NASA Astrophysics Data System (ADS)
Setiasih, S.; Adimas, A. Ch. D.; Dzikria, V.; Hudiyono, S.
2018-01-01
This study aimed to isolate and purify bromelain from pineapple core (Ananascomosus (L.) Merr) accompanied by a stability test of its enzyme activity in artificial gastric juice. Purification steps start with fractionation by a precipitation method were carried out stepwise using several concentration of ammonium sulfate salt, followed by dialysis prosess and ion exchange chromatography on DEAE-cellulose column. Each step of purification produced an increasing specific activity in enzyme fraction, starting with crude extract, respectively: 0.276 U/mg; 14.591 U/mg; and 16.05 U/mg. Bromelain fraction with the highest level of purity was obtained in 50-80% ammonium sulphate fraction after dialyzed in the amount of 58.15 times compared to the crude extract. Further purification of the enzyme by DEAE-cellulose column produced bromelain which had a purity level 160-fold compared to crude enzyme. The result of bromelain stability test in artificial stomach juice by milk clotting units assay bromelain fraction have proteolytic activity in clotting milk substrate. Exposing bromelain fraction in artificial stomach juice which gave the highest core bromelain proteolytic activity was achieved at estimated volume of 0.4-0.5 mL. Exposure in a period of reaction time to artificial stomach juice that contained pepsin showed relatively stable proteolytic activity in the first 4 hours.
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases
Theodorou, K.
2017-01-01
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity. PMID:28260841
Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio
2018-04-09
The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Impact of proteolytic enzymes in colorectal cancer development and progression.
Herszényi, László; Barabás, Loránd; Hritz, István; István, Gábor; Tulassay, Zsolt
2014-10-07
Tumor invasion and metastasis is a highly complicated, multi-step phenomenon. In the complex event of tumor progression, tumor cells interact with basement membrane and extracellular matrix components. Proteolytic enzymes (proteinases) are involved in the degradation of extracellular matrix, but also in cancer invasion and metastasis. The four categories of proteinases (cysteine-, serine-, aspartic-, and metalloproteinases) are named and classified according to the essential catalytic component in their active site. We and others have shown that proteolytic enzymes play a major role not only in colorectal cancer (CRC) invasion and metastasis, but also in malignant transformation of precancerous lesions into cancer. Tissue and serum-plasma antigen concentrations of proteinases might be of great value in identifying patients with poor prognosis in CRC. Our results, in concordance with others indicate the potential tumor marker impact of proteinases for the early diagnosis of CRC. In addition, proteinases may also serve as potential target molecules for therapeutic agents.
Proteolytic Activity at Alkaline pH in Oat Leaves, Isolation of an Aminopeptidase 1
Casano, Leonardo M.; Desimone, Marcelo; Trippi, Victorio S.
1989-01-01
Proteolytic activity in oat leaf extracts was measured with both azocasein and ribulose bisphosphate carboxylase (Rubisco) as substrates over a wide range of pH (3.0-9.2). With either azocasein or Rubisco activity peaks appeared at pH 4.8, 6.6, and 8.4. An aminopeptidase (AP) which hydrolyzes leucine-nitroanilide was partially purified. Purification consisted of a series of six steps which included ammonium sulfate precipitation, gel filtration, and two ionic exchange chromatographies. The enzyme was purified more than 100-fold. The apparent Km for leucine-nitroanilide is 0.08 millimolar at its pH optimum of 8.4. AP may be a cystein protease since it is inhibited by heavy metals and activated by 2-mercaptoethanol. Isolated chloroplasts were also able to hydrolyze leucine-nitroanilide at a pH optimum of 8.4, indicating that AP could be localized inside the photosynthetic organelles. PMID:16667194
Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh
2015-10-01
We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.
NASA Astrophysics Data System (ADS)
Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik
2016-06-01
Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.
Sheehan, A; Cuinn, G O'; Fitzgerald, R J; Wilkinson, M G
2006-04-01
To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.
Fernandez, Carlos J.; Haugwitz, Michael; Eaton, Benjamin; Moore, Hsiao-Ping H.
1997-01-01
The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse–chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20°C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is impaired by BFA, proteolytic processing of POMC within this organelle proceeds unaffected. The finding that BFA impairs constitutive secretion from both the TGN and ISGs also suggests that these secretory processes may be related in mechanism. Finally, our data indicate that the unusually high levels of unregulated secretion often associated with endocrine tumors may result, at least in part, from inefficient storage of secretory products at the level of ISGs. PMID:9362061
Fernandez, C J; Haugwitz, M; Eaton, B; Moore, H P
1997-11-01
The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse-chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20 degrees C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is impaired by BFA, proteolytic processing of POMC within this organelle proceeds unaffected. The finding that BFA impairs constitutive secretion from both the TGN and ISGs also suggests that these secretory processes may be related in mechanism. Finally, our data indicate that the unusually high levels of unregulated secretion often associated with endocrine tumors may result, at least in part, from inefficient storage of secretory products at the level of ISGs.
Roh, Kyung-Baeg; Kim, Chan-Hee; Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Ryu, Ji-Hwan; Kurokawa, Kenji; Ha, Nam-Chul; Lee, Won-Jae; Lemaitre, Bruno; Söderhäll, Kenneth; Lee, Bok-Luel
2009-01-01
The insect Toll signaling pathway is activated upon recognition of Gram-positive bacteria and fungi, resulting in the expression of antimicrobial peptides via NF-κB-like transcription factor. This activation is mediated by a serine protease cascade leading to the processing of Spätzle, which generates the functional ligand of the Toll receptor. Recently, we identified three serine proteases mediating Toll pathway activation induced by lysine-type peptidoglycan of Gram-positive bacteria. However, the identities of the downstream serine protease components of Gram-negative-binding protein 3 (GNBP3), a receptor for a major cell wall component β-1,3-glucan of fungi, and their order of activation have not been characterized yet. Here, we identified three serine proteases that are required for Toll activation by β-1,3-glucan in the larvae of a large beetle, Tenebrio molitor. The first one is a modular serine protease functioning immediately downstream of GNBP3 that proteolytically activates the second one, a Spätzle-processing enzyme-activating enzyme that in turn activates the third serine protease, a Spätzle-processing enzyme. The active form of Spätzle-processing enzyme then cleaves Spätzle into the processed Spätzle as Toll ligand. In addition, we show that injection of β-1,3-glucan into Tenebrio larvae induces production of two antimicrobial peptides, Tenecin 1 and Tenecin 2, which are also inducible by injection of the active form of Spätzle-processing enzyme-activating enzyme or processed Spätzle. These results demonstrate a three-step proteolytic cascade essential for the Toll pathway activation by fungal β-1,3-glucan in Tenebrio larvae, which is shared with lysine-type peptidoglycan-induced Toll pathway activation. PMID:19473968
Purification and properties of rennin-like enzyme from Aspergillus ochraceus.
Ismail, A A; Foda, M S; Khorshid, M A
1978-01-01
An active milk-clotting enzyme was purified some 40-fold from culture supernatant of Aspergillus ochraceus. The purification steps included ammonium sulfate precipitation, G-100 Sephadex gel filtration, and ion exchange chromatography, using DEAE Cellulose column. The enzyme exhibited milk-clotting activity and proteolytic behaviour, an optimum at pH 6.0 and in the range of 7--8.5, respectively. The purified enzyme was actively proteolytic against casein, haemoglobin, and bovine serum albumin at pH 8. The milk-clotting activity was greatly enhanced by manganous ions and by increasing concentrations of calcium chloride. Copper, zinc, and ammonium ions were potent inhibitors of the milk-curdling activity of the purified enzyme. Significant inhibition was also noted with sodium chloride at concentrations of 3% or more. Under the specified reaction condition, maximum rate of proteolysis against casein was obtained at 0.4% substrate concentration, whereas the milk-clotting time was linear proportional to dry skim milk concentration in the range of 8 to 24%. The results are discussed in comparison with other microbial milk-clotting enzymes, and limitations of applicability are also presented.
Proteolysis and utilization of albumin by enrichment cultures of subgingival microbiota.
Wei, G X; van der Hoeven, J S; Smalley, J W; Mikx, F H; Fan, M W
1999-12-01
Subgingival dental plaque consists mainly of microorganisms that derive their energy from amino acid fermentation. Their nutrient requirements are met by the subgingival proteolytic system, which includes proteases from microorganism and inflammatory cells, and substrate proteins from sulcus exudate, including albumin. To determine the selective effect of individual proteins on microbiota, we used albumin as the main substrate for growth. Eight subgingval plaque samples from untreated periodontal pockets of patients with adult periodontitis were inoculated in peptone yeast medium with bovine albumin (9 g/l). After three subculture steps, cell yields of the enrichment cultures at the medium with 0, 1.25, 2.5, 5, 10, and 20 g/l albumin were determined. Proteolytic activity (U/absorbance at 550 nm) of the enrichment cultures and different isolates derived from the cultures was estimated by the degradation of resorufin-labeled casein. It was observed that the yield of the mixed culture was albumin limited, and the proteolytic activities of the cultures in albumin broth were higher than in control (peptone broth). Among the isolates from the enrichment cultures, Peptostreptococcus micros, Prevotella melaninogenica, Prevotella buccae and Prevotella bivia demonstrated proteolysis. The frequent occurrence of Streptococcus gordonii and Streptococcus anginosus in the albumin cultures is explained by their ability to utilize arginine as an energy source for growth. Albumin in the medium was partly degraded by pure cultures but completely consumed in enrichment cultures, indicating synergy of bacterial proteinases. It is concluded that the subgingival microbiota possesses proteolytic activity and may use albumin as a substrate for their growth. Enrichment cultures on albumin may serve as a relatively simple in vitro model to evaluate the effects of proteinase inhibitors.
Roles and regulation of the matrix metalloproteinase system in parturition.
Geng, Junnan; Huang, Cong; Jiang, Siwen
2016-04-01
Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes. © 2016 Wiley Periodicals, Inc.
Purification and Crystallization of Murine Myostatin: A Negative Regulator of Muscle Mass
NASA Technical Reports Server (NTRS)
Hong, Young S.; Adamek, Daniel; Bridge, Kristi; Malone, Christine C.; Young, Ronald B.; Miller, Teresa; Karr, Laurel
2004-01-01
Myostatin (MSTN) has been crystallized and its preliminary X-ray diffraction data were collected. MSTN is a negative regulator of muscle growt/differentiation and suppressor of fat accumulation. It is a member of TGF-b family of proteins. Like other members of this family, the regulation of MSTN is critically tied to its process of maturation. This process involves the formation of a homodimer followed by two proteolytic steps. The first proteolytic cleavage produces a species where the n-terminal portion of the dimer is covalently separated from, but remains non-covalently bound to, the c-terminal, functional, portion of the protein. The protein is activated upon removal of the n-terminal "pro-segment" by a second n-terminal proteolytic cut by BMP-1 in vivo, or by acid treatment in vitro. Understanding the structural nature and physical interactions involved in these regulatory processes is the objective of our studies. Murine MSTN was purified from culture media of genetically engineered Chinese Hamster Ovary cells by multicolumn purification process and crystallized using the vapor diffusion method.
Oliveira, Catiúscia P; Prado, Willian A; Lavayen, Vladimir; Büttenbender, Sabrina L; Beckenkamp, Aline; Martins, Bruna S; Lüdtke, Diogo S; Campo, Leandra F; Rodembusch, Fabiano S; Buffon, Andréia; Pessoa, Adalberto; Guterres, Silvia S; Pohlmann, Adriana R
2017-02-01
This study was conducted a promising approach to surface functionalization developed for lipid-core nanocapsules and the merit to pursue new strategies to treat solid tumors. Bromelain-functionalized multiple-wall lipid-core nanocapsules (Bro-MLNC-Zn) were produced by self-assembling following three steps of interfacial reactions. Physicochemical and structural characteristics, in vitro proteolytic activity (casein substrate) and antiproliferative activity (breast cancer cells, MCF-7) were determined. Bro-MLNC-Zn had z-average diameter of 135 nm and zeta potential of +23 mV. The complex is formed by a Zn-N chemical bond and a chelate with hydroxyl and carboxyl groups. Bromelain complexed at the nanocapsule surface maintained its proteolytic activity and showed anti-proliferative effect against human breast cancer cells (MCF-7) (72.6 ± 1.2% at 1.250 μg mL -1 and 65.5 ± 5.5% at 0.625 μg mL -1 ). Comparing Bro-MLNC-Zn and bromelain solution, the former needed a dose 160-folds lower than the latter for a similar effect. Tripan blue dye assay corroborated the results. The surface functionalization approach produced an innovative formulation having a much higher anti-proliferative effect than the bromelain solution, even though both in vitro proteolytic activity were similar, opening up a great opportunity for further studies in nanomedicine.
Proteolytic extracts of three Bromeliaceae species as eco-compatible tools for leather industry.
Errasti, María Eugenia; Caffini, Néstor Oscar; López, Laura María Isabel
2018-01-02
Most tanneries use high proportions of Na 2 S and CaO during the dehairing step, resulting in effluents of high alkalinity and large amounts of suspended solid, besides the risk of liberating the toxic H 2 S. Solid waste rich in protein is another environmental problem of tanneries. Enzymes are an interesting technological tool for industry due to their biodegradability, nontoxic nature, and nonpolluting effluent generation. In the leather industry, proteases have been chosen as a promising eco-friendly alternative to Na 2 S/CaO dehairing. Extracts with high proteolytic activity have been obtained from fruits of Bromeliaceae species: Bromelia balansae Mez (Bb), Bromelia hieronymi Mez (Bh), and Pseudananas macrodontes (Morr.) Harms (Pm). In this work, Bb, Bh, and Pm have been studied for application in the leather industry, focusing in their dehairing properties. Enzymatic activities were measured against collagen, keratin, elastin, and epidermis while a dehairing assay was performed by employing cowhide. All extracts showed similar activity on collagen and epidermis, while Bh and Pm were the most active against keratin at the same caseinolytic unit (CU) values; Bh was the only extract active against elastin. Bb (1 CU/ml), Bh (1.5 CU/ml), and Pm (0.5 CU/ml) were able to depilate cowhide. Desirable characteristics of dehairing were observed for all extracts since hair pores did not show residual hair, grain surface was clean and intact, and collagen fiber bundles of dermis were not damaged. In conclusion, results here presented show that proteolytic extracts of Bromeliaceae species are promising eco-compatible tools for leather industry.
Effect of proteolytic starter cultures as leavening agents of pizza dough.
Pepe, O; Villani, F; Oliviero, D; Greco, T; Coppola, S
2003-08-01
Lactic acid bacteria (LAB) and yeasts were selected on the basis of in vitro proteolytic activity against wheat gluten protein and then assayed as leavening agents for pizza dough. Trials were carried out to compare a proteolytic starter (Prt(+)), consisting of Lactobacillus sakei T56, Weissella paramesenteroides A51 and Candida krusei G271, and a non-proteolytic starter (Prt(-)), consisting of Lb. sakei T58, W. paramesenteroides A58 and Saccharomyces cerevisiae T22. The proteolytic activity of the starter cultures was monitored immediately after mixing of the dough and throughout the fermentation process. The proteolytic activity was assessed by analysing the salt-soluble protein (SSP) and the dioxane-soluble protein (DSP) fractions of the pizza dough by discontinuous SDS-PAGE. Only the Prt(+) starter exhibited considerable qualitative and quantitative changes in the electrophoretic patterns of the protein fractions extracted. After the fermentation, the Prt(+) and Prt(-) doughs were tested to evaluate the influence of the proteolytic activity on the mechanical properties of the dough before and after baking. Indications emerged suggesting an influence of the proteolytic activity on the viscoelasticity of pizza dough. The pizza dough with Prt(+) strains showed an increase in viscous properties during the fermentation as compared with the Prt(-) dough. Moreover, an increase in the firmness of the crumb was observed in Prt(+) baked pizza dough.
Gluschankof, P; Morel, A; Gomez, S; Nicolas, P; Fahy, C; Cohen, P
1984-01-01
The post-translational proteolytic conversion of somatostatin-14 precursors was studied to characterize the enzyme system responsible for the production of the tetradecapeptide either from its 15-kDa precursor protein or from its COOH-terminal fragment, somatostatin-28. A synthetic undecapeptide Pro-Arg-Glu-Arg-Lys-Ala-Gly-Ala-Lys-Asn-Tyr(NH2), homologous to the amino acid sequence of the octacosapeptide at the putative Arg-Lys cleavage locus, was used as substrate, after 125I labeling on the COOH-terminal tyrosine residue. A 90-kDa proteolytic activity was detected in rat brain cortex extracts after molecular sieve fractionation followed by ion exchange chromatography. The protease released the peptide 125I-Ala-Gly-Ala-Lys-Asn-Tyr(NH2) from the synthetic undecapeptide substrate and converted somatostatin-28 into somatostatin-14 under similar conditions (pH 7.0). Under these experimental conditions, the product tetradecapeptide was not further degraded by the enzyme. In contrast, the purified 15-kDa hypothalamic precursor remained unaffected when exposed to the proteolytic enzyme under identical conditions. It is concluded that this Arg-Lys esteropeptidase from the brain cortex may be involved in the in vivo processing of the somatostatin-28 fragment of prosomatostatin into somatostatin-14, the former species being an obligatory intermediate in a two-step proteolytic mechanism leading to somatostatin-14. PMID:6149550
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico.
Borja, Miguel; Neri-Castro, Edgar; Castañeda-Gaytán, Gamaliel; Strickland, Jason L; Parkinson, Christopher L; Castañeda-Gaytán, Juan; Ponce-López, Roberto; Lomonte, Bruno; Olvera-Rodríguez, Alejandro; Alagón, Alejandro; Pérez-Morales, Rebeca
2018-01-08
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes ( Crotalus scutulatus scutulatus ) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE ( n = 28) and Hide Powder Azure proteolytic analysis ( n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico
Castañeda-Gaytán, Gamaliel; Castañeda-Gaytán, Juan; Ponce-López, Roberto; Olvera-Rodríguez, Alejandro; Alagón, Alejandro; Pérez-Morales, Rebeca
2018-01-01
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A2s (PLA2s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present. PMID:29316683
Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo
2015-01-01
This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G’ value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese. PMID:25938823
Proteases of Sporothrix schenckii: Cytopathological effects on a host-cell model.
Sabanero López, Myrna; Flores Villavicencio, Lérida L; Soto Arredondo, Karla; Barbosa Sabanero, Gloria; Villagómez-Castro, Julio César; Cruz Jiménez, Gustavo; Sandoval Bernal, Gerardo; Torres Guerrero, Haydee
Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. To evaluate the proteolytic activity of S. schenckii on epithelial cells. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Chasseriaud, Laura; Miot-Sertier, Cécile; Coulon, Joana; Iturmendi, Nerea; Moine, Virginie; Albertin, Warren; Bely, Marina
2015-12-01
The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins. Copyright © 2015. Published by Elsevier B.V.
Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis
Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes
2013-01-01
Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092
Structure of the Integral Membrane Protein CAAX Protease Ste24p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor Jr., Edward E.; Horanyi, Peter S.; Clark, Kathleen M.
2012-10-26
Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a -factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavitymore » containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.« less
Millet, Jean Kaoru; Whittaker, Gary R.
2014-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2′ position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2′ site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. PMID:25288733
Azad, Gajendra Kumar; Tomar, Raghuvir Singh
2016-06-01
The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Chernyshova, M P; Alen'kina, S A; Nikitina, V E; Ignatov, V V
2005-01-01
It was found that Azospirillum brasilensis strain Sp7 is able to produce extracellular proteolytic enzymes. The enzymes were active within a broad range of pH values, with two peaks of activity being located in the acid and alkaline pH areas; required calcium ions; and exhibited substrate specificity with respect to azogelatin. Zymography allowed at least four proteolytic enzymes with molecular weights of 32, 45, 52, and 174 kDa to be detected in A. brasilense Sp7 culture liquid. It was shown that the lectin from A. brasilense Sp7 can inhibit proteolytic enzymes.
An Examination of the Proteolytic Activity for Bovine Pregnancy-Associated Glycoprotein 2 and 12
Telugu, Bhanu Prakash V.L.; Palmier, Mark O.; Van Doren, Steven R.; Green, Jonathan A.
2010-01-01
The pregnancy-associated glycoproteins (PAGs) represent a complex group of putative aspartic peptidases expressed exclusively in the placentas of species in the Artiodactyla order. The ruminant PAGs segregate into two classes -the ‘ancient’ and ‘modern’ PAGs. Some of the modern PAGs possess alterations in the catalytic center that are predicted to preclude their ability to act as peptidases. The ancient ruminant PAGs in contrast are thought to be peptidases, although, no proteolytic activity has been described for these members. The goal of this present study was to investigate (1) if the ancient bovine PAGs (PAGs-2 and -12) have proteolytic activity, and (2) if there are any differences in activity between these two closely related members. Recombinant bovine PAGs-2 and -12 were expressed in a baculovirus expression system and the purified proteins were analyzed for proteolytic activity against a synthetic fluorescent cathepsin D/E substrate. Both proteins exhibited proteolytic activity with acidic pH optima. The kcat/KM for bovine PAG-2 was 2.7×105 M−1s−1 and for boPAG-12 it was 6.8×104 M−1s−1. The enzymes were inhibited by pepstatin A with a Ki of 0.56 and 7.5 nM for boPAG-2 and boPAG-12, respectively. This is the first report describing proteolytic activity in PAGs from ruminant ungulates. PMID:20030586
Pepinsky, Blake; Gong, Bang-Jian; Gao, Yan; Lehmann, Andreas; Ferrant, Janine; Amatucci, Joseph; Sun, Yaping; Bush, Martin; Walz, Thomas; Pederson, Nels; Cameron, Thomas; Wen, Dingyi
2017-08-22
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP 60-114 , remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP 60-114 had no impact on activity. The specific activity of the GDF11/PDP 60-114 complex (EC 50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP 60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP 60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP 60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC 50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC 50 = 2 nM) by protease treatment. Complex formation with PDP 60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-β family that form latent pro/mature domain complexes.
