Science.gov

Sample records for protein tdp-43 promotes

  1. The Tau Tubulin Kinases TTBK1/2 Promote Accumulation of Pathological TDP-43

    PubMed Central

    Liachko, Nicole F.; Loomis, Elaine; Greenup, Lynne; Murrell, Jill R.; Ghetti, Bernardino; Raskind, Murray A.; Montine, Thomas J.; Bird, Thomas D.; Leverenz, James B.; Kraemer, Brian C.

    2014-01-01

    Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP. PMID:25473830

  2. The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity

    SciTech Connect

    Chang, Chung-ke; Wu, Tzong-Huah; Wu, Chu-Ya; Chiang, Ming-hui; Toh, Elsie Khai-Woon; Hsu, Yin-Chih; Lin, Ku-Feng; Liao, Yu-heng; Huang, Tai-huang; Huang, Joseph Jen-Tse

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer The N-terminus of TDP-43 contains an independently folded structural domain (NTD). Black-Right-Pointing-Pointer The structural domains of TDP-43 are arranged in a beads-on-a-string fashion. Black-Right-Pointing-Pointer The NTD promotes TDP-43 oligomerization in a concentration-dependent manner. Black-Right-Pointing-Pointer The NTD may assist nucleic acid-binding activity of TDP-43. -- Abstract: TDP-43 is a DNA/RNA-binding protein associated with different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Here, the structural and physical properties of the N-terminus on TDP-43 have been carefully characterized through a combination of nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence anisotropy studies. We demonstrate for the first time the importance of the N-terminus in promoting TDP-43 oligomerization and enhancing its DNA-binding affinity. An unidentified structural domain in the N-terminus is also disclosed. Our findings provide insights into the N-terminal domain function of TDP-43.

  3. TDP-43 aggregation mirrors TDP-43 knockdown, affecting the expression levels of a common set of proteins

    PubMed Central

    Prpar Mihevc, S.; Baralle, Marco; Buratti, Emanuele; Rogelj, Boris

    2016-01-01

    TDP-43 protein plays an important role in regulating transcriptional repression, RNA metabolism, and splicing. Typically it shuttles between the nucleus and the cytoplasm to perform its functions, while abnormal cytoplasmic aggregation of TDP-43 has been associated with neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). For the purpose of this study we selected a set of proteins that were misregulated following silencing of TDP-43 and analysed their expression in a TDP-43-aggregation model cell line HEK293 Flp-in Flag-TDP-43-12x-Q/N F4L. Following TDP-43 sequestration in insoluble aggregates, we observed higher nuclear levels of EIF4A3, and POLDIP3β, whereas nuclear levels of DNMT3A, HNRNPA3, PABPC1 and POLDIP3α dropped, and cytoplasmic levels of RANBP1 dropped. In addition, immunofluorescence signal intensity quantifications showed increased nuclear expression of HNRNPL and YARS, and downregulation of cytoplasmic DPCD. Furthermore, cytoplasmic levels of predominantly nuclear protein ALYREF increased. In conclusion, by identifying a common set of proteins that are differentially expressed in a similar manner in these two different conditions, we show that TDP-43 aggregation has a comparable effect to TDP-43 knockdown. PMID:27665936

  4. Phosphorylation promotes neurotoxicity in a C. elegans model of TDP-43 proteinopathy

    PubMed Central

    Liachko, Nicole F.; Guthrie, Chris R.; Kraemer, Brian C.

    2010-01-01

    Neurodegenerative disorders characterized by neuronal and glial lesions containing aggregated pathological TDP-43 protein in the cytoplasm, nucleus, or neurites are collectively referred to as TDP-43 proteinopathies. Lesions containing aggregated TDP-43 protein are a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). In addition, mutations in human TDP-43 cause ALS. We have developed a C. elegans model of TDP-43 proteinopathies to study the cellular, molecular, and genetic underpinnings of TDP-43 mediated neurotoxicity. Expression of normal human TDP-43 in all C. elegans neurons causes moderate motor defects, while ALS-mutant G290A, A315T, or M337V TDP-43 transgenes cause severe motor dysfunction. The model recapitulates some characteristic features of ALS and FTLD-U including age-induced decline in motor function, decreased lifespan, and degeneration of motor neurons accompanied by hyperphosphorylation, truncation, and ubiquitination of TDP-43 protein that accumulates in detergent insoluble protein deposits. In C. elegans, TDP-43 neurotoxicity is independent of activity of the cell death caspase CED-3. Furthermore, phosphorylation of TDP-43 at serine residues 409/410 drives mutant TDP-43 toxicity. This model provides a tractable system for further dissection of the cellular and molecular mechanisms underlying TDP-43 neuropathology. PMID:21123567

  5. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice.

    PubMed

    Rodriguez-Ortiz, Carlos J; Hoshino, Hitomi; Cheng, David; Liu-Yescevitz, Liqun; Blurton-Jones, Mathew; Wolozin, Benjamin; LaFerla, Frank M; Kitazawa, Masashi

    2013-08-01

    Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition.

  6. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation

    NASA Astrophysics Data System (ADS)

    Chang, Hsiang-Yu; Hou, Shin-Chen; Way, Tzong-Der; Wong, Chi-Huey; Wang, I.-Fan

    2013-11-01

    Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.

  7. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination.

    PubMed

    Hans, Friederike; Fiesel, Fabienne C; Strong, Jennifer C; Jäckel, Sandra; Rasse, Tobias M; Geisler, Sven; Springer, Wolfdieter; Schulz, Jörg B; Voigt, Aaron; Kahle, Philipp J

    2014-07-04

    Trans-activation element DNA-binding protein of 43 kDa (TDP-43) characterizes insoluble protein aggregates in distinct subtypes of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 mediates many RNA processing steps within distinct protein complexes. Here we identify novel TDP-43 protein interactors found in a yeast two-hybrid screen using an adult human brain cDNA library. We confirmed the TDP-43 interaction of seven hits by co-immunoprecipitation and assessed their co-localization in HEK293E cells. As pathological TDP-43 is ubiquitinated, we focused on the ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase Y (UBPY). When cells were treated with proteasome inhibitor, ubiquitinated and insoluble TDP-43 species accumulated. All three UBE2E family members could enhance the ubiquitination of TDP-43, whereas catalytically inactive UBE2E3(C145S) was much less efficient. Conversely, silencing of UBE2E3 reduced TDP-43 ubiquitination. We examined 15 of the 48 known disease-associated TDP-43 mutants and found that one was excessively ubiquitinated. This strong TDP-43(K263E) ubiquitination was further enhanced by proteasomal inhibition as well as UBE2E3 expression. Conversely, UBE2E3 silencing and expression of UBPY reduced TDP-43(K263E) ubiquitination. Moreover, wild-type but not active site mutant UBPY reduced ubiquitination of TDP-43 C-terminal fragments and of a nuclear import-impaired mutant. In Drosophila melanogaster, UBPY silencing enhanced neurodegenerative TDP-43 phenotypes and the accumulation of insoluble high molecular weight TDP-43 and ubiquitin species. Thus, UBE2E3 and UBPY participate in the regulation of TDP-43 ubiquitination, solubility, and neurodegeneration.

  8. Tar DNA-binding protein-43 (TDP-43) regulates axon growth in vitro and in vivo☆

    PubMed Central

    Tripathi, Vineeta Bhasker; Baskaran, Pranetha; Shaw, Christopher E.; Guthrie, Sarah

    2014-01-01

    Intracellular inclusions of the TAR-DNA binding protein 43 (TDP-43) have been reported in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD-TDP). Rare mutations in TARDBP have been linked to both ALS and FTD-TDP suggesting that TDP-43 dysfunction is mechanistic in causing disease. TDP-43 is a predominantly nuclear protein with roles in regulating RNA transcription, splicing, stability and transport. In ALS, TDP-43 aberrantly accumulates in the cytoplasm of motor neurons where it forms aggregates. However it has until recently been unclear whether the toxic effects of TDP-43 involve recruitment to motor axons, and what effects this might have on axonal growth and integrity. Here we use chick embryonic motor neurons, in vivo and in vitro, to model the acute effects of TDP-43. We show that wild-type and two TDP-43 mutant proteins cause toxicity in chick embryonic motor neurons in vivo. Moreover, TDP-43 is increasingly mislocalised to axons over time in vivo, axon growth to peripheral targets is truncated, and expression of neurofilament-associated antigen is reduced relative to control motor neurons. In primary spinal motor neurons in vitro, a progressive translocation of TDP-43 to the cytoplasm occurs over time, similar to that observed in vivo. This coincides with the appearance of cytoplasmic aggregates, a reduction in the axonal length, and cellular toxicity, which was most striking for neurons expressing TDP-43 mutant forms. These observations suggest that the capacity of spinal motor neurons to produce and maintain an axon is compromised by dysregulation of TDP-43 and that the disruption of cytoskeletal integrity may play a role in the pathogenesis of ALS and FTD-TDP. PMID:24423647

  9. Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS.

    PubMed

    Gijselinck, Ilse; Sleegers, Kristel; Engelborghs, Sebastiaan; Robberecht, Wim; Martin, Jean-Jacques; Vandenberghe, Rik; Sciot, Raf; Dermaut, Bart; Goossens, Dirk; van der Zee, Julie; De Pooter, Tim; Del-Favero, Jurgen; Santens, Patrick; De Jonghe, Peter; De Deyn, Peter P; Van Broeckhoven, Christine; Cruts, Marc

    2009-08-01

    The nuclear TAR DNA binding protein (TDP-43) is deposited in ubiquitin-positive inclusions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two clinicopathologically overlapping neurodegenerative diseases. In this study we excluded mutations and copy number variations in the gene encoding TDP-43 (TARDBP) from an extended series of 173 FTD and 237 ALS patients. Further, we did not identify association of common genetic variants in these patients. Our data implicate that TDP-43 has no primary genetic role in the pathophysiological mechanisms underlying central nervous system neurodegeneration in these diseases.

  10. HIV-1 Replication in Human Immune Cells Is Independent of TAR DNA Binding Protein 43 (TDP-43) Expression

    PubMed Central

    Nehls, Julia; Koppensteiner, Herwig; Brack-Werner, Ruth; Floss, Thomas; Schindler, Michael

    2014-01-01

    The TAR DNA binding protein (TDP-43) was originally identified as a host cell factor binding to the HIV-1 LTR and thereby suppressing HIV-1 transcription and gene expression (Ou et al., J.Virol. 1995, 69(6):3584). TDP-43 is a global regulator of transcription, can influence RNA metabolism in many different ways and is ubiquitously expressed. Thus, TDP-43 could be a major factor restricting HIV-1 replication at the level of LTR transcription and gene expression. These facts prompted us to revisit the role of TDP-43 for HIV-1 replication. We utilized established HIV-1 cell culture systems as well as primary cell models and performed a comprehensive analysis of TDP-43 function and investigated its putative impact on HIV-1 gene expression. In HIV-1 infected cells TDP-43 was neither degraded nor sequestered from the nucleus. Furthermore, TDP-43 overexpression as well as siRNA mediated knockdown did not affect HIV-1 gene expression and virus production in T cells and macrophages. In summary, our experiments argue against a restricting role of TDP-43 during HIV-1 replication in immune cells. PMID:25127017

  11. The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila.

    PubMed

    Li, Zhaodong; Lu, Yubing; Xu, Xia-Lian; Gao, Fen-Biao

    2013-01-15

    TDP-43 is an evolutionarily conserved RNA-binding protein currently under intense investigation for its involvement in the molecular pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 is normally localized in the nucleus, but translocated to the cytoplasm in diseased neurons. The endogenous functions of TDP-43 in the nervous system remain poorly understood. Here, we show that the loss of Drosophila TDP-43 (dTDP-43) results in an increased production of sensory bristles and sensory organ precursor (SOP) cells on the notum of some but not all flies. The location of ectopic SOPs varies among mutant flies. The penetrance of this novel phenotype is dependent on the gender and sensitive to environmental influences. A similar SOP phenotype was also observed on the wing and in the embryos. Overexpression of dTDP-43 causes both loss and ectopic production of SOPs. Ectopic expression of ALS-associated mutant human TDP-43 (hTDP-43(M337V) and hTDP-43(Q331K)) produces a less severe SOP phenotype than hTDP-43(WT), indicating a partial loss of function of mutant hTDP-43. In dTDP-43 mutants, miR-9a expression is significantly reduced. Genetic interaction studies further support the notion that dTDP-43 acts through miR-9a to control the precision of SOP specification. These findings reveal a novel role for endogenous TDP-43 in neuronal specification and suggest that the FTD/ALS-associated RNA-binding protein TDP-43 functions to ensure the robustness of genetic control programs.

  12. Regulation of nuclear TDP-43 by NR2A-containing NMDA receptors and PTEN

    PubMed Central

    Zheng, Mei; Liao, Mingxia; Cui, Tianyuan; Tian, Honglin; Fan, Dong-Sheng; Wan, Qi

    2012-01-01

    The dysfunction of TAR DNA-binding protein-43 (TDP-43) is implicated in neurodegenerative diseases. However, the function of TDP-43 is not fully elucidated. Here we show that the protein level of endogenous TDP-43 in the nucleus is increased in mouse cortical neurons in the early stages, but return to basal level in the later stages after glutamate accumulation-induced injury. The elevation of TDP-43 results from a downregulation of phosphatase and tensin homolog (PTEN). We further demonstrate that activation of NR2A-containing NMDA receptors (NR2ARs) leads to PTEN downregulation and subsequent reduction of PTEN import from the cytoplasm to the nucleus after glutamate accumulation. The decrease of PTEN in the nucleus contributes to its reduced association with TDP-43, and thereby mediates the elevation of nuclear TDP-43. We provide evidence that the elevation of nuclear TDP-43, mediated by NR2AR activation and PTEN downregulation, confers protection against cortical neuronal death in the late stages after glutamate accumulation. Thus, this study reveals a NR2AR–PTEN–TDP-43 signaling pathway by which nuclear TDP-43 promotes neuronal survival. These results suggest that upregulation of nuclear TDP-43 represents a self-protection mechanism to delay neurodegeneration in the early stages after glutamate accumulation and that prolonging the upregulation process of nuclear TDP-43 might have therapeutic significance. PMID:22526419

  13. TDP-43 regulates its mRNA levels through a negative feedback loop

    PubMed Central

    Ayala, Youhna M; De Conti, Laura; Avendaño-Vázquez, S Eréndira; Dhir, Ashish; Romano, Maurizio; D'Ambrogio, Andrea; Tollervey, James; Ule, Jernej; Baralle, Marco; Buratti, Emanuele; Baralle, Francisco E

    2011-01-01

    TAR DNA-binding protein (TDP-43) is an evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) involved in RNA processing, whose abnormal cellular distribution and post-translational modification are key markers of certain neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We generated human cell lines expressing tagged forms of wild-type and mutant TDP-43 and observed that TDP-43 controls its own expression through a negative feedback loop. The RNA-binding properties of TDP-43 are essential for the autoregulatory activity through binding to 3′ UTR sequences in its own mRNA. Our analysis indicated that the C-terminal region of TDP-43, which mediates TDP-43–hnRNP interactions, is also required for self-regulation. TDP-43 binding to its 3′ UTR does not significantly change the pre-mRNA splicing pattern but promotes RNA instability. Moreover, blocking exosome-mediated degradation partially recovers TDP-43 levels. Our findings demonstrate that cellular TDP-43 levels are under tight control and it is likely that disease-associated TDP-43 aggregates disrupt TDP-43 self-regulation, thus contributing to pathogenesis. PMID:21131904

  14. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD.

    PubMed

    Ling, Jonathan P; Pletnikova, Olga; Troncoso, Juan C; Wong, Philip C

    2015-08-07

    Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.

  15. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models.

    PubMed

    Colombrita, Claudia; Onesto, Elisa; Buratti, Emanuele; de la Grange, Pierre; Gumina, Valentina; Baralle, Francisco E; Silani, Vincenzo; Ratti, Antonia

    2015-12-01

    The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.

  16. Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation

    PubMed Central

    Chiang, Chien-Hao; Grauffel, Cédric; Wu, Lien-Szu; Kuo, Pan-Hsien; Doudeva, Lyudmila G.; Lim, Carmay; Shen, Che-Kun James; Yuan, Hanna S.

    2016-01-01

    The RNA-binding protein TDP-43 forms intracellular inclusions in amyotrophic lateral sclerosis (ALS). While TDP-43 mutations have been identified in ALS patients, how these mutations are linked to ALS remains unclear. Here we examined the biophysical properties of six ALS-linked TDP-43 mutants and found that one of the mutants, D169G, had higher thermal stability than wild-type TDP-43 and that it was cleaved by caspase 3 more efficiently, producing increased levels of the C-terminal 35 kD fragments (TDP-35) in vitro and in neuroblastoma cells. The crystal structure of the TDP-43 RRM1 domain containing the D169G mutation in complex with DNA along with molecular dynamics simulations reveal that the D169G mutation induces a local conformational change in a β turn and increases the hydrophobic interactions in the RRM1 core, thus enhancing the thermal stability of the RRM1 domain. Our results provide the first crystal structure of TDP-43 containing a disease-linked D169G mutation and a disease-related mechanism showing that D169G mutant is more susceptible to proteolytic cleavage by caspase 3 into the pathogenic C-terminal 35-kD fragments due to its increased stability in the RRM1 domain. Modulation of TDP-43 stability and caspase cleavage efficiency could present an avenue for prevention and treatment of TDP-43-linked neurodegeneration. PMID:26883171

  17. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

    PubMed

    Kapeli, Katannya; Pratt, Gabriel A; Vu, Anthony Q; Hutt, Kasey R; Martinez, Fernando J; Sundararaman, Balaji; Batra, Ranjan; Freese, Peter; Lambert, Nicole J; Huelga, Stephanie C; Chun, Seung J; Liang, Tiffany Y; Chang, Jeremy; Donohue, John P; Shiue, Lily; Zhang, Jiayu; Zhu, Haining; Cambi, Franca; Kasarskis, Edward; Hoon, Shawn; Ares, Manuel; Burge, Christopher B; Ravits, John; Rigo, Frank; Yeo, Gene W

    2016-07-05

    The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3' untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism.

  18. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses

    PubMed Central

    Kapeli, Katannya; Pratt, Gabriel A.; Vu, Anthony Q.; Hutt, Kasey R.; Martinez, Fernando J.; Sundararaman, Balaji; Batra, Ranjan; Freese, Peter; Lambert, Nicole J.; Huelga, Stephanie C.; Chun, Seung J.; Liang, Tiffany Y.; Chang, Jeremy; Donohue, John P.; Shiue, Lily; Zhang, Jiayu; Zhu, Haining; Cambi, Franca; Kasarskis, Edward; Hoon, Shawn; Ares Jr., Manuel; Burge, Christopher B.; Ravits, John; Rigo, Frank; Yeo, Gene W.

    2016-01-01

    The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3′ untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism. PMID:27378374

  19. Aberrant Assembly of RNA Recognition Motif 1 Links to Pathogenic Conversion of TAR DNA-binding Protein of 43 kDa (TDP-43)*

    PubMed Central

    Shodai, Akemi; Morimura, Toshifumi; Ido, Akemi; Uchida, Tsukasa; Ayaki, Takashi; Takahashi, Rina; Kitazawa, Soichiro; Suzuki, Sakura; Shirouzu, Mikako; Kigawa, Takanori; Muto, Yutaka; Yokoyama, Shigeyuki; Takahashi, Ryosuke; Kitahara, Ryo; Ito, Hidefumi; Fujiwara, Noriko; Urushitani, Makoto

    2013-01-01

    Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS. PMID:23558684

  20. Neurodegeneration-associated TDP-43 interacts with fragile X mental retardation protein (FMRP)/Staufen (STAU1) and regulates SIRT1 expression in neuronal cells.

    PubMed

    Yu, Zhipeng; Fan, Dongsheng; Gui, Bin; Shi, Lei; Xuan, Chenghao; Shan, Lin; Wang, Qian; Shang, Yongfeng; Wang, Yan

    2012-06-29

    Despite the identification of the 43 kDa transactive response DNA-binding protein (TDP-43) as a major pathological signatory protein in a wide range of neurodegenerative diseases, the mechanistic role of TDP-43 in neurodegenerative disorders is still poorly understood. Here, we report that TDP-43 is physically associated with fragile X mental retardation protein (FMRP) and Staufen (STAU1) to form a functional complex. Differential microarray analysis revealed that the expression of a collection of functionally important genes including Sirtuin (SIRT1) is regulated by this complex. RNA-immunoprecipitation (RIP) and RNA pull-down assays demonstrated that TDP-43/FMRP/STAU1 specifically binds to the 3'-UTR of SIRT1 mRNA, and that knockdown the expression of any one of these three proteins resulted in the reduction of SIRT1 mRNA and protein. SIRT1 is implicated in double-stranded DNA break repair and is required for cell survival. Indeed, depletion of TDP-43/FMRP/STAU1 sensitizes cells to apoptosis and DNA damages. Collectively, our results revealed a molecular mechanism for the cellular function of TDP-43 and might shed new light on the understanding of the mechanistic role of TDP-43 in neurodegenerative diseases.

  1. The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity

    PubMed Central

    Crippa, Valeria; Cicardi, Maria Elena; Ramesh, Nandini; Seguin, Samuel J.; Ganassi, Massimo; Bigi, Ilaria; Diacci, Chiara; Zelotti, Elena; Baratashvili, Madina; Gregory, Jenna M.; Dobson, Christopher M.; Cereda, Cristina; Pandey, Udai Bhan; Poletti, Angelo; Carra, Serena

    2016-01-01

    Aggregation of TAR-DNA-binding protein 43 (TDP-43) and of its fragments TDP-25 and TDP-35 occurs in amyotrophic lateral sclerosis (ALS). TDP-25 and TDP-35 act as seeds for TDP-43 aggregation, altering its function and exerting toxicity. Thus, inhibition of TDP-25 and TDP-35 aggregation and promotion of their degradation may protect against cellular damage. Upregulation of HSPB8 is one possible approach for this purpose, since this chaperone promotes the clearance of an ALS associated fragments of TDP-43 and is upregulated in the surviving motor neurones of transgenic ALS mice and human patients. We report that overexpression of HSPB8 in immortalized motor neurones decreased the accumulation of TDP-25 and TDP-35 and that protection against mislocalized/truncated TDP-43 was observed for HSPB8 in Drosophila melanogaster. Overexpression of HSP67Bc, the functional ortholog of human HSPB8, suppressed the eye degeneration caused by the cytoplasmic accumulation of a TDP-43 variant with a mutation in the nuclear localization signal (TDP-43-NLS). TDP-43-NLS accumulation in retinal cells was counteracted by HSP67Bc overexpression. According with this finding, downregulation of HSP67Bc increased eye degeneration, an effect that is consistent with the accumulation of high molecular weight TDP-43 species and ubiquitinated proteins. Moreover, we report a novel Drosophila model expressing TDP-35, and show that while TDP-43 and TDP-25 expression in the fly eyes causes a mild degeneration, TDP-35 expression leads to severe neurodegeneration as revealed by pupae lethality; the latter effect could be rescued by HSP67Bc overexpression. Collectively, our data demonstrate that HSPB8 upregulation mitigates TDP-43 fragment mediated toxicity, in mammalian neuronal cells and flies. PMID:27466192

  2. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs

    PubMed Central

    Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Hutt, Kasey R; Vu, Anthony Q; Baughn, Michael; Huelga, Stephanie C; Clutario, Kevin M; Ling, Shuo-Chien; Liang, Tiffany Y; Mazur, Curt; Wancewicz, Edward; Kim, Aneeza S; Watt, Andy; Freier, Sue; Hicks, Geoffrey G; Donohue, John Paul; Shiue, Lily; Bennett, C Frank; Ravits, John; Cleveland, Don W; Yeo, Gene W

    2013-01-01

    FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate–containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS. PMID:23023293

  3. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs.

    PubMed

    Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Hutt, Kasey R; Vu, Anthony Q; Baughn, Michael; Huelga, Stephanie C; Clutario, Kevin M; Ling, Shuo-Chien; Liang, Tiffany Y; Mazur, Curt; Wancewicz, Edward; Kim, Aneeza S; Watt, Andy; Freier, Sue; Hicks, Geoffrey G; Donohue, John Paul; Shiue, Lily; Bennett, C Frank; Ravits, John; Cleveland, Don W; Yeo, Gene W

    2012-11-01

    FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate-containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.

  4. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43.

    PubMed

    Arnold, Eveline S; Ling, Shuo-Chien; Huelga, Stephanie C; Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Ditsworth, Dara; Kordasiewicz, Holly B; McAlonis-Downes, Melissa; Platoshyn, Oleksandr; Parone, Philippe A; Da Cruz, Sandrine; Clutario, Kevin M; Swing, Debbie; Tessarollo, Lino; Marsala, Martin; Shaw, Christopher E; Yeo, Gene W; Cleveland, Don W

    2013-02-19

    Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.

  5. Astrocytic TDP-43 pathology in Alexander disease.

    PubMed

    Walker, Adam K; Daniels, Christine M LaPash; Goldman, James E; Trojanowski, John Q; Lee, Virginia M-Y; Messing, Albee

    2014-05-07

    Alexander disease (AxD) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic inclusions known as Rosenthal fibers (RFs) within astrocytes, and is caused by dominant mutations in the coding region of the gene encoding glial fibrillary acidic protein (GFAP). GFAP is the major astrocytic intermediate filament, and in AxD patient brain tissue GFAP is a major component of RFs. TAR DNA binding protein of 43 kDa (TDP-43) is the major pathological protein in almost all cases of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and ∼50% of frontotemporal lobar degeneration (FTLD), designated as FTLD-TDP. In ALS and FTLD-TDP, TDP-43 becomes insoluble, ubiquitinated, and pathologically phosphorylated and accumulates in cytoplasmic inclusions in both neurons and glia of affected brain and spinal cord regions. Previously, TDP-43 was detected in RFs of human pilocytic astrocytomas; however, involvement of TDP-43 in AxD has not been determined. Here we show that TDP-43 is present in RFs in AxD patient brains, and that insoluble phosphorylated full-length and high molecular weight TDP-43 accumulates in white matter of such brains. Phosphorylated TDP-43 also accumulates in the detergent-insoluble fraction from affected brain regions of Gfap(R236H/+) knock-in mice, which harbor a GFAP mutation homologous to one that causes AxD in humans, and TDP-43 colocalizes with astrocytic RF pathology in Gfap(R236H/+) mice and transgenic mice overexpressing human wild-type GFAP. These findings suggest common pathogenic mechanisms in ALS, FTLD, and AxD, and this is the first report of TDP-43 involvement in a neurological disorder primarily affecting astrocytes.

  6. Rodent models of TDP-43: Recent advances

    PubMed Central

    Tsao, William; Jeong, Yun Ha; Lin, Sophie; Ling, Jonathan; Price, Donald L.; Chiang, Po-Min; Wong, Philip C.

    2013-01-01

    Recently, missense mutations in the gene TARDBP encoding TDP-43 have been linked to familial ALS. The discovery of genes encoding these RNA binding proteins, such as TDP-43 and FUS/TLS, raised the notion that altered RNA metabolism is a major factor underlying the pathogenesis of ALS. To begin to unravel how mutations in TDP-43 cause dysfunction and death of motor neurons, investigators have employed both gain- and loss-of-function studies in rodent model systems. Here, we will summarize major findings from the initial sets of TDP-43 transgenic and knockout rodent models, identify their limitations, and point to future directions toward clarification of disease mechanism(s) and testing of therapeutic strategies that ultimately may lead to novel therapy for this devastating disease. PMID:22608070

  7. The proteinopathy of D169G and K263E mutants at the RNA Recognition Motif (RRM) domain of tar DNA binding protein (tdp43) causing neurological disorders: A computational study.

    PubMed

    Bhandare, Vishwambhar Vishnu; Ramaswamy, Amutha

    2017-03-22

    One of the multitasking proteins, transactive response DNA-binding protein 43 (tdp43) plays a key role in RNA regulation and the two pathogenic mutations such as D169G and K263E, located at the RNA Recognition Motif (RRM) of tdp43, are reported to cause neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and Fronto Temporal Lobar Degeneration (FTLD). As the exploration of the proteinopathy demands both structural and functional characterization of mutants, a comparative analysis on the wild type and mutant tdp43 (D169G and K263E) and their complexes with RNA have been performed using computational approaches. Molecular dynamics simulations revealed comparatively stable mutant structures compared to wild type tdp43. Both mutants show lesser binding affinity towards RNA molecule when compared to the wild type tdp43. Some of the observed features, including the increased solvent accessible surface area, conformational flexibility as well as unfolding of tdp43 and the altered RNA conformation in tp43-RNA complex, reveal the susceptibility of these mutants to induce conformational changes in tdp43 for a possible aggregation in the cytoplasm. Particularly, the enhanced aggregation propensity of both mutants also evidences the higher probability of cytoplasmic aggregation of tdp43 mutants. Hence, the present analysis highlighting the structural and functional aspects of wild and mutant tdp43 will form the basis to gain insight into the proteinopathy of tdp43 and the related structure based drug discovery. Thus, tdp43 can be used as target to develop novel therapeutic approaches or drug designing.

  8. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43

    PubMed Central

    Arnold, Eveline S.; Ling, Shuo-Chien; Huelga, Stephanie C.; Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Ditsworth, Dara; Kordasiewicz, Holly B.; McAlonis-Downes, Melissa; Platoshyn, Oleksandr; Parone, Philippe A.; Da Cruz, Sandrine; Clutario, Kevin M.; Swing, Debbie; Tessarollo, Lino; Marsala, Martin; Shaw, Christopher E.; Yeo, Gene W.; Cleveland, Don W.

    2013-01-01

    Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43Q331K and TDP-43M337V), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43Q331K, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43Q331K enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage. PMID:23382207

  9. Coexisting adult polyglucosan body disease with frontotemporal lobar degeneration with transactivation response DNA-binding protein-43 (TDP-43)-positive neuronal inclusions.

    PubMed

    Farmer, Jill G; Crain, Barbara J; Harris, Brent T; Turner, R Scott

    2013-01-01

    Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) is one of the most common pathological findings associated with the clinical FTLD syndromes. However, molecular characterization with genetic sequencing and protein expression techniques are recognizing many new subtypes for FTLDs. FTLDs are diverse and new nomenclature schemes have been proposed based on the molecular defects that are being discovered ( Mackenzie et al., 2010 , Acta Neuropathologica, 119, 1). Adult polyglucosan body disease (APBD) is a very rare disorder associated with systemic neurological signs and symptoms including progressive dementia with executive dysfunction and motor neuron disease. We report the clinical course of an individual with a clinical FTLD and the as yet unreported findings of coexistent APBD with FTLD-U and transactivation response DNA-binding protein-43 (TDP-43)-positive inclusions at autopsy (or more accurately, FTLD-TDP). It is unclear if these distinct findings are coincidental in this individual, or if pathogenic pathways may intersect to promote these coexisting pathologies.

  10. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.

    PubMed

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-05-15

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.

  11. The Inhibition of TDP-43 Mitochondrial Localization Blocks Its Neuronal Toxicity

    PubMed Central

    Wang, Wenzhang; Wang, Luwen; Lu, Junjie; Siedlak, Sandra L.; Fujioka, Hisashi; Liang, Jingjing; Jiang, Sirui; Ma, Xiaopin; Jiang, Zhen; da Rocha, Edroaldo Lummertz; Sheng, Max; Choi, Heewon; Lerou, Paul H.; Li, Hu; Wang, Xinglong

    2016-01-01

    Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the increased presence of TDP-43 in the cytoplasm is a prominent histopathological feature of degenerating neurons in various neurodegenerative diseases. However, the molecular mechanisms by which TDP-43 contributes to ALS pathophysiology remain elusive. Here, we have found that TDP-43 accumulates in mitochondria in neurons of subjects with ALS or frontotemporal dementia (FTD). Disease-associated mutations increase TDP-43 mitochondrial localization. Within mitochondria, wild type (WT) and mutant TDP-43 preferentially bind mitochondria-transcribed messenger RNAs (mRNAs) encoding respiratory complex I subunit ND3 and ND6, impair their expression and specifically cause complex I disassembly. Suppression of TDP-43 mitochondrial localization abolishes WT and mutant TDP-43-induced mitochondrial dysfunction and neuronal loss, and improves phenotypes of transgenic mutant TDP-43 mice. Thus, our studies link TDP-43 toxicity directly to mitochondrial bioenergetics and propose targeting TDP-43 mitochondrial localization as a promising therapeutic approach for neurodegeneration. PMID:27348499

  12. Characterization of β-domains in C-terminal fragments of TDP-43 by scanning tunneling microscopy.

    PubMed

    Xu, Meng; Zhu, Li; Liu, Jianghong; Yang, Yanlian; Wu, Jane Y; Wang, Chen

    2013-01-01

    The TAR DNA-binding protein 43 (TDP-43) has been identified as a critical player in a range of neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Recent discoveries demonstrate the important role of carboxyl-terminal fragments of TDP-43 in its proteinopathy. Herein, we report the characterization of β-domains in the C-terminal fragments of TDP-43 using scanning tunneling microscopy (STM). Careful comparison of the wild-type TDP-43 (Wt) and the three mutant TDP-43 peptides: an ALS-related mutant peptide: phosphorylated A315T mutant TDP-43 (A315T(p)) and two model peptides: A315T mutant TDP-43 (A315T), A315E mutant TDP-43 (A315E) reveals that A315T(p) has a longer core region of the β-domain than Wt. A315E possesses the longest core region of the β-domain and A315T(p) mutant TDP-43 has the second longest core region of the β-domain. The core regions of the β-domains for A315T and Wt TDP-43 have the same length. This observation provides a supportive evidence of a higher tendency in beta-sheet formation of A315T(p) containing TDP-43 fragment, and structural mechanism for the higher cytotoxicity and accelerated fibril formation of the A315T(p) mutation-containing TDP-43 peptide as compared with Wt TDP-43.

  13. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  14. TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress.

    PubMed

    Higashi, Shinji; Kabuta, Tomohiro; Nagai, Yoshitaka; Tsuchiya, Yukihiro; Akiyama, Haruhiko; Wada, Keiji

    2013-07-01

    TAR DNA-binding protein 43 (TDP-43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the physiological roles of TDP-43 in the complex translational regulation mechanisms, we exposed cultured cells to oxidative stress induced by sodium arsenite (ARS) for different periods of time, leading to non-lethal or sublethal injury. Polysome profile analysis revealed that ARS-induced stress caused the association of TDP-43 with stalled ribosomes via binding to mRNA, which was not found under the steady-state condition. When the cells were exposed to short-term/non-lethal stress, TDP-43 associating with ribosomes localized to stress granules (SGs); this association was transient because it was immediately dissolved by the removal of the stress. In contrast, when the cells were exposed to long-term/sublethal stress, TDP-43 was excluded from SGs and shifted to the heavy fractions independent of any binding to mRNA. In these severely stressed cells, biochemical alterations of TDP-43, such as increased insolubility and disulfide bond formation, were irreversible. TDP-43 was finally phosphorylated via the ARS-induced c-jun N-terminal kinase pathway. In TDP-43-silenced cells, stalled mRNA and poly (A)(+) RNA stability was disturbed and cytotoxicity increased under sublethal stress. Thus, TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress.

  15. Overlapping but distinct TDP-43 and tau pathologic patterns in aged hippocampi.

    PubMed

    Smith, Vanessa D; Bachstetter, Adam D; Ighodaro, Eseosa; Roberts, Kelly; Abner, Erin L; Fardo, David W; Nelson, Peter T

    2017-03-09

    Intracellular proteinaceous aggregates (inclusion bodies) are almost always detectable at autopsy in brains of elderly individuals. Inclusion bodies composed of TDP-43 and tau proteins often coexist in the same brain, and each of these pathologic biomarkers is associated independently with cognitive impairment. However, uncertainties remain about how the presence and neuroanatomical distribution of inclusion bodies correlate with underlying diseases including Alzheimer's disease (AD). To address this knowledge gap, we analyzed data from the University of Kentucky AD Center autopsy series (n = 247); none of the brains had frontotemporal lobar degeneration. A specific question for this study was whether neurofibrillary tangle (NFT) pathology outside of the Braak NFT staging scheme is characteristic of brains with TDP-43 pathology but lacking AD, that is those with cerebral age-related TDP-43 with sclerosis (CARTS). We also tested whether TDP-43 pathology is associated with comorbid AD pathology, and whether argyrophilic grains are relatively likely to be present in cases with, vs. without, TDP-43 pathology. Consistent with prior studies, hippocampal TDP-43 pathology was associated with advanced AD - Braak NFT stages V/VI. However, argyrophilic grain pathology was not more common in cases with TDP-43 pathology in this data set. In brains with CARTS (TDP-43[+]/AD[-] cases), there were more NFTs in dentate granule neurons than were seen in TDP-43[-]/AD[-] cases. These dentate granule cell NFTs could provide a proxy indicator of CARTS pathology in cases lacking substantial AD pathology. Immunofluorescent experiments in a subsample of cases found that, in both advanced AD and CARTS, approximately 1% of dentate granule neurons were PHF-1 immunopositive, whereas ∼25% of TDP-43 positive cells showed colocalized PHF-1 immunoreactivity. We conclude that NFTs in hippocampal dentate granule neurons are often present in CARTS, and TDP-43 pathology may be secondary to or

  16. TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases.

    PubMed

    Iguchi, Yohei; Katsuno, Masahisa; Niwa, Jun-ichi; Yamada, Shin-ichi; Sone, Jun; Waza, Masahiro; Adachi, Hiroaki; Tanaka, Fumiaki; Nagata, Koh-ichi; Arimura, Nariko; Watanabe, Takashi; Kaibuchi, Kozo; Sobue, Gen

    2009-08-14

    The 43-kDa TAR DNA-binding protein (TDP-43) is known to be a major component of the ubiquitinated inclusions characteristic of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Although TDP-43 is a nuclear protein, it disappears from the nucleus of affected neurons and glial cells, implicating TDP-43 loss of function in the pathogenesis of neurodegeneration. Here we show that the knockdown of TDP-43 in differentiated Neuro-2a cells inhibited neurite outgrowth and induced cell death. In knockdown cells, the Rho family members RhoA, Rac1, and Cdc42 GTPases were inactivated, and membrane localization of these molecules was reduced. In addition, TDP-43 depletion significantly suppressed protein geranylgeranylation, a key regulating factor of Rho family activity and intracellular localization. In contrast, overexpression of TDP-43 mitigated the cellular damage caused by pharmacological inhibition of geranylgeranylation. Furthermore administration of geranylgeranyl pyrophosphate partially restored cell viability and neurite outgrowth in TDP-43 knockdown cells. In summary, our data suggest that TDP-43 plays a key role in the maintenance of neuronal cell morphology and survival possibly through protein geranylgeranylation of Rho family GTPases.

  17. TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation.

    PubMed

    Di Carlo, Valerio; Grossi, Elena; Laneve, Pietro; Morlando, Mariangela; Dini Modigliani, Stefano; Ballarino, Monica; Bozzoni, Irene; Caffarelli, Elisa

    2013-12-01

    TDP-43 (TAR DNA-binding protein 43) is an RNA-binding protein implicated in RNA metabolism at several levels. Even if ubiquitously expressed, it is considered as a neuronal activity-responsive factor and a major signature for neurological pathologies, making the comprehension of its activity in the nervous system a very challenging issue. TDP-43 has also been described as an accessory component of the Drosha-DGCR8 (DiGeorge syndrome critical region gene 8) microprocessor complex, which is crucially involved in basal and tissue-specific RNA processing events. In the present study, we exploited in vitro neuronal differentiation systems to investigate the TDP-43 demand for the microprocessor function, focusing on both its canonical microRNA biosynthetic activity and its alternative role as a post-transcriptional regulator of gene expression. Our findings reveal a novel role for TDP-43 as an essential factor that controls the stability of Drosha protein during neuronal differentiation, thus globally affecting the production of microRNAs. We also demonstrate that TDP-43 is required for the Drosha-mediated regulation of Neurogenin 2, a master gene orchestrating neurogenesis, whereas post-transcriptional control of Dgcr8, another Drosha target, resulted to be TDP-43-independent. These results implicate a previously uncovered contribution of TDP-43 in regulating the abundance and the substrate specificity of the microprocessor complex and provide new insights into TDP-43 as a key player in neuronal differentiation.

  18. Significance and limitation of the pathological classification of TDP-43 proteinopathy.

    PubMed

    Arai, Tetsuaki

    2014-12-01

    Based on the cerebral tans-activation response DNA protein 43 (TDP-43) immunohistochemistry, frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) is classified into four subtypes: type A has numerous neuronal cytoplasmic inclusions (NCIs) and dystrophic neurites (DNs); type B has numerous NCIs with few DNs; type C is characterized by DNs which are often longer and thicker than DNs in type A, with few NCIs; and type D has numerous neuronal intranuclear inclusions and DNs with few NCIs. The relevance of this classification system is supported by clinical, biochemical and genetic correlations, although there is still significant heterogeneity, especially in cases with type A pathology. The subtypes of TDP-43 pathology should be determined in cases with other neurodegenerative disorders, including Alzheimer's disease and dementia with Lewy bodies, to evaluate the pathological significance of TDP-43 abnormality in them. The results of the biochemical analyses of the diseased brains and the cellular models suggest that different strains of TDP-43 with different conformations may determine the clinicopathological phenotypes of TDP-43 proteinopathy, like prion disease. Clarifying the mechanism of the conformational changes of TDP-43 leading to the formation of multiple abnormal strains may be important for differential diagnosis and developing disease-modifying therapy for TDP-43 proteinopathy.

  19. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models

    PubMed Central

    Armakola, Maria; Higgins, Matthew J.; Figley, Matthew D.; Barmada, Sami J.; Scarborough, Emily A.; Diaz, Zamia; Fang, Xiaodong; Shorter, James; Krogan, Nevan J.; Finkbeiner, Steven; Farese, Robert V.; Gitler, Aaron D.

    2012-01-01

    ALS is a devastating neurodegenerative disease primarily affecting motor neurons. Mutations in TDP-43 cause some forms of the disease, and cytoplasmic TDP-43 aggregates accumulate in degenerating neurons of most ALS patients. Thus, strategies aimed at targeting the toxicity of cytoplasmic TDP-43 aggregates may be effective. Here we report results from two genome-wide loss-of-function TDP-43 toxicity suppressor screens in yeast. The strongest suppressor of TDP-43 toxicity was deletion of Dbr1, which encodes RNA lariat debranching enzyme. We show that in the absence of Dbr1 enzymatic activity intronic lariats accumulate in the cytoplasm and likely act as decoys to sequester TDP-43 away from interfering with essential cellular RNAs and RNA-binding proteins. Knockdown of Dbr1 in a human neuronal cell line or in primary rodent neurons is also sufficient to rescue TDP-43 toxicity. Our findings provide insight into TDP-43 cytotoxicity and suggest decreasing Dbr1 activity could be a potential therapeutic approach for ALS. PMID:23104007

  20. Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS

    PubMed Central

    Chatterjee, Nabanita; Hearn, Stephen; Morrill, Kathleen; Prazak, Lisa; Rozhkov, Nikolay; Theodorou, Delphine; Hammell, Molly; Dubnau, Josh

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders that exist on a symptomological spectrum and share both genetic underpinnings and pathophysiological hallmarks. Functional abnormality of TAR DNA-binding protein 43 (TDP-43), an aggregation-prone RNA and DNA binding protein, is observed in the vast majority of both familial and sporadic ALS cases and in ~40% of FTLD cases, but the cascade of events leading to cell death are not understood. We have expressed human TDP-43 (hTDP-43) in Drosophila neurons and glia, a model that recapitulates many of the characteristics of TDP-43-linked human disease including protein aggregation pathology, locomotor impairment, and premature death. We report that such expression of hTDP-43 impairs small interfering RNA (siRNA) silencing, which is the major post-transcriptional mechanism of retrotransposable element (RTE) control in somatic tissue. This is accompanied by de-repression of a panel of both LINE and LTR families of RTEs, with somewhat different elements being active in response to hTDP-43 expression in glia versus neurons. hTDP-43 expression in glia causes an early and severe loss of control of a specific RTE, the endogenous retrovirus (ERV) gypsy. We demonstrate that gypsy causes the degenerative phenotypes in these flies because we are able to rescue the toxicity of glial hTDP-43 either by genetically blocking expression of this RTE or by pharmacologically inhibiting RTE reverse transcriptase activity. Moreover, we provide evidence that activation of DNA damage-mediated programmed cell death underlies both neuronal and glial hTDP-43 toxicity, consistent with RTE-mediated effects in both cell types. Our findings suggest a novel mechanism in which RTE activity contributes to neurodegeneration in TDP-43-mediated diseases such as ALS and FTLD. PMID:28301478

  1. TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies.

    PubMed

    Goossens, Joery; Vanmechelen, Eugeen; Trojanowski, John Q; Lee, Virginia M Y; Van Broeckhoven, Christine; van der Zee, Julie; Engelborghs, Sebastiaan

    2015-04-01

    Frontotemporal lobar degeneration (FTLD) is one of the leading causes of dementia after Alzheimer's disease. A high-ranking candidate to become a diagnostic marker for a major pathological subtype of FTLD is the transactive response DNA binding protein of 43 kDa (TDP-43). The main objective is to elucidate which antibodies are specific for pathological TDP-43, with special interest in its modified isoforms. Indeed, TDP-43 has been shown to be hyperphosphorylated and truncated in disease. A secondary objective is to review existing immunoassays that quantify TDP-43 in biofluids. A systematic review of literature was performed by searching PubMed and Web of Science using predefined keywords. Of considered research papers the methods section was reviewed to select publications that enabled us to answer our learning objective. After quality assessment, antibody characteristics and related outcomes were extracted. We identified a series of well-characterized antibodies based on a scoring system that assessed the ability of each antibody to detect TDP-43 pathology. A selection of 29 unique antibodies was made comprising 10 high-ranking antibodies which were reported multiple times to detect TDP-43 pathology in both immunostaining and immunoblotting experiments and 19 additional antibodies which detected TDP-43 pathology but were only scored once. This systematic review provides an overview of antibodies that are reported to detect pathological TDP-43. These antibodies can be used in future studies of TDP-43 proteinopathies. Additionally, selected antibodies hold the potential to be used in the development of novel immunoassays for the quantification of TDP-43 in biofluids, as a possible biomarker for FTLD-TDP.

  2. TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes.

    PubMed

    Tan, Rachel H; Kril, Jillian J; Fatima, Manaal; McGeachie, Andrew; McCann, Heather; Shepherd, Claire; Forrest, Shelley L; Affleck, Andrew; Kwok, John B J; Hodges, John R; Kiernan, Matthew C; Halliday, Glenda M

    2015-10-01

    The pathological sequestration of TAR DNA-binding protein 43 (TDP-43, encoded by TARDBP) into cytoplasmic pathological inclusions characterizes the distinct clinical syndromes of amyotrophic lateral sclerosis and behavioural variant frontotemporal dementia, while also co-occurring in a proportion of patients with Alzheimer's disease, suggesting that the regional concentration of TDP-43 pathology has most relevance to specific clinical phenotypes. This has been reflected in the three different pathological staging schemes for TDP-43 pathology in these different clinical syndromes, with none of these staging schemes including a preclinical phase similar to that which has proven beneficial in other neurodegenerative diseases. To apply each of these three staging schemes for TDP-43 pathology, the clinical phenotype must be known undermining the potential predictive value of the pathological examination. The present study set out to test whether a more unified approach could accurately predict clinical phenotypes based solely on the regional presence and severity of TDP-43 pathology. The selection of brain regions of interest was based on key regions routinely sampled for neuropathological assessment under current consensus criteria that have also been used in the three TDP-43 staging schemes. The severity of TDP-43 pathology in these regions of interest was assessed in four clinicopathological phenotypes: amyotrophic lateral sclerosis (n = 27, 47-78 years, 15 males), behavioural variant frontotemporal dementia (n = 15, 49-82 years, seven males), Alzheimer's disease (n = 26, 51-90 years, 11 males) and cognitively normal elderly individuals (n = 17, 80-103 years, nine males). Our results demonstrate that the presence of TDP-43 in the hypoglossal nucleus discriminates patients with amyotrophic lateral sclerosis with an accuracy of 98%. The severity of TDP-43 deposited in the anterior cingulate cortex identifies patients with behavioural variant frontotemporal dementia

  3. Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis

    PubMed Central

    Rutherford, Nicola J.; Zhang, Yong-Jie; Baker, Matt; Gass, Jennifer M.; Finch, NiCole A.; Xu, Ya-Fei; Stewart, Heather; Kelley, Brendan J.; Kuntz, Karen; Crook, Richard J. P.; Sreedharan, Jemeen; Vance, Caroline; Sorenson, Eric; Lippa, Carol; Bigio, Eileen H.; Geschwind, Daniel H.; Knopman, David S.; Mitsumoto, Hiroshi; Petersen, Ronald C.; Cashman, Neil R.; Hutton, Mike; Shaw, Christopher E.; Boylan, Kevin B.; Boeve, Bradley; Graff-Radford, Neill R.; Wszolek, Zbigniew K.; Caselli, Richard J.; Dickson, Dennis W.; Mackenzie, Ian R.; Petrucelli, Leonard; Rademakers, Rosa

    2008-01-01

    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43–positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the ∼25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis. PMID:18802454

  4. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

    PubMed

    Neumann, Manuela; Sampathu, Deepak M; Kwong, Linda K; Truax, Adam C; Micsenyi, Matthew C; Chou, Thomas T; Bruce, Jennifer; Schuck, Theresa; Grossman, Murray; Clark, Christopher M; McCluskey, Leo F; Miller, Bruce L; Masliah, Eliezer; Mackenzie, Ian R; Feldman, Howard; Feiden, Wolfgang; Kretzschmar, Hans A; Trojanowski, John Q; Lee, Virginia M-Y

    2006-10-06

    Ubiquitin-positive, tau- and alpha-synuclein-negative inclusions are hallmarks of frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Although the identity of the ubiquitinated protein specific to either disorder was unknown, we showed that TDP-43 is the major disease protein in both disorders. Pathologic TDP-43 was hyper-phosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments and was recovered only from affected central nervous system regions, including hippocampus, neocortex, and spinal cord. TDP-43 represents the common pathologic substrate linking these neurodegenerative disorders.

  5. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS.

    PubMed

    Uchida, Tsukasa; Tamaki, Yoshitaka; Ayaki, Takashi; Shodai, Akemi; Kaji, Seiji; Morimura, Toshifumi; Banno, Yoshinori; Nishitsuji, Kazuchika; Sakashita, Naomi; Maki, Takakuni; Yamashita, Hirofumi; Ito, Hidefumi; Takahashi, Ryosuke; Urushitani, Makoto

    2016-01-11

    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS.

  6. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS

    PubMed Central

    Uchida, Tsukasa; Tamaki, Yoshitaka; Ayaki, Takashi; Shodai, Akemi; Kaji, Seiji; Morimura, Toshifumi; Banno, Yoshinori; Nishitsuji, Kazuchika; Sakashita, Naomi; Maki, Takakuni; Yamashita, Hirofumi; Ito, Hidefumi; Takahashi, Ryosuke; Urushitani, Makoto

    2016-01-01

    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS. PMID:26751167

  7. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways

    PubMed Central

    Swarup, Vivek; Phaneuf, Daniel; Dupré, Nicolas; Petri, Susanne; Strong, Michael; Kriz, Jasna

    2011-01-01

    TDP-43 (TAR DNA-binding protein 43) inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). In this study, we report that TDP-43 and nuclear factor κB (NF-κB) p65 messenger RNA and protein expression is higher in spinal cords in ALS patients than healthy individuals. TDP-43 interacts with and colocalizes with p65 in glial and neuronal cells from ALS patients and mice expressing wild-type and mutant TDP-43 transgenes but not in cells from healthy individuals or nontransgenic mice. TDP-43 acted as a co-activator of p65, and glial cells expressing higher amounts of TDP-43 produced more proinflammatory cytokines and neurotoxic mediators after stimulation with lipopolysaccharide or reactive oxygen species. TDP-43 overexpression in neurons also increased their vulnerability to toxic mediators. Treatment of TDP-43 mice with Withaferin A, an inhibitor of NF-κB activity, reduced denervation in the neuromuscular junction and ALS disease symptoms. We propose that TDP-43 deregulation contributes to ALS pathogenesis in part by enhancing NF-κB activation and that NF-κB may constitute a therapeutic target for the disease. PMID:22084410

  8. A new cellular model of pathological TDP-43: The neurotoxicity of stably expressed CTF25 of TDP-43 depends on the proteasome.

    PubMed

    Liu, Y; Duan, W; Guo, Y; Li, Z; Han, H; Zhang, S; Yuan, P; Li, C

    2014-12-05

    The C-terminal fragments-25(CTF25) of TDP-43 is a fragment of TAR DNA-binding protein 43kDa (TDP-43), which is involved in RNA metabolism, neurite outgrowth, and neuronal development and stress granules. Not until recently did evidence suggest that CTF25 might play an important role in amyotrophic lateral sclerosis (ALS) pathogenesis. However, mechanical details on CTF25 causing motor neuron degeneration still remain unknown. To study the toxicity of CTF25 of TDP-43, we established a cellular model stably expressing CTF25 of TDP-43. Herein, we found that stably expressed CTF25 could induce significant oxidative stress and was mainly degraded by the proteasome pathway in cells. Furthermore, the neurotoxicity of CTF25 of TDP-43 was dependent on proteasome activity. In addition, electron microscopy showed mitochondrial swelling and cristae dilation in cells expressing CTF25 and that CTF25 aggregates were characterized by filamentous bundles and electron dense granular material. In conclusion, the new cellular model mimics classical toxic TDP-43 cellular model and interestingly the toxicity of CTF25 is dependent on the proteasome.

