumatized cultured neurons reduced levels of p-TDP-43, and reversed the trauma-induced decline in NR1 subunit of the NMDA receptor and PSD95 levels. These findings suggest that a trauma-induced increase in TDP-43 phosphorylation contributes to defective neuronal integrity, and that increasing TSP-1 levels may represent a useful therapeutic approach for

  8. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments.

    PubMed

    Joyce, Peter I; Fratta, Pietro; Fisher, Elizabeth M C; Acevedo-Arozena, Abraham

    2011-08-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.

  9. Selective Motor Neuron Resistance and Recovery in a New Inducible Mouse Model of TDP-43 Proteinopathy.

    PubMed

    Spiller, Krista J; Cheung, Claudia J; Restrepo, Clark R; Kwong, Linda K; Stieber, Anna M; Trojanowski, John Q; Lee, Virginia M-Y

    2016-07-20

    Motor neurons (MNs) are the neuronal class that is principally affected in amyotrophic lateral sclerosis (ALS), but it is widely known that individual motor pools do not succumb to degeneration simultaneously. Because >90% of ALS patients have an accumulation of cytoplasmic TDP-43 aggregates in postmortem brain and spinal cord (SC), it has been suggested that these inclusions in a given population may trigger its death. We investigated seven MN pools in our new inducible rNLS8 transgenic (Tg) mouse model of TDP-43 proteinopathy and found striking differences in MN responses to TDP-43 pathology. Despite widespread neuronal expression of cytoplasmic human TDP-43, only MNs in the hypoglossal nucleus and the SC are lost after 8 weeks of transgene expression, whereas those in the oculomotor, trigeminal, and facial nuclei are spared. Within the SC, slow MNs survive to end stage, whereas fast fatigable MNs are lost. Correspondingly, axonal dieback occurs first from fast-twitch muscle fibers, whereas slow-twitch fibers remain innervated. Individual pools show differences in the downregulation of endogenous nuclear TDP-43, but this does not fully account for vulnerability to degenerate. After transgene suppression, resistant MNs sprout collaterals to reinnervate previously denervated neuromuscular junctions concurrently with expression of matrix metalloproteinase 9 (MMP-9), a marker of fast MNs. Therefore, although pathological TDP-43 is linked to MN degeneration, the process is not stochastic and mirrors the highly selective patterns of MN degeneration observed in ALS patients. Because TDP-43 is the major pathological hallmark of amyotrophic lateral sclerosis (ALS), we generated mice in which mutant human TDP-43 expression causes progressive neuron loss. We show that these rNLS8 mice have a pattern of axonal dieback and cell death that mirrors that often observed in human patients. This finding demonstrates the diversity of motor neuron (MN) populations in their response

  10. Pathological tau deposition in Motor Neurone Disease and frontotemporal lobar degeneration associated with TDP-43 proteinopathy.

    PubMed

    Behrouzi, Roya; Liu, Xiawei; Wu, Dongyue; Robinson, Andrew C; Tanaguchi-Watanabe, Sayuri; Rollinson, Sara; Shi, Jing; Tian, Jinzhou; Hamdalla, Hisham H M; Ealing, John; Richardson, Anna; Jones, Matthew; Pickering-Brown, Stuart; Davidson, Yvonne S; Strong, Michael J; Hasegawa, Masato; Snowden, Julie S; Mann, David M A

    2016-03-31

    It has been suggested that patients with motor neurone disease (MND) and those with MND combined with behavioural variant frontotemporal dementia (bvFTD) (ie FTD + MND) or with FTD alone might exist on a continuum based on commonalities of neuropathology and/or genetic risk. Moreover, it has been reported that both a neuronal and a glial cell tauopathy can accompany the TDP-43 proteinopathy in patients with motor neurone disease (MND) with cognitive changes, and that the tauopathy may be fundamental to disease pathogenesis and clinical phenotype. In the present study, we sought to substantiate these latter findings, and test this concept of a pathological continuum, in a consecutive series of 41 patients with MND, 16 with FTD + MND and 23 with FTD without MND. Paraffin sections of frontal, entorhinal, temporal and occipital cortex and hippocampus were immunostained for tau pathology using anti-tau antibodies, AT8, pThr(175) and pThr(217), and for amyloid β protein (Aβ) using 4G8 antibody. Twenty four (59 %) patients with MND, 7 (44 %) patients with FTD + MND and 10 (43 %) patients with FTD showed 'significant' tau pathology (ie more than just an isolated neurofibrillary tangle or a few neuropil threads in one or more brain regions examined). In most instances, this bore the histological characteristics of an Alzheimer's disease process involving entorhinal cortex, hippocampus, temporal cortex, frontal cortex and occipital cortex in decreasing frequency, accompanied by a deposition of Aβ up to Thal phase 3, though 2 patients with MND, and 1 with FTD did show tau pathology beyond Braak stage III. Four other patients with MND showed novel neuronal tau pathology, within the frontal cortex alone, specifically detected by pThr(175) antibody, which was characterised by a fine granular or more clumped aggregation of tau without neurofibrillary tangles or neuropil threads. However, none of these 4 patients had clinically evident cognitive disorder, and

  11. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43

    NASA Astrophysics Data System (ADS)

    Stoica, Radu; de Vos, Kurt J.; Paillusson, Sébastien; Mueller, Sarah; Sancho, Rosa M.; Lau, Kwok-Fai; Vizcay-Barrena, Gema; Lin, Wen-Lang; Xu, Ya-Fei; Lewis, Jada; Dickson, Dennis W.; Petrucelli, Leonard; Mitchell, Jacqueline C.; Shaw, Christopher E.; Miller, Christopher C. J.

    2014-06-01

    Mitochondria and the endoplasmic reticulum (ER) form tight structural associations and these facilitate a number of cellular functions. However, the mechanisms by which regions of the ER become tethered to mitochondria are not properly known. Understanding these mechanisms is not just important for comprehending fundamental physiological processes but also for understanding pathogenic processes in some disease states. In particular, disruption to ER-mitochondria associations is linked to some neurodegenerative diseases. Here we show that the ER-resident protein VAPB interacts with the mitochondrial protein tyrosine phosphatase-interacting protein-51 (PTPIP51) to regulate ER-mitochondria associations. Moreover, we demonstrate that TDP-43, a protein pathologically linked to amyotrophic lateral sclerosis and fronto-temporal dementia perturbs ER-mitochondria interactions and that this is associated with disruption to the VAPB-PTPIP51 interaction and cellular Ca2+ homeostasis. Finally, we show that overexpression of TDP-43 leads to activation of glycogen synthase kinase-3β (GSK-3β) and that GSK-3β regulates the VAPB-PTPIP51 interaction. Our results describe a new pathogenic mechanism for TDP-43.

  12. ITH33/IQM9.21 provides neuroprotection in a novel ALS model based on TDP-43 and Na(+)/Ca(2+) overload induced by VTD.

    PubMed

    Mouhid Al-Achbili, Lamia; Moreno-Ortega, Ana J; Matías-Guiu, Jorge; Cano-Abad, María F; Ruiz-Nuño, Ana

    2016-10-28

    Therapeutic options for amyotrophic lateral sclerosis (ALS) are scarce and controversial. Although the aetiology of neuronal vulnerability is unknown, growing evidence supports a complex network in which multiple toxicity pathways, rather than a single mechanism, are involved in the pathogenesis of ALS. However, most cellular models only explain single pathogenic mechanisms. The present study proposes the two main cytotoxic mechanisms: (1) veratridine (VTD), which induced Na(+) and Ca(2+) overload; and (2) the TARD DNA-binding protein 43 (TDP-43) in NSC-34 cell line as an in vitro model of ALS. The study was carried out by MTT as an indirect measurement of cell viability and by flow cytometry to determine cell death stages. The impact of Ca(2+) overload combined with TDP-43 overexpression increased early apoptosis of NSC-34 cells. Furthermore, we found that ITH33/IQM9.21 (ITH33) exerted a neuroprotective effect in this model by reducing activation of the apoptotic pathway. Therefore, treatment with VTD in TDP-43 overexpressing NSC-34 cells is a good in vitro ALS model that makes it possible to test new neuroprotective compounds such as ITH33.

  13. Amygdala TDP-43 Pathology in Frontotemporal Lobar Degeneration and Motor Neuron Disease.

    PubMed

    Takeda, Takahiro; Seilhean, Danielle; Le Ber, Isabelle; Millecamps, Stéphanie; Sazdovitch, Véronique; Kitagawa, Kazuo; Uchihara, Toshiki; Duyckaerts, Charles

    2017-09-01

    TDP-43-positive inclusions are present in the amygdala in frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND) including amyotrophic lateral sclerosis. Behavioral abnormalities, one of the chief symptoms of FTLD, could be, at least partly, related to amygdala pathology. We examined TDP-43 inclusions in the amygdala of patients with sporadic FTLD/MND (sFTLD/MND), FTLD/MND with mutation of the C9ORF72 (FTLD/MND-C9) and FTLD with mutation of the progranulin (FTLD-GRN). TDP-43 inclusions were common in each one of these subtypes, which can otherwise be distinguished on topographical and genetic grounds. Conventional and immunological stainings were performed and we quantified the numerical density of inclusions on a regional basis. TDP-43 inclusions in amygdala could be seen in 10 out of 26 sFTLD/MND cases, 5 out of 9 FTLD/MND-C9 cases, and all 4 FTLD-GRN cases. Their numerical density was lower in FTLD/MND-C9 than in sFTLD/MND and FTLD-GRN. TDP-43 inclusions were more numerous in the ventral region of the basolateral nucleus group in all subtypes. This contrast was apparent in sporadic and C9-mutated FTLD/MND, while it was less evident in FTLD-GRN. Such differences in subregional involvement of amygdala may be related to the region-specific neuronal connections that are differentially affected in FTLD/MND and FTLD-GRN. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  14. Shared Molecular Mechanisms in Alzheimer's Disease and Amyotrophic Lateral Sclerosis: Neurofilament-Dependent Transport of sAPP, FUS, TDP-43 and SOD1, with Endoplasmic Reticulum-Like Tubules.

    PubMed

    Muresan, Virgil; Ladescu Muresan, Zoia

    2016-01-01

    Amyotrophic lateral sclerosis (ALS), a debilitating neurodegenerative disorder of the motor neurons, leads to the disorganization of the neurofilament (NF) cytoskeleton and - ultimately - the deterioration of the neuromuscular junction. Some familial cases of ALS are caused by mutated FUS, TDP-43 or SOD1; it is thought that the mutated proteins inflict pathology either by gain or loss of function. The proper function of the neuromuscular junction requires sAPP, a soluble proteolytic fragment of the amyloid-β precursor protein (APP) - a transmembrane protein implicated in the pathology of Alzheimer's disease (AD). Whether sAPP, FUS, TDP-43 and SOD1 are mechanistically linked in a common pathway deregulated in both AD and ALS is not known. We show that sAPP, TDP-43, FUS and SOD1 are transported to neurite terminals by a mechanism that involves endoplasmic reticulum (ER)-like tubules and requires peripherin NFs. The transport of these proteins, and the translocation of the ER protein reticulon 4 (Rtn4) into neurites was studied in CAD cells, a brainstem-derived neuronal cell line highly relevant to AD and ALS. We show that a significant fraction of sAPP is generated in the soma and accumulates in a juxtanuclear ER subdomain. In neurites, sAPP localizes to Rtn4-positive ER-like tubules that extend from the soma into the growth cone and colocalizes with peripherin NFs. Knocking down peripherin disrupts the NF network and diminishes the accumulation of sAPP, TDP-43, FUS, SOD1 and Rtn4 at terminals. We propose that the impediment of a common, ER-mediated mechanism of transport of sAPP, TDP-43, FUS and SOD1, caused by a disrupted NF network, could be part of the mechanisms leading to AD and ALS. © 2015 S. Karger AG, Basel.