Iqbal, Junaid; Rajani, Mehak; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2013-05-01
Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood-brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogenicity. Zymographic assays were performed using collagen and gelatin as substrates. The lysates of whole E. coli K1 strain E44, or E. coli K-12 strain HB101 were tested for proteolytic activities. The conditioned media were prepared by incubating bacteria in RPMI-1640 in the presence or absence of serum. The cell-free supernatants were collected and tested for proteases in zymography as mentioned above. Additionally, proteolytic degradation of host immune factors was determined by co-incubating conditioned media with albumin/immunoglobulins using protease assays. When collagen or gelatin were used as substrates in zymographic assays, neither whole bacteria nor conditioned media exhibited proteolytic activities. The conditioned media of neuropathogenic E. coli K1 strain E44, or E. coli K-12 strain HB101 did not affect degradation of albumin and immunoglobulins using protease assays. Neither zymographic assays nor protease assays detected proteolytic activities in either the whole bacteria or conditioned media of E. coli K1 strain E44 and E. coli K-12 strain HB101. These findings suggest that host cell monolayer disruptions and immune evasion strategies are likely independent of proteolytic activities of neuropathogenic E. coli K1.
Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots.
Petryayeva, Eleonora; Algar, W Russ
2014-03-18
Semiconductor quantum dot (QD) bioconjugates, with their unique and highly advantageous physicochemical and optical properties, have been extensively utilized as probes for bioanalysis and continue to generate widespread interest for these applications. An important consideration for expanding the utility of QDs and making their use routine is to make assays with QDs more accessible for laboratories that do not specialize in nanomaterials. Here, we show that digital color imaging of QD photoluminescence (PL) with a smartphone camera is a viable, easily accessible readout platform for quantitative, multiplexed, and real-time bioanalyses. Red-, green-, and blue-emitting CdSeS/ZnS QDs were conjugated with peptides that were labeled with a deep-red fluorescent dye, Alexa Fluor 647, and the dark quenchers, QSY9 and QSY35, respectively, to generate Förster resonance energy transfer (FRET) pairs sensitive to proteolytic activity. Changes in QD PL caused by the activity of picomolar to nanomolar concentrations of protease were detected as changes in the red-green-blue (RGB) channel intensities in digital color images. Importantly, measurements of replicate samples made with smartphone imaging and a sophisticated fluorescence plate reader yielded the same quantitative results, including initial proteolytic rates and specificity constants. Homogeneous two-plex and three-plex assays for the activity of trypsin, chymotrypsin, and enterokinase were demonstrated with RGB imaging. Given the ubiquity of smartphones, this work largely removes any instrumental impediments to the adoption of QDs as routine tools for bioanalysis in research laboratories and is a critical step toward the use of QDs for point-of-care diagnostics. This work also adds to the growing utility of smartphones in analytical methods by enabling multiplexed fluorimetric assays within a single sample volume and across multiple samples in parallel.
Naseri, Bahram; Fathipour, Yaghoub; Moharramipour, Saeid; Hosseininaveh, Vahid; Gatehouse, Angharad M R
2010-12-01
Digestive proteolytic and amylolytic activities of the larvae of Helicoverpa armigera (Hübner) fed either on artificial diet or on different soybean cultivars (356, M4, M7, M9, Clark, Sahar, JK, BP, Williams, L17, Zane, Gorgan3 and DPX) and response of the larvae to feeding on some soybean-based protease inhibitors were studied. The highest general and specific proteolytic activities were in artificial-diet-fed larvae. Although the highest general proteolytic activity was in the larvae fed on L17, M4 and Sahar cultivars, the lowest tryptic activity was on L17 and Sahar, which may be due to the presence of some serine protease inhibitors in these two cultivars, resulting in hyperproduction of chymotrypsin- and elastase-like enzymes in response to the inhibition of these enzymes. The highest amylolytic activity was on M4, and the lowest was on Williams and DPX. General proteolytic activity of SKTI-fed larvae was the highest compared with SBBI- and STI-fed larvae. The findings demonstrated that the cultivars L17 and Sahar were partially resistant to this pest, probably because of some secondary chemicals or proteinaceous protease inhibitors of these cultivars.
Tulini, Fabricio L; Hymery, Nolwenn; Haertlé, Thomas; Le Blay, Gwenaelle; De Martinis, Elaine C P
2016-02-01
Lactic acid bacteria (LAB) can be isolated from different sources such as milk and cheese, and the lipolytic, proteolytic and glycolytic enzymes of LAB are important in cheese preservation and in flavour production. Moreover, LAB produce several antimicrobial compounds which make these bacteria interesting for food biopreservation. These characteristics stimulate the search of new strains with technological potential. From 156 milk and cheese samples from cow, buffalo and goat, 815 isolates were obtained on selective agars for LAB. Pure cultures were evaluated for antimicrobial activities by agar antagonism tests and for proteolytic activity on milk proteins by cultivation on agar plates. The most proteolytic isolates were also tested by cultivation in skim milk followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fermented milk. Among the 815 tested isolates, three of them identified as Streptococcus uberis (strains FT86, FT126 and FT190) were bacteriocin producers, whereas four other ones identified as Weissella confusa FT424, W. hellenica FT476, Leuconostoc citreum FT671 and Lactobacillus plantarum FT723 showed high antifungal activity in preliminary assays. Complementary analyses showed that the most antifungal strain was L. plantarum FT723 that inhibited Penicillium expansum in modified MRS agar (De Man, Rogosa, Sharpe, without acetate) and fermented milk model, however no inhibition was observed against Yarrowia lipolytica. The proteolytic capacities of three highly proteolytic isolates identified as Enterococcus faecalis (strains FT132 and FT522) and Lactobacillus paracasei FT700 were confirmed by SDS-PAGE, as visualized by the digestion of caseins and whey proteins (β-lactoglobulin and α-lactalbumin). These results suggest potential applications of these isolates or their activities (proteolytic activity or production of antimicrobials) in dairy foods production.
Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.
Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra
2014-11-02
We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o -phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli , Staphylococcus aureus , Salmonella cholere enteridis , Listeria monocytogenes , Listeria innocua and Enterobacter aerogenes . The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus , which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes . The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.
Nash, Anthony; Birch, Helen L; de Leeuw, Nora H
2017-02-01
The zinc-dependent Matrix Metalloproteinases (MMPs) found within the extracellular matrix (ECM) of vertebrates are linked to pathological processes such as arthritis, skin ulceration and cancer. Although a general backbone proteolytic mechanism is understood, crystallographic data continue to suggest an active site that is too narrow to encompass the respective substrate. We present a fully parameterised Molecular Dynamics (MD) study of the structural properties of an MMP-1-collagen crystallographic structure (Protein Data Bank - 4AUO), followed by an exploration of the free energy surface of a collagen polypeptide chain entering the active site, using a combined meta-dynamics and umbrella sampling (MDUS) approach. We conclude that the interactions between MMP-1 and the collagen substrate are in good agreement with a number of experimental studies. As such, our unrestrained MD simulations and our MDUS results, which indicate an energetic barrier for a local uncoiling and insertion event, can inform future investigations of the collagen-peptide non-bonded association steps with the active site prior to proteolytic mechanisms. The elucidation of such free energy barriers provides a better understanding of the role of the enzyme in the ECM and is important in the design of future MMP inhibitors.
Monoclonal Antibody Testing for Cancer Metastasis
NASA Technical Reports Server (NTRS)
1993-01-01
Malignant cells are characterized by the ability to invade surrounding normal tissues. Tumor invasion is abetted by proteolytic enzymes that have been correlated with recurrent disease and metastasis. These enzymes are involved in a cascade of proteolytic interactions with other enzymes and inhibitors which allow cancer cells to dissolve surrounding extracellular matrix, thereby enabling the cells to rapidly invade adjacent tissues and migrate to metastatic sites distant from the primary tumor. Among these proteases are the plasminogen activators (PA), collagenase IV, faminase, and in some cases cathepsin D, which together mediate key steps in the invasion process of metastasis. Cells which have the selective advantage for invasion and metastasis are those capable of regulating their proteolytic activity and proliferation. Cells in the process of invasion would be probably down-regulated for proliferation, but subsequent to attachment and adhesion at a distant site, would then be in a proliferative mode, up-regulating DNA replication. Urokinase (uPA) can be present in the tissues in several molecular forms. The inactive proenzyme is a single chain protein (scuPA) that is cleaved at Lys. 158 to form the double chain, high molecular weight active form (HMW-uPA) of 54 kD. A low molecular weight form (LMW-uPA) can also be produced by cleavage of the HMW-U PA at Lys. 135 - Lys. 136 giving a 35 kD active enzyme. Recently, it has been shown that the HMW active form of urokinase, bound to the tumor cell membrane, is responsible for the local lysis of the extracellular matrix, hence the tissue invasion mechanism for metastasis (Andreasen et al, 19861. Receptor- (membrane) bound uPA is twice as efficient (catalytically) as free fluid-phase uPA. Tho unbound uPA and the LMW form is not responsible for most of the local dissolution of extracellular matrix in the immediate vicinity of the metastatic tumor cell. High levels of urokinase (greater than 3.49 ng/mg of total protein) extracted from breast tumor tissues have recently been shown, together with plasminogen activator inhibitor 1 (PAI-1), to be a good prognostic indicator for high risk of recurrence and shorter patient survival times. In this project, we have attempted to develop immunocytochemical methodologies for the clinical assessment of the expression of urokinase plasminogen activator, which has been implicated to be important for initial steps in tumor invasion, and to relate it to cell proliferation and DNA replication at the single-cell level.
Effect of Four Commonly Used Dissolution Media Surfactants on Pancreatin Proteolytic Activity.
Guncheva, Maya; Stippler, Erika
2017-05-01
Proteolytic enzymes are often used in dissolution testing of cross-linked gelatin capsules that do not conform to the dissolution specification. Their catalytic activity, however, can be affected when they are added to a dissolution media containing solubility enhancers, such as surfactants. The aim of this study was to assess the activity of pancreatic proteases in presence of four commonly used surfactants. We found that pancreatin exhibits remarkable proteolytic activity in the presence of Tween 80, even at the concentrations as high as 250 times its critical micelle concentration (cmc) in water, whereas, Triton X-100 enhanced the proteolytic activity of pancreatin when added at concentrations above its cmc in water. Both surfactants are non-ionic surfactants. On the other hand, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), which are ionic surfactants, have a detrimental effect on the proteolytic activity of pancreatin. For example, a 50% reduction of the pancreatin activity was found in samples which contain a minor amount of SDS (0.05% w/v) in comparison to a surfactant-free reaction. Additionally, no activity was observed for the pancreatin-SDS samples which were incubated for 30 min at 40°C prior to testing. CTAB had an impact on pancreatin activity at concentrations higher than its cmc. Data from this manuscript can be used as a benchmark for optimization of the dissolution procedures that require use of both surfactants and enzymes.
Proteinase activity of prevotella species associated with oral purulent infection.
Yanagisawa, Maki; Kuriyama, Tomoari; Williams, David W; Nakagawa, Kiyomasa; Karasawa, Tadahiro
2006-05-01
Prevotella intermedia and Prevotella nigrescens are often regarded as principal causes of acute dentoalveolar infection; however, other species within the genus are also known to be associated with such infection. The aim of this study was to determine the in vitro proteolytic activity of these different Prevotella species that have been implicated with dentoalveolar infection. A total of 234 strains were obtained from pus specimens from dentoalveolar infection and from the plaque of healthy volunteers. Prevotella loescheii, Prevotella oralis, Prevotella melaninogenica, Prevotella buccae, and Prevotella denticola were all shown to have a proteolytic activity (8.5-10.5 x 10(-8) A-units) lower than that of P. intermedia and P. nigrescens (21.1-23.5 x 10(-8) A-units). In the case of P. loescheii, P. melaninogenica, and P. intermedia, the level of proteolytic activity for clinical strains was significantly (P < 0.05) higher than that recorded for commensal strains. Proteolytic activity for all species of Prevotella examined was inhibited by N-ethylmaleimide and phenymethylsulfonyl fluoride. This study suggests that Prevotella species associated with oral purulent infection produce cysteine and serine proteinases and that in certain species of Prevotella, the strains involved in infection exhibit higher proteolytic activity when compared with strains from healthy sites.
Studies on trypsin-like enzymes in sperm and early embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penn, A.
1975-12-09
Results are reported from a study of acrosomal proteinase, a trypsin-like enzyme (TLE), found in the acrosome of all eutherian mammals studied to date. It has been implicated in the dissolution of a passage for the sperm through the zona pellucida of the egg, a step necessary for in vivo fertilization. A cytochemical procedure employing autoradiographic film as a gelatin substrate is described for in situ detection and localization of acrosomal proteolytic activity. A role for TLE in the early development of embryos is suggested. (CH)
Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Vora, Gary J.; Delehanty, James B.; Susumu, Kimihiro; Mei, Bing C.; Dawson, Philip E.; Medintz, Igor L.
2015-01-01
One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD-bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Förster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (KM) and the maximum proteolytic activity (Vmax). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide-DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials. PMID:20099912
Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma.
O'Grady, John P; Meyer, Kevin W; Poe, Derrick N
2017-01-01
The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.
Gandhi, Akanksha; Shah, Nagendra P
2014-12-01
The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.
THE ENHANCEMENT OF CHLOROFORM-INDUCED PLASMA PROTEOLYTIC ACTIVITY BY EPSILON AMINOCAPROIC ACID
Donaldson, Virginia H.; Ratnoff, Oscar D.
1962-01-01
The proteolytic activity in chloroform-treated plasma euglobulins has been attributed to plasmin. Plasmin can digest both casein and fibrin. Epsilon aminocaproic acid, which inhibits the activation of plasminogen, the precursor of plasmin, by streptokinase, urokinase, and tissue activators enhanced the development of casein hydrolytic activity in a mixture of chloroform and plasma euglobulins. Fibrinolytic activity was also enhanced, but this was evident only if the epsilon aminocaproic acid was removed from the chloroform-treated euglobulins prior to assay. The reasons for the paradoxical enhancement of chloroform-induced casein hydrolysis by euglobulins containing epsilon aminocaproic acid are unclear. However, studies of optimal pH, heat stability, and the effect of ionic strength on the activation of the precursor of this proteolytic enzyme do not differentiate it from plasminogen. PMID:13887179
Barndt, Robert; Gu, Yayun; Chen, Chien-Yu; Tseng, I-Chu; Su, Sheng-Fang; Wang, Jehng-Kang; Johnson, Michael D.
2017-01-01
The type 2 transmembrane serine protease matriptase is involved in many pathophysiological processes probably via its enzymatic activity, which depends on the dynamic relationship between zymogen activation and protease inhibition. Matriptase shedding can prolong the life of enzymatically active matriptase and increase accessibility to substrates. We show here that matriptase shedding occurs via a de novo proteolytic cleavage at sites located between the SEA domain and the CUB domain. Point or combined mutations at the four positively charged amino acid residues in the region following the SEA domain allowed Arg-186 to be identified as the primary cleavage site responsible for matriptase shedding. Kinetic studies further demonstrate that matriptase shedding is temporally coupled with matriptase zymogen activation. The onset of matriptase shedding lags one minute behind matriptase zymogen activation. Studies with active site triad Ser-805 point mutated matriptase, which no longer undergoes zymogen activation or shedding, further suggests that matriptase shedding depends on matriptase zymogen activation, and that matriptase proteolytic activity may be involved in its own shedding. Our studies uncover an autonomous mechanism coupling matriptase zymogen activation, proteolytic activity, and shedding such that a proportion of newly generated active matriptase escapes HAI-1-mediated rapid inhibition by shedding into the extracellular milieu. PMID:28829816
The Diverse Forms of Lactose Intolerance and the Putative Linkage to Several Cancers
Amiri, Mahdi; Diekmann, Lena; von Köckritz-Blickwede, Maren; Naim, Hassan Y.
2015-01-01
Lactase-phlorizin hydrolase (LPH) is a membrane glycoprotein and the only β-galactosidase of the brush border membrane of the intestinal epithelium. Besides active transcription, expression of the active LPH requires different maturation steps of the polypeptide through the secretory pathway, including N- and O-glycosylation, dimerization and proteolytic cleavage steps. The inability to digest lactose due to insufficient lactase activity results in gastrointestinal symptoms known as lactose intolerance. In this review, we will concentrate on the structural and functional features of LPH protein and summarize the cellular and molecular mechanism required for its maturation and trafficking. Then, different types of lactose intolerance are discussed, and the molecular aspects of lactase persistence/non-persistence phenotypes are investigated. Finally, we will review the literature focusing on the lactase persistence/non-persistence populations as a comparative model in order to determine the protective or adverse effects of milk and dairy foods on the incidence of colorectal, ovarian and prostate cancers. PMID:26343715
The Diverse Forms of Lactose Intolerance and the Putative Linkage to Several Cancers.
Amiri, Mahdi; Diekmann, Lena; von Köckritz-Blickwede, Maren; Naim, Hassan Y
2015-08-28
Lactase-phlorizin hydrolase (LPH) is a membrane glycoprotein and the only β-galactosidase of the brush border membrane of the intestinal epithelium. Besides active transcription, expression of the active LPH requires different maturation steps of the polypeptide through the secretory pathway, including N- and O-glycosylation, dimerization and proteolytic cleavage steps. The inability to digest lactose due to insufficient lactase activity results in gastrointestinal symptoms known as lactose intolerance. In this review, we will concentrate on the structural and functional features of LPH protein and summarize the cellular and molecular mechanism required for its maturation and trafficking. Then, different types of lactose intolerance are discussed, and the molecular aspects of lactase persistence/non-persistence phenotypes are investigated. Finally, we will review the literature focusing on the lactase persistence/non-persistence populations as a comparative model in order to determine the protective or adverse effects of milk and dairy foods on the incidence of colorectal, ovarian and prostate cancers.
Müller, Barbara; Anders, Maria; Reinstein, Jochen
2014-01-01
Human immunodeficiency virus particles undergo a step of proteolytic maturation, in which the main structural polyprotein Gag is cleaved into its mature subunits matrix (MA), capsid (CA), nucleocapsid (NC) and p6. Gag proteolytic processing is accompanied by a dramatic structural rearrangement within the virion, which is necessary for virus infectivity and has been proposed to proceed through a sequence of dissociation and reformation of the capsid lattice. Morphological maturation appears to be tightly regulated, with sequential cleavage events and two small spacer peptides within Gag playing important roles by regulating the disassembly of the immature capsid layer and formation of the mature capsid lattice. In order to measure the influence of individual Gag domains on lattice stability, we established Förster's resonance energy transfer (FRET) reporter virions and employed rapid kinetic FRET and light scatter measurements. This approach allowed us to measure dissociation properties of HIV-1 particles assembled in eukaryotic cells containing Gag proteins in different states of proteolytic processing. While the complex dissociation behavior of the particles prevented an assignment of kinetic rate constants to individual dissociation steps, our analyses revealed characteristic differences in the dissociation properties of the MA layer dependent on the presence of additional domains. The most striking effect observed here was a pronounced stabilization of the MA-CA layer mediated by the presence of the 14 amino acid long spacer peptide SP1 at the CA C-terminus, underlining the crucial role of this peptide for the resolution of the immature particle architecture.
Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo
2016-01-01
A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (E a), quotient energy (Q 10), K m, and V max were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505
Papagianni, Maria
2014-01-01
A number of novel Penicillium strains belonging to Penicillium nalgiovense, Penicillium solitum, Penicillium commune, Penicillium olsonii, and Penicillium oxalicum species, isolated from the surface of traditional Greek sausages, were evaluated for their proteolytic and lipolytic potential in a solid substrate first and next in submerged fermentations, using complex media. Extracellular proteolytic activity was assessed at acid, neutral, and alkaline pH, while the lipolytic activity was assessed using olive oil, the short-chain triacylglycerol tributyrin, and the long-chain triolein, as substrates. The study revealed that although closely related, the tested strains produce enzymes of distinct specificities. P. nalgiovense PNA9 produced the highest alkaline proteolytic activity (13.2 unit (U)/ml) and the highest lipolytic activity with tributyrin (92 U/ml). Comparisons with known sources show that proteases and/or lipases can be secreted effectively by some Penicillia (P. nalgiovense PNA4, PNA7, and PNA9 and P. solitum PSO1), and further investigations on their properties and characteristics would be promising.
[Protease activity of microflora in the oral cavity of patients with periodontitis].
Voropaeva, E A; Baĭrakova, A L; Bichucher, A M; D'iakov, V L; Kozlov, L V
2008-01-01
Microbial spectrum and non-specific as well as specific IgA1 protease activity of isolated microorganisms were investigated in gingival liquid of patients with periodontitis. Microorganisms from the gingival liqud of these patients belonged to conditional-pathogenic obligate and facultatively anaerobic bacteria. 24 strains of microorganisms have been identified. Nonspecific proteolytic activity was found in the following microorganisms: Actinomyces israelii, Actinomyces naeslundii, Aerococcus viridans, Bifidobacterium longum, Neisseria subflave, Streptococcus parvulus, Eubacterium alactolyticum, Lactobaccilus catenoforme, Bacillus spp. Specific IgA1-protease activity and lack of proteolytic activity towards IgG was found in Streptococcus acidominimus, Streptococcus hansenii, Streptococcus salivarius, Leptotrychia buccalis, Staphylococcus haemolyticus and Neisseria sicca. No proteolytic activity was found in cultivation medium of Eubacterium alactolyticum (1 strain), Prevotella buccalis, Aerococcus viridans and Streptococcus sanguis.
A Peptidomics Strategy to Elucidate the Proteolytic Pathways that Inactivate Peptide Hormones
Tinoco, Arthur D.; Kim, Yun-Gon; Tagore, Debarati M.; Wiwczar, Jessica; Lane, William S.; Danial, Nika N.; Saghatelian, Alan
2011-01-01
Proteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways. Here, we apply a mass spectrometry (MS)-based peptidomics approach to characterize the intestinal fragments of peptide histidine isoleucine (PHI), a hormone that promotes glucose-stimulated insulin secretion (GSIS). Our approach reveals a proteolytic pathway in the intestine that truncates PHI at its C-terminus to produce a PHI fragment that is inactive in a GSIS assay—a result that provides a potential mechanism of PHI regulation in vivo. Differences between these in vivo peptidomics studies and in vitro lysate experiments, which showed N- and C-terminal processing of PHI, underscore the effectiveness of this approach to discover physiologically relevant proteolytic pathways. Moreover, integrating this peptidomics approach with bioassays (i.e. GSIS) provides a general strategy to reveal proteolytic pathways that may regulate the activity of peptide hormones. PMID:21299233
Tremonte, P; Reale, A; Di Renzo, T; Tipaldi, L; Di Luccia, A; Coppola, R; Sorrentino, E; Succi, M
2010-11-01
To evaluate interactions between Lactobacillus sakei and coagulase negative cocci (CNC) (Staphylococcus xylosus and Kocuria varians) and to investigate the influence of these interactions on their own proteolytic activity. Interactions occurring between strains of Lact. sakei and CNC were assessed by spectrophotometric analysis. The growth of 35 strains of Lact. sakei, used as indicators, was compared to that obtained combining the same strains with growing cells or cell-free supernatants of 20 CNC (18 Staph. xylosus and 2 K. varians). The proteolytic activity expressed by single strains or by their combinations was assessed on sarcoplasmic protein extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results evidenced that interactions are able to affect not only the growth but also the in vitro proteolytic activity of Lact. sakei and CNC used in combination. A relationship between the presence of interactions among useful strains and the strength of technological characteristics, such as proteolysis, was defined. The study highlighted that CNC are able to stimulate the growth of some Lact. sakei strains. At the same time, this interaction positively influences the proteolytic activity of strains used in combination. Given the importance of proteolysis during the ripening of fermented meats, this phenomenon should be taken into account to select meat starter cultures. © 2010 The Authors. © 2010 The Society for Applied Microbiology.