  9. TDP-43 Inhibits NF-κB Activity by Blocking p65 Nuclear Translocation

    PubMed Central

    Zhu, Jingyan; Cynader, Max S.; Jia, William

    2015-01-01

    TDP-43 (TAR DNA binding protein 43) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been found to play an important role in neurodegenerative diseases. TDP-43’s involvement in nuclear factor-kappaB pathways has been reported in both neurons and microglial cells. The NF-κB pathway targets hundreds of genes, many of which are involved in inflammation, immunity and cancer. p50/p65 (p50/RelA) heterodimers, as the major Rel complex in the NF-κB family, are induced by diverse external physiological stimuli and modulate transcriptional activity in almost all cell types. Both p65 and TDP-43 translocation occur through the classic nuclear transportation system. In this study, we report that TDP-43 overexpression prevents TNF-α induced p65 nuclear translocation in a dose dependent manner, and that this further inhibits p65 transactivation activity. The inhibition by TDP-43 does not occur through preventing IκB degradation but probably by competing for the nuclear transporter-importin α3 (KPNA4). This competition is dependent on the presence of the nuclear localization signal (NLS) in TDP-43. Silencing TDP-43 using a specific siRNA also increased p65 nuclear localization upon TNF-α stimulation, suggesting that endogenous TDP-43 may be a default suppressor of the NF-κB pathway. Our results indicate that TDP-43 may play an important role in regulating the levels of NF-κB activity by controlling the nuclear translocation of p65. PMID:26571498

  10. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    PubMed Central

    Estes, Patricia S.; Daniel, Scott G.; Mccallum, Abigail P.; Boehringer, Ashley V.; Sukhina, Alona S.; Zwick, Rebecca A.; Zarnescu, Daniela C.

    2013-01-01

    SUMMARY Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies. PMID:23471911

  11. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    PubMed

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  12. TDP-43 Inclusion Bodies Formed in Bacteria Are Structurally Amorphous, Non-Amyloid and Inherently Toxic to Neuroblastoma Cells

    PubMed Central

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein. PMID:24497973

  13. Maple Syrup Decreases TDP-43 Proteotoxicity in a Caenorhabditis elegans Model of Amyotrophic Lateral Sclerosis (ALS).

    PubMed

    Aaron, Catherine; Beaudry, Gabrielle; Parker, J Alex; Therrien, Martine

    2016-05-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing death of the motor neurons. Proteotoxicity caused by TDP-43 protein is an important aspect of ALS pathogenesis, with TDP-43 being the main constituent of the aggregates found in patients. We have previously tested the effect of different sugars on the proteotoxicity caused by the expression of mutant TDP-43 in Caenorhabditis elegans. Here we tested maple syrup, a natural compound containing many active molecules including sugars and phenols, for neuroprotective activity. Maple syrup decreased several age-dependent phenotypes caused by the expression of TDP-43(A315T) in C. elegans motor neurons and requires the FOXO transcription factor DAF-16 to be effective.

  14. Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43*

    PubMed Central

    Stribl, Carola; Samara, Aladin; Trümbach, Dietrich; Peis, Regina; Neumann, Manuela; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Beckers, Johannes; Horsch, Marion; Neff, Frauke; Kremmer, Elisabeth; Koob, Sebastian; Reichert, Andreas S.; Hans, Wolfgang; Rozman, Jan; Klingenspor, Martin; Aichler, Michaela; Walch, Axel Karl; Becker, Lore; Klopstock, Thomas; Glasl, Lisa; Hölter, Sabine M.; Wurst, Wolfgang; Floss, Thomas

    2014-01-01

    The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43A315TKi mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43A315TKi animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration. PMID:24515116

  15. HIGHER PREVALENCE OF TDP-43 PROTEINOPATHY IN COGNITIVELY NORMAL ASIANS: A CLINICOPATHOLOGICAL STUDY ON A MULTIETHNIC SAMPLE

    PubMed Central

    Nascimento, Camila; Suemoto, Claudia K.; Rodriguez, Roberta D.; Di Lorenzo Alho, Ana Tereza; Leite, Renata P.; Farfel, Jose Marcelo; Pasqualucci, Carlos Alberto; Jacob-Filho, Wilson; Grinberg, Lea T.

    2015-01-01

    Transactive response DNA binding-protein 43 (TDP-43) proteinopathy is the major hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. It is also present in a subset of Alzheimer’s disease cases. Recently, few reports showed TDP-43 changes in cognitively normal elderly. In Caucasians, TDP-43 proteinopathy independently correlate with cognitive decline. However, it is challenging to establish direct links between cognitive and/or neuropsychiatric symptoms and protein inclusions in neurodegenerative diseases because individual cognitive reserves modify the threshold for clinical disease expression. Cognitive reserve is influenced by demographic, environmental and genetic factors. We investigated the relationships between demographic, clinical, and neuropathological variables and TDP-43 proteinopathy in a large multiethnic sample of cognitively normal elderly. TDP-43 proteinopathy were identified in 10.5%, independently associated with older age (p = 0.03) and Asian ethnicity (p = 0.002). Asians showed a higher prevalence of TDP-43 proteinopathy than Caucasians, even after adjustment for sex, age, Braak stage, and schooling (odds ratio = 3.50, confidence interval 1.41–8.69, p = 0.007). These findings suggested Asians older adults may be protected from the clinical manifestation of brain TDP-43 proteinopathy. Future studies are needed to identify possible race-related protective factors against clinical expression of TDP-43 proteinopathies. PMID:26260327

  16. Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior.

    PubMed

    Feiguin, Fabian; Godena, Vinay K; Romano, Giulia; D'Ambrogio, Andrea; Klima, Raffaella; Baralle, Francisco E

    2009-05-19

    Pathological modifications in the highly conserved and ubiquitously expressed heterogeneous ribonucleoprotein TDP-43 were recently associated to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), a late-onset disorder that affects predominantly motoneurons [Neumann, M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133, Sreedharan, J. et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672, Kabashi, E. et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572-574]. However, the function of TDP-43 in vivo is unknown and a possible direct role in neurodegeneration remains speculative. Here, we report that flies lacking Drosophila TDP-43 appeared externally normal but presented deficient locomotive behaviors, reduced life span and anatomical defects at the neuromuscular junctions. These phenotypes were rescued by expression of the human protein in a restricted group of neurons including motoneurons. Our results demonstrate the role of this protein in vivo and suggest an alternative explanation to ALS pathogenesis that may be more due to the lack of TDP 43 function than to the toxicity of the aggregates.

  17. An Amyloid-Like Pathological Conformation of TDP-43 Is Stabilized by Hypercooperative Hydrogen Bonds

    PubMed Central

    Mompeán, Miguel; Baralle, Marco; Buratti, Emanuele; Laurents, Douglas V.

    2016-01-01

    TDP-43 is an essential RNA-binding protein forming aggregates in almost all cases of sporadic amyotrophic lateral sclerosis (ALS) and many cases of frontotemporal lobar dementia (FTLD) and other neurodegenerative diseases. TDP-43 consists of a folded N-terminal domain with a singular structure, two RRM RNA-binding domains, and a long disordered C-terminal region which plays roles in functional RNA regulatory assemblies as well as pernicious aggregation. Evidence from pathological mutations and seeding experiments strongly suggest that TDP-43 aggregates are pathologically relevant through toxic gain-of-harmful-function and/or harmful loss-of-native-function mechanisms. Recent, but not early, microscopy studies and the ability of TDP-43 aggregates to resist harsh treatment and to seed new pathological aggregates in vitro and in cells strongly suggest that TDP-43 aggregates have a self-templating, amyloid-like structure. Based on the importance of the Gln/Asn-rich 341–367 residue segment for efficient aggregation of endogenous TDP-43 when presented as a 12X-repeat and extensive spectroscopic and computational experiments, we recently proposed that this segment adopts a beta-hairpin structure that assembles in a parallel with a beta-turn configuration to form an amyloid-like structure. Here, we propose that this conformer is stabilized by an especially strong class of hypercooperative hydrogen bonding unique to Gln and Asn sidechains. The clinical existence of this conformer is supported by very recent LC-MS/MS characterization of TDP-43 from ex vivo aggregates, which show that residues 341–367 were protected in vivo from Ser phosphorylation, Gln/Asn deamidation and Met oxidation. Its distinct pattern of SDS-PAGE bands allows us to link this conformer to the exceptionally stable seed of the Type A TDP-43 proteinopathy. PMID:27909398

  18. TDP-43 Proteinopathy and Motor Neuron Disease in Chronic Traumatic Encephalopathy

    PubMed Central

    McKee, Ann C.; Gavett, Brandon E.; Stern, Robert A.; Nowinski, Christopher J.; Cantu, Robert C.; Kowall, Neil W.; Perl, Daniel P.; Hedley-Whyte, E. Tessa; Price, Bruce; Sullivan, Chris; Morin, Peter; Lee, Hyo-Soon; Kubilus, Caroline A.; Daneshvar, Daniel H.; Wulff, Megan; Budson, Andrew E.

    2010-01-01

    Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of β-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43 kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43–positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease. PMID:20720505

  19. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy.

    PubMed

    McKee, Ann C; Gavett, Brandon E; Stern, Robert A; Nowinski, Christopher J; Cantu, Robert C; Kowall, Neil W; Perl, Daniel P; Hedley-Whyte, E Tessa; Price, Bruce; Sullivan, Chris; Morin, Peter; Lee, Hyo-Soon; Kubilus, Caroline A; Daneshvar, Daniel H; Wulff, Megan; Budson, Andrew E

    2010-09-01

    Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of β-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43-positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease.

  20. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration

    PubMed Central

    Liachko, Nicole F.; McMillan, Pamela J.; Guthrie, Chris R.; Bird, Thomas D.; Leverenz, James B.; Kraemer, Brian C.

    2013-01-01

    Objective Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 drives neurotoxicity in disease models; therefore, TDP-43 specific kinases are candidate targets for intervention. Methods To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic C. elegans. Results We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In FTLD-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43 dependent neurodegeneration in TDP-43 transgenic animals. Interpretation Taken together these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies including FTLD-TDP and ALS. PMID:23424178

  1. Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD

    PubMed Central

    Diaper, Danielle C.; Adachi, Yoshitsugu; Lazarou, Luke; Greenstein, Max; Simoes, Fabio A.; Di Domenico, Angelique; Solomon, Daniel A.; Lowe, Simon; Alsubaie, Rawan; Cheng, Daryl; Buckley, Stephen; Humphrey, Dickon M.; Shaw, Christopher E.; Hirth, Frank

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that are characterized by cytoplasmic aggregates and nuclear clearance of TAR DNA-binding protein 43 (TDP-43). Studies in Drosophila, zebrafish and mouse demonstrate that the neuronal dysfunction of TDP-43 is causally related to disease formation. However, TDP-43 aggregates are also observed in glia and muscle cells, which are equally affected in ALS and FTLD; yet, it is unclear whether glia- or muscle-specific dysfunction of TDP-43 contributes to pathogenesis. Here, we show that similar to its human homologue, Drosophila TDP-43, Tar DNA-binding protein homologue (TBPH), is expressed in glia and muscle cells. Muscle-specific knockdown of TBPH causes age-related motor abnormalities, whereas muscle-specific gain of function leads to sarcoplasmic aggregates and nuclear TBPH depletion, which is accompanied by behavioural deficits and premature lethality. TBPH dysfunction in glia cells causes age-related motor deficits and premature lethality. In addition, both loss and gain of Drosophila TDP-43 alter mRNA expression levels of the glutamate transporters Excitatory amino acid transporter 1 (EAAT1) and EAAT2. Taken together, our results demonstrate that both loss and gain of TDP-43 function in muscle and glial cells can lead to cytological and behavioural phenotypes in Drosophila that also characterize ALS and FTLD and identify the glutamate transporters EAAT1/2 as potential direct targets of TDP-43 function. These findings suggest that together with neuronal pathology, glial- and muscle-specific TDP-43 dysfunction may directly contribute to the aetiology and progression of TDP-43-related ALS and FTLD. PMID:23727833

  2. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure.

    PubMed

    Ding, Xuebing; Ma, Mingming; Teng, Junfang; Teng, Robert K F; Zhou, Shuang; Yin, Jingzheng; Fonkem, Ekokobe; Huang, Jason H; Wu, Erxi; Wang, Xuejing

    2015-09-15

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devastating neurodegenerative diseases, characterized by transactive response DNA-binding protein of 43 kDa (TDP-43) aggregates accumulation throughout the nervous system. Despite rapidly emerging evidence suggesting the hypothesis of 'prion-like propagation' of TDP-43 positive inclusion in the regional spread of ALS symptoms, whether and how TDP-43 aggregates spread between cells is not clear. Herein, we established a cerebrospinal fluid (CSF)-cultured cell model to dissect mechanisms governing TDP-43 aggregates formation and propagation. Remarkably, intracellular TDP-43 mislocalization and aggregates were induced in the human glioma U251 cells following exposure to ALS-FTD-CSF but not ALS-CSF and normal control (NC) -CSF for 21 days. The exosomes derived from ALS-FTD-CSF were enriched in TDP-43 C-terminal fragments (CTFs). Incubation of ALS-FTD-CSF induced the increase of mislocated TDP-43 positive exosomes in U251 cells. We further demonstrated that exposure to ALS-FTD-CSF induced the generations of tunneling nanotubes (TNTs)-like structure and exosomes at different stages, which mediated the propagation of TDP-43 aggregates in the cultured U251 cells. Moreover, immunoblotting analyses revealed that abnormal activations of apoptosis and autophagy were induced in U251 cells, following incubation of ALS-CSF and ALS-FTD-CSF. Taken together, our data provide direct evidence that ALS-FTD-CSF has prion-like transmissible properties. TNTs-like structure and exosomes supply the routes for the transfer of TDP-43 aggregates, and selective inhibition of their over-generations may interrupt the progression of TDP-43 proteinopathy.

  3. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease.

    PubMed

    Matej, Radoslav; Botond, Gergö; László, Lajos; Kopitar-Jerala, Natasa; Rusina, Robert; Budka, Herbert; Kovacs, Gabor G

    2010-09-01

    Sporadic motor neuron disease (MND) is characterized by progressive degeneration of motor neurons and intraneuronal cytoplasmic translocation and deposition of the nuclear protein TDP-43. There is a paucity of data on the subcellular mechanisms of the nuclear-cytoplasmic trafficking of TDP-43, particularly about the precise role of the endosomal-lysosomal system (ELS). In the present study, using a neuron-specific morphometric approach, we examined the expression of the early endosomal marker Rab5 and lysosomal cathepsins B, D, F, and L as well as PAS-stained structures in the anterior horn cells in 11 individuals affected by sporadic MND and 5 age-matched controls. This was compared with the expression of ubiquitin, p62 and TDP-43 and its phosphorylated form. The principal finding was the increased expression of the endosomal marker Rab5 and lysosomal cathepsin D, and of PAS-positive structures in motor neurons of MND cases. Furthermore, the area-portion of Rab5 immunoreactivity correlated well with the intracellular accumulation of ubiquitin, p62 and (phosphorylated) TDP-43. However, double immunolabelling and immunogold electron microscopy excluded colocalization of phosphorylated TDP-43 with the ELS. These data contrast with observations on neuronal cytopathology in Alzheimer's or prion diseases where the disease-specific proteins are processed within endosomes, and suggest a distinct role of the ELS in MND.

  4. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice

    PubMed Central

    Coughlan, Karen S.; Halang, Luise; Woods, Ina

    2016-01-01

    ABSTRACT Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077

  5. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice.

    PubMed

    Coughlan, Karen S; Halang, Luise; Woods, Ina; Prehn, Jochen H M

    2016-09-01

    Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43(A315T) mice. Similar to our recent results in SOD1(G93A) mice, TDP-43(A315T) mice fed a standard pellet diet showed increased 5' adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43(A315T) mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43(A315T) model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS.

  6. TDP-43 loss-of-function causes neuronal loss due to defective steroid receptor-mediated gene program switching in Drosophila.

    PubMed

    Vanden Broeck, Lies; Naval-Sánchez, Marina; Adachi, Yoshitsugu; Diaper, Danielle; Dourlen, Pierre; Chapuis, Julien; Kleinberger, Gernot; Gistelinck, Marc; Van Broeckhoven, Christine; Lambert, Jean-Charles; Hirth, Frank; Aerts, Stein; Callaerts, Patrick; Dermaut, Bart

    2013-01-31

    TDP-43 proteinopathy is strongly implicated in the pathogenesis of amyotrophic lateral sclerosis and related neurodegenerative disorders. Whether TDP-43 neurotoxicity is caused by a novel toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased and decreased expression of TDP-43 (dTDP-43) in Drosophila. Although upregulation of dTDP-43 induced neuronal ubiquitin and dTDP-43-positive inclusions, both up- and downregulated dTDP-43 resulted in selective apoptosis of bursicon neurons and highly similar transcriptome alterations at the pupal-adult transition. Gene network analysis and genetic validation showed that both up- and downregulated dTDP-43 directly and dramatically increased the expression of the neuronal microtubule-associated protein Map205, resulting in cytoplasmic accumulations of the ecdysteroid receptor (EcR) and a failure to switch EcR-dependent gene programs from a pupal to adult pattern. We propose that dTDP-43 neurotoxicity is caused by a loss of its normal function.

  7. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration

    PubMed Central

    Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Cleveland, Don W.

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration. PMID:20400460

  8. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements

    PubMed Central

    Misulovin, Ziva; Gause, Maria; Rickels, Ryan A; Shilatifard, Ali

    2016-01-01

    The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers. PMID:27662615

  9. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.

    PubMed

    Polymenidou, Magdalini; Lagier-Tourenne, Clotilde; Hutt, Kasey R; Huelga, Stephanie C; Moran, Jacqueline; Liang, Tiffany Y; Ling, Shuo-Chien; Sun, Eveline; Wancewicz, Edward; Mazur, Curt; Kordasiewicz, Holly; Sedaghat, Yalda; Donohue, John Paul; Shiue, Lily; Bennett, C Frank; Yeo, Gene W; Cleveland, Don W

    2011-04-01

    We used cross-linking and immunoprecipitation coupled with high-throughput sequencing to identify binding sites in 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein that, when mutated, causes amyotrophic lateral sclerosis. Massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs were changed (including Fus (Tls), progranulin and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events were detected (including in sortilin, the receptor for progranulin) following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels were most depleted by reduction in TDP-43 were derived from genes with very long introns and that encode proteins involved in synaptic activity. Lastly, we found that TDP-43 autoregulates its synthesis, in part by directly binding and enhancing splicing of an intron in the 3' untranslated region of its own transcript, thereby triggering nonsense-mediated RNA degradation.

  10. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice

    PubMed Central

    Alfieri, Julio A.; Silva, Pablo R.; Igaz, Lionel M.

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies. PMID:28066234

  11. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  12. Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress.

    PubMed

    Moujalled, Diane; James, Janine L; Parker, Sarah J; Lidgerwood, Grace E; Duncan, Clare; Meyerowitz, Jodi; Nonaka, Takashi; Hasegawa, Masato; Kanninen, Katja M; Grubman, Alexandra; Liddell, Jeffrey R; Crouch, Peter J; White, Anthony R

    2013-01-01

    Abnormal processing of TAR DNA binding protein 43 (TDP-43) has been identified as a major factor in neuronal degeneration during amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). It is unclear how changes to TDP-43, including nuclear to cytosolic translocation and subsequent accumulation, are controlled in these diseases. TDP-43 is a member of the heterogeneous ribonucleoprotein (hnRNP) RNA binding protein family and is known to associate with cytosolic RNA stress granule proteins in ALS and FTLD. hnRNP trafficking and accumulation is controlled by the action of specific kinases including members of the mitogen-activated protein kinase (MAPK) pathway. However, little is known about how kinase pathways control TDP-43 movement and accumulation. In this study, we used an in vitro model of TDP-43-positve stress granule formation to screen for the effect of kinase inhibitors on TDP-43 accumulation. We found that while a number of kinase inhibitors, particularly of the MAPK pathways modulated both TDP-43 and the global stress granule marker, human antigen R (HuR), multiple inhibitors were more specific to TDP-43 accumulation, including inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3 (GSK3). Close correlation was observed between effects of these inhibitors on TDP-43, hnRNP K and TIAR, but often with different effects on HuR accumulation. This may indicate a potential interaction between TDP-43, hnRNP K and TIAR. CDK inhibitors were also found to reverse pre-formed TDP-43-positive stress granules and both CDK and GSK3 inhibitors abrogated the accumulation of C-terminal TDP-43 (219-414) in transfected cells. Further studies are required to confirm the specific kinases involved and whether their action is through phosphorylation of the TDP-43 binding partner hnRNP K. This knowledge provides a valuable insight into the mechanisms controlling abnormal cytoplasmic TDP-43 accumulation and may herald new opportunities

  13. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T

    2016-05-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD).

  14. A molecular mechanism realizing sequence-specific recognition of nucleic acids by TDP-43

    PubMed Central

    Furukawa, Yoshiaki; Suzuki, Yoh; Fukuoka, Mami; Nagasawa, Kenichi; Nakagome, Kenta; Shimizu, Hideaki; Mukaiyama, Atsushi; Akiyama, Shuji

    2016-01-01

    TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein containing two consecutive RNA recognition motifs (RRM1 and RRM2) in tandem. Functional abnormality of TDP-43 has been proposed to cause neurodegeneration, but it remains obscure how the physiological functions of this protein are regulated. Here, we show distinct roles of RRM1 and RRM2 in the sequence-specific substrate recognition of TDP-43. RRM1 was found to bind a wide spectrum of ssDNA sequences, while no binding was observed between RRM2 and ssDNA. When two RRMs are fused in tandem as in native TDP-43, the fused construct almost exclusively binds ssDNA with a TG-repeat sequence. In contrast, such sequence-specificity was not observed in a simple mixture of RRM1 and RRM2. We thus propose that the spatial arrangement of multiple RRMs in DNA/RNA binding proteins provides steric effects on the substrate-binding site and thereby controls the specificity of its substrate nucleotide sequences. PMID:26838063

  15. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis

    SciTech Connect

    Arai, Tetsuaki . E-mail: arai@prit.go.jp; Hasegawa, Masato . E-mail: masato@prit.go.jp; Akiyama, Haruhiko; Ikeda, Kenji; Nonaka, Takashi; Mori, Hiroshi; Mann, David; Tsuchiya, Kuniaki; Yoshida, Mari; Hashizume, Yoshio; Oda, Tatsuro

    2006-12-22

    Ubiquitin-positive tau-negative neuronal cytoplasmic inclusions and dystrophic neurites are common pathological features in frontotemporal lobar degeneration (FTLD) with or without symptoms of motor neuron disease and in amyotrophic lateral sclerosis (ALS). Using biochemical and immunohistochemical analyses, we have identified a TAR DNA-binding protein of 43 kDa (TDP-43), a nuclear factor that functions in regulating transcription and alternative splicing, as a component of these structures in FTLD. Furthermore, skein-like inclusions, neuronal intranuclear inclusions, and glial inclusions in the spinal cord of ALS patients are also positive for TDP-43. Dephosphorylation treatment of the sarkosyl insoluble fraction has shown that abnormal phosphorylation takes place in accumulated TDP-43. The common occurrence of intracellular accumulations of TDP-43 supports the hypothesis that these disorders represent a clinicopathological entity of a single disease, and suggests that they can be newly classified as a proteinopathy of TDP-43.

  16. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons.

    PubMed

    Gopal, Pallavi P; Nirschl, Jeffrey J; Klinman, Eva; Holzbaur, Erika L F

    2017-03-21

    Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid-liquid phase separation and liquid-like non-membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation.

  17. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis.

    PubMed

    Jackson, K L; Dayton, R D; Orchard, E A; Ju, S; Ringe, D; Petsko, G A; Maquat, L E; Klein, R L

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43 kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms.

  18. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis

    PubMed Central

    Jackson, KL; Dayton, RD; Orchard, EA; Ju, S; Ringe, D; Petsko, GA; Maquat, LE; Klein, RL

    2016-01-01

    Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43 kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms. PMID:25354681

  19. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD.

    PubMed

    Khosravi, Bahram; Hartmann, Hannelore; May, Stephanie; Möhl, Christoph; Ederle, Helena; Michaelsen, Meike; Schludi, Martin H; Dormann, Dorothee; Edbauer, Dieter

    2016-12-30

    A repeat expansion in the non-coding region of C9orf72 gene is the most common mutation causing frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Sense and antisense transcripts are translated into aggregating dipeptide repeat (DPR) proteins in all reading frames (poly-GA,-GP,-GR,-PA and -PR) through an unconventional mechanism. How these changes contribute to cytoplasmic mislocalization and aggregation of TDP-43 and thereby ultimately lead to neuron loss remains unclear. The repeat RNA itself and poly-GR/PR have been linked to impaired nucleocytoplasmic transport. Here, we show that compact cytoplasmic poly-GA aggregates impair nuclear import of a reporter containing the TDP-43 nuclear localization (NLS) signal. However, a reporter containing a non-classical PY-NLS was not affected. Moreover, poly-GA expression prevents TNFα induced nuclear translocation of p65 suggesting that poly-GA predominantly impairs the importin-α/β-dependent pathway. In neurons, prolonged poly-GA expression induces partial mislocalization of TDP-43 into cytoplasmic granules. Rerouting poly-GA to the nucleus prevented TDP-43 mislocalization, suggesting a cytoplasmic mechanism. In rescue experiments, expression of importin-α (KPNA3, KPNA4) or nucleoporins (NUP54, NUP62) restores the nuclear localization of the TDP reporter. Taken together, inhibition of nuclear import of TDP-43 by cytoplasmic poly-GA inclusions causally links the two main aggregating proteins in C9orf72 ALS/FTLD pathogenesis.

  20. Distinct partitioning of ALS associated TDP-43, FUS and SOD1 mutants into cellular inclusions

    PubMed Central

    Farrawell, Natalie E.; Lambert-Smith, Isabella A.; Warraich, Sadaf T.; Blair, Ian P.; Saunders, Darren N.; Hatters, Danny M.; Yerbury, Justin J.

    2015-01-01

    Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease associated with protein misfolding and aggregation. Most cases are characterized by TDP-43 positive inclusions, while a minority of familial ALS cases are instead FUS and SOD1 positive respectively. Cells can generate inclusions of variable type including previously characterized aggresomes, IPOD or JUNQ structures depending on the misfolded protein. SOD1 invariably forms JUNQ inclusions but it remains unclear whether other ALS protein aggregates arise as one of these previously described inclusion types or form unique structures. Here we show that FUS variably partitioned to IPOD, JUNQ or alternate structures, contain a mobile fraction, were not microtubule dependent and initially did not contain ubiquitin. TDP-43 inclusions formed in a microtubule independent manner, did not contain a mobile fraction but variably colocalized to JUNQ inclusions and another alternate structure. We conclude that the RNA binding proteins TDP-43 and FUS do not consistently fit the currently characterised inclusion models suggesting that cells have a larger repertoire for generating inclusions than currently thought, and imply that toxicity in ALS does not stem from a particular aggregation process or aggregate structure. PMID:26293199

  1. Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord.

    PubMed

    Braak, Heiko; Ludolph, Albert; Thal, Dietmar R; Del Tredici, Kelly

    2010-07-01

    Skein-like and spherical inclusions within the somatodendritic compartment of a few types of susceptible neurons in the human nervous system are the currently acknowledged pathological hallmarks of amyotrophic lateral sclerosis (ALS). These inclusions consist chiefly of an aggregated, phosphorylated, and ultimately ubiquitinated intranuclear protein, TDP-43. To investigate the development of these inclusions, a single neuronal type that is susceptible to the ALS-associated pathological process, i.e., the class of large multipolar somatomotor neurons in the lower brainstem and spinal cord, was studied in four cases of sporadic ALS and four age-matched controls using immunoreactions against phosphorylated TDP-43 (pTDP-43), p62, and ubiquitin. In these neurons, the protein TDP-43, after its displacement outside of the cell nucleus and abnormal phosphorylation, forms light microscopically visible dash-like aggregates which were dispersed throughout their entire somatodendritic domain and even extended into the proximal portions of the axon. Many motor neurons contained these lesions, which were not detectable with anti-TDP-43 and anti-p62. In an additional step, a small number of the neurons that contain the dash-like lesions displayed a clustering of the aggregated material, which forms thick net-like (potential precursors of the skein-like inclusions) and spherical inclusions. This material, in turn, was ubiquitinated and p62-immunopositive. Thus, dash-like pTDP-43 aggregates are regularly seen in motor neurons in ALS and may represent the initial cellular lesion in this disease. Because these aggregates were not stained with antibodies against p62 and non-phosphorylated TDP-43, it is possible that phosphorylation of TDP-43 is required for its aggregation in sporadic ALS.

  2. Human TDP-43 and FUS selectively affect motor neuron maturation and survival in a murine cell model of ALS by non-cell-autonomous mechanisms.

    PubMed

    Wächter, Nicole; Storch, Alexander; Hermann, Andreas

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) were recently found to cause familial and sporadic amyotrophic lateral sclerosis (ALS). The mechanisms by which mutations within these genes cause ALS are not understood. We established murine embryonic stem cell (ESC)-based cell models that stably express the human wild-type (WT) and various ALS causing mutations of TDP-43 (A315T) and FUS (R514S, R521C and P525L). We investigated their effect on pan-neuron as well as motor neuron degeneration. Finally, non-cell-autonomous mediated neurodegeneration by muscle cells was investigated. Expression of mutant hTDP-43, but not wild-type TDP-43, as well as wild-type and mutant hFUS proteins induced neuronal degeneration with partial selectivity for motor neurons. Motor neuron loss was accompanied by abnormal neurite morphology and length. In chimeric coculture experiments with control motor neurons and mutant muscle cells (as their major target cells), we detected that mutant hTDP-43 A315T as well as wild-type and hFUS P525L expression only in muscle cells is sufficient to exert degenerative effects on control motor neurons. In conclusion, our data indicate that a selective vulnerability of motor neurons expressing the pathogenic ALS-causing genes TDP-43 and FUS, is, at least in part, mediated through non-cell-autonomous mechanisms.

  3. Neurotrophic effects of progranulin in vivo in reversing motor neuron defects caused by over or under expression of TDP-43 or FUS

    PubMed Central

    Chitramuthu, Babykumari P.; Kay, Denis G.; Bateman, Andrew; Bennett, Hugh P. J.

    2017-01-01

    Progranulin (PGRN) is a glycoprotein with multiple roles in normal and disease states. Mutations within the GRN gene cause frontotemporal lobar degeneration (FTLD). The affected neurons display distinctive TAR DNA binding protein 43 (TDP-43) inclusions. How partial loss of PGRN causes TDP-43 neuropathology is poorly understood. TDP-43 inclusions are also found in affected neurons of patients with other neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. In ALS, TDP-43 inclusions are typically also immunoreactive for fused in sarcoma (FUS). Mutations within TDP-43 or FUS are themselves neuropathogenic in ALS and some cases of FTLD. We used the outgrowth of caudal primary motor neurons (MNs) in zebrafish embryos to investigate the interaction of PGRN with TDP-43 and FUS in vivo. As reported previously, depletion of zebrafish PGRN-A (zfPGRN-A) is associated with truncated primary MNs and impaired motor function. Here we found that depletion of zfPGRN-A results in primary MNs outgrowth stalling at the horizontal myoseptum, a line of demarcation separating the myotome into dorsal and ventral compartments that is where the final destination of primary motor is assigned. Successful axonal outgrowth beyond the horizontal myoseptum depends in part upon formation of acetylcholine receptor clusters and this was found to be disorganized upon depletion of zfPGRN-A. PGRN reversed the effects of zfPGRN-A knockdown, but a related gene, zfPGRN-1, was without effect. Both knockdown of TDP-43 or FUS, as well as expression of humanTDP-43 and FUS mutants results in MN abnormalities that are reversed by co-expression of hPGRN mRNA. Neither TDP-43 nor FUS reversed MN phenotypes caused by the depletion of PGRN. Thus TDP-43 and FUS lie upstream of PGRN in a gene complementation pathway. The ability of PGRN to override TDP-43 and FUS neurotoxicity due to partial loss of function or mutation in the corresponding genes may have therapeutic

  4. Valproate Attenuates 25-kDa C-Terminal Fragment of TDP-43-Induced Neuronal Toxicity via Suppressing Endoplasmic Reticulum Stress and Activating Autophagy

    PubMed Central

    Wang, Xuejing; Ma, Mingming; Teng, Junfang; Che, Xiangqian; Zhang, Wenwen; Feng, Shuman; Zhou, Shuang; Zhang, Ying; Wu, Erxi; Ding, Xuebing

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease. To date, there is no any effective pharmacological treatment for improving patients' symptoms and quality of life. Rapidly emerging evidence suggests that C-terminal fragments (CTFs) of TAR DNA-binding protein of 43 kDa (TDP-43), including TDP-35 and TDP-25, may play an important role in ALS pathogenesis. Valproate (VPA), a widely used antiepileptic drug, has neuroprotective effects on neurodegenerative disorders. As for ALS, preclinical studies also provide encouraging evidence for multiple beneficial effects in ALS mouse models. However, the potential molecular mechanisms have not been explored. Here, we show protective effects of VPA against TDP-43 CTFs-mediated neuronal toxicity and its underlying mechanisms in vitro. Remarkably, TDP-43 CTFs induced neuronal damage via endoplastic reticulum (ER) stress-mediated apoptosis. Furthermore, autophagic self-defense system was activated to reduce TDP-43 CTFs-induced neuronal death. Finally, VPA attenuated TDP-25-induced neuronal toxicity via suppressing ER stress-mediated apoptosis and enhancing autophagy. Taken together, these results demonstrate that VPA exerts neuroprotective effects against TDP-43 CTFs-induced neuronal damage. Thus, we provide new molecular evidence for VPA treatment in patients with ALS and other TDP-43 proteinopathies. PMID:26078717

  5. FUS and TDP43 genetic variability in FTD and CBS.

    PubMed

    Huey, Edward D; Ferrari, Raffaele; Moreno, Jorge H; Jensen, Christopher; Morris, Christopher M; Potocnik, Felix; Kalaria, Rajesh N; Tierney, Michael; Wassermann, Eric M; Hardy, John; Grafman, Jordan; Momeni, Parastoo

    2012-05-01

    This study aimed to evaluate genetic variability in the FUS and TDP-43 genes, known to be mainly associated with amyotrophic lateral sclerosis (ALS), in patients with the diagnoses of frontotemporal lobar degeneration (FTLD) and corticobasal syndrome (CBS). We screened the DNA of 228 patients for all the exons and flanking introns of FUS and TDP-43 genes. We identified 2 novel heterozygous missense mutations in FUS: P106L (g.22508384C>T) in a patient with behavioral variant frontotemporal dementia (bvFTD) and Q179H in several members of a family with behavioral variant FTD. We also identified the N267S mutation in TDP-43 in a CBS patient, previously only reported in 1 ALS family and 1 FTD patient. Additionally, we identified 2 previously reported heterozygous insertion and deletion mutations in Exon 5 of FUS; Gly174-Gly175 del GG (g. 4180-4185 delGAGGTG) in an FTD patient and Gly175-Gly176 ins GG (g. 4185-4186 insGAGGTG) in a patient with diagnosis of CBS. Not least, we have found a series of variants in FUS also in neurologically normal controls. In summary, we report that genetic variability in FUS and TDP-43 encompasses a wide range of phenotypes (including ALS, FTD, and CBS) and that there is substantial genetic variability in FUS gene in neurologically normal controls.

  6. Evidence that TDP-43 is not the major ubiquitinated target within the pathological inclusions of amyotrophic lateral sclerosis.

    PubMed

    Sanelli, Teresa; Xiao, Shangxi; Horne, Patrick; Bilbao, Juan; Zinman, Lorne; Robertson, Janice

    2007-12-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the presence of various types of ubiquitinated inclusions in the cytoplasm of affected motor neurons. The identification of the ubiquitinated targets within these inclusions has represented a major challenge, as this may provide new gene candidates and/or clues to understanding the neurodegenerative mechanism(s) underlying the disease. As such, the nuclear factor TAR DNA-binding protein (TDP-43) was recently identified as a component of ubiquitinated skein-like inclusions and round inclusions in ALS. This identification combined with biochemical evidence led to the suggestion that TDP-43 is the key ubiquitinated target and major disease protein in ALS. Here, using 3-dimensional deconvolution imaging, we have obtained remarkable resolution of skein-like inclusions and round inclusions in ALS. Surprisingly we have found that in contrast to current thinking, TDP-43 is not the major ubiquitinated target within these types of inclusions. These findings raise the possibility that TDP-43 may not necessarily be the key disease protein in ALS and indicate that the major target(s) of ubiquitination remain to be identified.

  7. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43

    PubMed Central

    Polymenidou, Magdalini; Lagier-Tourenne, Clotilde; Hutt, Kasey R.; Huelga, Stephanie C.; Moran, Jacqueline; Liang, Tiffany Y.; Ling, Shuo-Chien; Sun, Eveline; Wancewicz, Edward; Mazur, Curt; Kordasiewicz, Holly; Sedaghat, Yalda; Donohue, John Paul; Shiue, Lily; Bennett, C. Frank; Yeo, Gene W.; Cleveland, Don W.

    2011-01-01

    Cross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3′ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. (147 words) PMID:21358643

  8. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models

    PubMed Central

    Barmada, Sami J.; Serio, Andrea; Arjun, Arpana; Bilican, Bilada; Daub, Aaron; Ando, D. Michael; Tsvetkov, Andrey; Pleiss, Michael; Li, Xingli; Peisach, Daniel; Shaw, Christopher; Chandran, Siddharthan; Finkbeiner, Steven

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology—cytoplasmic inclusions rich in TDP43. Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we showed that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity, and discovered that pathogenic mutations significantly shorten TDP43 half-life. Novel compounds that stimulate autophagy improved TDP43 clearance and localization, and enhanced survival in primary murine neurons and in human stem cell–derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance. PMID:24974230

  9. Increased metal content in the TDP-43A315T transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis

    PubMed Central

    Dang, Theresa N. T.; Lim, Nastasia K. H.; Grubman, Alexandra; Li, Qiao-Xin; Volitakis, Irene; White, Anthony R.; Crouch, Peter J.

    2014-01-01

    Disrupted metal homeostasis is a consistent feature of neurodegenerative disease in humans and is recapitulated in mouse models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis (ALS) and neuronal ceriod lipofuscinosis. While the definitive pathogenesis of neurodegenerative disease in humans remains to be fully elucidated, disease-like symptoms in the mouse models are all driven by the presence or over-expression of a putative pathogenic protein, indicating an in vivo relationship between expression of these proteins, disrupted metal homeostasis and the symptoms of neuronal failure. Recently it was established that mutant TAR DNA binding protein-43 (TDP-43) is associated with the development of frontotemporal lobar degeneration and ALS. Subsequent development of transgenic mice that express human TDP-43 carrying the disease-causing A315T mutation has provided new opportunity to study the underlying mechanisms of TDP-43-related neurodegenerative disease. We assessed the cognitive and locomotive phenotype of TDP-43 A315T mice and their wild-type littermates and also assessed bulk metal content of brain and spinal cord tissues. Metal levels in the brain were not affected by the expression of mutant TDP-43, but zinc, copper, and manganese levels were all increased in the spinal cords of TDP-43 A315T mice when compared to wild-type littermates. Performance of the TDP-43 A315T mice in the Y-maze test for cognitive function was not significantly different to wild-type mice. By contrast, performance of the TDP-43 A315T in the rotarod test for locomotive function was consistently worse than wild-type mice. These preliminary in vivo data are the first to show that expression of a disease-causing form of TDP-43 is sufficient to disrupt metal ion homeostasis in the central nervous system. Disrupted metal ion homeostasis in the spinal cord but not the brain may explain why the TDP-43 A315T mice show symptoms of locomotive decline and not cognitive

  10. TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA.

    PubMed

    Saldi, Tassa K; Ash, Peter Ea; Wilson, Gavin; Gonzales, Patrick; Garrido-Lecca, Alfonso; Roberts, Christine M; Dostal, Vishantie; Gendron, Tania F; Stein, Lincoln D; Blumenthal, Thomas; Petrucelli, Leonard; Link, Christopher D

    2014-12-17

    Caenorhabditis elegans mutants deleted for TDP-1, an ortholog of the neurodegeneration-associated RNA-binding protein TDP-43, display only mild phenotypes. Nevertheless, transcriptome sequencing revealed that many RNAs were altered in accumulation and/or processing in the mutant. Analysis of these transcriptional abnormalities demonstrates that a primary function of TDP-1 is to limit formation or stability of double-stranded RNA. Specifically, we found that deletion of tdp-1: (1) preferentially alters the accumulation of RNAs with inherent double-stranded structure (dsRNA); (2) increases the accumulation of nuclear dsRNA foci; (3) enhances the frequency of adenosine-to-inosine RNA editing; and (4) dramatically increases the amount of transcripts immunoprecipitable with a dsRNA-specific antibody, including intronic sequences, RNAs with antisense overlap to another transcript, and transposons. We also show that TDP-43 knockdown in human cells results in accumulation of dsRNA, indicating that suppression of dsRNA is a conserved function of TDP-43 in mammals. Altered accumulation of structured RNA may account for some of the previously described molecular phenotypes (e.g., altered splicing) resulting from reduction of TDP-43 function.

  11. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models.

    PubMed

    Magrané, Jordi; Cortez, Czrina; Gan, Wen-Biao; Manfredi, Giovanni

    2014-03-15

    Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been investigated in vivo. To address this question, we crossed SOD1 (wild-type SOD1(WT) and mutant SOD1(G93A)) or TDP43 (mutant TDP43(A315T)) transgenic mice with mice expressing the fluorescent protein Dendra targeted to mitochondria in neurons (mitoDendra). At different time points during the disease course, we studied mitochondrial transport in the intact sciatic nerve of living mice and analyzed axonal mitochondrial morphology at multiple sites, spanning from the spinal cord to the motor terminals. Defects of retrograde mitochondrial transport were detected at 45 days of age, before the onset of symptoms, in SOD1(G93A) and TDP43(A315T) mice, but not in SOD1(WT). At later disease stages, also anterograde mitochondrial transport was affected in both mutant mouse lines. In SOD1(G93A) mice, mitochondrial morphological abnormalities were apparent at 15 days of age, thus preceding transport abnormalities. Conversely, in TDP43(A315T) mice, morphological abnormalities appeared after the onset of transport defects. Taken together, these findings demonstrate that neuronal mitochondrial transport and morphology abnormalities occur in vivo and that they are common denominators of different genetic forms of the ALS. At the same time, differences in the temporal and spatial manifestation of mitochondrial abnormalities between the two mouse models of familial ALS imply that different molecular mechanisms may be involved.

  12. Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS.

    PubMed

    Soo, Kai Y; Halloran, Mark; Sundaramoorthy, Vinod; Parakh, Sonam; Toth, Reka P; Southam, Katherine A; McLean, Catriona A; Lock, Peter; King, Anna; Farg, Manal A; Atkin, Julie D

    2015-11-01

    Several diverse proteins are linked genetically/pathologically to neurodegeneration in amyotrophic lateral sclerosis (ALS) including SOD1, TDP-43 and FUS. Using a variety of cellular and biochemical techniques, we demonstrate that ALS-associated mutant TDP-43, FUS and SOD1 inhibit protein transport between the endoplasmic reticulum (ER) and Golgi apparatus in neuronal cells. ER-Golgi transport was also inhibited in embryonic cortical and motor neurons obtained from a widely used animal model (SOD1(G93A) mice), validating this mechanism as an early event in disease. Each protein inhibited transport by distinct mechanisms, but each process was dependent on Rab1. Mutant TDP-43 and mutant FUS both inhibited the incorporation of secretory protein cargo into COPII vesicles as they bud from the ER, and inhibited transport from ER to the ER-Golgi intermediate (ERGIC) compartment. TDP-43 was detected on the cytoplasmic face of the ER membrane, whereas FUS was present within the ER, suggesting that transport is inhibited from the cytoplasm by mutant TDP-43, and from the ER by mutant FUS. In contrast, mutant SOD1 destabilised microtubules and inhibited transport from the ERGIC compartment to Golgi, but not from ER to ERGIC. Rab1 performs multiple roles in ER-Golgi transport, and over-expression of Rab1 restored ER-Golgi transport, and prevented ER stress, mSOD1 inclusion formation and induction of apoptosis, in cells expressing mutant TDP-43, FUS or SOD1. Rab1 also co-localised extensively with mutant TDP-43, FUS and SOD1 in neuronal cells, and Rab1 formed inclusions in motor neurons of spinal cords from sporadic ALS patients, which were positive for ubiquitinated TDP-43, implying that Rab1 is misfolded and dysfunctional in sporadic disease. These results demonstrate that ALS-mutant forms of TDP-43, FUS, and SOD1 all perturb protein transport in the early secretory pathway, between ER and Golgi compartments. These data also imply that restoring Rab1-mediated ER

  13. TDP-43 and pathological subtype of Alzheimer’s disease impact clinical features

    PubMed Central

    Josephs, Keith A.; Whitwell, Jennifer L.; Tosakulwong, Nirubol; Weigand, Stephen D.; Murray, Melissa E.; Serie, Amanda M.; Petrucelli, Leonard; Senjem, Matthew L.; Ivnik, Robert J.; Parisi, Joseph E.; Petersen, Ronald C.; Dickson, Dennis W.

    2015-01-01

    Objective To determine whether the frequency of TDP-43 deposition in Alzheimer’s disease (AD) differs across pathologically defined AD subtypes (Hippocampal sparing [HpSp]; Typical and Limbic), and to further examine the relationship between TDP-43, pathological subtype, and clinical features in AD. Methods We identified all cases with pathologically-confirmed AD (NIA-Reagan intermediate-high probability, Braak stage IV–VI) independent of cognitive status (n=188). Neurofibrillary tangle counts were performed using thioflavin-S microscopy in hippocampus and three neocortical regions, and all cases were subtyped: HpSp AD Pathology (n=19); Typical AD Pathology (n=136); Limbic AD Pathology (n=33). TDP-43 immunoreactivity was performed in multiple brain regions to assess for the presence of TDP-43 and TDP-43 stage. All cases were clinically sub-classified at presentation as Amnestic AD Dementia versus Atypical AD Dementia. Statistical analysis was performed using linear and penalized logistic regression to assess associations with pathological subtype, and the effects of TDP-43, accounting for possible interactions between pathological subtype and TDP-43. Results TDP-43 deposition was frequent in Typical (59%) and Limbic AD pathologies (67%), but not HpSp AD Pathology (21%) (p=0.003). The observed associations of TDP-43 with greater memory loss, naming and functional decline, and smaller hippocampal volumes, closest to death, did not differ across AD pathological subtype. Clinical presentation was associated with pathological subtype (p=0.01), but not TDP-43 (p=0.69). Interpretation Although the frequency of TDP-43 deposition in AD varies by pathological subtype, the observed effects of TDP-43 on clinical/MRI features are consistent across pathological subtypes. Clinical presentation in AD is driven by pathological subtype, not by TDP-43. PMID:26224156

  14. Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes

    PubMed Central

    Diaper, Danielle C.; Adachi, Yoshitsugu; Sutcliffe, Ben; Humphrey, Dickon M.; Elliott, Christopher J.H.; Stepto, Alan; Ludlow, Zoe N.; Vanden Broeck, Lies; Callaerts, Patrick; Dermaut, Bart; Al-Chalabi, Ammar; Shaw, Christopher E.; Robinson, Iain M.; Hirth, Frank

    2013-01-01

    Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration. PMID:23307927

  15. Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes.

    PubMed

    Diaper, Danielle C; Adachi, Yoshitsugu; Sutcliffe, Ben; Humphrey, Dickon M; Elliott, Christopher J H; Stepto, Alan; Ludlow, Zoe N; Vanden Broeck, Lies; Callaerts, Patrick; Dermaut, Bart; Al-Chalabi, Ammar; Shaw, Christopher E; Robinson, Iain M; Hirth, Frank

    2013-04-15

    Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration.

  16. An acridine derivative, [4,5-bis{(N-carboxy methyl imidazolium)methyl}acridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models

    PubMed Central

    Prasad, Archana; Raju, Gembali; Sivalingam, Vishwanath; Girdhar, Amandeep; Verma, Meenakshi; Vats, Abhishek; Taneja, Vibha; Prabusankar, Ganesan; Patel, Basant K.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with aggregation of TAR DNA-binding protein-43 (TDP-43) in neuronal cells and manifests as motor neuron dysfunction & muscle atrophy. The carboxyl-terminal prion-like domain of TDP-43 can aggregate in vitro into toxic β-sheet rich amyloid-like structures. So far, treatment options for ALS are very limited and Riluzole, which targets glutamate receptors, is the only but highly ineffective drug. Therefore, great interest exists in developing molecules for ALS treatment. Here, we have examined certain derivatives of acridine containing same side chains at position 4 & 5, for inhibitory potential against TDP-43 aggregation. Among several acridine derivatives examined, AIM4, which contains polar carboxyl groups in the side arms, significantly reduces TDP-43-YFP aggregation in the powerful yeast model cell and also abolishes in vitro amyloid-like aggregation of carboxyl terminal domain of TDP-43, as observed by AFM imaging. Thus, AIM4 can be a lead molecule potentiating further therapeutic research for ALS. PMID:28000730

  17. Chronological requirements of TDP-43 function in synaptic organization and locomotive control.

    PubMed

    Romano, Giulia; Klima, Raffaella; Buratti, Emanuele; Verstreken, Patrik; Baralle, Francisco E; Feiguin, Fabian

    2014-11-01

    Alterations in TDP-43 are commonly found in patients suffering from amyotrophic lateral sclerosis (ALS) and the genetic suppression of the conserved homologue in Drosophila (TBPH) provokes alterations in the functional organization of motoneuron synaptic terminals, resulting in locomotive defects and reduced life span. To gain more insight into this pathological process, it is of fundamental importance to establish when during the fly life cycle the lack of TBPH affects motoneuron activity and whether this is a reversible phenomenon. To achieve this, we conditionally expressed the endogenous protein in TBPH minus Drosophila neurons and found that TBPH is a short lived protein permanently required for Drosophila motility and synaptic assembly through the direct modulation of vesicular proteins, such as Syntaxin 1A, indicating that synaptic transmission defects are early pathological consequences of TBPH dysfunction in vivo. Importantly, TBPH late induction is able to recover synaptogenesis and locomotion in adult flies revealing an unexpected late-stage functional and structural neuronal plasticity. These observations suggest that late therapeutic approaches based on TDP-43 functionality may also be successful for the human pathology.

  18. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    PubMed

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-03-29

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43(Q331K) mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43(Q331K) gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  19. Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration

    PubMed Central

    Laneve, Pietro; Piacentini, Lucia; Casale, Assunta Maria; Capauto, Davide; Gioia, Ubaldo; Cappucci, Ugo; Di Carlo, Valerio; Bozzoni, Irene; Di Micco, Patrizio; Morea, Veronica; Di Franco, Carmela Antonia; Caffarelli, Elisa

    2017-01-01

    Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function. PMID:28139767

  20. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD.

    PubMed

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E; Ahmed, Zeshan; Parisi, Joseph E; Yen, Shu-Hui C; Dickson, Dennis W

    2013-05-01

    Corticobasal degeneration (CBD) is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon, and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus were comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. In addition, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology.

  1. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD

    PubMed Central

    Kouri, Naomi; Oshima, Kenichi; Takahashi, Makio; Murray, Melissa E.; Ahmed, Zeshan; Parisi, Joseph E.; Yen, Shu-Hui C.; Dickson, Dennis W.

    2013-01-01

    CBD is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus was comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. Additionally, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology. PMID:23371366

  2. Developmentally Regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a Nuclear-Cytoplasmic Trafficking Protein, Forms TAR DNA-binding Protein 43 (TDP-43)-mediated Cytoplasmic Aggregates.

    PubMed

    Mashiko, Takafumi; Sakashita, Eiji; Kasashima, Katsumi; Tominaga, Kaoru; Kuroiwa, Kenji; Nozaki, Yasuyuki; Matsuura, Tohru; Hamamoto, Toshiro; Endo, Hitoshi

    2016-07-15

    Cytoplasmic protein aggregates are one of the pathological hallmarks of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several RNA-binding proteins have been identified as components of inclusion bodies. Developmentally regulated RNA-binding protein 1 (Drb1)/RNA-binding motif protein 45 is an RNA-binding protein that was recently described as a component in ALS- and FTLD-related inclusion bodies. However, the molecular mechanism underlying cytoplasmic Drb1 aggregation remains unclear. Here, using an in vitro cellular model, we demonstrated that Drb1 co-localizes with cytoplasmic aggregates mediated by TAR DNA-binding protein 43, a major component of ALS and FTLD-related inclusion bodies. We also defined the domains involved in the subcellular localization of Drb1 to clarify the role of Drb1 in the formation of cytoplasmic aggregates in ALS and FTLD. Drb1 predominantly localized in the nucleus via a classical nuclear localization signal in its carboxyl terminus and is a shuttling protein between the nucleus and cytoplasm. Furthermore, we identify a double leucine motif serving as a nuclear export signal. The Drb1 mutant, presenting mutations in both nuclear localization signal and nuclear export signal, is prone to aggregate in the cytoplasm. The mutant Drb1-induced cytoplasmic aggregates not only recruit TAR DNA-binding protein 43 but also decrease the mitochondrial membrane potential. Taken together, these results indicate that perturbation of Drb1 nuclear-cytoplasmic trafficking induces toxic cytoplasmic aggregates, suggesting that mislocalization of Drb1 is involved in the cause of cytotoxicity in neuronal cells.

  3. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations.