  15. Familial Amyotrophic Lateral Sclerosis-linked Mutations in Profilin 1 Exacerbate TDP-43-induced Degeneration in the Retina of Drosophila melanogaster through an Increase in the Cytoplasmic Localization of TDP-43.

    PubMed

    Matsukawa, Koji; Hashimoto, Tadafumi; Matsumoto, Taisei; Ihara, Ryoko; Chihara, Takahiro; Miura, Masayuki; Wakabayashi, Tomoko; Iwatsubo, Takeshi

    2016-11-04

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons. Causative genes for familial ALS (fALS), e.g. TARDBP or FUS/TLS, have been found, among which mutations within the profilin 1 (PFN1) gene have recently been identified in ALS18. To elucidate the mechanism whereby PFN1 mutations lead to neuronal death, we generated transgenic Drosophila melanogaster overexpressing human PFN1 in the retinal photoreceptor neurons. Overexpression of wild-type or fALS mutant PFN1 caused no degenerative phenotypes in the retina. Double overexpression of fALS mutant PFN1 and human TDP-43 markedly exacerbated the TDP-43-induced retinal degeneration, i.e. vacuolation and thinning of the retina, whereas co-expression of wild-type PFN1 did not aggravate the degenerative phenotype. Notably, co-expression of TDP-43 with fALS mutant PFN1 increased the cytoplasmic localization of TDP-43, the latter remaining in nuclei upon co-expression with wild-type PFN1, whereas co-expression of TDP-43 lacking the nuclear localization signal with the fALS mutant PFN1 did not aggravate the retinal degeneration. Knockdown of endogenous Drosophila PFN1 did not alter the degenerative phenotypes of the retina in flies overexpressing wild-type TDP-43 These data suggest that ALS-linked PFN1 mutations exacerbate TDP-43-induced neurodegeneration in a gain-of-function manner, possibly by shifting the localization of TDP-43 from nuclei to cytoplasm. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. White matter pathology in sporadic frontotemporal lobar degeneration with TDP-43 proteinopathy.

    PubMed

    Armstrong, Richard A

    To characterize white matter pathology in frontotemporal lobar degeneration (FTLD) with TDP-43 proteinopathy (FTLD-TDP) and its relationship to gray matter pathology. Fiber tracts from frontal and temporal lobes of 10 sporadic cases of FTLD and 8 controls. Density and spatial patterns of vacuolation, glial cell nuclei, and glial inclusions (GI) were studied in 4 fiber tracts from each case. Densities of vacuoles but not glial cells were greater in FTLD-TDP than controls. No GI were observed in controls, while in FTLD-TDP, greatest densities of GI were observed in the cortex of early-onset cases. Vacuoles, glial cell nuclei, and GI were distributed in clusters which were regularly distributed across the tract. Densities of vacuoles in white matter were positively correlated with those in adjacent gray matter, and correlations were also present between GI in white matter and TDP-43-immunoreactive pathology in gray matter. (1) Degeneration of white matter in sporadic FTLD-TDP was characterized by increased vacuolation and GI, (2) pathological changes were topographically distributed, which suggests propagation of pathological TDP-43 in specific groups of fibers, and (3) both white matter pathology and gray matter pathology need to be considered to quantify the pathological "load" in FTLD-TDP.
.

  17. Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy

    PubMed Central

    Irwin, David J.; Byrne, Matthew D.; McMillan, Corey T.; Cooper, Felicia; Arnold, Steven E.; Lee, Edward B.; Van Deerlin, Vivianna M.; Xie, Sharon X.; Lee, Virginia M.-Y.; Grossman, Murray; Trojanowski, John Q.

    2015-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. PMID:26538548

  18. "New Old Pathologies": AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS).

    PubMed

    Nelson, Peter T; Trojanowski, John Q; Abner, Erin L; Al-Janabi, Omar M; Jicha, Gregory A; Schmitt, Frederick A; Smith, Charles D; Fardo, David W; Wang, Wang-Xia; Kryscio, Richard J; Neltner, Janna H; Kukull, Walter A; Cykowski, Matthew D; Van Eldik, Linda J; Ighodaro, Eseosa T

    2016-06-01

    The pathology-based classification of Alzheimer's disease (AD) and other neurodegenerative diseases is a work in progress that is important for both clinicians and basic scientists. Analyses of large autopsy series, biomarker studies, and genomics analyses have provided important insights about AD and shed light on previously unrecognized conditions, enabling a deeper understanding of neurodegenerative diseases in general. After demonstrating the importance of correct disease classification for AD and primary age-related tauopathy, we emphasize the public health impact of an underappreciated AD "mimic," which has been termed "hippocampal sclerosis of aging" or "hippocampal sclerosis dementia." This pathology affects >20% of individuals older than 85 years and is strongly associated with cognitive impairment. In this review, we provide an overview of current hypotheses about how genetic risk factors (GRN, TMEM106B, ABCC9, and KCNMB2), and other pathogenetic influences contribute to TDP-43 pathology and hippocampal sclerosis. Because hippocampal sclerosis of aging affects the "oldest-old" with arteriolosclerosis and TDP-43 pathologies that extend well beyond the hippocampus, more appropriate terminology for this disease is required. We recommend "cerebral age-related TDP-43 and sclerosis" (CARTS). A detailed case report is presented, which includes neuroimaging and longitudinal neurocognitive data. Finally, we suggest a neuropathology-based diagnostic rubric for CARTS.

  19. Cortical synaptic and dendritic spine abnormalities in a presymptomatic TDP-43 model of amyotrophic lateral sclerosis

    PubMed Central

    Fogarty, Matthew J.; Klenowski, Paul M.; Lee, John D.; Drieberg-Thompson, Joy R.; Bartlett, Selena E.; Ngo, Shyuan T.; Hilliard, Massimo A.; Bellingham, Mark C.; Noakes, Peter G.

    2016-01-01

    Layer V pyramidal neurons (LVPNs) within the motor cortex integrate sensory cues and co-ordinate voluntary control of motor output. In amyotrophic lateral sclerosis (ALS) LVPNs and spinal motor neurons degenerate. The pathogenesis of neural degeneration is unknown in ALS; 10% of cases have a genetic cause, whereas 90% are sporadic, with most of the latter showing TDP-43 inclusions. Clinical and experimental evidence implicate excitotoxicity as a prime aetiological candidate. Using patch clamp and dye-filling techniques in brain slices, combined with high-resolution confocal microscopy, we report increased excitatory synaptic inputs and dendritic spine densities in early presymptomatic mice carrying a TDP-43Q331K mutation. These findings demonstrate substantive alterations in the motor cortex neural network, long before an overt degenerative phenotype has been reported. We conclude that increased excitatory neurotransmission is a common pathophysiology amongst differing genetic cases of ALS and may be of relevance to the 95% of sporadic ALS cases that exhibit TDP-43 inclusions. PMID:27897242

  20. Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy.

    PubMed

    Irwin, David J; Byrne, Matthew D; McMillan, Corey T; Cooper, Felicia; Arnold, Steven E; Lee, Edward B; Van Deerlin, Vivianna M; Xie, Sharon X; Lee, Virginia M-Y; Grossman, Murray; Trojanowski, John Q

    2016-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. © The Author(s) 2015.

  1. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia.

    PubMed

    Takeuchi, Ryoko; Toyoshima, Yasuko; Tada, Mari; Tanaka, Hidetomo; Shimizu, Hiroshi; Shiga, Atsushi; Miura, Takeshi; Aoki, Kenju; Aikawa, Akane; Ishizawa, Shin; Ikeuchi, Takeshi; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) may be accompanied by frontotemporal dementia (FTD). We report a case of glial mixed tau and TDP-43 proteinopathies in a Japanese patient diagnosed clinically as having ALS-D. Autopsy revealed loss of lower motor neurons and degeneration of the pyramidal tracts in the spinal cord and brain stem. The brain showed frontotemporal lobar degeneration (FTLD), the most severe neuronal loss and gliosis being evident in the precentral gyrus. Although less severe, such changes were also observed in other brain regions, including the basal ganglia and substantia nigra. AT8 immunostaining revealed that predominant occurrence of astrocytic tau lesions termed globular astrocytic inclusions (GAIs) was a feature of the affected regions. These GAIs were Gallyas-Braak negative. Neuronal and oligodendrocytic tau lesions were comparatively scarce. pS409/410 immunostaining also revealed similar neuronal and glial TDP-43 lesions. Interestingly, occasional co-localization of tau and TDP-43 was evident in the GAIs. Immunoblot analyses revealed band patterns characteristic of a 4-repeat (4R) tauopathy, corticobasal degeneration and a TDP-43 proteinopathy, ALS/FTLD-TDP Type B. No mutations were found in the MAPT or TDP-43 genes. We consider that this patient harbored a distinct, sporadic globular glial mixed 4R tau and TDP-43 proteinopathy associated with motor neuron disease and FTD.

  2. Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP-43-negative inclusions of C9ORF72-ALS.

    PubMed

    Bury, Joanna J; Highley, J Robin; Cooper-Knock, Johnathan; Goodall, Emily F; Higginbottom, Adrian; McDermott, Christopher J; Ince, Paul G; Shaw, Pamela J; Kirby, Janine

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is characterized by motor neurone loss resulting in muscle weakness, spasticity and ultimately death. 5-10% are caused by inherited mutations, most commonly C9ORF72, SOD1, TARDBP and FUS. Rarer genetic causes of ALS include mutation of optineurin (mt OPTN). Furthermore, optineurin protein has been localized to the ubiquitylated aggregates in several neurodegenerative diseases, including ALS. This study: (i) investigated the frequency of mt OPTN in ALS patients in England; (ii) characterized the clinical and neuropathological features of ALS associated with a mt OPTN; and (iii) investigated optineurin neuropathology in C9ORF72-related ALS (C9ORF72-ALS). We identified a heterozygous p.E322K missense mutation in exon 10 of OPTN in one familial ALS patient who additionally had a C9ORF72 mutation. This patient had bulbar, limb and respiratory disease without cognitive problems. Neuropathology revealed motor neurone loss, trans-activation response DNA protein 43 (TDP-43)-positive neuronal and glial cytoplasmic inclusions together with TDP-43-negative neuronal cytoplasmic inclusions in extra motor regions that are characteristic of C9ORF72-ALS. We have demonstrated that both TDP-43-positive and negative inclusion types had positive staining for optineurin by immunohistochemistry. We went on to show that optineurin was present in TDP-43-negative cytoplasmic extra motor inclusions in C9ORF72-ALS cases that do not carry mt OPTN. We conclude that: (i) OPTN mutations are associated with ALS; (ii) optineurin protein is present in a subset of the extramotor inclusions of C9ORF72-ALS; (iii) It is not uncommon for multiple ALS-causing mutations to occur in the same patient; and (iv) studies of optineurin are likely to provide useful dataregarding the pathophysiology of ALS and neurodegeneration. © 2015 Japanese Society of Neuropathology.