TMPRSS4 induces cancer cell invasion through pro-uPA processing.
Min, Hye-Jin; Lee, Myung Kyu; Lee, Jung Weon; Kim, Semi
2014-03-28
TMPRSS4 is a novel type II transmembrane serine protease that is highly expressed on the cell surface in pancreatic, thyroid, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates cancer cell invasion, epithelial-mesenchymal transition, and metastasis and that increased TMPRSS4 expression correlates with colorectal cancer progression. We also demonstrated that TMPRSS4 upregulates urokinase-type plasminogen activator (uPA) gene expression to induce cancer cell invasion. However, it remains unknown how proteolytic activity of TMPRSS4 contributes to invasion. In this study, we report that TMPRSS4 directly converted inactive pro-uPA into the active form through its proteolytic activity. Analysis of conditioned medium from cells overexpressing TMPRSS4 demonstrated that the active TMPRSS4 protease domain is released from the cells and is associated with the plasma membrane. Furthermore, TMPRSS4 could increase pro-uPA-mediated invasion in a serine proteolytic activity-dependent manner. These observations suggest that TMPRSS4 is an upstream regulator of pro-uPA activation. This study provides valuable insights into the proteolytic function of TMPRSS4 as well as mechanisms for the control of invasion. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Kwang Soon; Jin, Dong Bin; Ahn, So Shin; Park, Ki Seok; Seo, Sang Hwan; Suh, You Suk; Sung, Young Chul
2010-08-01
HIV protease (PR) mediates the processing of human immunodeficiency virus (HIV) polyproteins and is necessary for the viral production. Recently, HIV PR was shown to possess both cytotoxic and chaperone like activity. We demonstrate here that HIV PR can serve as a genetic adjuvant that enhances the HIV Env and human papillomavirus (HPV) DNA vaccine-induced T-cell response in a dose-dependent manner, only when codelivered with DNA vaccine. Interestingly, the T-cell adjuvant effects of HIV PR were increased by introducing several mutations that inhibited its proteolytic activity, indicating that the adjuvant properties were inversely correlated with its proteolytic activity. Conversely, the introduction of a mutation in the flap region of HIV PR limiting the access to the core domain of HIV PR inhibited the T-cell adjuvant effect, suggesting that the HIV PR chaperone like activity may play a role in mediating T-cell adjuvant properties. A similar adjuvant effect was also observed in adenovirus vaccine, indicating vaccine type independency. These findings suggest that HIV PR can modulate T-cell responses elicited by a gene-based vaccine positively by inherent chaperone like activity and negatively by its proteolytic activity.
Kikuchi, Keiji; Kozuka-Hata, Hiroko; Oyama, Masaaki; Seiki, Motoharu; Koshikawa, Naohiko
2018-01-01
Proteolytic cleavage of membrane proteins can alter their functions depending on the cleavage sites. We recently demonstrated that membrane type 1 matrix metalloproteinase (MT1-MMP ) converts the tumor suppressor EphA2 into an oncogenic signal transducer through EphA2 cleavage. The cleaved EphA2 fragment that remains at the cell surface may be a better target for cancer therapy than intact EphA2. To analyze the cleavage site(s) of EphA2, we purified the fragments from tumor cells expressing MT1-MMP and Myc- and 6× His-tagged EphA2 by two-step affinity purification . The purified fragment was digested with trypsin to generate proteolytic peptides , and the amino acid sequences of these peptides were determined by nano-LC-mass spectrometry to identify the MT1-MMP-mediated cleavage site(s) of EphA2.
Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian
2015-01-01
ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures. PMID:25926655
Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique
2016-08-01
Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.
Deng, Jingren; Lazar, Iulia M
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Deng, Jingren; Lazar, Iulia M.
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples.
Aissaoui, Neyssene; Chobert, Jean-Marc; Haertlé, Thomas; Marzouki, M Nejib; Abidi, Ferid
2017-06-01
This study reports the purification and biochemical characterization of an extracellular neutral protease from the fungus Trichoderma harzianum. The protease (Th-Protease) was purified from the culture supernatant to homogeneity by a three-step procedure with 14.2% recovery and 9.06-fold increase in specific activity. The purified enzyme appeared as a single protein band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of about 20 kDa. The optimum pH and temperature for the proteolytic activity were pH 7.0 and 40 °C, respectively. The enzyme was then investigated for its potential application in the production of antibacterial peptides. Interestingly, Scorpaena notata viscera protein hydrolysate prepared using the purified serine protease (Th-Protease) showed remarkable in vitro antibacterial activities. A peptide with a high antibacterial activity was further purified by a three-step procedure, and its sequence was identified as FPIGMGHGSRPA. The result of this study offers a promising alternative to produce natural antibacterial peptides from fish protein hydrolysate.
Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan
2009-08-01
In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.
Proteolytic-antiproteolytic balance and its regulation in carcinogenesis
Skrzydlewska, Elzbieta; Sulkowska, Mariola; Koda, Mariusz; Sulkowski, Stanislaw
2005-01-01
Cancer development is essentially a tissue remodeling process in which normal tissue is substituted with cancer tissue. A crucial role in this process is attributed to proteolytic degradation of the extracellular matrix (ECM). Degradation of ECM is initiated by proteases, secreted by different cell types, participating in tumor cell invasion and increased expression or activity of every known class of proteases (metallo-, serine-, aspartyl-, and cysteine) has been linked to malignancy and invasion of tumor cells. Proteolytic enzymes can act directly by degrading ECM or indirectly by activating other proteases, which then degrade the ECM. They act in a determined order, resulting from the order of their activation. When proteases exert their action on other proteases, the end result is a cascade leading to proteolysis. Presumable order of events in this complicated cascade is that aspartyl protease (cathepsin D) activates cysteine proteases (e.g., cathepsin B) that can activate pro-uPA. Then active uPA can convert plasminogen into plasmin. Cathepsin B as well as plasmin are capable of degrading several components of tumor stroma and may activate zymogens of matrix metalloproteinases, the main family of ECM degrading proteases. The activities of these proteases are regulated by a complex array of activators, inhibitors and cellular receptors. In physiological conditions the balance exists between proteases and their inhibitors. Proteolytic-antiproteolytic balance may be of major significance in the cancer development. One of the reasons for such a situation is enhanced generation of free radicals observed in many pathological states. Free radicals react with main cellular components like proteins and lipids and in this way modify proteolytic-antiproteolytic balance and enable penetration damaging cellular membrane. All these lead to enhancement of proteolysis and destruction of ECM proteins and in consequence to invasion and metastasis. PMID:15761961
Recombinant cathepsin E has no proteolytic activity at neutral pH.
Zaidi, Nousheen; Herrmann, Timo; Voelter, Wolfgang; Kalbacher, Hubert
2007-08-17
Cathepsin E (CatE) is a major intracellular aspartic protease reported to be involved in cellular protein degradation and several pathological processes. Distinct cleavage specificities of CatE at neutral and acidic pH have been reported previously in studies using CatE purified from human gastric mucosa. Here, in contrast, we have analyzed the proteolytic activity of recombinant CatE at acidic and neutral pH using two separate approaches, RP-HPLC and FRET-based proteinase assays. Our data clearly indicate that recombinant CatE does not possess any proteolytic activity at all at neutral pH and was unable to cleave the peptides glucagon, neurotensin, and dynorphin A that were previously reported to be cleaved by CatE at neutral pH. Even in the presence of ATP, which is known to stabilize CatE, no proteolytic activity was observed. These discrepant results might be due to some contaminating factor present in the enzyme preparations used in previous studies or may reflect differences between recombinant CatE and the native enzyme.
Structure of C3b reveals conformational changes that underlie complement activity.
Janssen, Bert J C; Christodoulidou, Agni; McCarthy, Andrew; Lambris, John D; Gros, Piet
2006-11-09
Resistance to infection and clearance of cell debris in mammals depend on the activation of the complement system, which is an important component of innate and adaptive immunity. Central to the complement system is the activated form of C3, called C3b, which attaches covalently to target surfaces to amplify complement response, label cells for phagocytosis and stimulate the adaptive immune response. C3b consists of 1,560 amino-acid residues and has 12 domains. It binds various proteins and receptors to effect its functions. However, it is not known how C3 changes its conformation into C3b and thereby exposes its many binding sites. Here we present the crystal structure at 4-A resolution of the activated complement protein C3b and describe the conformational rearrangements of the 12 domains that take place upon proteolytic activation. In the activated form the thioester is fully exposed for covalent attachment to target surfaces and is more than 85 A away from the buried site in native C3 (ref. 5). Marked domain rearrangements in the alpha-chain present an altered molecular surface, exposing hidden and cryptic sites that are consistent with known putative binding sites of factor B and several complement regulators. The structural data indicate that the large conformational changes in the proteolytic activation and regulation of C3 take place mainly in the first conversion step, from C3 to C3b. These insights are important for the development of strategies to treat immune disorders that involve complement-mediated inflammation.
NASA Technical Reports Server (NTRS)
Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)
1993-01-01
Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.
Cho, Yong Suk; Stevens, Leslie M; Stein, David
2010-06-22
The establishment of Drosophila embryonic dorsal-ventral (DV) polarity relies on serine proteolytic activity in the perivitelline space between the embryonic membrane and the eggshell. Gastrulation Defective cleaves and activates Snake, which processes and activates Easter, which cleaves Spätzle to form the activating ligand for the Toll receptor. Ventral restriction of ligand formation depends on the Pipe sulfotransferase, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Pipe modifies components of the developing eggshell to produce a ventral cue embedded in the vitelline membrane. This ventral cue is believed to promote one or more of the proteolysis steps in the perivitelline space. By examining the processing of transgenic, tagged versions of the perivitelline proteins during DV patterning, we find that the proteolysis of Easter by Snake is the first Pipe-dependent step and therefore the key ventrally restricted event in the protease cascade. We also find that Snake and Easter associate together in a complex in both wild-type and pipe mutant-derived embryos. This observation suggests a mechanism in which the sulfated target of Pipe promotes a productive interaction between Snake and Easter, perhaps by facilitating conformational changes in a complex containing the two proteins. Copyright 2010 Elsevier Ltd. All rights reserved.
Salamone, Monica; Carfì Pavia, Francesco
2016-01-01
In vitro cultured endothelial cells forming a continuous monolayer establish stable cell-cell contacts and acquire a “resting” phenotype; on the other hand, when growing in sparse conditions these cells acquire a migratory phenotype and invade the empty area of the culture. Culturing cells in different conditions, we compared expression and clustering of proteolytic enzymes in cells having migratory versus stationary behavior. In order to observe resting and migrating cells in the same microscopic field, a continuous cell monolayer was wounded. Increased expression of proteolytic enzymes was evident in cell membranes of migrating cells especially at sprouting sites and in shed membrane vesicles. Gelatin zymography and western blotting analyses confirmed that in migrating cells, expression of membrane-bound and of vesicle-associated proteolytic enzymes are increased. The enzymes concerned include MMP-2, MMP-9, MT1-MMP, seprase, DPP4 (DiPeptidyl Peptidase 4) and uPA. Shed membrane vesicles were shown to exert degradative activity on ECM components and produce substrates facilitating cell migration. Vesicles shed by migrating cells degraded ECM components at an increased rate; as a result their effect on cell migration was amplified. Inhibiting either Matrix Metallo Proteases (MMPs) or Serine Integral Membrane Peptidases (SIMPs) caused a decrease in the stimulatory effect of vesicles, inhibiting the spontaneous migratory activity of cells; a similar result was also obtained when a monoclonal antibody acting on DPP4 was tested. We conclude that proteolytic enzymes have a synergistic stimulatory effect on cell migration and that their clustering probably facilitates the proteolytic activation cascades needed to produce maximal degradative activity on cell substrates during the angiogenic process. PMID:27152413
Kazemi, Rezvan; Taheri-Kafrani, Asghar; Motahari, Ahmad; Kordesedehi, Reihane
2018-06-01
Nowadays health benefits of bioactive food constituents, known as probiotic microorganisms, are a growing awareness. Cow's milk is a nutritious food containing probiotic bacteria. However, milk allergenicity is one of the most common food allergies. The milk protein, β-lactoglobulin (BLG), is in about 80% of all main cases of milk allergies for children and infants. With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated new proteolytic strains of cocci lactic acid bacteria from traditional Iranian dairy products. The proteases produced by these strains had strong proteolytic activity against BLG. Proteolysis of BLG, observed after sodium dodecyl sulfate-PAGE, was confirmed by the analysis of the peptide profiles by reversed-phase HPLC. The two isolates were submitted to 16S rDNA sequencing and identified as Lactcoccus lactis subsp. cremoris and Lactcoccus lactis subsp. hordniea. The competitive ELISA experiments confirmed that these isolates, with high proteolytic activity, reduce significantly the allergenicity of BLG. Accordingly, these isolates can reduce the immunoreactivity of bovine milk proteins, which can be helpful for the production of low-allergic dairy products. Copyright © 2018 Elsevier B.V. All rights reserved.
Therapeutic targeting of NOTCH1 signaling in T-ALL
Palomero, Teresa; Ferrando, Adolfo
2010-01-01
The recent identification of activating mutations in NOTCH1 in the majority of T-cell acute lymphoblastic leukemias (T-ALL) has brought major interest towards targeting the NOTCH signaling pathway in this disease. Small molecule γ-secretase inhibitors (GSIs) which block a critical proteolytic step required for NOTCH1 activation can effectively block the activity of NOTCH1 mutant alleles. However, the clinical development of GSIs has been hampered by their low cytotoxicity against human T-ALL and the development of significant gastrointestinal toxicity derived from inhibition of NOTCH signaling in the gut. Improved understanding of the oncogenic mechanisms of NOTCH1 and the effects of NOTCH inhibition in leukemic cells and the intestinal epithelium are required for the design of effective anti-NOTCH1 therapies in T-ALL. PMID:19778842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pueyo, J.J.; Hunt, D.C.; Chrispeels, M.J.
Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the [alpha]-amylases of mammals and insects. This [alpha]-amylase inhibitor ([alpha]Al) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M[sub r]) 15,000 to 18,000. The authors report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, they found that antibodies to [alpha]Al recognize large (M[submore » r] 30,000-35,000) polypeptides as well as typical [alpha]Al processing products (M[sub r] 15,000-18,000). [alpha]Al activity was found in all extracts that had the typical [alpha]Al processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, they made a mutant [alpha]Al in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-[alpha]Al when the gene is expressed in tobacco. When pro-[alpha]Al was separated from mature [alpha]Al by gel filtration, pro-[alpha]Al was found not to have [alpha]-amylase inhibitory activity. The authors interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. They suggest that the polypeptide cleavage removes a conformation constraint on the precursor to produce the biochemically active molecule. 43 refs., 5 figs., 1 tab.« less
Shivalingu, B R; Vivek, H K; Nafeesa, Zohara; Priya, B S; Swamy, S Nanjunda
2015-08-22
Turmeric rhizome is a traditional herbal medicine, which has been widely used as a remedy to stop bleeding on fresh cuts and for wound healing by the rural and tribal population of India. To validate scientific and therapeutic application of turmeric rhizomes to stop bleeding on fresh cuts and its role in wound healing process. The water extracts of thoroughly scrubbed and washed turmeric rhizomes viz., Curcuma aromatica Salisb., Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. were subjected to salting out and dialysis. The dialyzed crude enzyme fractions (CEFs) were assessed for proteolytic activity using casein as substrate and were also confirmed by caseinolytic zymography. Its coagulant activity and fibrinogenolytic activity were assessed using human citrated plasma and fibrinogen, respectively. The type of protease(s) in CEFs was confirmed by inhibition studies using specific protease inhibitors. The CEFs of C. aromatica, C. longa and C. caesia showed 1.89, 1.21 and 1.07 folds higher proteolytic activity, respectively, compared to papain. In contrast to these, C. amada and C. zedoria exhibited moderate proteolytic activity. CEFs showed low proteolytic activities compared to trypsin. The proteolytic activities of CEFs were confirmed by caseinolytic zymography. The CEFs of C. aromatica, C. longa and C. caesia showed complete hydrolysis of Aα, Bβ and γ subunits of human fibrinogen, while C. amada and C. zedoria showed partial hydrolysis. The CEFs viz., C. aromatica, C. longa, C. caesia, C. amada and C. zedoria exhibited strong procoagulant activity by reducing the human plasma clotting time from 172s (Control) to 66s, 84s 88s, 78s and 90s, respectively. The proteolytic activity of C. aromatica, C. longa, C. caesia and C. amada was inhibited (>82%) by PMSF, suggesting the possible presence of a serine protease(s). However, C. zedoria showed significant inhibition (60%) against IAA and moderate inhibition (30%) against PMSF, indicating the presence of cysteine and serine protease(s). The CEFs of turmeric species exhibited strong procoagulant activity associated with fibrinogenolytic activity. This study provides the scientific credence to turmeric in its propensity to stop bleeding and wound healing process practiced by traditional Indian medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moreno-Hernández, Jesús Martín; Hernández-Mancillas, Xitlalli Desideria; Navarrete, Evelia Lorena Coss; Mazorra-Manzano, Miguel Ángel; Osuna-Ruiz, Idalia; Rodríguez-Tirado, Víctor Alfonso; Salazar-Leyva, Jesús Aarón
2017-05-01
Plant proteases are capable of performing several functions in biological systems, and their use is attractive for biotechnological process due to their interesting catalytic properties. Bromelia pinguin (aguama) is a wild abundant natural resource in several regions of Central America and the Caribbean Islands but is underutilized. Their fruits are rich in proteases with properties that are still unknown, but they represent an attractive source of enzymes for biotechnological applications. Thus, the proteolytic activity in enzymatic crude extracts (CEs) from wild B. pinguin fruits was partially characterized. Enzymes in CEs showed high proteolytic activity at acid (pH 2.0-4.0) and neutral alkaline (pH 7.0-9.0) conditions, indicating that different types of active proteases are present. Proteolytic activity inhibition by the use of specific protease inhibitors indicated that aspartic, cysteine, and serine proteases are the main types of proteases present in CEs. Activity at pH 3.0 was stable in a broad range of temperatures (25-50 °C) and retained its activity in the presence of surfactants (SDS, Tween-80), reducing agents (DTT, 2-mercapoethanol), and organic solvents (methanol, ethanol, acetone, 2-propanol), which suggests that B. pinguin proteases are potential candidates for their application in brewing, detergent, and pharmaceutical industries.
del Valle, Luis J
2005-06-01
Sea urchin and sea star oocyte extracts contain proteolytic activities that are active against sperm basic nuclear proteins (SNBP). This SNBP degradation has been related to the decondensation of sperm chromatin as a possible model to male pronuclei formation. We have studied the presence of this proteolytic activity in Holothuria tubulosa (sea cucumber) and its possible relationship with sperm nuclei decondensation. The mature oocyte extracts from H. tubulosa contain a proteolytic activity to SNBP located in the macromolecular fraction of the egg-jelly layer. SNBP degradation occurred both on sperm nuclei and on purified SNBP, histones being more easily degraded than protein Ø(o) (sperm-specific protein). SNBP degradation was found to be dependent on concentration, incubation time, presence of Ca(2+), pH, and this activity could be a serine-proteinase. Thermal denaturalization of the oocyte extracts (80 degrees C, 10-15 min) inactivates its proteolytic activity on SNBP but does not affect sperm nuclei decondensation. These results would suggest that sperm nuclei decondensation occurs by a mechanism different from SNBP degradation. Thus, the sperm nuclei decondensation occurs by a thermostable factor(s) and the removal of linker SNBP (H1 and protein Ø(o)) will be a first condition in the process of sperm chromatin remodeling.
Watanabe, K; Hayano, K
1993-07-01
Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.
Takasaki, K; Fujise, O; Miura, M; Hamachi, T; Maeda, K
2013-06-01
Biofilm formation occurs through the events of cooperative growth and competitive survival among multiple species. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are important periodontal pathogens. The aim of this study was to demonstrate competitive or cooperative interactions between these two species in co-cultured biofilm. P. gingivalis strains and gingipain mutants were cultured with or without A. actinomycetemcomitans. Biofilms formed on glass surfaces were analyzed by crystal violet staining and colony counting. Preformed A. actinomycetemcomitans biofilms were treated with P. gingivalis culture supernatants. Growth and proteolytic activities of gingipains were also determined. Monocultured P. gingivalis strains exhibited a range of biofilm-formation abilities and proteolytic activities. The ATCC33277 strain, noted for its high biofilm-formation ability and proteolytic activity, was found to be dominant in biofilm co-cultured with A. actinomycetemcomitans. In a time-resolved assay, A. actinomycetemcomitans was primarily the dominant colonizer on a glass surface and subsequently detached in the presence of increasing numbers of ATCC33277. Detachment of preformed A. actinomycetemcomitans biofilm was observed by incubation with culture supernatants from highly proteolytic strains. These results suggest that P. gingivalis possesses a competitive advantage over A. actinomycetemcomitans. As the required biofilm-formation abilities and proteolytic activities vary among P. gingivalis strains, the diversity of the competitive advantage is likely to affect disease recurrence during periodontal maintenance. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Högfors-Rönnholm, Eva; Wiklund, Tom
2010-12-01
The hemolytic activity of cells of smooth and rough phenotypic variants of the Gram-negative fish pathogen Flavobacterium psychrophilum was investigated in two different assays, a microplate and an agarose hemolysis assay, using rainbow trout erythrocytes. The smooth cells showed a high and the rough cells a negligible, concentration dependent, hemolytic activity in the microplate assay. Both smooth and rough cells showed a rather weak hemolytic activity, with two distinct hemolytic patterns, in the agarose assay. The hemolytic activity of the cells was not regulated by iron availability and cell-free extracellular products did not show any hemolytic activity. The smooth cells, in contrast to the rough cells, showed a high ability to agglutinate erythrocytes and both hemagglutination and hemolytic activity was impaired by treatment of the cells with sialic acid. The hemolytic activity was furthermore reduced after proteolytic and heat treatment of the cells. The results from the present study suggest that the hemolytic activity in F. psychrophilum is highly expressed in the smooth phenotype, and that it is a contact-dependent and two-step mechanism that is initiated by the binding of the bacterial cells to the erythrocytes through sialic acid-binding lectins and then executed by thermolabile proteinaceous hemolysins. Copyright © 2010 Elsevier Ltd. All rights reserved.
Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai
2011-01-01
The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238
Extracellular metalloproteinase activity in Phytomonas françai.
Almeida, Flávia V S; Branquinha, Marta H; Giovanni-De-Simone, Salvatore; Vermelho, Alane B
2003-03-01
Extracellular proteolytic activities were detected in Phytomonas françai culture supernatant. A 67-kDa enzyme was purified by ammonium sulfate precipitation and gel filtration in a HPLC system. This proteinase was optimally active at 28 degrees C and pH 5.0; and the use of proteolytic inhibitors indicated that it belongs to the metalloproteinase class. This is the first report on the purification of an extracellular metalloproteinase from a Phytomonas species.
Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation
2017-01-01
Summary This study evaluated the use of three solid brewery wastes: brewer’s spent grain, hot trub and residual brewer’s yeast, as alternative media for the cultivation of lactic acid bacteria to evaluate their potential for proteolytic enzyme production. Initially, a mixture experimental design was used to evaluate the effect of each residue, as well as different mixtures (with the protein content set at 4%) in the enzyme production. At predetermined intervals, the solid and liquid fractions were separated and the extracellular proteolytic activity was determined. After selecting the best experimental conditions, a second experiment, factorial experimental design, was developed in order to evaluate the protein content in the media (1 to 7%) and the addition of fermentable sugar (glucose, 1 to 7%). Among the wastes, residual yeast showed the highest potential for the production of extracellular enzymes, generating a proteolytic extract with 2.6 U/mL in 3 h. However, due to the low content of the fermentable sugars in the medium, the addition of glucose also had a positive effect, increasing the proteolytic activity to 4.9 U/mL. The best experimental conditions of each experimental design were reproduced for comparison, and the enzyme content was separated by ethanol precipitation. The best medium produced a precipitated protein with proteolytic activity of 145.5 U/g. PMID:28867951
Staab, J F; Ginkel, D L; Rosenberg, G B; Munford, R S
1994-09-23
Acyloxyacyl hydrolase, a leukocyte enzyme that acts on bacterial lipopolysaccharides (LPSs) and many glycerolipids, is synthesized as a precursor polypeptide that undergoes internal disulfide linkage before being proteolytically processed into two subunits. The larger subunit contains an amino acid sequence (Gly-X-Ser-X-Gly) that is found at the active sites of many lipases, while the smaller subunit has amino acid sequence similarity to saposins (sphingolipid activator proteins), cofactors for sphingolipid glycohydrolases. We show here that both acyloxyacyl hydrolase subunits are required for catalytic activity toward LPS and glycerophosphatidylcholine. In addition, mutations that truncate or delete the small subunit have profound effects on the intracellular localization, proteolytic processing, and stability of the enzyme in baby hamster kidney cells. Remarkably, proteolytic cleavage of the precursor protein increases the activity of the enzyme toward LPS by 10-20-fold without altering its activity toward glycerophosphatidylcholine. Proper orientation of the two subunits thus seems very important for the substrate specificity of this unusual enzyme.
Activation of liver alcohol dehydrogenase by glycosylation.
Tsai, C S; White, J H
1983-01-01
D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol. PMID:6342612
Chaud, Luciana C S; Lario, Luciana D; Bonugli-Santos, Rafaella C; Sette, Lara D; Pessoa Junior, Adalberto; Felipe, Maria das Graças de A
2016-12-25
Microorganisms from extreme and restrictive eco systems, such as the Antarctic continent, are of great interest due to their ability to synthesize products of commercial value. Among these, enzymes from psychrotolerant and psychrophilic microorganisms offer potential economical benefits due to their high activity at low and moderate temperatures. The cold adapted yeast Rhodotorula mucilaginosa L7 was selected out of 97 yeasts isolated from Antarctica as having the highest extracellular proteolytic activity in preliminary tests. The present study was aimed at evaluating the effects of nutrient composition (peptone, rice bran extract, ammonium sulfate, sodium chloride) and physicochemical parameters (temperature and pH) on its proteolytic activity. A 2 6-2 fractional factorial design experiment followed by a central composite design (CCD 2 3 ) was performed to optimize the culture conditions and improve the extracellular proteolytic activity. The results indicated that the presence of peptone in the medium was the most influential factor in protease production. Enzymatic activity was enhanced by the interaction between low glucose and peptone concentrations. The optimization of culture conditions with the aid of mathematical modeling enabled a c. 45% increase in proteolytic activity and at the same time reduced the amount of glucose and peptone required for the culture. Thus culture conditions established in this work may be employed in the biotechnological production of this protease. Copyright © 2016 Elsevier B.V. All rights reserved.
Dingle, J. T.; Sharman, I. M.; Moore, T.
1966-01-01
1. Young rats were kept for several weeks on a diet deficient in vitamin A. Some were undosed, others were given marginal (25i.u. weekly), adequate (1000i.u. weekly) or excessive (50000i.u. daily) doses of vitamin A acetate. The undosed rats developed signs of vitamin A deficiency, and the overdosed animals had skeletal fractures indicative of hypervitaminosis A. 2. The rats were decapitated. Their livers, and sometimes their kidneys, were homogenized and processed by centrifugal methods to sediment most of the lysosome fractions. Proteolytic activity was measured, after treatment with a detergent, in the whole homogenate (`total' activity), in the pellet obtained after 20min. at 15000g (`bound' activity) and, without treatment with detergent, in the supernatant (`free' activity). 3. In rats suffering from hypervitaminosis A the free activity and to a smaller extent the total activity were increased. Free activity was also raised in most rats suffering from avitaminosis A, but less than in those suffering from hypervitaminosis. 4. The vitamin A status appeared to have little effect on the proteolytic activity of the kidneys. Results for total and free activities, but not for bound activities, were higher than for corresponding liver preparations. 5. Control experiments were done on starved rats and on rats which were pair-fed with hypervitaminotic animals. Short periods of starvation caused an increase in free activity in young rats, but not in adults. The increases caused by starvation were much less than those caused by hypervitaminosis A. 6. For studies of the distribution of vitamin A more complete separation of the subcellular fractions was carried out on the combined livers from several hypervitaminotic rats. The concentration of vitamin A in the lysosome fraction was less than in the liver as a whole. 7. Our finding that the free proteolytic activity of the liver is increased by toxic oral dosing with vitamin A can be considered an extension of the previous observation that proteolytic enzymes are liberated when lysosomes are treated in vitro with vitamin A. PMID:5941340
Zeng, Xuefeng; He, Laping; Guo, Xu; Deng, Li; Yang, Wangen; Zhu, Qiujin; Duan, Zhenhua
2017-02-02
This study aimed to determine the predominant processing adaptability of 27 selected isolates of Staphylococcus xylosus in 'Suan yu', a traditional Chinese low-salt fermented whole-fish product. The isolates were screened for proteolytic, lipolytic, and enzymatic profiles; amino-acid decarboxylase content; antimicrobial activities; and tolerance to low temperatures, pH5.0, and salt. Two S. xylosus strains grew at 10°C in the presence of 10% NaCl and at pH5.0. Agar-plate assays and sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that 21 and 8 of the strains exhibited appropriate proteolytic activities against myofibrillar and sarcoplasmic proteins, respectively. All S. xylosus strains also displayed different enzymatic profiles, and most strains showed negative decarboxylase activities. The results of this step were used as input data for a Principal Component Analysis; therefore, the most technologically relevant strain 3 and 8 were combined with L. plantarum 120 as MS1 and MS2, respectively, were further selected for the fermented fish surimi, and the fish surimi inoculated with mixed starter cultures (MS1, MS2) scored high for overall acceptability. Free amino acid contents of 1757 and 1765mg/100g sample were found in fish surimi inoculated with MS1 and MS2, respectively, after 72h of fermentation. Therefore, Sx-3 and Sx-8, which presented the best predominant processing adaptability, is an eligible starter culture for fermented fish production. Copyright © 2016 Elsevier B.V. All rights reserved.
Plasma fibronectin: three steps to purification and stability.
Poulouin, L; Gallet, O; Rouahi, M; Imhoff, J M
1999-10-01
Large amounts of soluble fibronectin were easily purified from cryoprecipitated or fresh citrated human blood plasma by a three-step combination of gelatin and heparin-cellufine affinity chromatography. The elution conditions were optimized to obtain a homogeneous fraction on SDS-PAGE and Western blot under reducing condition. No proteolytic activities were detected by zymography at acidic or neutral pH. Furthermore, the fibronectin preparation was stable over time up to 456 h at 37 degrees C in the presence of calcium, zinc, or mercury. This preparation of very stable fibronectin, called highly purified fibronectin (hpFN), gave a yield of 7.00 +/- 0.77 mg of fibronectin per gram of cryoprecipitated plasma and 0.16 mg of fibronectin per milliliter of fresh citrated, giving a yield of 32 to 53% (from presumed fibronectin concentration). This preparation may be useful for cellular tests and interaction analysis. Copyright 1999 Academic Press.
Ubiquitin and Proteasomes in Transcription
Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.
2013-01-01
Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630
Raftery, Mark J; Saldanha, Rohit G; Geczy, Carolyn L; Kumar, Rakesh K
2003-01-01
Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis), rye grass (Lolium perenne) and Bermuda grass (Cynodon dactylon) were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense) group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1. PMID:14577842
Kaźmierczak, Andrzej; Doniak, Magdalena; Kunikowska, Anita
2017-11-01
Programmed cell death (PCD) is a crucial process in plant development. In this paper, proteolytically related aspects of kinetin-induced PCD in cortex cells of Vicia faba ssp. minor seedlings were examined using morphological, fluorometric, spectrophotometric, and fluorescence microscopic analyses. Cell viability estimation after 46 μM kinetin treatment of seedling roots showed that the number of dying cortex cells increased with treatment duration, reaching maximum after 72 h. Weight of the apical root segments increased with time and was about 2.5-fold greater after 96 h, while the protein content remained unchanged, compared to the control. The total and cysteine-dependent proteolytic activities fluctuated during 1-96-h treatment, which was not accompanied by the changes in the protein amount, indicating that the absolute protein amounts decreased during kinetin-induced PCD. N-ethylmaleimide (NEM), phenylmethylsulfonyl fluoride (PMSF), and Z-Leu-Leu-Nva-H (MG115), the respective cysteine, serine, and proteasome inhibitors, suppressed kinetin-induced PCD. PMSF significantly decreased serine-dependent proteolytic activities without changing the amount of proteins, unlike NEM and MG115. More pronounced effect of PMSF over NEM indicated that in the root apical segments, the most important proteolytic activity during kinetin-induced PCD was that of serine proteases, while that of cysteine proteases may be important for protein degradation in the last phase of the process. Both NEM and PMSF inhibited apoptotic-like structure formation during kinetin-induced PCD. The level of caspase-3-like activity of β1 proteasome subunit increased after kinetin treatment. Addition of proteasome inhibitor MG-115 reduced the number of dying cells, suggesting that proteasomes might play an important role during kinetin-induced PCD.
Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.
2015-01-01
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908
Chalabi, Maryam; Khademi, Fatemeh; Yarani, Reza; Mostafaie, Ali
2014-04-01
Actinidin, a member of the papain-like family of cysteine proteases, is abundant in kiwifruit. To date, a few studies have been provided to investigate the proteolytic activity and substrate specificity of actinidin on native proteins. Herein, the proteolytic activity of actinidin was compared to papain on several different fibrous and globular proteins under neutral, acidic and basic conditions. The digested samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry to assess the proteolytic effect. Furthermore, the levels of free amino nitrogen (FAN) of the treated samples were determined using the ninhydrin colorimetric method. The findings showed that actinidin has no or limited proteolytic effect on globular proteins such as immunoglobulins including sheep IgG, rabbit IgG, chicken IgY and fish IgM, bovine serum albumin (BSA), lipid transfer protein (LTP), and whey proteins (α-lactalbumin and β-lactoglobulin) compared to papain. In contrast to globular proteins, actinidin could hydrolyze collagen and fibrinogen perfectly at neutral and mild basic pHs. Moreover, this enzyme could digest pure α-casein and major subunits of micellar casein especially in acidic pHs. Taken together, the data indicated that actinidin has narrow substrate specificity with the highest enzymatic activity for the collagen and fibrinogen substrates. The results describe the actinidin as a mild plant protease useful for many special applications such as cell isolation from different tissues and some food industries as a mixture formula with other relevant proteases.
Ex vivo 18O-labeling mass spectrometry identifies a peripheral amyloid β clearance pathway.
Portelius, Erik; Mattsson, Niklas; Pannee, Josef; Zetterberg, Henrik; Gisslén, Magnus; Vanderstichele, Hugo; Gkanatsiou, Eleni; Crespi, Gabriela A N; Parker, Michael W; Miles, Luke A; Gobom, Johan; Blennow, Kaj
2017-02-20
Proteolytic degradation of amyloid β (Aβ) peptides has been intensely studied due to the central role of Aβ in Alzheimer's disease (AD) pathogenesis. While several enzymes have been shown to degrade Aβ peptides, the main pathway of Aβ degradation in vivo is unknown. Cerebrospinal fluid (CSF) Aβ42 is reduced in AD, reflecting aggregation and deposition in the brain, but low CSF Aβ42 is, for unknown reasons, also found in some inflammatory brain disorders such as bacterial meningitis. Using 18 O-labeling mass spectrometry and immune-affinity purification, we examined endogenous proteolytic processing of Aβ in human CSF. The Aβ peptide profile was stable in CSF samples from healthy controls but in CSF samples from patients with bacterial meningitis, showing increased leukocyte cell count, 18 O-labeling mass spectrometry identified proteolytic activities degrading Aβ into several short fragments, including abundant Aβ1-19 and 1-20. After antibiotic treatment, no degradation of Aβ was detected. In vitro experiments located the source of the proteolytic activity to blood components, including leukocytes and erythrocytes, with insulin-degrading enzyme as the likely protease. A recombinant version of the mid-domain anti-Aβ antibody solanezumab was found to inhibit insulin-degrading enzyme-mediated Aβ degradation. 18 O labeling-mass spectrometry can be used to detect endogenous proteolytic activity in human CSF. Using this technique, we found an enzymatic activity that was identified as insulin-degrading enzyme that cleaves Aβ in the mid-domain of the peptide, and could be inhibited by a recombinant version of the mid-domain anti-Aβ antibody solanezumab.
Metabolism of AGEs – Bacterial AGEs Are Degraded by Metallo-Proteases
Cohen-Or, Ifat; Katz, Chen; Ron, Eliora Z.
2013-01-01
Advanced Glycation End Products (AGEs) are the final products of non-enzymatic protein glycation that results in loss of protein structure and function. We have previously shown that in E. coli AGEs are continually formed as high-molecular weight protein complexes. Moreover, we showed that AGEs are removed from the cells by an active, ATP-dependent secretion and that these secreted molecules have low molecular weight. Taken together, these results indicate that E. coli contains a fraction of low molecular weight AGEs, in addition to the high-molecular weight AGEs. Here we show that the low-molecular weight AGEs originate from high-molecular weight AGEs by proteolytic degradation. Results of in-vitro and in vivo experiments indicated that this degradation is carried out not by the major ATP-dependent proteases that are responsible for the main part of bacterial protein quality control but by an alternative metal-dependent proteolysis. This proteolytic reaction is essential for the further secretion of AGEs from the cells. As the biochemical reactions involving AGEs are not yet understood, the implication of a metalloprotease in breakdown of high molecular weight AGEs and their secretion constitutes an important step in the understanding of AGEs metabolism. PMID:24130678
Metabolism of AGEs--bacterial AGEs are degraded by metallo-proteases.
Cohen-Or, Ifat; Katz, Chen; Ron, Eliora Z
2013-01-01
Advanced Glycation End Products (AGEs) are the final products of non-enzymatic protein glycation that results in loss of protein structure and function. We have previously shown that in E. coli AGEs are continually formed as high-molecular weight protein complexes. Moreover, we showed that AGEs are removed from the cells by an active, ATP-dependent secretion and that these secreted molecules have low molecular weight. Taken together, these results indicate that E. coli contains a fraction of low molecular weight AGEs, in addition to the high-molecular weight AGEs. Here we show that the low-molecular weight AGEs originate from high-molecular weight AGEs by proteolytic degradation. Results of in-vitro and in vivo experiments indicated that this degradation is carried out not by the major ATP-dependent proteases that are responsible for the main part of bacterial protein quality control but by an alternative metal-dependent proteolysis. This proteolytic reaction is essential for the further secretion of AGEs from the cells. As the biochemical reactions involving AGEs are not yet understood, the implication of a metalloprotease in breakdown of high molecular weight AGEs and their secretion constitutes an important step in the understanding of AGEs metabolism.
Investigation of plant latices of Asteraceae and Campanulaceae regarding proteolytic activity.
Sytwala, Sonja; Domsalla, André; Melzig, Matthias F
2015-12-01
Occurrence of plant latices is widespread, there are more than 40 families of plants characterized to establish lactiferous structures. The appearance of hydrolytic active proteins, incorporated in latices is already characterized, and hydrolytic active proteins are considerable, and for several plant families, the occurrence of hydrolytic active proteins is already specified e.g. Apocynaceae Juss., Caricaceae Dumort, Euphorbiaceae Juss., Moraceae Gaudich and Papaveraceae Juss. In our investigation, focused on latex bearing plants of order Asterales, Asteraceae and Campanulaceae in particular. The present outcomes represent a comprehensive study, relating to the occurrence of proteolytic active enzymes of order Asterales for the first time. 131 different species of Asteraceae and Campanulaceae were tested, and the appearance of plant latex proteases were determined in different quantities. Proteolytic activity was investigated by inhibitory studies and determination of residual activity in the following, enable us to characterize the proteases. Most of the considered species exhibit a serine protease activity and a multiplicity of species exhibited two or more subclasses of proteases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Mass spectrometry-based methods for detection and differentiation of botulinum neurotoxins
Schmidt, Jurgen G [Los Alamos, NM; Boyer, Anne E [Atlanta, GA; Kalb, Suzanne R [Atlanta, GA; Moura, Hercules [Tucker, GA; Barr, John R [Suwannee, GA; Woolfitt, Adrian R [Atlanta, GA
2009-11-03
The present invention is directed to a method for detecting the presence of clostridial neurotoxins in a sample by mixing a sample with a peptide that can serve as a substrate for proteolytic activity of a clostridial neurotoxin; and measuring for proteolytic activity of a clostridial neurotoxin by a mass spectroscopy technique. In one embodiment, the peptide can have an affinity tag attached at two or more sites.
[The extracellular proteases of the phytopathogenic bacterium Xanthomonas campestris].
Kalashnikova, E E; Chernyshova, M P; Ignatov, V V
2003-01-01
The culture liquids of three Xanthomonas campestris pv. campestris strains were found to possess proteolytic activity. The culture liquid of strain B-611 with the highest proteolytic activity was fractionated by salting-out with ammonium sulfate, gel filtration, and ion-exchange chromatography. The electrophoretic analysis of active fractions showed the presence of two proteases in the culture liquid of strain B-611, the major of which being serine protease. The treatment of cabbage seedlings with the proteases augmented the activity of peroxidase in the cabbage roots by 28%.
Antibody degradation in tobacco plants: a predominantly apoplastic process
2011-01-01
Background Interest in using plants for production of recombinant proteins such as monoclonal antibodies is growing, but proteolytic degradation, leading to a loss of functionality and complications in downstream purification, is still a serious problem. Results In this study, we investigated the dynamics of the assembly and breakdown of a human IgG1κ antibody expressed in plants. Initial studies in a human IgG transgenic plant line suggested that IgG fragments were present prior to extraction. Indeed, when the proteolytic activity of non-transgenic Nicotiana tabacum leaf extracts was tested against a human IgG1 substrate, little activity was detectable in extraction buffers with pH > 5. Significant degradation was only observed when the plant extract was buffered below pH 5, but this proteolysis could be abrogated by addition of protease inhibitors. Pulse-chase analysis of IgG MAb transgenic plants also demonstrated that IgG assembly intermediates are present intracellularly and are not secreted, and indicates that the majority of proteolytic degradation occurs following secretion into the apoplastic space. Conclusions The results provide evidence that proteolytic fragments derived from antibodies of the IgG subtype expressed in tobacco plants do not accumulate within the cell, and are instead likely to occur in the apoplastic space. Furthermore, any proteolytic activity due to the release of proteases from subcellular compartments during tissue disruption and extraction is not a major consideration under most commonly used extraction conditions. PMID:22208820
Influence of selected factors on browning of Camembert cheese.
Carreira, Alexandra; Dillinger, Klaus; Eliskases-Lechner, Frieda; Loureiro, Virgílio; Ginzinger, Wolfgang; Rohm, Harald
2002-05-01
Experimental Camembert cheeses were made to investigate the effects on browning of the following factors: inoculation with Yarrowia lipolytica, the use of Penicillium candidum strains with different proteolytic activity, the addition of tyrosine, and the addition of Mn2+ thus leading to 16 different variants of cheese. Two physical colour parameters were used to describe browning, depending on the location in the cheeses: a whiteness index for the outside browning (mould mycelium), and a brownness index for the inside browning (surface of the cheese body). Mn2+ promoted a significant increase of browning at both locations, whereas Yar. lipolytica had the opposite effect. Outside browning was significantly more intense when using the Pen. candidum strain with higher proteolytic activity. A significant interaction was found between Yar. lipolytica and Pen. candidum. The yeast had no effect in combination with a low proteolytic strain of Pen. candidum, but significantly reduced proteolysis and browning in combination with a high proteolytic strain of Pen. candidum. We further confirmed that both strains of Pen. candidum were able to produce brown pigments from tyrosine and thus both are presumably responsible for the browning activity in this type of cheese.
Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu
2014-01-01
Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904
Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M
2015-02-06
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yao, Fan; Zhou, Zhicheng; Kim, Jongchan; Hang, Qinglei; Xiao, Zhenna; Ton, Baochau N; Chang, Liang; Liu, Na; Zeng, Liyong; Wang, Wenqi; Wang, Yumeng; Zhang, Peijing; Hu, Xiaoyu; Su, Xiaohua; Liang, Han; Sun, Yutong; Ma, Li
2018-06-11
Dysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCF SKP2 E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1. The non-proteolytic ubiquitination of YAP enhances its interaction with its nuclear binding partner TEAD, thereby inducing YAP's nuclear localization, transcriptional activity, and growth-promoting function. Independently of Hippo signaling, mutation of YAP's K63-linkage specific ubiquitination sites K321 and K497, depletion of SKP2, or overexpression of OTUD1 retains YAP in the cytoplasm and inhibits its activity. Conversely, overexpression of SKP2 or loss of OTUD1 leads to nuclear localization and activation of YAP. Altogether, our study sheds light on the ubiquitination-mediated, Hippo-independent regulation of YAP.
Cosić, Sanda Jelisavac; Kovac, Zdenko
2011-01-01
Pericellular proteolysis is a cascade process involved in degradation of extracellular matrix. This process is included in various physiological and pathological processes. Pericellullar proteolysis has major functions like degradation of tissue stroma and weakening of intercellular connections but it also has a function in the synthesis of bioactive molecules (cytokines, growth factors and inhibitory factors). Plasminogen system is involved in fibrinolysis and starts metalloproteinase activation. Activity of proteolytic molecules is controlled by the rate of zymogenic activation, half-life of molecules, and action of inhibitory molecules. Inhibition is achieved through direct binding of inhibitor and enzyme and takes a few steps. Pericellular proteolysis is involved in tumor invasion and metastasis, inflammatory reaction, degenerative diseases and other diseases. Pathophysiological regulation of pericellular proteolysis in mentioned diseases contributes to clinical properties of diseases and has diagnostic and therapeutic importance.
Capodifoglio, Eduardo; Vidal, Ana Maria Centola; Lima, Joyce Aparecida Santos; Bortoletto, Fernanda; D'Abreu, Léa Furlan; Gonçalves, Ana Carolina Siqueira; Vaz, Andreia Cristina Nakashima; Balieiro, Julio Cesar de Carvalho; Netto, Arlindo Saran
2016-07-01
The aim of this study was to verify the presence of lipolytic and proteolytic Pseudomonas spp. during milking and storage of refrigerated raw milk. We also intended to compare samples collected during rainy and dry seasons, from farms with manual and mechanical milking systems. For this, samples of milkers' hands, cows' teats, water, expansion tanks, equipment, and utensils used during milking were analyzed regarding Pseudomonas spp. Positive samples were tested for the production of lipolytic and proteolytic enzymes. Microorganisms of the genus Pseudomonas were isolated from all sampling points. A higher isolation rate of the bacterium was found in the rainy season except for 6 sampling points, with all of these associated with mechanical milking systems. Pseudomonas spp. exhibiting lipolytic activity were found to be predominant during the dry season, since no activity was detected during the rainy season in 26 of the 29 sampling sites. The highest number of lipolytic Pseudomonas isolates was obtained from water. Presence of lipase-producing Pseudomonas spp. was verified in 7 and 36% of the samples collected from farms with manual and mechanical milking, respectively. When analyzing raw milk collected from expansion tanks immediately (0 h) and 24h after milking, we observed that for dairy properties with manual milking process, 10% of the Pseudomonas isolates were positive for lipolytic activity. The percentage increased to 12% 48h after milking. Mean averages were 32, 33, and 39% immediately after, 24 and 48h after milking, respectively, for farms with mechanical milking. All sampling points showed the presence of proteolytic strains of Pseudomonas. The highest proteolytic activity was found during the rainy season, except for the samples collected from milkers' hands before milking, buckets, and teat cup inner surfaces after milking and from the water in dairy farms with mechanical milking system. Of these samples, 72, 56, and 50%, respectively, were positive for proteolysis during the dry season. For the water samples, a statistical difference was observed between mechanical (50%) and manual (7%) milking systems in the percentage of proteolytic activity. No production of proteolytic enzyme was detected in the samples from milkers' hands taken after milking and no statistically significant difference was found among manual (19.91%) and mechanical (47.85%) milking. During the rainy months, no proteolysis was detected in the samples taken from cows' teats after the predipping. It is evident, therefore, that preventive measures capable of minimizing the contamination with Pseudomonas spp. during milking and storage of refrigerated raw milk are needed, regardless of season. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dallas, David C.; Murray, Niamh M.; Gan, Junai
2015-01-01
Milk contains elements of numerous proteolytic systems (zymogens, active proteases, protease inhibitors and protease activators) produced in part from blood, in part by mammary epithelial cells and in part by immune cell secretion. Researchers have examined milk proteases for decades, as they can cause major defects in milk quality and cheese production. Most previous research has examined these proteases with the aim to eliminate or control their actions. However, our recent peptidomics research demonstrates that these milk proteases produce specific peptides in healthy milk and continue to function within the infant’s gastrointestinal tract. These findings suggest that milk proteases have an evolutionary function in aiding the infant’s digestion or releasing functional peptides. In other words, the mother provides the infant with not only dietary proteins but also the means to digest them. However, proteolysis in the milk is controlled by a balance of protease inhibitors and protease activators so that only a small portion of milk proteins are digested within the mammary gland. This regulation presents a question: If proteolysis is beneficial to the infant, what benefits are gained by preventing complete proteolysis through the presence of protease inhibitors? In addition to summarizing what is known about milk proteolytic systems, we explore possible evolutionary explanations for this proteolytic balance. PMID:26179272
Liebl, Martina P; Hoppe, Thorsten
2016-08-01
Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases. Copyright © 2016 the American Physiological Society.
Kunji, E R; Hagting, A; De Vries, C J; Juillard, V; Haandrikman, A J; Poolman, B; Konings, W N
1995-01-27
In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.
Fekete, Attila; Komáromi, István
2016-12-07
A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to be a single elementary step process in all the methods we applied.
Use of a specific MMP inhibitor (Galardin) for preservation of hybrid layer
Breschi, Lorenzo; Martin, Patrizia; Mazzoni, Annalisa; Nato, Fernando; Carrilho, Marcela; Tjäderhane, Leo; Visintini, Erika; Cadenaro, Milena; Tay, Franklin R; De Stefano Dorigo, Elettra; Pashley, David H
2013-01-01
Objective Dentinal MMPs have been claimed to contribute to the auto-degradation of collagen fibrils within incompletely resin-infiltrated hybrid layers and their inhibition may, therefore, slow the degradation of hybrid layer. This study aimed to determine the contribution of a synthetic MMPs inhibitor (Galardin) to the proteolytic activity of dentinal MMPs and to the morphological and mechanical features of hybrid layers after aging. Methods Dentin powder obtained from human molars was treated with Galardin or chlorhexidine digluconate and zymographically analyzed. Microtensile bond strength was also evaluated in extracted human teeth. Exposed dentin was etched with 35% phosphoric acid and specimens were assigned to (1) pre-treatment with Galardin as additional primer for 30s; (2) no pre-treatment. A two-step etch-and-rinse adhesive (Adper Scotchbond 1XT, 3M ESPE) was then applied in accordance with manufacturer's instructions and resin composite build-ups were created. Specimens were immediately tested for their microtensile bond strength or stored in artificial saliva for 12 months prior to being tested. Data were evaluated by two-way ANOVA and Tukey's tests (〈=0.05). Additional specimens were prepared for interfacial nanoleakage analysis under light microscopy and TEM, quantified by two independent observers and statistically analyzed (|2 test, 〈=0.05). Results The inhibitory effect of Galardin on dentinal MMPs was confirmed by zymographic analysis, as complete inhibition of both MMP-2 and -9 was observed. The use of Galardin had no effect on immediate bond strength, while it significantly decreased bond degradation after 1 year (p<0.05). Interfacial nanoleakage expression after aging revealed reduced silver deposits in galardin-treated specimens compared to controls (p<0.05). Conclusions This study confirmed that the proteolytic activity of dentinal MMPs was inhibited by the use of Galardin in a therapeutic primer. Galardin also partially preserved the mechanical integrity of the hybrid layer created by a two-step etch-and-rinse adhesive after artificial aging. PMID:20299089
Locked and proteolysis-based transcription activator-like effector (TALE) regulation.
Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman
2016-02-18
Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kemp, C M; Oliver, W T; Wheeler, T L; Chishti, A H; Koohmaraie, M
2013-07-01
Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P < 0.01) and activity (P < 0.001), and greater caspase 3/7 activity (P < 0.05). At 30 wk of age, KO mice showed increased protein:DNA (P < 0.05) and RNA:DNA ratios (P < 0.01), greater protein content (P < 0.01) at the expense of lipid deposition (P < 0.05), and an increase in size and number of fast-twitch glycolytic muscle fibers (P < 0.05), suggesting that KO mice exhibit an increased capacity to accumulate and maintain protein in their skeletal muscle. Also, expression of proteins associated with muscle regeneration (neural cell adhesion molecule and myoD) were both reduced in the mature KO mice (P < 0.05 and P < 0.01, respectively), indicating less muscle regeneration and, therefore, less muscle damage. These findings indicate the concerted action of proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared
2006-03-15
The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsinsmore » can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.« less
Application to processing system using intra-molecular BRET
NASA Astrophysics Data System (ADS)
Otsuji, Tomomi; Okuda-Ashitaka, Emiko; Kojima, Satoshi; Akiyama, Hidehumi; Ito, Seiji; Ohmiya, Yoshihiro
2003-07-01
Luciferases are used as the reporter gene for promoter activity, whereas a green fluorescent protein (GFP) is used as marker for cellular function and localization. Recently, bioluminescence resonance energy transfer (BRET) between luciferase and YFP is used for analysis of inter-molecular reaction such as ligand-receptor in the living cells. The neuropeptides nocistatin (NST) and nociceptin/orphanin FQ (Noc/OFQ) are derived from the same precursor protein, while NST exhibits antagonism against Noc/OFQ-actions. In this study, we attempt an intra-molecular BRET system for monitoring dynamic biological process of the production of NST and Noc/OFQ in the living cells. At first, we constructed a fusion protein (Rluc-GFP) covalently linking luciferase (Renilla luciferase; Rluc) to Aequorea GFP as an intra-molecular BRET partner. Furthermore, we inserted constructs of mouse NST and Noc/OFQ (Rluc-m-GFP) or bovine NST and Noc/OFQ (Rluc-b-GFP) containing a proteolytic cleavage motif (Lys-Arg) within Rluc-GFP. When these constructions were transfected into Cos7 cells, all fusion proteins had luciferase activity and specific fluorescence. Luminescence spectra of Rluc-GFP, Rluc-m-GFP and Rluc-b-GFP fusion proteins with DeepBlueC as a substrate showed two peaks centered at 400 nm and 510 nm, whereas Rluc showed one peak centered at 400 nm. These results indicate that the proteolytic cleavage motif inserted fusion proteins between luciferase and GFP are available for intra-molecular BRET systems at first step.
Findeisen, Peter; Costina, Victor; Yepes, Diego; Hofheinz, Ralf; Neumaier, Michael
2012-06-08
The progression of many solid tumors is characterized by the release of tumor-associated proteases and the detection of tumor specific proteolytic activity in serum specimens is a promising diagnostic tool in oncology. Here we describe a mass spectrometry-based functional proteomic profiling approach that tracks the ex-vivo degradation of a synthetic endoprotease substrate in serum specimens of colorectal tumor patients. A reporter peptide (RP) with the amino acid sequence WKPYDAAD was synthesized that has a known cleavage site for the cysteine-endopeptidase cancer procoagulant (EC 3.4.22.26). The RP was added to serum specimens from colorectal cancer patients (n = 30), inflammatory controls (n = 30) and healthy controls (n = 30) and incubated under strictly standardized conditions. The proteolytic fragment of the RP was quantified with liquid chromatography / mass spectrometry (LC/MS). RP-spiking showed good intra- and inter-day reproducibility with coefficients of variation (CVs) that did not exceed a value of 10%. The calibration curve for the anchor peptide was linear in the concentration range of 0.4 - 50 μmol/L. The median concentration of the RP-fragment in serum specimens from tumor patients (TU: 17.6 μmol/L, SD 9.0) was significantly higher when compared to non-malignant inflammatory controls (IC: 11.1 μmol/L, SD 6.1) and healthy controls (HC: 10.3 μmol/L, SD 3.1). Highest area under receiver operating characteristic (AUROC) values were seen for discrimination of TU versus HC (0.89) followed by TU versus IC (0.77). IC and HC could barely be separated indicated by an AUROC value of 0.57. The proteolytic activity towards the RP was conserved in serum specimens that were kept at room temperature for up to 24 hours prior to the analysis. The proteolytic cleavage of reporter peptides is a surrogate marker for tumor associated proteolytic activity in serum specimens of cancer patients. A simple, robust and highly reproducible LC/MS method has been developed that allows the quantification of proteolytic fragments in serum specimens. The preanalytical impact of sample handling is minimal as the tumor-associated proteolytic activity towards the reporter peptide is stable for at least up to 24 h. Taken together, the functional protease profiling shows characteristics that are in line with routinely performed diagnostic assays. Further work will focus on the identification of additional reporter peptides for the construction of a multiplex assay to increase diagnostic accuracy of the functional protease profiling.
2012-01-01
Background The progression of many solid tumors is characterized by the release of tumor-associated proteases and the detection of tumor specific proteolytic activity in serum specimens is a promising diagnostic tool in oncology. Here we describe a mass spectrometry-based functional proteomic profiling approach that tracks the ex-vivo degradation of a synthetic endoprotease substrate in serum specimens of colorectal tumor patients. Methods A reporter peptide (RP) with the amino acid sequence WKPYDAAD was synthesized that has a known cleavage site for the cysteine-endopeptidase cancer procoagulant (EC 3.4.22.26). The RP was added to serum specimens from colorectal cancer patients (n = 30), inflammatory controls (n = 30) and healthy controls (n = 30) and incubated under strictly standardized conditions. The proteolytic fragment of the RP was quantified with liquid chromatography / mass spectrometry (LC/MS). Results RP-spiking showed good intra- and inter-day reproducibility with coefficients of variation (CVs) that did not exceed a value of 10%. The calibration curve for the anchor peptide was linear in the concentration range of 0.4 – 50 μmol/L. The median concentration of the RP-fragment in serum specimens from tumor patients (TU: 17.6 μmol/L, SD 9.0) was significantly higher when compared to non-malignant inflammatory controls (IC: 11.1 μmol/L, SD 6.1) and healthy controls (HC: 10.3 μmol/L, SD 3.1). Highest area under receiver operating characteristic (AUROC) values were seen for discrimination of TU versus HC (0.89) followed by TU versus IC (0.77). IC and HC could barely be separated indicated by an AUROC value of 0.57. The proteolytic activity towards the RP was conserved in serum specimens that were kept at room temperature for up to 24 hours prior to the analysis. Conclusion The proteolytic cleavage of reporter peptides is a surrogate marker for tumor associated proteolytic activity in serum specimens of cancer patients. A simple, robust and highly reproducible LC/MS method has been developed that allows the quantification of proteolytic fragments in serum specimens. The preanalytical impact of sample handling is minimal as the tumor-associated proteolytic activity towards the reporter peptide is stable for at least up to 24 h. Taken together, the functional protease profiling shows characteristics that are in line with routinely performed diagnostic assays. Further work will focus on the identification of additional reporter peptides for the construction of a multiplex assay to increase diagnostic accuracy of the functional protease profiling. PMID:22682081
Engineering botulinum neurotoxin domains for activation by toxin light chain.
Stancombe, Patrick R; Masuyer, Geoffrey; Birch-Machin, Ian; Beard, Matthew; Foster, Keith A; Chaddock, John A; Acharya, K Ravi
2012-02-01
Targeted secretion inhibitors (TSI) are a new class of biopharmaceuticals designed from a botulinum neurotoxin protein scaffold. The backbone consists of the 50-kDa endopeptidase light chain and translocation domain (N-terminal portion of the heavy chain), lacks neuronal toxicity, but retains the ability to target cytoplasmic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. TSI are produced as single-chain proteins and then cleaved post-translationally to generate functional heterodimers. Precise proteolytic cleavage is essential to activate the protein to a dichain form. TSI are themselves highly specific proteases. We have exploited this activity to create self-activating enzymes by replacing the native proteolytic site with a substrate SNARE peptide for the TSI protease. We have also created cross-activating backbones. By replacing the proteolytic activation site in one backbone with the substrate SNARE peptide for another serotype, controlled activation is achieved. SNARE peptides encompassing the whole of the coiled-coil region enabled complete activation and assembly of the dichain backbone. These engineered TSI backbones are capable of translocating their enzymatic domains to target intracellular SNARE proteins. They are also investigative tools with which to further the understanding of endopeptidase activity of light chain in SNARE interactions. © 2011 Syntaxin Ltd. Journal compilation © 2011 FEBS.
In vivo sensing of proteolytic activity with an NSET-based NIR fluorogenic nanosensor.
Ku, Minhee; Hong, Yoochan; Heo, Dan; Lee, Eugene; Hwang, Seungyeon; Suh, Jin-Suck; Yang, Jaemoon
2016-03-15
Biomedical in vivo sensing methods in the near-infrared (NIR) range, which that provide relatively high photon transparency, separation from auto-fluorescence background, and extended sensitivity, are being used increasingly for non-invasive mapping and monitoring of molecular events in cancer cells. In this study, we fabricated an NIR fluorogenic nanosensor based on the nanoparticle surface energy transfer effect, by conjugation of fluorescent proteolytic enzyme-specific cleavable peptides with gold nanorods (GNRs). Membrane-anchored membrane type 1-matrix metalloproteinases (MT1-MMPs), a family of zinc-dependent proteolytic enzymes, can induce the metastatic potential of cancer cells by promoting degradation of the extracellular matrix. Therefore, sensitive detection of MT1-MMP activity can provide essential information in the clinical setting. We have applied in vivo NIR sensing to evaluate MT1-MMP activity, as an NIR imaging target, in an MT1-MMP-expressing metastatic tumor mouse model. Copyright © 2015 Elsevier B.V. All rights reserved.
Mulligan, Christopher; Mindell, Joseph A.
2013-01-01
Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238
Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth
2014-01-01
Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization. PMID:25251406
ERIC Educational Resources Information Center
Saperas, Nuria; Fonfria-Subiros, Elsa
2011-01-01
This laboratory exercise uses a problem-based approach to expose students to some basic concepts relating to proteins and enzymes. One of the main applications of enzymes at the industrial level is their use in the detergent market. The students examine a detergent sample to ascertain whether proteolytic enzymes are a component and, if so, which…
Mass Spectrometry: A Technique of Many Faces
Olshina, Maya A.; Sharon, Michal
2016-01-01
Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928
Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T; Scheaffer, Suzanne M; Roswit, William T; Alevy, Yael G; Patel, Anand C; Heier, Richard F; Romero, Arthur G; Nichols, Colin G; Holtzman, Michael J; Brett, Tom J
2012-12-07
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.
Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.
2012-01-01
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050
Timing of transcriptomic and proteomic changes in the bovine placentome after parturition.
McNeel, Anthony K; Ondrak, Jeff D; Amundson, Olivia L; Fountain, Tara H; Wright, Elane C; Whitman, Katherine J; Chitko-McKown, Carol G; Jones, Shuna A; Chase, Chadwick C; Cushman, Robert A
2017-09-15
Proper post-partum reproductive performance is important for reproductive efficiency in beef cows, and dystocia decreases post-partum fertility. Crossbred beef cows (n = 1676) were evaluated for lifetime performance based on degree of dystocia at presentation of the first calf. Cows that experienced moderate or severe dystocia produced fewer calves during their productive life (P < 0.01). The exact mechanism is unclear, but may be due to the contributions of dystocia to abnormal placental separation. Proteolytic activity is hypothesized to contribute to placental separation in ruminants; however, when ovine placentomes were collected following caesarian section, no proteolytic activity was detected. We hypothesized that stage 2 of parturition was necessary to stimulate proteolysis and initiate placental separation. Serial placentome collections were performed on mature cows (n = 21 initiated; 7 with complete sampling) at hourly intervals for the first 2 h after expulsion of the calf. An intact piece of each placentome was fixed for histological evaluation, and a separate piece of caruncular and cotyledonary tissue from each placentome was frozen for transcriptomic and proteolytic analysis. A full set of placentomes was collected from only 7 of 21 cows at 0, 1, and 2 h, and all cows had expelled fetal membranes by 6 h. Histological, transcriptomic and proteolytic analysis was performed on placentomes from cows from which three placentomes were collected (n = 7). The microscopic distance between maternal and fetal tissues increased at 1 h (P = 0.01). Relative transcript abundance of matrix metalloprotease 14 (MMP14) tended to increase with time (P = 0.06). The relative transcript abundance of plasminogen activator urokinase-type (PLAU) was greater in caruncles than cotyledons (P = 0.01), and tended (P = 0.10) to increase in the caruncle between 0 and 2 h while remaining unchanged in the cotyledon over the same span of time. Greater PLAU and plasminogen activator tissue-type (PLAT) proteolytic activity was detected by zymography in the caruncle than the cotyledon immediately post-partum (P < 0.01). From these findings we conclude that 1) dystocia during the first parity decreases lifetime productivity in beef cattle, 2) the PA system is present at both the transcript and protein level in the bovine plactentome during parturition and 3) proteolytic activity is localized to the caruncular aspect of the placentome. Published by Elsevier Inc.
Sharma, Suresh D.; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R.; Kumar, Ganesh K.
2009-01-01
Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the α-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O2-sensitive peptidylglycine α-hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O2 for 15 s followed by 21% O2 for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of α-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM (∼1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases Vmax but has no effect on Km. IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem. PMID:18818385
Sharma, Suresh D; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R; Kumar, Ganesh K
2009-01-01
Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O(2)-sensitive peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O(2) for 15 s followed by 21% O(2) for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of alpha-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM ( approximately 1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V(max) but has no effect on K(m). IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem.
Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway
Polge, Cécile; Jaquinod, Michel; Holzer, Frances; Bourguignon, Jacques; Walling, Linda; Brouquisse, Renaud
2009-01-01
Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 μm cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress. PMID:19822524
Blending protein separation and peptide analysis through real-time proteolytic digestion.