    PubMed

    Zhang, Zhijun; Almeida, Sandra; Lu, Yubing; Nishimura, Agnes L; Peng, Lingtao; Sun, Danqiong; Wu, Bei; Karydas, Anna M; Tartaglia, Maria C; Fong, Jamie C; Miller, Bruce L; Farese, Robert V; Moore, Melissa J; Shaw, Christopher E; Gao, Fen-Biao

    2013-01-01

    Transactive response DNA-binding protein 43 (TDP-43) is a major pathological protein in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). There are many disease-associated mutations in TDP-43, and several cellular and animal models with ectopic overexpression of mutant TDP-43 have been established. Here we sought to study altered molecular events in FTD and ALS by using induced pluripotent stem cell (iPSC) derived patient neurons. We generated multiple iPSC lines from an FTD/ALS patient with the TARDBP A90V mutation and from an unaffected family member who lacked the mutation. After extensive characterization, two to three iPSC lines from each subject were selected, differentiated into postmitotic neurons, and screened for relevant cell-autonomous phenotypes. Patient-derived neurons were more sensitive than control neurons to 100 nM straurosporine but not to other inducers of cellular stress. Three disease-relevant cellular phenotypes were revealed under staurosporine-induced stress. First, TDP-43 was localized in the cytoplasm of a higher percentage of patient neurons than control neurons. Second, the total TDP-43 level was lower in patient neurons with the A90V mutation. Third, the levels of microRNA-9 (miR-9) and its precursor pri-miR-9-2 decreased in patient neurons but not in control neurons. The latter is likely because of reduced TDP-43, as shRNA-mediated TDP-43 knockdown in rodent primary neurons also decreased the pri-miR-9-2 level. The reduction in miR-9 expression was confirmed in human neurons derived from iPSC lines containing the more pathogenic TARDBP M337V mutation, suggesting miR-9 downregulation might be a common pathogenic event in FTD/ALS. These results show that iPSC models of FTD/ALS are useful for revealing stress-dependent cellular defects of human patient neurons containing rare TDP-43 mutations in their native genetic contexts.

  4. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene.

    PubMed

    Mercado, Pablo Arrisi; Ayala, Youhna M; Romano, Maurizio; Buratti, Emanuele; Baralle, Francisco E

    2005-01-01

    Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA.

  5. TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia.

    PubMed

    Halliday, Glenda M; Kiernan, Matthew C; Kril, Jillian J; Mito, Remika; Masuda-Suzukake, Masami; Hasegawa, Masato; McCann, Heather; Bartley, Lauren; Dobson-Stone, Carol; Kwok, John B J; Hornberger, Michael; Hodges, John R; Tan, Rachel H

    2016-07-15

    The hypoglossal nucleus was recently identified as a key brain region in which the presence of TDP-43 pathology could accurately discriminate TDP-43 proteinopathy cases with clinical amyotrophic lateral sclerosis (ALS). The objective of the present study was to assess the hypoglossal nucleus in behavioral variant frontotemporal dementia (bvFTD), and determine whether TDP-43 in this region is associated with clinical ALS. Twenty-nine cases with neuropathological FTLD-TDP and clinical bvFTD that had not been previously assessed for hypoglossal TDP-43 pathology were included in this study. Of these 29 cases, 41% (n=12) had a dual diagnosis of bvFTD-ALS at presentation, all 100% (n=12) of which demonstrated hypoglossal TDP-43 pathology. Of the 59% (n=17) cohort that presented with pure bvFTD, 35% (n=6) were identified with hypoglossal TDP-43 pathology. Review of the case files of all pure bvFTD cases revealed evidence of possible or probable ALS in 5 of the 6 hypoglossal-positive cases (83%) towards the end of disease, and this was absent from all cases without such pathology. In conclusion, the present study validates grading the presence of TDP-43 in the hypoglossal nucleus for the pathological identification of bvFTD cases with clinical ALS, and extends this to include the identification of cases with possible ALS at end-stage.

  6. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-11-1-0573 TITLE: Chemical Genetic Screens for TDP-43...15 Sept. 2012 – 14 Sept. 2013 4. TITLE AND SUBTITLE Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery 5a. CONTRACT NUMBER...phenotypes in three unique in vivo genetic models of ALS that we have recently generated. Our new, functionally validated models are worms (C

  7. Pathological tau deposition in Motor Neurone Disease and frontotemporal lobar degeneration associated with TDP-43 proteinopathy.

    PubMed

    Behrouzi, Roya; Liu, Xiawei; Wu, Dongyue; Robinson, Andrew C; Tanaguchi-Watanabe, Sayuri; Rollinson, Sara; Shi, Jing; Tian, Jinzhou; Hamdalla, Hisham H M; Ealing, John; Richardson, Anna; Jones, Matthew; Pickering-Brown, Stuart; Davidson, Yvonne S; Strong, Michael J; Hasegawa, Masato; Snowden, Julie S; Mann, David M A

    2016-03-31

    It has been suggested that patients with motor neurone disease (MND) and those with MND combined with behavioural variant frontotemporal dementia (bvFTD) (ie FTD + MND) or with FTD alone might exist on a continuum based on commonalities of neuropathology and/or genetic risk. Moreover, it has been reported that both a neuronal and a glial cell tauopathy can accompany the TDP-43 proteinopathy in patients with motor neurone disease (MND) with cognitive changes, and that the tauopathy may be fundamental to disease pathogenesis and clinical phenotype. In the present study, we sought to substantiate these latter findings, and test this concept of a pathological continuum, in a consecutive series of 41 patients with MND, 16 with FTD + MND and 23 with FTD without MND. Paraffin sections of frontal, entorhinal, temporal and occipital cortex and hippocampus were immunostained for tau pathology using anti-tau antibodies, AT8, pThr(175) and pThr(217), and for amyloid β protein (Aβ) using 4G8 antibody. Twenty four (59 %) patients with MND, 7 (44 %) patients with FTD + MND and 10 (43 %) patients with FTD showed 'significant' tau pathology (ie more than just an isolated neurofibrillary tangle or a few neuropil threads in one or more brain regions examined). In most instances, this bore the histological characteristics of an Alzheimer's disease process involving entorhinal cortex, hippocampus, temporal cortex, frontal cortex and occipital cortex in decreasing frequency, accompanied by a deposition of Aβ up to Thal phase 3, though 2 patients with MND, and 1 with FTD did show tau pathology beyond Braak stage III. Four other patients with MND showed novel neuronal tau pathology, within the frontal cortex alone, specifically detected by pThr(175) antibody, which was characterised by a fine granular or more clumped aggregation of tau without neurofibrillary tangles or neuropil threads. However, none of these 4 patients had clinically evident cognitive disorder, and

  8. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43

    NASA Astrophysics Data System (ADS)

    Stoica, Radu; de Vos, Kurt J.; Paillusson, Sébastien; Mueller, Sarah; Sancho, Rosa M.; Lau, Kwok-Fai; Vizcay-Barrena, Gema; Lin, Wen-Lang; Xu, Ya-Fei; Lewis, Jada; Dickson, Dennis W.; Petrucelli, Leonard; Mitchell, Jacqueline C.; Shaw, Christopher E.; Miller, Christopher C. J.

    2014-06-01

    Mitochondria and the endoplasmic reticulum (ER) form tight structural associations and these facilitate a number of cellular functions. However, the mechanisms by which regions of the ER become tethered to mitochondria are not properly known. Understanding these mechanisms is not just important for comprehending fundamental physiological processes but also for understanding pathogenic processes in some disease states. In particular, disruption to ER-mitochondria associations is linked to some neurodegenerative diseases. Here we show that the ER-resident protein VAPB interacts with the mitochondrial protein tyrosine phosphatase-interacting protein-51 (PTPIP51) to regulate ER-mitochondria associations. Moreover, we demonstrate that TDP-43, a protein pathologically linked to amyotrophic lateral sclerosis and fronto-temporal dementia perturbs ER-mitochondria interactions and that this is associated with disruption to the VAPB-PTPIP51 interaction and cellular Ca2+ homeostasis. Finally, we show that overexpression of TDP-43 leads to activation of glycogen synthase kinase-3β (GSK-3β) and that GSK-3β regulates the VAPB-PTPIP51 interaction. Our results describe a new pathogenic mechanism for TDP-43.

  9. ITH33/IQM9.21 provides neuroprotection in a novel ALS model based on TDP-43 and Na(+)/Ca(2+) overload induced by VTD.

    PubMed

    Mouhid Al-Achbili, Lamia; Moreno-Ortega, Ana J; Matías-Guiu, Jorge; Cano-Abad, María F; Ruiz-Nuño, Ana

    2016-10-28

    Therapeutic options for amyotrophic lateral sclerosis (ALS) are scarce and controversial. Although the aetiology of neuronal vulnerability is unknown, growing evidence supports a complex network in which multiple toxicity pathways, rather than a single mechanism, are involved in the pathogenesis of ALS. However, most cellular models only explain single pathogenic mechanisms. The present study proposes the two main cytotoxic mechanisms: (1) veratridine (VTD), which induced Na(+) and Ca(2+) overload; and (2) the TARD DNA-binding protein 43 (TDP-43) in NSC-34 cell line as an in vitro model of ALS. The study was carried out by MTT as an indirect measurement of cell viability and by flow cytometry to determine cell death stages. The impact of Ca(2+) overload combined with TDP-43 overexpression increased early apoptosis of NSC-34 cells. Furthermore, we found that ITH33/IQM9.21 (ITH33) exerted a neuroprotective effect in this model by reducing activation of the apoptotic pathway. Therefore, treatment with VTD in TDP-43 overexpressing NSC-34 cells is a good in vitro ALS model that makes it possible to test new neuroprotective compounds such as ITH33.

  10. "New Old Pathologies": AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS).

    PubMed

    Nelson, Peter T; Trojanowski, John Q; Abner, Erin L; Al-Janabi, Omar M; Jicha, Gregory A; Schmitt, Frederick A; Smith, Charles D; Fardo, David W; Wang, Wang-Xia; Kryscio, Richard J; Neltner, Janna H; Kukull, Walter A; Cykowski, Matthew D; Van Eldik, Linda J; Ighodaro, Eseosa T

    2016-06-01

    The pathology-based classification of Alzheimer's disease (AD) and other neurodegenerative diseases is a work in progress that is important for both clinicians and basic scientists. Analyses of large autopsy series, biomarker studies, and genomics analyses have provided important insights about AD and shed light on previously unrecognized conditions, enabling a deeper understanding of neurodegenerative diseases in general. After demonstrating the importance of correct disease classification for AD and primary age-related tauopathy, we emphasize the public health impact of an underappreciated AD "mimic," which has been termed "hippocampal sclerosis of aging" or "hippocampal sclerosis dementia." This pathology affects >20% of individuals older than 85 years and is strongly associated with cognitive impairment. In this review, we provide an overview of current hypotheses about how genetic risk factors (GRN, TMEM106B, ABCC9, and KCNMB2), and other pathogenetic influences contribute to TDP-43 pathology and hippocampal sclerosis. Because hippocampal sclerosis of aging affects the "oldest-old" with arteriolosclerosis and TDP-43 pathologies that extend well beyond the hippocampus, more appropriate terminology for this disease is required. We recommend "cerebral age-related TDP-43 and sclerosis" (CARTS). A detailed case report is presented, which includes neuroimaging and longitudinal neurocognitive data. Finally, we suggest a neuropathology-based diagnostic rubric for CARTS.

  11. Cortical synaptic and dendritic spine abnormalities in a presymptomatic TDP-43 model of amyotrophic lateral sclerosis

    PubMed Central

    Fogarty, Matthew J.; Klenowski, Paul M.; Lee, John D.; Drieberg-Thompson, Joy R.; Bartlett, Selena E.; Ngo, Shyuan T.; Hilliard, Massimo A.; Bellingham, Mark C.; Noakes, Peter G.

    2016-01-01

    Layer V pyramidal neurons (LVPNs) within the motor cortex integrate sensory cues and co-ordinate voluntary control of motor output. In amyotrophic lateral sclerosis (ALS) LVPNs and spinal motor neurons degenerate. The pathogenesis of neural degeneration is unknown in ALS; 10% of cases have a genetic cause, whereas 90% are sporadic, with most of the latter showing TDP-43 inclusions. Clinical and experimental evidence implicate excitotoxicity as a prime aetiological candidate. Using patch clamp and dye-filling techniques in brain slices, combined with high-resolution confocal microscopy, we report increased excitatory synaptic inputs and dendritic spine densities in early presymptomatic mice carrying a TDP-43Q331K mutation. These findings demonstrate substantive alterations in the motor cortex neural network, long before an overt degenerative phenotype has been reported. We conclude that increased excitatory neurotransmission is a common pathophysiology amongst differing genetic cases of ALS and may be of relevance to the 95% of sporadic ALS cases that exhibit TDP-43 inclusions. PMID:27897242

  12. Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy

    PubMed Central

    Irwin, David J.; Byrne, Matthew D.; McMillan, Corey T.; Cooper, Felicia; Arnold, Steven E.; Lee, Edward B.; Van Deerlin, Vivianna M.; Xie, Sharon X.; Lee, Virginia M.-Y.; Grossman, Murray; Trojanowski, John Q.

    2015-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. PMID:26538548

  13. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia.

    PubMed

    Takeuchi, Ryoko; Toyoshima, Yasuko; Tada, Mari; Tanaka, Hidetomo; Shimizu, Hiroshi; Shiga, Atsushi; Miura, Takeshi; Aoki, Kenju; Aikawa, Akane; Ishizawa, Shin; Ikeuchi, Takeshi; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) may be accompanied by frontotemporal dementia (FTD). We report a case of glial mixed tau and TDP-43 proteinopathies in a Japanese patient diagnosed clinically as having ALS-D. Autopsy revealed loss of lower motor neurons and degeneration of the pyramidal tracts in the spinal cord and brain stem. The brain showed frontotemporal lobar degeneration (FTLD), the most severe neuronal loss and gliosis being evident in the precentral gyrus. Although less severe, such changes were also observed in other brain regions, including the basal ganglia and substantia nigra. AT8 immunostaining revealed that predominant occurrence of astrocytic tau lesions termed globular astrocytic inclusions (GAIs) was a feature of the affected regions. These GAIs were Gallyas-Braak negative. Neuronal and oligodendrocytic tau lesions were comparatively scarce. pS409/410 immunostaining also revealed similar neuronal and glial TDP-43 lesions. Interestingly, occasional co-localization of tau and TDP-43 was evident in the GAIs. Immunoblot analyses revealed band patterns characteristic of a 4-repeat (4R) tauopathy, corticobasal degeneration and a TDP-43 proteinopathy, ALS/FTLD-TDP Type B. No mutations were found in the MAPT or TDP-43 genes. We consider that this patient harbored a distinct, sporadic globular glial mixed 4R tau and TDP-43 proteinopathy associated with motor neuron disease and FTD.

  14. Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP-43-negative inclusions of C9ORF72-ALS.

    PubMed

    Bury, Joanna J; Highley, J Robin; Cooper-Knock, Johnathan; Goodall, Emily F; Higginbottom, Adrian; McDermott, Christopher J; Ince, Paul G; Shaw, Pamela J; Kirby, Janine

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is characterized by motor neurone loss resulting in muscle weakness, spasticity and ultimately death. 5-10% are caused by inherited mutations, most commonly C9ORF72, SOD1, TARDBP and FUS. Rarer genetic causes of ALS include mutation of optineurin (mt OPTN). Furthermore, optineurin protein has been localized to the ubiquitylated aggregates in several neurodegenerative diseases, including ALS. This study: (i) investigated the frequency of mt OPTN in ALS patients in England; (ii) characterized the clinical and neuropathological features of ALS associated with a mt OPTN; and (iii) investigated optineurin neuropathology in C9ORF72-related ALS (C9ORF72-ALS). We identified a heterozygous p.E322K missense mutation in exon 10 of OPTN in one familial ALS patient who additionally had a C9ORF72 mutation. This patient had bulbar, limb and respiratory disease without cognitive problems. Neuropathology revealed motor neurone loss, trans-activation response DNA protein 43 (TDP-43)-positive neuronal and glial cytoplasmic inclusions together with TDP-43-negative neuronal cytoplasmic inclusions in extra motor regions that are characteristic of C9ORF72-ALS. We have demonstrated that both TDP-43-positive and negative inclusion types had positive staining for optineurin by immunohistochemistry. We went on to show that optineurin was present in TDP-43-negative cytoplasmic extra motor inclusions in C9ORF72-ALS cases that do not carry mt OPTN. We conclude that: (i) OPTN mutations are associated with ALS; (ii) optineurin protein is present in a subset of the extramotor inclusions of C9ORF72-ALS; (iii) It is not uncommon for multiple ALS-causing mutations to occur in the same patient; and (iv) studies of optineurin are likely to provide useful dataregarding the pathophysiology of ALS and neurodegeneration.

  15. Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31.

    PubMed

    Ishiguro, Taro; Sato, Nozomu; Ueyama, Morio; Fujikake, Nobuhiro; Sellier, Chantal; Kanegami, Akemi; Tokuda, Eiichi; Zamiri, Bita; Gall-Duncan, Terence; Mirceta, Mila; Furukawa, Yoshiaki; Yokota, Takanori; Wada, Keiji; Taylor, J Paul; Pearson, Christopher E; Charlet-Berguerand, Nicolas; Mizusawa, Hidehiro; Nagai, Yoshitaka; Ishikawa, Kinya

    2017-04-05

    Microsatellite expansion disorders are pathologically characterized by RNA foci formation and repeat-associated non-AUG (RAN) translation. However, their underlying pathomechanisms and regulation of RAN translation remain unknown. We report that expression of expanded UGGAA (UGGAAexp) repeats, responsible for spinocerebellar ataxia type 31 (SCA31) in Drosophila, causes neurodegeneration accompanied by accumulation of UGGAAexp RNA foci and translation of repeat-associated pentapeptide repeat (PPR) proteins, consistent with observations in SCA31 patient brains. We revealed that motor-neuron disease (MND)-linked RNA-binding proteins (RBPs), TDP-43, FUS, and hnRNPA2B1, bind to and induce structural alteration of UGGAAexp. These RBPs suppress UGGAAexp-mediated toxicity in Drosophila by functioning as RNA chaperones for proper UGGAAexp folding and regulation of PPR translation. Furthermore, nontoxic short UGGAA repeat RNA suppressed mutated RBP aggregation and toxicity in MND Drosophila models. Thus, functional crosstalk of the RNA/RBP network regulates their own quality and balance, suggesting convergence of pathomechanisms in microsatellite expansion disorders and RBP proteinopathies.

  16. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress

    PubMed Central

    Rojas, Fabiola; Cortes, Nicole; Abarzua, Sebastian; Dyrda, Agnieszka; van Zundert, Brigitte

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1G93A contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Nav) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1G93A and ACM-SOD1G86R) or TDP43 (ACM-TDP43A315T) mutants; we show that such exposure rapidly (within 30–60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Nav channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Nav channel activity. PMID:24570655

  17. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis

    PubMed Central

    Schulthess, Ines; Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Del Tredici, Kelly; Ludolph, Albert C.; Kassubek, Jan

    2016-01-01

    ‘Resting-state’ fMRI allows investigation of alterations in functional brain organization that are associated with an underlying pathological process. We determine whether abnormal connectivity in amyotrophic lateral sclerosis (ALS) in a priori-defined intrinsic functional connectivity networks, according to a neuropathological staging scheme and its DTI-based tract correlates, permits recognition of a sequential involvement of functional networks. ‘Resting-state’ fMRI data from 135 ALS patients and 56 matched healthy controls were investigated for the motor network (corresponding to neuropathological stage 1), brainstem (stage 2), ventral attention (stage 3), default mode/hippocampal network (stage 4), and primary visual network (as the control network) in a cross-sectional analysis and longitudinally in a subgroup of 27 patients after 6 months. Group comparison from cross-sectional and longitudinal data revealed significantly increased functional connectivity (p < 0.05, corrected) in all four investigated networks (but not in the control network), presenting as a network expansion that was correlated with physical disability. Increased connectivity of functional networks, as investigated in a hypothesis-driven approach, is characterized by network expansions and resembled the pattern of pTDP-43 pathology in ALS. However, our data did not allow for the recognition of a sequential involvement of functional connectivity networks at the individual level. PMID:27929102

  18. Clinicopathological characterization of Pick's disease versus frontotemporal lobar degeneration with ubiquitin/TDP-43-positive inclusions.

    PubMed

    Yokota, Osamu; Tsuchiya, Kuniaki; Arai, Tetsuaki; Yagishita, Saburo; Matsubara, Osamu; Mochizuki, Akihide; Tamaoka, Akira; Kawamura, Mitsuru; Yoshida, Hidetoshi; Terada, Seishi; Ishizu, Hideki; Kuroda, Shigetoshi; Akiyama, Haruhiko

    2009-04-01

    Although frontotemporal lobar degeneration with ubiquitin/TDP-43-positive inclusions (FTLD-TDP) and Pick's disease are common pathological substrates in sporadic FTLD, clinical differentiation of these diseases is difficult. We performed a retrospective review of medical records and semiquantitative examination of neuronal loss of 20 sporadic FTLD-TDP and 19 Pick's disease cases. Semantic dementia as the first syndrome developed only in FTLD-TDP patients. Impaired speech output in the early stage was five times more frequent in Pick's disease than in FTLD-TDP. The total frequency of asymmetric motor disturbances (e.g., parkinsonism, pyramidal signs, and contracture) during the course was significantly more frequent in FTLD-TDP (78%) than in Pick's disease cases (14%). Asymmetric pyramidal signs were found in 7 of 13 FTLD-TDP cases with corticospinal tract degeneration similar to primary lateral sclerosis. Frontotemporal dementia as the first syndrome was noted in both FTLD-TDP (28%) and Pick's disease cases (64%); however, only FTLD-TDP cases subsequently developed asymmetric motor disturbances, and some of the cases further exhibited hemineglect. Concordant with these clinical findings, degeneration in the temporal cortex, caudate nucleus, putamen, globus pallidus, substantia nigra, and corticospinal tract was significantly more severe in FTLD-TDP, and degeneration in the frontal cortex tended to be more severe in Pick's disease. Given these findings, the initial impairment of semantic memory or comprehension and subsequent asymmetric motor disturbances in sporadic FTLD patients predict sporadic FTLD-TDP rather than Pick's disease, while initial behavioral symptoms or non-fluent aphasia without subsequent asymmetric motor disturbances predict Pick's disease rather than sporadic FTLD-TDP.

  19. Co-occurrence of TDP-43 mislocalization with reduced activity of an RNA editing enzyme, ADAR2, in aged mouse motor neurons.

    PubMed

    Hideyama, Takuto; Teramoto, Sayaka; Hachiga, Kosuke; Yamashita, Takenari; Kwak, Shin

    2012-01-01

    TDP-43 pathology in spinal motor neurons is a neuropathological hallmark of sporadic amyotrophic lateral sclerosis (ALS) and has recently been shown to be closely associated with the downregulation of an RNA editing enzyme called adenosine deaminase acting on RNA 2 (ADAR2) in the motor neurons of sporadic ALS patients. Because TDP-43 pathology is found more frequently in the brains of elderly patients, we investigated the age-related changes in the TDP-43 localization and ADAR2 activity in mouse motor neurons. We found that ADAR2 was developmentally upregulated, and its mRNA expression level was progressively decreased in the spinal cords of aged mice. Motor neurons normally exhibit nuclear ADAR2 and TDP-43 immunoreactivity, whereas fast fatigable motor neurons in aged mice demonstrated a loss of ADAR2 and abnormal TDP-43 localization. Importantly, these motor neurons expressed significant amounts of the Q/R site-unedited AMPA receptor subunit 2 (GluA2) mRNA. Because expression of unedited GluA2 has been demonstrated as a lethality-causing molecular abnormality observed in the motor neurons, these results suggest that age-related decreases in ADAR2 activity play a mechanistic role in aging and serve as one of risk factors for ALS.

  20. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    PubMed

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  1. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    PubMed

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  2. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    PubMed Central

    Jackson, Kasey L.; Dayton, Robert D.; Deverman, Benjamin E.; Klein, Ronald L.

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats. PMID:27867348

  3. TAR DNA-binding protein 43 in neurodegenerative disease

    PubMed Central

    Chen-Plotkin, Alice S.; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    In 2006, TAR DNA-binding protein 43 (TDP-43), a highly conserved nuclear protein, was identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and in the most common variant of frontotemporal lobar degeneration (FTLD), FTLD-U, which is characterized by cytoplasmic inclusions that stain positive for ubiquitin but negative for tau and α-synuclein. Since then, rapid advances have been made in our understanding of the physiological function of TDP-43 and the role of this protein in neurodegeneration. These advances link ALS and FTLD-U (now designated FTLD-TDP) to a shared mechanism of disease. In this Review, we summarize the current evidence regarding the normal function of TDP-43 and the TDP-43 pathology observed in FTLD-TDP, ALS, and other neurodegenerative diseases wherein TDP-43 pathology co-occurs with other disease-specific lesions (for example, with amyloid plaques and neurofibrillary tangles in Alzheimer disease). Moreover, we discuss the accumulating data that support our view that FTLD-TDP and ALS represent two ends of a spectrum of primary TDP-43 proteinopathies. Finally, we comment on the importance of recent advances in TDP-43-related research to neurological practice, including the new opportunities to develop better diagnostics and disease-modifying therapies for ALS, FTLD-TDP, and related disorders exhibiting TDP-43 pathology. PMID:20234357

  4. Transactive Response DNA-Binding Protein 43 Burden in Familial Alzheimer Disease and Down Syndrome

    PubMed Central

    Lippa, Carol F.; Rosso, Andrea L.; Stutzbach, Lauren D.; Neumann, Manuela; Lee, Virginia M.-Y.; Trojanowski, John Q.

    2010-01-01

    Objective To assess the transactive response DNA-binding protein 43 (TDP-43) burden in familial forms of Alzheimer disease (FAD) and Down syndrome (DS) to determine whether TDP-43 inclusions are also present. Design Using standard immunohistochemical techniques, we examined brain tissue samples from 42 subjects with FAD and 14 with DS. Results We found pathological TDP-43 aggregates in 14.0% of participants (6 of 42 and 2 of 14 participants with FAD and DS, respectively). In both FAD and DS, TDP-43 immunoreactivity did not colocalize with neurofibrillary tangles. Occasionally participants with FAD or DS had TDP-43–positive neuropil threads or dots. Overall, the amygdala was most commonly affected, followed by the hippocampus, with no TDP-43 pathology in neocortical regions. A similar distribution of TDP-43 inclusions is seen in sporadic Alzheimer disease, but it differs from that seen in amyotrophic lateral sclerosis and frontotemporal dementia. Conclusions Transactive response DNA-binding protein 43 pathology occurs in FAD and DS, similar to that observed in sporadic Alzheimer disease. Thus, pathological TDP-43 may contribute the cognitive impairments in familial and sporadic forms of Alzheimer disease. PMID:20008652

  5. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43

    PubMed Central

    Uchida, Azusa; Sasaguri, Hiroki; Kimura, Nobuyuki; Tajiri, Mio; Ohkubo, Takuya; Ono, Fumiko; Sakaue, Fumika; Kanai, Kazuaki; Hirai, Takashi; Sano, Tatsuhiko; Shibuya, Kazumoto; Kobayashi, Masaki; Yamamoto, Mariko; Yokota, Shigefumi; Kubodera, Takayuki; Tomori, Masaki; Sakaki, Kyohei; Enomoto, Mitsuhiro; Hirai, Yukihiko; Kumagai, Jiro; Yasutomi, Yasuhiro; Mochizuki, Hideki; Kuwabara, Satoshi; Uchihara, Toshiki; Mizusawa, Hidehiro

    2012-01-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and

  6. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43.

    PubMed

    Uchida, Azusa; Sasaguri, Hiroki; Kimura, Nobuyuki; Tajiri, Mio; Ohkubo, Takuya; Ono, Fumiko; Sakaue, Fumika; Kanai, Kazuaki; Hirai, Takashi; Sano, Tatsuhiko; Shibuya, Kazumoto; Kobayashi, Masaki; Yamamoto, Mariko; Yokota, Shigefumi; Kubodera, Takayuki; Tomori, Masaki; Sakaki, Kyohei; Enomoto, Mitsuhiro; Hirai, Yukihiko; Kumagai, Jiro; Yasutomi, Yasuhiro; Mochizuki, Hideki; Kuwabara, Satoshi; Uchihara, Toshiki; Mizusawa, Hidehiro; Yokota, Takanori

    2012-03-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive motoneuron loss. Redistribution of transactive response deoxyribonucleic acid-binding protein 43 from the nucleus to the cytoplasm and the presence of cystatin C-positive Bunina bodies are considered pathological hallmarks of amyotrophic lateral sclerosis, but their significance has not been fully elucidated. Since all reported rodent transgenic models using wild-type transactive response deoxyribonucleic acid-binding protein 43 failed to recapitulate these features, we expected a species difference and aimed to make a non-human primate model of amyotrophic lateral sclerosis. We overexpressed wild-type human transactive response deoxyribonucleic acid-binding protein 43 in spinal cords of cynomolgus monkeys and rats by injecting adeno-associated virus vector into the cervical cord, and examined the phenotype using behavioural, electrophysiological, neuropathological and biochemical analyses. These monkeys developed progressive motor weakness and muscle atrophy with fasciculation in distal hand muscles first. They also showed regional cytoplasmic transactive response deoxyribonucleic acid-binding protein 43 mislocalization with loss of nuclear transactive response deoxyribonucleic acid-binding protein 43 staining in the lateral nuclear group of spinal cord innervating distal hand muscles and cystatin C-positive cytoplasmic aggregates, reminiscent of the spinal cord pathology of patients with amyotrophic lateral sclerosis. Transactive response deoxyribonucleic acid-binding protein 43 mislocalization was an early or presymptomatic event and was later associated with neuron loss. These findings suggest that the transactive response deoxyribonucleic acid-binding protein 43 mislocalization leads to α-motoneuron degeneration. Furthermore, truncation of transactive response deoxyribonucleic acid-binding protein 43 was not a prerequisite for motoneuronal degeneration, and

  7. RNA-binding proteins with prion-like domains in ALS and FTLD-U.

    PubMed

    Gitler, Aaron D; Shorter, James

    2011-01-01

    Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) is a debilitating, and universally fatal, neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins, TDP-43 and FUS, are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant for human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, however, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms.

  8. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.

    PubMed

    MacNair, Laura; Xiao, Shangxi; Miletic, Denise; Ghani, Mahdi; Julien, Jean-Pierre; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2016-01-01

    Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model

  9. Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance

    PubMed Central

    Jablonski, Angela M.; Lamitina, Todd; Liachko, Nicole F.; Sabatella, Mariangela; Lu, Jiayin; Zhang, Lei; Ostrow, Lyle W.; Gupta, Preetika; Wu, Chia-Yen; Doshi, Shachee; Mojsilovic-Petrovic, Jelena; Lans, Hannes; Wang, Jiou; Kraemer, Brian

    2015-01-01

    Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as “anti-chaperones” uncovers new and general targets for therapeutic intervention. PMID:26490867

  10. FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases

    PubMed Central

    2011-01-01

    Background Frontotemporal lobar degeneration with ubiquitin and TDP-43 positive neuronal inclusions represents a novel entity (FTLD-TDP) that may be associated with motor neuron disease (FTLD-MND); involvement of extrapyramidal and other systems has also been reported. Case presentation We present three cases with similar clinical symptoms, including Parkinsonism, supranuclear gaze palsy, visuospatial impairment and a behavioral variant of frontotemporal dementia, associated with either clinically possible or definite MND. Neuropathological examination revealed hallmarks of FTLD-TDP with major involvement of subcortical and, in particular, mesencephalic structures. These cases differed in onset and progression of clinical manifestations as well as distribution of histopathological changes in the brain and spinal cord. Two cases were sporadic, whereas the third case had a pathological variation in the progranulin gene 102 delC. Conclusions Association of a "progressive supranuclear palsy-like" syndrome with marked visuospatial impairment, motor neuron disease and early behavioral disturbances may represent a clinically distinct phenotype of FTLD-TDP. Our observations further support the concept that TDP-43 proteinopathies represent a spectrum of disorders, where preferential localization of pathogenetic inclusions and neuronal cell loss defines clinical phenotypes ranging from frontotemporal dementia with or without motor neuron disease, to corticobasal syndrome and to a progressive supranuclear palsy-like syndrome. PMID:21569259

  11. Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis.

    PubMed

    Höftberger, Romana; Fink, Stephanie; Aboul-Enein, Fahmy; Botond, Gergö; Olah, Judit; Berki, Timea; Ovadi, Judit; Lassmann, Hans; Budka, Herbert; Kovacs, Gabor G

    2010-11-15

    Multiple sclerosis (MS) is an idiopathic chronic inflammatory demyelinating disease of the central nervous system with variable extent of remyelination. Remyelination originates from oligodendrocyte (OG) precursor cells, which migrate and differentiate into mature OG. Tubulin polymerization promoting protein (TPPP/p25) is located in mature OG and aggregates in oligodendroglial cytoplasmic inclusions in multiple system atrophy. We developed a novel monoclonal anti-TPPP/p25 antibody to quantify OG in different subtypes and disease stages of MS, and possible degenerative changes in OG. We evaluated autopsy material from 25 MS cases, including acute, primary progressive, secondary progressive, relapsing remitting MS, and five controls. Demyelinated lesions revealed loss of TPPP/p25-positive OG within the plaques. In remyelination, TPPP/p25 was first expressed in OG cytoplasms and later became positive in myelin sheaths. We observed increased numbers of TPPP/p25 immunoreactive OG in the normal appearing white matter (NAWM) in MS patients. In MS cases, the cytoplasmic area of TPPP/p25 immunoreactivity in the OG was higher in the periplaque area when compared with NAWM and the plaque, and TPPP/p25 immunoreactive OG cytoplasmic area inversely correlated with the disease duration. There was a lack of phospho-TDP-43, phospho-tau, α-synuclein, and ubiquitin immunoreactivity in OG with enlarged cytoplasm. Our data suggest impaired differentiation, migration, and activation capacity of OG in later disease stages of MS. Upregulation of TPPP/p25 in the periplaque white matter OG without evidence for inclusion body formation might reflect an activation state. Distinct and increased expression of TPPP/p25 in MS renders it a potential prognostic and diagnostic marker of MS.

  12. SCA31 Flies Perform in a Balancing Act between RAN Translation and RNA-Binding Proteins.

    PubMed

    Jackson, George R

    2017-04-05

    In this issue of Neuron, Ishiguro et al. (2017) explore the toxicity of RAN translation in spinocerebellar ataxia 31. Using a Drosophila model, the authors demonstrate that TDP-43 and other RNA-binding proteins act as chaperones to regulate the formation of toxic RNA aggregates.

  13. Cytoplasmic Relocalization of TAR DNA-Binding Protein 43 Is Not Sufficient to Reproduce Cellular Pathologies Associated with ALS In vitro

    PubMed Central

    Wobst, Heike J.; Wesolowski, Steven S.; Chadchankar, Jayashree; Delsing, Louise; Jacobsen, Steven; Mukherjee, Jayanta; Deeb, Tarek Z.; Dunlop, John; Brandon, Nicholas J.; Moss, Stephen J.

    2017-01-01

    Mutations in the gene TARDBP, which encodes TAR DNA-binding protein 43 (TDP-43), are a rare cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While the majority of mutations are found in the C-terminal glycine-rich domain, an alanine to valine amino acid change at position 90 (A90V) in the bipartite nuclear localization signal (NLS) of TDP-43 has been described. This sequence variant has previously been shown to cause cytoplasmic mislocalization of TDP-43 and decrease protein solubility, leading to the formation of insoluble aggregates. Since the A90V mutation has been described both in patients as well as healthy controls, its pathogenic potential in ALS and FTD remains unclear. Here we compare properties of overexpressed A90V to the highly pathogenic M337V mutation. Though both mutations drive mislocalization of the protein to the cytoplasm to the same extent, M337V produces more significant damage in terms of protein solubility, levels of pathogenic phosphorylation, and formation of C-terminal truncated protein species. Furthermore, the M337V, but not the A90V mutant, leads to a downregulation of histone deacetylase 6 and Ras GTPase-activating protein-binding protein. We conclude that in the absence of another genetic or environmental ‘hit’ the A90V variant is not sufficient to cause the deleterious phenotypes associated with ALS and FTD, despite prominent cytoplasmic protein relocalization of TDP-43. PMID:28286471

  14. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    PubMed

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction.

  15. Role of BMP receptor traffic in synaptic growth defects in an ALS model

    PubMed Central

    Deshpande, Mugdha; Feiger, Zachary; Shilton, Amanda K.; Luo, Christina C.; Silverman, Ethan; Rodal, Avital A.

    2016-01-01

    TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth–promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor–containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43–induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment. PMID:27535427

  16. Valosin-containing protein immunoreactivity in tauopathies, synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease.

    PubMed

    Mori, Fumiaki; Tanji, Kunikazu; Toyoshima, Yasuko; Sasaki, Hidenao; Yoshida, Mari; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2013-12-01

    Valosin-containing protein (VCP) is associated with multiple cellular functions, including ubiquitin-dependent protein degradation. Mutations in VCP are known to cause inclusion body myopathy with Paget's disease and frontotemporal dementia and familial amyotrophic lateral sclerosis (fALS; ALS14), both of which are characterized by trans-activation response DNA protein 43 (TDP-43)-positive neuronal cytoplasmic and nuclear inclusions. Recently, immunoreactivity for fALS-associated proteins (TDP-43, fused in sarcoma (FUS), optineurin and ubiquilin-2) were reported to be present in cytoplasmic and nuclear inclusions in various neurodegenerative diseases. However, the extent and frequency of VCP-immunoreactive structures in these neurodegenerative diseases are uncertain. We immunohistochemically examined the brains of 72 cases with neurodegenerative diseases and five control cases. VCP immunoreactivity was present in Lewy bodies in Parkinson's disease and dementia with Lewy bodies, and neuronal nuclear inclusions in five polyglutamine diseases and intranuclear inclusion body disease, as well as in Marinesco bodies in aged control subjects. However, other neuronal and glial cytoplasmic inclusions in tauopathies and TDP-43 proteinopathies were unstained. These findings suggest that VCP may have common mechanisms in the formation or degradation of cytoplasmic and nuclear inclusions of neurons, but not of glial cells, in several neurodegenerative conditions.

  17. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.

    PubMed

    King, Oliver D; Gitler, Aaron D; Shorter, James

    2012-06-26

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion

  18. Sumoylation of critical proteins in amyotrophic lateral sclerosis: emerging pathways of pathogenesis

    PubMed Central

    Foran, Emily; Rosenblum, Lauren; Bogush, Alexey I.; Trotti, Davide

    2013-01-01

    Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1 (SOD1), fused in liposarcoma (FUS), and TAR DNA binding protein 43 (TDP43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics. In this article, we summarize the current literature examining the impact of sumoylation of critical proteins involved in ALS and discuss the potential impact for the pathogenesis of the disease. In addition, we report and discuss the implications of new evidence demonstrating that sumoylation of a fragment derived from the proteolytic cleavage of the astroglial glutamate transporter, EAAT2, plays a direct role in downregulating the expression levels of full length EAAT2 by binding to a regulatory region of its promoter. PMID:24062161

  19. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes

    PubMed Central

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Gao, Yuan; Yu, Li-Rong; Alla, Ramani; Shmookler Reis, Robert

    2015-01-01

    Age-dependent neurodegenerative diseases progressively form aggregates containing both shared components (e.g., TDP-43, phosphorylated tau) and proteins specific to each disease. We investigated whether diverse neuropathies might have additional aggregation-prone proteins in common, discoverable by proteomics. Caenorhabditis elegans expressing unc-54p/Q40::YFP, a model of polyglutamine array diseases such as Huntington's, accrues aggregates in muscle 2–6 days posthatch. These foci, isolated on antibody-coupled magnetic beads, were characterized by high-resolution mass spectrometry. Three Q40::YFP-associated proteins were inferred to promote aggregation and cytotoxicity, traits reduced or delayed by their RNA interference knockdown. These RNAi treatments also retarded aggregation/cytotoxicity in Alzheimer's disease models, nematodes with muscle or pan-neuronal Aβ1–42 expression and behavioral phenotypes. The most abundant aggregated proteins are glutamine/asparagine-rich, favoring hydrophobic interactions with other random-coil domains. A particularly potent modulator of aggregation, CRAM-1/HYPK, contributed < 1% of protein aggregate peptides, yet its knockdown reduced Q40::YFP aggregates 72–86% (P < 10−6). In worms expressing Aβ1–42, knockdown of cram-1 reduced β-amyloid 60% (P < 0.002) and slowed age-dependent paralysis > 30% (P < 10−6). In wild-type worms, cram-1 knockdown reduced aggregation and extended lifespan, but impaired early reproduction. Protection against seeded aggregates requires proteasome function, implying that normal CRAM-1 levels promote aggregation by interfering with proteasomal degradation of misfolded proteins. Molecular dynamic modeling predicts spontaneous and stable interactions of CRAM-1 (or human orthologs) with ubiquitin, and we verified that CRAM-1 reduces degradation of a tagged-ubiquitin reporter. We propose that CRAM-1 exemplifies a class of primitive chaperones that are initially protective and highly

  20. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72.

    PubMed

    Davidson, Yvonne S; Barker, Holly; Robinson, Andrew C; Thompson, Jennifer C; Harris, Jenny; Troakes, Claire; Smith, Bradley; Al-Saraj, Safa; Shaw, Chris; Rollinson, Sara; Masuda-Suzukake, Masami; Hasegawa, Masato; Pickering-Brown, Stuart; Snowden, Julie S; Mann, David M

    2014-06-20

    A hexanucleotide (GGGGCC) expansion in C9ORF72 gene is the most common genetic change seen in familial Frontotemporal Lobar Degeneration (FTLD) and familial Motor Neurone Disease (MND). Pathologically, expansion bearers show characteristic p62 positive, TDP-43 negative inclusion bodies within cerebellar and hippocampal neurons which also contain dipeptide repeat proteins (DPR) formed from sense and antisense RAN (repeat associated non ATG-initiated) translation of the expanded repeat region itself. 'Inappropriate' formation, and aggregation, of DPR might therefore confer neurotoxicity and influence clinical phenotype. Consequently, we compared the topographic brain distribution of DPR in 8 patients with Frontotemporal dementia (FTD), 6 with FTD + MND and 7 with MND alone (all 21 patients bearing expansions in C9ORF72) using a polyclonal antibody to poly-GA, and related this to the extent of TDP-43 pathology in key regions of cerebral cortex and hippocampus. There were no significant differences in either the pattern or severity of brain distribution of DPR between FTD, FTD + MND and MND groups, nor was there any relationship between the distribution of DPR and TDP-43 pathologies in expansion bearers. Likewise, there were no significant differences in the extent of TDP-43 pathology between FTLD patients bearing an expansion in C9ORF72 and non-bearers of the expansion. There were no association between the extent of DPR pathology and TMEM106B or APOE genotypes. However, there was a negative correlation between the extent of DPR pathology and age at onset. Present findings therefore suggest that although the presence and topographic distribution of DPR may be of diagnostic relevance in patients bearing expansion in C9ORF72 this has no bearing on the determination of clinical phenotype. Because TDP-43 pathologies are similar in bearers and non-bearers of the expansion, the expansion may act as a major genetic risk factor for FTLD and MND by rendering the brain

  1. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma.

    PubMed

    Bentmann, Eva; Haass, Christian; Dormann, Dorothee

    2013-09-01

    Stress granules (SGs) are cytoplasmic foci that rapidly form when cells are exposed to stress. They transiently store mRNAs encoding house-keeping proteins and allow the selective translation of stress-response proteins (e.g. heat shock proteins). Besides mRNA, SGs contain RNA-binding proteins, such as T cell internal antigen-1 and poly(A)-binding protein 1, which can serve as characteristic SG marker proteins. Recently, some of these SG marker proteins were found to label pathological TAR DNA binding protein of 43 kDa (TDP-43)- or fused in sarcoma (FUS)-positive cytoplasmic inclusions in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In addition, protein aggregates in other neurodegenerative diseases (e.g. tau inclusions in Alzheimer's disease) show a co-localization with T cell internal antigen-1 as well. Moreover, several RNA-binding proteins that are commonly found in SGs have been genetically linked to neurodegeneration. This suggests that SGs might play an important role in the pathogenesis of these proteinopathies, either by acting as a seed for pathological inclusions, by mediating translational repression or by trapping essential RNA-binding proteins, or by a combination of these mechanisms. This minireview gives an overview of the general biology of SGs and highlights the recently identified connection of SGs with TDP-43, FUS and other proteins involved in neurodegenerative diseases. We propose that pathological inclusions containing RNA-binding proteins, such as TDP-43 and FUS, might arise from SGs and discuss how SGs might contribute to neurodegeneration via toxic gain or loss-of-function mechanisms.

  2. Promoters and proteins from Clostridium thermocellum and uses thereof

    DOEpatents

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  3. Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis.

    PubMed

    Chen, Liang; Brewer, Michael D; Guo, Lili; Wang, Ruoxing; Jiang, Peng; Yang, Xiaolu

    2017-03-28

    An adequate cellular capacity to degrade misfolded proteins is critical for cell survival and organismal health. A diminished capacity is associated with aging and neurodegenerative diseases; however, the consequences of an enhanced capacity remain undefined. Here, we report that the ability to clear misfolded proteins is increased during oncogenic transformation and is reduced upon tumor cell differentiation. The augmented capacity mitigates oxidative stress associated with oncogenic growth and is required for both the initiation and maintenance of malignant phenotypes. We show that tripartite motif-containing (TRIM) proteins select misfolded proteins for proteasomal degradation. The higher degradation power in tumor cells is attributed to the upregulation of the proteasome and especially TRIM proteins, both mediated by the antioxidant transcription factor Nrf2. These findings establish a critical role of TRIMs in protein quality control, connect the clearance of misfolded proteins to antioxidant defense, and suggest an intrinsic characteristic of tumor cells.

  4. Transport proteins promoting Escherichia coli pathogenesis.

    PubMed

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.

  5. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  6. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases.

    PubMed

    Crippa, Valeria; D'Agostino, Vito G; Cristofani, Riccardo; Rusmini, Paola; Cicardi, Maria E; Messi, Elio; Loffredo, Rosa; Pancher, Michael; Piccolella, Margherita; Galbiati, Mariarita; Meroni, Marco; Cereda, Cristina; Carra, Serena; Provenzani, Alessandro; Poletti, Angelo

    2016-03-10

    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.

  7. Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases

    PubMed Central

    Crippa, Valeria; D’Agostino, Vito G.; Cristofani, Riccardo; Rusmini, Paola; Cicardi, Maria E.; Messi, Elio; Loffredo, Rosa; Pancher, Michael; Piccolella, Margherita; Galbiati, Mariarita; Meroni, Marco; Cereda, Cristina; Carra, Serena; Provenzani, Alessandro; Poletti, Angelo

    2016-01-01

    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models. PMID:26961006

  8. Hypermetabolism as a Risk Factor for ALS

    DTIC Science & Technology

    2013-09-01

    Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis . Science 314, 130–133 (2006). 2. Weihl, C. C. et al. TDP-43...body fat, likely working through a protein called Tbc1d1 which is known to control fat metabolism in skeletal muscle . To test this hypothesis, we...generated conditional Tdp-43 knockout mice using a muscle -specific (MLC) driver of Cre recombinase. Loss of Tdp-43 in skeletal muscle led to adult onset

  9. Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic geminivirus.

    PubMed

    Shivaprasad, P V; Akbergenov, Rashid; Trinks, Daniela; Rajeswaran, R; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M

    2005-07-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and rightward promoters on DNA-B share the transcription activator AC2-responsive region, which does not overlap the common region that is nearly identical in the two DNA components. The transcription unit for BC1 (movement protein) includes a conserved, leader-based intron. Besides negative-feedback regulation of its own leftward promoter on DNA-A, the replication protein AC1, in cooperation with AC2, synergistically transactivates the rightward promoter, which drives a dicistronic transcription unit for the coat protein AV1. AC2 and the replication enhancer AC3 are expressed from one dicistronic transcript driven by a strong promoter mapped within the upstream AC1 gene. Early and constitutive expression of AC2 is consistent with its essential dual function as an activator of viral transcription and a suppressor of silencing.

  10. Promoters, Transcripts, and Regulatory Proteins of Mungbean Yellow Mosaic Geminivirus†

    PubMed Central

    Shivaprasad, P. V.; Akbergenov, Rashid; Trinks, Daniela; Rajeswaran, R.; Veluthambi, K.; Hohn, Thomas; Pooggin, Mikhail M.

    2005-01-01

    Geminiviruses package circular single-stranded DNA and replicate in the nucleus via a double-stranded intermediate. This intermediate also serves as a template for bidirectional transcription by polymerase II. Here, we map promoters and transcripts and characterize regulatory proteins of Mungbean yellow mosaic virus-Vigna (MYMV), a bipartite geminivirus in the genus Begomovirus. The following new features, which might also apply to other begomoviruses, were revealed in MYMV. The leftward and rightward promoters on DNA-B share the transcription activator AC2-responsive region, which does not overlap the common region that is nearly identical in the two DNA components. The transcription unit for BC1 (movement protein) includes a conserved, leader-based intron. Besides negative-feedback regulation of its own leftward promoter on DNA-A, the replication protein AC1, in cooperation with AC2, synergistically transactivates the rightward promoter, which drives a dicistronic transcription unit for the coat protein AV1. AC2 and the replication enhancer AC3 are expressed from one dicistronic transcript driven by a strong promoter mapped within the upstream AC1 gene. Early and constitutive expression of AC2 is consistent with its essential dual function as an activator of viral transcription and a suppressor of silencing. PMID:15956560

  11. Functional interactions between a glutamine synthetase promoter and MYB proteins.

    PubMed

    Gómez-Maldonado, Josefa; Avila, Concepción; Torre, Fernando; Cañas, Rafael; Cánovas, Francisco M; Campbell, Malcolm M

    2004-08-01

    In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.

  12. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  13. Tumor promotion by depleting cells of protein kinase C delta.

    PubMed Central

    Lu, Z; Hornia, A; Jiang, Y W; Zang, Q; Ohno, S; Foster, D A

    1997-01-01

    Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function. PMID:9154841

  14. Functional analysis of bipartite begomovirus coat protein promoter sequences

    SciTech Connect

    Lacatus, Gabriela; Sunter, Garry

    2008-06-20

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters.

  15. Regulatory elements of the Staphylococcus aureus protein A (Spa) promoter.

    PubMed

    Gao, Jinxin; Stewart, George C

    2004-06-01

    Staphylococcal protein A (Spa) is an important virulence factor of Staphylococcus aureus. Transcription of the spa determinant occurs during the exponential growth phase and is repressed when the cells enter the postexponential growth phase. Regulation of spa expression has been found to be complicated, with regulation involving multiple factors, including Agr, SarA, SarS, SarT, Rot, and MgrA. Our understanding of how these factors work on the spa promoter to regulate spa expression is incomplete. To identify regulatory sites within the spa promoter, analysis of deletion derivatives of the promoter in host strains deficient in one or more of the regulatory factors was undertaken, and several critical features of spa regulation were revealed. The transcriptional start sites of spa were determined by primer extension. The spa promoter sequences were subcloned in front of a promoterless chloramphenicol acetyltransferase reporter gene. Various lengths of spa truncations with the same 3' end were constructed, and the resultant plasmids were transduced into strains with different regulatory genetic backgrounds. Our results identified upstream promoter sequences necessary for Agr system regulation of spa expression. The cis elements for SarS activity, an activator of spa expression, and for SarA activity, a repressor of spa expression, were identified. The well-characterized SarA consensus sequence on the spa promoter was found to be insufficient for SarA repression of the spa promoter. Full repression required the presence of a second consensus site adjacent to the SarS binding site. Sequences directly upstream of the core promoter sequence were found to stimulate transcription.

  16. Protein binding elements in the human beta-polymerase promoter.

    PubMed Central

    Englander, E W; Wilson, S H

    1990-01-01

    The core promoter for human DNA polymerase beta contains discrete binding sites for mammalian nuclear proteins, as revealed by DNasel footprinting and gel mobility shift assays. Two sites correspond to sequences identical with the Sp1 factor binding element, and a third site includes an eight residue palindromic sequence, TGACGTCA, known as the CRE element of several cAMP responsive promoters; the 5 to 10 residues flanking this palindrome on each side have no apparent sequence homology with known elements in other promoters. Nuclear extract from a variety of tissues and cells were examined; these included rat liver and testes and cultured cells of human and hamster origin. The DNasel footprint is strong over and around the palindromic element for each of the extracts and is equivalent in size (approximately 22 residues); footprinting over the Sp1 binding sites is seen also. Two potential tissue-specific binding sites, present in liver but not in testes, were found corresponding to residues -13 to -10 and +33 to +48, respectively. Protein binding to the palindromic element was confirmed by an electrophoretic mobility shift assay with the core promoter as probe. Binding specificity of the 22 residue palindromic element, as revealed by oligonucleotide competition, is different from that of AP-1 binding element. Controlled proteolysis with trypsin was used to study structural properties of proteins forming the mobility shift bands. Following digestion with trypsin, most of the palindrome binding activity of each extract corresponded to a sharp, faster migrating band, potentially representing a DNA binding domain of the palindrome binding protein. Images PMID:2315044

  17. Identification of protein pheromones that promote aggressive behaviour.

    PubMed

    Chamero, Pablo; Marton, Tobias F; Logan, Darren W; Flanagan, Kelly; Cruz, Jason R; Saghatelian, Alan; Cravatt, Benjamin F; Stowers, Lisa

    2007-12-06

    Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.

  18. Strand invasion promoted by recombination protein of coliphage

    NASA Astrophysics Data System (ADS)

    Rybalchenko, Nataliya; Golub, Efim I.; Bi, Baoyuan; Radding, Charles M.

    2004-12-01

    Studies of phage in vivo have indicated that its own recombination enzymes, protein and exonuclease, are capable of catalyzing two dissimilar pathways of homologous recombination that are widely distributed in nature: single-strand annealing and strand invasion. The former is an enzymatic splicing of overlapping ends of broken homologous DNA molecules, whereas the latter is characterized by the formation of a three-stranded synaptic intermediate and subsequent strand exchange. Previous studies in vitro have shown that protein has annealing activity, and that exonuclease, acting on branched substrates, can produce a perfect splice that requires only ligation for completion. The present study shows that protein can initiate strand invasion in vitro, as evidenced both by the formation of displacement loops (D-loops) in superhelical DNA and by strand exchange between colinear single-stranded and double-stranded molecules. Thus, protein can catalyze steps that are central to both strand annealing and strand invasion pathways of recombination. These observations add protein to a set of diverse proteins that appear to promote recognition of homology by a unitary mechanism governed by the intrinsic dynamic properties of base pairs in DNA. genetic recombination | phage λ

  19. [Spreading of protein misfolding: A new paradigm in neurology].