  3. Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31.

    PubMed

    Ishiguro, Taro; Sato, Nozomu; Ueyama, Morio; Fujikake, Nobuhiro; Sellier, Chantal; Kanegami, Akemi; Tokuda, Eiichi; Zamiri, Bita; Gall-Duncan, Terence; Mirceta, Mila; Furukawa, Yoshiaki; Yokota, Takanori; Wada, Keiji; Taylor, J Paul; Pearson, Christopher E; Charlet-Berguerand, Nicolas; Mizusawa, Hidehiro; Nagai, Yoshitaka; Ishikawa, Kinya

    2017-04-05

    Microsatellite expansion disorders are pathologically characterized by RNA foci formation and repeat-associated non-AUG (RAN) translation. However, their underlying pathomechanisms and regulation of RAN translation remain unknown. We report that expression of expanded UGGAA (UGGAAexp) repeats, responsible for spinocerebellar ataxia type 31 (SCA31) in Drosophila, causes neurodegeneration accompanied by accumulation of UGGAAexp RNA foci and translation of repeat-associated pentapeptide repeat (PPR) proteins, consistent with observations in SCA31 patient brains. We revealed that motor-neuron disease (MND)-linked RNA-binding proteins (RBPs), TDP-43, FUS, and hnRNPA2B1, bind to and induce structural alteration of UGGAAexp. These RBPs suppress UGGAAexp-mediated toxicity in Drosophila by functioning as RNA chaperones for proper UGGAAexp folding and regulation of PPR translation. Furthermore, nontoxic short UGGAA repeat RNA suppressed mutated RBP aggregation and toxicity in MND Drosophila models. Thus, functional crosstalk of the RNA/RBP network regulates their own quality and balance, suggesting convergence of pathomechanisms in microsatellite expansion disorders and RBP proteinopathies.

  4. ALS-causing cleavages of TDP-43 abolish its RRM2 structure and unlock CTD for enhanced aggregation and toxicity.

    PubMed

    Wei, Yuanyuan; Lim, Liangzhong; Wang, Lu; Song, Jianxing

    2017-04-15

    Pathological TDP-43 is cleaved into various fragments. Two major groups of ∼35 and ∼25 kDa have enhanced aggregation and cytotoxicity but the underlying mechanisms remain elusive. While the ∼35-kDa fragments contain entire RRM1, RRM2 and C-terminal domain (CTD) with a middle hydrophobic segment flanked by two prion-like regions; the ∼25-kDa one cleaved at Arg208 only consists of the truncated RRM2 and CTD. Remarkably, the 25-kDa fragment was characterized to induce cell death by gain of cytotoxicity and recapitulate pathological features of TDP-43 proteinopathies. Here by NMR spectroscopy we successfully characterized residue-specific conformations and inter-domain interactions of several fragments and the results show that: 1) ALS-causing truncation at Arg208 completely eliminates the intrinsic ability of RRM2 to fold, and consequently the truncated RRM2 becomes highly disordered and prone to aggregation. 2) By disrupting inter-domain interactions upon deleting the N-terminal ubiquitin-like fold in TDP-43 (102-414), the extreme C-terminal prion-like region of CTD is released, while in TDP-43 (208-414), almost the whole CTD is unlocked. As CTD itself is prone to aggregation and highly toxic, our study suggests that at least two mechanisms, namely to abolish RRM2 structure and to release CTD, may account for enhanced aggregation and toxicity of pathologically cleaved TDP-43. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress

    PubMed Central

    Rojas, Fabiola; Cortes, Nicole; Abarzua, Sebastian; Dyrda, Agnieszka; van Zundert, Brigitte

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1G93A contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Nav) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1G93A and ACM-SOD1G86R) or TDP43 (ACM-TDP43A315T) mutants; we show that such exposure rapidly (within 30–60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Nav channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Nav channel activity. PMID:24570655

  6. A novel GRN mutation (GRN c.708+6_+9delTGAG) in frontotemporal lobar degeneration with TDP-43-positive inclusions: clinicopathologic report of 6 cases.

    PubMed

    Bit-Ivan, Esther N; Suh, Eunran; Shim, Hyung-Sub; Weintraub, Sandra; Hyman, Bradley T; Arnold, Steven E; McCarty-Wood, Elisabeth; Van Deerlin, Viviana M; Schneider, Julie A; Trojanowski, John Q; Frosch, Matthew P; Baker, Matt C; Rademakers, Rosa; Mesulam, Marsel; Bigio, Eileen H

    2014-05-01

    Understanding of frontotemporal lobar degeneration, the underlying pathology most often linked to the clinical diagnosis of frontotemporal dementia, is rapidly increasing. Mutations in 7 known genes (MAPT, GRN, C9orf72, VCP, CHMP2B, and, rarely, TARDBP and FUS) are associated with frontotemporal dementia, and the pathologic classification of frontotemporal lobar degeneration has recently been modified to reflect these discoveries. Mutations in one of these genes (GRN), which encodes progranulin, have been implicated in up to a quarter of cases of frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43)-positive inclusions; currently, there are more than 60 known pathogenic mutations of the gene. We present the clinical, pathologic, and genetic findings on 6 cases from 4 families, 5 of which were shown to have a novel GRN c.708+6_+9delTGAG mutation.

  7. [(18)F]AV-1451 binding in vivo mirrors the expected distribution of TDP-43 pathology in the semantic variant of primary progressive aphasia.

    PubMed

    Bevan-Jones, W R; Cope, Thomas E; Jones, P Simon; Passamonti, Luca; Hong, Young T; Fryer, Tim D; Arnold, Robert; Allinson, Kieren S J; Coles, Jonathan P; Aigbirhio, Franklin I; Patterson, Karalyn; O'Brien, John T; Rowe, James B

    2017-09-14

    Semantic dementia, including the semantic variant of primary progressive aphasia (svPPA), is strongly associated with TAR-DNA binding protein 43 (TDP-43) type C pathology. It provides a useful model in which to test the specificity of in vivo binding of the putative tau ligand [(18)F]AV-1451, which is elevated in frontotemporal lobar degeneration tauopathies. Seven patients (five with svPPA and two with 'right' semantic dementia) and 12 healthy controls underwent positron emission tomography brain imaging with [(18)F]AV-1451. Two independent preprocessing methods were used. For both methods, all patients had clearly elevated binding potential (BPND (non-displaceable binding potential)) in temporal lobes, lateralising according to their clinical syndrome and evident in raw images. Region of interest analyses confirmed that BPND was significantly increased in temporal regions, insula and fusiform gyrus, consistent with those areas known to be most affected in semantic dementia. Hierarchical cluster analysis, based on the distribution of [(18)F]AV-1451 binding potential, separated semantic dementia from controls with 86% sensitivity and 100% specificity. [(18)F]AV-1451 binds in vivo regions that are likely to contain TDP-43 and not significant tau pathology. While this suggests a non-tau target for [(18)F]AV-1451, the pathological regions in semantic dementia do not normally contain significant levels of recently proposed 'off target' binding sites for [(18)F]AV-1451, such as neuronal monoamine oxidase or neuromelanin. Postmortem and longitudinal data will be useful to assess the utility of [(18)F]AV-1451 to differentiate and track different types of frontotemporal lobar degeneration. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis

    PubMed Central

    Schulthess, Ines; Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Del Tredici, Kelly; Ludolph, Albert C.; Kassubek, Jan

    2016-01-01

    ‘Resting-state’ fMRI allows investigation of alterations in functional brain organization that are associated with an underlying pathological process. We determine whether abnormal connectivity in amyotrophic lateral sclerosis (ALS) in a priori-defined intrinsic functional connectivity networks, according to a neuropathological staging scheme and its DTI-based tract correlates, permits recognition of a sequential involvement of functional networks. ‘Resting-state’ fMRI data from 135 ALS patients and 56 matched healthy controls were investigated for the motor network (corresponding to neuropathological stage 1), brainstem (stage 2), ventral attention (stage 3), default mode/hippocampal network (stage 4), and primary visual network (as the control network) in a cross-sectional analysis and longitudinally in a subgroup of 27 patients after 6 months. Group comparison from cross-sectional and longitudinal data revealed significantly increased functional connectivity (p < 0.05, corrected) in all four investigated networks (but not in the control network), presenting as a network expansion that was correlated with physical disability. Increased connectivity of functional networks, as investigated in a hypothesis-driven approach, is characterized by network expansions and resembled the pattern of pTDP-43 pathology in ALS. However, our data did not allow for the recognition of a sequential involvement of functional connectivity networks at the individual level. PMID:27929102

  9. TAR DNA-binding protein 43 pathology in Alzheimer's disease with psychosis

    PubMed Central

    Vatsavayi, Anil Varma V.; Kofler, Julia; DeMichele-Sweet, Mary Ann A.; Murray, Patrick S.; Lopez, Oscar L.; Sweet, Robert A.

    2014-01-01

    Background TAR DNA-binding protein 43 (TDP-43) has been identified as a major disease protein in frontotemporal lobar degeneration. More recently, TDP-43 proteinopathy has also been observed in Alzheimer's disease (AD) with a characteristic distribution of TDP-43 predominantly in the mesial temporal lobe, and to a lesser degree in the neocortical areas. AD subjects with psychotic symptoms (AD+P) represent a subgroup characterized by greater impairment of frontal cortex-dependent cognitive functions and more severe frontal cortical neuropathology. The aim of this study is to determine whether there is an association between TDP-43 pathology and AD+P. We hypothesized that TDP-43 pathology would be more frequent in AD+P than in AD without psychosis. Methods We studied the presence and distribution of TDP-43 pathology by immunohistochemistry in the dentate gyrus (DG) and prefrontal cortex (FC) of postmortem brain specimens from 68 subjects with a primary neuropathologic diagnosis of AD as determined by the Neuropathology Core of the University of Pittsburgh Alzheimer's Disease Research Center. Results Forty-five (66%) subjects were classified as AD+P. Fourteen (20.6%) subjects had TDP-43 pathology in DG, eight (11.8%) had TDP-43 pathology in FC, and six (8.8%) had TDP-43 pathology in both regions. TDP-43 in DG was not significantly associated with AD+P. However, TDP-43 in FC demonstrated a trend toward reduced likelihood of psychosis (p = 0.068). TDP-43 pathology in DG, but not FC, was significantly associated with greater age at death and longer duration of illness. Conclusions Our findings indicate that there was no association between concomitant TDP-43 pathology in DG or FC and AD+P. PMID:24588894

  10. Clinicopathological characterization of Pick's disease versus frontotemporal lobar degeneration with ubiquitin/TDP-43-positive inclusions.