Slysz, Gordon W; Schriemer, David C
2005-03-15
Typical liquid- or gel-based protein separations require enzymatic digestion as an important first step in generating protein identifications. Traditional protocols involve long-term proteolytic digestion of the separated protein, often leading to sample loss and reduced sensitivity. Previously, we presented a rapid method of proteolytic digestion that showed excellent digestion of resistant and low concentrations of protein without requiring reduction and alkylation. Here, we demonstrate on-line, real-time tryptic digestion in conjunction with reversed-phase protein separation. The studies were aimed at optimizing pH and ionic strength and the size of the digestion element, to produce maximal protein digestion with minimal effects on chromatographic integrity. Upon establishing optimal conditions, the digestion element was attached downstream from a capillary C4 reversed-phase column. A four-protein mixture was processed through the combined system, and the resulting peptides were analyzed on-line by electrospray mass spectrometry. Extracted ion chromatograms for protein chromatography based on peptide elution were generated. These were shown to emulate ion chromatograms produced in a subsequent run without the digestion element, based on protein elution. The methodology will enable rapid and sensitive analysis of liquid-based protein separations using the power of bottom-up proteomics methodologies.
Han, Peng; Niu, Chang-Ying; Biondi, Antonio; Desneux, Nicolas
2012-11-01
The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.
Srp, Jaroslav; Nussbaumerová, Martina; Horn, Martin; Mareš, Michael
2016-11-01
The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major pest of potato plants, and its digestive system is a promising target for development of pest control strategies. This work focuses on functional proteomic analysis of the digestive proteolytic enzymes expressed in the CPB gut. We identified a set of peptidases using imaging with specific activity-based probes and activity profiling with selective substrates and inhibitors. The secreted luminal peptidases were classified as: (i) endopeptidases of cathepsin D, cathepsin L, and trypsin types and (ii) exopeptidases with aminopeptidase (cathepsin H), carboxypeptidase (serine carboxypeptidase, prolyl carboxypeptidase), and carboxydipeptidase (cathepsin B) activities. The proteolytic arsenal also includes non-luminal peptidases with prolyl oligopeptidase and metalloaminopeptidase activities. Our results indicate that the CPB gut employs a multienzyme network of peptidases with complementary specificities to efficiently degrade ingested proteins. This proteolytic system functions in both CPB larvae and adults and is controlled mainly by cysteine and aspartic peptidases and supported by serine and metallopeptidases. The component enzymes identified here are potential targets for inhibitors with tailored specificities that could be engineered into potato plants to confer resistance to CPB. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patiño, Arley Camilo; Benjumea, Dora María; Pereañez, Jaime Andrés
2013-09-16
The plant Renealmia alpinia has been used in folk medicine to treat snakebites in the northwest region of Colombia. In addition, it has been shown to neutralize edema-forming, hemorrhagic, lethal, and defibrin(ogen)ating activities of Bothrops asper venom. In this work, extracts of Renealmia alpinia obtained by micropropagation (in vitro) and from specimens collected in the wild were tested and compared in their capacity to inhibit enzymatic and toxic activities of a snake venom metalloproteinase isolated from Bothrops atrox (Batx-I) venom and a serine proteinase (Cdc SII) from Crotalus durissus cumanensis venom. We have investigated the inhibition capacity of Renealmia alpinia extracts on enzymatic and toxic actions of isolated toxins, a metalloproteinase and a serine proteinase. The protocols investigated included inhibition of proteolytic activity on azocasein, inhibition of proteolytic activity on fibrinogen, inhibition of pro-coagulant activity, inhibition of hemorrhagic activity and inhibition of edema-forming activity. Colorimetric assays detected the presence of terpenoids, flavonoids, tannins and coumarins in Renealmia alpinia extracts. Renealmia alpinia extracts inhibited the enzymatic, hemorrhagic and fibrinogenolytic activities of Batx-I. Extracts also inhibited coagulant, defibrin(ogen)ating and edema-forming activities of Cdc SII. Results highlight that Renealmia alpinia in vitro extract displayed comparable inhibitory capacity on venom proteinases that Renealmia alpinia wild extract. No alteration was observed in the electrophoretic pattern of venom proteinases after incubation with Renealmia alpinia extracts, thus excluding proteolytic degradation or protein denaturation/precipitation as a mechanism of inhibition. Our results showed that Renealmia alpinia wild and in vitro extracts contain compounds that neutralize metallo- and serine proteinases present in snake venoms. The mechanism of inhibition is not related to proteolytic degradation of the enzymes nor protein aggregation, but is likely to depend on molecular interactions of secondary metabolites in the plant with these venom proteinases. Crown Copyright © 2013 Published by Elsevier Ireland Ltd. All rights reserved.
Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara
2016-01-01
Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs. PMID:27022410
Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara
2016-01-01
Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs.
Substrate uptake and protein stability relationship in mammalian histidine decarboxylase.
Pino-Angeles, A; Morreale, A; Negri, A; Sánchez-Jiménez, F; Moya-García, A A
2010-01-01
There is some evidence linking the substrate entrance in the active site of mammalian histidine decarboxylase and an increased stability against proteolytic degradation. In this work, we study the basis of this relationship by means of protein structure network analysis and molecular dynamics simulations. We find that the substrate binding to the active site influences the conformation of a flexible region sensible to proteolytic degradation and observe how formation of the Michaelis-Menten complex increases stability in the conformation of this region. (c) 2009 Wiley-Liss, Inc.
Impact of new ingredients obtained from brewer's spent yeast on bread characteristics.
Martins, Z E; Pinho, O; Ferreira, I M P L V O
2018-05-01
The impact of bread fortification with β-glucans and with proteins/proteolytic enzymes from brewers' spent yeast on physical characteristics was evaluated. β-Glucans extraction from spent yeast cell wall was optimized and the extract was incorporated on bread to obtain 2.02 g β-glucans/100 g flour, in order to comply with the European Food Safety Authority guidelines. Protein/proteolytic enzymes extract from spent yeast was added to bread at 60 U proteolytic activity/100 g flour. Both β-glucans rich and proteins/proteolytic enzymes extracts favoured browning of bread crust. However, breads with proteins/proteolytic enzymes addition presented lower specific volume, whereas the incorporation of β-glucans in bread lead to uniform pores that was also noticeble in terms of higher specific volume. Overall, the improvement of nutritional/health promoting properties is highlighted with β-glucan rich extract, not only due to bread β-glucan content but also for total dietary fibre content (39% increase). The improvement was less noticeable for proteins/proteolytic enzymes extract. Only a 6% increase in bread protein content was noted with the addition of this extract and higher protein content would most likely accentuate the negative impact on bread specific volume that in turn could impair consumer acceptance. Therefore, only β-glucan rich extract is a promising bread ingredient.
Chikuma, Toshiyuki; Inomata, Yuji; Tsuchida, Ken; Hojo, Hiroshi; Kato, Takeshi
2002-06-28
Th effect of monensin, which inhibits trans-Golgi function, on the levels of tachykinins and their processing enzyme activity was examined in organ-cultured rat dorsal root ganglia (DRG). Using an enzyme immunoassay method, we measured neurokinin A and substance P immunoreactivity in the DRG cultured for 72 h with and without 0.1 microM monensin. Both tachykinins were reduced in the DRG treated with monensin. Treatment with monensin also reduced the activity of carboxypeptidase E, which is one of the proteolytic processing enzymes of neuropeptides. These data suggest that proteolytic processing enzymes may in part modulate the biological activity of neuropeptides within a trans-Golgi apparatus.
Gimenez, Gizeli S; Coutinho-Neto, Antonio; Kayano, Anderson M; Simões-Silva, Rodrigo; Trindade, Frances; de Almeida e Silva, Alexandre; Marcussi, Silvana; da Silva, Saulo L; Fernandes, Carla F C; Zuliani, Juliana P; Calderon, Leonardo A; Soares, Andreimar M; Stábeli, Rodrigo G
2014-01-01
Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospholipase, hemorrhagic, or anti-Leishmania activities attesting to low genotoxicity and discrete antifungal activity for C. albicans. However the following activities were observed: anticoagulation, edema, myotoxicity and proteolysis on casein, azo-collagen, and fibrinogen. The chromatographic and electrophoretic profiles of the proteins revealed a predominance of acidic, neutral, and polar proteins, highlighting the presence of proteins with high molecular masses. Five fractions were collected using cation exchange chromatography, with the P4 fraction standing out as that of the highest purity. All fractions showed proteolytic activity. The crude venom and fractions P1, P2, and P3 showed larvicidal effects on A. aegypti. Fraction P4 showed the presence of a possible metalloprotease (60 kDa) that has high proteolytic activity on azo-collagen and was inhibited by EDTA. The results presented in this study demonstrate the presence of proteins in the venom of P. bistriata with potential for biotechnological applications.
Gimenez, Gizeli S.; Coutinho-Neto, Antonio; Kayano, Anderson M.; Simões-Silva, Rodrigo; Trindade, Frances; de Almeida e Silva, Alexandre; Marcussi, Silvana; da Silva, Saulo L.; Fernandes, Carla F. C.; Zuliani, Juliana P.; Calderon, Leonardo A.; Soares, Andreimar M.; Stábeli, Rodrigo G.
2014-01-01
Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospholipase, hemorrhagic, or anti-Leishmania activities attesting to low genotoxicity and discrete antifungal activity for C. albicans. However the following activities were observed: anticoagulation, edema, myotoxicity and proteolysis on casein, azo-collagen, and fibrinogen. The chromatographic and electrophoretic profiles of the proteins revealed a predominance of acidic, neutral, and polar proteins, highlighting the presence of proteins with high molecular masses. Five fractions were collected using cation exchange chromatography, with the P4 fraction standing out as that of the highest purity. All fractions showed proteolytic activity. The crude venom and fractions P1, P2, and P3 showed larvicidal effects on A. aegypti. Fraction P4 showed the presence of a possible metalloprotease (60 kDa) that has high proteolytic activity on azo-collagen and was inhibited by EDTA. The results presented in this study demonstrate the presence of proteins in the venom of P. bistriata with potential for biotechnological applications. PMID:24895632
Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly
Plakke, Melissa S.; Deutsch, Aaron B.; Meslin, Camille; Clark, Nathan L.; Morehouse, Nathan I.
2015-01-01
ABSTRACT Reproductive traits experience high levels of selection because of their direct ties to fitness, often resulting in rapid adaptive evolution. Much of the work in this area has focused on male reproductive traits. However, a more comprehensive understanding of female reproductive adaptations and their relationship to male characters is crucial to uncover the relative roles of sexual cooperation and conflict in driving co-evolutionary dynamics between the sexes. We focus on the physiology of a complex female reproductive adaptation in butterflies and moths: a stomach-like organ in the female reproductive tract called the bursa copulatrix that digests the male ejaculate (spermatophore). Little is known about how the bursa digests the spermatophore. We characterized bursa proteolytic capacity in relation to female state in the polyandrous butterfly Pieris rapae. We found that the virgin bursa exhibits extremely high levels of proteolytic activity. Furthermore, in virgin females, bursal proteolytic capacity increases with time since eclosion and ambient temperature, but is not sensitive to the pre-mating social environment. Post copulation, bursal proteolytic activity decreases rapidly before rebounding toward the end of a mating cycle, suggesting active female regulation of proteolysis and/or potential quenching of proteolysis by male ejaculate constituents. Using transcriptomic and proteomic approaches, we report identities for nine proteases actively transcribed by bursal tissue and/or expressed in the bursal lumen that may contribute to observed bursal proteolysis. We discuss how these dynamic physiological characteristics may function as female adaptations resulting from sexual conflict over female remating rate in this polyandrous butterfly. PMID:25994634
Doping control container for urine stabilization: a pilot study.
Tsivou, Maria; Giannadaki, Evangelia; Hooghe, Fiona; Roels, Kris; Van Gansbeke, Wim; Garribba, Flaminia; Lyris, Emmanouil; Deventer, Koen; Mazzarino, Monica; Donati, Francesco; Georgakopoulos, Dimitrios G; Van Eenoo, Peter; Georgakopoulos, Costas G; de la Torre, Xavier; Botrè, Francesco
2017-05-01
Urine collection containers used in the doping control collection procedure do not provide a protective environment for urine, against degradation by microorganisms and proteolytic enzymes. An in-house chemical stabilization mixture was developed to tackle urine degradation problems encountered in human sport samples, in cases of microbial contamination or proteolytic activity. The mixture consists of antimicrobial substances and protease inhibitors for the simultaneous inactivation of a wide range of proteolytic enzymes. It has already been tested in lab-scale, as part of World Anti-Doping Agency's (WADA) funded research project, in terms of efficiency against microbial and proteolytic activity. The present work, funded also by WADA, is a follow-up study on the improvement of chemical stabilization mixture composition, application mode and limitation of interferences, using pilot urine collection containers, spray-coated in their internal surface with the chemical stabilization mixture. Urine in plastic stabilized collection containers have been gone through various incubation cycles to test for stabilization efficiency and analytical matrix interferences by three WADA accredited Laboratories (Athens, Ghent, and Rome). The spray-coated chemical stabilization mixture was tested against microorganism elimination and steroid glucuronide degradation, as well as enzymatic breakdown of proteins, such as intact hCG, recombinant erythropoietin and small peptides (GHRPs, ipamorelin), induced by proteolytic enzymes. Potential analytical interferences, observed in the presence of spray-coated chemical stabilization mixture, were recorded using routine screening procedures. The results of the current study support the application of the spray-coated plastic urine container, in the doping control collection procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Peng, Tao; Huang, Bingzhen; Sun, Yao; Lu, Yongbo; Bonewald, Lynda; Chen, Shuo; Butler, William T; Feng, Jerry Q; D'Souza, Rena N; Qin, Chunlin
2009-01-01
Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1. Copyright 2008 S. Karger AG, Basel.
Soybean P34 Probable Thiol Protease Probably Has Proteolytic Activity on Oleosins.
Zhao, Luping; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei; Chen, Yeming
2017-07-19
P34 probable thiol protease (P34) and Gly m Bd 30K (30K) show high relationship with the protease of 24 kDa oleosin of soybean oil bodies. In this study, 9 day germinated soybean was used to separate bioprocessed P34 (P32) from bioprocessed 30K (28K). Interestingly, P32 existed as dimer, whereas 28K existed as monomer; a P32-rich sample had proteolytic activity and high cleavage site specificity (Lys-Thr of 24 kDa oleosin), whereas a 28K-rich sample showed low proteolytic activity; the P32-rich sample contained one thiol protease. After mixing with purified oil bodies, all P32 dimers were dissociated and bound to 24 kDa oleosins to form P32-24 kDa oleosin complexes. By incubation, 24 kDa oleosin was preferentially hydrolyzed, and two hydrolyzed products (HPs; 17 and 7 kDa) were confirmed. After most of 24 kDa oleosin was hydrolyzed, some P32 existed as dimer, and the other as P32-17 kDa HP. It was suggested that P32 was the protease.
Princiotta, M F; Schubert, U; Chen, W; Bennink, J R; Myung, J; Crews, C M; Yewdell, J W
2001-01-16
The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases.
Seredyński, Rafał; Wolna, Dorota; Kędzior, Mateusz; Gutowicz, Jan
2017-01-01
Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frost, S J; Chen, Y M; Whitson, P A
1992-11-23
Atrial natriuretic peptide (ANP) is rapidly cleared and degraded in vivo. Nonguanylate-cyclase receptors (C-ANPR) and a metalloproteinase, neutral endopeptidase (EC 3.4.24.11) (NEP 24.11), are thought to be responsible for its metabolism. We investigated the mechanisms of ANP degradation by an endothelial-derived cell line, CPA47. CPA47 cells degraded 88% of 125I-ANP after 1 h at 37 degrees C as determined by HPLC. Medium preconditioned by these cells degraded 41% of the 125I-ANP, and this activity was inhibited by a divalent cation chelator, EDTA. Furthermore, a cell-surface proteolytic activity degraded 125I-ANP in the presence of EDTA when receptor-mediated endocytosis was inhibited either by low temperature (4 degrees C) or by hyperosmolarity at 37 degrees C. The metalloproteinase, NEP 24.11, is unlikely to be the cell-surface peptidase because 125I-ANP is degraded by CPA47 cells at 4 degrees C in the presence of 5 mM EDTA. These data indicate that CPA47 cells can degrade ANP by a novel divalent cation-independent cell-surface proteolytic activity.
Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C B; Lakshmipriya, Thangavel; Tang, Thean-Hock
2015-01-01
Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.
NASA Technical Reports Server (NTRS)
Frost, S. J.; Chen, Y. M.; Whitson, P. A.
1992-01-01
Atrial natriuretic peptide (ANP) is rapidly cleared and degraded in vivo. Nonguanylate-cyclase receptors (C-ANPR) and a metalloproteinase, neutral endopeptidase (EC 3.4.24.11) (NEP 24.11), are thought to be responsible for its metabolism. We investigated the mechanisms of ANP degradation by an endothelial-derived cell line, CPA47. CPA47 cells degraded 88 percent of 125I-ANP after 1 h at 37 degrees C as determined by HPLC. Medium preconditioned by these cells degraded 41 percent of the 125I-ANP, and this activity was inhibited by a divalent cation chelator, EDTA. Furthermore, a cell-surface proteolytic activity degraded 125I-ANP in the presence of EDTA when receptor-mediated endocytosis was inhibited either by low temperature (4 degrees C) or by hyperosmolarity at 37 degrees C. The metalloproteinase, NEP 24.11, is unlikely to be the cell-surface peptidase because 125I-ANP is degraded by CPA47 cells at 4 degrees C in the presence of 5 mM EDTA. These data indicate that CPA47 cells can degrade ANP by a novel divalent cation-independent cell-surface proteolytic activity.
Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka
2014-08-15
Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. Copyright © 2014 Elsevier GmbH. All rights reserved.
Gastric secretory function in coeliac disease.
Marcello, U; Deganello, A; Consolaro, G; Zoppi, G
1979-01-18
Volume, total titrable acidity, total proteolytic activity and pepsin activity have been determined in 14 coeliac patients and in 8 controls of comparable ages and body weights. Basal secretion (B.O.), total outputs (T. O.) and peak outputs (P.O.) after pentagastrin injection have been determined. Peak outputs (values 60 min/kg) of these parameters are as follows: volume 5.0+/-1.7 ml in coeliacs, 4.3+/-1.2 ml in controls; total titrable acidity 406.1+/-155.0 mEq in patients, 296.1+/-182.4 in conttrols; total proteolytic activity 962.1+/-501.1 micronEq in coeliacs, 569.6+/-272.2 in controls; pepsin activity 789.1+/-521.8 micronEq in patients, 447.6+/-150.4 in controls.
Enhancing Interleukin-6 and Interleukin-11 receptor cleavage.
Lokau, Juliane; Wandel, Marieke; Garbers, Christoph
2017-04-01
Proteolytic cleavage of the membrane-bound Interleukin-6 receptor (IL-6R) by the metalloprotease ADAM17 releases an agonistic soluble form of the IL-6R (sIL-6R), which is responsible for the pro-inflammatory trans-signaling branch of the cytokine's activities. This proteolytic step, which is also called ectodomain shedding, is critically regulated by the cleavage site within the IL-6R stalk, because mutations or small deletions within this region are known to render the IL-6R irresponsive towards proteolysis. In the present study, we employed cleavage site profiling data of ADAM17 to generate an IL-6R with increased cleavage susceptibility. Using site-directed mutagenesis, we showed that the non-prime sites P3 and P2 and the prime site P1' were critical for this increase in proteolysis, whereas other positions within the cleavage site were of minor importance. Insertion of this optimized cleavage site into the stalk of the Interleukin-11 receptor (IL-11R) was not sufficient to enable ADAM17-mediated proteolysis, but transfer of different parts of the IL-6R stalk enabled shedding by ADAM17. These findings shed light on the cleavage site specificities of ADAM17 using a native substrate and reveal further differences in the proteolysis of IL-6R and IL-11R. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi
2014-05-01
The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.
Djaballah, H; Rowe, A J; Harding, S E; Rivett, A J
1993-01-01
The multicatalytic proteinase complex or proteasome is a high-molecular-mass multisubunit proteinase which is found in the nucleus and cytoplasm of eukaryotic cells. Electron microscopy of negatively stained rat liver proteinase preparations suggests that the particle has a hollow cylindrical shape (approximate width 11 nm and height 17 nm using methylamine tungstate as the negative stain) with a pseudo-helical arrangement of subunits rather than the directly stacked arrangement suggested previously. The side-on view has a 2-fold rotational symmetry, while end-on there appears to be six or seven subunits around the ring. This model is very different from that proposed by others for the proteinase from rat liver but resembles the structure of the simpler archaebacterial proteasome. The possibility of conformational changes associated with the addition of effectors of proteolytic activity has been investigated by sedimentation velocity analysis and dynamic light-scattering measurements. The results provide the first direct evidence for conformational changes associated with the observed positive co-operativity in one component of the peptidylglutamylpeptide hydrolase activity as well as with the stimulation of peptidylglutamylpeptide hydrolase activities by MnCl2. In the latter case, there appears to be a correlation between changes in the shape of the molecule and the effect on activity. KCl and low concentrations of SDS may also act by inducing conformational changes within the complex. Sedimentation-velocity measurements also provide evidence for the formation of intermediates during dissociation of the complex by urea, guanidinium chloride or sodium thiocyanate. Dissociation of the complex either by these agents or by treatment at low pH leads to inactivation of its proteolytic components. The results suggest that activation and inhibition of the various proteolytic activities may be mediated by measurable changes in size and shape of the molecules. Images Figure 1 Figure 2 PMID:8318014
NASA Astrophysics Data System (ADS)
Matsui, Mihoko; Kawamata, Akinori; Kosugi, Makiko; Imura, Satoshi; Kurosawa, Norio
2017-09-01
Despite being an extreme environment, the water temperature of freshwater lakes in Antarctica reaches 10 °C in summer, accelerating biological activity. In these environments, proteolytic microbial decomposers may play a large role in protein hydrolysis. We isolated 71 microbial strains showing proteolytic activity at 4 °C from three Antarctic freshwater lakes. They were classified as bacteria (63 isolates) and eukaryotes (8 isolates). The bacterial isolates were classified into the genera Flavobacterium (28 isolates), Pseudomonas (14 isolates), Arthrobacter (10 isolates), Psychrobacter (7 isolates), Cryobacterium (2 isolates), Hymenobacter (1 isolate), and Polaromonas (1 isolate). Five isolates of Flavobacterium and one of Hymenobacter seemed to belong to novel species. All eukaryotic isolates belonged to Glaciozyma antarctica, a psychrophilic yeast species originally isolated from the Weddell Sea near the Joinville Island, Antarctica. A half of representative strains were psychrophilic and did not grow at temperatures above 25 °C. The protease secreted by Pseudomonas prosekii strain ANS4-1 showed the highest activity among all proteases from representative isolates. The results of inhibitor tests indicated that nearly all the isolates secreted metalloproteases. Proteases from four representative isolates retained more than 30% maximal activity at 0 °C. These results expand our knowledge about microbial protein degradation in Antarctic freshwater lakes.