    PubMed

    Hauw, J-J; Haïk, S; Duyckaerts, C

    2015-12-01

    Protein misfolding and spreading ("transconformation") are being better understood. Described in Prions diseases, this new paradigm in the field of neurodegenerative disorders and brain aging also implies sporadic inclusion myositis, type 2 diabetes, some cancers, sickle cell disease... Misfolding is transmitted from a protein or peptide to a normally folded one. Often associated with a stress of the endoplasmic reticulum, it may spread along the neurites, following anterograde or retrograde axonal transport. In the central nervous system, it occurs in a few cells and there is invasion of adjacent cells by cell-to-cell spread. Three varieties of protein misfolding occur along neuroanatomical pathways. It can be a 'centripetal' process. The synucleinopathy of Parkinson disease has been carefully studied: the changes first occur in cardiac or enteric plexuses... and reach later on the mesencephalon and neocortex. Thus, skin biopsy might prove a diagnostic tool. Protein misfolding may also occur along 'centrifugal' pathways, from motor cortex to peripheral motor neurons. Examples are provided by SOD and pTDP-43 in Amyotrophic Lateral Sclerosis. Amyloid β peptide in cerebral aging and Alzheimer's disease also spread from occipital cortex to the brainstem. Lastly, the propagation may remain 'central' for TDP-43 in behavioral variant frontotemporal dementia, following only pathways of the encephalic neural network. This has to be confirmed, however, since the spreading of some proteins (such as tau or Aβ peptides) has been considered central for a long time and has proved today to involve extracerebral tissues. The complex mechanisms of protein misfolding, still in analysis, include the involvement of chaperone proteins, the formation of very toxic labile proteins molecules (oligomers?), and provide a number of new therapeutic perspectives.

  20. The enamel protein amelotin is a promoter of hydroxyapatite mineralization.

    PubMed

    Abbarin, Nastaran; San Miguel, Symone; Holcroft, James; Iwasaki, Kengo; Ganss, Bernhard

    2015-05-01

    Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation. It is localized at the interface between the enamel surface and the apical surface of ameloblasts. AMTN knock-out mice have hypomineralized enamel, whereas transgenic mice overexpressing AMTN have a compact but disorganized enamel hydroxyapatite (HA) microstructure, indicating a possible involvement of AMTN in regulating HA mineralization directly. In this study, we demonstrated that recombinant human (rh) AMTN dissolved in a metastable buffer system, based on light scattering measurements, promotes HA precipitation. The mineral precipitates were characterized by scanning and transmission electron microscopy and electron diffraction. Colloidal gold immunolabeling of AMTN in the mineral deposits showed that protein molecules were associated with HA crystals. The binding affinity of rh-AMTN to HA was found to be comparable to that of amelogenin, the major protein of the forming enamel matrix. Overexpression of AMTN in mouse calvaria cells also increased the formation of calcium deposits in the culture medium. Overexpression of AMTN during the secretory stage of enamel formation in vivo resulted in rapid and uncontrolled enamel mineralization. Site-specific mutagenesis of the potential serine phosphorylation motif SSEEL reduced the in vitro mineral precipitation to less than 25%, revealing that this motif is important for the HA mineralizing function of the protein. A synthetic short peptide containing the SSEEL motif was only able to facilitate mineralization in its phosphorylated form ((P)S(P) SEEL), indicating that this motif is necessary but not sufficient for the mineralizing properties of AMTN. These findings demonstrate that AMTN has a direct influence on biomineralization by promoting HA mineralization and suggest a critical role for AMTN in the formation of the compact aprismatic enamel surface layer during the maturation

  1. Engineering therapeutic protein disaggregases

    PubMed Central

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  2. Multi-protein Delivery by Nanodiamonds Promotes Bone Formation

    PubMed Central

    Moore, L.; Gatica, M.; Kim, H.; Osawa, E.; Ho, D.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE® for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  3. Multi-protein delivery by nanodiamonds promotes bone formation.

    PubMed

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  4. A small subunit processome protein promotes cancer by altering translation.

    PubMed

    Yang, H W; Kim, T-M; Song, S S; Menon, L; Jiang, X; Huang, W; Black, P M; Park, P J; Carroll, R S; Johnson, M D

    2015-08-20

    Dysregulation of ribosome biogenesis or translation can promote cancer, but the underlying mechanisms remain unclear. UTP18 is a component of the small subunit processome, a nucleolar multi-protein complex whose only known function is to cleave pre-ribosomal RNA to yield the 18S ribosomal RNA component of 40S ribosomal subunits. Here, we show that UTP18 also alters translation to promote stress resistance and growth, and that UTP18 is frequently gained and overexpressed in cancer. We observed that UTP18 localizes to the cytoplasm in a subset of cells, and that serum withdrawal increases cytoplasmic UTP18 localization. Cytoplasmic UTP18 associates with the translation complex and Hsp90 to upregulate the translation of IRES-containing transcripts such as HIF1a, Myc and VEGF, thereby inducing stress resistance. Hsp90 inhibition decreases cytoplasmic UTP18 and UTP18-induced increases in translation. Importantly, elevated UTP18 expression correlates with increased aggressiveness and decreased survival in numerous cancers. Enforced UTP18 overexpression promotes transformation and tumorigenesis, whereas UTP18 knockdown inhibits these processes. This stress adaptation mechanism is thus co-opted for growth by cancers, and its inhibition may represent a promising new therapeutic target.

  5. Multilayered films fabricated from an oligoarginine-conjugated protein promote efficient surface-mediated protein transduction.

    PubMed

    Jewell, Christopher M; Fuchs, Stephen M; Flessner, Ryan M; Raines, Ronald T; Lynn, David M

    2007-03-01

    The conjugation of cationic protein transduction domains to proteins results in an increase in the extent to which proteins are internalized by cells. This investigation sought to determine whether the conjugation of a protein transduction domain to a functional protein could be used to facilitate the incorporation of the protein into multilayered polyelectrolyte films and, subsequently, whether these films could be used to promote surface-mediated protein transduction. We demonstrate that it is possible to fabricate multilayered assemblies 80 nm thick using sodium polystyrene sulfonate (SPS) and bovine pancreatic ribonuclease (RNase A) conjugated to the cationic protein transduction domain nonaarginine (R(9)) using an entirely aqueous layer-by-layer process. We demonstrate further that the conjugation of R(9) to RNase A permits the assembly of multilayered films under conditions that do not allow for the incorporation of the unmodified protein. This result suggests that R(9) functions as a cationic anchor and serves to increase the strength of electrostatic interactions with SPS and facilitate layer-by-layer assembly. We also demonstrate that RNase A-R(9)/SPS films dissolve rapidly in physiologically relevant media and that macroscopic objects coated with these materials can be used to mediate high levels of protein transduction in mammalian cells. These results suggest the basis of general methods that could contribute to the design of materials that permit spatial and temporal control over the delivery of therapeutic proteins to cells and tissues.

  6. Host SAMHD1 Protein Promotes HIV-1 Recombination in Macrophages*

    PubMed Central

    Nguyen, Laura A.; Kim, Dong-Hyun; Daly, Michele B.; Allan, Kevin C.; Kim, Baek

    2014-01-01

    Template switching can occur during the reverse transcription of HIV-1. Deoxynucleotide triphosphate (dNTP) concentrations have been biochemically shown to impact HIV-1 reverse transcriptase (RT)-mediated strand transfer. Lowering the dNTP concentrations promotes RT pausing and RNA template degradation by RNase H activity of the RT, subsequently leading to strand transfer. Terminally differentiated/nondividing macrophages, which serve as a key HIV-1 reservoir, contain extremely low dNTP concentrations (20–50 nm), which results from the cellular dNTP hydrolyzing sterile α motif and histidine aspartic domain containing protein 1 (SAMHD1) protein, when compared with activated CD4+ T cells (2–5 μm). In this study, we first observed that HIV-1 template switching efficiency was nearly doubled in human primary macrophages when compared with activated CD4+ T cells. Second, SAMHD1 degradation by viral protein X (Vpx), which elevates cellular dNTP concentrations, decreased HIV-1 template switching efficiency in macrophages to the levels comparable with CD4+ T cells. Third, differentiated SAMHD1 shRNA THP-1 cells have a 2-fold increase in HIV-1 template switching efficiency. Fourth, SAMHD1 degradation by Vpx did not alter HIV-1 template switching efficiency in activated CD4+ T cells. Finally, the HIV-1 V148I RT mutant that is defective in dNTP binding and has DNA synthesis delay promoted RT stand transfer when compared with wild type RT, particularly at low dNTP concentrations. Here, we report that SAMHD1 regulation of the dNTP concentrations influences HIV-1 template switching efficiency, particularly in macrophages. PMID:24352659

  7. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    PubMed Central

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  8. Lytic Promoters Express Protein during Herpes Simplex Virus Latency

    PubMed Central

    Russell, Tiffany A.; Tscharke, David C.

    2016-01-01

    Herpes simplex virus (HSV) has provided the prototype for viral latency with previously well-defined acute or lytic and latent phases. More recently, the deep quiescence of HSV latency has been questioned with evidence that lytic genes can be transcribed in this state. However, to date the only evidence that these transcripts might be translated has come from immunological studies that show activated T cells persist in the nervous system during latency. Here we use a highly sensitive Cre-marking model to show that lytic and latent phases are less clearly defined in two significant ways. First, around half of the HSV spread leading to latently infected sites occurred beyond the initial acute infection and second, we show direct evidence that lytic promoters can drive protein expression during latency. PMID:27348812

  9. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    SciTech Connect

    Yonezawa, Takayuki; Lee, Ji-Won; Hibino, Ayaka; Asai, Midori; Hojo, Hironori; Cha, Byung-Yoon; Teruya, Toshiaki; Nagai, Kazuo; Chung, Ung-Il; Yagasaki, Kazumi; and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  10. Generation of an Artificial Double Promoter for Protein Expression in Bacillus subtilis through a Promoter Trap System

    PubMed Central

    Yang, Mingming; Zhang, Weiwei; Ji, Shengyue; Cao, Pinghua; Chen, Yulin; Zhao, Xin

    2013-01-01

    Bacillus subtilis is an attractive host for production of recombinant proteins. Promoters and expression plasmid backbones have direct impacts on the efficiency of gene expression. To screen and isolate strong promoters, a promoter trap vector pShuttleF was developed in this study. Using the vector, approximately 1000 colonies containing likely promoters from Bacillus licheniformis genomic DNA were obtained. Amongst them, pShuttle-09 exhibited the highest β-Gal activities in both Escherichia coli and B. subtilis. The activity of pShuttle-09 in B. subtilis was eight times of that of the P43 promoter, a commonly used strong promoter for B. subtilis. A sequence analysis showed that pShuttle-09 contained PluxS and truncated luxS in-frame fused with the reporter gene as well as another fragment upstream of PluxS containing a putative promoter. This putative promoter was a hybrid promoter and its β-Gal activity was higher than PluxS. Reconstructing the hybrid promoter from pShuttle-09 to PlapS further improved the β-Gal production by 60%. The usefulness of our promoter trap system is likely due to random shuffling and recombination of DNA fragments and adoption of a rapid and high-throughput screening. Thus, our data provide additional evidence to support the concept of using a promoter trap system to create new promoters. PMID:23409173

  11. Integrin β4 regulates SPARC protein to promote invasion.

    PubMed

    Gerson, Kristin D; Shearstone, Jeffrey R; Maddula, V S R Krishna; Seligmann, Bruce E; Mercurio, Arthur M

    2012-03-23

    The α6β4 integrin (referred to as "β4" integrin) is a receptor for laminins that promotes carcinoma invasion through its ability to regulate key signaling pathways and cytoskeletal dynamics. An analysis of published Affymetrix GeneChip data to detect downstream effectors involved in β4-mediated invasion of breast carcinoma cells identified SPARC, or secreted protein acidic and rich in cysteine. This glycoprotein has been shown to play an important role in matrix remodeling and invasion. Our analysis revealed that manipulation of β4 integrin expression and signaling impacted SPARC expression and that SPARC facilitates β4-mediated invasion. Expression of β4 in β4-deficient cells reduced the expression of a specific microRNA (miR-29a) that targets SPARC and impedes invasion. In cells that express endogenous β4, miR-29a expression is low and β4 ligation facilitates the translation of SPARC through a TOR-dependent mechanism. The results obtained in this study demonstrate that β4 can regulate SPARC expression and that SPARC is an effector of β4-mediated invasion. They also highlight a potential role for specific miRNAs in executing the functions of integrins.

  12. Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein

    PubMed Central

    Corpet, Denis E.; Yin, Y.; Zhang, X. M.; Rémésy, C.; Stamp, D.; Medline, A.; Thompson, L.U.; Bruce, W. R.; Archer, M. C.

    1995-01-01

    Thermolyzed casein is known to promote the growth of aberrant crypt foci (ACF) and colon cancer when it is fed to rats that have been initiated with azoxymethane. We speculated that the promotion was a consequence of increased colonic protein fermentation (i.e., that the thermolysis of the casein decreases its digestibility, increases the amount of protein reaching the colon, and increases colonic protein fermentation and that the potentially toxic products of this fermentation promote colon carcinogenesis). We found that the thermolysis of casein reduces its digestibility and increases colonic protein fermentation, as assessed by fecal ammonium and urinary phenol, cresol, and indol-3-ol. Thermolysis of two other proteins, soy and egg white protein, also increases colonic protein fermentation with increased fecal ammonia and urinary phenols, and thermolysis of all three proteins increases the levels of ammonia and butyric, valeric, and i-valeric acids in the cecal contents. We found, however, that the increased protein fermentation observed with thermolysis is not associated with promotion of colon carcinogenesis. With casein, the kinetics of protein fermentation with increasing thermolysis time are clearly different from the kinetics of promotion of ACF growth. The formation of the fermentation products was highest when the protein was thermolyzed for one hour, whereas promotion was highest for protein that had been thermolyzed for two or more hours. With soy and egg white, thermolysis increased colonic protein fermentation but did not promote colon carcinogenesis. Thus, although thermolysis of dietary casein increases colonic protein fermentation, products of this fermentation do not appear to be responsible for the promotion of colon carcinogenesis. Indeed, the results suggest that protein fermentation products do not play an important role in colon cancer promotion. PMID:7603887

  13. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis.

    PubMed

    Ling, Shuo-Chien; Polymenidou, Magdalini; Cleveland, Don W

    2013-08-07

    Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS, ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA processing and protein homeostasis is an emerging theme. We present the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression.

  14. Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids

    PubMed Central

    Szymczak, Lindsey C.; Aydin, Taner; Yun, Sijung; Constas, Katharine; Schaeffer, Arielle; Ranjan, Sinthu; Kubba, Saad; Alam, Emad; McMahon, Devin E.; He, Jingpeng; Shwartz, Neta; Tian, Chenxi; Plavskin, Yevgeniy; Lindy, Amanda; Dad, Nimra Amir; Sheth, Sunny; Amin, Nirav M.; Zimmerman, Stephanie; Liu, Dennis; Schwarz, Erich M.; Smith, Harold; Krause, Michael W.; Liu, Jun

    2015-01-01

    Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. PMID:25978409

  15. Ubiquitin promoter-terminator cassette promotes genetically stable expression of the taste-modifying protein miraculin in transgenic lettuce.

    PubMed

    Hirai, Tadayoshi; Shohael, Abdullah Mohammad; Kim, You-Wang; Yano, Megumu; Ezura, Hiroshi

    2011-12-01

    Lettuce is a commercially important leafy vegetable that is cultivated worldwide, and it is also a target crop for plant factories. In this study, lettuce was selected as an alternative platform for recombinant miraculin production because of its fast growth, agronomic value, and wide availability. The taste-modifying protein miraculin is a glycoprotein extracted from the red berries of the West African native shrub Richadella dulcifica. Because of its limited natural availability, many attempts have been made to produce this protein in suitable alternative hosts. We produced transgenic lettuce with miraculin gene driven either by the ubiquitin promoter/terminator cassette from lettuce or a 35S promoter/nos terminator cassette. Miraculin gene expression and miraculin accumulation in both cassettes were compared by quantitative real-time PCR analysis, Western blotting, and enzyme-linked immunosorbent assay. The expression level of the miraculin gene and protein in transgenic lettuce was higher and more genetically stable in the ubiquitin promoter/terminator cassette than in the 35S promoter/nos terminator cassette. These results demonstrated that the ubiquitin promoter/terminator cassette is an efficient platform for the genetically stable expression of the miraculin protein in lettuce and hence this platform is of benefit for recombinant miraculin production on a commercial scale.

  16. Identification of procollagen promoter DNA-binding proteins: effects of dexamethasone

    SciTech Connect

    Sweeney, C.; Cutroneo, K.R.

    1987-05-01

    Glucocorticoids selectively decrease procollagen synthesis by decreasing procollagen mRNA transcription. Dexamethasone coordinately decreased total cellular type I and type III procollagen mRNAs in mouse embryonic skin fibroblasts. Since sequence specific DNA-binding proteins are known to modulate eukaryotic gene expression the authors identified in mouse fibroblasts nuclear proteins which bind to types I and III procollagen promoter DNAs. Nuclear proteins were electrophoresed, blotted onto nitrocellulose and probed with /sup 32/P-end-labeled type I and type III procollagen promoter DNAs in the presence of equimolar amounts of /sup 32/P-end-labeled vector DNA. Differences in total DNA binding were noted by the densitometric scans of the nuclear proteins. Dexamethasone treatment enhanced total DNA binding. Increasing the NaCl concentration decreased the number of promoter DNA-binding proteins without altering the relative specificity for the promoter DNAs. Promoter DNA binding to nuclear proteins was also inhibited by increasing concentrations of E. coli DNA. The number of DNA-binding proteins was greater for type III procollagen promoter DNA. The effect of dexamethasone treatment on promoter DNA binding to nuclear proteins was determined.

  17. Promoter-specific trans activation and repression by human cytomegalovirus immediate-early proteins involves common and unique protein domains.

    PubMed Central

    Stenberg, R M; Fortney, J; Barlow, S W; Magrane, B P; Nelson, J A; Ghazal, P

    1990-01-01

    trans activation of promoters by viral regulatory proteins provides a useful tool to study coordinate control of gene expression. Immediate-early (IE) regions 1 and 2 of human cytomegalovirus (CMV) code for a series of proteins that originate from differentially spliced mRNAs. These IE proteins are proposed to regulate the temporal expression of the viral genome. To examine the structure and function of the IE proteins, we used linker insertion mutagenesis of the IE gene region as well as cDNA expression vector cloning of the abundant IE mRNAs. We showed that IE1 and IE2 proteins of CMV exhibit promoter-specific differences in their modes of action by either trans activating early and IE promoters or repressing the major IE promoter (MIEP). Transient cotransfection experiments with permissive human cells revealed a synergistic interaction between the 72- and the 86-kilodalton (kDa) IE proteins in trans activating an early promoter. In addition, transfection studies revealed that the 72-kDa protein was capable of trans activating the MIEP. In contrast, the 86-kDa protein specifically repressed the MIEP and this repression was suppressed by the 72-kDa protein. Furthermore, observations based on the primary sequence structure revealed a modular arrangement of putative regulatory motifs that could either potentiate or repress gene expression. These modular domains are either shared or unique among the IE proteins. From these data, we propose a model for IE protein function in the coordinate control of CMV gene expression. Images PMID:2157043

  18. Aberrant distributions of nuclear pore complex proteins in ALS mice and ALS patients.

    PubMed

    Shang, Jingwei; Yamashita, Toru; Nakano, Yumiko; Morihara, Ryuta; Li, Xianghong; Feng, Tian; Liu, Xia; Huang, Yong; Fukui, Yusuke; Hishikawa, Nozomi; Ohta, Yasuyuki; Abe, Koji

    2017-03-24

    Nuclear pore complexes (NPCs) play important roles in traffic of molecules between the nucleus and cytoplasm, aberrant distributions of components of NPCs were demonstrated in C9orf72 amyotrophic lateral sclerosis (C9-ALS) patients, but it is elusive whether such abnormities are also the case with other cause of ALS disease. In the present study, we investigated the spatiotemporal distributions of RanGAP1 and 4 representative nucleoporins (GP210, NUP205, NUP107 and NUP50) of NPCs in human Cu/Zn superoxide dismutase-1 mutation transgenic (SOD1-Tg) mice and sporadic ALS patients. Compared with wild type (WT), these proteins displayed age-dependent and progressive nuclear precipitations, and cytoplasmic aberrant expressions in motor neurons of lumbar cord in SOD1-Tg mice from 10 to 18weeks (W). Double immunofluorescent analysis showed abnormal nuclear retention and apparent co-localizations of RanGAPl with NUP205 and NUP205 with NUPl07, meanwhile, GP210 with NUP205 mainly co-localized in the nuclear envelope (NE) of motor neurons. Furthermore, RanGAP1, GP210 and NUP50 showed similarly abnormal nuclear precipitations and cytoplasmic upregulations in SOD1-Tg mice and ALS patients, moreover, aberrant co-localizations of RanGAP1 with TDP-43 and NUP205 with TDP-43 were also observed in motor neurons. The present study indicated that the mislocalization of these proteins of NPCs may underlie the pathogenesis of ALS both in SOD1-Tg mice and human sporadic ALS patients, and these dysfunctions may be a fundamental pathway for ALS that is not specific only in C9-ALS but also in SOD1-ALS, which may be amenable to pharmacotherapeutic intervention.

  19. Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia

    PubMed Central

    McMillan, Corey T.; Suh, EunRan; Powers, John; Rascovsky, Katya; Wood, Elisabeth M.; Toledo, Jon B.; Arnold, Steven E.; Lee, Virginia M.-Y.; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Grossman, Murray

    2014-01-01

    Objective: To determine the prognostic utility of tauopathy-associated single nucleotide polymorphisms (SNPs) in sporadic behavioral-variant frontotemporal dementia (bvFTD). Methods: Eighty-one patients with sporadic bvFTD were genotyped for tauopathy-associated SNPs at rs8070723 (microtubule-associated protein tau [MAPT]) and rs1768208 (myelin-associated oligodendrocyte basic protein [MOBP]). We performed a retrospective case-control study comparing age at onset and disease duration between carriers of ≥1 polymorphism allele and noncarriers for these SNPs. Subanalyses were performed for autopsied subgroups with tauopathy (n = 20) and TDP-43 proteinopathy (n = 12). To identify a potential biological basis for disease duration, neuroimaging measures of white matter integrity were evaluated (n = 37). Results: Carriers of risk allele (T) in rs1768208 (i.e., MOBP RA+) had a shorter median disease duration (TC/TT = 5.5 years, CC = 9.5 years; p = 0.02). This was also found in the subset of cases with autopsy-confirmed tauopathies (p = 0.04) but not with TDP-43 proteinopathies (p > 0.1). By comparison, polymorphisms at rs8070723 (MAPT) had no effect on disease duration (p > 0.1), although carriers of protective allele (G) in rs8070723 had a younger median age at onset (AG/GG = 54.5 years, AA = 58 years; p < 0.01). MOBP RA+ patients had increased radial diffusivity in the superior corona radiata and midbrain, and reduced fractional anisotropy in the superior corona radiata as well as superior and inferior longitudinal fasciculi compared with noncarriers (p < 0.01). Conclusions: The rs1768208 risk polymorphism in MOBP may have prognostic value in bvFTD. MOBP RA+ patients have more severe white matter degeneration in bvFTD that may contribute to shorter disease duration. Future studies are needed to help confirm these findings. PMID:24994843

  20. Effect of heparin on protein aggregation: inhibition versus promotion.

    PubMed

    Xu, Yisheng; Seeman, Daniel; Yan, Yunfeng; Sun, Lianhong; Post, Jared; Dubin, Paul L

    2012-05-14

    The effect of heparin on both native and denatured protein aggregation was investigated by turbidimetry and dynamic light scattering (DLS). Turbidimetric data show that heparin is capable of inhibiting and reversing the native aggregation of bovine serum albumin (BSA), β-lactoglobulin (BLG), and Zn-insulin at a pH near pI and at low ionic strength I; however, the results vary with regard to the range of pH, I, and protein-heparin stoichiometry required to achieve these effects. The kinetics of this process were studied to determine the mechanism by which interaction with heparin could result in inhibition or reversal of native protein aggregates. For each protein, the binding of heparin to distinctive intermediate aggregates formed at different times in the aggregation process dictates the outcome of complexation. This differential binding was explained by changes in the affinity of a given protein for heparin, partly due to the effects of protein charge anisotropy as visualized by electrostatic modeling. The heparin effect can be further extended to include inhibition of denaturing protein aggregation, as seen from the kinetics of BLG aggregation under conditions of thermally induced unfolding with and without heparin.

  1. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway.

    PubMed

    Tang, Rui; Zhang, Gui; Chen, Shi-You

    2014-08-15

    Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis.

  2. Multistage skin tumor promotion: involvement of a protein kinase

    SciTech Connect

    Mamrack, M.; Slaga, T. J.

    1980-01-01

    Current information suggests that chemical carcinogenesis is a multistep process with one of the best studied models in this regard being the two-stage carcinogenesis system using mouse skin. The effects of several carcinogens and tumor promoters in various sequences of application were studied to examine the nature of the process. The actions of several tumor inhibitors were compared. (ACR)

  3. The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis

    PubMed Central

    Chen, Le; Heckman, C. J.

    2017-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastative neurodegenerative disease characterized by selective loss of motoneurons. While several breakthroughs have been made in identifying ALS genetic defects, the detailed molecular mechanisms are still unclear. These genetic defects involve in numerous biological processes, which converge to a common destiny: motoneuron degeneration. In addition, the common comorbid Frontotemporal Dementia (FTD) further complicates the investigation of ALS etiology. In this study, we aimed to explore the protein-protein interaction network built on known ALS-causative genes to identify essential proteins and common downstream proteins between classical ALS and ALS+FTD (classical ALS + ALS/FTD) groups. The results suggest that classical ALS and ALS+FTD share similar essential protein set (VCP, FUS, TDP-43 and hnRNPA1) but have distinctive functional enrichment profiles. Thus, disruptions to these essential proteins might cause motoneuron susceptible to cellular stresses and eventually vulnerable to proteinopathies. Moreover, we identified a common downstream protein, ubiquitin-C, extensively interconnected with ALS-causative proteins (22 out of 24) which was not linked to ALS previously. Our in silico approach provides the computational background for identifying ALS therapeutic targets, and points out the potential downstream common ground of ALS-causative mutations. PMID:28282387

  4. The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis.

    PubMed

    Mao, Yimin; Kuo, Su-Wei; Chen, Le; Heckman, C J; Jiang, M C

    2017-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastative neurodegenerative disease characterized by selective loss of motoneurons. While several breakthroughs have been made in identifying ALS genetic defects, the detailed molecular mechanisms are still unclear. These genetic defects involve in numerous biological processes, which converge to a common destiny: motoneuron degeneration. In addition, the common comorbid Frontotemporal Dementia (FTD) further complicates the investigation of ALS etiology. In this study, we aimed to explore the protein-protein interaction network built on known ALS-causative genes to identify essential proteins and common downstream proteins between classical ALS and ALS+FTD (classical ALS + ALS/FTD) groups. The results suggest that classical ALS and ALS+FTD share similar essential protein set (VCP, FUS, TDP-43 and hnRNPA1) but have distinctive functional enrichment profiles. Thus, disruptions to these essential proteins might cause motoneuron susceptible to cellular stresses and eventually vulnerable to proteinopathies. Moreover, we identified a common downstream protein, ubiquitin-C, extensively interconnected with ALS-causative proteins (22 out of 24) which was not linked to ALS previously. Our in silico approach provides the computational background for identifying ALS therapeutic targets, and points out the potential downstream common ground of ALS-causative mutations.

  5. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    SciTech Connect

    Culiat, Cymbeline T

    2014-11-04

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  6. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    SciTech Connect

    Culiat, Cymbeline T

    2011-03-22

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  7. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility

    PubMed Central

    Young, Barry P.; Loewen, Christopher J.; Mayor, Thibault

    2016-01-01

    Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. PMID:27448207

  8. AraC protein contacts asymmetric sites in the Escherichia coli araFGH promoter.

    PubMed

    Lu, Y; Flaherty, C; Hendrickson, W

    1992-12-05

    AraC protein regulates the transcription of arabinose transport and catabolic operons in Escherichia coli through interaction with specific DNA sequences in the promoter regions of the operons. The interaction of AraC protein with two binding sites in the araFGH promoter was determined and compared to previously studied AraC binding sites in the araBAD promoter. Methylation and ethylation interference assays show that AraC protein binds along one side of the DNA to four adjacent major groove regions at each of the araFG1 and araFG2 sites. Mutations within any of the four regions of araFG1 greatly reduce protein binding in vitro. The promoter function in vivo is also greatly reduced, indicating that all four regions of the binding site are required. The chemical interference and genetic data, combined with the consensus sequence for AraC protein binding to ara promoters, support a binding motif in which two directly repeated units each span two adjacent turns of the DNA helix. The function of the two AraC binding sites was also examined. The proximal araFG1 site is required for promoter activation, whereas the distal araFG2 site has only a slight effect on the promoter activity.

  9. High levels of protein expression using different mammalian CMV promoters in several cell lines.

    PubMed

    Xia, Wei; Bringmann, Peter; McClary, John; Jones, Patrick P; Manzana, Warren; Zhu, Ying; Wang, Soujuan; Liu, Yi; Harvey, Susan; Madlansacay, Mary Rose; McLean, Kirk; Rosser, Mary P; MacRobbie, Jean; Olsen, Catherine L; Cobb, Ronald R

    2006-01-01

    With the recent completion of the human genome sequencing project, scientists are faced with the daunting challenge of deciphering the function of these newly found genes quickly and efficiently. Equally as important is to produce milligram quantities of the therapeutically relevant gene products as quickly as possible. Mammalian expression systems provide many advantages to aid in this task. Mammalian cell lines have the capacity for proper post-translational modifications including proper protein folding and glycosylation. In response to the needs described above, we investigated the protein expression levels driven by the human CMV in the presence or absence of intron A, the mouse and rat CMV promoters with intron A, and the MPSV promoter in plasmid expression vectors. We evaluated the different promoters using an in-house plasmid vector backbone. The protein expression levels of four genes of interest driven by these promoters were evaluated in HEK293EBNA and CHO-K1 cells. Stable and transient transfected cells were utilized. In general, the full-length human CMV, in the presence of intron A, gave the highest levels of protein expression in transient transfections in both cell lines. However, the MPSV promoter resulted in the highest levels of stable protein expression in CHO-K1 cells. Using the CMV driven constitutive promoters in the presence of intron A, we have been able to generate >10 microg/ml of recombinant protein using transient transfections.

  10. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    PubMed

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  11. Engineering enhanced protein disaggregases for neurodegenerative disease

    PubMed Central

    Jackrel, Meredith E; Shorter, James

    2015-01-01

    Abstract Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones. PMID:25738979

  12. Iron promotes protein insolubility and aging in C. elegans

    PubMed Central

    Klang, Ida M.; Schilling, Birgit; Sorensen, Dylan J.; Sahu, Alexandria K.; Kapahi, Pankaj; Andersen, Julie K.; Swoboda, Peter; Killilea, David W.; Gibson, Bradford W.; Lithgow, Gordon J.

    2014-01-01

    Many late-onset proteotoxic diseases are accompanied by a disruption in homeostasis of metals (metallostasis) including iron, copper and zinc. Although aging is the most prominent risk factor for these disorders, the impact of aging on metallostasis and its role in proteotoxic disease remain poorly understood. Moreover, it is not clear whether a loss of metallostasis influences normal aging. We have investigated the role of metallostasis in longevity of Caenorhabditis elegans. We found that calcium, copper, iron, and manganese levels increase as a function of age, while potassium and phosphorus levels tend to decrease. Increased dietary iron significantly accelerated the age-related accumulation of insoluble protein, a molecular pathology of aging. Proteomic analysis revealed widespread effects of dietary iron in multiple organelles and tissues. Pharmacological interventions to block accumulation of specific metals attenuated many models of proteotoxicity and extended normal lifespan. Collectively, these results suggest that a loss of metallostasis with aging contributes to age-related protein aggregation. PMID:25554795

  13. Several different upstream promoter elements can potentiate transactivation by the BPV-1 E2 protein.

    PubMed Central

    Ham, J; Dostatni, N; Arnos, F; Yaniv, M

    1991-01-01

    The enhancer and upstream promoter regions of RNA polymerase II transcribed genes modulate the rate of transcription initiation and establish specific patterns of gene expression. Both types of region consist of clusters of DNA binding sites for nuclear proteins. To determine how efficiently the same factor can activate transcription when acting as an enhancer or promoter factor, we have studied transactivation by the BPV-1 E2 protein, a papillomavirus transcriptional regulator. By cotransfecting a BPV-1 E2 expression vector and a series of reporter plasmids containing well-defined chimeric promoters we have found that whilst E2 can strongly stimulate complex promoters such as that of the HSV tk gene, it does not efficiently activate constructions containing only a TATA box and initiation site. We show that insertion of upstream promoter elements, but not of spacer DNA, between E2 binding sites and the TATA box greatly increases E2 activation. This effect was observed with more than one type of upstream promoter element, is not related to the strength of the promoter and is unlikely to result from co-operative DNA binding by E2 and the transcription factors tested. These results would suggest that E2 has the properties of an enhancer rather than promoter factor and that in certain cases promoter and enhancer factors may affect different steps in the process of transcriptional activation. Images PMID:1655407

  14. Pseudomonas aeruginosa and tumor necrosis factor-alpha attenuate Clara cell secretory protein promoter function.

    PubMed

    Harrod, Kevin S; Jaramillo, Richard J

    2002-02-01

    The Clara cell secretory protein (CCSP, also CC-10/uterglobin) is a 16-kD homodimeric protein abundantly expressed in the airways of mammals. Although the molecular function is unknown, gene-targeting studies indicate CCSP as a regulator of lung inflammation following acute respiratory infection or injury. CCSP is decreased in the lungs of mice following acute Pseudomonas aeruginosa (P.a.) infection. In the present study, the role of decreased promoter function in the regulation of CCSP by P.a. was assessed using an in vitro co-culture system and in vivo studies of transgenic mice. CCSP promoter activity in lung epithelial cells was markedly decreased by P.a. or tumor necrosis factor-alpha (TNF-alpha) in a dose-dependent manner. Regulation of CCSP promoter function by either P.a. or TNF-alpha was localized to the proximal 166 bp flanking region of the CCSP promoter activity. Decreased regulation of the CCSP promoter by P.a. or TNF-alpha was specific to CCSP, as human surfactant protein D (SP-D) promoter activity was unaffected or increased by P.a. or TNF-alpha, respectively. A neutralizing antibody against human TNF-alpha was able to reverse both the TNF-alpha- mediated as well as P.a.-mediated decrease in CCSP promoter function in lung epithelial cells. TNF-alpha secretion by lung epithelial cells coincided with the decrease in CCSP promoter function following P.a. administration. Using a transgenic mouse model, P.a. administration to the lung markedly attenuated CCSP promoter-conferred gene expression in vivo. The attenuation of CCSP promoter activity in lung epithelial cells by P.a. involves, in part, autocrine/paracrine secretion of TNF-alpha, which in turn regulates CCSP transcription through cis-active elements in the proximal promoter region.

  15. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  16. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome

    PubMed Central

    Reeg, Sandra; Jung, Tobias; Castro, José P.; Davies, Kelvin J.A.; Henze, Andrea; Grune, Tilman

    2016-01-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. PMID:27498116

  17. Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function.

    PubMed

    Kim, Sungsu; Naylor, Sarah A; DiAntonio, Aaron

    2012-05-01

    Autophagy is a self-degradative process in which cellular material is enclosed within autophagosomes and trafficked to lysosomes for degradation. Autophagosomal biogenesis is well described; however mechanisms controlling the growth and ultimate size of autophagosomes are unclear. Here we demonstrate that the Drosophila membrane protein Ema is required for the growth of autophagosomes. In an ema mutant, autophagosomes form in response to starvation and developmental cues, and these autophagosomes can mature into autolysosomes; however the autophagosomes are very small, and autophagy is impaired. In fat body cells, Ema localizes to the Golgi complex and is recruited to the membrane of autophagosomes in response to starvation. The Drosophila Golgi protein Lva also is recruited to the periphery of autophagosomes in response to starvation, and this recruitment requires ema. Therefore, we propose that Golgi is a membrane source for autophagosomal growth and that Ema facilitates this process. Clec16A, the human ortholog of Ema, is a candidate autoimmune susceptibility locus. Expression of Clec16A can rescue the autophagosome size defect in the ema mutant, suggesting that regulation of autophagosome morphogenesis may be a fundamental function of this gene family.

  18. Transactivation of the parathyroid hormone promoter by specificity proteins and the nuclear factor Y complex.

    PubMed

    Alimov, Alexander P; Park-Sarge, Ok-Kyong; Sarge, Kevin D; Malluche, Hartmut H; Koszewski, Nicholas J

    2005-08-01

    We previously identified a highly conserved specificity protein 1 (Sp1) DNA element in mammalian PTH promoters that acted as an enhancer of gene transcription and bound Sp1 and Sp3 proteins present in parathyroid gland nuclear extracts. More recently, a nuclear factor (NF)-Y element (NF-Y(prox)) was also described by our group, which was located approximately 30 bp downstream from the Sp1 site in the human PTH (hPTH) promoter and by itself acted as a weak enhancer of gene transcription. We now report that Sp proteins and NF-Y can synergistically enhance transcription of a minimal hPTH promoter construct. Positioning of the Sp1 DNA element appears to be critical for this synergism because deviations of one half of a helical turn caused an approximate 60% decrease in transactivation. Finally, examination of the bovine PTH (bPTH) promoter also revealed Sp1/NF-Y synergism, in conjunction with the identification of an analogous NF-Y binding site similarly positioned downstream from the bPTH Sp1 element. In summary, synergistic transactivation of the hPTH and bPTH promoters is observed by Sp proteins and the NF-Y complex. The conservation of this transactivation in the human and bovine promoters suggests that this may be a principle means of enhancing PTH gene transcription.

  19. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    PubMed Central

    Uno, Miyuki; Oba-Shinjo, Sueli Mieko; Camargo, Anamaria Aranha; Moura, Ricardo Pereira; de Aguiar, Paulo Henrique; Cabrera, Hector Navarro; Begnami, Marcos; Rosemberg, Sérgio; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi

    2011-01-01

    OBJECTIVES: 1) To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter to its gene and protein expression levels in glioblastoma and 2) to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001). However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297). The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing), and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue. PMID:22012047

  20. Cytomegalovirus immediate early proteins promote stemness properties in glioblastoma

    PubMed Central

    Soroceanu, Liliana; Matlaf, Lisa; Khan, Sabeena; Akhavan, Armin; Singer, Eric; Bezrookove, Vladimir; Decker, Stacy; Ghanny, Saleena; Hadaczek, Piotr; Bengtsson, Henrik; Ohlfest, John; Luciani-Torres, Maria-Gloria; Harkins, Lualhati; Perry, Arie; Guo, Hong; Soteropoulos, Patricia; Cobbs, Charles S

    2015-01-01

    Glioblastoma (GBM) is the most common and aggressive human brain tumor. Human cytomegalovirus (HCMV) immediate early (IE) proteins that are endogenously expressed in GBM cells are strong viral transactivators with onconcogenic properties. Here, we show how HCMV IE are preferentially expressed in glioma stem-like cells (GSC), where they co-localize with the other GBM stemness markers, CD133, Nestin, and Sox2. In patient-derived GSC that are endogenously infected with HCMV, attenuating IE expression by an RNA-i-based strategy, was sufficient to inhibit tumorsphere formation, Sox2 expression, cell cycle progression, and cell survival. Conversely, HCMV infection of HMCV-negative GSC elicited robust self-renewal and proliferation of cells that could be partially reversed by IE attenuation. In HCMV-positive GSC, IE attenuation induced a molecular program characterized by enhanced expression of mesenchymal markers and pro-inflammatory cytokines, resembling the therapeutically-resistant GBM phenotype. Mechanistically, HCMV/IE regulation of Sox2 occurred via inhibition of miRNA-145, a negative regulator of Sox2 protein expression. In a spontaneous mouse model of glioma, ectopic expression of the IE1 gene (UL123) specifically increased Sox2 and Nestin levels in the IE1-positive tumors, upregulating stemness and proliferation markers in vivo. Similarly, human GSC infected with the HCMV strain Towne but not the IE1-deficient strain CR208 showed enhanced growth as tumorspheres and intracranial tumor xenografts, compared to mock-infected human GSC. Overall, our findings offer new mechanistic insights into how HCMV/IE control stemness properties in glioblastoma cells. PMID:26239477

  1. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds.

    PubMed

    Chen, Mo-Xian; Zheng, Shu-Xiao; Yang, Yue-Ning; Xu, Chao; Liu, Jie-Sheng; Yang, Wei-Dong; Chye, Mee-Len; Li, Hong-Ye

    2014-03-20

    Vigna radiata (mung bean) is an important crop plant and is a major protein source in developing countries. Mung bean 8S globulins constitute nearly 90% of total seed storage protein and consist of three subunits designated as 8SGα, 8SGα' and 8SGβ. The 5'-flanking sequences of 8SGα' has been reported to confer high expression in transgenic Arabidopsis seeds. In this study, a 472-bp 5'-flanking sequence of 8SGα was identified by genome walking. Computational analysis subsequently revealed the presence of numerous putative seed-specific cis-elements within. The 8SGα promoter was then fused to the gene encoding β-glucuronidase (GUS) to create a reporter construct for Arabidopsis thaliana transformation. The spatial and temporal expression of 8SGα∷GUS, as investigated using GUS histochemical assays, showed GUS expression exclusively in transgenic Arabidopsis seeds. Quantitative GUS assays revealed that the 8SGα promoter showed 2- to 4-fold higher activity than the Cauliflower Mosaic Virus (CaMV) 35S promoter. This study has identified a seed-specific promoter of high promoter strength, which is potentially useful for directing foreign protein expression in seed bioreactors.

  2. An amyloid-like cascade hypothesis for C9orf72 ALS/FTD.

    PubMed

    Edbauer, Dieter; Haass, Christian

    2016-02-01

    Expansion of a GGGGCC repeat in C9orf72 causes amyotrophic lateral sclerosis, frontotemporal dementia, or a combination of both. Bidirectional repeat transcripts sequester RNA-binding proteins into nuclear RNA foci. The repeat is translated into dipeptide repeat (DPR) proteins that are crucial for repeat-induced toxicity. DPRs inhibit the proteasome and sequester other proteins. These changes are accompanied by widespread brain atrophy and subclinical cognitive impairment before disease onset. Both repeat RNA and DPRs impair nucleocytoplasmic transport and promote TDP-43 mislocalization and aggregation. Thus, repeat RNA and DPRs may gradually trigger TDP-43 pathology and subsequent region-specific neurodegeneration in a cascade similar to amyloid-β peptide in Alzheimer's disease. The key components of the C9orf72 cascade are promising therapeutic targets in different disease stages.

  3. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2012-10-01

    Q/G/S/Y (Glutamine-Glycine- Serine-Tyrosine-rich region), R/G ( Arginine -Glycine-rich region), NLS (Nuclear localization signal). doi:10.1371...plates and transferring them at day 5 of adulthood to plates supplemented with MB. We observed that late administration of MB reduced paralysis with...switched to plates supplemented with 60 mM MB at day 5 (indicated by the arrow) of adulthood (late MB) showed a modest but significant reduction in

  4. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2015-03-01

    screening protocol as it permitted screening within the same working day and made it possible for one person to screen several hundred molecules per...Excellence University of Nagoya, NF-kB as a new therapeutic target. 15-16 November 2012. ● Symposium on ALS, University of Kyoto . NF-kB as a new...amplified by PCR and cloned into the Gateway vector pDONR221 following the manufacturer’s protocol (Invitrogen). Multisite Gateway recombination was performed

  5. Use of the arabinose p(bad) promoter for tightly regulated display of proteins on bacteriophage.

    PubMed

    Huang, W; McKevitt, M; Palzkill, T

    2000-06-27

    Phage display is a widely used method to optimize the binding characteristics of protein-ligand interactions. In addition, it has been used to clone genes from genomic and cDNA libraries based on their ligand-binding characteristics. One difficulty often encountered when expressing heterologous proteins by phage display is the toxicity of the protein on the Escherichia coli host. Previous studies have shown that heterologous protein expression can be tightly controlled using plasmids with the P(BAD) promoter of the arabinose operon of E. coli, and the araC gene, which is both a positive and negative regulator of the promoter. We constructed a set of phage display vectors that utilize the P(BAD) promoter to control the expression of proteins on the surface of the M13 bacteriophage. These vectors exhibit tightly controlled expression of proteins on the surface of the phage. In addition, the amount of protein displayed on the phage is modulated by the amount of arabinose present in the growth medium during phage propagation. This may be useful for altering the stringency of binding enrichment during phage display.

  6. The human cut homeodomain protein represses transcription from the c-myc promoter.

    PubMed Central

    Dufort, D; Nepveu, A

    1994-01-01

    Studies of the c-myc promoter have shown that efficient transcription initiation at the P2 start site as well as the block to elongation of transcription require the presence of the ME1a1 protein binding site upstream of the P2 TATA box. Following fractionation by size exclusion chromatography, three protein-ME1a1 DNA complexes, a, b, and c, were detected by electrophoretic mobility shift assay. A cDNA encoding a protein present in complex c was isolated by screening of an expression library with an ME1a1 DNA probe. This cDNA was found to encode the human homolog of the Drosophila Cut homeodomain protein. The bacterially expressed human Cut (hu-Cut) protein bound to the ME1a1 site, and antibodies against hu-Cut inhibited the ME1a1 binding activity c in nuclear extracts. In cotransfection experiments, the hu-Cut protein repressed transcription from the c-myc promoter, and this repression was shown to be dependent on the presence of the ME1a1 site. Using a reporter construct with a heterologous promoter, we found that c-myc exon 1 sequences were also necessary, in addition to the ME1a1 site, for repression by Cut. Taken together, these results suggest that the human homolog of the Drosophila Cut homeodomain protein is involved in regulation of the c-myc gene. Images PMID:8196661

  7. P5-type sulfhydryl oxidoreductase promotes the sorting of proteins to protein body I in rice endosperm cells

    PubMed Central

    Onda, Yayoi; Kawagoe, Yasushi

    2013-01-01

    In rice (Oryza sativa) endosperm cells, oxidative protein folding is necessary for the sorting of storage proteins to protein bodies, PB-I and PB-II. Here we examined the role of sulfhydryl oxidoreductase PDIL2;3 (a human P5 ortholog) in the endoplasmic reticulum (ER), using GFP-AB, a PB-I marker in which the N-terminal region (AB) of α-globulin is fused to green fluorescent protein (GFP). RNAi knockdown of PDIL2;3 inhibited the accumulation of GFP-AB in PB-I and promoted its exit from the ER. We discuss the role of PDIL2;3 in retaining proteins within the ER and specifying their localization to PB-I through disulfide bond formation. PMID:23299424

  8. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: Role for Hendra G protein trafficking and degradation

    SciTech Connect

    Whitman, Shannon D.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2007-07-05

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.

  9. Water promotes the sealing of nanoscale packing defects in folding proteins.

    PubMed

    Fernández, Ariel

    2014-05-21

    A net dipole moment is shown to arise from a non-Debye component of water polarization created by nanoscale packing defects on the protein surface. Accordingly, the protein electrostatic field exerts a torque on the induced dipole, locally impeding the nucleation of ice at the protein-water interface. We evaluate the solvent orientation steering (SOS) as the reversible work needed to align the induced dipoles with the Debye electrostatic field and computed the SOS for the variable interface of a folding protein. The minimization of the SOS is shown to drive protein folding as evidenced by the entrainment of the total free energy by the SOS energy along trajectories that approach a Debye limit state where no torque arises. This result suggests that the minimization of anomalous water polarization at the interface promotes the sealing of packing defects, thereby maintaining structural integrity and committing the protein chain to fold.

  10. Promoter methylation of yes-associated protein (YAP1) gene in polycystic ovary syndrome

    PubMed Central

    Jiang, Li-Le; Xie, Juan-Ke; Cui, Jin-Quan; Wei, Duo; Yin, Bao-Li; Zhang, Ya-Nan; Chen, Yuan-Hui; Han, Xiao; Wang, Qian; Zhang, Cui-Lian

    2017-01-01

    Abstract Background: DNA methylation modification has been proved to influence the phenotype of polycystic ovary syndrome (PCOS). Genome-wide association studies (GWAS) demonstrate that yes-associated protein (YAP1) genetic sites are associated with PCOS. The study aims to detect the methylation status of YAP1 promoter in ovary granulosa cells (GCs) of PCOS patients and explore novel therapeutic targets for PCOS. Methods: Randomized controlled trial was applied and a total of 72 women were included in the study, including 36 cases of PCOS patients and 36 cases of health controls. Ovary GCs were extracted from in vitro fertilization embryo transfer. Methylation status of YAP1 promoter was detected by bisulfite sequencing PCR (BSP). Protein and mRNA expression of YAP1 were measured by western blotting and real-time quantitate PCR. Results: Overall methylation level of YAP1 promoter region from PCOS group was significantly lower than that from control group. CpG sites analysis revealed that 12 sites (−443, −431, −403, −371, −331, −120, −49, −5, +1, +9, +15, +22) were significantly hypomethylated in women with PCOS (P < 0.05). A significant upregulation of YAP1 mRNA and protein expression levels was observed. Testosterone concentration could alleviate the methylation status and demonstrate obvious dose–dependent relation. Conclusion: Our research achievements manifest that hypomethylation of YAP1 promoter promotes the YAP1 expression, which plays a key role in the pathogenesis and accelerate PCOS. PMID:28079802

  11. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-07-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.

  12. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria.

    PubMed

    Zhou, Jie; Zhang, Haifeng; Meng, Hengkai; Zhu, Yan; Bao, Guanhui; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2014-03-28

    Cyanobacteria are oxygenic photosynthetic prokaryotes that play important roles in the global carbon cycle. Recently, engineered cyanobacteria capable of producing various small molecules from CO2 have been developed. However, cyanobacteria are seldom considered as factories for producing proteins, mainly because of the lack of efficient strong promoters. Here, we report the discovery and verification of a super-strong promoter P(cpc560), which contains two predicted promoters and 14 predicted transcription factor binding sites (TFBSs). Using P(cpc560), functional proteins were produced at a level of up to 15% of total soluble protein in the cyanobacterium Synechocystis sp. 6803, a level comparable to that produced in Escherichia coli. We demonstrated that the presence of multiple TFBSs in P(cpc560) is crucial for its promoter strength. Genetically transformable cyanobacteria neither have endotoxins nor form inclusion bodies; therefore, P(cpc560) opens the possibility to use cyanobacteria as alternative hosts for producing heterogeneous proteins from CO2 and inorganic nutrients.

  13. An OmpA-Like Protein from Acinetobacter spp. Stimulates Gastrin and Interleukin-8 Promoters

    PubMed Central

    Ofori-Darko, Ernest; Zavros, Yana; Rieder, Gabriele; Tarlé, Susan A.; Van Antwerp, Mary; Merchant, Juanita L.

    2000-01-01

    Bacterial overgrowth in the stomach may occur under conditions of diminished or absent acid secretion. Under these conditions, secretion of the hormone gastrin is elevated. Alternatively, bacterial factors may directly stimulate gastrin. Consistent with this hypothesis, we found that mice colonized for 2 months with a mixed bacterial culture of opportunistic pathogens showed an increase in serum gastrin. To examine regulation of gene expression by bacterial proteins, stable transformants of AGS cells expressing gastrin or interleukin-8 (IL-8) promoters were cocultured with live organisms. Both whole-cell sonicates and a heat-stable fraction were also coincubated with the cells. A level of 108 organisms per ml stimulated both the gastrin and IL-8 promoters. Heat-stable proteins prepared from these bacterial sonicates stimulated the promoter significantly more than the live organism or unheated sonicates. A 38-kDa heat-stable protein stimulating the gastrin and IL-8 promoters was cloned and found to be an OmpA-related protein. Immunoblotting using antibody to the OmpA-like protein identified an Acinetobacter sp. as the bacterial species that expressed this protein and colonized the mouse stomach. Moreover, reintubation of mice with a pure culture of the Acinetobacter sp. caused gastritis. We conclude that bacterial colonization of the stomach may increase serum gastrin levels in part through the ability of the bacteria to produce OmpA-like proteins that directly stimulate gastrin and IL-8 gene expression. These results implicate OmpA-secreting bacteria in the activation of gastrin gene expression and raise the possibility that a variety of organisms may contribute to the increase in serum gastrin and subsequent epithelial cell proliferation in the hypochlorhydric stomach. PMID:10816525

  14. Identification of a novel DNA-binding protein to osmotin promoter.

    PubMed

    Xu, P; Ling, J; Li, D; Hasegawa, P M; Bressan, R A

    1998-12-01

    One novel osmotin promoter, binding-protein (OPBP1) gene, was isolated from salt-adapted tobacco suspension cells using yeast one-hybrid system. The OPBP1 interacted specifically in vivo with FA, a DNA sequence from the 5 upstream region of osmotin gene, which was essential for osmotin responsiveness. The deduced amino acid sequence of OPBP1 contained a conserved motif of a new gene family, AP2 family. This protein did not contain the typical motif found in the most known DNA-binding proteins and transcription factors.

  15. G-Protein Signaling Protein-17 (RGS17) is Upregulated and Promotes Tumor Growth and Migration in Human Colorectal Carcinoma.