    PubMed

    Yokota, Osamu; Tsuchiya, Kuniaki; Arai, Tetsuaki; Yagishita, Saburo; Matsubara, Osamu; Mochizuki, Akihide; Tamaoka, Akira; Kawamura, Mitsuru; Yoshida, Hidetoshi; Terada, Seishi; Ishizu, Hideki; Kuroda, Shigetoshi; Akiyama, Haruhiko

    2009-04-01

    Although frontotemporal lobar degeneration with ubiquitin/TDP-43-positive inclusions (FTLD-TDP) and Pick's disease are common pathological substrates in sporadic FTLD, clinical differentiation of these diseases is difficult. We performed a retrospective review of medical records and semiquantitative examination of neuronal loss of 20 sporadic FTLD-TDP and 19 Pick's disease cases. Semantic dementia as the first syndrome developed only in FTLD-TDP patients. Impaired speech output in the early stage was five times more frequent in Pick's disease than in FTLD-TDP. The total frequency of asymmetric motor disturbances (e.g., parkinsonism, pyramidal signs, and contracture) during the course was significantly more frequent in FTLD-TDP (78%) than in Pick's disease cases (14%). Asymmetric pyramidal signs were found in 7 of 13 FTLD-TDP cases with corticospinal tract degeneration similar to primary lateral sclerosis. Frontotemporal dementia as the first syndrome was noted in both FTLD-TDP (28%) and Pick's disease cases (64%); however, only FTLD-TDP cases subsequently developed asymmetric motor disturbances, and some of the cases further exhibited hemineglect. Concordant with these clinical findings, degeneration in the temporal cortex, caudate nucleus, putamen, globus pallidus, substantia nigra, and corticospinal tract was significantly more severe in FTLD-TDP, and degeneration in the frontal cortex tended to be more severe in Pick's disease. Given these findings, the initial impairment of semantic memory or comprehension and subsequent asymmetric motor disturbances in sporadic FTLD patients predict sporadic FTLD-TDP rather than Pick's disease, while initial behavioral symptoms or non-fluent aphasia without subsequent asymmetric motor disturbances predict Pick's disease rather than sporadic FTLD-TDP.

  11. Biochemical and histopathological alterations in TAR DNA-binding protein-43 after acute ischemic stroke in rats.

    PubMed

    Kanazawa, Masato; Kakita, Akiyoshi; Igarashi, Hironaka; Takahashi, Tetsuya; Kawamura, Kunio; Takahashi, Hitoshi; Nakada, Tsutomu; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2011-03-01

    Nuclear factor TAR DNA-binding protein-43 (TDP-43) is considered to play roles in pathogenesis of human neurodegenerative diseases, so-called TDP-43 proteinopathy, via its proteolytic cleavage, abnormal phosphorylation, subcellular redistribution, and insolubilization generating TDP-43-positive neuronal intracellular inclusions. The purpose of this study was to elucidate biochemical and histopathological alternations in TDP-43 specific to acute ischemic stroke. Adult male rats were subjected to a 90-min middle cerebral artery occlusion. We examined the proteolytic cleavage, phosphorylation, subcellular localization, and solubility of TDP-43 by immunoblottings and histopathological examinations using the ischemic and sham-operated cortex. The level of full-length TDP-43 (43 kDa) decreased and that of the 25-kDa C-terminal fragment increased after acute ischemic stroke, which can be explained by proteolytic cleavage of TDP-43. Cytoplasmic redistribution and altered nuclear distribution of TDP-43 was observed after acute ischemic stroke, whereas abnormal phosphorylation and insolubilization of TDP-43 as well as formation of intracellular inclusions were not observed. Ischemic neurons with the cytoplasmic redistribution of TDP-43 expressed ubiquitin and activated caspase 3 and were terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling-positive. In conclusion, biochemical and histopathological alterations in TDP-43 were identified in rats after acute ischemic stroke, although there was very less similarity between TDP-43 alterations observed in acute ischemic stroke and those observed in TDP-43 proteinopathy. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  12. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    PubMed Central

    Jackson, Kasey L.; Dayton, Robert D.; Deverman, Benjamin E.; Klein, Ronald L.

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats. PMID:27867348

  13. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    PubMed

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  14. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    PubMed

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  15. Co-occurrence of TDP-43 mislocalization with reduced activity of an RNA editing enzyme, ADAR2, in aged mouse motor neurons.

    PubMed

    Hideyama, Takuto; Teramoto, Sayaka; Hachiga, Kosuke; Yamashita, Takenari; Kwak, Shin

    2012-01-01

    TDP-43 pathology in spinal motor neurons is a neuropathological hallmark of sporadic amyotrophic lateral sclerosis (ALS) and has recently been shown to be closely associated with the downregulation of an RNA editing enzyme called adenosine deaminase acting on RNA 2 (ADAR2) in the motor neurons of sporadic ALS patients. Because TDP-43 pathology is found more frequently in the brains of elderly patients, we investigated the age-related changes in the TDP-43 localization and ADAR2 activity in mouse motor neurons. We found that ADAR2 was developmentally upregulated, and its mRNA expression level was progressively decreased in the spinal cords of aged mice. Motor neurons normally exhibit nuclear ADAR2 and TDP-43 immunoreactivity, whereas fast fatigable motor neurons in aged mice demonstrated a loss of ADAR2 and abnormal TDP-43 localization. Importantly, these motor neurons expressed significant amounts of the Q/R site-unedited AMPA receptor subunit 2 (GluA2) mRNA. Because expression of unedited GluA2 has been demonstrated as a lethality-causing molecular abnormality observed in the motor neurons, these results suggest that age-related decreases in ADAR2 activity play a mechanistic role in aging and serve as one of risk factors for ALS.

  16. TAR DNA-binding protein 43 in neurodegenerative disease

    PubMed Central

    Chen-Plotkin, Alice S.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    In 2006, TAR DNA-binding protein 43 (TDP-43), a highly conserved nuclear protein, was identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and in the most common variant of frontotemporal lobar degeneration (FTLD), FTLD-U, which is characterized by cytoplasmic inclusions that stain positive for ubiquitin but negative for tau and α-synuclein. Since then, rapid advances have been made in our understanding of the physiological function of TDP-43 and the role of this protein in neurodegeneration. These advances link ALS and FTLD-U (now designated FTLD-TDP) to a shared mechanism of disease. In this Review, we summarize the current evidence regarding the normal function of TDP-43 and the TDP-43 pathology observed in FTLD-TDP, ALS, and other neurodegenerative diseases wherein TDP-43 pathology co-occurs with other disease-specific lesions (for example, with amyloid plaques and neurofibrillary tangles in Alzheimer disease). Moreover, we discuss the accumulating data that support our view that FTLD-TDP and ALS represent two ends of a spectrum of primary TDP-43 proteinopathies. Finally, we comment on the importance of recent advances in TDP-43-related research to neurological practice, including the new opportunities to develop better diagnostics and disease-modifying therapies for ALS, FTLD-TDP, and related disorders exhibiting TDP-43 pathology. PMID:20234357

  17. TAR DNA-binding protein 43 in neurodegenerative disease.

    PubMed

    Chen-Plotkin, Alice S; Lee, Virginia M-Y; Trojanowski, John Q

    2010-04-01

    In 2006, TAR DNA-binding protein 43 (TDP-43), a highly conserved nuclear protein, was identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and in the most common variant of frontotemporal lobar degeneration (FTLD), FTLD-U, which is characterized by cytoplasmic inclusions that stain positive for ubiquitin but negative for tau and alpha-synuclein. Since then, rapid advances have been made in our understanding of the physiological function of TDP-43 and the role of this protein in neurodegeneration. These advances link ALS and FTLD-U (now designated FTLD-TDP) to a shared mechanism of disease. In this Review, we summarize the current evidence regarding the normal function of TDP-43 and the TDP-43 pathology observed in FTLD-TDP, ALS, and other neurodegenerative diseases wherein TDP-43 pathology co-occurs with other disease-specific lesions (for example, with amyloid plaques and neurofibrillary tangles in Alzheimer disease). Moreover, we discuss the accumulating data that support our view that FTLD-TDP and ALS represent two ends of a spectrum of primary TDP-43 proteinopathies. Finally, we comment on the importance of recent advances in TDP-43-related research to neurological practice, including the new opportunities to develop better diagnostics and disease-modifying therapies for ALS, FTLD-TDP, and related disorders exhibiting TDP-43 pathology.

  18. Pathological 43-kDa Transactivation Response DNA-Binding Protein in Older Adults With and Without Severe Mental Illness

    PubMed Central

    Geser, Felix; Robinson, John L.; Malunda, Joseph A.; Xie, Sharon X.; Clark, Chris M.; Kwong, Linda K.; Moberg, Paul J.; Moore, Erika M.; Van Deerlin, Vivianna M.; Lee, Virginia M.-Y.; Arnold, Steven E.; Trojanowski, John Q.

    2011-01-01

    Background Major psychiatric diseases such as schizophrenia and mood disorders have not been linked to a specific pathology, but their clinical features overlap with some aspects of the behavioral variant of frontotemporal lobar degeneration. Although the significance of pathological 43-kDa (transactivation response) DNA-binding protein (TDP-43) for frontotemporal lobar degeneration was appreciated only recently, the prevalence of TDP-43 pathology in patients with severe mental illness vs controls has not been systematically addressed. Objective To examine patients with chronic psychiatric diseases, mainlyschizophrenia, for evidence of neurodegenerative TDP-43 pathology in comparison with controls. Design Prospective longitudinal clinical evaluation and retrospective medical record review, immunohistochemical identification of pathological TDP-43 in the central nervous system, and genotyping for gene alterations known to cause TDP-43 proteinopathies including the TDP-43 (TARDBP) and progranulin (GRN) genes. Setting University health system. Participants One hundred fifty-one subjects including 91 patients with severe mental illness (mainly schizophrenia) and 60 controls. Main Outcome Measures Clinical medical record review, neuronal and glial TDP-43 pathology, and TARDP and GRN genotyping status. Results Significant TDP-43 pathology in the amygdala/periamygdaloid region or the hippocampus/transentorhinal cortex was absent in both groups in subjects younger than 65 years but present in elderly subjects (29% [25 of 86] of the psychiatric patients and 29% [10 of 34] of control subjects). Twenty-three percent (8 of 35) of the positive cases showed significant TDP-43 pathology in extended brain scans. There were no evident differences between the 2 groups in the frequency, degree, or morphological pattern of TDP-43 pathology. The latter included (1) subpial and subependymal, (2) focal, or (3) diffuse lesions in deep brain parenchyma and (4) perivascular pathology. A new

  19. Transactive Response DNA-Binding Protein 43 Burden in Familial Alzheimer Disease and Down Syndrome

    PubMed Central

    Lippa, Carol F.; Rosso, Andrea L.; Stutzbach, Lauren D.; Neumann, Manuela; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    Objective To assess the transactive response DNA-binding protein 43 (TDP-43) burden in familial forms of Alzheimer disease (FAD) and Down syndrome (DS) to determine whether TDP-43 inclusions are also present. Design Using standard immunohistochemical techniques, we examined brain tissue samples from 42 subjects with FAD and 14 with DS. Results We found pathological TDP-43 aggregates in 14.0% of participants (6 of 42 and 2 of 14 participants with FAD and DS, respectively). In both FAD and DS, TDP-43 immunoreactivity did not colocalize with neurofibrillary tangles. Occasionally participants with FAD or DS had TDP-43–positive neuropil threads or dots. Overall, the amygdala was most commonly affected, followed by the hippocampus, with no TDP-43 pathology in neocortical regions. A similar distribution of TDP-43 inclusions is seen in sporadic Alzheimer disease, but it differs from that seen in amyotrophic lateral sclerosis and frontotemporal dementia. Conclusions Transactive response DNA-binding protein 43 pathology occurs in FAD and DS, similar to that observed in sporadic Alzheimer disease. Thus, pathological TDP-43 may contribute the cognitive impairments in familial and sporadic forms of Alzheimer disease. PMID:20008652

  20. Withania somnifera Reverses Transactive Response DNA Binding Protein 43 Proteinopathy in a Mouse Model of Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration.