Watson, Douglas S.; Feng, Xizhi; Askew, David S.; Jambunathan, Kalyani; Kodukula, Krishna; Galande, Amit K.
2011-01-01
Background The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician's toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers. Methodology and Principal Findings As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures. Conclusions This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis. PMID:21695046
The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study.
DelBove, Claire E; Deng, Xian-Zhen; Zhang, Qi
2018-06-21
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Bedgood, R M; Stallcup, M R
1992-04-05
The intracellular processing of the murine leukemia virus envelope glycoprotein precursor Pr85 to the mature products gp70 and p15e was analyzed in the mouse T-lymphoma cell line W7MG1. Kinetic (pulse-chase) analysis of synthesis and processing, coupled with endoglycosidase (endo H) and neuraminidase digestions revealed the existence of a novel high molecular weight processing intermediate, gp95, containing endo H-resistant terminally glycosylated oligosaccharide chains. In contrast to previously published conclusions, our data indicate that proteolytic cleavage of the envelope precursor occurs after the acquisition of endo H-resistant chains and terminal glycosylation and thus after the mannosidase II step. In the same W7MG1 cell line, the type and order of murine leukemia virus envelope protein processing events was identical to that for the mouse mammary tumor virus envelope protein. Interestingly, complete mouse mammary tumor virus envelope protein processing requires the addition of glucocorticoid hormone, whereas murine leukemia virus envelope protein processing occurs constitutively in these W7MG1 cells. We propose that all retroviral envelope proteins share a common processing pathway in which proteolytic processing is a late event that follows acquisition of endo H resistance and terminal glycosylation.
Shen, Chengpin; Yu, Yanyan; Li, Hong; Yan, Guoquan; Liu, Mingqi; Shen, Huali; Yang, Pengyuan
2012-06-01
Proteolysis affects every protein at some point in its life cycle. Many biomarkers of disease or cancer are stable proteolytic fragments in biological fluids. There is great interest and a challenge in proteolytically modified protein study to identify physiologic protease-substrate relationships and find potential biomarkers. In this study, two human hepatocellular carcinoma (HCC) cell lines with different metastasis potential, MHCC97L, and HCCLM6, were researched with a high-throughput and sensitive PROTOMAP platform. In total 391 proteins were found to be proteolytically processed and many of them were cleaved into persistent fragments instead of completely degraded. Fragments related to 161 proteins had different expressions in these two cell lines. Through analyzing these significantly changed fragments with bio-informatic tools, several bio-functions such as tumor cell migration and anti-apoptosis were enriched. A proteolysis network was also built up, of which the CAPN2 centered subnetwork, including SPTBN1, ATP5B, and VIM, was more active in highly metastatic HCC cell line. Interestingly, proteolytic modifications of CD44 and FN1 were found to affect their secretion. This work suggests that proteolysis plays an important role in human HCC metastasis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sastradipura, D F; Nakanishi, H; Tsukuba, T; Nishishita, K; Sakai, H; Kato, Y; Gotow, T; Uchiyama, Y; Yamamoto, K
1998-05-01
Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, >95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic compartments.
Comparison of proteolytic activity of Candida sp. strains depending on their origin.
Modrzewska, B; Kurnatowski, P; Khalid, K
2016-06-01
The aim of the research was to evaluate the proteolytic activity of various Candida strains isolated from the oral cavity of persons without clinical symptoms of fungal infection, outpatients with oral cavity disorders and patients hospitalized due to head and neck tumors. A secondary aim was to confirm the presence of secreted aspartyl protease (SAP) genes in the isolated strains and then to compare it depending on the fungal species. Material consisted of 134 fungal strains that were analysed by a modified Staib method and polymerase chain reaction (PCR) with the use of specific primer pairs. The greatest proteolytic activity of fungi was observed at pH 3.5. The proteolysis were the strongest for strains isolated from dental patients and the weakest from persons without changes in the oral cavity. In total, 61.9% of the strains exhibited the presence of at least one of the SAP1-3 genes in all examined groups, SAP1 being the most common; SAP4-6 genes were not observed. All genes were more frequent in the strains isolated from the dental patients than from other groups. SAP1-3 genes were present in Candida albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. humicola and C. lipolytica, but were not noted in other isolated species. The lowest activity of proteolytic enzymes and the least number of aspartyl protease genes are observed among strains isolated from patients without clinical symptoms of mycosis. SAP1-3 genes are most frequently detected in the strains isolated from the oral cavity; their presence varies depending on the species of the fungi. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo
2014-01-01
Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1-MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell’s biological response to FGF-2. PMID:24986796
Ebner, Jennifer; Aşçı Arslan, Ayşe; Fedorova, Maria; Hoffmann, Ralf; Küçükçetin, Ahmet; Pischetsrieder, Monika
2015-03-18
Kefir has a long tradition in human nutrition due to its presupposed health promoting effects. To investigate the potential contribution of bioactive peptides to the physiological effects of kefir, comprehensive analysis of the peptide profile was performed by nano-ESI-LTQ-Orbitrap MS coupled to nano-ultrahigh-performance liquid chromatography. Thus, 257 peptides were identified, mainly released from β-casein, followed by αS1-, κ-, and αS2-casein. Most (236) peptides were uniquely detected in kefir, but not in raw milk indicating that the fermentation step does not only increase the proteolytic activity 1.7- to 2.4-fold compared to unfermented milk, but also alters the composition of the peptide fraction. The influence of the microflora was determined by analyzing kefir produced from traditional kefir grains or commercial starter culture. Kefir from starter culture featured 230 peptide sequences and showed a significantly, 1.4-fold higher proteolytic activity than kefir from kefir grains with 127 peptides. A match of 97 peptides in both varieties indicates the presence of a typical kefir peptide profile that is not influenced by the individual composition of the microflora. Sixteen of the newly identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, immunomodulating, opioid, mineral binding, antioxidant, and antithrombotic effects. The present study describes a comprehensive peptide profile of kefir comprising 257 sequences. The peptide list was used to identify 16 bioactive peptides with ACE-inhibitory, antioxidant, antithrombotic, mineral binding, antimicrobial, immunomodulating and opioid activity in kefir. Furthermore, it was shown that a majority of the kefir peptides were not endogenously present in the raw material milk, but were released from milk caseins by proteases of the microbiota and are therefore specific for the product. Consequently, the proteolytic activity and the composition of the peptide profile can be controlled by the applied microflora (grains or starter culture). On the other hand, a considerable portion of the peptide profile was identified to be typical for kefir in general and independent from production parameters. In summary, the generated kefir peptide profile helped to reveal its origin and to identify bioactive peptides in kefir, which may advance the understanding of health benefits of this food product. The results further indicate that subsets of the kefir peptide list can be used as markers to control food authenticity, for example, to distinguish different types of kefir. Copyright © 2015 Elsevier B.V. All rights reserved.
Enzymatic aspects in ENT cancer-Matrix metalloproteinases
Zamfir Chiru, AA; Popescu, CR; Gheorghe, DC
2014-01-01
Abstract The study of ENT cancer allows the implementation of molecular biology methods in diagnosis, predicting the evolution of the disease and suggesting a certain treatment. MMPs are proteolytic enzymes, zinc dependent endopeptidases, secreted by tissues and proinflammatory cells that play a role in the clearance of cell surface receptors. They are expressed as zymogens (inactive forms). Proteolytic enzymes cleave zymogens generating active forms. They are involved in cell proliferation, adhesion, differentiation, migration, angiogenesis, apoptosis and host defense. PMID:25408759
Conrad, Catharina; Miller, Miles A; Bartsch, Jörg W; Schlomann, Uwe; Lauffenburger, Douglas A
2017-01-01
Proteolytic Activity Matrix Analysis (PrAMA) is a method for simultaneously determining the activities of specific Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) in complex biological samples. In mixtures of unknown proteases, PrAMA infers selective metalloproteinase activities by using a panel of moderately specific FRET-based polypeptide protease substrates in parallel, typically monitored by a plate-reader in a 96-well format. Fluorescence measurements are then quantitatively compared to a standard table of catalytic efficiencies measured from purified mixtures of individual metalloproteinases and FRET substrates. Computational inference of specific activities is performed with an easily used Matlab program, which is provided herein. Thus, we describe PrAMA as a combined experimental and mathematical approach to determine real-time metalloproteinase activities, which has previously been applied to live-cell cultures, cellular lysates, cell culture supernatants, and body fluids from patients.
Activities of Vacuolar Cysteine Proteases in Plant Senescence.
Martínez, Dana E; Costa, Lorenza; Guiamét, Juan José
2018-01-01
Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.
Ectoenzymatic ratios in relation to particulate organic matter distribution (Ross Sea, Antarctica).
Misic, C; Povero, P; Fabiano, M
2002-10-01
The results of a study on ectoenzymatic activity (the enzyme activity bound to particles larger than 0.2 micro m) and its relation to organic particle concentration are reported here. The sampling was carried out during the 1994 Antarctic spring, at a fixed station (Station 11) in the polynya of the Ross Sea, an area characterized by quick changes in sea ice cover. The sampling was repeated 4 times over a 20-day time period. The particulate organic matter distribution followed the physical structure of the water column, which depends on ice dynamics and is mainly determined by salinity. In the mixed-water surface layer (0-50 m) the concentrations were higher (on average 65.6 micro gC/L) than in the deeper water layer (50 m-bottom) (on average 19.1 micro gC/L). This distribution and quality, expressed by the protein:carbohydrate ratio, linked the particulate organic matter to the phytoplanktonic bloom which was in progress in the area. We determined the kinetic parameters of the glycolytic and proteolytic ectoenzymes and also the total activity for the proteolytic enzyme, in order to evaluate the contribution of the particle-bound activity. We observed higher values in the surface layer than in the deeper layer. b-Glucosidase activity ranged between 0.03 and 0.92 nmol L(-1) h(-1); b-N-acetylglucosaminidase activity was in the range of 0.04-0.58 nmol (L-1) (h-1). The total proteolytic activity (leucine aminopeptidase) ranged between 0.85 and 33.71 nmol L(-1) (h-1). The ectoproteolytic activity was about 35-60% of the total. The Km values were slightly higher for the proteolytic activity (on average 0.43 micro M for ectoproteolytic activity and 0.58 micro M for total proteolytic activity) than for the b-glucosidase (on average 0.36 micro M) and b-N-acetylglucosaminidase (on average 0.17 micro M), showing no remarkable variations in the water column. The ectoenzymatic ratios and their relationship with particulate organic substrates confirm the close link between organic substrate availability and degradation system response. The significant and positive correlations are not specific and suggest a prompt and efficient systemic response to the input of trophic resources. Nevertheless, changes in ectoenzyme activity and synthesis may act as adaptive responses to changing features of the ecosystem. In particular, variations in the proteolysis:glycolysis ratio depend on the functional features of the ecological system. In our study area this ratio is higher (about 10 or more) during production (particularly autotrophic) and lower (about 5 or less) during degradation/consumption events. The analysis of previous data, collected over a larger area characterized by different environmental conditions due to the changes of the pack ice cover, during the same cruise, confirms the existence of a significant relationship. Furthermore, the analysis of enzyme-uptake systems, expressed as Vmax:Km ratio, suggests that glycolytic ectoenzymes, although poorly expressed, may encourage microconsumers to grow rapidly on a wide range of organic substrates, including the refractory ones such as cellulose and chitin. However, low ectoenzyme potential exploitation rates of available organic substrates (on average about 5% for glycolytic and 12% for proteolytic ectoenzymes) would suggest that, during spring, zooplankton grazing or vertical and lateral transport are likely to play an important role in the removal of organic materials from the system.
Winnick, Theodore; Davis, Alva R.; Greenberg, David M.
1940-01-01
1. A study has been made of the properties of a hitherto unreported proteolytic enzyme from the latex of the milkweed, Asclepias speciosa. The new protease has been named asclepain by the authors. 2. The results of chemical, diffusion, and denaturation tests indicate that asclepain is a protein. 3. Like papain, asclepain dots milk and digests most proteins, particularly if they are dissolved in concentrated urea solution. Unlike papain, asclepain did not clot blood. 4. The activation and inhibition phenomena of asclepain resemble those of papain, and seem best explained on the assumption that free sulfhydryl in the enzyme is necessary for proteolytic activity. The sulfhydryl of asclepain appears more labile than that of papain. 5. The measurement of pH-activity curves of asclepain on casein, ovalbumin, hemoglobin, edestin, and ovovitellin showed no definite digestion maxima for most of the undenatured proteins, while in urea solution there were well defined maxima near pH 7.0. Native hemoglobin and ovovitellin were especially undigestible, while native casein was rapidly attacked. 6. Temperature-activity curves were determined for asclepain on hemoglobin, casein, and milk solutions. The optimum temperature was shown to increase with decreasing time of digestion. PMID:19873154
Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Tang, Thean-Hock
2015-01-01
Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues. PMID:26180812
Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system.
Fagan, J M; Waxman, L; Goldberg, A L
1987-01-01
Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors. Images Fig. 2. PMID:2820375
Krstic, Dimitrije; Rodriguez, Myriam; Knuesel, Irene
2012-01-01
The extracellular signaling protein Reelin, indispensable for proper neuronal migration and cortical layering during development, is also expressed in the adult brain where it modulates synaptic functions. It has been shown that proteolytic processing of Reelin decreases its signaling activity and promotes Reelin aggregation in vitro, and that proteolytic processing is affected in various neurological disorders, including Alzheimer's disease (AD). However, neither the pathophysiological significance of dysregulated Reelin cleavage, nor the involved proteases and their modulators are known. Here we identified the serine protease tissue plasminogen activator (tPA) and two matrix metalloproteinases, ADAMTS-4 and ADAMTS-5, as Reelin cleaving enzymes. Moreover, we assessed the influence of several endogenous protease inhibitors, including tissue inhibitors of metalloproteinases (TIMPs), α-2-Macroglobulin, and multiple serpins, as well as matrix metalloproteinase 9 (MMP-9) on Reelin cleavage, and described their complex interplay in the regulation of this process. Finally, we could demonstrate that in the murine hippocampus, the expression levels and localization of Reelin proteases largely overlap with that of Reelin. While this pattern remained stable during normal aging, changes in their protein levels coincided with accelerated Reelin aggregation in a mouse model of AD. PMID:23082219
Princiotta, Michael F.; Schubert, Ulrich; Chen, Weisan; Bennink, Jack R.; Myung, Jayhyuk; Crews, Craig M.; Yewdell, Jonathan W.
2001-01-01
The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases. PMID:11149939
Rivers, David B; Acca, Gillian; Fink, Marc; Brogan, Rebecca; Schoeffield, Andrew
2014-08-01
The spatial distribution of proteolytic enzymes in the adult foregut of Protophormia terraenovae was studied in the context of protein digestion and regurgitation. Based on substrate specificity, pH optima, and use of specific protease inhibitors, all adults tested displayed enzyme activity in the foregut consistent with pepsin, trypsin and chymotrypsin. Chymotrypsin-like and trypsin-like enzyme activity were detected in all gut fluids and tissues tested, with chymotrypsin displaying the highest activity in saliva and salivary gland tissue, whereas maximal trypsin activity was evident in the crop. Pepsin-like activity was only evident in crop fluids and tissues. The activity of all three enzymes was low or undetectable (pepsin) in the fluids and tissue homogenates derived from the esophagus and cardia of any of the adults assayed. Fed adult females displayed higher enzyme activities than fed males, and the activity of all three enzymes were much more prevalent in fed adults than starved. The pH optimum of the trypsin-like enzyme was between pH 7.0 and 8.0; chymotrypsin was near pH 8.0; and maximal pepsin-like activity occurred between pH 1.0 and 2.0. Regurgitate from fed adult females displayed enzyme activity consistent with the proteolytic enzymes detected in crop gut fluids. Enzymes in regurgitate were not derived from food sources based on assays of bovine liver samples. These latter observations suggest that adult flies release fluids from foregut when encountering dry foods, potentially as a means to initiate extra-oral digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Abnormalities of peptide metabolism in Alzheimer disease.
Panchal, Maï; Rholam, Mohamed; Brakch, Noureddine
2004-10-01
The steady-state level of peptide hormones represents a balance between their biosynthesis and proteolytic processing by convertases and their catabolism by proteolytic enzymes. Low levels of neuropeptide Y, somatostatin and corticotropin-releasing factor, described in Alzheimer disease (AD), were related to a defect in proteolytic processing of their protein precursors. In contrast the abundance of beta-amyloid peptides, the major protein constituents of senile plaques is likely related to inefficient catabolism. Therefore, attention is mainly focused on convertases that generate active peptides and counter-regulatory proteases that are involved in their catabolism. Some well-described proteases such as NEP are thought to be involved in beta-amyloid catabolism. The search of other possible candidates represents a primary effort in the field. A variety of vascular risk factors such as diabetes, hypertension and arteriosclerosis suggest that the functional vascular defect contributes to AD pathology. It has also been described that beta-amyloid peptides potentiate endothelin-1 induced vasoconstriction. In this review, we will critically evaluate evidence relating proteases implicated in amyloid protein precursor proteolytic processing and beta-amyloid catabolism.
Direct imaging of APP proteolysis in living cells.
Parenti, Niccoló; Del Grosso, Ambra; Antoni, Claudia; Cecchini, Marco; Corradetti, Renato; Pavone, Francesco S; Calamai, Martino
2017-01-01
Alzheimer's disease is a multifactorial disorder caused by the interaction of genetic, epigenetic and environmental factors. The formation of cytotoxic oligomers consisting of A β peptide is widely accepted as being one of the main key events triggering the development of Alzheimer's disease. A β peptide production results from the specific proteolytic processing of the amyloid precursor protein (APP). Deciphering the factors governing the activity of the secretases responsible for the cleavage of APP is still a critical issue. Kits available commercially measure the enzymatic activity of the secretases from cells lysates, in vitro . By contrast, we have developed a prototypal rapid bioassay that provides visible information on the proteolytic processing of APP directly in living cells. APP was fused to a monomeric variant of the green fluorescent protein and a monomeric variant of the red fluorescent protein at the C-terminal and N-terminal (mChAPPmGFP), respectively. Changes in the proteolytic processing rate in transfected human neuroblastoma and rat neuronal cells were imaged with confocal microscopy as changes in the red/green fluorescence intensity ratio. The significant decrease in the mean red/green ratio observed in cells over-expressing the β -secretase BACE1, or the α -secretase ADAM10, fused to a monomeric blue fluorescent protein confirms that the proteolytic site is still accessible. Specific siRNA was used to evaluate the contribution of endogenous BACE1. Interestingly, we found that the degree of proteolytic processing of APP is not completely homogeneous within the same single cell, and that there is a high degree of variability between cells of the same type. We were also able to follow with a fluorescence spectrometer the changes in the red emission intensity of the extracellular medium when BACE1 was overexpressed. This represents a complementary approach to fluorescence microscopy for rapidly detecting changes in the proteolytic processing of APP in real time. In order to allow the discrimination between the α - and the β -secretase activity, we have created a variant of mChAPPmGFP with a mutation that inhibits the α -secretase cleavage without perturbing the β -secretase processing. Moreover, we obtained a quantitatively robust estimate of the changes in the red/green ratio for the above conditions by using a flow cytometer able to simultaneously excite and measure the red and green fluorescence. Our novel approach lay the foundation for a bioassay suitable to study the effect of drugs or particular conditions, to investigate in an unbiased way the the proteolytic processing of APP in single living cells in order, and to elucidate the causes of the variability and the factors driving the processing of APP.
Franco, Octávio L; dos Santos, Roseane C; Batista, João A N; Mendes, Ana Cristina M; de Araújo, Marcus Aurélio M; Monnerat, Rose G; Grossi-de-Sá, Maria Fátima; de Freitas, Sonia M
2003-06-01
The cotton boll weevil Anthonomus grandis (Boheman) is one of the major pests of cotton (Gossypium hirsutum L.) in tropical and sub-tropical areas of the New World. This feeds on cotton floral fruits and buds causing severe crop losses. Digestion in the boll weevil is facilitated by high levels of serine proteinases, which are responsible for the almost all proteolytic activity. Aiming to reduce the proteolytic activity, the inhibitory effects of black-eyed pea trypsin/chymotrypsin inhibitor (BTCI), towards trypsin and chymotrypsin from bovine pancreas and from midguts of A. grandis larvae and adult insects were analyzed. BTCI, purified from Vigna unguiculata (L.) seeds, was highly active against different trypsin-like proteinases studied and moderately active against the digestive chymotrypsin of adult insects. Nevertheless, no inhibitory activity was observed against chymotrypsin from A. grandis larval guts. To test the BTCI efficiency in vivo, neonate larvae were reared on artificial diet containing BTCI at 10, 50 and 100 microM. A reduction of larval weight of up to approximately 54% at the highest BTCI concentration was observed. At this concentration, the insect mortality was 65%. This work constitutes the first observation of a Bowman-Birk type inhibitor active in vitro and in vivo toward the cotton boll weevil A. grandis. The results of bioassays strongly suggest that BTCI may have potential as a transgene protein for use in engineered crop plants modified for heightened resistance to the cotton boll weevil.
Johnson, D E; Brookhart, G L; Kramer, K J; Barnett, B D; McGaughey, W H
1990-03-01
Midgut homogenates from susceptible and resistant strains of the Indian meal moth, Plodia interpunctella, were compared for their ability to activate the entomocidal parasporal crystal protein from Bacillus thuringiensis. The properties of midgut proteinases from both types of larvae were also examined. Electrophoretic patterns of crystal protein from B. thuringiensis subspecies kurstaki (HD-1) and aizawai (HD-133 and HD-144) were virtually unchanged following digestion by either type of midgut homogenate. Changes in pH (9.5 to 11.5) or midgut homogenate concentration during digestion failed to substantially alter protein electrophoretic patterns of B. thuringiensis HD-1 crystal toxin. In vitro toxicity of crystal protein activated by either type of midgut preparation was equal toward cultured insect cells from either Manduca sexta or Choristoneura fumiferana. Electrophoresis of midgut extracts in polyacrylamide gels containing gelatin as substrate also yielded matching mobility patterns of proteinases from both types of midguts. Quantitation of midgut proteolytic activity using tritiated casein as a substrate revealed variation between midgut preparations, but no statistically significant differences between proteolytic activities from susceptible and resistant Indian meal moth larvae. Inhibition studies indicated that a trypsin-like proteinase with maximal activity at pH 10 is a major constituent of Indian meal moth midguts. The results demonstrated that midguts from susceptible and resistant strains of P. interpunctella are similar both in their ability to activate B. thuringiensis protoxin and in their proteolytic activity.