    PubMed

    Li, Ling; Luo, He-Sheng

    2017-03-23

    Colorectal carcinoma is one of the leading causes of cancer-related deaths and has a high tendency for metastasis, which makes it a priority to find novel methods to diagnose and treat colorectal carcinoma in the very early stage. Herein, we studied the role of regulators of G-protein signaling (RGS) family protein RGS17 in colorectal carcinoma growth and metastasis. We found that RGS17 was upregulated in both clinical colorectal carcinoma tissues and cultured colorectal carcinoma cells. Knockdown of RGS17 by specific siRNA decreased, whereas overexpression of RGS17 with expression plasmid increased cell proliferation rate in cultured cells. Consistently, a mouse model of colorectal carcinoma also showed that depletion of RGS17 significantly inhibited tumor growth in vivo. Moreover, transwell assay showed that RGS17 promoted colorectal carcinoma cell migration and invasion abilities. These data suggest that RGS17 is overexpressed in colorectal carcinoma and promotes cell proliferation, migration and invasion.

  16. Stimulation of basal transcription from the mouse mammary tumor virus promoter by Oct proteins.

    PubMed Central

    Kim, M H; Peterson, D O

    1995-01-01

    The steroid hormone-inducible promoter of mouse mammary tumor virus (MMTV) contains three overlapping sequences related to the consensus octamer motif ATGCAAAT. Basal promoter activity in the absence of hormone induction from a template in which all three octamer elements were mutated was decreased by two-to threefold in in vitro transcription assays. Oct-1 protein purified from HeLa cell nuclear extracts, as well as recombinant Oct-1 expressed in bacteria, recognized MMTV octamer-related sequences, as shown by DNase I footprinting. Furthermore, rabbit polyclonal antiserum directed against recombinant Oct-1 completely inhibited the formation of specific complexes between MMTV octamer-related sequences and proteins present in nuclear extracts of HeLa cells, indicating that Oct-1 is the major protein in HeLa nuclear extracts that recognizes octamer-related sequences in the MMTV promoter. In addition, depletion of Oct-1 from the nuclear extract by using Oct-1-specific antiserum or a sequence-specific DNA affinity resin decreased in vitro transcription from the wild-type MMTV promoter to a level identical to that obtained from a promoter in which all three octamer-related sequences were mutated. Addition of purified HeLa Oct-1 or recombinant Oct-1 to the depleted extract selectively increased transcription from the wild-type relative to the mutated promoter, demonstrating that Oct-1 transcription factor stimulates basal transcription from the MMTV promoter. A similar effect was observed when purified recombinant Oct-2 was added to the Oct-1-depleted extract, suggesting that Oct-2 may play an important role in MMTV transcription in B cells. PMID:7609037

  17. Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene.

    PubMed

    Masura, Subhi Siti; Parveez, Ghulam Kadir Ahmad; Ismail, Ismanizan

    2010-09-30

    The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco.

  18. Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter.

    PubMed

    Hirai, Tadayoshi; Kim, You-Wang; Kato, Kazuhisa; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2011-12-01

    The E8 promoter, a tomato fruit-ripening-specific promoter, and the CaMV 35S promoter, a constitutive promoter, were used to express the miraculin gene encoding the taste-modifying protein in tomato. The accumulation of miraculin protein and mRNA was compared among transgenic tomatoes expressing the miraculin gene driven by these promoters. Recombinant miraculin protein predominantly accumulated in transgenic tomato lines using the E8 promoter (E8-MIR) only at the red fruit stage. The accumulations were almost uniform among all fruit tissues. When the 35S promoter (35S-MIR) was used, miraculin accumulation in the exocarp was much higher than in other tissues, indicating that the miraculin accumulation pattern can be regulated by using different types of promoters. We also discuss the potential of the E8-MIR lines for practical use.

  19. Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana.

    PubMed

    Koia, Jonni; Moyle, Richard; Hendry, Caroline; Lim, Lionel; Botella, José Ramón

    2013-03-01

    The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5' untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.

  20. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    SciTech Connect

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank . E-mail: fsieg@neurenpharma.com

    2006-10-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology.

  1. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation.

    PubMed

    Wang, Adrienne M; Miyata, Yoshinari; Klinedinst, Susan; Peng, Hwei-Ming; Chua, Jason P; Komiyama, Tomoko; Li, Xiaokai; Morishima, Yoshihiro; Merry, Diane E; Pratt, William B; Osawa, Yoichi; Collins, Catherine A; Gestwicki, Jason E; Lieberman, Andrew P

    2013-02-01

    We sought new strategies to reduce amounts of the polyglutamine androgen receptor (polyQ AR) and achieve benefits in models of spinobulbar muscular atrophy, a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the heat shock protein 90 (Hsp90)- and Hsp70-based chaperone machinery, but mechanisms regulating the protein's turnover are incompletely understood. We demonstrate that overexpression of Hsp70 interacting protein (Hip), a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule that acts similarly to Hip by allosterically promoting Hsp70 binding to unfolded substrates. Like Hip, this synthetic co-chaperone enhances client protein ubiquitination and polyQ AR degradation. Both genetic and pharmacologic approaches targeting Hsp70 alleviate toxicity in a Drosophila model of spinobulbar muscular atrophy. These findings highlight the therapeutic potential of allosteric regulators of Hsp70 and provide new insights into the role of the chaperone machinery in protein quality control.

  2. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    PubMed

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  3. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction

    PubMed Central

    Wakeman, Catherine A.; Moore, Jessica L.; Noto, Michael J.; Zhang, Yaofang; Singleton, Marc D.; Prentice, Boone M.; Gilston, Benjamin A.; Doster, Ryan S.; Gaddy, Jennifer A.; Chazin, Walter J.; Caprioli, Richard M.; Skaar, Eric P.

    2016-01-01

    Microorganisms form biofilms containing differentiated cell populations. To determine factors driving differentiation, we herein visualize protein and metal distributions within Pseudomonas aeruginosa biofilms using imaging mass spectrometry. These in vitro experiments reveal correlations between differential protein distribution and metal abundance. Notably, zinc- and manganese-depleted portions of the biofilm repress the production of anti-staphylococcal molecules. Exposure to calprotectin (a host protein known to sequester metal ions at infectious foci) recapitulates responses occurring within metal-deplete portions of the biofilm and promotes interaction between P. aeruginosa and Staphylococcus aureus. Consistent with these results, the presence of calprotectin promotes co-colonization of the murine lung, and polymicrobial communities are found to co-exist in calprotectin-enriched airspaces of a cystic fibrosis lung explant. These findings, which demonstrate that metal fluctuations are a driving force of microbial community structure, have clinical implications because of the frequent occurrence of P. aeruginosa and S. aureus co-infections. PMID:27301800

  4. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis.

    PubMed

    Lee, K Michael; DaSilva, Nancy A

    2005-04-30

    The Saccharomyces cerevisiae ADH2 promoter (P(ADH2)) is repressed several hundred-fold in the presence of glucose; transcription is initiated once the glucose in the medium is exhausted. The promoter can thus be utilized for effective regulation of recombinant gene expression in S. cerevisiae without the addition of an inducer. To evaluate this promoter in the absence of plasmid copy number and stability variations, the P(ADH2)-lacZ cassette was integrated into the yeast chromosomes. The effects of medium composition, glucose concentration and cultivation time on promoter derepression and expression level were investigated. Maximum protein activity was obtained after 48 h of growth in complex YPD medium containing 1% glucose. The widely used S. cerevisiae GAL1 and CUP1 promoters both require the addition of an inducer [galactose and copper(II) ion, respectively] before regulated genes will be expressed. The strengths of these three different promoters were compared for cells containing one copy of an integrated lacZ gene under their control. The ADH2 promoter was superior for all induction strategies investigated.

  5. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise–Induced Muscle Protein Anabolism123

    PubMed Central

    Rasmussen, Blake B

    2016-01-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose–dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor

  6. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?

    PubMed

    Del Campo, Mark; Tijerina, Pilar; Bhaskaran, Hari; Mohr, Sabine; Yang, Quansheng; Jankowsky, Eckhard; Russell, Rick; Lambowitz, Alan M

    2007-10-12

    The DEAD-box protein Mss116p promotes group II intron splicing in vivo and in vitro. Here we explore two hypotheses for how Mss116p promotes group II intron splicing: by using its RNA unwinding activity to act as an RNA chaperone or by stabilizing RNA folding intermediates. We show that an Mss116p mutant in helicase motif III (SAT/AAA), which was reported to stimulate splicing without unwinding RNA, retains ATP-dependent unwinding activity and promotes unfolding of a structured RNA. Its unwinding activity increases sharply with decreasing duplex length and correlates with group II intron splicing activity in quantitative assays. Additionally, we show that Mss116p can promote ATP-independent RNA unwinding, presumably via single-strand capture, also potentially contributing to DEAD-box protein RNA chaperone activity. Our findings favor the hypothesis that DEAD-box proteins function in group II intron splicing as in other processes by using their unwinding activity to act as RNA chaperones.

  7. Cdc37 Promotes the Stability of Protein Kinases Cdc28 and Cak1

    PubMed Central

    Farrell, Alison; Morgan, David O.

    2000-01-01

    In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding. PMID:10629030

  8. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy

    PubMed Central

    Garg, Ankit; O’Rourke, Jason; Long, Chengzu; Doering, Jonathan; Ravenscroft, Gianina; Bezprozvannaya, Svetlana; Nelson, Benjamin R.; Beetz, Nadine; Li, Lin; Chen, She; Laing, Nigel G.; Grange, Robert W.; Bassel-Duby, Rhonda; Olson, Eric N.

    2014-01-01

    Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40–/– mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients. PMID:24960163

  9. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae

    PubMed Central

    Fermi, Beatrice; Bosio, Maria Cristina; Dieci, Giorgio

    2016-01-01

    In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control. PMID:27016735

  10. Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells.

    PubMed Central

    Deb, S; Jackson, C T; Subler, M A; Martin, D W

    1992-01-01

    Wild-type p53 has recently been shown to repress transcription from several cellular and viral promoters. Since p53 mutations are the most frequently reported genetic defects in human cancers, it becomes important to study the effects of mutations of p53 on promoter functions. We, therefore, have studied the effects of wild-type and mutant human p53 on the human proliferating-cell nuclear antigen (PCNA) promoter and on several viral promoters, including the herpes simplex virus type 1 UL9 promoter, the human cytomegalovirus major immediate-early promoter-enhancer, and the long terminal repeat promoters of Rous sarcoma virus and human T-cell lymphotropic virus type I. HeLa cells were cotransfected with a wild-type or mutant p53 expression vector and a plasmid containing a chloramphenicol acetyltransferase reporter gene under viral (or cellular) promoter control. As expected, expression of the wild-type p53 inhibited promoter function. Expression of a p53 with a mutation at any one of the four amino acid positions 175, 248, 273, or 281, however, correlated with a significant increase of the PCNA promoter activity (2- to 11-fold). The viral promoters were also activated, although to a somewhat lesser extent. We also showed that activation by a mutant p53 requires a minimal promoter containing a lone TATA box. A more significant increase (25-fold) in activation occurs when the promoter contains a binding site for the activating transcription factor or cyclic AMP response element-binding protein. Using Saos-2 cells that do not express p53, we showed that activation by a mutant p53 was a direct enhancement. The mutant forms of p53 used in this study are found in various cancer cells. The activation of PCNA by mutant p53s may indicate a way to increase cell proliferation by the mutant p53s. Thus, our data indicate a possible functional role for the mutants of p53 found in cancer cells in activating several important loci, including PCNA. Images PMID:1356162

  11. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  12. PIP3-binding proteins promote age-dependent protein aggregation and limit survival in C. elegans.

    PubMed

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Johnson, Jay; Alla, Ramani; Mackintosh, Samuel G; Shmookler Reis, Robert J

    2016-08-02

    Class-I phosphatidylinositol 3-kinase (PI3KI) converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 comprises two fatty-acid chains that embed in lipid-bilayer membranes, joined by glycerol to inositol triphosphate. Proteins with domains that specifically bind that head-group (e.g. pleckstrin-homology [PH] domains) are thus tethered to the inner plasma-membrane surface where they have an enhanced likelihood of interaction with other PIP3-bound proteins, in particular other components of their signaling pathways. Null alleles of the C. elegans age-1 gene, encoding the catalytic subunit of PI3KI, lack any detectable class-I PI3K activity and so cannot form PIP3. These mutant worms survive almost 10-fold longer than the longest-lived normal control, and are highly resistant to a variety of stresses including oxidative and electrophilic challenges. Traits associated with age-1 mutation are widely believed to be mediated through AKT-1, which requires PIP3 for both tethering and activation. Active AKT complex phosphorylates and thereby inactivates the DAF-16/FOXO transcription factor. However, extensive evidence indicates that pleiotropic effects of age-1-null mutations, including extreme longevity, cannot be explained by insulin like-receptor/AKT/FOXO signaling alone, suggesting involvement of other PIP3-binding proteins. We used ligand-affinity capture to identify membrane-bound proteins downstream of PI3KI that preferentially bind PIP3. Computer modeling supports a subset of candidate proteins predicted to directly bind PIP3 in preference to PIP2, and functional testing by RNAi knockdown confirmed candidates that partially mediate the stress-survival, aggregation-reducing and longevity benefits of PI3KI disruption. PIP3-specific candidate sets are highly enriched for proteins previously reported to affect translation, stress responses, lifespan, proteostasis, and lipid transport.

  13. Opioid peptides derived from food proteins suppress aggregation and promote reactivation of partly unfolded stressed proteins.

    PubMed

    Artemova, N V; Bumagina, Z M; Kasakov, A S; Shubin, V V; Gurvits, B Ya

    2010-02-01

    A new view of the opioid peptides is presented. The potential of small peptides derived from precursor food proteins, to bind to partly unfolded stressed proteins to prevent their irreversible aggregation and inactivation has been demonstrated in various in vitro test systems: dithiothreitol-induced aggregation of alpha-lactalbumin (LA), heat-induced aggregation of alcohol dehydrogenase (ADH), and aggregation and inactivation of bovine erythrocyte carbonic anhydrase (CA) in the process of its refolding after removal of stress conditions. Using dynamic light scattering (DLS), turbidimetry, fluorescence, and circular dichroism measurements protective effects of the synthetic opioid peptides: exorphin C from wheat gluten (Tyr-Pro-Ile-Ser-Leu), rubiscolin-5 from spinach ribulose-bisphosphate-carboxylase/oxygenase (Rubisco) (Tyr-Pro-Leu-Asp-Leu), and hemorphin-6 from bovine hemoglobin (Tyr-Pro-Trp-Thr-Gln-Arg) have been revealed. We have demonstrated the concentration-dependent suppression of light scattering intensity of aggregates of LA and ADH in the presence of the peptides, the population of nanoparticles with higher hydrodynamic radii being shifted to the lower ones, accompanied by an increase in the lag period of aggregation. The presence of the peptides in the refolding solution was shown to assist reactivation of CA and enhance the yield of the CA soluble protein. The results suggest that bioactive food protein fragments may be regarded as exogenous supplements to the endogenous defense mechanisms of the human organism under stress conditions.

  14. F-box protein 7 mutations promote protein aggregation in mitochondria and inhibit mitophagy.

    PubMed

    Zhou, Zhi Dong; Xie, Shao Ping; Sathiyamoorthy, Sushmitha; Saw, Wuan Ting; Sing, Tan Ye; Ng, Shin Hui; Chua, Heidi Pek Hup; Tang, Alyssa Mei Yan; Shaffra, Fathima; Li, Zeng; Wang, Hongyan; Ho, Patrick Ghim Hoe; Lai, Mitchell Kim Peng; Angeles, Dario C; Lim, Tit Meng; Tan, Eng-King

    2015-11-15

    The mutations of F-box protein 7 (FBXO7) gene (T22M, R378G and R498X) are associated with a severe form of autosomal recessive juvenile-onset Parkinson's disease (PD) (PARK 15). Here we demonstrated that wild-type (WT) FBXO7 is a stress response protein and it can play both cytoprotective and neurotoxic roles. The WT FBXO7 protein is vital to cell mitophagy and can facilitate mitophagy to protect cells, whereas mutant FBXO7 inhibits mitophagy. Upon stress, the endogenous WT FBXO7 gets up-regulated, concentrates into mitochondria and forms FBXO7 aggregates in mitochondria. However, FBXO7 mutations aggravate deleterious FBXO7 aggregation in mitochondria. The FBXO7 aggregation and toxicity can be alleviated by Proline, glutathione (GSH) and coenzyme Q10, whereas deleterious FBXO7 aggregation in mitochondria can be aggravated by prohibitin 1 (PHB1), a mitochondrial protease inhibitor. The overexpression of WT FBXO7 could lead to FBXO7 protein aggregation and dopamine neuron degeneration in transgenic Drosophila heads. The elevated FBXO7 expression and aggregation were identified in human fibroblast cells from PD patients. FBXO7 can also form aggregates in brains of PD and Alzheimer's disease. Our study provides novel pathophysiologic insights and suggests that FBXO7 may be a potential therapeutic target in FBXO7-linked neuron degeneration in PD.

  15. Application of RGS box proteins to evaluate G-protein selectivity in receptor-promoted signaling.

    PubMed

    Hains, Melinda D; Siderovski, David P; Harden, T Kendall

    2004-01-01

    Regulator of G-protein signaling (RGS) domains bind directly to GTP-bound Galpha subunits and accelerate their intrinsic GTPase activity by up to several thousandfold. The selectivity of RGS proteins for individual Galpha subunits has been illustrated. Thus, the expression of RGS proteins can be used to inhibit signaling pathways activated by specific G protein-coupled receptors (GPCRs). This article describes the use of specific RGS domain constructs to discriminate among G(i/o), Gq-and G(12/13)-mediated activation of phospholipase C (PLC) isozymes in COS-7 cells. Overexpression of the N terminus of GRK2 (amino acids 45-178) or p115 RhoGEF (amino acids 1-240) elicited selective inhibition of Galphaq- or Galpha(12/13)-mediated signaling to PLC activation, respectively. In contrast, RGS2 overexpression was found to inhibit PLC activation by both G(i/o)- and Gq-coupled GPCRs. RGS4 exhibited dramatic receptor selectivity in its inhibitory actions; of the G(i/o)- and Gq-coupled GPCRs tested (LPA1, LPA2, P2Y1, S1P3), only the Gq-coupled lysophosphatidic acid-activated LPA2 receptor was found to be inhibited by RGS4 overexpression.

  16. Promoting Tag Removal of a MBP-Fused Integral Membrane Protein by TEV Protease.

    PubMed

    Chen, Yanke; Li, Qichang; Yang, Jun; Xie, Hao

    2017-03-01

    Tag removal is a prerequisite issue for structural and functional analysis of affinity-purified membrane proteins. The present study took a MBP-fused membrane protein, MrpF, as a model to investigate the tag removal by TEV protease. Influences of the linking sequence between TEV cleavage site and MrpF on protein expression and predicted secondary structure were investigated. The steric accessibility of TEV protease to cleavage site of MBP-fused MrpF was explored. It was found that reducing the size of hydrophilic group of detergents and/or extending the linking sequence between cleavage site and target protein can significantly improve the accessibility of the cleavage site and promote tag removal by TEV protease.

  17. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  18. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    PubMed

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  19. TPA-inducible proteins may account for sensitivity to promotion of transformation

    SciTech Connect

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-05-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P/sup +/) or resistant (P/sup -/) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P/sup +/ and P/sup -/ cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P/sup +/ and P/sup -/ cells from 1 to 5 hr after treatment. Pulse labelling of P/sup +/ and P/sup -/ cells with /sup 35/S-methionine revealed a TPA dependent P/sup +/ specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P/sup +/ cells differ from P/sup -/ cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated.

  20. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter.

    PubMed

    Tsao, Hsiao-Wei; Tai, Tzong-Shyuan; Tseng, William; Chang, Hui-Hsin; Grenningloh, Roland; Miaw, Shi-Chuen; Ho, I-Cheng

    2013-09-24

    E26 transformation-specific sequence 1 (Ets-1), the prototype of the ETS family of transcription factors, is critical for the expression of IL-2 by murine Th cells; however, its mechanism of action is still unclear. Here we show that Ets-1 is also essential for optimal production of IL-2 by primary human Th cells. Although Ets-1 negatively regulates the expression of Blimp1, a known suppressor of IL-2 expression, ablation of B lymphocyte-induced maturation protein 1 (Blimp1) does not rescue the expression of IL-2 by Ets-1-deficient Th cells. Instead, Ets-1 physically and functionally interacts with the nuclear factor of activated T-cells (NFAT) and is required for the recruitment of NFAT to the IL-2 promoter. In addition, Ets-1 is located in both the nucleus and cytoplasm of resting Th cells. Nuclear Ets-1 quickly exits the nucleus in response to calcium-dependent signals and competes with NFAT proteins for binding to protein components of noncoding RNA repressor of NFAT complex (NRON), which serves as a cytoplasmic trap for phosphorylated NFAT proteins. This nuclear exit of Ets-1 precedes rapid nuclear entry of NFAT and Ets-1 deficiency results in impaired nuclear entry, but not dephosphorylation, of NFAT proteins. Thus, Ets-1 promotes the expression of IL-2 by modulating the activity of NFAT.

  1. The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans.

    PubMed

    Liu, Oliver W; Shen, Kang

    2011-12-04

    Dendrites often adopt complex branched structures. The development and organization of these arbors fundamentally determine the potential input and connectivity of a given neuron. The cell-surface receptors that control dendritic branching remain poorly understood. We found that, in Caenorhabditis elegans, a previously uncharacterized transmembrane protein containing extracellular leucine-rich repeat (LRR) domains, which we named DMA-1 (dendrite-morphogenesis-abnormal), promotes dendrite branching and growth. Sustained expression of dma-1 was found only in the elaborately branched sensory neurons PVD and FLP. Genetic analysis revealed that the loss of dma-1 resulted in much reduced dendritic arbors, whereas overexpression of dma-1 resulted in excessive branching. Forced expression of dma-1 in neurons with simple dendrites was sufficient to promote ectopic branching. Worms lacking dma-1 were defective in sensing harsh touch. DMA-1 is the first transmembrane LRR protein to be implicated in dendritic branching and expands the breadth of roles of LRR receptors in nervous system development.

  2. Relating Promoter Sequences to the Proteins that Bind to Them: A Comparison Study.

    NASA Astrophysics Data System (ADS)

    Glass, Kimberly

    2007-03-01

    Chromatin Immunoprecipitation (ChIP-on-ChIP) microarray data reveals that the proteins H3K9dimethyl and RNA-Polymerase II are exclusive regarding their binding to the promoter region of genes. When comparing the base pair sequences of the promoters that bind to Pol2 versus H3K9, striking differences appear. The mononucleotides have fundamentally different behaviors in each group. In addition, motifs that cluster before the transcriptional start site also generally have a strong enrichment in one group compared to the other. Using this knowledge a model can be developed that allows one to calculate a probability that a promoter will bind to either H3K9 or Pol2 based on its base pair sequence.

  3. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis.

    PubMed

    Luan, Hexiang; Shine, M B; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-09-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.

  4. Human leucine zipper protein promotes hepatic steatosis via induction of apolipoprotein A-IV.

    PubMed

    Kang, Minsoo; Kim, Jeonghan; An, Hyoung-Tae; Ko, Jesang

    2017-02-28

    The molecular mechanism of stress-induced hepatic steatosis is not well known. Human leucine zipper protein (LZIP) regulates the expression of genes involved in inflammation, cell migration, and stress response. The aim of this study was to determine the regulatory role of LZIP in stress-induced hepatic steatosis. We used a microarray analysis to identify LZIP-induced genes involved in hepatic lipid metabolism. LZIP increased the expression of apolipoprotein A-IV (APOA4) mRNA. In the presence of stress inducer, APOA4 promoter analysis was performed and LZIP-induced lipid accumulation was monitored in mouse primary cells and human tissues. Under Golgi stress conditions, LZIP underwent proteolytic cleavage and was phosphorylated by AKT to protect against proteasome degradation. The stabilized N-terminal LZIP was translocated to the nucleus, where it directly bound to the APOA4 promoter, leading to APOA4 induction. LZIP-induced APOA4 expression resulted in increased absorption of surrounding free fatty acids. LZIP also promoted hepatic steatosis in mouse liver. Both LZIP and APOA4 were highly expressed in human steatosis samples. Our findings indicate that LZIP is a novel modulator of APOA4 expression and hepatic lipid metabolism. LZIP might be a therapeutic target for developing treatment strategies for hepatic steatosis and related metabolic diseases.-Kang, M., Kim, J., An, H.-T., Ko, J. Human leucine zipper protein promotes hepatic steatosis via induction of apolipoprotein A-IV.

  5. Activator protein 1 promotes the transcriptional activation of IRAK-M.

    PubMed

    Jin, Peipei; Bo, Lulong; Liu, Yongjian; Lu, Wenbin; Lin, Shengwei; Bian, Jinjun; Deng, Xiaoming

    2016-10-01

    Interleukin-1 receptor-associated kinase M (IRAK-M) is a well-known negative regulator for Toll-like receptor signaling, which can regulate immune homeostasis and tolerance in a number of pathological settings. However, the mechanism for IRAK-M regulation at transcriptional level remains largely unknown. In this study, a 1.4kb upstream sequence starting from the major IRAK-M transcriptional start site was cloned into luciferase reporter vector pGL3-basic to construct the full-length IRAK-M promoter. Luciferase reporter plasmids harboring the full-length and the deletion mutants of IRAK-M were transfected into 293T and A549 cells, and their relative luciferase activity was measured. The results demonstrated that activator protein 1(AP-1) cis-element plays a crucial role in IRAK-M constitutive gene transcription. Silencing of c-Fos and/or c-Jun expression suppressed the IRAK-M promoter activity as well as its mRNA and protein expressions. As a specific inhibitor for AP-1 activation, SP600125 also significantly suppressed the basal transcriptional activity of IRAK-M, the binding activity of c-Fos/c-Jun with IRAK-M promoter, and IRAK-M protein expression. Taken together, the result of this study highlights the importance of AP-1 in IRAK-M transcription, which offers more information on the role of IRAK-M in infectious and non-infectious diseases.

  6. A-kinase anchoring protein-Lbc promotes pro-fibrotic signaling in cardiac fibroblasts.

    PubMed

    Cavin, Sabrina; Maric, Darko; Diviani, Dario

    2014-02-01

    In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.

  7. Myb and Ets proteins cooperate in transcriptional activation of the mim-1 promoter.

    PubMed Central

    Dudek, H; Tantravahi, R V; Rao, V N; Reddy, E S; Reddy, E P

    1992-01-01

    In the generation of the acutely transforming avian retrovirus E26, both myb and ets genes have been transduced, leading to the production of a Gag-Myb-Ets fusion protein. This co-occurrence of v-myb and v-ets oncogenes suggests that the two might have a functional relationship. To look for such a relationship, we tested the transcriptional activation activity of Myb alone or with coexpressed Ets-1 or Ets-2. Using the promoter of the v-Myb-inducible mim-1 gene as a target, we found that full-length c-Myb gene products were poor activators of transcription, while an oncogenic (truncated) form of this protein was a strong trans-activator. However, coexpression of Ets-2 with full-length or truncated forms of Myb greatly increased trans-activation. Coexpression of Ets-1, Fos, Jun, or Myc with Myb did not increase trans-activation of the mim-1 promoter. The ability of Myb and Ets-2 to transactivate was cooperative, since Ets-2 alone gave little or no activation. Bacterially synthesized Ets-2 protein was found to bind specifically to the mim-1 promoter, suggesting that it may be a target for both Myb and Ets proteins. Thus, Myb and Ets proteins can cooperate in transcriptional activation, and their co-occurrence in the E26 virus may reflect a functional relationship between these two oncoproteins. Truncated forms of Myb may have a reduced need for cooperating factors such as Ets-2, and this might constitute an important mechanism associated with oncogenic activation. Images PMID:1741383

  8. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin.

    PubMed

    Weng, Wenhao; Yin, Jiayi; Zhang, Yue; Qiu, Jin; Wang, Xinghe

    2014-03-01

    Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. Upregulation of metastasis-associated protein 1 (MTA1) has been reported to contribute to the development of esophageal squamous cell carcinoma. Therefore, the objective of our study was to identify the molecular mechanisms of MTA1 underlying the invasion and metastasis of ESCC. We overexpressed MTA1 in ESCC cells to examine the role of MTA1 in the regulation of the cell invasion. In addition, using luciferase reporter assay and electrophoretic mobility shift assays, we evaluated the binding of MTA1 to the promoter of E-cadherin. We found that MTA1 overexpression promotes invasiveness of the human esophageal carcinoma cell line EC-9706. This effect was accompanied by downregulation of the epithelial cell marker E-cadherin and upregulation of vimentin and MMP-9 luciferase reporter assays showed that MTA1 inhibited the promoter activity of E-cadherin and that this was dependent on Snail, Slug and HDAC1. We also found that Snail and Slug bound the E-boxes in the promoter of E-cadherin and recruited MTA1 and HDAC1 to suppress E-cadherin expression, as confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays. MTA1 promotes tumor invasion by downregulation of E-cadherin. These results demonstrate a novel role for MTA1 in the regulation of esophageal squamous cell carcinoma invasion and provide insight into the mechanisms involved in this process.

  9. The Lipid Droplet Protein Hypoxia-inducible Gene 2 Promotes Hepatic Triglyceride Deposition by Inhibiting Lipolysis*

    PubMed Central

    DiStefano, Marina T.; Danai, Laura V.; Roth Flach, Rachel J.; Chawla, Anil; Pedersen, David J.; Guilherme, Adilson; Czech, Michael P.

    2015-01-01

    The liver is a major site of glucose, fatty acid, and triglyceride (TG) synthesis and serves as a major regulator of whole body nutrient homeostasis. Chronic exposure of humans or rodents to high-calorie diets promotes non-alcoholic fatty liver disease, characterized by neutral lipid accumulation in lipid droplets (LD) of hepatocytes. Here we show that the LD protein hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid accumulation in hepatocytes by attenuating TG hydrolysis. Hig2 expression increased in livers of mice on a high-fat diet and during fasting, two states associated with enhanced hepatic TG content. Hig2 expressed in primary mouse hepatocytes localized to LDs and promoted LD TG deposition in the presence of oleate. Conversely, tamoxifen-inducible Hig2 deletion reduced both TG content and LD size in primary hepatocytes from mice harboring floxed alleles of Hig2 and a cre/ERT2 transgene controlled by the ubiquitin C promoter. Hepatic TG was also decreased by liver-specific deletion of Hig2 in mice with floxed Hig2 expressing cre controlled by the albumin promoter. Importantly, we demonstrate that Hig2-deficient hepatocytes exhibit increased TG lipolysis, TG turnover, and fatty acid oxidation as compared with controls. Interestingly, mice with liver-specific Hig2 deletion also display improved glucose tolerance. Taken together, these data indicate that Hig2 plays a major role in promoting lipid sequestration within LDs in mouse hepatocytes through a mechanism that impairs TG degradation. PMID:25922078

  10. The Lipid Droplet Protein Hypoxia-inducible Gene 2 Promotes Hepatic Triglyceride Deposition by Inhibiting Lipolysis.

    PubMed

    DiStefano, Marina T; Danai, Laura V; Roth Flach, Rachel J; Chawla, Anil; Pedersen, David J; Guilherme, Adilson; Czech, Michael P

    2015-06-12

    The liver is a major site of glucose, fatty acid, and triglyceride (TG) synthesis and serves as a major regulator of whole body nutrient homeostasis. Chronic exposure of humans or rodents to high-calorie diets promotes non-alcoholic fatty liver disease, characterized by neutral lipid accumulation in lipid droplets (LD) of hepatocytes. Here we show that the LD protein hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid accumulation in hepatocytes by attenuating TG hydrolysis. Hig2 expression increased in livers of mice on a high-fat diet and during fasting, two states associated with enhanced hepatic TG content. Hig2 expressed in primary mouse hepatocytes localized to LDs and promoted LD TG deposition in the presence of oleate. Conversely, tamoxifen-inducible Hig2 deletion reduced both TG content and LD size in primary hepatocytes from mice harboring floxed alleles of Hig2 and a cre/ERT2 transgene controlled by the ubiquitin C promoter. Hepatic TG was also decreased by liver-specific deletion of Hig2 in mice with floxed Hig2 expressing cre controlled by the albumin promoter. Importantly, we demonstrate that Hig2-deficient hepatocytes exhibit increased TG lipolysis, TG turnover, and fatty acid oxidation as compared with controls. Interestingly, mice with liver-specific Hig2 deletion also display improved glucose tolerance. Taken together, these data indicate that Hig2 plays a major role in promoting lipid sequestration within LDs in mouse hepatocytes through a mechanism that impairs TG degradation.

  11. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters

    PubMed Central

    2012-01-01

    Backgrounds The fungus Trichoderma reesei is an important workhorse for expression of homologous or heterologous genes, and the inducible cbh1 promoter is generally used. However, constitutive expression is more preferable in some cases than inducible expression that leads to production of unwanted cellulase components. In this work, constitutive promoters of T. reesei were screened and successfully used for high level homologous expression of xylanase II. Results The transcriptional profiles of 13 key genes that participate in glucose metabolism in T. reesei were analyzed by quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR). The results indicated that the mRNA levels of pdc (encoding pyruvate decarboxylase) and eno (encoding enolase) genes were much higher than other genes under high glucose conditions. Recombinant T. reesei strains that homologously expressed xylanase II were constructed by using the promoters of the pdc and eno genes, and they respectively produced 9266 IU/ml and 8866 IU/ml of xylanase activities in the cultivation supernatant in a medium with high glucose concentration. The productivities of xylanase II were 1.61 g/L (with the pdc promoter) and 1.52 g/L (with the eno promoter), approximately accounted for 83% and 82% of the total protein secreted by T. reesei, respectively. Conclusions This work demonstrates the screening of constitutive promoters by using RT-qPCR in T. reesei, and has obtained the highest expression of recombinant xylanase II to date by using these promoters. PMID:22709462

  12. Promoter Recognition by Extracytoplasmic Function σ Factors: Analyzing DNA and Protein Interaction Motifs

    PubMed Central

    Guzina, Jelena

    2016-01-01

    ABSTRACT Extracytoplasmic function (ECF) σ factors are the largest and the most diverse group of alternative σ factors, but their mechanisms of transcription are poorly studied. This subfamily is considered to exhibit a rigid promoter structure and an absence of mixing and matching; both −35 and −10 elements are considered necessary for initiating transcription. This paradigm, however, is based on very limited data, which bias the analysis of diverse ECF σ subgroups. Here we investigate DNA and protein recognition motifs involved in ECF σ factor transcription by a computational analysis of canonical ECF subfamily members, much less studied ECF σ subgroups, and the group outliers, obtained from recently sequenced bacteriophages. The analysis identifies an extended −10 element in promoters for phage ECF σ factors; a comparison with bacterial σ factors points to a putative 6-amino-acid motif just C-terminal of domain σ2, which is responsible for the interaction with the identified extension of the −10 element. Interestingly, a similar protein motif is found C-terminal of domain σ2 in canonical ECF σ factors, at a position where it is expected to interact with a conserved motif further upstream of the −10 element. Moreover, the phiEco32 ECF σ factor lacks a recognizable −35 element and σ4 domain, which we identify in a homologous phage, 7-11, indicating that the extended −10 element can compensate for the lack of −35 element interactions. Overall, the results reveal greater flexibility in promoter recognition by ECF σ factors than previously recognized and raise the possibility that mixing and matching also apply to this group, a notion that remains to be biochemically tested. IMPORTANCE ECF σ factors are the most numerous group of alternative σ factors but have been little studied. Their promoter recognition mechanisms are obscured by the large diversity within the ECF σ factor group and the limited similarity with the well

  13. cAMP and cAMP-dependent protein kinase regulate the human heat shock protein 70 gene promoter activity.

    PubMed

    Choi, H S; Li, B; Lin, Z; Huang, E; Liu, A Y

    1991-06-25

    The theme of this study is an evaluation of the involvement of cAMP and cAMP-dependent protein kinase (PKA) in the regulation of the human heat shock protein (hsp) 70 gene promoter. Expression of a highly specific protein inhibitor of PKA (pRSVPKI) inhibited the basal as well as heat- and cadmium-induced expression of the cotransfected pHBCAT, a human hsp 70 promoter-driven reporter gene; this inhibition was dependent on the amount of pRSVPKI used. The effect of an expression vector of the RI regulatory subunit of PKA, pMTREV, was similar to that of pRSVPKI; pMTREV inhibited both the basal as well as the heat-induced expression of pHBCAT. The specificity of effects of these expression vectors was demonstrated by the lack of effect of a mutant PKI gene and by the unaffected expression of a reference gene (pRSV beta gal) under these conditions. Analysis of the effects of dibutyryl cAMP (1 mM), forskolin (10 microM), and 8-Br-cAMP (1 mM) on the transient expression of pHBCAT showed that these cAMP-elevating agents stimulated the hsp 70 promoter activity, whereas cAMP (1 mM) was without effect. Chloramphenicol acetyltransferase gene constructs with truncated or mutated hsp 70 promoter were used to define the cis-acting DNA element(s) that confer this cAMP stimulation; the heat induced (42 degrees C) expression was used as a control. Mutation of the adenovirus transcription factor element (pLSN-40/-26) greatly reduced the basal level of expression; forskolin had little or no effect on this adenovirus transcription factor-minus promoter, although the promoter activity was very heat inducible. The absence of a functional heat shock consensus element (HSE) in the construct pLSPNWT rendered the promoter heat insensitive; this construct was forskolin responsive although the magnitude of this stimulation was reduced when compared with that of a control construct with HSE. These results were corroborated by studies using consensus sequence of ATF (ATFE) and HSE as competitors

  14. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    PubMed Central

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  15. Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis.

    PubMed

    Leclercq, Sophie; Derouaux, Adeline; Olatunji, Samir; Fraipont, Claudine; Egan, Alexander J F; Vollmer, Waldemar; Breukink, Eefjan; Terrak, Mohammed

    2017-02-24

    Bacteria utilize specialized multi-protein machineries to synthesize the essential peptidoglycan (PG) cell wall during growth and division. The divisome controls septal PG synthesis and separation of daughter cells. In E. coli, the lipid II transporter candidate FtsW is thought to work in concert with the PG synthases penicillin-binding proteins PBP3 and PBP1b. Yet, the exact molecular mechanisms of their function in complexes are largely unknown. We show that FtsW interacts with PBP1b and lipid II and that PBP1b, FtsW and PBP3 co-purify suggesting that they form a trimeric complex. We also show that the large loop between transmembrane helices 7 and 8 of FtsW is important for the interaction with PBP3. Moreover, we found that FtsW, but not the other flippase candidate MurJ, impairs lipid II polymerization and peptide cross-linking activities of PBP1b, and that PBP3 relieves these inhibitory effects. All together the results suggest that FtsW interacts with lipid II preventing its polymerization by PBP1b unless PBP3 is also present, indicating that PBP3 facilitates lipid II release and/or its transfer to PBP1b after transport across the cytoplasmic membrane. This tight regulatory mechanism is consistent with the cell's need to ensure appropriate use of the limited pool of lipid II.

  16. Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis

    PubMed Central

    Leclercq, Sophie; Derouaux, Adeline; Olatunji, Samir; Fraipont, Claudine; Egan, Alexander J. F.; Vollmer, Waldemar; Breukink, Eefjan; Terrak, Mohammed

    2017-01-01

    Bacteria utilize specialized multi-protein machineries to synthesize the essential peptidoglycan (PG) cell wall during growth and division. The divisome controls septal PG synthesis and separation of daughter cells. In E. coli, the lipid II transporter candidate FtsW is thought to work in concert with the PG synthases penicillin-binding proteins PBP3 and PBP1b. Yet, the exact molecular mechanisms of their function in complexes are largely unknown. We show that FtsW interacts with PBP1b and lipid II and that PBP1b, FtsW and PBP3 co-purify suggesting that they form a trimeric complex. We also show that the large loop between transmembrane helices 7 and 8 of FtsW is important for the interaction with PBP3. Moreover, we found that FtsW, but not the other flippase candidate MurJ, impairs lipid II polymerization and peptide cross-linking activities of PBP1b, and that PBP3 relieves these inhibitory effects. All together the results suggest that FtsW interacts with lipid II preventing its polymerization by PBP1b unless PBP3 is also present, indicating that PBP3 facilitates lipid II release and/or its transfer to PBP1b after transport across the cytoplasmic membrane. This tight regulatory mechanism is consistent with the cell’s need to ensure appropriate use of the limited pool of lipid II. PMID:28233869

  17. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    PubMed Central

    Maida, Adriano; Zota, Annika; Sjøberg, Kim A.; Sijmonsma, Tjeerd P.; Pfenninger, Anja; Christensen, Marie M.; Gantert, Thomas; Fuhrmeister, Jessica; Rothermel, Ulrike; Schmoll, Dieter; Heikenwälder, Mathias; Iovanna, Juan L.; Stemmer, Kerstin; Herzig, Stephan; Rose, Adam J.

    2016-01-01

    Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response–driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency–induced liver NUPR1/FGF21 axis. PMID:27548521

  18. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation.

    PubMed

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-04-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kappaB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chk1 and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  19. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  20. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution.

    PubMed

    Maida, Adriano; Zota, Annika; Sjøberg, Kim A; Schumacher, Jonas; Sijmonsma, Tjeerd P; Pfenninger, Anja; Christensen, Marie M; Gantert, Thomas; Fuhrmeister, Jessica; Rothermel, Ulrike; Schmoll, Dieter; Heikenwälder, Mathias; Iovanna, Juan L; Stemmer, Kerstin; Kiens, Bente; Herzig, Stephan; Rose, Adam J

    2016-09-01

    Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis.

  1. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco.

    PubMed

    Hyun, Tae Kyung; Albacete, Alfonso; van der Graaff, Eric; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2015-08-01

    Plant growth and consequently crop yield can be severely compromised by abiotic and biotic stress conditions. Transgenic approaches that resulted in increased tolerance against abiotic stresses often were typically accompanied by adverse effects on plant growth and fitness under optimal growing conditions. Proteins that belong to the PLAT-plant-stress protein family harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and are ubiquitously present in monocot and dicot plant species. Until now, only limited data is available for PLAT-plant-stress family members, which suggested that these proteins in general could promote tolerance towards stress responses. We studied the function of the Arabidopsis PLAT-plant-stress protein AtPLAT1 employing heterologous gain-of-function analysis in tobacco. AtPLAT1 conferred increased abiotic stress tolerance in tobacco, evident by improved tolerance towards cold, drought and salt stresses, and promoted growth, reflected by a faster development under non-stressed conditions. However, the overexpression of AtPLAT1 in tobacco reduced the tolerance towards biotic stress conditions and, therefore, could be involved in regulating the crosstalk between abiotic and biotic stress responses. Thus, we showed that heterologously expressed AtPLAT1 functions as positive regulator of abiotic stress tolerance and plant growth, which could be an important new asset for strategies to develop plants with improved abiotic stress tolerance, without growth and subsequent yield penalties under optimal growth conditions.

  2. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway.

    PubMed

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-05-12

    Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway.

  3. Heterologous protein expression in Trichoderma reesei using the cbhII promoter.

    PubMed

    Meng, Fanju; Wei, Dongzhi; Wang, Wei

    2013-09-01

    To express homologous or heterologous proteins in fungi, a protein expression system using the promoter of cellobiohydrolase II gene (cbhII) was constructed by generating an expression vector called pWEIIF00. The obtained vector possesses the left and right borders, a hygromycin phosphotransferase B selective marker and a strong promoter and terminator of cbhII from Trichoderma reesei. It can easily undergo random recombination. The applicability of the vector was tested by red fluorescent protein gene (DsRed2) expression detection in T. reesei Rut C30. Using this system, a recombinant Cel5A variant, N342R (Qin et al., 2008), was then selected to express in Rut-C30. Compared to that of the parent strain, integration of the N342R gene resulted in 31.09% increased carboxymethyl-cellulose-degrading (CMCase) activity at pH 5.0 and 56.06% increased activity at pH 6.0. The increased CMCase activity of the recombinant strains would be beneficial for its application uses in multiple industries. The vector constructed in this study can used in fungi to produce industrial proteins.

  4. Antibodies against a Surface Protein of Streptococcus pyogenes Promote a Pathological Inflammatory Response

    PubMed Central

    Kahn, Fredrik; Mörgelin, Matthias; Shannon, Oonagh; Norrby-Teglund, Anna; Herwald, Heiko; Olin, Anders I.; Björck, Lars

    2008-01-01

    Streptococcal toxic shock syndrome (STSS) caused by Streptococcus pyogenes is a clinical condition with a high mortality rate despite modern intensive care. A key feature of STSS is excessive plasma leakage leading to hypovolemic hypotension, disturbed microcirculation and multiorgan failure. Previous work has identified a virulence mechanism in STSS where M1 protein of S. pyogenes forms complexes with fibrinogen that activate neutrophils to release heparin-binding protein (HBP), an inducer of vascular leakage. Here, we report a marked inter-individual difference in the response to M1 protein–induced HBP release, a difference found to be related to IgG antibodies directed against the central region of the M1 protein. To elicit massive HBP release, such antibodies need to be part of the M1 protein–fibrinogen complexes. The data add a novel aspect to bacterial pathogenesis where antibodies contribute to the severity of disease by promoting a pathologic inflammatory response. PMID:18787689

  5. CDK6 binds and promotes the degradation of the EYA2 protein

    PubMed Central

    Kohrt, Dawn; Crary, Jennifer; Zimmer, Marc; Patrick, Aaron N; Ford, Heide L; Hinds, Philip W; Grossel, Martha J

    2014-01-01

    Cyclin-dependent kinase 6 (Cdk6) is a D-Cyclin-activated kinase that is directly involved in driving the cell cycle through inactivation of pRB in G1 phase. Increasingly, evidence suggests that CDK6, while directly driving the cell cycle, may only be essential for proliferation of specialized cell types, agreeing with the notion that CDK6 also plays an important role in differentiation. Here, evidence is presented that CDK6 binds to and promotes degradation of the EYA2 protein. The EYA proteins are a family of proteins that activate genes essential for the development of multiple organs, regulate cell proliferation, and are misregulated in several types of cancer. This interaction suggests that CDK6 regulates EYA2 activity, a mechanism that could be important in development and in cancer. PMID:24196439

  6. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins.

    PubMed

    Beekwilder, J; Rakonjac, J; Jongsma, M; Bosch, D

    1999-03-04

    Phage display is a powerful tool with which to adapt the specificity of protease inhibitors. To this end, a library of variants of the potato protease inhibitor PI2 was introduced in a canonical phagemid vector. Although PI2 is a natural trypsin inhibitor, we were unable to select trypsin-binding variants from the library. Instead, only mutants carrying deletions or amber stop codons were found. Bacteria carrying these mutations had a much faster growth rate than those carrying the wt PI2-encoding gene, even when the promoter was repressed. To overcome these problems, two new phagemid vectors for g3-mediated phage display were constructed. The first vector has a lower plasmid copy number, as compared to the canonical vector. Bacteria harboring this new vector are much less affected by the presence of the PI2-g3 fusion gene, which appears from a markedly reduced growth retardation. A second vector was equipped with the promoter of the Escherichia coli psp operon, instead of the lac promoter, to control the PI2-g3 gene fusion expression. The psp promoter is induced upon helper phage infection. A phagemid vector with this promoter controlling a PI2-g3 gene fusion did not affect the viability of the host. Furthermore, both new vectors were shown to produce phage particles that display the inhibitor protein and were therefore considered suitable for phage display. The inhibitor library was introduced in both new vectors. Trypsin-binding phages with inhibitory sequences were selected, instead of sequences with stop codons or deletions. This demonstrates the usefulness of these new vectors for phage display of proteins that affect the viability of E. coli.

  7. Promotion of beta-glucan synthase activity in corn microsomal membranes by calcium and protein phosphorylation

    NASA Technical Reports Server (NTRS)

    Paliyath, G.; Poovaiah, B. W.

    1988-01-01

    Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.

  8. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4*♦

    PubMed Central

    Bullard, Steven A.; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C.; Dierdorff, Jason M.; Ebert, Scott M.; DeLau, Austin D.; Gibson, Bradford W.; Adams, Christopher M.

    2016-01-01

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo. We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. PMID:27358404

  9. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.

    PubMed

    Guillen-Ahlers, Hector; Rao, Prahlad K; Levenstein, Mark E; Kennedy-Darling, Julia; Perumalla, Danu S; Jadhav, Avinash Y L; Glenn, Jeremy P; Ludwig-Kubinski, Amy; Drigalenko, Eugene; Montoya, Maria J; Göring, Harald H; Anderson, Corianna D; Scalf, Mark; Gildersleeve, Heidi I S; Cole, Regina; Greene, Alexandra M; Oduro, Akua K; Lazarova, Katarina; Cesnik, Anthony J; Barfknecht, Jared; Cirillo, Lisa A; Gasch, Audrey P; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2016-06-01

    Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges.

  10. PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length.

    PubMed

    Hayama, Ryosuke; Sarid-Krebs, Liron; Richter, René; Fernández, Virginia; Jang, Seonghoe; Coupland, George

    2017-04-03

    Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR-mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T (FT), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs.

  11. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut.

    PubMed

    Coumou, Jeroen; Narasimhan, Sukanya; Trentelman, Jos J; Wagemakers, Alex; Koetsveld, Joris; Ersoz, Jasmin I; Oei, Anneke; Fikrig, Erol; Hovius, Joppe W

    2016-03-01

    The causative agent of Lyme borreliosis, Borrelia burgdorferi, is transmitted by Ixodes ticks. During tick feeding, B. burgdorferi migrates from the tick gut to the salivary glands from where transmission to the host occurs. B. burgdorferi-interacting tick proteins might serve as vaccine targets to thwart B. burgdorferi transmission. A previous screening for B. burgdorferi-interacting Ixodes scapularis gut proteins identified an I. scapularis putative dystroglycan protein (ISCW015049). Here, we describe the ISCW015049's protein structure and its cellular location in the tick gut in relation to B. burgdorferi migration. Secondly, in vivo B. burgdorferi-tick attachment murine models were performed to study the role of ISCW015049 during B. burgdorferi migration and transmission. In silico analysis confirmed that ISCW015049 is similar to dystroglycan and was named I. scapularis dystroglycan-like protein (ISDLP). Confocal microscopy of gut tissue showed that ISDLP is expressed on the surface of gut cells, is upregulated during tick feeding, and is expressed significantly higher in infected ticks compared to uninfected ticks. Inhibition of ISDLP by RNA interference (RNAi) resulted in lower B. burgdorferi transmission to mice. In conclusion, we have identified a dystroglycan-like protein in I. scapularis gut that can bind to B. burgdorferi and promotes B. burgdorferi migration from the tick gut. Key messages: B. burgdorferi exploits tick proteins to orchestrate its transmission to the host. B. burgdorferi is able bind to an I. scapularis dystroglycan-like protein (ISDLP). Inhibition of ISDLP in ticks results in lower B. burgdorferi transmission to mice. ISDLP is a potential target to prevent Lyme borreliosis.

  12. Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter.

    PubMed

    Galibert, M D; Yavuzer, U; Dexter, T J; Goding, C R

    1999-09-17

    Previous work has established that the melanocyte-specific tyrosinase-related protein-1 (TRP-1) promoter is regulated positively by the microphthalmia-associated transcription factor Mitf, acting through the conserved M box and negatively by the T-box factor Tbx2, which can bind two "melanocyte-specific elements" termed the MSEu and MSEi. Both the MSEu and MSEi, which share a 6-base pair GTGTGA consensus, are also recognized by a previously unidentified melanocyte-specific factor, MSF. Here we show using a combination of DNA binding assays, proteolytic clipping, and anti-Pax3 antibodies that MSF is indistinguishable from Pax3, a paired homeodomain transcription factor implicated genetically in melanocyte development and the regulation of the Mitf promoter. Consistent with Pax3 being able to bind the TRP-1 promoter, Pax3 is expressed in melanocytes and melanomas, and TRP-1 promoter activity is up-regulated by Pax3. The results identify a novel role for Pax3 in the expression of TRP-1, and the potential role of Pax3 in the melanocyte lineage is discussed.

  13. Microsomal triglyceride transfer protein promotes the secretion of Xenopus laevis vitellogenin A1.

    PubMed

    Sellers, Jeremy A; Hou, Li; Schoenberg, Daniel R; Batistuzzo de Medeiros, Silvia R; Wahli, Walter; Shelness, Gregory S

    2005-04-08

    Vitellogenins (Vtg) are ancient lipid transport and storage proteins and members of the large lipid transfer protein (LLTP) gene family, which includes insect apolipophorin II/I, apolipoprotein B (apoB), and the microsomal triglyceride transfer protein (MTP). Lipidation of Vtg occurs at its site of synthesis in vertebrate liver, insect fat body, and nematode intestine; however, the mechanism of Vtg lipid acquisition is unknown. To explore whether Vtg biogenesis requires the apoB cofactor and LLTP family member, MTP, Vtg was expressed in COS cells with and without coexpression of the 97-kDa subunit of human MTP. Expression of Vtg alone gave rise to a approximately 220-kDa apoprotein, which was predominantly confined to an intracellular location. Coexpression of Vtg with human MTP enhanced Vtg secretion by 5-fold, without dramatically affecting its intracellular stability. A comparison of wild type and a triglyceride transfer-defective form of MTP revealed that both were capable of promoting Vtg secretion, whereas only wild type MTP could promote the secretion of apoB41 (amino-terminal 41% of apoB). These studies demonstrate that the biogenesis of Vtg is MTP-dependent and that MTP is the likely ancestral member of the LLTP gene family.

  14. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein.

    PubMed

    Song, Tong; Tian, Xia; Kai, Fan; Ke, Jiang; Wei, Zhai; Jing-Song, Li; Si-Hua, Wang; Jian-Jun, Wang

    2016-09-27

    Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein.

  15. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter.