    PubMed

    Dutta, Kallol; Patel, Priyanka; Rahimian, Reza; Phaneuf, Daniel; Julien, Jean-Pierre

    2017-04-01

    Abnormal cytoplasmic mislocalization of transactive response DNA binding protein 43 (TARDBP or TDP-43) in degenerating neurons is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous work suggested that nuclear factor kappa B (NF-κB) may constitute a therapeutic target for TDP-43-mediated disease. Here, we investigated the effects of root extract of Withania somnifera (Ashwagandha), an herbal medicine with anti-inflammatory properties, in transgenic mice expressing a genomic fragment encoding human TDP-43(A315T) mutant. Ashwagandha extract was administered orally to hTDP-43(A315T) mice for a period of 8 weeks starting at 64 and 48 weeks of age for males and females, respectively. The treatment of hTDP-43(A315T) mice ameliorated their motor performance on rotarod test and cognitive function assessed by the passive avoidance test. Microscopy examination of tissue samples revealed that Ashwagandha treatment of hTDP-43(A315T) mice improved innervation at neuromuscular junctions, attenuated neuroinflammation, and reduced NF-κB activation. Remarkably, Ashwagandha treatment reversed the cytoplasmic mislocalization of hTDP-43 in spinal motor neurons and in brain cortical neurons of hTDP-43(A315T) mice and it reduced hTDP-43 aggregation. In vitro evidence is presented that the neuronal rescue of TDP-43 mislocalization may be due to the indirect effect of factors released from microglial cells exposed to Ashwagandha. These results suggest that Ashwagandha and its constituents might represent promising therapeutics for TDP-43 proteinopathies.

  1. Nuclear TAR DNA-binding protein 43: A new target for amyotrophic lateral sclerosis treatment

    PubMed Central

    Zheng, Mei; Shi, Yujie; Fan, Dongsheng

    2013-01-01

    Abnormal TAR DNA-binding protein 43 (TDP-43) inclusion bodies can be detected in the degenerative neurons of amyotrophic lateral sclerosis. In this study, we induced chronic oxidative stress injury by applying malonate to cultured mouse cortical motor neurons. In the later stages of the malonate insult, TDP-43 expression reduced in the nuclei and transferred to the cytoplasm. This was accompanied by neuronal death, mimicking the pathological changes in TDP-43 that are seen in patients with amyotrophic lateral sclerosis. Interestingly, in the early stages of the response to malonate treatment, nuclear TDP-43 expression increased, and neurons remained relatively intact, without inclusion bodies or fragmentation. Therefore, we hypothesized that the increase of nuclear TDP-43 expression might be a pro-survival factor against oxidative stress injury. This hypothesis was confirmed by an in vitro transgenic experiment, in which overexpression of wild type mouse TDP-43 in cultured cortical motor neurons significantly reduced malonate-induced neuronal death. Our findings suggest that the loss of function of TDP-43 is an important cause of neuronal degeneration, and upregulation of nuclear TDP-43 expression might be neuroprotective in amyotrophic lateral sclerosis. PMID:25206650

  2. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43

    PubMed Central

    Uchida, Azusa; Sasaguri, Hiroki; Kimura, Nobuyuki; Tajiri, Mio; Ohkubo, Takuya; Ono, Fumiko; Sakaue, Fumika; Kanai, Kazuaki; Hirai, Takashi; Sano, Tatsuhiko; Shibuya, Kazumoto; Kobayashi, Masaki; Yamamoto, Mariko; Yokota, Shigefumi; Kubodera, Takayuki; Tomori, Masaki; Sakaki, Kyohei; Enomoto, Mitsuhiro; Hirai, Yukihiko; Kumagai, Jiro; Yasutomi, Yasuhiro; Mochizuki, Hideki; Kuwabara, Satoshi; Uchihara, Toshiki; Mizusawa, Hidehiro

    2012-01-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and

  3. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43.

    PubMed

    Uchida, Azusa; Sasaguri, Hiroki; Kimura, Nobuyuki; Tajiri, Mio; Ohkubo, Takuya; Ono, Fumiko; Sakaue, Fumika; Kanai, Kazuaki; Hirai, Takashi; Sano, Tatsuhiko; Shibuya, Kazumoto; Kobayashi, Masaki; Yamamoto, Mariko; Yokota, Shigefumi; Kubodera, Takayuki; Tomori, Masaki; Sakaki, Kyohei; Enomoto, Mitsuhiro; Hirai, Yukihiko; Kumagai, Jiro; Yasutomi, Yasuhiro; Mochizuki, Hideki; Kuwabara, Satoshi; Uchihara, Toshiki; Mizusawa, Hidehiro; Yokota, Takanori

    2012-03-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and

  4. Loss of TDP-43 causes age-dependent progressive motor neuron degeneration.

    PubMed

    Iguchi, Yohei; Katsuno, Masahisa; Niwa, Jun-ichi; Takagi, Shinnosuke; Ishigaki, Shinsuke; Ikenaka, Kensuke; Kawai, Kaori; Watanabe, Hirohisa; Yamanaka, Koji; Takahashi, Ryosuke; Misawa, Hidemi; Sasaki, Shoichi; Tanaka, Fumiaki; Sobue, Gen

    2013-05-01

    Amyotrophic lateral sclerosis is a devastating, progressive neurodegenerative disease that affects upper and lower motor neurons. Although several genes are identified as the cause of familial cases, the pathogeneses of sporadic forms, which account for 90% of amyotrophic lateral sclerosis, have not been elucidated. Transactive response DNA-binding protein 43 a nuclear protein regulating RNA processing, redistributes to the cytoplasm and forms aggregates, which are the histopathological hallmark of sporadic amyotrophic lateral sclerosis, in affected motor neurons, suggesting that loss-of-function of transactive response DNA-binding protein 43 is one of the causes of the neurodegeneration. To test this hypothesis, we assessed the effects of knockout of transactive response DNA-binding protein 43 in mouse postnatal motor neurons using Cre/loxp system. These mice developed progressive weight loss and motor impairment around the age of 60 weeks, and exhibited degeneration of large motor axon, grouped atrophy of the skeletal muscle, and denervation in the neuromuscular junction. The spinal motor neurons lacking transactive response DNA-binding protein 43 were not affected for 1 year, but exhibited atrophy at the age of 100 weeks; whereas, extraocular motor neurons, that are essentially resistant in amyotrophic lateral sclerosis, remained preserved even at the age of 100 weeks. Additionally, ultra structural analysis revealed autolysosomes and autophagosomes in the cell bodies and axons of motor neurons of the 100-week-old knockout mice. In summary, the mice in which transactive response DNA-binding protein 43 was knocked-out specifically in postnatal motor neurons exhibited an age-dependent progressive motor dysfunction accompanied by neuropathological alterations, which are common to sporadic amyotrophic lateral sclerosis. These findings suggest that transactive response DNA-binding protein 43 plays an essential role in the long term maintenance of motor neurons and

  5. Single cell imaging and quantification of TDP-43 and α-synuclein intercellular propagation.

    PubMed

    Peled, Sivan; Sade, Dorin; Bram, Yaron; Porat, Ziv; Kreiser, Topaz; Mimouni, Michael; Lichtenstein, Alexandra; Segal, Daniel; Gazit, Ehud

    2017-03-28

    The intercellular spreading of protein assemblies is a major factor in the progression of neurodegenerative disorders. The quantitative study and visualization of cell-to-cell propagation using tagged-proteins is challenging due to the steric effect of relatively large fluorescence tags and the risk of 'false positive' identification when analyzing these rare transmission events. Here, we established a cell culture model to characterize the cell-to-cell transmission of TAR DNA-binding protein and α-synuclein, involved in amyotrophic lateral sclerosis and Parkinson's disease, respectively, using the small nine amino acid influenza hemagglutinin tag. The novel use of single cell resolution imaging flow cytometry allowed the visualization and quantification of all individual transmission events. Cell-level analysis of these events indicated that the degree of transfer is lower than previously reported based on conventional flow cytometry. Furthermore, our analysis can exclude 'false positive' events of cellular overlap and extracellular debris attachment. The results were corroborated by high-resolution confocal microscopy mapping of protein localization.

  6. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2015-03-01

    paralysis compared to either wtFUS transgenics or N2 controls (P,0.001). (C) unc-47 mutants grown on regular worm plates showed age-dependent progressive...and protein aggregation modulated by heat shock factor and insulin /IGF-1 signaling. Hum Mol Genet. 31. Swarup V, Phaneuf D, Bareil C, Robertson J...reviewed and approved by the CDEA before they were initiated or undertaken. This review process was ongoing on a regular basis during the entire period

  7. RNA-binding proteins with prion-like domains in ALS and FTLD-U.

    PubMed

    Gitler, Aaron D; Shorter, James

    2011-01-01

    Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) is a debilitating, and universally fatal, neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins, TDP-43 and FUS, are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant for human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, however, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms.

  8. Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis.

    PubMed

    Salado, Irene G; Redondo, Miriam; Bello, Murilo L; Perez, Concepción; Liachko, Nicole F; Kraemer, Brian C; Miguel, Laetitia; Lecourtois, Magalie; Gil, Carmen; Martinez, Ana; Perez, Daniel I

    2014-03-27

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons in cortex, brain stem, and spinal cord die progressively, resulting in muscle wasting, paralysis, and death. Currently, effective therapies for ALS are lacking; however, identification of pathological TAR DNA-binding protein 43 (TDP-43) as the hallmark lesion in sporadic ALS suggests new therapeutic targets for pharmacological intervention. Pathological TDP-43 phosphorylation appears to drive the onset and progression of ALS and may result from upregulation of the protein kinase CK-1 in affected neurons, resulting in postranslational TDP-43 modification. Consequently, brain penetrant specific CK-1 inhibitors may provide a new therapeutic strategy for treating ALS and other TDP-43 proteinopathies. Using a chemical genetic approach, we report the discovery and further optimization of a number of potent CK-1δ inhibitors. Moreover, these small heterocyclic molecules are able to prevent TDP-43 phosphorylation in cell cultures, to increase Drosophila lifespan by reduction of TDP-43 neurotoxicity, and are predicted to cross the blood-brain barrier. Thus, N-(benzothiazolyl)-2-phenyl-acetamides are valuable drug candidates for further studies and may be a new therapeutic approach for ALS and others pathologies in which TDP-43 is involved.

  9. Activation of transforming growth factor-β/Smad signaling reduces aggregate formation of mislocalized TAR DNA-binding protein-43.