    PubMed Central

    Taira, T; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription. Images PMID:8065368

  16. Introduction of the carbohydrate-activated promoter P(malK) for recombinant protein production.

    PubMed

    Boström, M; Larsson, G

    2002-07-01

    A production protocol for the use of the malK promoter was established. The protocol includes two phases: an initial fed-batch phase on glucose to reach a high cell density and a fed-batch phase on maltose for production of the desired recombinant protein. It is suggested that this cultivation scheme could be used for all promoters that are catabolite repressed by glucose and where growth and production need to be separated. The specific feature of this system is shown by its ability to control the rate of synthesis of the product protein, ss-galactosidase. In the production phase with a constant feed or an exponential feeding of 0.1 h(-1) it took 4 h longer to reach the maximum specific production rate than with the higher dilution rates of 0.25 h(-1) and 0.4 h(-1), respectively. In the above experiments a dilution rate of 0.3 h(-1) in the growth phase was used. The volumetric production of this system could furthermore be extended to 40 h. All protocol procedures so far tested resulted in the same maximum production rate, but reached in different lengths of time. It is argued that this system is particularly well suited for the production of proteins that have a complex structure and/or need to be produced in a soluble form or to be exported to the periplasm.

  17. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein

    PubMed Central

    Tong, Song; Xia, Tian; Fan, Kai; Jiang, Ke; Zhai, Wei; Li, Jing-Song; Wang, Si-Hua; Wang, Jian-Jun

    2016-01-01

    Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein. PMID:27588399

  18. New neuropathological findings in Unverricht-Lundborg disease: neuronal intranuclear and cytoplasmic inclusions.

    PubMed

    Cohen, Nicola R; Hammans, Simon R; Macpherson, James; Nicoll, James A R

    2011-03-01

    Unverricht-Lundborg disease (EPM1A), also known as Baltic myoclonus, is the most common form of progressive myoclonic epilepsy. It is inherited as an autosomal recessive trait, due to mutations in the Cystatin-B gene promoter region. Although there is much work on rodent models of this disease, there is very little published neuropathology in patients with EPM1A. Here, we present the neuropathology of a patient with genetically confirmed EPM1A, who died at the age of 76. There was atrophy and gliosis affecting predominantly the cerebellum, frontotemporal cortex, hippocampus and thalamus. We have identified neuronal cytoplasmic inclusions containing the lysosomal proteins, Cathepsin-B and CD68. These inclusions also showed immunopositivity to both TDP-43 and FUS, in some cases associated with an absence of normal neuronal nuclear TDP-43 staining. There were also occasional ubiquitinylated neuronal intranuclear inclusions, some of which were FUS immunopositive. This finding is consistent with neurodegeneration in EPM1A as at least a partial consequence of lysosomal damage to neurons, which have reduced Cystatin-B-related neuroprotection. It also reveals a genetically defined neurodegenerative disease with both FUS and TDP-43 related pathology.

  19. Human hedgehog interacting protein expression and promoter methylation in medulloblastoma cell lines and primary tumor samples

    PubMed Central

    Shahi, Mehdi H.; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G.; Rey, Juan A.; Fan, Xing

    2015-01-01

    Medulloblastoma is the most common pediatric brain tumor and its development is affected by genetic and epigenetic factors. In this study we found there is low or no expression of the hedgehog interacting protein (HHIP), a negative regulator of the sonic hedgehog pathway, in most medulloblastoma cell lines and primary samples explored. We proceeded to promoter methylation assays of this gene by MCA-Meth, and found that HHIP was hypermethylated in all medulloblastoma cell lines, but only in 2 out of 14 (14%) primary tumor samples. Methylation correlated with low or unexpressed HHIP in cell lines but not in primary tumor samples. These results suggest the possibility of epigenetic regulation of HHIP in medulloblastoma, similarly to gastric, hepatic and pancreatic cancer. However, HHIP seems to be not only under regulation of promoter methylation, but under other factors involved in the control of its low levels of expression in medulloblastoma. PMID:20853133

  20. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells

    PubMed Central

    Ueda, Yuko; Ooshio, Ikumi; Fusamae, Yasuyuki; Kitae, Kaori; Kawaguchi, Megumi; Jingushi, Kentaro; Hase, Hiroaki; Harada, Kazuo; Hirata, Kazumasa; Tsujikawa, Kazutake

    2017-01-01

    The mammalian AlkB homolog (ALKBH) family of proteins possess a 2-oxoglutarate- and Fe(II)-dependent oxygenase domain. A similar domain in the Escherichia coli AlkB protein catalyzes the oxidative demethylation of 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) in both DNA and RNA. AlkB homolog 3 (ALKBH3) was also shown to demethylate 1-meA and 3-meC (induced in single-stranded DNA and RNA by a methylating agent) to reverse the methylation damage and retain the integrity of the DNA/RNA. We previously reported the high expression of ALKBH3 in clinical tumor specimens and its involvement in tumor progression. In this study, we found that ALKBH3 effectively demethylated 1-meA and 3-meC within endogenously methylated RNA. Moreover, using highly purified recombinant ALKBH3, we identified N6-methyladenine (N6-meA) in mammalian transfer RNA (tRNA) as a novel ALKBH3 substrate. An in vitro translation assay showed that ALKBH3-demethylated tRNA significantly enhanced protein translation efficiency. In addition, ALKBH3 knockdown in human cancer cells impaired cellular proliferation and suppressed the nascent protein synthesis that is usually accompanied by accumulation of the methylated RNAs. Thus, our data highlight a novel role for ALKBH3 in tumor progression via RNA demethylation and subsequent protein synthesis promotion. PMID:28205560

  1. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates

    PubMed Central

    Hamoud, Noumeira; Tran, Viviane; Croteau, Louis-Philippe; Kania, Artur; Côté, Jean-François

    2014-01-01

    Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion. PMID:24567399

  2. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    SciTech Connect

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  3. Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo.

    PubMed

    Schrumpfová, Petra Procházková; Vychodilová, Ivona; Hapala, Jan; Schořová, Šárka; Dvořáček, Vojtěch; Fajkus, Jiří

    2016-01-01

    Recently we characterised TRB1, a protein from a single-myb-histone family, as a structural and functional component of telomeres in Arabidopsis thaliana. TRB proteins, besides their ability to bind specifically to telomeric DNA using their N-terminally positioned myb-like domain of the same type as in human shelterin proteins TRF1 or TRF2, also possess a histone-like domain which is involved in protein-protein interactions e.g., with POT1b. Here we set out to investigate the genome-wide localization pattern of TRB1 to reveal its preferential sites of binding to chromatin in vivo and its potential functional roles in the genome-wide context. Our results demonstrate that TRB1 is preferentially associated with promoter regions of genes involved in ribosome biogenesis, in addition to its roles at telomeres. This preference coincides with the frequent occurrence of telobox motifs in the upstream regions of genes in this category, but it is not restricted to the presence of a telobox. We conclude that TRB1 shows a specific genome-wide distribution pattern which suggests its role in regulation of genes involved in biogenesis of the translational machinery, in addition to its preferential telomeric localization.

  4. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1.

    PubMed

    Maynes, J T; Bateman, K S; Cherney, M M; Das, A K; Luu, H A; Holmes, C F; James, M N

    2001-11-23

    Protein phosphatase-1 (PP1) plays a key role in dephosphorylation in numerous biological processes such as glycogen metabolism, cell cycle regulation, smooth muscle contraction, and protein synthesis. Microorganisms produce a variety of inhibitors of PP1, which include the microcystin class of inhibitors and okadaic acid, the latter being the major cause of diarrhetic shellfish poisoning and a powerful tumor promoter. We have determined the crystal structure of the molecular complex of okadaic acid bound to PP1 to a resolution of 1.9 A. This structure reveals that the acid binds in a hydrophobic groove adjacent to the active site of the protein and interacts with basic residues within the active site. Okadaic acid exhibits a cyclic structure, which is maintained via an intramolecular hydrogen bond. This is reminiscent of other macrocyclic protein phosphatase inhibitors. The inhibitor-bound enzyme shows very little conformational change when compared with two other PP1 structures, except in the inhibitor-sensitive beta12-beta13 loop region. The selectivity of okadaic acid for protein phosphatases-1 and -2A but not PP-2B (calcineurin) may be reassessed in light of this study.

  5. RNF20 promotes the polyubiquitination and proteasome-dependent degradation of AP-2α protein.

    PubMed

    Ren, Peng; Sheng, Zhifeng; Wang, Yijun; Yi, Xin; Zhou, Qiuzhi; Zhou, Jianlin; Xiang, Shuanglin; Hu, Xiang; Zhang, Jian

    2014-02-01

    Transcription factor activator protein 2α (AP-2α) is a negative regulator of adipogenesis by repressing the transcription of CCAAT/enhancer binding protein (C/EBPα) gene. During adipogenesis, AP-2α is degraded, leading to transcriptional up-regulation of C/EBPα. However, the mechanism for AP-2α degradation is not clear. Here, using immunoprecipitation assay and mass spectrometry, we identified ring finger protein 20 (RNF20) as an AP-2α-interacting protein in 3T3-L1 preadipocytes. RNF20 has been proved to be an E3 ubiquitin ligase for both histone H2B and tumor suppressor ErbB3-binding protein 1 (Ebp1). In this study, we demonstrated that RNF20 co-localized and interacted with AP-2α, and promoted its polyubiquitination and proteasome-dependent degradation. Over-expression of RNF20 inhibited the activity of AP-2α and rescued the C/EBPα expression which was inhibited by AP-2α. These results suggested that RNF20 may play roles in adipocyte differentiation by stimulating ubiquitin-proteasome-dependent degradation of AP-2α.

  6. MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma.

    PubMed

    Toffolatti, L; Scquizzato, E; Cavallin, S; Canal, F; Scarpa, M; Stefani, P M; Gherlinzoni, F; Dei Tos, A P

    2014-11-01

    The O (6)-methylguanine-DNA-methyltransferase (MGMT) gene encodes for a DNA repairing enzyme of which silencing by promoter methylation is involved in brain tumorigenesis. MGMT promoter methylation represents a favorable prognostic factor and has been associated with a better response to alkylating agents in glioma and systemic lymphoma. Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal malignant lymphoma. The current standard of care, based on high-dose methotrexate chemotherapy, has improved prognosis but outcome remains poor for a majority of patients. Therapeutic progress in this field is conditioned by limited biological and molecular knowledge about the disease. Temozolomide has recently emerged as an alternative option for PCNSL treatment. We aimed to analyze the MGMT gene methylation status in a series of 24 PCNSLs, to investigate the relationship between methylation status of the gene and immunohistochemical expression of MGMT protein and to evaluate the possible prognostic significance of these biomarkers. Our results confirm that methylation of the MGMT gene and loss of MGMT protein are frequent events in these lymphomas (54 % of our cases) and suggest that they are gender and age related. MGMT methylation showed high correlation with loss of protein expression (concordance correlation coefficient = -0.49; Fisher exact test: p < 0.01), different from what has been observed in other brain tumors. In the subgroup of ten patients who received high dose chemotherapy, the presence of methylated MGMT promoter (n = 4), seems to be associated with a prolonged overall survival (>60 months in three of four patients). The prognostic significance of these molecular markers in PCNSL needs to be further studied in groups of patients treated in a homogeneous way.

  7. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    PubMed Central

    2009-01-01

    Background Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion. PMID:20034395

  8. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm

    PubMed Central

    Shelkovnikova, Tatyana A; Robinson, Hannah K; Connor-Robson, Natalie; Buchman, Vladimir L

    2013-01-01

    Fused in sarcoma (FUS) belongs to the group of RNA-binding proteins implicated as underlying factors in amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. Multiple FUS gene mutations have been linked to hereditary forms, and aggregation of FUS protein is believed to play an important role in pathogenesis of these diseases. In cultured cells, FUS variants with disease-associated amino acid substitutions or short deletions affecting nuclear localization signal (NLS) and causing cytoplasmic mislocalization can be sequestered into stress granules (SGs). We demonstrated that disruption of motifs responsible for RNA recognition and binding not only prevents SG recruitment, but also dramatically increases the protein propensity to aggregate in the cell cytoplasm with formation of juxtanuclear structures displaying typical features of aggresomes. Functional RNA-binding domains from TAR DNA-binding protein of 43 kDa (TDP-43) fused to highly aggregation-prone C-terminally truncated FUS protein restored the ability to enter SGs and prevented aggregation of the chimeric protein. Truncated FUS was also able to trap endogenous FUS molecules in the cytoplasmic aggregates. Our data indicate that RNA binding and recruitment to SGs protect cytoplasmic FUS from aggregation, and loss of this protection may trigger its pathological aggregation in vivo. PMID:24013423

  9. Common Functional Genetic Variants in Catecholamine Storage Vesicle Protein Promoter Motifs Interact to Trigger Systemic Hypertension

    PubMed Central

    Zhang, Kuixing; Rao, Fangwen; Wang, Lei; Rana, Brinda K.; Ghosh, Sajalendu; Mahata, Manjula; Salem, Rany M.; Rodriguez-Flores, Juan L.; Fung, Maple M.; Waalen, Jill; Tayo, Bamidele; Taupenot, Laurent; Mahata, Sushil K.; O'Connor, Daniel T.

    2010-01-01

    Objectives The purpose of this study was to explore transcriptional mechanisms whereby genetic variation in the CHGB promoter influence BP and hypertension. Background Hypertension is a complex trait in which deranged autonomic control of the circulation may be an etiological culprit. Chromogranin B (CHGB) is a major soluble protein in the core of catecholamine storage vesicles, playing a necessary (catalytic) role in the biogenesis of secretory vesicles. Previously we found that genetic variation at CHGB influenced plasma CHGB expression as well as autonomic function, and that BP association was maximal towards the 5′ end of the gene. Methods After polymorphism discovery, we functionally characterized the 2 common variants in the proximal CHGB promoter, A-296C and A-261T, which lay within the same haplotype block in black and white populations. CHGB promoter activity was studied by haplotype/luciferase reporter transfection. Transcriptional mechanisms were probed by EMSA and ChIP. Results The A-296C variant disrupted a c-FOS motif, and exhibited differential mobility shifting to chromaffin cell nuclear proteins during EMSA, differential binding of endogenous c-FOS on ChIP, and differential transcriptional response to exogenous c-FOS. A-261T disrupted motifs for SRY and YY1, with similar consequences for gel mobility during EMSA, endogenous factor binding during ChIP, and transcriptional responses to the exogenous factors. 2-SNP haplotype analyses demonstrated a profound (p∼3×10-20) effect of CHGB promoter variation on BP in the European ancestry population, with a rank order of CTpromoter activity in cella. Site-by-site interactions at A-296C and A-261T yielded highly non-additive effects on SBP and DBP. CHGB haplotype effects on BP were also noted in an independent (African ancestry) sample. In a

  10. TP53 Promoter Methylation in Primary Glioblastoma: Relationship with TP53 mRNA and Protein Expression and Mutation Status

    PubMed Central

    Szybka, Malgorzata; Malachowska, Beata; Fendler, Wojciech; Potemski, Piotr; Piaskowski, Sylwester; Jaskolski, Dariusz; Papierz, Wielislaw; Skowronski, Wieslaw; Och, Waldemar; Kordek, Radzislaw

    2014-01-01

    Reduced expression of TP53 by promoter methylation has been reported in several neoplasms. It remains unclear whether TP53 promoter methylation is associated with reduced transcriptional and protein expression in glioblastoma (GB). The aim of our work was to study the impact of TP53 methylation and mutations on TP53 mRNA level and protein expression in 42 molecularly characterized primary GB tumors. We also evaluate the impact of all molecular alterations on the overall patient survival. The frequency of TP53 promoter methylation was found in 21.4%. To the best of our knowledge, this is the first report showing such high frequency of TP53 promoter methylation in primary GB. There was no relation between TP53 promoter methylation and TP53 mRNA level (p=0.5722) and between TP53 promoter methylation and TP53 protein expression (p=0.2045). No significant associations were found between TP53 mRNA expression and mutation of TP53 gene (p=0.9076). However, significant association between TP53 mutation and TP53 protein expression was found (p=0.0016). Our data suggest that in primary GB TP53 promoter methylation does not play a role in silencing of TP53 transcriptional and protein expression and is probably regulated by other genetic and epigenetic mechanisms associated with genes involved in the TP53 pathway. PMID:24506545

  11. The tumour suppressor APC promotes HIV-1 assembly via interaction with Gag precursor protein.

    PubMed

    Miyakawa, Kei; Nishi, Mayuko; Matsunaga, Satoko; Okayama, Akiko; Anraku, Masaki; Kudoh, Ayumi; Hirano, Hisashi; Kimura, Hirokazu; Morikawa, Yuko; Yamamoto, Naoki; Ono, Akira; Ryo, Akihide

    2017-01-30

    Diverse cellular proteins and RNAs are tightly regulated in their subcellular localization to exert their local function. Here we report that the tumour suppressor adenomatous polyposis coli protein (APC) directs the localization and assembly of human immunodeficiency virus (HIV)-1 Gag polyprotein at distinct membrane components to enable the efficient production and spread of infectious viral particles. A proteomic analysis and subsequent biomolecular interaction assay reveals that the carboxyl terminus of APC interacts with the matrix region of Gag. Ectopic expression of APC, but not its familial adenomatous polyposis-related truncation mutant, prominently enhances HIV-1 production. Conversely, the depletion of APC leads to a significant decrease in membrane targeting of viral components, resulting in the severe loss of production of infectious virions. Furthermore, APC promotes the directional assembly of viral components at virological synapses, thereby facilitating cell-to-cell viral transmission. These findings reveal an unexpected role of APC in the directional spread of HIV-1.

  12. Activation of the beta interferon promoter by paramyxoviruses in the absence of virus protein synthesis.

    PubMed

    Killip, M J; Young, D F; Precious, B L; Goodbourn, S; Randall, R E

    2012-02-01

    Conflicting reports exist regarding the requirement for virus replication in interferon (IFN) induction by paramyxoviruses. Our previous work has demonstrated that pathogen-associated molecular patterns capable of activating the IFN-induction cascade are not normally generated during virus replication, but are associated instead with the presence of defective interfering (DI) viruses. We demonstrate here that DIs of paramyxoviruses, including parainfluenza virus 5, mumps virus and Sendai virus, can activate the IFN-induction cascade and the IFN-β promoter in the absence of virus protein synthesis. As virus protein synthesis is an absolute requirement for paramyxovirus genome replication, our results indicate that these DI viruses do not require replication to activate the IFN-induction cascade.

  13. The tumour suppressor APC promotes HIV-1 assembly via interaction with Gag precursor protein

    PubMed Central

    Miyakawa, Kei; Nishi, Mayuko; Matsunaga, Satoko; Okayama, Akiko; Anraku, Masaki; Kudoh, Ayumi; Hirano, Hisashi; Kimura, Hirokazu; Morikawa, Yuko; Yamamoto, Naoki; Ono, Akira; Ryo, Akihide

    2017-01-01

    Diverse cellular proteins and RNAs are tightly regulated in their subcellular localization to exert their local function. Here we report that the tumour suppressor adenomatous polyposis coli protein (APC) directs the localization and assembly of human immunodeficiency virus (HIV)-1 Gag polyprotein at distinct membrane components to enable the efficient production and spread of infectious viral particles. A proteomic analysis and subsequent biomolecular interaction assay reveals that the carboxyl terminus of APC interacts with the matrix region of Gag. Ectopic expression of APC, but not its familial adenomatous polyposis-related truncation mutant, prominently enhances HIV-1 production. Conversely, the depletion of APC leads to a significant decrease in membrane targeting of viral components, resulting in the severe loss of production of infectious virions. Furthermore, APC promotes the directional assembly of viral components at virological synapses, thereby facilitating cell-to-cell viral transmission. These findings reveal an unexpected role of APC in the directional spread of HIV-1. PMID:28134256

  14. Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus.

    PubMed

    Mohedano, M Luz; García-Cayuela, Tomás; Pérez-Ramos, Adrián; Gaiser, Rogier A; Requena, Teresa; López, Paloma

    2015-02-01

    Lactobacilli are widespread in natural environments and are increasingly being investigated as potential health modulators. In this study, we have adapted the broad-host-range vector pNZ8048 to express the mCherry protein (pRCR) to expand the usage of the mCherry protein for analysis of gene expression in Lactobacillus. This vector is also able to replicate in Streptococcus pneumoniae and Escherichia coli. The usage of pRCR as a promoter probe was validated in Lactobacillus acidophilus by characterizing the regulation of lactacin B expression. The results show that the regulation is exerted at the transcriptional level, with lbaB gene expression being specifically induced by co-culture of the L. acidophilus bacteriocin producer and the S. thermophilus STY-31 inducer bacterium.

  15. TIPE3 Is The Transfer Protein Of Lipid Second Messengers That Promote Cancer

    PubMed Central

    Fayngerts, Svetlana A.; Wu, Jianping; Oxley, Camilla L.; Liu, Xianglan; Vourekas, Anastassios; Cathopoulis, Terry; Wang, Zhaojun; Cui, Jian; Liu, Suxia; Sun, Honghong; Lemmon, Mark A.; Zhang, Lining

    2014-01-01

    Summary More than half of human cancers have aberrantly upregulated phosphoinositide signals; yet how phospholipid signals are controlled during tumorigenesis is not fully understood. We report here that TIPE3 (TNFAIP8L3) is the transfer protein of phosphoinositide second messengers that promote cancer. High-resolution crystal structure of TIPE3 shows a large hydrophobic cavity that is occupied by a phospholipid-like molecule. TIPE3 preferentially captures and shuttles two lipid second messengers, i.e., phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, and increases their levels in the plasma membrane. Importantly, human cancers have markedly upregulated TIPE3 expression. Knocking out TIPE3 diminishes tumorigenesis whereas enforced TIPE3 expression enhances it in vivo. Thus, the function and metabolism of phosphoinositide second messengers are controlled by a specific transfer protein during tumorigenesis. PMID:25242044

  16. Hypusine-containing protein eIF5A promotes translation elongation.

    PubMed

    Saini, Preeti; Eyler, Daniel E; Green, Rachel; Dever, Thomas E

    2009-05-07

    Translation elongation factors facilitate protein synthesis by the ribosome. Previous studies identified two universally conserved translation elongation factors, EF-Tu in bacteria (known as eEF1A in eukaryotes) and EF-G (eEF2), which deliver aminoacyl-tRNAs to the ribosome and promote ribosomal translocation, respectively. The factor eIF5A (encoded by HYP2 and ANB1 in Saccharomyces cerevisiae), the sole protein in eukaryotes and archaea to contain the unusual amino acid hypusine (N(epsilon)-(4-amino-2-hydroxybutyl)lysine), was originally identified based on its ability to stimulate the yield (endpoint) of methionyl-puromycin synthesis-a model assay for first peptide bond synthesis thought to report on certain aspects of translation initiation. Hypusine is required for eIF5A to associate with ribosomes and to stimulate methionyl-puromycin synthesis. Because eIF5A did not stimulate earlier steps of translation initiation, and depletion of eIF5A in yeast only modestly impaired protein synthesis, it was proposed that eIF5A function was limited to stimulating synthesis of the first peptide bond or that eIF5A functioned on only a subset of cellular messenger RNAs. However, the precise cellular role of eIF5A is unknown, and the protein has also been linked to mRNA decay, including the nonsense-mediated mRNA decay pathway, and to nucleocytoplasmic transport. Here we use molecular genetic and biochemical studies to show that eIF5A promotes translation elongation. Depletion or inactivation of eIF5A in the yeast S. cerevisiae resulted in the accumulation of polysomes and an increase in ribosomal transit times. Addition of recombinant eIF5A from yeast, but not a derivative lacking hypusine, enhanced the rate of tripeptide synthesis in vitro. Moreover, inactivation of eIF5A mimicked the effects of the eEF2 inhibitor sordarin, indicating that eIF5A might function together with eEF2 to promote ribosomal translocation. Because eIF5A is a structural homologue of the bacterial

  17. Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity.

    PubMed

    McCarty, M F

    1999-12-01

    Amino acids modulate the secretion of both insulin and glucagon; the composition of dietary protein therefore has the potential to influence the balance of glucagon and insulin activity. Soy protein, as well as many other vegan proteins, are higher in non-essential amino acids than most animal-derived food proteins, and as a result should preferentially favor glucagon production. Acting on hepatocytes, glucagon promotes (and insulin inhibits) cAMP-dependent mechanisms that down-regulate lipogenic enzymes and cholesterol synthesis, while up-regulating hepatic LDL receptors and production of the IGF-I antagonist IGFBP-1. The insulin-sensitizing properties of many vegan diets--high in fiber, low in saturated fat--should amplify these effects by down-regulating insulin secretion. Additionally, the relatively low essential amino acid content of some vegan diets may decrease hepatic IGF-I synthesis. Thus, diets featuring vegan proteins can be expected to lower elevated serum lipid levels, promote weight loss, and decrease circulating IGF-I activity. The latter effect should impede cancer induction (as is seen in animal studies with soy protein), lessen neutrophil-mediated inflammatory damage, and slow growth and maturation in children. In fact, vegans tend to have low serum lipids, lean physiques, shorter stature, later puberty, and decreased risk for certain prominent 'Western' cancers; a vegan diet has documented clinical efficacy in rheumatoid arthritis. Low-fat vegan diets may be especially protective in regard to cancers linked to insulin resistance--namely, breast and colon cancer--as well as prostate cancer; conversely, the high IGF-I activity associated with heavy ingestion of animal products may be largely responsible for the epidemic of 'Western' cancers in wealthy societies. Increased phytochemical intake is also likely to contribute to the reduction of cancer risk in vegans. Regression of coronary stenoses has been documented during low-fat vegan diets

  18. St. John's Wort protein, p27SJ, regulates the MCP-1 promoter.

    PubMed

    Mukerjee, Ruma; Deshmane, Satish L; Darbinian, Nune; Czernik, Marta; Khalili, Kamel; Amini, Shohreh; Sawaya, Bassel E

    2008-09-01

    St. John's Wort is commonly known for its antiviral, antidepressant, and cytotoxic properties, but traditionally St. John's Wort has also been used to treat inflammation. In this study, we sought to characterize the mechanisms used by St. John's Wort to treat inflammation by examining the effect of the recently isolated protein from St. John's Wort, p27SJ on the expression of MCP-1. By employing an adenovirus expression vector, we demonstrate that a low concentration of p27SJ upregulates the MCP-1 promoter through the transcription factor C/EBPbeta. In addition, we found that C/EBPbeta-homologous protein (CHOP) or siRNA-C/EBPbeta significantly reduced the ability of p27SJ to activate MCP-1 gene expression. Results from protein-protein interaction studies illustrate the existence of a physical interaction between p27SJ and C/EBPbeta in microglial cells. The use of chromatin immunoprecipitation assay (ChIP) led to the identification of a new cis-element that is responsive to C/EBPbeta within the MCP-1 promoter. Association of C/EBPbeta with MCP-1 DNA was not affected by the presence of p27SJ. The biological activity of MCP-1 produced by cultures of adenovirus-p27SJ transduced cells was increased relative to controls as measured by the transmigration of human Jurkat cells. Thus, we conclude that at high concentration, p27SJ is a potential agent that may be developed as a modulator of MCP-1 leading to the inhibition of the cytokine-mediated inflammatory responses.

  19. Transcriptionally active immediate-early protein of pseudorabies virus binds to specific sites on class II gene promoters.

    PubMed Central

    Cromlish, W A; Abmayr, S M; Workman, J L; Horikoshi, M; Roeder, R G

    1989-01-01

    In the presence of partially purified pseudorabies virus immediate-early protein, multiple sites of DNase I protection were observed on the adenovirus major late and human hsp 70 promoters. Southwestern (DNA-protein blot) analysis demonstrated that the immediate-early protein bound directly to the sequences contained in these sites. These sequences share only limited homology, differ in their affinities for the immediate-early protein, and are located at different positions on these two promoters. In addition, the site-specific binding of a temperature-sensitive immediate-early protein was eliminated by the same heat treatment which eliminates its transcriptional activating function, whereas the binding of the wild-type protein was unaffected by heat treatment. Thus, site-specific binding requires a functionally active immediate-early protein. Furthermore, immediate-early-protein-dependent in vitro transcription from the major late promoter was preferentially inhibited by oligonucleotides which are homologous to the high-affinity binding sites on the major late or hsp 70 promoters. These observations suggest that transcriptional stimulation by the immediate-early protein involves binding to cis-acting elements. Images PMID:2539489

  20. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  1. The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures.

    PubMed

    Assal, Yasmine; Mie, Masayasu; Kobatake, Eiry

    2013-04-01

    An appropriate method to bind extracellular matrix (ECM) proteins and growth factors using advanced protein engineering techniques has the potential to enhance cell proliferation and differentiation for tissue regeneration and repair. In this study we developed a method to co-immobilize non-covalently an ECM protein to three different types of growth factors: basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and single-chain vascular endothelial growth factor (scVEGF121) through a coiled-coil structure formed by helixA/helixB in order to promote angiogenesis. The designed ECM was established by fusing two repeats of elastin-derived unit (APGVGV)(12), cell-adhesive sequence (RGD), laminin-derived IKVAV sequence and collagen-binding domain (CBD) to obtain CBDEREI2. HelixA was fused to each growth factor and helixB to the engineered ECM. Human umbilical vein endothelial cells (HUVECs) were cultured on engineered ECM and growth factors connected through the coiled-coil formation between helixA and helixB. Cell proliferation and capillary tube-like formation were monitored. Moreover, the differentiated cells with high expression of Ang-2 suggested the ECM remodeling. Our approach of non-covalent coupling method should provide a protein-release control system as a new contribution in biomaterial for tissue engineering field.

  2. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    PubMed

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods.

  3. The anaphase promoting complex: a critical target for viral proteins and anti-cancer drugs.

    PubMed

    Heilman, Destin W; Green, Michael R; Teodoro, Jose G

    2005-04-01

    The study of animal viruses has provided extraordinary insights into cell cycle dynamics and tumor biology. The significance of the p53 and Rb tumor suppressor proteins, for example, was discovered due to their interactions with viral oncogenes. In the past several years, investigations with four viral proteins, human immunodeficiency virus type 1 (HIV-1) vpr, adenovirus E4orf4, chicken anemia virus (CAV) apoptin and human T lymphotropic virus type I (HTLV-I) Tax, have indicated that there are also critical viral targets involved in G2/M control. In particular, recent studies with E4orf4 and apoptin have shown that they induce G2/M arrest by targeting and inhibiting the anaphase-promoting complex/cyclosome (APC/C). Notably, these two viral proteins induce apoptosis selectively in transformed cells in a p53-independent manner; thus pathways affected by these proteins are of significant therapeutic interest. Further investigation of the underlying mechanism of G2/M arrest and subsequent apoptosis induced by viral APC/C inhibitors may shed light on the mechanisms of current cancer therapies and provide the foundation for developing novel therapeutic targets.

  4. Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish.

    PubMed

    Yin, Wu; Hu, Bing

    2014-01-01

    Demyelinating diseases include multiple sclerosis, which is a neurodegenerative disease characterized by immune attacks on the central nervous system (CNS), resulting in myelin sheath damage and axonal loss. Leucine-rich repeat and immunoglobulin domain-containing neurite outgrowth inhibitory protein (Nogo) receptor-interacting protein-1 (LINGO-1) have been identified as a negative regulator of oligodendrocytes differentiation. Targeted LINGO-1 inhibition promotes neuron survival, axon regeneration, oligodendrocyte differentiation, and remyelination in diverse animal models. Although studies in rodent models have extended our understanding of LINGO-1, its roles in neural development and myelination in zebrafish (Danio rerio) are not yet clear. In this study, we cloned the zebrafish homolog of the human LINGO-1 and found that lingo1b regulated myelination and oligodendrocyte differentiation. The expression of lingo1b started 1 (mRNA) and 2 (protein) days post-fertilization (dpf) in the CNS. Morpholino oligonucleotide knockdown of lingo1b resulted in developmental abnormalities, including less dark pigment, small eyes, and a curly spinal cord. The lack of lingo1b enhanced myelination and oligodendrocyte differentiation during embryogenesis. Furthermore, immunohistochemistry and movement analysis showed that lingo1b was involved in the axon development of primary motor neurons. These results suggested that Lingo1b protein functions as a negative regulator of myelination and oligodendrocyte differentiation during zebrafish development.

  5. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis

    PubMed Central

    Martin, Katherine; Pritchett, James; Llewellyn, Jessica; Mullan, Aoibheann F.; Athwal, Varinder S.; Dobie, Ross; Harvey, Emma; Zeef, Leo; Farrow, Stuart; Streuli, Charles; Henderson, Neil C.; Friedman, Scott L.; Hanley, Neil A.; Piper Hanley, Karen

    2016-01-01

    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis. PMID:27535340

  6. A Bacterial Virulence Protein Promotes Pathogenicity by Inhibiting the Bacterium's Own F1Fo ATP Synthase

    PubMed Central

    Lee, Eun-Jin; Pontes, Mauricio H.; Groisman, Eduardo A.

    2013-01-01

    SUMMARY Several intracellular pathogens including Salmonella enterica and Mycobacterium tuberculosis require the virulence protein MgtC to survive within macrophages and to cause a lethal infection in mice. We now report that, unlike secreted virulence factors that target the host vacuolar ATPase to withstand phagosomal acidity, the MgtC protein acts on Salmonella's own F1Fo ATP synthase. This complex couples proton translocation to ATP synthesis/ hydrolysis and is required for virulence. We establish that MgtC interacts with the a subunit of the F1Fo ATP synthase, hindering ATP-driven proton translocation and NADH-driven ATP synthesis in inverted vesicles. An mgtC null mutant displays heightened ATP levels and an acidic cytoplasm whereas mgtC overexpression decreases ATP levels. A single amino acid substitution in MgtC that prevents binding to the F1Fo ATP synthase abolishes control of ATP levels and attenuates pathogenicity. MgtC provides a singular example of a virulence protein that promotes pathogenicity by interfering with another virulence protein. PMID:23827679

  7. Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis

    PubMed Central

    Li, Zhi-Gang; Chen, Hao-Wei; Li, Qing-Tian; Tao, Jian-Jun; Bian, Xiao-Hua; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene perceived by a family of five receptors regulates many developmental processes in Arabidopsis. Here we conducted the yeast two-hybrid assay to screen for additional unidentified proteins that interact with subfamily II ethylene receptor ETR2. Three SAUR proteins, named SAUR76, 77 and 78, were identified to associate with both ETR2 and EIN4 in different assays. Interaction of SAUR76 and SAUR78 with ETR2 was further verified by co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays. Expressions of SAUR76-78 are induced by auxin and ethylene treatments. Compared with wild type, SAUR-overexpressing plants exhibit reduced ethylene sensitivity, while SAUR-RNAi lines exhibit enhanced ethylene sensitivity. Overexpressing the three SAURs partially complements the phenotype of subfamily II ethylene receptor loss-of-function double mutant etr2-3ein4-4, which has increased ethylene response and small cotyledon and rosette. saur76 mutation partially suppresses the reduced ethylene sensitivity of etr2-2. SAUR76/78 proteins are regulated by 26S proteasome system and larger tag increases their protein stability. These findings suggest that SAUR76-78 may affect ethylene receptor signaling and promote plant growth in Arabidopsis. PMID:26207341

  8. Protein Mass-Modulated Effects in the Catalytic Mechanism of Dihydrofolate Reductase: Beyond Promoting Vibrations

    PubMed Central

    2015-01-01

    The role of fast protein dynamics in enzyme catalysis has been of great interest in the past decade. Recent “heavy enzyme” studies demonstrate that protein mass-modulated vibrations are linked to the energy barrier for the chemical step of catalyzed reactions. However, the role of fast dynamics in the overall catalytic mechanism of an enzyme has not been addressed. Protein mass-modulated effects in the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR) are explored by isotopic substitution (13C, 15N, and non-exchangeable 2H) of the wild-type ecDHFR (l-DHFR) to generate a vibrationally perturbed “heavy ecDHFR” (h-DHFR). Steady-state, pre-steady-state, and ligand binding kinetics, intrinsic kinetic isotope effects (KIEint) on the chemical step, and thermal unfolding experiments of both l- and h-DHFR show that the altered protein mass affects the conformational ensembles and protein–ligand interactions, but does not affect the hydride transfer at physiological temperatures (25–45 °C). Below 25 °C, h-DHFR shows altered transition state (TS) structure and increased barrier-crossing probability of the chemical step compared with l-DHFR, indicating temperature-dependent protein vibrational coupling to the chemical step. Protein mass-modulated vibrations in ecDHFR are involved in TS interactions at cold temperatures and are linked to dynamic motions involved in ligand binding at physiological temperatures. Thus, mass effects can affect enzymatic catalysis beyond alterations in promoting vibrations linked to chemistry. PMID:24820793

  9. The Membrane Protein LasM Promotes the Culturability of Legionella pneumophila in Water

    PubMed Central

    Li, Laam; Faucher, Sébastien P.

    2016-01-01

    The water-borne pathogen Legionella pneumophila (Lp) strongly expresses the lpg1659 gene in water. This gene encodes a hypothetical protein predicted to be a membrane protein using in silico analysis. While no conserved domains were identified in Lpg1659, similar proteins are found in many Legionella species and other aquatic bacteria. RT-qPCR showed that lpg1659 is positively regulated by the alternative sigma factor RpoS, which is essential for Lp to survive in water. These observations suggest an important role of this novel protein in the survival of Lp in water. Deletion of lpg1659 did not affect cell morphology, membrane integrity or tolerance to high temperature. Moreover, lpg1659 was dispensable for growth of Lp in rich medium, and during infection of the amoeba Acanthamoeba castellanii and of THP-1 human macrophages. However, deletion of lpg1659 resulted in an early loss of culturability in water, while over-expression of this gene promoted the culturability of Lp. Therefore, these results suggest that lpg1659 is required for Lp to maintain culturability, and possibly long-term survival, in water. Since the loss of culturability observed in the absence of Lpg1659 was complemented by the addition of trace metals into water, this membrane protein is likely a transporter for acquiring essential trace metal for maintaining culturability in water and potentially in other metal-deprived conditions. Given its role in the survival of Lp in water, Lpg1659 was named LasM for Legionella aquatic survival membrane protein. PMID:27734007

  10. The cellular transcription factor SP1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter.

    PubMed Central

    Pereira, D J; Muzyczka, N

    1997-01-01

    Control of adeno-associated virus (AAV) transcription from the three AAV promoters (p5, p19, and p40) requires the adenovirus E1a protein and the AAV nonstructural (Rep) proteins. The Rep proteins have been shown to repress the AAV p5 promoter yet facilitate activation of the p19 and p40 promoters during a productive infection. To elucidate the mechanism of promoter regulation by the AAV Rep proteins, the cellular factors involved in mediating Rep activation of the p19 promoter were characterized. A series of protein-DNA binding experiments using extracts derived from uninfected HeLa cells was performed to identify cellular factors that bind to the p19 promoter. Electrophoretic mobility shift assays, DNase I protection analyses, and UV cross-linking experiments demonstrated specific interactions with the cellular factor SP1 (or an SP1-like protein) at positions -50 and -130 relative to the start of p19 transcription. Additionally, an unknown cellular protein (cellular AAV activating protein [cAAP]) with an approximate molecular mass of 34 kDa was found to interact with a CArG-like element at position -140. Mutational analysis of the p19 promoter suggested that the SP1 site at -50 and the cAAP site at -140 were necessary to mediate Rep activation of p19. Antibody precipitation experiments demonstrated that Rep-SP1 protein complexes can exist in vivo. Although Rep was demonstrated to interact with p19 DNA directly, the affinity of Rep binding was much lower than that seen for the Rep binding elements within the terminal repeat and the p5 promoter. Furthermore, the interaction of purified Rep68 with the p19 promoter in vitro was negligible unless purified SP1 was also added to the reaction. Thus, the ability of Rep to transactivate the p19 promoter is likely to involve SP1-Rep protein contacts that facilitate Rep interaction with p19 DNA. PMID:9032303

  11. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein

    PubMed Central

    Wei, Chunli; Cheng, Jingliang; Zhou, Boxv; Zhu, Li; Khan, Md. Asaduzzaman; He, Tao; Zhou, Sufang; He, Jian; Lu, Xiaoling; Chen, Hanchun; Zhang, Dianzheng; Zhao, Yongxiang; Fu, Junjiang

    2016-01-01

    TRIM28 regulates its target genes at both transcriptional and posttranscriptional levels. Here we report that a TRIM28-TWIST1-EMT axis exists in breast cancer cells and TRIM28 promotes breast cancer metastasis by stabilizing TWIST1 and subsequently enhancing EMT. We find that TRIM28 is highly expressed in both cancer cell lines and advanced breast cancer tissues, and the levels of TRIM28 and TWIST1 are positively correlated with the aggressiveness of breast carcinomas. Overexpression and depletion of TRIM28 up- and down-regulates the protein, but not the mRNA levels of TWIST1, respectively, suggesting that TRIM28 upregulates TWIST1 post-transcriptionally. Overexpression of TRIM28 in breast cancer cell line promotes cell migration and invasion. Knockdown of TRIM28 reduces the protein level of TWIST1 with concurrent upregulation of E-cadherin and downregulation of N-cadherin and consequently inhibits cell migration and invasion. Furthermore, Immunoprecipitation and GST pull-down assays demonstrated that TRIM28 interacts with TWIST1 directly and this interaction is presumed to protect TWIST1 from degradation. Our study revealed a novel mechanism in breast cancer cells that TRIM28 enhances metastasis by stabilizing TWIST1, suggesting that targeting TRIM28 could be an efficacious strategy in breast cancer treatment. PMID:27412325

  12. Axl Phosphorylates Elmo Scaffold Proteins To Promote Rac Activation and Cell Invasion

    PubMed Central

    Abu-Thuraia, Afnan; Gauthier, Rosemarie; Chidiac, Rony; Fukui, Yoshinori; Screaton, Robert A.; Gratton, Jean-Philippe

    2014-01-01

    The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic progression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein, we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenesis studies reveal that Axl phosphorylates Elmo1/2 on a conserved carboxyl-terminal tyrosine residue. Upon Gas6-dependent activation of Axl, endogenous Elmo2 becomes phosphorylated on Tyr-713 and enters into a physical complex with Axl in breast cancer cells. Interfering with Elmo2 expression prevented Gas6-induced Rac1 activation in breast cancer cells. Similarly to blocking of Axl, Elmo2 knockdown or pharmacological inhibition of Dock1 abolishes breast cancer cell invasion. Interestingly, Axl or Elmo2 knockdown diminishes breast cancer cell proliferation. Rescue of Elmo2 knockdown cells with the wild-type protein but not with Elmo2 harboring Tyr-713-Phe mutations restores cell invasion and cell proliferation. These results define a new mechanism by which Axl promotes cell proliferation and invasion and identifies inhibition of the Elmo-Dock pathway as a potential therapeutic target to stop Axl-induced metastases. PMID:25332238

  13. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    PubMed

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.

  14. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor.

    PubMed

    de Laat, Rian; Meabon, James S; Wiley, Jesse C; Hudson, Mark P; Montine, Thomas J; Bothwell, Mark

    2015-01-01

    Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP) by β-secretase and γ-secretase generate amyloid β (Aβ) peptides, which are thought to contribute to Alzheimer's disease (AD). Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  15. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    PubMed

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  16. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio )

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  17. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133.

    PubMed

    Shmelkov, Sergey V; Jun, Lin; St Clair, Ryan; McGarrigle, Deirdre; Derderian, Christopher A; Usenko, Jaroslav K; Costa, Carla; Zhang, Fan; Guo, Xinzheng; Rafii, Shahin

    2004-03-15

    AC133 is a member of a novel family of cell surface proteins with 5 transmembrane domains. The function of AC133 is unknown. Although AC133 mRNA is detected in different tissues, its expression in the hematopoietic system is restricted to CD34+ stem cells. AC133 is also expressed on stem cells of other tissues, including endothelial progenitor cells. However, despite the potential importance of AC133 to the field of stem cell biology, nothing is known about the transcriptional regulation of AC133 expression. In this report we showed that the human AC133 gene has at least 9 distinctive 5'-untranslated region (UTR) exons, resulting in the formation of at least 7 alternatively spliced 5'-UTR isoforms of AC133 mRNA, which are expressed in a tissue-dependent manner. We found that transcription of these AC133 isoforms is controlled by 5 alternative promoters, and we demonstrated their activity on AC133-expressing cell lines using a luciferase reporter system. We also showed that in vitro methylation of 2 of these AC133 promoters completely suppresses their activity, suggesting that methylation plays a role in their regulation. Identification of tissue-specific AC133 promoters may provide a novel method to isolate tissue-specific stem and progenitor cells.

  18. Direct inhibition of TNF-α promoter activity by Fanconi anemia protein FANCD2.

    PubMed

    Matsushita, Nobuko; Endo, Yujiro; Sato, Koichi; Kurumizaka, Hitoshi; Yamashita, Takayuki; Takata, Minoru; Yanagi, Shigeru

    2011-01-01

    Fanconi anemia (FA), an inherited disease, is associated with progressive bone marrow failure, predisposition to cancer, and genomic instability. Genes corresponding to 15 identified FA complementation groups have been cloned, and each gene product functions in the response to DNA damage induced by cross-linking agents and/or in protection against genome instability. Interestingly, overproduction of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and aberrant activation of NF-κB-dependent transcriptional activity have been observed in FA cells. Here we demonstrated that FANCD2 protein inhibits NF-κB activity in its monoubiquitination-dependent manner. Furthermore, we detected a specific association between FANCD2 and an NF-κB consensus element in the TNF-α promoter by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assay. Therefore, we propose FANCD2 deficiency promotes transcriptional activity of the TNF-α promoter and induces overproduction of TNF-which then sustains prolonged inflammatory responses. These results also suggest that artificial modulation of TNFα production could be a promising therapeutic approach to FA.

  19. RNA-Binding Protein AUF1 Promotes Myogenesis by Regulating MEF2C Expression Levels

    PubMed Central

    Panda, Amaresh C.; Abdelmohsen, Kotb; Yoon, Je-Hyun; Martindale, Jennifer L.; Yang, Xiaoling; Curtis, Jessica; Mercken, Evi M.; Chenette, Devon M.; Zhang, Yongqing; Schneider, Robert J.; Becker, Kevin G.; de Cabo, Rafael

    2014-01-01

    The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D [hnRNP D]) binds to numerous mRNAs and influences their posttranscriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RNP immunoprecipitation (RIP) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor MEF2C. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3′ untranslated region (UTR) of Mef2c mRNA and promoted MEF2C translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring MEF2C expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that MEF2C is a key effector of the myogenesis program promoted by AUF1. PMID:24891619

  20. Nerve Growth Factor Promoter Activity Revealed in Mice Expressing Enhanced Green Fluorescent Protein

    PubMed Central

    Kawaja, Michael D.; Smithson, Laura J.; Elliott, Janet; Trinh, Gina; Crotty, Anne-Marie; Michalski, Bernadeta; Fahnestock, Margaret

    2012-01-01

    Nerve growth factor (NGF) and its precursor proNGF are perhaps the best described growth factors of the mammalian nervous system. There remains, however, a paucity of information regarding the precise cellular sites of proNGF/NGF synthesis. Here we report the generation of transgenic mice in which the NGF promoter controls the ectopic synthesis of enhanced green fluorescent protein (EGFP). These transgenic mice provide an unprecedented resolution of both neural cells (e.g., neocortical and hippocampal neurons) and non-neural cells (e.g., renal interstitial cells and thymic reticular cells) that display NGF promoter activity from postnatal development to adulthood. Moreover, the transgene is inducible by injury. At 2 days after sciatic nerve ligation, a robust population of EGFP-positive cells is seen in the proximal nerve stump. These transgenic mice offer novel insights into the cellular sites of NGF promoter activity and can be used as models for investigating the regulation of proNGF/NGF expression after injury. PMID:21456011

  1. Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling

    PubMed Central

    Tsai, Wan-Chen; Chen, Chien-Lin; Chen, Hong-Chen

    2015-01-01

    Invadopodia are actin-enriched membrane protrusions that are important for extracellular matrix degradation and invasive cell motility. Src homolog domain-containing phosphatase 2 (SHP2), a non-receptor protein tyrosine phosphatase, has been shown to play an important role in promoting cancer metastasis, but the underlying mechanism is unclear. In this study, we found that depletion of SHP2 by short-hairpin RNA suppressed invadopodia formation in several cancer cell lines, particularly in the SAS head and neck squamous cell line. In contrast, overexpression of SHP2 promoted invadopodia formation in the CAL27 head and neck squamous cell line, which expresses low levels of endogenous SHP2. The depletion of SHP2 in SAS cells significantly decreased their invasive motility. The suppression of invadopodia formation by SHP2 depletion was restored by the Clostridium botulinum C3 exoenzyme (a Rho GTPase inhibitor) or Y27632 (a specific inhibitor for Rho-associated kinase). Together, our results suggest that SHP2 may promote invadopodia formation through inhibition of Rho signaling in cancer cells. PMID:26204488

  2. Matrix Gla protein (MGP) promoter polymorphic variants and its serum level in stenosis of coronary artery.

    PubMed

    Najafi, Mohammad; Roustazadeh, Abazar; Amirfarhangi, Abdollah; Kazemi, Bahram

    2014-03-01

    Although the role of matrix Gla protein (MGP) is not completely known but, its expression within subendothelial macrophages and vascular smooth muscle cells is suggested to be involved in vascular calcification. In this study, we investigated the associations between the serum MGP levels and the MGP promoter high minor allele frequency (MAF) variants with the development of stenosis in coronary arteries. Moreover, we evaluated the allele changes within predicted transcription factor elements with bioinformatics tools. 182 subjects were recruited from who underwent coronary angiography. The MGP promoter rs1800801, rs1800802 and rs1800799 genotypes and haplotypes were detected by ARMS-RFLP PCR techniques. The serum MGP concentration was measured using ELISA method. Jaspar profiles were used for scoring the polymorphic variations within the transcription factor elements. The genotype and two-allelic haplotype distributions were not significant between the patient and control groups (P > 0.05). The serum MGP levels had not significant differences between the genotypes (P > 0.1) and haplotypes (P > 0.4). Based on the prediction studies, we did not observe significant differences between the polymorphic scores in the predicted elements (P > 0.05). We concluded that the genotype and haplotype distributions of the MGP promoter high-MAF polymorphisms, as confirmed in the prediction studies and the serum MGP level are not significantly associated with the coronary artery disease. Based on the study results, the MGP protein did not play an important role in the development of stenosis of coronary arteries.

  3. Peptidoglycan recognition protein 1 promotes house dust mite-induced airway inflammation in mice.

    PubMed

    Yao, Xianglan; Gao, Meixia; Dai, Cuilian; Meyer, Katharine S; Chen, Jichun; Keeran, Karen J; Nugent, Gayle Z; Qu, Xuan; Yu, Zu-Xi; Dagur, Pradeep K; McCoy, J Philip; Levine, Stewart J

    2013-12-01

    Peptidoglycan recognition protein (Pglyrp) 1 is a pattern-recognition protein that mediates antibacterial host defense. Because we had previously shown that Pglyrp1 expression is increased in the lungs of house dust mite (HDM)-challenged mice, we hypothesized that it might modulate the pathogenesis of asthma. Wild-type and Pglyrp1(-/-) mice on a BALB/c background received intranasal HDM or saline, 5 days/week for 3 weeks. HDM-challenged Pglyrp1(-/-) mice showed decreases in bronchoalveolar lavage fluid eosinophils and lymphocytes, serum IgE, and mucous cell metaplasia, whereas airway hyperresponsiveness was not changed when compared with wild-type mice. T helper type 2 (Th2) cytokines were reduced in the lungs of HDM-challenged Pglyrp1(-/-) mice, which reflected a decreased number of CD4(+) Th2 cells. There was also a reduction in C-C chemokines in bronchoalveolar lavage fluid and lung homogenates from HDM-challenged Pglyrp1(-/-) mice. Furthermore, secretion of CCL17, CCL22, and CCL24 by alveolar macrophages from HDM-challenged Pglyrp1(-/-) mice was markedly reduced. As both inflammatory cells and airway epithelial cells express Pglyrp1, bone marrow transplantation was performed to generate chimeric mice and assess which cell type promotes HDM-induced airway inflammation. Chimeric mice lacking Pglyrp1 on hematopoietic cells, not structural cells, showed a reduction in HDM-induced eosinophilic and lymphocytic airway inflammation. We conclude that Pglyrp1 expressed by hematopoietic cells, such as alveolar macrophages, mediates HDM-induced airway inflammation by up-regulating the production of C-C chemokines that recruit eosinophils and Th2 cells to the lung. This identifies a new family of innate immune response proteins that promotes HDM-induced airway inflammation in asthma.

  4. Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence

    PubMed Central

    Ember, Stuart W. J.; Ren, Hongwei; Ferguson, Brian J.

    2012-01-01

    Vaccinia virus (VACV) strain Western Reserve protein C4 has been characterized and its function and contribution to virus virulence assessed. Bioinformatic analysis showed that C4 is conserved in six orthopoxvirus species and shares 43 % amino acid identity with VACV protein C16, a known virulence factor. A recombinant VACV expressing a C-terminally tagged version of C4 showed that, like C16, this 37 kDa protein is expressed early during infection and localizes to both the cytoplasm and the nucleus. Functional assays using a firefly luciferase reporter plasmid under the control of a nuclear factor kappa B (NF-κB)-dependent promoter demonstrated that C4 inhibits NF-κB activation at, or downstream of, the inhibitor of kappa kinase (IKK) complex. Consistent with this, C4 inhibited interleukin-1β-induced translocation of p65 into the nucleus. A VACV lacking the C4L gene (vΔC4) showed no significant differences from wild-type virus in growth kinetics or spread in cell culture, but had reduced virulence in a murine intranasal model of infection. vΔC4-infected mice exhibited fewer symptoms, lost less weight and recovered 7 days earlier than animals infected with control viruses expressing C4. Furthermore, bronchoalveolar lavage fluid from vΔC4-infected mice had increased cell numbers at day 5 post-infection, which correlated with reduced lung virus titres from this time onward. C4 represents the ninth VACV protein to inhibit NF-κB activation and remarkably, in every case examined, loss of each protein individually caused an alteration in virus virulence, despite the presence of other NF-κB inhibitors. PMID:22791606

  5. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins.