    PubMed

    Nakamura, Masataka; Kaneko, Satoshi; Ito, Hidefumi; Jiang, Shiwen; Fujita, Kengo; Wate, Reika; Nakano, Satoshi; Fujisawa, Jun-ichi; Kusaka, Hirofumi

    2013-01-01

    TAR DNA-binding protein of 43 kDa (TDP-43) is naturally located in the nucleus and has been identified as the major component of cytoplasmic ubiquitinated inclusions in patients with amyotrophic lateral sclerosis (ALS). We have reported that TDP-43 and phosphorylated Smad2 (pSmad2), an intracellular mediator protein of transforming growth factor-β (TGFβ) signaling, are co-localized within cytoplasmic inclusions in the anterior horn cells of sporadic ALS patients. To investigate the possible pathophysiological linkage between pathologic cytoplasmic inclusions containing TDP-43 and TGFβ/Smad signaling. We replicated cytoplasmic aggregates of TDP-43 in HEK293T cells by transfecting the cells with a nuclear localization signal deletion mutant of TDP-43 and inhibiting proteasome activity, and assessed the effect of TGFβ/Smad signaling on the cytoplasmic aggregate formation. The aggregates contained ubiquitinated, phosphorylated, and fragmented TDP-43, consistent with the essential features of the human pathology. Moreover, the aggregates were co-localized with pSmad2 under continuous TGFβ stimulation. Overexpression of Smad2 reduced the amount of cytoplasmic aggregates in HEK293T cells, and TGFβ stimulation augmented this reduction effect in a dose-dependent manner. Activation of the TGFβ/Smad signaling system is protective against aggregate formation of cytoplasmically mislocalized TDP-43 and may be a potential therapeutic approach to delay progression of ALS. Copyright © 2012 S. Karger AG, Basel.

  10. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.

    PubMed

    MacNair, Laura; Xiao, Shangxi; Miletic, Denise; Ghani, Mahdi; Julien, Jean-Pierre; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2016-01-01

    Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model

  11. Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS-FTD-linked UBQLN2 mutations.

    PubMed

    Le, Nhat T T; Chang, Lydia; Kovlyagina, Irina; Georgiou, Polymnia; Safren, Nathaniel; Braunstein, Kerstin E; Kvarta, Mark D; Van Dyke, Adam M; LeGates, Tara A; Philips, Thomas; Morrison, Brett M; Thompson, Scott M; Puche, Adam C; Gould, Todd D; Rothstein, Jeffrey D; Wong, Philip C; Monteiro, Mervyn J

    2016-11-22

    Missense mutations in ubiquilin 2 (UBQLN2) cause ALS with frontotemporal dementia (ALS-FTD). Animal models of ALS are useful for understanding the mechanisms of pathogenesis and for preclinical investigations. However, previous rodent models carrying UBQLN2 mutations failed to manifest any sign of motor neuron disease. Here, we show that lines of mice expressing either the ALS-FTD-linked P497S or P506T UBQLN2 mutations have cognitive deficits, shortened lifespans, and develop motor neuron disease, mimicking the human disease. Neuropathologic analysis of the mice with end-stage disease revealed the accumulation of ubiquitinated inclusions in the brain and spinal cord, astrocytosis, a reduction in the number of hippocampal neurons, and reduced staining of TAR-DNA binding protein 43 in the nucleus, with concomitant formation of ubiquitin(+) inclusions in the cytoplasm of spinal motor neurons. Moreover, both lines displayed denervation muscle atrophy and age-dependent loss of motor neurons that correlated with a reduction in the number of large-caliber axons. By contrast, two mouse lines expressing WT UBQLN2 were mostly devoid of clinical and pathological signs of disease. These UBQLN2 mouse models provide valuable tools for identifying the mechanisms underlying ALS-FTD pathogenesis and for investigating therapeutic strategies to halt disease.

  12. Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance

    PubMed Central

    Jablonski, Angela M.; Lamitina, Todd; Liachko, Nicole F.; Sabatella, Mariangela; Lu, Jiayin; Zhang, Lei; Ostrow, Lyle W.; Gupta, Preetika; Wu, Chia-Yen; Doshi, Shachee; Mojsilovic-Petrovic, Jelena; Lans, Hannes; Wang, Jiou; Kraemer, Brian

    2015-01-01

    Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as “anti-chaperones” uncovers new and general targets for therapeutic intervention. PMID:26490867

  13. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  14. FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases

    PubMed Central

    2011-01-01

    Background Frontotemporal lobar degeneration with ubiquitin and TDP-43 positive neuronal inclusions represents a novel entity (FTLD-TDP) that may be associated with motor neuron disease (FTLD-MND); involvement of extrapyramidal and other systems has also been reported. Case presentation We present three cases with similar clinical symptoms, including Parkinsonism, supranuclear gaze palsy, visuospatial impairment and a behavioral variant of frontotemporal dementia, associated with either clinically possible or definite MND. Neuropathological examination revealed hallmarks of FTLD-TDP with major involvement of subcortical and, in particular, mesencephalic structures. These cases differed in onset and progression of clinical manifestations as well as distribution of histopathological changes in the brain and spinal cord. Two cases were sporadic, whereas the third case had a pathological variation in the progranulin gene 102 delC. Conclusions Association of a "progressive supranuclear palsy-like" syndrome with marked visuospatial impairment, motor neuron disease and early behavioral disturbances may represent a clinically distinct phenotype of FTLD-TDP. Our observations further support the concept that TDP-43 proteinopathies represent a spectrum of disorders, where preferential localization of pathogenetic inclusions and neuronal cell loss defines clinical phenotypes ranging from frontotemporal dementia with or without motor neuron disease, to corticobasal syndrome and to a progressive supranuclear palsy-like syndrome. PMID:21569259

  15. Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis.

    PubMed

    Höftberger, Romana; Fink, Stephanie; Aboul-Enein, Fahmy; Botond, Gergö; Olah, Judit; Berki, Timea; Ovadi, Judit; Lassmann, Hans; Budka, Herbert; Kovacs, Gabor G

    2010-11-15

    Multiple sclerosis (MS) is an idiopathic chronic inflammatory demyelinating disease of the central nervous system with variable extent of remyelination. Remyelination originates from oligodendrocyte (OG) precursor cells, which migrate and differentiate into mature OG. Tubulin polymerization promoting protein (TPPP/p25) is located in mature OG and aggregates in oligodendroglial cytoplasmic inclusions in multiple system atrophy. We developed a novel monoclonal anti-TPPP/p25 antibody to quantify OG in different subtypes and disease stages of MS, and possible degenerative changes in OG. We evaluated autopsy material from 25 MS cases, including acute, primary progressive, secondary progressive, relapsing remitting MS, and five controls. Demyelinated lesions revealed loss of TPPP/p25-positive OG within the plaques. In remyelination, TPPP/p25 was first expressed in OG cytoplasms and later became positive in myelin sheaths. We observed increased numbers of TPPP/p25 immunoreactive OG in the normal appearing white matter (NAWM) in MS patients. In MS cases, the cytoplasmic area of TPPP/p25 immunoreactivity in the OG was higher in the periplaque area when compared with NAWM and the plaque, and TPPP/p25 immunoreactive OG cytoplasmic area inversely correlated with the disease duration. There was a lack of phospho-TDP-43, phospho-tau, α-synuclein, and ubiquitin immunoreactivity in OG with enlarged cytoplasm. Our data suggest impaired differentiation, migration, and activation capacity of OG in later disease stages of MS. Upregulation of TPPP/p25 in the periplaque white matter OG without evidence for inclusion body formation might reflect an activation state. Distinct and increased expression of TPPP/p25 in MS renders it a potential prognostic and diagnostic marker of MS.

  16. SCA31 Flies Perform in a Balancing Act between RAN Translation and RNA-Binding Proteins.

    PubMed

    Jackson, George R

    2017-04-05

    In this issue of Neuron, Ishiguro et al. (2017) explore the toxicity of RAN translation in spinocerebellar ataxia 31. Using a Drosophila model, the authors demonstrate that TDP-43 and other RNA-binding proteins act as chaperones to regulate the formation of toxic RNA aggregates.

  17. Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro

    PubMed Central

    Wobst, Heike J.; Wesolowski, Steven S.; Chadchankar, Jayashree; Delsing, Louise; Jacobsen, Steven; Mukherjee, Jayanta; Deeb, Tarek Z.; Dunlop, John; Brandon, Nicholas J.; Moss, Stephen J.

    2017-01-01

    Mutations in the gene TARDBP, which encodes TAR DNA-binding protein 43 (TDP-43), are a rare cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While the majority of mutations are found in the C-terminal glycine-rich domain, an alanine to valine amino acid change at position 90 (A90V) in the bipartite nuclear localization signal (NLS) of TDP-43 has been described. This sequence variant has previously been shown to cause cytoplasmic mislocalization of TDP-43 and decrease protein solubility, leading to the formation of insoluble aggregates. Since the A90V mutation has been described both in patients as well as healthy controls, its pathogenic potential in ALS and FTD remains unclear. Here we compare properties of overexpressed A90V to the highly pathogenic M337V mutation. Though both mutations drive mislocalization of the protein to the cytoplasm to the same extent, M337V produces more significant damage in terms of protein solubility, levels of pathogenic phosphorylation, and formation of C-terminal truncated protein species. Furthermore, the M337V, but not the A90V mutant, leads to a downregulation of histone deacetylase 6 and Ras GTPase-activating protein-binding protein. We conclude that in the absence of another genetic or environmental ‘hit’ the A90V variant is not sufficient to cause the deleterious phenotypes associated with ALS and FTD, despite prominent cytoplasmic protein relocalization of TDP-43. PMID:28286471

  18. Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance.

    PubMed

    Jablonski, Angela M; Lamitina, Todd; Liachko, Nicole F; Sabatella, Mariangela; Lu, Jiayin; Zhang, Lei; Ostrow, Lyle W; Gupta, Preetika; Wu, Chia-Yen; Doshi, Shachee; Mojsilovic-Petrovic, Jelena; Lans, Hannes; Wang, Jiou; Kraemer, Brian; Kalb, Robert G

    2015-10-21

    Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as "anti-chaperones" uncovers new and general targets for therapeutic intervention. Copyright © 2015 the authors 0270-6474/15/3514286-21$15.00/0.

  19. ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases.

    PubMed

    Kon, Tomoya; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Yoshida, Mari; Sasaki, Hidenao; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2014-02-01

    FIG4 is a phosphatase that regulates intracellular vesicle trafficking along the endosomal-lysosomal pathway. Mutations of FIG4 lead to the development of Charcot-Marie-Tooth disease type 4J and amyotrophic lateral sclerosis (ALS). Moreover, ALS-associated proteins (transactivation response DNA protein 43 (TDP-43), fused in sarcoma (FUS), optineurin, ubiquilin-2, charged mutivesicular body protein 2b (CHMP2B) and valosin-containing protein) are involved in inclusion body formation in several neurodegenerative diseases. Using immunohistochemistry, we examined the brains and spinal cords of patients with various neurodegenerative diseases, including sporadic TDP-43 proteinopathy (ALS and frontotemporal lobar degeneration). TDP-43 proteinopathy demonstrated no FIG4 immunoreactivity in neuronal inclusions. However, FIG4 immunoreactivity was present in Pick bodies in Pick's disease, Lewy bodies in Parkinson's disease and dementia with Lewy bodies, neuronal nuclear inclusions in polyglutamine and intranuclear inclusion body diseases, and Marinesco and Hirano bodies in aged control subjects. These findings suggest that FIG4 is not incorporated in TDP-43 inclusions and that it may have a common role in the formation or degradation of neuronal cytoplasmic and nuclear inclusions in several neurodegenerative diseases. © 2013 Japanese Society of Neuropathology.

  20. Intrinsic disorder in proteins involved in amyotrophic lateral sclerosis.

    PubMed

    Santamaria, Nikolas; Alhothali, Marwa; Alfonso, Maria Harreguy; Breydo, Leonid; Uversky, Vladimir N

    2017-04-01

    Five structurally and functionally different proteins, an enzyme superoxide dismutase 1 (SOD1), a TAR-DNA binding protein-43 (TDP-43), an RNA-binding protein FUS, a cofilin-binding protein C9orf72, and polypeptides generated as a result of its intronic hexanucleotide expansions, and to lesser degree actin-binding profilin-1 (PFN1), are considered to be the major drivers of amyotrophic lateral sclerosis. One of the features common to these proteins is the presence of significant levels of intrinsic disorder. The goal of this study is to consider these neurodegeneration-related proteins from the intrinsic disorder perspective. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search to gain information on the structural peculiarities of SOD1, TDP-43, FUS, C9orf72, and PFN1 and their intrinsic disorder predispositions, and the roles of intrinsic disorder in their normal and pathological functions.

  1. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    PubMed

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction.

  2. Epistructural Tension Promotes Protein Associations

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2012-05-01

    Epistructural tension is the reversible work per unit area required to span the aqueous interface of a soluble protein structure. The parameter accounts for the free-energy cost of imperfect hydration, involving water molecules with a shortage of hydrogen-bonding partnerships relative to bulk levels. The binding hot spots along protein-protein interfaces are identified with residues that contribute significantly to the epistructural tension in the free subunits. Upon association, such residues either displace or become deprived of low-coordination vicinal water molecules.

  3. HAM proteins promote organ indeterminacy

    PubMed Central

    2012-01-01

    HAIRY MERISTEM (HAM) proteins, members of the GRAS family of transcriptional regulators, are essential for maintenance of indeterminate growth in flowering plant shoots, loss-of-function ham mutants exhibiting a strikingly novel phenotype of shoot meristem arrest and differentiation. Specific cellular/molecular functions of HAM proteins underlying meristem maintenance are unknown. In this review, I highlight findings from recent analyses of Arabidopsis ham (Atham) loss-of-function phenotypes, including that HAM function limits the generation of clonally-derived meristem layers and that HAM function regulates CLAVATA3 expression. I consider how this new information both refines our understanding of the role of HAM proteins in regulating meristem structure and function, and may also suggest possible downstream HAM protein transcriptional targets. Finally, I note the significant phenotypic overlap between Atham phenotypes, and aintegumenta/anintegumenta-like6 double mutant phenotypes, suggesting meristem regulatory functions common to, and possible genetic interactions between, HAM and AINTEGUMENTA. PMID:22353859

  4. Pu-Erh Tea Extract Induces the Degradation of FET Family Proteins Involved in the Pathogenesis of Amyotrophic Lateral Sclerosis

    PubMed Central

    Cai, Xianbin; Fang, Chongye; Shi, Wei; Sheng, Jun

    2014-01-01

    FET family proteins consist of fused in sarcoma/translocated in liposarcoma (FUS/TLS), Ewing's sarcoma (EWS), and TATA-binding protein-associated factor 15 (TAF15). Mutations in the copper/zinc superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TDP-43), and FET family proteins are associated with the development of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. There is currently no cure for this disease and few effective treatments are available. Epidemiological studies indicate that the consumption of tea is associated with a reduced risk of developing neurodegenerative diseases. The results of this study revealed that components of a pu-erh tea extract (PTE) interacted with FET family proteins but not with TDP-43 or SOD1. PTE induced the degradation of FET family proteins but had no effects on TDP-43 or SOD1. The most frequently occurring ALS-linked FUS/TLS mutant protein, R521C FUS/TLS, was also degraded in the presence of PTE. Furthermore, ammonium chloride, a lysosome inhibitor, but not lactacystin, a proteasome inhibitor, reduced the degradation of FUS/TLS protein by PTE. PTE significantly reduced the incorporation of R521C FUS/TLS into stress granules under stress conditions. These findings suggest that PTE may have beneficial health effects, including preventing the onset of FET family protein-associated neurodegenerative diseases and delaying the progression of ALS by inhibiting the cytoplasmic aggregation of FET family proteins. PMID:24804206

  5. Valosin-containing protein immunoreactivity in tauopathies, synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease.

    PubMed

    Mori, Fumiaki; Tanji, Kunikazu; Toyoshima, Yasuko; Sasaki, Hidenao; Yoshida, Mari; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2013-12-01

    Valosin-containing protein (VCP) is associated with multiple cellular functions, including ubiquitin-dependent protein degradation. Mutations in VCP are known to cause inclusion body myopathy with Paget's disease and frontotemporal dementia and familial amyotrophic lateral sclerosis (fALS; ALS14), both of which are characterized by trans-activation response DNA protein 43 (TDP-43)-positive neuronal cytoplasmic and nuclear inclusions. Recently, immunoreactivity for fALS-associated proteins (TDP-43, fused in sarcoma (FUS), optineurin and ubiquilin-2) were reported to be present in cytoplasmic and nuclear inclusions in various neurodegenerative diseases. However, the extent and frequency of VCP-immunoreactive structures in these neurodegenerative diseases are uncertain. We immunohistochemically examined the brains of 72 cases with neurodegenerative diseases and five control cases. VCP immunoreactivity was present in Lewy bodies in Parkinson's disease and dementia with Lewy bodies, and neuronal nuclear inclusions in five polyglutamine diseases and intranuclear inclusion body disease, as well as in Marinesco bodies in aged control subjects. However, other neuronal and glial cytoplasmic inclusions in tauopathies and TDP-43 proteinopathies were unstained. These findings suggest that VCP may have common mechanisms in the formation or degradation of cytoplasmic and nuclear inclusions of neurons, but not of glial cells, in several neurodegenerative conditions.

  6. Role of BMP receptor traffic in synaptic growth defects in an ALS model

    PubMed Central

    Deshpande, Mugdha; Feiger, Zachary; Shilton, Amanda K.; Luo, Christina C.; Silverman, Ethan; Rodal, Avital A.

    2016-01-01

    TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth–promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor–containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43–induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment. PMID:27535427

  7. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.

    PubMed

    King, Oliver D; Gitler, Aaron D; Shorter, James

    2012-06-26

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion

  8. Sumoylation of critical proteins in amyotrophic lateral sclerosis: emerging pathways of pathogenesis

    PubMed Central

    Foran, Emily; Rosenblum, Lauren; Bogush, Alexey I.; Trotti, Davide

    2013-01-01

    Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1 (SOD1), fused in liposarcoma (FUS), and TAR DNA binding protein 43 (TDP43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics. In this article, we summarize the current literature examining the impact of sumoylation of critical proteins involved in ALS and discuss the potential impact for the pathogenesis of the disease. In addition, we report and discuss the implications of new evidence demonstrating that sumoylation of a fragment derived from the proteolytic cleavage of the astroglial glutamate transporter, EAAT2, plays a direct role in downregulating the expression levels of full length EAAT2 by binding to a regulatory region of its promoter. PMID:24062161

  9. Impaired protein degradation in FTLD and related disorders.

    PubMed

    Götzl, Julia K; Lang, Christina M; Haass, Christian; Capell, Anja

    2016-12-01

    Impaired protein degradation has been discussed as a cause or consequence of various neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. More recently, evidence accumulated that dysfunctional protein degradation may play a role in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Since in almost all neurodegenerative diseases, protein aggregates are disease-defining hallmarks, it is most likely that impaired protein degradation contributes to disease onset and progression. In the majority of FTD cases, the pathological protein aggregates contain either microtubuleassociated protein tau or TAR DNA-binding protein (TDP)-43. Aggregates are also positive for ubiquitin and p62/sequestosome 1 (SQSTM1) indicating that these aggregates are targeted for degradation. FTD-linked mutations in genes encoding three autophagy adaptor proteins, p62/SQSTM1, ubiquilin 2 and optineurin, indicate that impaired autophagy might cause FTD. Furthermore, the strongest evidence for lysosomal impairment in FTD is provided by the progranulin (GRN) gene, which is linked to FTD and neuronal ceroid lipofuscinosis. In this review, we summarize the observations that have been made during the last years linking the accumulation of disease-associated proteins in FTD to impaired protein degradation pathways. In addition, we take resent findings for nucleocytoplasmic transport defects of TDP-43, as discussed for hexanucleotide repeat expansions in C9orf72 into account and provide a hypothesis how the interplay of altered nuclear transport and protein degradation leads to the accumulation of protein deposits. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes

    PubMed Central

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Gao, Yuan; Yu, Li-Rong; Alla, Ramani; Shmookler Reis, Robert

    2015-01-01

    Age-dependent neurodegenerative diseases progressively form aggregates containing both shared components (e.g., TDP-43, phosphorylated tau) and proteins specific to each disease. We investigated whether diverse neuropathies might have additional aggregation-prone proteins in common, discoverable by proteomics. Caenorhabditis elegans expressing unc-54p/Q40::YFP, a model of polyglutamine array diseases such as Huntington's, accrues aggregates in muscle 2–6 days posthatch. These foci, isolated on antibody-coupled magnetic beads, were characterized by high-resolution mass spectrometry. Three Q40::YFP-associated proteins were inferred to promote aggregation and cytotoxicity, traits reduced or delayed by their RNA interference knockdown. These RNAi treatments also retarded aggregation/cytotoxicity in Alzheimer's disease models, nematodes with muscle or pan-neuronal Aβ1–42 expression and behavioral phenotypes. The most abundant aggregated proteins are glutamine/asparagine-rich, favoring hydrophobic interactions with other random-coil domains. A particularly potent modulator of aggregation, CRAM-1/HYPK, contributed < 1% of protein aggregate peptides, yet its knockdown reduced Q40::YFP aggregates 72–86% (P < 10−6). In worms expressing Aβ1–42, knockdown of cram-1 reduced β-amyloid 60% (P < 0.002) and slowed age-dependent paralysis > 30% (P < 10−6). In wild-type worms, cram-1 knockdown reduced aggregation and extended lifespan, but impaired early reproduction. Protection against seeded aggregates requires proteasome function, implying that normal CRAM-1 levels promote aggregation by interfering with proteasomal degradation of misfolded proteins. Molecular dynamic modeling predicts spontaneous and stable interactions of CRAM-1 (or human orthologs) with ubiquitin, and we verified that CRAM-1 reduces degradation of a tagged-ubiquitin reporter. We propose that CRAM-1 exemplifies a class of primitive chaperones that are initially protective and highly

  11. Promoters and proteins from Clostridium thermocellum and uses thereof

    DOEpatents

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  12. Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis.