    PubMed

    Villarroya-Beltri, Carolina; Baixauli, Francesc; Mittelbrunn, María; Fernández-Delgado, Irene; Torralba, Daniel; Moreno-Gonzalo, Olga; Baldanta, Sara; Enrich, Carlos; Guerra, Susana; Sánchez-Madrid, Francisco

    2016-11-24

    Exosomes are vesicles secreted to the extracellular environment through fusion with the plasma membrane of specific endosomes called multivesicular bodies (MVB) and mediate cell-to-cell communication in many biological processes. Posttranslational modifications are involved in the sorting of specific proteins into exosomes. Here we identify ISGylation as a ubiquitin-like modification that controls exosome release. ISGylation induction decreases MVB numbers and impairs exosome secretion. Using ISG15-knockout mice and mice expressing the enzymatically inactive form of the de-ISGylase USP18, we demonstrate in vitro and in vivo that ISG15 conjugation regulates exosome secretion. ISG15 conjugation triggers MVB co-localization with lysosomes and promotes the aggregation and degradation of MVB proteins. Accordingly, inhibition of lysosomal function or autophagy restores exosome secretion. Specifically, ISGylation of the MVB protein TSG101 induces its aggregation and degradation, being sufficient to impair exosome secretion. These results identify ISGylation as a novel ubiquitin-like modifier in the control of exosome production.

  6. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis.

    PubMed

    Augustin, Iris; Goidts, Violaine; Bongers, Angelika; Kerr, Grainne; Vollert, Gordon; Radlwimmer, Bernhard; Hartmann, Christian; Herold-Mende, Christel; Reifenberger, Guido; von Deimling, Andreas; Boutros, Michael

    2012-01-01

    Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production.

  7. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins

    PubMed Central

    Villarroya-Beltri, Carolina; Baixauli, Francesc; Mittelbrunn, María; Fernández-Delgado, Irene; Torralba, Daniel; Moreno-Gonzalo, Olga; Baldanta, Sara; Enrich, Carlos; Guerra, Susana; Sánchez-Madrid, Francisco

    2016-01-01

    Exosomes are vesicles secreted to the extracellular environment through fusion with the plasma membrane of specific endosomes called multivesicular bodies (MVB) and mediate cell-to-cell communication in many biological processes. Posttranslational modifications are involved in the sorting of specific proteins into exosomes. Here we identify ISGylation as a ubiquitin-like modification that controls exosome release. ISGylation induction decreases MVB numbers and impairs exosome secretion. Using ISG15-knockout mice and mice expressing the enzymatically inactive form of the de-ISGylase USP18, we demonstrate in vitro and in vivo that ISG15 conjugation regulates exosome secretion. ISG15 conjugation triggers MVB co-localization with lysosomes and promotes the aggregation and degradation of MVB proteins. Accordingly, inhibition of lysosomal function or autophagy restores exosome secretion. Specifically, ISGylation of the MVB protein TSG101 induces its aggregation and degradation, being sufficient to impair exosome secretion. These results identify ISGylation as a novel ubiquitin-like modifier in the control of exosome production. PMID:27882925

  8. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells.

    PubMed

    Zeng, An; Li, Yong-Qin; Wang, Chen; Han, Xiao-Shuai; Li, Ge; Wang, Jian-Yong; Li, Dang-Sheng; Qin, Yong-Wen; Shi, Yufang; Brewer, Gary; Jing, Qing

    2013-04-29

    Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.

  9. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis

    PubMed Central

    Augustin, Iris; Goidts, Violaine; Bongers, Angelika; Kerr, Grainne; Vollert, Gordon; Radlwimmer, Bernhard; Hartmann, Christian; Herold-Mende, Christel; Reifenberger, Guido; von Deimling, Andreas; Boutros, Michael

    2012-01-01

    Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production. PMID:22147553

  10. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss

    PubMed Central

    Yuan, X; Cao, J; Liu, T; Li, Y-P; Scannapieco, F; He, X; Oursler, M J; Zhang, X; Vacher, J; Li, C; Olson, D; Yang, S

    2015-01-01

    Regulators of G protein signaling (Rgs) have pivotal roles in controlling various cellular processes, such as cell differentiation. How Rgs proteins regulate osteoclast (OC) differentiation, function and bone homeostasis is poorly understood. It was previously demonstrated that Rgs12, the largest protein in the Rgs family, is predominantly expressed in OCs and regulates OC differentiation in vitro. To further understand the role and mechanism of Rgs12 in OC differentiation and bone diseases in vivo, we created OC-targeted Rgs12 knockout mice by using inducible Mx1-Cre and CD11b-Cre. Deletion of Rgs12 in hematopoietic cells or specifically in OC precursors resulted in increased bone mass with decreased OC numbers. Loss of Rgs12 impaired OC differentiation and function with impaired Ca2+ oscillations and reduced nuclear factor of activated T cells (NFAT) 2 expression. The introduction of wild-type osteoblasts did not rescue the defective osteoclastogenesis. Ectopic expression of NFAT2 rescued defective OC differentiation in CD11b;Rgs12fl/fl cells and promoted normal OC differentiation. Moreover, deletion of Rgs12 significantly inhibited pathological osteoclastogenesis and bone destruction in Rgs12-deficient mice that were subjected to ovariectomy and lipodysaccharide for bone loss. Thus our findings demonstrate that Rgs12 is an important regulator in OC differentiation and function and identify Rgs12 as a potential therapeutic target for osteoporosis and inflammation-induced bone loss. PMID:25909889

  11. Bromodomain protein Brd3 promotes Ifnb1 transcription via enhancing IRF3/p300 complex formation and recruitment to Ifnb1 promoter in macrophages

    PubMed Central

    Ren, Wenhui; Wang, Chunmei; Wang, Qinlan; Zhao, Dezhi; Zhao, Kai; Sun, Donghao; Liu, Xingguang; Han, Chaofeng; Hou, Jin; Li, Xia; Zhang, Qian; Cao, Xuetao; Li, Nan

    2017-01-01

    As members of bromodomain and extra-terminal motif protein family, bromodomain-containing proteins regulate a wide range of biological processes including protein scaffolding, mitosis, cell cycle progression and transcriptional regulation. The function of these bromodomain proteins (Brds) in innate immune response has been reported but the role of Brd3 remains unclear. Here we find that virus infection significantly downregulate Brd3 expression in macrophages and Brd3 knockout inhibits virus-triggered IFN-β production. Brd3 interacts with both IRF3 and p300, increases p300-mediated acetylation of IRF3, and enhances the association of IRF3 with p300 upon virus infection. Importantly, Brd3 promotes the recruitment of IRF3/p300 complex to the promoter of Ifnb1, and increases the acetylation of histone3/histone4 within the Ifnb1 promoter, leading to the enhancement of type I interferon production. Therefore, our work indicated that Brd3 may act as a coactivator in IRF3/p300 transcriptional activation of Ifnb1 and provided new epigenetic mechanistic insight into the efficient activation of the innate immune response. PMID:28045112

  12. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans.

    PubMed

    Poidevin, Laetitia; Andreeva, Kalina; Khachatoorian, Careen; Judelson, Howard S

    2015-01-01

    Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.

  13. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    SciTech Connect

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  14. Protein depletion using the arabinose promoter in Xanthomonas citri subsp. citri.

    PubMed

    Lacerda, Lilian A; Cavalca, Lucia B; Martins, Paula M M; Govone, José S; Bacci, Maurício; Ferreira, Henrique

    2017-03-23

    Xanthomonas citri subsp. citri (X. citri) is a plant pathogen and the etiological agent of citrus canker, a severe disease that affects all the commercially important citrus varieties, and has worldwide distribution. Citrus canker cannot be healed, and the best method known to control the spread of X. citri in the orchards is the eradication of symptomatic and asymptomatic plants in the field. However, in the state of São Paulo, Brazil, the main orange producing area in the world, control is evolving to an integrated management system (IMS) in which growers have to use less susceptible plants, windshields to prevent bacterial spread out and sprays of cupric bactericidal formulations. Our group has recently proposed alternative methods to control citrus canker, which are based on the use of chemical compounds able to disrupt vital cellular processes of X. citri. An important step in this approach is the genetic and biochemical characterization of genes/proteins that are the possible targets to be perturbed, a task not always simple when the gene/protein under investigation is essential for the organism. Here, we describe vectors carrying the arabinose promoter that enable controllable protein expression in X. citri. These vectors were used as complementation tools for the clean deletion of parB in X. citri, a widespread and conserved gene involved in the essential process of bacterial chromosome segregation. Overexpression or depletion of ParB led to increased cell size, which is probably a resultant of delayed chromosome segregation with subsequent retard of cell division. However, ParB is not essential in X. citri, and in its absence the bacterium was fully competent to colonize the host citrus and cause disease. The arabinose expression vectors described here are valuable tools for protein expression, and especially, to assist in the deletion of essential genes in X. citri.

  15. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    PubMed Central

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  16. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis.

    PubMed

    Yuan, Hui; Owsiany, Katherine; Sheeja, T E; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W; Parthasarathy, Mandayam V; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-09-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtOR(His) (R90H) or SbOR(His) (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtOR(Ala) (R90A) functioned similarly to AtOR(His) to promote carotenoid overproduction. Neither AtOR nor AtOR(His) greatly affected carotenogenic gene expression. AtOR(His) exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtOR(His) triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtOR(His) in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates OR(His/Ala) as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying OR(His)-regulated carotenoid accumulation.

  17. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation.

    PubMed

    Chen, Hanbei; Wu, Lifang; Li, Yakui; Meng, Jian; Lin, Ning; Yang, Dianqiang; Zhu, Yemin; Li, Xiaoyong; Li, Minle; Xu, Ye; Wu, Yuchen; Tong, Xuemei; Su, Qing

    2014-09-01

    Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients.

  18. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    SciTech Connect

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark Dharmarajan, Arunasalam

    2008-12-12

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  19. Chronic high levels of the RCAN1-1 protein may promote neurodegeneration and Alzheimer disease.

    PubMed

    Ermak, Gennady; Davies, Kelvin J A

    2013-09-01

    The RCAN1 gene encodes three different protein isoforms: RCAN1-4, RCAN1-1L, and RCAN1-1S. RCAN1-1L is the RCAN1 isoform predominantly expressed in human brains. RCAN1 proteins have been shown to regulate various other proteins and cellular functions, including calcineurin, glycogen synthase kinase-3β (GSK-3β), the mitochondrial adenine nucleotide transporter (ANT), stress adaptation, ADP/ATP exchange in mitochondria, and the mitochondrial permeability transition pore (mtPTP). The effects of increased RCAN1 gene expression seem to depend both on the specific RCAN1 protein isoform(s) synthesized and on the length of time the level of each isoform is elevated. Transiently elevated RCAN1-4 and RCAN1-1L protein levels, lasting just a few hours, can be neuroprotective under acute stress conditions, including acute oxidative stress. We propose that, by transiently inhibiting the phosphatase calcineurin, RCAN1-4 and RCAN1-1L may reinforce and extend protective stress-adaptive cell responses. In contrast, prolonged elevation of RCAN1-1L levels is associated with the types of neurodegeneration observed in several diseases, including Alzheimer disease and Down syndrome. RCAN1-1L levels can also be increased by multiple chronic stresses and by glucocorticoids, both of which can cause neurodegeneration. Although increasing levels of RCAN1-1L for just a few months has no overtly obvious neurodegenerative effect, it does suppress neurogenesis. Longer term elevation of RCAN1-1L levels (for at least 16 months), however, can lead to the first signs of neurodegeneration. Such neurodegeneration may be precipitated by (RCAN1-1L-mediated) prolonged calcineurin inhibition and GSK-3β induction/activation, both of which promote tau hyperphosphorylation, and/or by (RCAN1-1L-mediated) effects on the mitochondrial ANT, diminished ATP/ADP ratio, opening of the mtPTP, and mitochondrial autophagy. We propose that RCAN1-1L operates through various molecular mechanisms, primarily dependent upon

  20. Ezrin/Radixin/Moesin proteins and flotillins cooperate to promote uropod formation in T cells.

    PubMed

    Martinelli, Sibylla; Chen, Emily J H; Clarke, Fiona; Lyck, Ruth; Affentranger, Sarah; Burkhardt, Janis K; Niggli, Verena

    2013-01-01

    T cell uropods are enriched in specific proteins including adhesion receptors such as P-selectin glycoprotein ligand-1 (PSGL-1), lipid raft-associated proteins such as flotillins and ezrin/radixin/moesin (ERM) proteins which associate with cholesterol-rich raft domains and anchor adhesion receptors to the actin cytoskeleton. Using dominant mutants and siRNA technology we have tested the interactions among these proteins and their role in shaping the T cell uropod. Expression of wild type (WT) ezrin-EGFP failed to affect the morphology of human T cells or chemokine-induced uropod recruitment of PSGL-1 and flotillin-1 and -2. In contrast, expression of constitutively active T567D ezrin-EGFP induced a motile, polarized phenotype in some of the transfected T cells, even in the absence of chemokine. These cells featured F-actin-rich ruffles in the front and uropod enrichment of PSGL-1 and flotillins. T567D ezrin-EGFP was itself strongly enriched in the rear of the polarized T cells. Uropod formation induced by T567D ezrin-EGFP was actin-dependent as it was attenuated by inhibition of Rho-kinase or myosin II, and abolished by disruption of actin filaments. While expression of constitutively active ezrin enhanced cell polarity, expression of a dominant-negative deletion mutant of ezrin, 1-310 ezrin-EGFP, markedly reduced uropod formation induced by the chemokine SDF-1, T cell front-tail polarity, and capping of PSGL-1 and flotillins. Transfection of T cells with WT or T567D ezrin did not affect chemokine-mediated chemotaxis whereas 1-310 ezrin significantly impaired spontaneous 2D migration and chemotaxis. siRNA-mediated downregulation of flotillins in murine T cells attenuated moesin capping and uropod formation, indicating that ERM proteins and flotillins cooperate in uropod formation. In summary, our results indicate that activated ERM proteins function together with flotillins to promote efficient chemotaxis of T cells by structuring the uropod of migrating T cells.

  1. African swine fever virus NP868R capping enzyme promotes reovirus rescue during reverse genetics by promoting reovirus protein expression, virion assembly, and RNA incorporation into infectious virions.

    PubMed

    Eaton, Heather E; Kobayashi, Takeshi; Dermody, Terence S; Johnston, Randal N; Jais, Philippe H; Shmulevitz, Maya

    2017-03-15

    Reoviruses, like many eukaryotic viruses, contain an inverted 7-methylguanosine (m7G) cap linked to the 5' nucleotide of mRNA. Traditional functions of capping are to promote mRNA stability, protein translation, and concealment from cellular proteins that recognize foreign RNA. To address the role of mRNA capping during reovirus replication, we assessed the benefits of adding the African swine fever virus NP868R capping enzyme. C3P3, a fusion protein containing T7 RNA polymerase and NP868R, was found to increase protein expression 5 to 10-fold, as compared to T7 RNA polymerase alone, while enhancing reovirus rescue from the current reverse genetics system by 100-fold. Surprisingly, RNA stability was not increased by C3P3, suggesting a direct effect on protein translation. A time course analysis revealed that C3P3 increased protein synthesis within the first 2 days of a reverse genetics transfection. This analysis also revealed that C3P3 enhanced processing of outer capsid μ1 protein to μ1C, a previously described hallmark of reovirus assembly. Finally, to determine the rate of infectious RNA incorporation into new virions, we developed a new recombinant reovirus S1 gene that expressed the fluorescent protein UnaG. Following transfection of cells with UnaG and infection with wild-type virus, passage of UnaG through progeny was significantly enhanced by C3P3. This data suggests that capping provides non-traditional functions to reovirus, such as promoting assembly and infectious RNA incorporation.IMPORTANCE The findings in this manuscript expand our understanding of how viruses utilize capping, suggesting that capping provides non-traditional functions to reovirus such as promoting assembly and infectious RNA incorporation, in addition to enhancing protein translation. Beyond providing mechanistic insight into reovirus replication, our findings also show that reovirus reverse genetics rescue is enhanced 100-fold by the NP868R capping enzyme. Since reovirus shows

  2. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins

    PubMed Central

    Zhang, Yong-Jie; Gendron, Tania F; Grima, Jonathan C; Sasaguri, Hiroki; Jansen-West, Karen; Xu, Ya-Fei; Katzman, Rebecca B; Gass, Jennifer; Murray, Melissa E; Shinohara, Mitsuru; Lin, Wen-Lang; Garrett, Aliesha; Stankowski, Jeannette N; Daughrity, Lillian; Tong, Jimei; Perkerson, Emilie A; Yue, Mei; Chew, Jeannie; Castanedes-Casey, Monica; Kurti, Aishe; Wang, Zizhao S; Liesinger, Amanda M; Baker, Jeremy D; Jiang, Jie; Lagier-Tourenne, Clotilde; Edbauer, Dieter; Cleveland, Don W; Rademakers, Rosa; Boylan, Kevin B; Bu, Guojun; Link, Christopher D; Dickey, Chad A; Rothstein, Jeffrey D; Dickson, Dennis W; Fryer, John D; Petrucelli, Leonard

    2016-01-01

    Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology. PMID:26998601

  3. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins.

    PubMed

    Zhang, Yong-Jie; Gendron, Tania F; Grima, Jonathan C; Sasaguri, Hiroki; Jansen-West, Karen; Xu, Ya-Fei; Katzman, Rebecca B; Gass, Jennifer; Murray, Melissa E; Shinohara, Mitsuru; Lin, Wen-Lang; Garrett, Aliesha; Stankowski, Jeannette N; Daughrity, Lillian; Tong, Jimei; Perkerson, Emilie A; Yue, Mei; Chew, Jeannie; Castanedes-Casey, Monica; Kurti, Aishe; Wang, Zizhao S; Liesinger, Amanda M; Baker, Jeremy D; Jiang, Jie; Lagier-Tourenne, Clotilde; Edbauer, Dieter; Cleveland, Don W; Rademakers, Rosa; Boylan, Kevin B; Bu, Guojun; Link, Christopher D; Dickey, Chad A; Rothstein, Jeffrey D; Dickson, Dennis W; Fryer, John D; Petrucelli, Leonard

    2016-05-01

    Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.

  4. The Staphylococcus aureus extracellular adherence protein promotes bacterial internalization by keratinocytes independent of fibronectin-binding proteins.

    PubMed

    Bur, Stephanie; Preissner, Klaus T; Herrmann, Mathias; Bischoff, Markus

    2013-08-01

    Staphylococcus aureus, the leading causal pathogen of skin infections, is strongly associated with skin atopy, and a number of bacterial adhesins allow the microbe to adhere to and invade eukaryotic cells. One of these adhesive molecules is the multifunctional extracellular adherence protein (Eap), which is overexpressed in situ in authentic human wounds and was shown to delay wound healing in experimental models. Yet, its role during invasion of keratinocytes is not clearly defined. By using a gentamicin/lysostaphin protection assay we demonstrate here that preincubation of HaCaT cells or primary keratinocytes with Eap results in a concentration-dependent significant increase in staphylococcal adhesion, followed by an even more pronounced internalization of bacteria by eukaryotic cells. Flow cytometric analysis revealed that Eap increased both the number of infected eukaryotic cells and the bacterial load per infected cell. Moreover, treatment of keratinocytes with Eap strongly enhanced the internalization of coagulase-negative staphylococci, as well as of E. coli, and markedly promoted staphylococcal invasion into extended-culture keratinocytes, displaying expression of keratin 10 and involucrin as differentiation markers. Thus, wound-related staphylococcal Eap may provide a major cellular invasin function, thereby enhancing the pathogen's ability to hide from the host immune system during acute and chronic skin infection.

  5. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: A review

    PubMed Central

    Cos, Oriol; Ramón, Ramón; Montesinos, José Luis; Valero, Francisco

    2006-01-01

    The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail. PMID:16600031

  6. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

    PubMed Central

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E.; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-01-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation. PMID:27329040

  7. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation.

    PubMed

    Lin, Kaili; Xia, Lunguo; Gan, Jingbo; Zhang, Zhiyuan; Chen, Hong; Jiang, Xinquan; Chang, Jiang

    2013-08-28

    To promote and understand the biological responses of the implant via nanostructured surface design is essential for the development of bioactive bone implants. However, the control of the surface topography of the bioceramics in nanoscale is a big challenge because of their brittle property. Herein, the hydroxyapatite (HAp) bioceramics with distinct nanostructured topographies were fabricated via hydrothermal treatment using α-tricalcium phosphate ceramic as hard-template under different reaction conditions. HAp bioceramics with nanosheet, nanorod and micro-nanohybrid structured surface in macroscopical size were obtained by controlling the composition of the reaction media. Comparing with the traditional sample with flat and dense surface, the fabricated HAp bioceramics with hierarchical 3D micro-nanotextured surfaces possessed higher specific surface area, which selectively enhanced adsorption of specific proteins including Fn and Vn in plasma, and stimulated osteoblast adhesion, growth, and osoteogenic differentiation. In particular, the biomimetic features of the hierarchical micro-nanohybrid surface resulted in the best ability for simultaneous enhancement of protein adsorption, osteoblast proliferation, and differentiation. The results suggest that the hierarchical micro-nanohybrid topography might be one of the critical factors to be considered in the design of functional bone grafts.

  8. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Promotes Neuritogenesis and Cell Survival*

    PubMed Central

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-01-01

    The cell adhesion molecule L1 is a Lewisx-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewisx-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg687 yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  9. The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL-6.

    PubMed

    Choi, J S; Kim, K-H; Lau, L F

    2015-11-01

    The matricellular protein CCN1 (CYR61) is known to function in wound healing and is upregulated in colons of patients with Crohn's disease and ulcerative colitis, yet its specific role in colitis is unknown. Here we have used Ccn1(dm/dm) knockin mice expressing a CCN1 mutant unable to bind integrins α6β1 and αMβ2 as a model to probe CCN1 function in dextran sodium sulfate (DSS)-induced colitis. Ccn1(dm/dm) mice exhibited high mortality, impaired mucosal healing, and diminished interleukin-6 (IL-6) expression during the repair phase of DSS-induced colitis compared with wild-type mice, despite having comparable severity of initial inflammation and tissue injury. CCN1-induced IL-6 expression in macrophages through integrin αMβ2 and in fibroblasts through α6β1, and IL-6 promoted intestinal epithelial cell (IEC) proliferation. Administration of purified CCN1 protein fully rescued Ccn1(dm/dm) mice from DSS-induced mortality, restored IEC proliferation and enhanced mucosal healing, whereas delivery of IL-6 partially rectified these defects. CCN1 therapy accelerated mucosal healing and recovery from DSS-induced colitis even in wild-type mice. These findings reveal a critical role for CCN1 in restoring mucosal homeostasis after intestinal injury in part through integrin-mediated induction of IL-6 expression, and suggest a therapeutic potential for activating the CCN1/IL-6 axis for treating inflammatory bowel disease.

  10. The Zn Finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis

    PubMed Central

    Glazer, Andrew; Wilkinson, Alex; Backer, Chelsea B.; Lapan, Sylvain; Gutzman, Jennifer H.; Cheeseman, Iain M.; Reddien, Peter W.

    2009-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and that utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian S. mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates. PMID:19852954

  11. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    PubMed

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  12. Health-promoting properties of bioactive peptides derived from milk proteins in infant food: a review.

    PubMed

    Raikos, Vassilios; Dassios, Theodore

    2014-01-01

    Milk proteins have attracted extensive interest in terms of their bioavailability following ingestion. Enzymatic digestion of dairy products generates numerous peptides with various biological activities. Both human milk and infant formulas based on cow's milk are potential sources of bioactive peptides. This review aims to present current knowledge on the formation and fate of bioactive peptides from milk feeds intended for infants. Emphasis is placed on the source of the bioactive peptides with the nutritional impact of human milk and cow milk-based formulas on infant health being critically discussed from that perspective. Furthermore, the effect of processing and in vitro or in vivo digestion on the release and availability of peptides with bioactive sequences is evaluated. Considerable differences with respect to bioavailability and metabolic effects between the biologically active fragments generated following ingestion of human milk and infant formulas are documented. Peptides from milk protein of bovine origin could be a valuable supplement to human milk as multiple health-promoting properties are attributed to peptide fractions identified in standard cow milk-based infant formulas.

  13. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.

    PubMed

    Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W

    2010-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.

  14. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    PubMed

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  15. The Highwire Ubiquitin Ligase Promotes Axonal Degeneration by Tuning Levels of Nmnat Protein

    PubMed Central

    Xiong, Xin; Hao, Yan; Sun, Kan; Li, Jiaxing; Li, Xia; Mishra, Bibhudatta; Soppina, Pushpanjali; Wu, Chunlai; Hume, Richard I.; Collins, Catherine A.

    2012-01-01

    Axonal degeneration is a hallmark of many neuropathies, neurodegenerative diseases, and injuries. Here, using a Drosophila injury model, we have identified a highly conserved E3 ubiquitin ligase, Highwire (Hiw), as an important regulator of axonal and synaptic degeneration. Mutations in hiw strongly inhibit Wallerian degeneration in multiple neuron types and developmental stages. This new phenotype is mediated by a new downstream target of Hiw: the NAD+ biosynthetic enzyme nicotinamide mononucleotide adenyltransferase (Nmnat), which acts in parallel to a previously known target of Hiw, the Wallenda dileucine zipper kinase (Wnd/DLK) MAPKKK. Hiw promotes a rapid disappearance of Nmnat protein in the distal stump after injury. An increased level of Nmnat protein in hiw mutants is both required and sufficient to inhibit degeneration. Ectopically expressed mouse Nmnat2 is also subject to regulation by Hiw in distal axons and synapses. These findings implicate an important role for endogenous Nmnat and its regulation, via a conserved mechanism, in the initiation of axonal degeneration. Through independent regulation of Wnd/DLK, whose function is required for proximal axons to regenerate, Hiw plays a central role in coordinating both regenerative and degenerative responses to axonal injury. PMID:23226106

  16. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium.

    PubMed

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-07-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

  17. Herpesviral ICP0 Protein Promotes Two Waves of Heterochromatin Removal on an Early Viral Promoter during Lytic Infection

    PubMed Central

    Lee, Jennifer S.; Raja, Priya

    2016-01-01

    ABSTRACT Herpesviruses must contend with host cell epigenetic silencing responses acting on their genomes upon entry into the host cell nucleus. In this study, we confirmed that unchromatinized herpes simplex virus 1 (HSV-1) genomes enter primary human foreskin fibroblasts and are rapidly subjected to assembly of nucleosomes and association with repressive heterochromatin modifications such as histone 3 (H3) lysine 9-trimethylation (H3K9me3) and lysine 27-trimethylation (H3K27me3) during the first 1 to 2 h postinfection. Kinetic analysis of the modulation of nucleosomes and heterochromatin modifications over the course of lytic infection demonstrates a progressive removal that coincided with initiation of viral gene expression. We obtained evidence for three phases of heterochromatin removal from an early gene promoter: an initial removal of histones and heterochromatin not dependent on ICP0, a second ICP0-dependent round of removal of H3K9me3 that is independent of viral DNA synthesis, and a third phase of H3K27me3 removal that is dependent on ICP0 and viral DNA synthesis. The presence of ICP0 in transfected cells is also sufficient to promote removal of histones and H3K9me3 modifications of cotransfected genes. Overall, these results show that ICP0 promotes histone removal, a reduction of H3K9me3 modifications, and a later indirect reduction of H3K27me3 modifications following viral early gene expression and DNA synthesis. Therefore, HSV ICP0 promotes the reversal of host epigenetic silencing mechanisms by several mechanisms. PMID:26758183

  18. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer

    PubMed Central

    Weber, Günther; Chamorro, Clara Ibel; Granath, Fredrik; Liljegren, Annelie; Zreika, Sami; Saidak, Zuzana; Sandstedt, Bengt; Rotstein, Samuel; Mentaverri, Romuald; Sánchez, Fabio; Pivarcsi, Andor; Ståhle, Mona

    2009-01-01

    Introduction Human cathelicidin antimicrobial protein, hCAP18, and its C-terminal peptide LL-37 is a multifunctional protein. In addition to being important in antimicrobial defense, it induces chemotaxis, stimulates angiogenesis and promotes tissue repair. We previously showed that human breast cancer cells express high amounts of hCAP18, and hypothesised that hCAP18/LL-37 may be involved in tumour progression. Methods hCAP18 mRNA was quantified in 109 primary breast cancers and compared with clinical findings and ERBB2 mRNA expression. Effects of exogenous LL-37 and transgenic overexpression of hCAP18 on ErbB2 signalling were investigated by immunoblotting using extracts from breast cancer cell lines ZR75-1 and derivatives of MCF7. We further analysed the impact of hCAP18/LL-37 on the morphology of breast cancer cells grown in soft agar, on cell migration and on tumour development in severe combined immunodeficiency (SCID) mice. Results The expression of hCAP18 correlated closely with that of ERBB2 and with the presence of lymph node metastases in oestrogen receptor-positive tumours. hCAP18/LL-37 amplified Heregulin-induced mitogen-activated protein kinase (MAPK) signalling through ErbB2, identifying a functional association between hCAP18/LL-37 and ErbB2 in breast cancer. Treatment with LL-37 peptide significantly stimulated the migration of breast cancer cells and their colonies acquired a dispersed morphology indicative of increased metastatic potential. A truncated version of LL-37 competitively inhibited LL-37 induced MAPK phosphorylation and significantly reduced the number of altered cancer cell colonies induced by LL-37 as well as suppressed their migration. Transgenic overexpression of hCAP18 in a low malignant breast cancer cell line promoted the development of metastases in SCID mice, and analysis of hCAP18 transgenic tumours showed enhanced activation of MAPK signalling. Conclusions Our results provide evidence that hCAP18/LL-37 contributes to breast

  19. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2

    PubMed Central

    Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Hee; Kim, Minwoo; Shin, Eui-Cheol; Oh, Jong-Won

    2016-01-01

    The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV). Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A) polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt) prototype miR-122 is modified at its 3′ end by 3′-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3′-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3′ end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation. PMID:27366906

  20. Fragile X mental retardation protein promotes astrocytoma proliferation via the MEK/ERK signaling pathway

    PubMed Central

    Zhang, Hui; Hao, Zhuofang; Long, Yuesheng; Chen, Shengqiang; Su, Hang; Yuan, Zhongmin; Xu, Meng; Chen, Jingqi

    2016-01-01

    Objective To examine the association between fragile X mental retardation protein (FMRP) expression and astrocytoma characteristics. Methods Pathologic grade and expressions of glial fibrillary acidic protein (GFAP), Ki67 (proliferation marker), and FMRP were determined in astrocytoma specimens from 74 patients. Kaplan-Meier survival analysis was undertaken. Pathologic grade and protein levels of FMRP were determined in 24 additional patients with astrocytoma and 6 controls (cerebral trauma). In cultured U251 and U87 cell lines, the effects of FMRP knock-down on cell proliferation, AKT/mTOR/GSK-3β and MEK/ERK signaling were studied. The effects of FMRP knock-down on the volumes and weights of U251 cell-derived orthotopic tumors in mice were investigated. Results In patients, FMRP expression was increased in grade IV (5.1-fold, P<0.01) and grade III (3.2-fold, P<0.05) astrocytoma, compared with controls. FMRP and Ki67 expressions were positively correlated (R2=0.877, P<0.001). Up-regulation of FMRP was associated with poorer survival among patients with FMRP integrated optical density >30 (P<0.01). In astrocytoma cell lines, FMRP knock-down slowed proliferation (P<0.05), inhibited total MEK levels P<0.05, and reduced phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204) (P<0.05). In mice with orthotopic tumors, FMRP knock-down decreased FMRP and Ki67 expressions, and reduced tumor volume and weight (36.3% or 61.5% on day 15, both P<0.01). Also, phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204), and total MEK in xenografts were decreased in sh-FMRP xenografts compared with non-transfected ones (all P<0.05). Conclusion Enhanced FMRP expression in astrocytoma may promote proliferation through activation of MEK/ERK signaling. PMID:27683117

  1. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA.

    PubMed

    Heo, Jinho; Li, Jing; Summerlin, Matthew; Hays, Annette; Katyal, Sachin; McKinnon, Peter J; Nitiss, Karin C; Nitiss, John L; Hanakahi, Leslyn A

    2015-06-01

    The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3'-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ.

  2. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA

    PubMed Central

    Heo, Jinho; Li, Jing; Summerlin, Matthew; Hays, Annette; Katyal, Sachin; McKinnon, Peter J.; Nitiss, Karin C.; Nitiss, John L.; Hanakahi, Leslyn A.

    2015-01-01

    The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3′-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ. PMID:25841101

  3. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    PubMed

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  4. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction.

    PubMed

    Pokkuluri, Kiran Sree; Inampudi, Ramesh Babu; Nedunuri, S S S N Usha Devi

    2014-01-01

    Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  5. GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain.

    PubMed

    Liu, B H; Yang, Y; Paton, J F R; Li, F; Boulaire, J; Kasparov, S; Wang, S

    2006-12-01

    Targeted gene expression mediated by a mammalian cellular promoter is desirable for gene therapy in the brain, where there are a variety of different neuronal phenotypes, several types of supportive cells, and blood vessels. However, this approach can be hampered by weak activity of some cellular promoters. In view of the potency of the transcription factor NF-kappaB in regulating neuronal gene expression, we have assessed whether it can be used to enhance the strength of neuron-specific promoters. Our approach was to use a neuronal promoter to drive expression of a chimeric transactivator, which consisted of a part of the transcriptional activation domain of the NF-kappaB p65 protein fused to the DNA-binding domain of GAL4 protein from yeast. The second copy of the neuronal promoter was modified by introducing the unique GAL4 binding sequences at its 5' end and used to drive the expression of a transgene. Binding of the chimeric transcriptional activator upstream of the second promoter was expected to potentiate its transcriptional activity. In this study, the approach was applied to the platelet-derived growth factor beta chain and synapsin-1 neuron-specific promoters and tested in vitro and in vivo using plasmid, lentiviral, and baculoviral vectors. We observed up to a 100-fold improvement in reporter gene expression in cultured neurons and 20-fold improvement in the rat brain in vivo. Moreover, the cell-type specificity of the two tested promoters was well preserved and restricted to neurons. Finally, the expression driven by the new lentiviral vectors with the p65-potentiated synapsin-1 promoter showed no signs of decline or cell damage 4 weeks after injection. This approach should be suitable for constructing powerful and stable gene expression systems based on weak cell-specific promoters in neuronal phenotypes.

  6. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    PubMed

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p < 0.001). As a triangle, meaningful correlation was also found between methylated ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and

  7. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders.

    PubMed

    Jucker, Mathias; Walker, Lary C

    2011-10-01

    The misfolding and aggregation of specific proteins is a seminal occurrence in a remarkable variety of neurodegenerative disorders. In Alzheimer disease (the most prevalent cerebral proteopathy), the two principal aggregating proteins are β-amyloid (Aβ) and tau. The abnormal assemblies formed by conformational variants of these proteins range in size from small oligomers to the characteristic lesions that are visible by optical microscopy, such as senile plaques and neurofibrillary tangles. Pathologic similarities with prion disease suggest that the formation and spread of these proteinaceous lesions might involve a common molecular mechanism-corruptive protein templating. Experimentally, cerebral β-amyloidosis can be exogenously induced by exposure to dilute brain extracts containing aggregated Aβ seeds. The amyloid-inducing agent probably is Aβ itself, in a conformation generated most effectively in the living brain. Once initiated, Aβ lesions proliferate within and among brain regions. The induction process is governed by the structural and biochemical nature of the Aβ seed, as well as the attributes of the host, reminiscent of pathogenically variant prion strains. The concept of prionlike induction and spreading of pathogenic proteins recently has been expanded to include aggregates of tau, α-synuclein, huntingtin, superoxide dismutase-1, and TDP-43, which characterize such human neurodegenerative disorders as frontotemporal lobar degeneration, Parkinson/Lewy body disease, Huntington disease, and amyotrophic lateral sclerosis. Our recent finding that the most effective Aβ seeds are small and soluble intensifies the search in bodily fluids for misfolded protein seeds that are upstream in the proteopathic cascade, and thus could serve as predictive diagnostics and the targets of early, mechanism-based interventions. Establishing the clinical implications of corruptive protein templating will require further mechanistic and epidemiologic investigations

  8. Inhibition of the hTERT promoter by the proto-oncogenic protein TAL1.

    PubMed

    Terme, J-M; Mocquet, V; Kuhlmann, A-S; Zane, L; Mortreux, F; Wattel, E; Duc Dodon, M; Jalinot, P

    2009-11-01

    Telomerase activity, which has fundamental roles in development and carcinogenesis, strongly depends on the expression of human telomerase reverse transcriptase (hTERT), its catalytic subunit. In this report, we show that the basic helix-loop-helix factor, TAL1 (T-cell acute lymphoblastic leukemia 1), is a negative regulator of the hTERT promoter. Indeed, TAL1 overexpression leads to a decrease in hTERT mRNA abundance and hence to reduced telomerase activity. Conversely, suppression of TAL1 by RNA interference in Jurkat cells increases hTERT expression. Analysis by chromatin immunoprecipitation assays showed that TAL1 binds to the hTERT proximal promoter and recruits HDAC1. Considering the relationship recently established between TAL1 and the human T-cell leukemia virus type 1 (HTLV-1) Tax protein, which was confirmed in T lymphocyte clones derived from adult T-cell leukemia patients, we analyzed the effect of TAL1 with respect to the earlier characterized effects of Tax and HBZ (HTLV-1 basic leucine zipper) on hTERT expression. TAL1 was observed to reinforce the negative effect of Tax, whereas hTERT transactivation by the HBZ-JunD complex was repressed by TAL1 overexpression. Moreover, HBZ was found to induce proteasome-mediated degradation of TAL1. These observations support a model in which Tax and TAL1 by repressing hTERT would initially favor genomic instability, whereas expression of factors such as HBZ allows at a later stage an increase in hTERT production and consequently in telomerase activity.

  9. Structure and promoter analysis of the mouse membrane-bound transferrin-like protein (MTf) gene.

    PubMed

    Nakamasu, K; Kawamoto, T; Yoshida, E; Noshiro, M; Matsuda, Y; Kato, Y

    2001-03-01

    Recently, we purified membrane-bound transferrin-like protein (MTf) from the plasma membrane of rabbit chondrocytes and showed that the expression levels of MTf protein and mRNA were much higher in cartilage than in other tissues [Kawamoto T, Pan, H., Yan, W., Ishida, H., Usui, E., Oda, R., Nakamasu, K., Noshiro, M., Kawashima-Ohya, Y., Fujii, M., Shintani, H., Okada, Y. & Kato, Y. (1998) Eur. J. Biochem. 256, 503--509]. In this study, we isolated the MTf gene from a constructed mouse genomic library. The mouse MTf gene was encoded by a single-copy gene spanning approximately 26 kb and consisting of 16 exons. The transcription-initiation site was located 157 bp upstream from the translation-start codon, and a TATA box was not found in the 5' flanking region. The mouse MTf gene was mapped on the B3 band of chromosome 16 by fluorescence in situ hybridization. Using primary chondrocytes, SK-MEL-28 (melanoma cell line), ATDC5 (chondrogenic cell line) and NIH3T3 (fibroblast cell line) cells, we carried out transient expression studies on various lengths of the 5' flanking region of the MTf gene fused to the luciferase reporter gene. Luciferase activity in SK-MEL-28 cells was higher than in primary chondrocytes. Although no luciferase activity was detectable in NIH3T3 cells, it was higher in chondrocytes than in ATDC5 chondrogenic cells. These findings were consistent with the levels of expression of MTf mRNA in these cells cultured under similar conditions. The patterns of increase and decrease in the luciferase activity in chondrocytes transfected with various 5' deleted constructs of the MTf promoter were similar to that in ATDC5 cells, but differed from that in SK-MEL-28 cells. The findings obtained with primary chondrocytes suggest that the regions between -693 and -444 and between -1635 and -1213 contain positive and negative cis-acting elements, respectively. The chondrocyte-specific expression of the MTf gene could be regulated via these regulatory elements in

  10. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer

    PubMed Central

    Caldeira, José Roberto F; Prando, Érika C; Quevedo, Francisco C; Neto, Francisco A Moraes; Rainho, Cláudia A; Rogatto, Silvia R

    2006-01-01

    Background The E-cadherin gene (CDH1) maps, at chromosome 16q22.1, a region often associated with loss of heterozygosity (LOH) in human breast cancer. LOH at this site is thought to lead to loss of function of this tumor suppressor gene and was correlated with decreased disease-free survival, poor prognosis, and metastasis. Differential CpG island methylation in the promoter region of the CDH1 gene might be an alternative way for the loss of expression and function of E-cadherin, leading to loss of tissue integrity, an essential step in tumor progression. Methods The aim of our study was to assess, by Methylation-Specific Polymerase Chain Reaction (MSP), the methylation pattern of the CDH1 gene and its possible correlation with the expression of E-cadherin and other standard immunohistochemical parameters (Her-2, ER, PgR, p53, and K-67) in a series of 79 primary breast cancers (71 infiltrating ductal, 5 infiltrating lobular, 1 metaplastic, 1 apocrine, and 1 papillary carcinoma). Results CDH1 hypermethylation was observed in 72% of the cases including 52/71 ductal, 4/5 lobular carcinomas and 1 apocrine carcinoma. Reduced levels of E-cadherin protein were observed in 85% of our samples. Although not statistically significant, the levels of E-cadherin expression tended to diminish with the CDH1 promoter region methylation. In the group of 71 ductal cancinomas, most of the cases of showing CDH1 hypermethylation also presented reduced levels of expression of ER and PgR proteins, and a possible association was observed between CDH1 methylation and ER expression (p = 0.0301, Fisher's exact test). However, this finding was not considered significant after Bonferroni correction of p-value. Conclusion Our preliminary findings suggested that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression in a subgroup of cases characterized by loss of expression of other important genes to the mammary

  11. Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants.

    PubMed

    Munir, Faiza; Hayashi, Satomi; Batley, Jacqueline; Naqvi, Syed Muhammad Saqlan; Mahmood, Tariq

    2016-01-01

    Controlled transgene expression via a promoter is particularly triggered in response to pathogen infiltration. This is significant for eliciting disease-resistant features in crops through genetic engineering. The germins and germin-like proteins (GLPs) are known to be associated with plant and developmental stages. The 1107-bp Oryza sativa root GLP2 (OsRGLP2) gene promoter fused to a β-glucuronidase (GUS) reporter gene was transformed into potato plants through an Agrobacterium-mediated transformation. The OsRGLP2 promoter was activated in response to Fusarium solani (Mart.) Sacc. and Alternaria solani Sorauer. Quantitative real-time PCR results revealed 4-5-fold increase in promoter activity every 24 h following infection. There was a 15-fold increase in OsRGLP2 promoter activity after 72 h of F. solani (Mart.) Sacc. treatment and a 12-fold increase observed with A. solani Sorauer. Our results confirmed that the OsRGLP2 promoter activity was enhanced under fungal stress. Furthermore, a hyperaccumulation of H2O2 in transgenic plants is a clear signal for the involvement of OsRGLP2 promoter region in the activation of specific genes in the potato genome involved in H2O2-mediated defense response. The OsRGLP2 promoter evidently harbors copies of GT-I and Dof transcription factors (AAAG) that act in response to elicitors generated in the wake of pathogen infection.

  12. Tailoring Escherichia coli for the l-Rhamnose PBAD Promoter-Based Production of Membrane and Secretory Proteins.

    PubMed

    Hjelm, Anna; Karyolaimos, Alexandros; Zhang, Zhe; Rujas, Edurne; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-03-03

    Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. On the basis of this requirement, the E. coli l-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein production since PrhaBAD is thought to regulate protein production rates in an l-rhamnose concentration-dependent manner. By monitoring protein production in real-time in E. coli wild-type and an l-rhamnose catabolism deficient mutant, we demonstrate that the l-rhamnose concentration-dependent tunability of PrhaBAD-mediated protein production is actually due to l-rhamnose consumption rather than regulating production rates. Using this information, a RhaT-mediated l-rhamnose transport and l-rhamnose catabolism deficient double mutant was constructed. We show that this mutant enables the regulation of PrhaBAD-based protein production rates in an l-rhamnose concentration-dependent manner and that this is critical to optimize membrane and secretory protein production yields. The high precision of protein production rates provided by the PrhaBAD promoter in an l-rhamnose transport and catabolism deficient background could also benefit other applications in synthetic biology.

  13. p27 Protein Protects Metabolically Stressed Cardiomyocytes from Apoptosis by Promoting Autophagy*

    PubMed Central

    Sun, Xuetao; Momen, Abdul; Wu, Jun; Noyan, Hossein; Li, Renke; von Harsdorf, Rüdiger; Husain, Mansoor

    2014-01-01

    p27Kip1 (p27), a key regulator of cell division, has been implicated in autophagy of cancer cells. However, its role in autophagy, the evolutionarily conserved catabolic process that enables cells to remove unwanted proteins and damaged organelles, had not been examined in the heart. Here we report that ectopic delivery of a p27 fusion protein (TAT-p27) was sufficient to induce autophagy in neonatal rat ventricular cardiomyocytes in vitro, under basal conditions and after glucose deprivation. Conversely, lentivirus-delivered shRNA against p27 successfully reduced p27 levels and suppressed basal and glucose-deprived levels of autophagy in cardiomyocytes in vitro. Glucose deprivation mimics myocardial ischemia and induces apoptosis in cardiomyocytes. During glucose deprivation, TAT-p27 inhibited apoptosis, whereas down-regulation of p27 decreased survival of cardiomyocytes. However, inhibition of autophagy by pharmacological (3-methyladenine, chloroquine, or bafilomycin A1) or genetic approaches (siRNA-mediated knockdown of Atg5) sensitized cardiomyocytes to glucose deprivation-induced apoptosis, even in the presence of TAT-p27. TAT-p27 was also able to provoke greater levels of autophagy in resting and fasting cardiomyocytes in vivo. Further, TAT-p27 enhanced autophagy and repressed cardiomyocytes apoptosis, improved cardiac function, and reduced infarct size following myocardial infarction. Again, these effects were lost when cardiac autophagy in vivo was blocked by chloroquine. Taken together, these data show that p27 positively regulates cardiac autophagy in vitro and in vivo, at rest and after metabolic stress, and that TAT-p27 inhibits apoptosis by promoting autophagy in glucose-deprived cardiomyocytes in vitro and in post-myocardial infarction hearts in vivo. PMID:24794871

  14. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression.

    PubMed

    Song, Xiang; Qian, Xiaoqian; Shen, Ming; Jiang, Rong; Wagner, Mary B; Ding, Guoliang; Chen, Guangping; Shen, Baozhong

    2015-02-01

    Protein kinase C (PKC) and galectin-3 are two important mediators that play a key pathogenic role in cardiac hypertrophy and heart failure (HF). However, the molecular mechanisms and signaling pathways are not fully understood. In this study, we explored the relationship between and roles of PKC-α and galectin-3 in the development of HF. We found that activation of PKC by phorbol dibutyrate (PDB) increased galectin-3 expression by ~180%, as well as collagen I and fibronection accumulation in cultured HL-1 cardiomyocytes. Over-expression of galectin-3 in HL-1 cells increased collagen I protein production. Inhibition of galectin-3 by β-lactose blocked PDB-induced galectin-3 and collagen production, indicating that galectin-3 mediates PKC-induced cardiac fibrosis. In rats subjected to pulmonary artery banding (PAB) to induce right ventricular HF, galectin-3 was increased by ~140% in the right ventricle and also by ~240% in left ventricle compared to control. The elevated galectin-3 is consistent with an increase of total and activated (phosphorylated) PKC-α, α-SMA and collagen I. Finally, we extended our findings to examine the role of angiotensin II (Ang II), which activates the PKC pathway and contributes to cardiac fibrosis and the development of HF. We found that Ang II activated the PKC-α pathway and increased galectin-3 expression and collagen production. This study provides a new insight into the molecular mechanisms of HF mediated by PKC-α and galectin-3. PKC-α promotes cardiac fibrosis and HF by stimulation of galectin-3 expression.

  15. An RNA Binding Protein Promotes Axonal Integrity in Peripheral Neurons by Destabilizing REST

    PubMed Central

    Cargnin, Francesca; Nechiporuk, Tamilla; Müllendorff, Karin; Stumpo, Deborah J.; Blackshear, Perry J.; Ballas, Nurit

    2014-01-01

    The RE1 Silencing Transcription Factor (REST) acts as a governor of the mature neuronal phenotype by repressing a large consortium of neuronal genes in non-neuronal cells. In the developing nervous system, REST is present in progenitors and downregulated at terminal differentiation to promote acquisition of mature neuronal phenotypes. Paradoxically, REST is still detected in some regions of the adult nervous system, but how REST levels are regulated, and whether REST can still repress neuronal genes, is not known. Here, we report that homeostatic levels of REST are maintained in mature peripheral neurons by a constitutive post-transcriptional mechanism. Specifically, using a three-hybrid genetic screen, we identify the RNA binding protein, ZFP36L2, associated previously only with female fertility and hematopoiesis, and show that it regulates REST mRNA stability. Dorsal root ganglia in Zfp36l2 knock-out mice, or wild-type ganglia expressing ZFP36L2 shRNA, show higher steady-state levels of Rest mRNA and protein, and extend thin and disintegrating axons. This phenotype is due, at least in part, to abnormally elevated REST levels in the ganglia because the axonal phenotype is attenuated by acute knockdown of REST in Zfp36l2 KO DRG explants. The higher REST levels result in lower levels of target genes, indicating that REST can still fine-tune gene expression through repression. Thus, REST levels are titrated in mature peripheral neurons, in part through a ZFP36L2-mediated post-transcriptional mechanism, with consequences for axonal integrity. PMID:25505318

  16. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration.

    PubMed

    Estin, Miriam L; Thompson, Scott B; Traxinger, Brianna; Fisher, Marlie H; Friedman, Rachel S; Jacobelli, Jordan

    2017-04-04

    Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP-like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner.

  17. Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcS gene family.

    PubMed

    Manzara, T; Carrasco, P; Gruissem, W

    1991-12-01

    The five genes encoding ribulose-1,5-bisphosphate carboxylase (rbcS) from tomato are differentially expressed. Transcription of the genes is organ specific and developmentally regulated in fruit and light regulated in cotyledons and leaves. DNase I footprinting assays were used to map multiple sites of DNA-protein interaction in the promoter regions of all five genes and to determine whether the differential transcriptional activity of each gene correlated with developmental or organ-specific changes in DNA-protein interactions. We show organ-specific differences in DNase I protection patterns, suggesting that differential transcription of rbcS genes is controlled at least in part at the level of DNA-protein interactions. In contrast, no changes were detected in the DNase I footprint pattern generated with nuclear extracts from dark-grown cotyledons versus cotyledons exposed to light, implying that light-dependent regulation of rbcS transcription is controlled by protein-protein interactions or modification of DNA binding proteins. During development of tomato fruit, most DNA-protein interactions in the rbcS promoter regions disappear, coincident with the transcriptional inactivation of the rbcS genes. In nuclear extracts from nonphotosynthetic roots and red fruit, the only detectable DNase I protection corresponds to a G-box binding activity. Detection of other DNA binding proteins in extracts from these organs and expression of nonphotosynthetic genes exclude the possibility that roots and red fruit are transcriptionally inactive. The absence of complex promoter protection patterns in these organs suggests either that cooperative interactions between different DNA binding proteins are necessary to form functional transcription complexes or that there is developmental and organ-specific regulation of several rbcS-specific transcription factors in these organs. The DNase I-protected DNA sequences defined in this study are discussed in the context of conserved DNA

  18. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction.

    PubMed

    van Straten, Esther M E; Bloks, Vincent W; Huijkman, Nicolette C A; Baller, Julius F W; van Meer, Hester; Lütjohann, Dieter; Kuipers, Folkert; Plösch, Torsten

    2010-02-01

    Prenatal nutrition as influenced by the nutritional status of the mother has been identified as a determinant of adult disease. Feeding low-protein diets during pregnancy in rodents is a well-established model to induce programming events in offspring. We hypothesized that protein restriction would influence fetal lipid metabolism by inducing epigenetic adaptations. Pregnant C57BL/6J mice were exposed to a protein-restriction protocol (9% vs. 18% casein). Shortly before birth, dams and fetuses were killed. To identify putative epigenetic changes, CG-dinucleotide-rich region in the promoter of a gene (CpG island) methylation microarrays were performed on DNA isolated from fetal livers. Two hundred four gene promoter regions were differentially methylated upon protein restriction. The liver X-receptor (Lxr) alpha promoter was hypermethylated in protein-restricted pups. Lxr alpha is a nuclear receptor critically involved in control of cholesterol and fatty acid metabolism. The mRNA level of Lxra was reduced by 32% in fetal liver upon maternal protein restriction, whereas expression of the Lxr target genes Abcg5/Abcg8 was reduced by 56% and 51%, respectively, measured by real-time quantitative PCR. The same effect, although less pronounced, was observed in the fetal intestine. In vitro methylation of a mouse Lxra-promoter/luciferase expression cassette resulted in a 24-fold transcriptional repression. Our study demonstrates that, in mice, protein restriction during pregnancy interferes with DNA methylation in fetal liver. Lxra is a target of differential methylation, and Lxra transcription is dependent on DNA methylation. It is tempting to speculate that perinatal nutrition may influence adult lipid metabolism by DNA methylation, which may contribute to the epidemiological relation between perinatal/neonatal nutrition and adult disease.

  19. Isolation and characterization of an oil palm constitutive promoter derived from a translationally control tumor protein (TCTP) gene.

    PubMed

    Masura, Subhi Siti; Parveez, Ghulam Kadir Ahmad; Ti, Leslie Low Eng

    2011-07-01

    We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system.

  20. Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106

    PubMed Central

    Celona, Barbara; von Dollen, John; Vatsavayai, Sarat C; Kashima, Risa; Johnson, Jeffrey R; Tang, Amy A; Hata, Akiko; Miller, Bruce L; Huang, Eric J; Krogan, Nevan J; Seeley, William W; Black, Brian L

    2017-01-01

    Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS. DOI: http://dx.doi.org/10.7554/eLife.19032.001 PMID:28072389

  1. SH2B1 and IRSp53 proteins promote the formation of dendrites and dendritic branches.

    PubMed

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-03-06

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching.