    PubMed

    Chen, Liang; Brewer, Michael D; Guo, Lili; Wang, Ruoxing; Jiang, Peng; Yang, Xiaolu

    2017-03-28

    An adequate cellular capacity to degrade misfolded proteins is critical for cell survival and organismal health. A diminished capacity is associated with aging and neurodegenerative diseases; however, the consequences of an enhanced capacity remain undefined. Here, we report that the ability to clear misfolded proteins is increased during oncogenic transformation and is reduced upon tumor cell differentiation. The augmented capacity mitigates oxidative stress associated with oncogenic growth and is required for both the initiation and maintenance of malignant phenotypes. We show that tripartite motif-containing (TRIM) proteins select misfolded proteins for proteasomal degradation. The higher degradation power in tumor cells is attributed to the upregulation of the proteasome and especially TRIM proteins, both mediated by the antioxidant transcription factor Nrf2. These findings establish a critical role of TRIMs in protein quality control, connect the clearance of misfolded proteins to antioxidant defense, and suggest an intrinsic characteristic of tumor cells.

  13. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72.

    PubMed

    Davidson, Yvonne S; Barker, Holly; Robinson, Andrew C; Thompson, Jennifer C; Harris, Jenny; Troakes, Claire; Smith, Bradley; Al-Saraj, Safa; Shaw, Chris; Rollinson, Sara; Masuda-Suzukake, Masami; Hasegawa, Masato; Pickering-Brown, Stuart; Snowden, Julie S; Mann, David M

    2014-06-20

    A hexanucleotide (GGGGCC) expansion in C9ORF72 gene is the most common genetic change seen in familial Frontotemporal Lobar Degeneration (FTLD) and familial Motor Neurone Disease (MND). Pathologically, expansion bearers show characteristic p62 positive, TDP-43 negative inclusion bodies within cerebellar and hippocampal neurons which also contain dipeptide repeat proteins (DPR) formed from sense and antisense RAN (repeat associated non ATG-initiated) translation of the expanded repeat region itself. 'Inappropriate' formation, and aggregation, of DPR might therefore confer neurotoxicity and influence clinical phenotype. Consequently, we compared the topographic brain distribution of DPR in 8 patients with Frontotemporal dementia (FTD), 6 with FTD + MND and 7 with MND alone (all 21 patients bearing expansions in C9ORF72) using a polyclonal antibody to poly-GA, and related this to the extent of TDP-43 pathology in key regions of cerebral cortex and hippocampus. There were no significant differences in either the pattern or severity of brain distribution of DPR between FTD, FTD + MND and MND groups, nor was there any relationship between the distribution of DPR and TDP-43 pathologies in expansion bearers. Likewise, there were no significant differences in the extent of TDP-43 pathology between FTLD patients bearing an expansion in C9ORF72 and non-bearers of the expansion. There were no association between the extent of DPR pathology and TMEM106B or APOE genotypes. However, there was a negative correlation between the extent of DPR pathology and age at onset. Present findings therefore suggest that although the presence and topographic distribution of DPR may be of diagnostic relevance in patients bearing expansion in C9ORF72 this has no bearing on the determination of clinical phenotype. Because TDP-43 pathologies are similar in bearers and non-bearers of the expansion, the expansion may act as a major genetic risk factor for FTLD and MND by rendering the brain

  14. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma.

    PubMed

    Bentmann, Eva; Haass, Christian; Dormann, Dorothee

    2013-09-01

    Stress granules (SGs) are cytoplasmic foci that rapidly form when cells are exposed to stress. They transiently store mRNAs encoding house-keeping proteins and allow the selective translation of stress-response proteins (e.g. heat shock proteins). Besides mRNA, SGs contain RNA-binding proteins, such as T cell internal antigen-1 and poly(A)-binding protein 1, which can serve as characteristic SG marker proteins. Recently, some of these SG marker proteins were found to label pathological TAR DNA binding protein of 43 kDa (TDP-43)- or fused in sarcoma (FUS)-positive cytoplasmic inclusions in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In addition, protein aggregates in other neurodegenerative diseases (e.g. tau inclusions in Alzheimer's disease) show a co-localization with T cell internal antigen-1 as well. Moreover, several RNA-binding proteins that are commonly found in SGs have been genetically linked to neurodegeneration. This suggests that SGs might play an important role in the pathogenesis of these proteinopathies, either by acting as a seed for pathological inclusions, by mediating translational repression or by trapping essential RNA-binding proteins, or by a combination of these mechanisms. This minireview gives an overview of the general biology of SGs and highlights the recently identified connection of SGs with TDP-43, FUS and other proteins involved in neurodegenerative diseases. We propose that pathological inclusions containing RNA-binding proteins, such as TDP-43 and FUS, might arise from SGs and discuss how SGs might contribute to neurodegeneration via toxic gain or loss-of-function mechanisms.

  15. Transport proteins promoting Escherichia coli pathogenesis.

    PubMed

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.

  16. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  17. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS

    PubMed Central

    Ciryam, Prajwal; Lambert-Smith, Isabella A.; Bean, Daniel M.; Freer, Rosie; Cid, Fernando; Tartaglia, Gian Gaetano; Saunders, Darren N.; Wilson, Mark R.; Morimoto, Richard I.; Dobson, Christopher M.; Vendruscolo, Michele; Favrin, Giorgio; Yerbury, Justin J.

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a heterogeneous degenerative motor neuron disease linked to numerous genetic mutations in apparently unrelated proteins. These proteins, including SOD1, TDP-43, and FUS, are highly aggregation-prone and form a variety of intracellular inclusion bodies that are characteristic of different neuropathological subtypes of the disease. Contained within these inclusions are a variety of proteins that do not share obvious characteristics other than coaggregation. However, recent evidence from other neurodegenerative disorders suggests that disease-affected biochemical pathways can be characterized by the presence of proteins that are supersaturated, with cellular concentrations significantly greater than their solubilities. Here, we show that the proteins that form inclusions of mutant SOD1, TDP-43, and FUS are not merely a subset of the native interaction partners of these three proteins, which are themselves supersaturated. To explain the presence of coaggregating proteins in inclusions in the brain and spinal cord, we observe that they have an average supersaturation even greater than the average supersaturation of the native interaction partners in motor neurons, but not when scores are generated from an average of other human tissues. These results suggest that inclusion bodies in various forms of ALS result from a set of proteins that are metastable in motor neurons, and thus prone to aggregation upon a disease-related progressive collapse of protein homeostasis in this specific setting. PMID:28396410

  18. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS.

    PubMed

    Ciryam, Prajwal; Lambert-Smith, Isabella A; Bean, Daniel M; Freer, Rosie; Cid, Fernando; Tartaglia, Gian Gaetano; Saunders, Darren N; Wilson, Mark R; Oliver, Stephen G; Morimoto, Richard I; Dobson, Christopher M; Vendruscolo, Michele; Favrin, Giorgio; Yerbury, Justin J

    2017-05-16

    Amyotrophic lateral sclerosis (ALS) is a heterogeneous degenerative motor neuron disease linked to numerous genetic mutations in apparently unrelated proteins. These proteins, including SOD1, TDP-43, and FUS, are highly aggregation-prone and form a variety of intracellular inclusion bodies that are characteristic of different neuropathological subtypes of the disease. Contained within these inclusions are a variety of proteins that do not share obvious characteristics other than coaggregation. However, recent evidence from other neurodegenerative disorders suggests that disease-affected biochemical pathways can be characterized by the presence of proteins that are supersaturated, with cellular concentrations significantly greater than their solubilities. Here, we show that the proteins that form inclusions of mutant SOD1, TDP-43, and FUS are not merely a subset of the native interaction partners of these three proteins, which are themselves supersaturated. To explain the presence of coaggregating proteins in inclusions in the brain and spinal cord, we observe that they have an average supersaturation even greater than the average supersaturation of the native interaction partners in motor neurons, but not when scores are generated from an average of other human tissues. These results suggest that inclusion bodies in various forms of ALS result from a set of proteins that are metastable in motor neurons, and thus prone to aggregation upon a disease-related progressive collapse of protein homeostasis in this specific setting.

  19. Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification.

    PubMed

    Finbloom, Joel A; Han, Kenneth; Slack, Clancy C; Furst, Ariel L; Francis, Matthew B

    2017-07-19

    Azide-alkyne cycloaddition is a powerful reaction for the formation of bioconjugates. When catalyzed by Cu(I) or strain promotion, this cycloaddition is considered to be a "click" reaction with many applications in chemical biology and materials science. We report a new type of azide-alkyne click chemistry for the synthesis of protein conjugates using cucurbit[6]uril (CB6) supramolecular chemistry. CB6-promoted azide-alkyne cycloaddition has been previously used for the synthesis of rotaxanes but has not been applied to the development of complex bioconjugates. By developing new substrates for CB6 click that do not contain any cross-reactive functional groups and by optimizing reaction conditions, we converted CB6 click chemistry from a rotaxane synthesis tool into a useful bioconjugation technique. Using these new parameters, we synthesized a series of protein conjugates including protein-peptide, protein-DNA, protein-polymer, and protein-drug conjugates. We further demonstrated that CB6 click can be used in conjunction with strain-promoted azide-alkyne cycloaddition to generate distinct bioconjugates in protein mixtures. CB6 click is a promising new reaction for the development of protein conjugates and can be applied toward the synthesis of complex biomaterials for a wide range of applications.

  20. Molecular mechanisms of the co-deposition of multiple pathological proteins in neurodegenerative diseases.

    PubMed

    Nonaka, Takashi; Masuda-Suzukake, Masami; Hasegawa, Masato

    2017-09-25

    Intracellular inclusions composed of abnormal protein aggregates are one of the neuropathological features of neurodegenerative diseases, and the formation of intracellular aggregates is believed to be associated with neurodegeneration leading to the onset of these diseases. In typical or pure cases, characteristic pathologies with one particular protein, such as tau, alpha-synuclein or trans-activation response DNA protein 43 (TDP-43), can be observed in brains of patients. On the other hand, multiple protein pathologies co-exist in many cases, raising the possibility that they may influence each other reciprocally in the pathogenesis and progression of the diseases. However, the molecular mechanisms through which these proteins interact with each other and through which they are co-deposited in brains of patients remain poorly understood. In this review, we focus on the mechanisms of deposition of multiple pathological proteins, such as tau, alpha-synuclein and/or TDP-43, and on co-deposition models of these proteins in vitro and in vivo intended to recapitulate the multiple pathologies found in diseased brains. © 2017 Japanese Society of Neuropathology.

  1. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases.

    PubMed

    Crippa, Valeria; D'Agostino, Vito G; Cristofani, Riccardo; Rusmini, Paola; Cicardi, Maria E; Messi, Elio; Loffredo, Rosa; Pancher, Michael; Piccolella, Margherita; Galbiati, Mariarita; Meroni, Marco; Cereda, Cristina; Carra, Serena; Provenzani, Alessandro; Poletti, Angelo

    2016-03-10

    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.

  2. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases

    PubMed Central

    Crippa, Valeria; D’Agostino, Vito G.; Cristofani, Riccardo; Rusmini, Paola; Cicardi, Maria E.; Messi, Elio; Loffredo, Rosa; Pancher, Michael; Piccolella, Margherita; Galbiati, Mariarita; Meroni, Marco; Cereda, Cristina; Carra, Serena; Provenzani, Alessandro; Poletti, Angelo

    2016-01-01

    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models. PMID:26961006

  3. Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic geminivirus.

    PubMed

    Shivaprasad, P V; Akbergenov, Rashid; Trinks, Daniela; Rajeswaran, R; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M

    2005-07-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and rightward promoters on DNA-B share the transcription activator AC2-responsive regi