  2. SH2B1 and IRSp53 Proteins Promote the Formation of Dendrites and Dendritic Branches*

    PubMed Central

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-01-01

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching. PMID:25586189

  3. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation.

    PubMed

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-10-13

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism.

  4. G Protein-Coupled Receptor Kinase 2 Promotes Flaviviridae Entry and Replication

    PubMed Central

    Le Sommer, Caroline; Barrows, Nicholas J.; Bradrick, Shelton S.; Pearson, James L.; Garcia-Blanco, Mariano A.

    2012-01-01

    Flaviviruses cause a wide range of severe diseases ranging from encephalitis to hemorrhagic fever. Discovery of host factors that regulate the fate of flaviviruses in infected cells could provide insight into the molecular mechanisms of infection and therefore facilitate the development of anti-flaviviral drugs. We performed genome-scale siRNA screens to discover human host factors required for yellow fever virus (YFV) propagation. Using a 2×2 siRNA pool screening format and a duplicate of the screen, we identified a high confidence list of YFV host factors. To find commonalities between flaviviruses, these candidates were compared to host factors previously identified for West Nile virus (WNV) and dengue virus (DENV). This comparison highlighted a potential requirement for the G protein-coupled receptor kinase family, GRKs, for flaviviral infection. The YFV host candidate GRK2 (also known as ADRBK1) was validated both in siRNA-mediated knockdown HuH-7 cells and in GRK−/− mouse embryonic fibroblasts. Additionally, we showed that GRK2 was required for efficient propagation of DENV and Hepatitis C virus (HCV) indicating that GRK2 requirement is conserved throughout the Flaviviridae. Finally, we found that GRK2 participates in multiple distinct steps of the flavivirus life cycle by promoting both entry and RNA synthesis. Together, our findings identified GRK2 as a novel regulator of flavivirus infection and suggest that inhibition of GRK2 function may constitute a new approach for treatment of flavivirus associated diseases. PMID:23029581

  5. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis

    PubMed Central

    Greenwood-Goodwin, Midori; Teasley, Eric S.; Heilshorn, Sarah C.

    2014-01-01

    Engineered biomimetic microenvironments from hydrogels are an emerging strategy to achieve lineage-specific differentiation in vitro. In addition to recapitulating critical matrix cues found in the native three-dimensional (3D) niche, the hydrogel can also be designed to deliver soluble factors that are present within the native inductive microenvironment. We demonstrate a versatile materials approach for the dual-stage delivery of multiple soluble factors within a 3D hydrogel to induce adipogenesis. We use a Mixing-Induced Two-Component Hydrogel (MITCH) embedded with alginate microgels to deliver two pro-adipogenic soluble factors, fibroblast growth factor 1 (FGF-1) and bone morphogenetic protein 4 (BMP-4) with two distinct delivery profiles. We show that dual-stage delivery of FGF-1 and BMP-4 to human adipose-derived stromal cells (hADSCs) significantly increases lipid accumulation compared with the simultaneous delivery of both growth factors together. Furthermore, dual-stage growth factor delivery within a 3D hydrogel resulted in substantially more lipid accumulation compared to identical delivery profiles in 2D cultures. Gene expression analysis shows upregulation of key adipogenic markers indicative of brown-like adipocytes. These data suggest that dual-stage release of FGF-1 and BMP-4 within 3D microenvironments can promote the in vitro development of mature adipocytes. PMID:25309741

  6. The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability.

    PubMed

    Cosker, Katharina E; Fenstermacher, Sara J; Pazyra-Murphy, Maria F; Elliott, Hunter L; Segal, Rosalind A

    2016-05-01

    To achieve accurate spatiotemporal patterns of gene expression, RNA-binding proteins (RBPs) guide nuclear processing, intracellular trafficking and local translation of target mRNAs. In neurons, RBPs direct transport of target mRNAs to sites of translation in remote axons and dendrites. However, it is not known whether an individual RBP coordinately regulates multiple mRNAs within these morphologically complex cells. Here we identify SFPQ (splicing factor, poly-glutamine rich) as an RBP that binds and regulates multiple mRNAs in dorsal root ganglion sensory neurons and thereby promotes neurotrophin-dependent axonal viability. SFPQ acts in nuclei, cytoplasm and axons to regulate functionally related mRNAs essential for axon survival. Notably, SFPQ is required for coassembly of LaminB2 (Lmnb2) and Bclw (Bcl2l2) mRNAs in RNA granules and for axonal trafficking of these mRNAs. Together these data demonstrate that SFPQ orchestrates spatial gene expression of a newly identified RNA regulon essential for axonal viability.

  7. Berberine promotes glucose consumption independently of AMP-activated protein kinase activation.

    PubMed

    Xu, Miao; Xiao, Yuanyuan; Yin, Jun; Hou, Wolin; Yu, Xueying; Shen, Li; Liu, Fang; Wei, Li; Jia, Weiping

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine's action. This study aimed to examine whether AMPK activation was necessary for berberine's glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1) inhibition of AMPK activity by Compound C, (2) suppression of AMPKα expression by siRNA, and (3) blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation.

  8. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida.

    PubMed

    Meunier, Etienne; Wallet, Pierre; Dreier, Roland F; Costanzo, Stéphanie; Anton, Leonie; Rühl, Sebastian; Dussurgey, Sébastien; Dick, Mathias S; Kistner, Anne; Rigard, Mélanie; Degrandi, Daniel; Pfeffer, Klaus; Yamamoto, Masahiro; Henry, Thomas; Broz, Petr

    2015-05-01

    The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines interleukin 1β (IL-1β) and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella tularensis subspecies novicida (F. novicida). The activation of AIM2 by F. novicida requires bacteriolysis, yet whether this process is accidental or is a host-driven immunological mechanism has remained unclear. By screening nearly 500 interferon-stimulated genes (ISGs) through the use of small interfering RNA (siRNA), we identified guanylate-binding proteins GBP2 and GBP5 as key activators of AIM2 during infection with F. novicida. We confirmed their prominent role in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs targeted cytosolic F. novicida and promoted bacteriolysis. Thus, in addition to their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.

  9. Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and promotes platelet secretion

    PubMed Central

    Zhu, Qiuyu; Yamakuchi, Munekazu; Ture, Sara; de la Luz Garcia-Hernandez, Maria; Ko, Kyung Ae; Modjeski, Kristina L.; LoMonaco, Michael B.; Johnson, Andrew D.; O’Donnell, Christopher J.; Takai, Yoshimi; Morrell, Craig N.; Lowenstein, Charles J.

    2014-01-01

    In humans, vWF levels predict the risk of myocardial infarction and thrombosis; however, the factors that influence vWF levels are not completely understood. Recent genome-wide association studies (GWAS) have identified syntaxin-binding protein 5 (STXBP5) as a candidate gene linked to changes in vWF plasma levels, though the functional relationship between STXBP5 and vWF is unknown. We hypothesized that STXBP5 inhibits endothelial cell exocytosis. We found that STXBP5 is expressed in human endothelial cells and colocalizes with and interacts with syntaxin 4. In human endothelial cells reduction of STXBP5 increased exocytosis of vWF and P-selectin. Mice lacking Stxbp5 had higher levels of vWF in the plasma, increased P-selectin translocation, and more platelet-endothelial interactions, which suggests that STXBP5 inhibits endothelial exocytosis. However, Stxbp5 KO mice also displayed hemostasis defects, including prolonged tail bleeding times and impaired mesenteric arteriole and carotid artery thrombosis. Furthermore, platelets from Stxbp5 KO mice had defects in platelet secretion and activation; thus, STXBP5 inhibits endothelial exocytosis but promotes platelet secretion. Our study reveals a vascular function for STXBP5, validates the functional relevance of a candidate gene identified by GWAS, and suggests that variation within STXBP5 is a genetic risk for venous thromboembolic disease. PMID:25244095

  10. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.

    PubMed

    Takebayashi, Shin-Ichiro; Tanaka, Hiroshi; Hino, Shinjiro; Nakatsu, Yuko; Igata, Tomoka; Sakamoto, Akihisa; Narita, Masashi; Nakao, Mitsuyoshi

    2015-08-01

    Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells.

  11. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells

    PubMed Central

    Takebayashi, Shin-ichiro; Tanaka, Hiroshi; Hino, Shinjiro; Nakatsu, Yuko; Igata, Tomoka; Sakamoto, Akihisa; Narita, Masashi; Nakao, Mitsuyoshi

    2015-01-01

    Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells. PMID:26009982

  12. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development.

    PubMed

    Chen, Xiaobo; Zhang, Zenglin; Liu, Danmei; Zhang, Kai; Li, Aili; Mao, Long

    2010-11-01

    SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors that play important roles in plant phase transition, flower and fruit development, plant architecture, gibberellins signaling, sporogenesis, and response to copper and fungal toxins. In Arabidopsis, many SPL genes are post-transcriptionally regulated by the microRNA (miRNA) miR156, among which AtSPL9 in turn positively regulates the expression of the second miRNA miR172. This miR156-AtSPL9-miR172 regulatory pathway plays critical roles during juvenile to adult leaf development and the miR156-SPLs feedback interaction persists all through the plant development, which may be conserved in other plants. In the present paper, we provide a concise review on the most recent progress in the regulatory mechanisms associated with plant SPL transcription factors, especially in relation to miRNAs. The potential application of these discoveries in agriculture is briefly discussed.

  13. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression.

    PubMed

    Baldwin, R Mitchell; Haghandish, Nasim; Daneshmand, Manijeh; Amin, Shahrier; Paris, Geneviève; Falls, Theresa J; Bell, John C; Islam, Shahidul; Côté, Jocelyn

    2015-02-20

    Recent evidence points to the protein arginine methyltransferase (PRMT) family of enzymes playing critical roles in cancer. PRMT7 has been identified in several gene expression studies to be associated with increased metastasis and decreased survival in breast cancer patients. However, this has not been extensively studied. Here we report that PRMT7 expression is significantly upregulated in both primary breast tumour tissues and in breast cancer lymph node metastases. We have demonstrated that reducing PRMT7 levels in invasive breast cancer cells using RNA interference significantly decreased cell invasion in vitro and metastasis in vivo. Conversely, overexpression of PRMT7 in non-aggressive MCF7 cells enhanced their invasiveness. Furthermore, we show that PRMT7 induces the expression of matrix metalloproteinase 9 (MMP9), a well-known mediator of breast cancer metastasis. Importantly, we significantly rescued invasion of aggressive breast cancer cells depleted of PRMT7 by the exogenous expression of MMP9. Our results demonstrate that upregulation of PRMT7 in breast cancer may have a significant role in promoting cell invasion through the regulation of MMP9. This identifies PRMT7 as a novel and potentially significant biomarker and therapeutic target for breast cancer.

  14. Receptor-interacting protein kinase 3 promotes platelet activation and thrombosis.

    PubMed

    Zhang, Yiwen; Zhang, Jian; Yan, Rong; Tian, Jingluan; Zhang, Yang; Zhang, Jie; Chen, Mengxing; Cui, Qingya; Zhao, Lili; Hu, Renping; Jiang, Miao; Li, Zhenyu; Ruan, Changgeng; He, Sudan; Dai, Kesheng

    2017-03-14

    Previous studies have shown that receptor-interacting protein kinase 3 (RIP3) is involved in many important biological processes, including necroptosis, apoptosis, and inflammation. Here we show that RIP3 plays a critical role in regulating platelet functions and in vivo thrombosis and hemostasis. Tail bleeding times were significantly longer in RIP3-knockout (RIP3(-/-)) mice compared with their wild-type (WT) littermates. In an in vivo model of arteriole thrombosis, mice lacking RIP3 exhibited prolonged occlusion times. WT mice repopulated with RIP3(-/-) bone marrow-derived cells had longer occlusion times than RIP3(-/-) mice repopulated with WT bone marrow-derived cells, suggesting a role for RIP3-deficient platelets in arterial thrombosis. Consistent with these findings, we observed that RIP3 was expressed in both human and mice platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 analog, U46619. Phosphorylation of Akt induced by U46619 or thrombin was diminished in RIP3(-/-) platelets. Moreover, RIP3 interacted with Gα13 Platelet spreading on fibrinogen and clot retraction were impaired in the absence of RIP3. RIP3 inhibitor dose-dependently inhibited platelet aggregation in vitro and prevented arterial thrombus formation in vivo. These data demonstrate a role for RIP3 in promoting in vivo thrombosis and hemostasis by amplifying platelet activation. RIP3 may represent a novel promising therapeutic target for thrombotic diseases.

  15. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation

    PubMed Central

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K.; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-01-01

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism. PMID:26461067

  16. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs.

    PubMed

    Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey; Han, Areum; Sallam, Tamer; Waki, Hironori; Villanueva, Claudio J; Lee, Stephen D; Nielsen, Ronni; Mandrup, Susanne; Reue, Karen; Young, Stephen G; Whitelegge, Julian; Saez, Enrique; Black, Douglas L; Tontonoz, Peter

    2017-03-01

    A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex, promotes adipogenesis in vitro and is important for mature adipocyte function in vivo. Cross-linking and immunoprecipitation followed by RNA sequencing revealed that PSPC1 binds to intronic and 3'-untranslated regions of a number of adipocyte RNAs, including the RNA encoding the transcriptional regulator EBF1. Purification of the paraspeckle complex from adipocytes further showed that PSPC1 associates with the RNA export factor DDX3X in a differentiation-dependent manner. Remarkably, PSPC1 relocates from the nucleus to the cytoplasm during differentiation, coinciding with enhanced export of adipogenic RNAs. Mice lacking PSPC1 in fat displayed reduced lipid storage and adipose tissue mass and were resistant to diet-induced obesity and insulin resistance due to a compensatory increase in energy expenditure. These findings highlight a role for PSPC1-dependent RNA maturation in the posttranscriptional control of adipose development and function.

  17. Autophagy-Related Proteins Target Ubiquitin-Free Mycobacterial Compartment to Promote Killing in Macrophages

    PubMed Central

    Bah, Aïcha; Lacarrière, Camille; Vergne, Isabelle

    2016-01-01

    Autophagy is a lysosomal degradative process that plays essential functions in innate immunity, particularly, in the clearance of intracellular bacteria such as Mycobacterium tuberculosis. The molecular mechanisms involved in autophagy activation and targeting of mycobacteria, in innate immune responses of macrophages, are only partially characterized. Autophagy targets pathogenic M. tuberculosis via a cytosolic DNA recognition- and an ubiquitin-dependent pathway. In this report, we show that non-pathogenic M. smegmatis induces a robust autophagic response in THP-1 macrophages with an up regulation of several autophagy-related genes. Autophagy activation relies in part on recognition of mycobacteria by Toll-like receptor 2 (TLR2). Notably, LC3 targeting of M. smegmatis does not rely on membrane damage, ubiquitination, or autophagy receptor recruitment. Lastly, M. smegmatis promotes recruitment of several autophagy proteins, which are required for mycobacterial killing. In conclusion, our study uncovered an alternative autophagic pathway triggered by mycobacteria which involves cell surface recognition but not bacterial ubiquitination. PMID:27242971

  18. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis

    PubMed Central

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca2+-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis. PMID:27489497

  19. Med19 promotes bone metastasis and invasiveness of bladder urothelial carcinoma via bone morphogenetic protein 2.

    PubMed

    Wen, Hui; Feng, Chen-chen; Ding, Guan-xiong; Meng, Dong-liang; Ding, Qiang; Fang, Zu-jun; Xia, Guo-wei; Xu, Gang; Jiang, Hao-wen

    2013-06-01

    Bladder cancer (BCa) remained a major health problem. Med19 was related to tumor growth of BCa. Bone morphogenetic proteins (BMPs) were reported to be critical in bone metastasis of cancer. We therefore investigated the relations between Med19 and BMPs in BCa and their effect on bone metastasis of BCa. Bladder cancer cell lines were cultured and interfered with Med19 shRNA and control. Expressions of BMP-1, BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-9, and BMP-15 were studied between 2 groups. Fifty-two BCa samples were included for immunohistochemical staining of Med19 and BMP-2. Expressions were scored and studied statistically. Invasiveness was studied with Transwell assay. Silencing or Med19 in BCa cells induced altered expressions of BMPs. Increased expressions of BMP-1, BMP-4, BMP-6, BMP-7, and BMP-15 and decreased expressions of BMP-2, BMP-5, and BMP-9 were noticed, but only BMP-2 reached statistical significance. Expressions of Med19 and BMP-2 were significantly higher in cases with bone metastasis and were positively correlated in cases with bone metastasis and muscle invasion. Med19 is a critical factor involved in the invasiveness and promotion of bone metastasis of BCa, possibly via BMP-2.

  20. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein.

    PubMed

    Fox, Jonathan H; Connor, Teal; Stiles, Megan; Kama, Jibrin; Lu, Zhen; Dorsey, Kathryn; Lieberman, Gregory; Liebermann, Gregory; Sapp, Ellen; Cherny, Robert A; Banks, Mary; Volitakis, Irene; DiFiglia, Marian; Berezovska, Oksana; Bush, Ashley I; Hersch, Steven M

    2011-05-20

    Huntington disease (HD) is a progressive neurodegenerative disorder caused by expression of polyglutamine-expanded mutant huntingtin protein (mhtt). Most evidence indicates that soluble mhtt species, rather than insoluble aggregates, are the important mediators of HD pathogenesis. However, the differential roles of soluble monomeric and oligomeric mhtt species in HD and the mechanisms of oligomer formation are not yet understood. We have shown previously that copper interacts with and oxidizes the polyglutamine-containing N171 fragment of huntingtin. In this study we report that oxidation-dependent oligomers of huntingtin form spontaneously in cell and mouse HD models. Levels of these species are modulated by copper, hydrogen peroxide, and glutathione. Mutagenesis of all cysteine residues within N171 blocks the formation of these oligomers. In cells, levels of oligomerization-blocked mutant N171 were decreased compared with native N171. We further show that a subset of the oligomerization-blocked form of glutamine-expanded N171 huntingtin is rapidly depleted from the soluble pool compared with "native " mutant N171. Taken together, our data indicate that huntingtin is subject to specific oxidations that are involved in the formation of stable oligomers and that also delay removal from the soluble pool. These findings show that inhibiting formation of oxidation-dependent huntingtin oligomers, or promoting their dissolution, may have protective effects in HD by decreasing the burden of soluble mutant huntingtin.

  1. The SET domain protein, Set3p, promotes the reliable execution of cytokinesis in Schizosaccharomyces pombe.

    PubMed

    Rentas, Stefan; Saberianfar, Reza; Grewal, Charnpal; Kanippayoor, Rachelle; Mishra, Mithilesh; McCollum, Dannel; Karagiannis, Jim

    2012-01-01

    In response to perturbation of the cell division machinery fission yeast cells activate regulatory networks that ensure the faithful completion of cytokinesis. For instance, when cells are treated with drugs that impede constriction of the actomyosin ring (low doses of Latrunculin A, for example) these networks ensure that cytokinesis is complete before progression into the subsequent mitosis. Here, we identify three previously uncharacterized genes, hif2, set3, and snt1, whose deletion results in hyper-sensitivity to LatA treatment and in increased rates of cytokinesis failure. Interestingly, these genes are orthologous to TBL1X, MLL5, and NCOR2, human genes that encode components of a histone deacetylase complex with a known role in cytokinesis. Through co-immunoprecipitation experiments, localization studies, and phenotypic analysis of gene deletion mutants, we provide evidence for an orthologous complex in fission yeast. Furthermore, in light of the putative role of the complex in chromatin modification, together with our results demonstrating an increase in Set3p levels upon Latrunculin A treatment, global gene expression profiles were generated. While this analysis demonstrated that the expression of cytokinesis genes was not significantly affected in set3Δ backgrounds, it did reveal defects in the ability of the mutant to regulate genes with roles in the cellular response to stress. Taken together, these findings support the existence of a conserved, multi-protein complex with a role in promoting the successful completion of cytokinesis.

  2. Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis

    PubMed Central

    Qin, Xiaodan; Lin, Liang; Cao, Li; Zhang, Xinwei; Song, Xiao; Hao, Jie; Zhang, Yan; Wei, Risheng; Huang, Xiaojun; Lu, Jin; Ge, Qing

    2017-01-01

    Reelin is an extracellular matrix protein that is crucial for neuron migration, adhesion, and positioning. We examined the expression of Reelin in a large cohort of multiple myeloma patients recorded in Gene Expression Omnibus (GEO) database and used over-expression and siRNA knockdown of Reelin to investigate the role of Reelin in myeloma cell growth. We find that Reelin expression is negatively associated with myeloma prognosis. Reelin promotes myeloma cell proliferation in vitro as well as in vivo. The Warburg effect, evidenced by increased glucose uptake and lactate production, is also enhanced in Reelin-expressing cells. The activation of FAK/Syk/Akt/mTOR and STAT3 pathways contributes to Reelin-induced cancer cell growth and metabolic reprogramming. Our findings further reveal that activated Akt and STAT3 pathways induce the upregulation of HIF1α and its downstream targets (LDHA and PDK1), leading to increased glycolysis in myeloma cells. Together, our results demonstrate the critical contributions of Reelin to myeloma growth and metabolism. It presents an opportunity for myeloma therapeutic intervention by inhibiting Reelin and its signaling pathways. PMID:28345605

  3. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE PAGES

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  4. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes.

    PubMed

    Alam, Tanvir; Medvedeva, Yulia A; Jia, Hui; Brown, James B; Lipovich, Leonard; Bajic, Vladimir B

    2014-01-01

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  5. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    SciTech Connect

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; Brown, James B.; Lipovich, Leonard; Bajic, Vladimir B.; Mantovani, Roberto

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  6. Transcriptional regulation of the MHC class I HLA-A11 promoter by the zinc finger protein ZFX.

    PubMed Central

    L'Haridon, M; Paul, P; Xerri, J G; Dastot, H; Dolliger, C; Schmid, M; de Angelis, N; Grollet, L; Sigaux, F; Degos, L; Gazin, C

    1996-01-01

    Regulation of the human MHC class I HLA-A11 promoter is governed by a complex array of regulatory elements. One of these elements, shown here to be critical for the transcriptional activity of the promoter, was used to screen a lambda gt11 library and allowed the identification of a cDNA which coded for the zinc finger protein ZFX. ZFX was shown to bind the sequences AGGGCCCCA and AGGCCCCGA, located respectively at positions -271 to -263 and -242 to -234 of the HLA-A11 promoter, with similar affinities through its three C-terminal zinc fingers. ZFX575, a short isoform of ZFX, activates transcription from the HLA-All promoter in a Leydig cell line. PMID:8657576

  7. Differential regulation of the parathyroid hormone-related protein gene P1 and P3 promoters by cAMP.

    PubMed

    Chilco, P J; Leopold, V; Zajac, J D

    1998-03-16

    The role of calcitonin, and other agonists which activate the cAMP pathway, in regulating transcription of the human parathyroid hormone-related protein (PTHrP) gene was investigated in a human lung cancer cell line (BEN). Both calcitonin and forskolin caused a 5-6-fold increase in transcription initiated from both the P1 and P3 promoters, but with no observed effect on the P2 promoter. Maximal 6-fold activation of the P1 promoter occurred at 16 h post-stimulation and effects of calcitonin were observed within the pM range. The PKC agonist, phorbol 12-myristate 13-acetate diester (PMA), did not modulate transcription initiated from the P1 promoter. The ionophore ionomycin had a small effect on transcription of the P1 promoter, and transcriptional control may involve an interaction between the cAMP and intracellular calcium second messenger pathways. Deletion mapping studies indicated that increases in transcription of the human PTHrP gene is being mediated via a CRE element situated at -3313 to -3306 upstream of the P1 promoter. Mutational analysis of this CRE element confirmed a role for this sequence in mediating the increase in transcription effected by cAMP. Consistent with these transfection studies, RT-PCR of PTHrP mRNA also indicated a significant increase in transcripts generated from the P1 promoter. Gel retardation assays utilising a fragment of the P1 promoter region, encompassing the putative CRE, determined that nuclear proteins were binding to this region. Competition binding studies with labelled probe and cold competitors determined that the binding was specific for this sequence. A wild-type CRE consensus oligonucleotide also competed for binding with this sequence.

  8. Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment.

    PubMed

    Gommans, Willemijn M; McLaughlin, Pamela M J; Lindhout, Beatrice I; Segal, David J; Wiegman, D J; Haisma, Hidde J; van der Zaal, Bert J; Rots, Marianne G

    2007-05-01

    Zinc finger protein transcription factors (ZFP-TFs) are emerging as powerful novel tools for the treatment of many different diseases. ZFPs are DNA-binding motifs and consist of modular zinc finger domains. Each domain can be engineered to recognize a specific DNA triplet, and stitching six domains together results in the recognition of a gene-specific sequence. Inhibition of gene expression can be achieved by fusing a repressor domain to these DNA-binding motifs. In this study, we engineered ZFP-TFs to downregulate the activity of the epithelial glycoprotein-2 (EGP-2) promoter. The protein EGP-2 is overexpressed in a wide variety of cancer types and EGP-2 downregulation has been shown to result in a decreased oncogenic potential of tumor cells. Therefore, downregulation of EGP-2 expression by ZFP-TFs provides a novel anti-cancer therapeutic. Using a straightforward strategy, we engineered a 3-ZFP that could bind a 9 bp sequence within the EGP-2 promoter. After the addition of a repressor domain, this 3-ZFP-TF could efficiently downregulate EGP-2 promoter activity by 60%. To demonstrate the flexibility of this technology, we coupled an activation domain to the engineered ZFP, resulting in a nearly 200% increase in EGP-2 promoter activity. To inhibit the endogenous EGP-2 promoter, we engineered 6-ZFP-TFs. Although none of the constructed ZFP-TFs could convincingly modulate the endogenous promoter, efficient and specific inhibition of the exogenous promoter was observed. Overall, ZFP-TFs are versatile bi-directional modulators of gene expression and downregulation of EGP-2 promoter activity using ZFP-TFs can ultimately result in a novel anti-cancer treatment.

  9. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology.

    PubMed

    Kassubek, Jan; Müller, Hans-Peter; Del Tredici, Kelly; Brettschneider, Johannes; Pinkhardt, Elmar H; Lulé, Dorothée; Böhm, Sarah; Braak, Heiko; Ludolph, Albert C

    2014-06-01

    Diffusion tensor imaging can identify amyotrophic lateral sclerosis-associated patterns of brain alterations at the group level. Recently, a neuropathological staging system for amyotrophic lateral sclerosis has shown that amyotrophic lateral sclerosis may disseminate in a sequential regional pattern during four disease stages. The objective of the present study was to apply a new methodological diffusion tensor imaging-based approach to automatically analyse in vivo the fibre tracts that are prone to be involved at each neuropathological stage of amyotrophic lateral sclerosis. Two data samples, consisting of 130 diffusion tensor imaging data sets acquired at 1.5 T from 78 patients with amyotrophic lateral sclerosis and 52 control subjects; and 55 diffusion-tensor imaging data sets at 3.0 T from 33 patients with amyotrophic lateral sclerosis and 22 control subjects, were analysed by a tract of interest-based fibre tracking approach to analyse five tracts that become involved during the course of amyotrophic lateral sclerosis: the corticospinal tract (stage 1); the corticorubral and the corticopontine tracts (stage 2); the corticostriatal pathway (stage 3); the proximal portion of the perforant path (stage 4); and two reference pathways. The statistical analyses of tracts of interest showed differences between patients with amyotrophic lateral sclerosis and control subjects for all tracts. The significance level of the comparisons at the group level was lower, the higher the disease stage with corresponding involved fibre tracts. Both the clinical phenotype as assessed by the amyotrophic lateral sclerosis functional rating scale-revised and disease duration correlated significantly with the resulting staging scheme. In summary, the tract of interest-based technique allowed for individual analysis of predefined tract structures, thus making it possible to image in vivo the disease stages in amyotrophic lateral sclerosis. This approach can be used not only for individual clinical work-up purposes, but enlarges the spectrum of potential non-invasive surrogate markers as a neuroimaging-based read-out for amyotrophic lateral sclerosis studies within a clinical context.

  10. Differential effects of Sp cellular transcription factors on viral promoter activation by varicella-zoster virus (VZV) IE62 protein.

    PubMed

    Khalil, Mohamed I; Ruyechan, William T; Hay, John; Arvin, Ann

    2015-11-01

    The immediate early (IE) 62 protein is the major varicella-zoster virus (VZV) regulatory factor. Analysis of the VZV genome revealed 40 predicted GC-rich boxes within 36 promoters. We examined effects of ectopic expression of Sp1-Sp4 on IE62- mediated transactivation of three viral promoters. Ectopic expression of Sp3 and Sp4 enhanced IE62 activation of ORF3 and gI promoters while Sp3 reduced IE62 activation of ORF28/29 promoter and VZV DNA replication. Sp2 reduced IE62 transactivation of gI while Sp1 had no significant influence on IE62 activation with any of these viral promoters. Electrophoretic mobility shift assays (EMSA) confirmed binding of Sp1 and Sp3 but not Sp2 and Sp4 to the gI promoter. Sp1-4 bound to IE62 and amino acids 238-258 of IE62 were important for the interaction with Sp3 and Sp4 as well as Sp1. This work shows that Sp family members have differential effects on IE62-mediated transactivation in a promoter-dependent manner.

  11. Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway.

    PubMed

    Park, Arnold; Yun, Tatyana; Vigant, Frederic; Pernet, Olivier; Won, Sohui T; Dawes, Brian E; Bartkowski, Wojciech; Freiberg, Alexander N; Lee, Benhur

    2016-05-01

    The budding of Nipah virus, a deadly member of the Henipavirus genus within the Paramyxoviridae, has been thought to be independent of the host ESCRT pathway, which is critical for the budding of many enveloped viruses. This conclusion was based on the budding properties of the virus matrix protein in the absence of other virus components. Here, we find that the virus C protein, which was previously investigated for its role in antagonism of innate immunity, recruits the ESCRT pathway to promote efficient virus release. Inhibition of ESCRT or depletion of the ESCRT factor Tsg101 abrogates the C enhancement of matrix budding and impairs live Nipah virus release. Further, despite the low sequence homology of the C proteins of known henipaviruses, they all enhance the budding of their cognate matrix proteins, suggesting a conserved and previously unknown function for the henipavirus C proteins.

  12. Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway

    PubMed Central

    Yun, Tatyana; Vigant, Frederic; Pernet, Olivier; Won, Sohui T.; Dawes, Brian E.; Bartkowski, Wojciech; Freiberg, Alexander N.; Lee, Benhur

    2016-01-01

    The budding of Nipah virus, a deadly member of the Henipavirus genus within the Paramyxoviridae, has been thought to be independent of the host ESCRT pathway, which is critical for the budding of many enveloped viruses. This conclusion was based on the budding properties of the virus matrix protein in the absence of other virus components. Here, we find that the virus C protein, which was previously investigated for its role in antagonism of innate immunity, recruits the ESCRT pathway to promote efficient virus release. Inhibition of ESCRT or depletion of the ESCRT factor Tsg101 abrogates the C enhancement of matrix budding and impairs live Nipah virus release. Further, despite the low sequence homology of the C proteins of known henipaviruses, they all enhance the budding of their cognate matrix proteins, suggesting a conserved and previously unknown function for the henipavirus C proteins. PMID:27203423

  13. Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells.

    PubMed

    Oesterreich, S; Lee, A V; Sullivan, T M; Samuel, S K; Davie, J R; Fuqua, S A

    1997-11-01

    Since the small heat shock protein hsp27 enhances both growth and drug resistance in breast cancer cells, and is a bad prognostic factor in certain subsets of breast cancer patients, we have characterized the transcriptional regulation of hsp27, with the long-term goal of targeting its expression clinically. The majority of the promoter activity resides in the most proximal 200 bp. This region contains an imperfect estrogen response element (ERE) that is separated by a 13-bp spacer that contains a TATA box. Gel-shift analysis revealed the binding of a protein (termed HET for Hsp27-ERE-TATA-binding protein) to this region that was neither the estrogen receptor nor TATA-binding protein. We cloned a complete cDNA (2.9 kb) for HET from an MCF-7 cDNA library. To confirm the identity of the HET clone, we expressed a partial HET clone as a glutathione S-transferase fusion protein, and showed binding to the hsp27 promoter fragment in gel-retardation assays. The HET clone is almost identical to a recently published scaffold attachment factor (SAF-B) cloned from a HeLa cell cDNA library. Scaffold attachment factors are a subset of nuclear matrix proteins (NMP) that interact with matrix attachment regions. Analyzing how HET could act as a regulator of hsp27 transcription and as a SAF/NMP, we studied its subnuclear localization and its effect on hsp27 transcription in human breast cancer cells. We were able to show that HET is localized in the nuclear matrix in various breast cancer cell lines. Furthermore, in transient transfection assays using hsp27 promoter-luciferase reporter constructs, HET overexpression resulted in a dose-dependent decrease of hsp27 promoter activity in several cell lines.

  14. Huntington’s Disease Protein Huntingtin Associates with its own mRNA

    PubMed Central

    Culver, Brady P.; DeClercq, Josh; Dolgalev, Igor; Yu, Man Shan; Ma, Bin; Heguy, Adriana; Tanese, Naoko

    2016-01-01

    Background: The Huntington’s disease (HD) protein huntingtin (Htt) plays a role in multiple cellular pathways. Deregulation of one or more of these pathways by the mutant Htt protein has been suggested to contribute to the disease pathogenesis. Our recent discovery-based proteomics studies have uncovered RNA binding proteins and translation factors associated with the endogenous Htt protein purified from mouse brains, suggesting a potential new role for Htt in RNA transport and translation. Objective: To investigate how Htt might affect RNA metabolism we set out to purify and analyze RNA associated with Htt. Methods: RNA was extracted from immunopurified Htt-containing protein complexes and analyzed by microarrays and RNA-Seq. Results: Surprisingly, the most enriched mRNA that co-purified with Htt was Htt mRNA itself. The association of Htt protein and Htt mRNA was detected independent of intact ribosomes suggesting that it is not an RNA undergoing translation. Furthermore, we identified the recently reported mis-spliced Htt mRNA encoding a truncated protein comprised of exon 1 and a portion of the downstream intron in the immunoprecipitates containing mutant Htt protein. We show that Htt protein co-localizes with Htt mRNA and that wild-type Htt reduces expression of a reporter construct harboring the Htt 3’ UTR. Conclusions: HD protein is found in a complex with its own mRNA and RNA binding proteins and translation factors. Htt may be involved in modulating its expression through post-transcriptional pathways. It is possible that Htt shares mechanistic properties similar to RNA binding proteins such as TDP-43 and FUS implicated in other neurodegenerative diseases. PMID:26891106

  15. Silencing speckle-type POZ protein by promoter hypermethylation decreases cell apoptosis through upregulating Hedgehog signaling pathway in colorectal cancer

    PubMed Central

    Zhi, Xiaofei; Tao, Jinqiu; Zhang, Lei; Tao, Ran; Ma, Lilin; Qin, Jun

    2016-01-01

    Epigenetic silencing of tumor suppressors contributes to the development and progression of colorectal cancer (CRC). We recently found that speckle-type POZ protein (SPOP) was significantly downregulated and the inactivation of SPOP promoted metastasis in CRC. This study aimed to clarify its epigenetic alteration, molecular mechanisms and clinical significance in CRC. Our results revealed that the core region of SPOP promoter was hypermethylated in CRC tissues and its methylation was correlated with poor survival. Transcription factor RXRA had a vital role in the regulation of SPOP gene. The data indicated that DNA methylation at −167 bp of the SPOP gene altered the binding affinity between transcription factor RXRA and SPOP promoter. Moreover, SPOP was found to associate with Gli2 and promoted its ubiquitination and degradation in CRC. Consequently, the expression level of Hh/Gli2 pathway-related apoptotic protein Bcl-2 was decreased and the function of resisting cell death was inhibited in CRC. It suggests that methylation status of SPOP promoter can be used as a novel epigenetic biomarker and a therapeutic target in CRC. PMID:28032859

  16. Protein-Binding Function of RNA-Dependent Protein Kinase Promotes Proliferation through TRAF2/RIP1/NF-κB/c-Myc Pathway in Pancreatic β cells

    PubMed Central

    Gao, LiLi; Tang, Wei; Ding, ZhengZheng; Wang, DingYu; Qi, XiaoQiang; Wu, HuiWen; Guo, Jun

    2015-01-01

    Double-stranded RNA-dependent protein kinase (PKR), an intracellular pathogen recognition receptor, is involved both in insulin resistance in peripheral tissues and in downregulation of pancreatic β-cell function in a kinase-dependent manner, indicating PKR as a core component in the progression of type 2 diabetes. PKR also acts as an adaptor protein via its protein-binding domain. Here, the PKR protein-binding function promoted β-cell proliferation without its kinase activity, which is associated with enhanced physical interaction with tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. In addition, the transcription of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-dependent survival gene c-Myc was upregulated significantly and is necessary for proliferation. Upregulation of the PKR protein-binding function induced the NF-κB pathway, as observed by dose-dependent degradation of IκBα, induced nuclear translocation of p65 and elevated NF-κB-dependent reporter gene expression. NF-κB-dependent reporter activity and β-cell proliferation both were suppressed by TRAF2-siRNA, but not by TRAF6-siRNA. TRAF2-siRNA blocked the ubiquitination of receptor-interacting serine/threonine-protein kinase 1 (RIP1) induced by PKR protein binding. Furthermore, RIP1-siRNA inhibited β-cell proliferation. Proinflammatory cytokines (TNFα) and glucolipitoxicity also promoted the physical interaction of PKR with TRAF2. Collectively, these data indicate a pivotal role for PKR’s protein-binding function on the proliferation of pancreatic β cells through TRAF2/RIP1/NF-κB/c-Myc pathways. Therapeutic opportunities for type 2 diabetes may arise when its kinase catalytic function, but not its protein-binding function, is downregulated. PMID:25715336

  17. Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo.

    PubMed

    Schultz, Chad; Lemke, Nancy; Ge, Shugang; Golembieski, William A; Rempel, Sandra A

    2002-11-01

    Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human astrocytomas, grades II-IV. We demonstrated previously that SPARC promotes invasion in vitro using the U87MG-derived clone U87T2 and U87T2-derived SPARC-transfected clones, A2b2, A2bi, and C2a4, in the spheroid confrontation assay. Additional in vitro studies demonstrated that SPARC delays growth, increases attachment, and modulates migration of tumor cells in extracellular matrix-specific and concentration-dependent manners. Therefore, we propose that SPARC functionally contributes to brain tumor invasion and delays tumor growth in vivo, and that the effects of SPARC are related to the level of SPARC secreted into the extracellular matrix. To test these hypotheses, we stereotactically injected these clones into nude rat brains (six animals were injected per clone). Animals were sacrificed on day 7 to assess growth and invasion for all clones at the same time in tumor development. To determine whether SPARC delayed but did not inhibit growth, rats were injected with U87T2 or clone A2b2, and the animals were sacrificed on days 9 (U87T2) and 20 (A2b2), when the animals demonstrated neurological deficit. Brains were removed, fixed, photographed, paraffin embedded, and sectioned. Sections were then serially stained with H&E for morphological assessment of invasion and to measure tumor volume, immunohistochemically stained to visualize SPARC, subjected to in situ hybridization with the human AluII DNA-binding probe to identify human cells, and immunohistochemically stained with MIB-1 to measure proliferation index. The results demonstrate that SPARC promotes invasion in vivo at day 7. Both the low (A2bi) and the high (A2b2) SPARC-secreting clones produced invasive tumors, invading with fingerlike projections and satellite masses into adjacent brain, as well as along the corpus collosum. The intermediate SPARC secreting clone (C2a4) primarily migrated as a bulk tumor along the corpus

  18. Protein tyrosine kinase 6 promotes ERBB2-induced mammary gland tumorigenesis in the mouse

    PubMed Central

    Peng, M; Ball-Kell, S M; Tyner, A L

    2015-01-01

    Protein tyrosine kinase 6 (PTK6) expression, activation, and amplification of the PTK6 gene have been reported in ERBB2/HER2-positive mammary gland cancers. To explore contributions of PTK6 to mammary gland tumorigenesis promoted by activated ERBB2, we crossed Ptk6−/− mice with the mouse mammary tumor virus-ERBB2 transgenic mouse line expressing activated ERBB2 and characterized tumor development and progression. ERBB2-induced tumorigenesis was significantly delayed and diminished in mice lacking PTK6. PTK6 expression was induced in the mammary glands of ERBB2 transgenic mice before tumor development and correlated with activation of signal transducer and activator of transcription 3 (STAT3) and increased proliferation. Disruption of PTK6 impaired STAT3 activation and proliferation. Phosphorylation of the PTK6 substrates focal adhesion kinase (FAK) and breast cancer anti-estrogen resistance 1 (BCAR1; p130CAS) was decreased in Ptk6−/− mammary gland tumors. Reduced numbers of metastases were detected in the lungs of Ptk6−/− mice expressing activated ERBB2, compared with wild-type ERBB2 transgenic mice. PTK6 activation was detected at the edges of ERBB2-positive tumors. These data support roles for PTK6 in both ERBB2-induced mammary gland tumor initiation and metastasis, and identify STAT3, FAK, and BCAR1 as physiologically relevant PTK6 substrates in breast cancer. Including PTK6 inhibitors as part of a treatment regimen could have distinct benefits in ERBB2/HER2-positive breast cancers. PMID:26247733

  19. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response.

    PubMed

    Tascau, Liana; Gardner, Thomas; Anan, Hussein; Yongpravat, Charlie; Cardozo, Christopher P; Bauman, William A; Lee, Francis Y; Oh, Daniel S; Tawfeek, Hesham A

    2016-01-01

    Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.

  20. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis.

    PubMed

    Hardy, S; Uetani, N; Wong, N; Kostantin, E; Labbé, D P; Bégin, L R; Mes-Masson, A; Miranda-Saavedra, D; Tremblay, M L

    2015-02-19

    The three PRL (phosphatases of regenerating liver) protein tyrosine phosphatases (PRL-1, -2 and -3) have been identified as key contributors to metastasis in several human cancers, yet the molecular basis of their pro-oncogenic property is unclear. Among the subfamily of PRL phosphatases, overexpression of PRL-2 in breast cancer cells has been shown to promote tumor growth by a mechanism that remains to be uncovered. Here we show that PRL-2 regulates intracellular magnesium levels by forming a functional heterodimer with the magnesium transporter CNNM3. We further reveal that CNNM3 is not a phosphorylated substrate of PRL-2, and that the interaction occurs through a loop unique to the CBS pair domains of CNNM3 that exists only in organisms having PRL orthologs. Supporting the role of PRL-2 in cellular magnesium transport is the observation that PRL-2 knockdown results in a substantial decrease of cellular magnesium influx. Furthermore, in PRL-2 knockout mice, serum magnesium levels were significantly elevated as compared with control animals, indicating a pivotal role for PRL-2 in regulating cellular magnesium homeostasis. Although the expression levels of CNNM3 remained unchanged after magnesium depletion of various cancer cell lines, the interaction between endogenous PRL-2 and CNNM3 was markedly increased. Importantly, xenograft tumor assays with CNNM3 and a mutant form that does not associate with PRL-2 confirm that CNNM3 is itself pro-oncogenic, and that the PRL-2/CNNM3 association is important for conferring transforming activities. This finding is further confirmed from data in human breast cancer tissues showing that CNNM3 levels correlate positively with both PRL-2 expression and the tumor proliferative index. In summary, we demonstrate that oncogenic PRL-2 controls tumor growth by modulating intracellular magnesium levels through binding with the CNNM3 magnesium transporter.

  1. Endothelial cells microparticle-associated protein disulfide isomerase promotes platelet activation in metabolic syndrome

    PubMed Central

    Li, Yi-hui; Song, Dai-jun; Chen, Tong-shuai; Zhang, Wei; Zhong, Ming; Zhang, Yun; Xing, Yan-qiu; Wang, Zhi-hao

    2016-01-01

    Background Metabolic syndrome (MetS) is a common challenge in the world, and the platelet activation is enhanced in MetS patients. However, the fundamental mechanism that underlies platelet activation in MetS remains incompletely understood. Endothelial cells are damaged seriously in MetS patients, then they release more endothelial microparticles (EMPs). After all, whether the EMPs participate in platelet activation is still obscure. If they were, how did they work? Results We demonstrated that the levels of EMPs, PMPs (platelet derived microparticles) and microparticle-carried-PDI activity increased in MetS patients. IR endothelial cells released more EMPs, the EMP-PDI was more activated. EMPs can enhance the activation of CD62P, GPIIb/IIIa and platelet aggregation and this process can be partly inhibited by PDI inhibitor such as RL90 and rutin. Activated platelets stimulated by EMPs expressed more PDI on cytoplasm and released more PMPs. Materials and Methods We obtained plasma from 23 MetS patients and 8 normal healthy controls. First we built insulin resistance (IR) model of human umbilical vein endothelial cells (HUVECs), and then we separated EMPs from HUVECs culture medium and used these EMPs to stimulate platelets. Levels of microparticles, P-selectin(CD62P), Glycoprotein IIb/IIIa (GPIIb/IIIa) were detected by flow cytometry and levels of EMPs were detected by enzyme-linked immunosorbent assay (ELISA). The protein disulfide isomerase (PDI) activity was detected by insulin transhydrogenase assay. Platelet aggregation was assessed by turbidimetry. Conclusion EMPs can promote the activation of GPIIb/IIIa in platelets and platelet aggregation by the PDI which is carried on the surface of EMPs. PMID:27825126

  2. Krüppel-Like Factor 12 Promotes Colorectal Cancer Growth through Early Growth Response Protein 1

    PubMed Central

    Kim, Sun-Hee; Park, Yun-Yong; Cho, Sung-Nam; Margalit, Ofer; Wang, Dingzhi; DuBois, Raymond N.

    2016-01-01

    Krüppel-like factor 12 (KLF12) is a transcription factor that plays a role in normal kidney development and repression of decidualization. KLF12 is frequently elevated in esophageal adenocarcinoma and has been reported to promote gastric cancer progression. Here, we examined the role of KLF12 in colorectal cancer (CRC). Indeed, KLF12 promotes tumor growth by directly activating early growth response protein 1 (EGR1). The levels of KLF12 and EGR1 correlate synergistically with a poor prognosis. These results indicate that KLF12 likely plays an important role in CRC and could serve as a potential prognostic marker and therapeutic target. PMID:27442508

  3. The LIM domain protein nTRIP6 recruits the mediator complex to AP-1-regulated promoters.

    PubMed

    Diefenbacher, Markus E; Reich, Daniela; Dahley, Oliver; Kemler, Denise; Litfin, Margarethe; Herrlich, Peter; Kassel, Olivier

    2014-01-01

    Several LIM domain proteins regulate transcription. They are thought to act through their LIM protein-protein interaction domains as adaptors for the recruitment of transcriptional co-regulators. An intriguing example is nTRIP6, the nuclear isoform of the focal adhesion protein TRIP6. nTRIP6 interacts with AP-1 and enhances its transcriptional activity. nTRIP6 is also essential for the transrepression of AP-1 by the glucocorticoid receptor (GR), by mediating GR tethering to promoter-bound AP-1. Here we report on the molecular mechanism by which nTRIP6 exerts these effects. Both the LIM domains and the pre-LIM region of nTRIP6 are necessary for its co-activator function for AP-1. Discrete domains within the pre-LIM region mediate the dimerization of nTRIP6 at the promoter, which enables the recruitment of the Mediator complex subunits THRAP3 and Med1. This recruitment is blocked by GR, through a competition between GR and THRAP3 for the interaction with the LIM domains of nTRIP6. Thus, nTRIP6 both positively and negatively regulates transcription by orchestrating the recruitment of the Mediator complex to AP-1-regulated promoters.

  4. An oleosin-fusion protein driven by the CaMV35S promoter is accumulated in Arabidopsis (Brassicaceae) seeds and correctly targeted to oil bodies.

    PubMed

    Li, W; Li, L G; Sun, X F; Tang, K X

    2012-08-13

    Oleosin-fusion technology is used to express desired proteins. It was developed based on the properties of oleosin; the heterologous protein gene is fused to the oleosin gene and the fusion gene is driven by a seed-specific promoter. We replaced the seed specific promoter with the CaMV35S promoter to dive a gfp-oleosin fusion gene in transformed Arabidopsis. The heterologous oleosin-fusion protein was mainly accumulated in the transgenic Arabidopsis seeds and correctly targeted to oil bodies. This provides an alternate choice of promoter in oleosin-fusion technology.

  5. The dual role of DksA protein in the regulation of Escherichia coli pArgX promoter

    PubMed Central

    Łyżeń, Robert; Maitra, Amarnath; Milewska, Klaudia; Kochanowska-Łyżeń, Maja; Hernandez, V. James; Szalewska-Pałasz, Agnieszka

    2016-01-01

    Gene expression regulation by the stringent response effector, ppGpp, is facilitated by DksA protein; however DksA and ppGpp can play independent roles in transcription. In Escherichia coli, the pArgX promoter which initiates the transcription of four tRNA genes was shown to be inhibited by ppGpp. Our studies on the role of DksA in pArgX regulation revealed that it can stimulate transcription by increasing the binding of RNA polymerase to the promoter and the productive transcription complex formation. However, when DksA is present together with ppGpp a severe down-regulation of promoter activity is observed. Our results indicate that DksA facilitates the effects of ppGpp to drive formation of inactive dead-end complexes formed by RNA polymerase at the ArgX promoter. In vivo, ppGpp-mediated regulation of pArgX transcription is dependent on DksA activity. The potential mechanisms of opposing pArgX regulation by ppGpp and DksA are discussed. pArgX is the first reported example of the promoter stimulated by DksA and inhibited by ppGpp in vitro when an overall inhibition occurs in the presence of both regulators. A dual role is thus proposed for DksA in the regulation of the pArgX promoter activity. PMID:27915292

  6. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS).

    PubMed

    Han, Huihui; Wei, Wanyi; Duan, Weisong; Guo, Yansu; Li, Yi; Wang, Jie; Bi, Yue; Li, Chunyan

    2015-03-01

    Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.

  7. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator.

    PubMed

    Torbitz, Vanessa Dorneles; Bochi, Guilherme Vargas; de Carvalho, José Antônio Mainardi; de Almeida Vaucher, Rodrigo; da Silva, José Edson Paz; Moresco, Rafael Noal

    2015-01-01

    Fibrinogen (FB) is a soluble blood plasma protein and is a key molecule involved in coagulation. Oxidative modification of proteins, such as the formation of advanced oxidation protein products (AOPP), a heterogeneous family of protein compounds structurally modified and derived from oxidative stress, may be associated with the pathophysiology of a number of chronic inflammatory diseases. Therefore, the aim of this study was to determine whether the formation of this mediator of inflammation occurs from FB and whether its generation is associated with structural changes. Results of the present study suggest that the oxidation of FB may provoke the formation of AOPP, which in turn, may promote functional alterations in FB, thus causing changes in its structural domains and increasing its procoagulant activity.

  8. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth.

    PubMed

    Subramanian, Deepa; Bunjobpol, Wilawan; Sabapathy, Kanaga

    2015-07-24

    Unlike p53, which is mutated at a high rate in human cancers, its homologue p73 is not mutated but is often overexpressed, suggesting a possible context-dependent role in growth promotion. Previously, we have shown that co-expression of TAp73 with the proto-oncogene c-Jun can augment cellular growth and potentiate transactivation of activator protein (AP)-1 target genes such as cyclin D1. Here, we provide further mechanistic insights into the cooperative activity between these two transcription factors. Our data show that TAp73-mediated AP-1 target gene transactivation relies on c-Jun dimerization and requires the canonical AP-1 sites on target gene promoters. Interestingly, only selected members of the Fos family of proteins such as c-Fos and Fra1 were found to cooperate with TAp73 in a c-Jun-dependent manner to transactivate AP-1 target promoters. Inducible expression of TAp73 led to the recruitment of these Fos family members to the AP-1 target promoters on which TAp73 was found to be bound near the AP-1 site. Consistent with the binding of TAp73 and AP-1 members on the target promoters in a c-Jun-dependent manner, TAp73 was observed to physically interact with c-Jun specifically at the chromatin via its carboxyl-terminal region. Furthermore, co-expression of c-Fos or Fra1 was able to cooperate with TAp73 in potentiating cellular growth, similarly to c-Jun. These data together suggest that TAp73 plays a vital role in activation of AP-1 target genes via direct binding to c-Jun at the target promoters, leading to enhanced loading of other AP-1 family members, thereby leading to cellular growth.

  9. The mouse proline-rich protein MP6 promoter binds isoprenaline-inducible parotid nuclear proteins via a highly conserved NFkB/rel-like site.

    PubMed

    Roberts, S G; Layfield, R; McDonald, C J

    1991-10-11

    Proline-rich protein (PRP) gene MP6 was isolated from a mouse BALB/c genomic DNA library in lambda EMBL3, characterised by hybridisation and restriction mapping and the promoter region, from -162 to +72 around the PRP consensus cap-site, was sequenced. In gel shift assays this region formed complexes C1 and C2 with parotid nuclear proteins which were induced by the beta-adrenergic agonist isoprenaline. DNA competition studies and direct binding assays of promoter subfragments showed that it was the sequence from -157 to -91 that was forming the isoprenaline-dependent complexes. All PRP genes conserve a 23bp. sequence, termed PRP Box1, with ets and NFkB/rel binding site-like elements, upstream of their promoters. In the MP6 promoter, PRP Box1 was within the region forming the complexes. Further gel shift assays using PRP Box1 oligonucleotides as competitors and targets indicated that the NFkB/rel binding site-like element was important in formation of the isoprenaline-inducible complexes. HeLa nuclear extracts also formed complexes with PRP Box1 similar to C1 and C2 but nuclear extracts from spleen, submandibular gland and liver did not. These complexes are thus candidate regulators for the isoprenaline-dependent and tissue-specific transcription of PRP genes.