NASA Astrophysics Data System (ADS)
Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel
2016-02-01
Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.
Caffrey, C R; Ryan, M F
1994-04-01
An excretory-secretory (ES) preparation derived from adult Strongylus vulgaris in vitro was assessed for proteolytic activity using azocasein and synthetic, fluorogenic, peptide substrates. Fractionation was by molecular sieve fast protein liquid chromatography (molecular sieve FPLC) and resolution by gelatin-substrate sodium dodecyl sulphate-polyacrylamide gel electrophoresis (gelatin-substrate SDS-PAGE). The cysteine proteinase activator, dithiothreitol (DTT), enhanced azocaseinolysis and hydrolysis of carbobenzoxy-phenylalanyl-arginine-7-amido-4-methylcoumarin (Z-Phe-Arg-NMec) by the ES preparation and was a requirement for the detection of carbobenzoxy-arginyl-arginine-7-amido-4-methylcoumarin (Z-Arg-Arg-NMec) hydrolysis. Assays of FPLC-eluted fractions, with DTT, detected a broad peak of azocaseinolytic activity (22-24 kDa) and two peaks (24 and 18 kDa) of hydrolysis using the synthetic substrates. Hydrolysis by these peaks of Z-Phe-Arg-NMec was 50-fold greater than that of Z-Arg-Arg-NMec suggesting that their specificities are more like papain or cathepsin L rather than cathepsin B. In gelatin-substrate SDS-PAGE, DTT was required to detect proteolysis by the ES preparation which was optimal at pH 6.0 and resolved into eight bands (87-29 kDa). Cysteine proteinase inhibitors were the most effective in all assays. Collectively, these data indicate that cysteine-class proteolytic activity predominates in the ES preparation of adult S. vulgaris.
Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation
Renner, Florian; Lam, Stephen; Freuler, Felix; Gerrits, Bertran; Voshol, Johannes; Calzascia, Thomas; Régnier, Catherine H.; Renatus, Martin; Nikolay, Rainer; Israël, Laura; Bornancin, Frédéric
2017-01-01
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A. PMID:28052131
Hoffmann, E; Streichert, K; Nischan, N; Seitz, C; Brunner, T; Schwagerus, S; Hackenberger, C P R; Rubini, M
2016-05-24
The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.
Dougherty, W G; Semler, B L
1993-01-01
Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216
Epitope enhancement for immunohistochemical demonstration of tartrate-resistant acid phosphatase.
Janckila, A J; Lear, S C; Martin, A W; Yam, L T
1996-03-01
We have developed a monoclonal antibody (9C5) for immunohistochemical localization of tartrate-resistant acid phosphatase (TRAcP). This antibody reacts with a denatured epitope of TRAcP and requires enhancement methods to promote antigenicity in paraffin-embedded tissues. We used this antibody to systematically examine proteolytic digestion and heat denaturation conditions for epitope enhancement in both paraffin sections and fixed smears. The goal was to increase the sensitivity of the immunohistochemical stain for TRAcP. Optimal conditions for proteolytic digestion were established. Denaturation in a conventional boiling water bath was compared to microwave irradiation in several commonly used solutions. Immunohistochemistry was compared directly to TRAcP cytochemistry in fixed smears from hairy cell leukemia specimens to gauge the level of sensitivity of our improved method. Attempts were made to "retrieve" the 9C5 epitope from overfixed tissues and aged smears. Maximal immunoreactivity of TRAcP was achieved by microwave irradiation in a citrate or Tris buffer of pH 6.0-8.0 without the need for a subsequent protease digestion step. With this method of epitope enhancement, immunohistochemistry with antibody 9C5 was as sensitive as direct cytochemical staining of TRAcP activity. However, once a tissue specimen had been overfixed or a smear stored for a year or more, the 9C5 epitope was no longer retrievable. The key element in epitope enhancement for 9C5 immunohistochemistry is heat denaturation of the target epitope. Immunohistochemistry of TRAcP in paraffin sections would be a great asset to the study of specialized forms of the monocyte/macrophage lineage and to the process of macrophage activation. It would also provide another means for more precise evaluation of residual disease in bone marrow of patients treated for hairy cell leukemia.
Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael PH; Mishto, Michele
2015-01-01
Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. DOI: http://dx.doi.org/10.7554/eLife.07545.001 PMID:26393687
Qian, Chen; Hettich, Robert L
2017-07-07
The microbial composition and their activities in soil environments play a critical role in organic matter transformation and nutrient cycling. Liquid chromatography coupled to high-performance mass spectrometry provides a powerful approach to characterize soil microbiomes; however, the limited microbial biomass and the presence of abundant interferences in soil samples present major challenges to proteome extraction and subsequent MS measurement. To this end, we have designed an experimental method to improve microbial proteome measurement by removing the soil-borne humic substances coextraction from soils. Our approach employs an in situ detergent-based microbial lysis/TCA precipitation coupled to an additional cleanup step involving acidified precipitation and filtering at the peptide level to remove most of the humic acid interferences prior to proteolytic peptide measurement. The novelty of this approach is an integration to exploit two different characteristics of humic acids: (1) Humic acids are insoluble in acidic solution but should not be removed at the protein level, as undesirable protein removal may also occur. Rather it is better to leave the humics acids in the samples until the peptide level, at which point the significant differential solubility of humic acids versus peptides at low pH can be exploited very efficiently. (2) Most of the humic acids have larger molecule weights than the peptides. Therefore, filtering a pH 2 to 3 peptide solution with a 10 kDa filter will remove most of the humic acids. This method is easily interfaced with normal proteolytic processing approaches and provides a reliable and straightforward protein extraction method that efficiently removes soil-borne humic substances without inducing proteome sample loss or biasing protein identification in mass spectrometry. In general, this humic acid removal step is universal and can be adopted by any workflow to effectively remove humic acids to avoid them negatively competing with peptides for binding with reversed-phase resin or ionization in the electrospray.
Proteases and the gut barrier.
Biancheri, Paolo; Di Sabatino, Antonio; Corazza, Gino R; MacDonald, Thomas T
2013-02-01
Serine proteases, cysteine proteases, aspartic proteases and matrix metalloproteinases play an essential role in extracellular matrix remodeling and turnover through their proteolytic action on collagens, proteoglycans, fibronectin, elastin and laminin. Proteases can also act on chemokines, receptors and anti-microbial peptides, often potentiating their activity. The intestinal mucosa is the largest interface between the external environment and the tissues of the human body and is constantly exposed to proteolytic enzymes from many sources, including bacteria in the intestinal lumen, fibroblasts and immune cells in the lamina propria and enterocytes. Controlled proteolytic activity is crucial for the maintenance of gut immune homeostasis, for normal tissue turnover and for the integrity of the gut barrier. However, in intestinal immune-mediated disorders, pro-inflammatory cytokines induce the up-regulation of proteases, which become the end-stage effectors of mucosal damage by destroying the epithelium and basement membrane integrity and degrading the extracellular matrix of the lamina propria to produce ulcers. Protease-mediated barrier disruption in turn results in increased amounts of antigen crossing into the lamina propria, driving further immune responses and sustaining the inflammatory process.
Esaki, Masatoshi; Johjima-Murata, Ai; Islam, Md Tanvir; Ogura, Teru
2018-01-01
The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding. AAA superfamily proteins (ATPases associated with diverse cellular activities) are mostly located at these openings and regulate protein degradation appropriately. The 26S proteasome, comprising 20S peptidase and 19S regulatory particles, is the major ATP-powered protein degradation machinery in eukaryotes. The 19S particles are composed of six AAA proteins and 13 regulatory proteins, and bind to both ends of a barrel-shaped proteolytic chamber formed by the 20S peptidase. Several recent studies have reported that another AAA protein, Cdc48, can replace the 19S particles to form an alternative ATP-powered proteasomal complex, i.e., the Cdc48-20S proteasome. This review focuses on our current knowledge of this alternative proteasome and its possible linkage to amyotrophic lateral sclerosis.
Fernández Gimenez, A V; García-Carreño, F L; Navarrete del Toro, M A; Fenucci, J L
2001-10-01
The present study describes the activity and some characteristics of proteinases in the hepatopancreas of red shrimp Pleoticus muelleri during the different stages of the molting cycle. Proteolytic activity was highest between pH 7.5 and 8. The hepatopancreatic protein content in the premolt stage was higher than in the other stages of the molting cycle (P<0.05). No significant differences were found in total proteolytic activity in the hepatopancreas when comparing molting stages. The proteolytic activity of the P. muelleri hepatopancreas enzyme preparations is the main responsibility of serine proteinases. TLCK, a trypsin inhibitor, reduced azocasein hydrolysis between 26% (intermolt) and 37% (premolt). TPCK, a chymotrypsin inhibitor, did not decrease hydrolytic activity, except for in postmolt. Low trypsin and chymotrypsin activities were found during intermolt, and increased in postmolt. The electrophoretogram of the enzyme extracts shows 12 bands of activity during intermolt (from 16.6 to 53.1 kDa). Some fractions were not detected in the postmolt and premolt stages. Three low molecular weight trypsin forms (17.4, 19.1 and 20 kDa) were found in all molting stages. One band of chymotrypsin (21.9 kDa) was observed in all molting stages. High molecular mass active bands (66-205 kDa) could not be characterized with inhibitors. Comparison of the protease-specific activity of the hepatopancreas of some species indicated a relationship between digestive enzyme activity and feeding habits of the shrimp. Omnivorous shrimp, such as Penaeus vannamei (syn: Litopenaeus vannamei) and Penaeus monodon, showed higher protease activity than the carnivorous shrimp, Penaeus californiensis (syn: Farfantepenaeus californiensis) and P. muelleri. In fact, the enzymatic activity in the hepatopancreas of P. muelleri showed variations in relation to feeding habit and molting cycle.
Kumar, Kalainesan Rajesh; Vennila, Rathinam; Kanchana, Shankar; Arumugam, Muthuvel; Balasubramaniam, Thangavel
2011-05-01
Stingray envenomation is one of the major problems in the marine and freshwater ecosystem. Accidents in human cause immediate, local and intense pain, erythema, edema, hemorrhage, tissue necrosis and secondary bacterial infection are also common. To determine the effect of two marine stingray species Dasyatis sephen and Aetobatis narinari venom extract on coagulation, fibrin(ogen)olytic, proteolytic activities. Plasma coagulation, Thrombin catalyzed fibrinocoagulation, Fibrin plate assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), substrate SDS-PAGE and thrombin like activity by using chromogenic substrate were used to determine the effect of venom on plasma coagulation, its fibrin(ogen)olytic and proteolytic activity. The results show the presence of fibrin(ogen)olytic, anticoagulant and gelatinolytic activity in both stingray venom extracts. D. sephen venom delays coagulation of citrated plasma more significantly than A. narinari upon using increasing concentration of the venom. The same results were obtained in the fibrinocoagulation assays. SDS-PAGE analysis of fibrinogen and fibrin after incubation with D. sephen and A. narinari venom show fibrin(ogen)olytic activity. Through SDS-PAGE analysis it is confirmed that the delaying in coagulation process by stingray venom is due to its fibrin(ogen)olytic activity and fibrinolytic activity also confirmed through fibrin plate assay. Zymogram analysis shows the presence of array of gelatinolytic and fibrinogenolytic enzymes above 43-276 kDa in the D. sephen and A. narinari venom respectively. Protease inhibitor studies show the serine and metallo proteases are responsible for these activities. From the results, fibrinogenolytic, proteolytic activity of the stingray venom is confirmed, but it has no thrombin like activity and these activities may aid in hemorrhages, tissue necrosis and secondary bacterial infections at the site of envenomation.
Hale, Laura P.; Chichlowski, Maciej; Trinh, Chau T.; Greer, Paula K.
2010-01-01
Background Bromelain, a mixture of proteolytic enzymes typically derived from pineapple stem, decreases production of pro-inflammatory cytokines and leukocyte homing to sites of inflammation. We previously showed that short-term oral treatment with bromelain purified from pineapple stem decreased the severity of colonic inflammation in C57BL/6 Il10−/− mice with chronic colitis. Since fresh pineapple fruit contains similar bromelain enzymes but at different proportions, this study aimed to determine whether long-term dietary supplementation with pineapple (supplied as juice) could decrease colon inflammation and neoplasia in Il10−/− mice with chronic colitis as compared with bromelain derived from stem. Results Experimental mice readily consumed fresh pineapple juice at a level that generated mean stool proteolytic activities equivalent to 16 mg bromelain purified from stem, while control mice received boiled juice with inactive enzymes. Survival was increased in the group supplemented with fresh rather than boiled juice (p = 0.01). Mice that received fresh juice also had decreased histologic colon inflammation scores and a lower incidence of inflammation-associated colonic neoplasia (35% vs. 66%; p< 0.02), with fewer neoplastic lesions/colon (p = 0.05). Flow cytometric analysis of murine splenocytes exposed to fresh pineapple juice in vitro demonstrated proteolytic removal of cell surface molecules that can affect leukocyte trafficking and activation. Conclusions These results demonstrate that long-term dietary supplementation with fresh or unpasteurized frozen pineapple juice with proteolytically active bromelain enzymes is safe and decreases inflammation severity and the incidence and multiplicity of inflammation-associated colonic neoplasia in this commonly used murine model of inflammatory bowel disease. PMID:20848493
Using every trick in the book: the Pla surface protease of Yersinia pestis.
Suomalainen, Marjo; Haiko, Johanna; Ramu, Päivi; Lobo, Leandro; Kukkonen, Maini; Westerlund-Wikström, Benita; Virkola, Ritva; Lähteenmäki, Kaarina; Korhonen, Timo K
2007-01-01
The Pla surface protease of Yersinia pestis, encoded by the Y. pestis-specific plasmid pPCP1, is a versatile virulence factor. In vivo studies have shown that Pla is essential in the establishment of bubonic plague, and in vitro studies have demonstrated various putative virulence functions for the Pla molecule. Pla is a surface protease of the omptin family, and its proteolytic targets include the abundant, circulating human zymogen plasminogen, which is activated by Pla to the serine protease plasmin. Plasmin is important in cell migration, and Pla also proteolytically inactivates the main circulating inhibitor of plasmin, alpha2-antiplasmin. Pla also is an adhesin with affinity for laminin, a major glycoprotein of mammalian basement membranes, which is degraded by plasmin but not by Pla. Together, these functions create uncontrolled plasmin proteolysis targeted at tissue barriers. Other proteolytic targets for Pla include complement proteins. Pla also mediates bacterial invasion into human endothelial cell lines; the adhesive and invasive charateristics of Pla can be genetically dissected from its proteolytic activity. Pla is a 10-stranded antiparallel beta-barrel with five surface-exposed short loops, where the catalytic residues are oriented inwards at the top of the beta-barrel. The sequence of Pla contains a three-dimensional motif for protein binding to lipid A of the lipopolysaccharide. Indeed, the proteolytic activity of Pla requires rough lipopolysaccharide but is sterically inhibited by the O antigen in smooth LPS, which may be the selective advantage of the loss of O antigen in Y. pestis. Members of the omptin family are highly similar in structure but differ in functions and virulence association. The catalytic residues of omptins are conserved, but the variable substrate specificities in proteolysis by Pla and other omptins are dictated by the amino acid sequences near or at the surface loops, and hence reflect differences in substrate binding. The closest orthologs of Pla are PgtE of Salmonella and Epo of Erwinia, which functionally differ from Pla. Pla gives a model of how a horizontally transferred protein fold can diverge into a powerful virulence factor through adaptive mutations.
Nasseau, M; Boublik, Y; Meier, W; Winterhalter, M; Fournier, D
2001-12-05
How can enzymes be protected against denaturation and proteolysis while keeping them in a fully functional state? One solution is to encapsulate the enzymes into liposomes, which enhances their stability against denaturation and proteases. However, the permeability barrier of the lipid membrane drastically reduces the activity of enzyme entrapped in the liposome by reducing the internal concentration of the substrate. To overcome this problem, we permeabilized the wall of the liposome by reconstitution of a porin from Escherichia coli. In this way, we recovered the full functionality of the enzyme while retaining the protection against denaturation and proteolytic enzymes. Copyright 2001 John Wiley & Sons, Inc.
Effect of new lines of winter wheat on microbiological activity in Luvisol
NASA Astrophysics Data System (ADS)
Jezierska-Tys, S.; Rachoń, L.; Rutkowska, A.; Szumiło, G.
2012-02-01
The study presented in this paper was conducted under the conditions of a field experiment. Microbiological analyses were made at various stages of winter wheat plants development ie heading, milk ripeness and full ripeness. The objective of the study was to acquire knowledge on the effect of cultivation of various lines of winter wheat on the numbers of bacteria and fungi with proteolytic capabilities, on protease and urease activity, and on the rate of the processes of ammonification and nitrification. The results of conducted study demonstrated that the number of proteolytic bacteria and fungi, as well as the activity of protease and urease, and the intensity of ammonification and nitrification processes in soil depended on both the development stage and cultivated line of winter wheat.
ERIC Educational Resources Information Center
Reigh, Darryel L.
1976-01-01
Describes a set of laboratory experiments that illustrate proteolytic enzyme action and specific properties of bromolain, including some insights into the active site mechanism of peptide hydrolysis. (MLH)
Dunning, F. Mark; Ruge, Daniel R.; Piazza, Timothy M.; Stanker, Larry H.; Zeytin, Füsûn N.
2012-01-01
Rapid, high-throughput assays that detect and quantify botulinum neurotoxin (BoNT) activity in diverse matrices are required for environmental, clinical, pharmaceutical, and food testing. The current standard, the mouse bioassay, is sensitive but is low in throughput and precision. In this study, we present three biochemical assays for the detection and quantification of BoNT serotype A, B, and F proteolytic activities in complex matrices that offer picomolar to femtomolar sensitivity with small assay volumes and total assay times of less than 24 h. These assays consist of magnetic beads conjugated with BoNT serotype-specific antibodies that are used to purify BoNT from complex matrices before the quantification of bound BoNT proteolytic activity using the previously described BoTest reporter substrates. The matrices tested include human serum, whole milk, carrot juice, and baby food, as well as buffers containing common pharmaceutical excipients. The limits of detection were below 1 pM for BoNT/A and BoNT/F and below 10 pM for BoNT/B in most tested matrices using 200-μl samples and as low as 10 fM for BoNT/A with an increased sample volume. Together, these data describe rapid, robust, and high-throughput assays for BoNT detection that are compatible with a wide range of matrices. PMID:22923410
Pereira, Olga; Sampaio-Marques, Belém; Paiva, Artur; Correia-Neves, Margarida; Castro, Isabel; Ludovico, Paula
2015-01-01
The therapeutic strategies against acute myeloid leukemia (AML) have hardly been modified over four decades. Although resulting in a favorable outcome in young patients, older individuals, the most affected population, do not respond adequately to therapy. Intriguingly, the mechanisms responsible for AML cells chemoresistance/susceptibility are still elusive. Mounting evidence has shed light on the relevance of proteolytic systems (autophagy and ubiquitin-proteasome system, UPS), as well as the AMPK pathway, in AML biology and treatment, but their exact role is still controversial. Herein, two AML cell lines (HL-60 and KG-1) were exposed to conventional chemotherapeutic agents (cytarabine and/or doxorubicin) to assess the relevance of autophagy and UPS on AML cells’ response to antileukemia drugs. Our results clearly showed that the antileukemia agents target both proteolytic systems and the AMPK pathway. Doxorubicin enhanced UPS activity while drugs’ combination blocked autophagy specifically on HL-60 cells. In contrast, KG-1 cells responded in a more subtle manner to the drugs tested consistent with the higher UPS activity of these cells. In addition, the data demonstrates that autophagy may play a protective role depending on AML subtype. Specific modulators of autophagy and UPS are, therefore, promising targets for combining with standard therapeutic interventions in some AML subtypes. PMID:25537507
Protein degradation following treatment with hydrogen peroxide.
Fligiel, S. E.; Lee, E. C.; McCoy, J. P.; Johnson, K. J.; Varani, J.
1984-01-01
Pretreatment of hemoglobin with 50-5000 nmol hydrogen peroxide (H2O2) increased its susceptibility to proteolysis by a number of purified enzymes, including trypsin, chymotrypsin, elastase, and plasmin, and by the neutral protease of rat peritoneal leukocytes. Pretreatment of the protein substrate with catalase-inactivated H2O2 had no effect. Separation of the proteolytic fragments by G-75 Sephadex gel filtration indicated no apparent differences in the size distribution of the fragments produced by treatment with the H2O2/proteolytic enzyme combination as compared with enzyme treatment alone. A partially purified preparation of rat glomerular basement membrane was also treated with proteolytic enzyme alone or in combination with H2O2. As with the hemoglobin, pretreatment of the glomerular basement membrane with H2O2 increased its susceptibility to subsequent proteolytic attack. In addition, treatment of a basement membrane glycoprotein, fibronectin, with H2O2 also increased its sensitivity to subsequent proteolysis. These results suggest that in addition to their other proinflammatory activities, oxygen-derived metabolites may contribute to tissue destruction by altering the susceptibility of proteins to hydrolytic enzymes. Images Figure 1 PMID:6375392
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
Aubin-Tam, Marie-Eve; Olivares, Adrian O.; Sauer, Robert T.; Baker, Tania A.; Lang, Matthew J.
2011-01-01
All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5–8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP. PMID:21496645
Weis, Michael; Maisner, Andrea
2015-01-01
Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.
Shori, A B; Baba, A S; Keow, J N
2012-12-15
There is an increasing demand of functional foods in developed countries. Yogurt plays an important role in the management of blood pressure. Several bioactive peptides isolated from Allium sativum or fish collagen have shown antihypertensive activity. Thus, in the present study the effects of A. sativum and/or Fish Collagen (FC) on proteolysis and ACE inhibitory activity in yogurt (0, 7 and 14 day) and cheese (0, 14 and 28 day) were investigated. Proteolytic activities were the highest on day 7 of refrigerated storage in A. sativum-FC-yogurt (337.0 +/- 5.3 microg g(-1)) followed by FC-yogurt (275.3 +/- 2.0 microg g(-1)), A. sativum-yogurt (245.8 +/- 4.2 microg g(-1)) and plain-yogurt (40.4 +/- 1.2 microg g(-1)). On the other hand, proteolytic activities in cheese ripening were the highest (p < 0.05) on day 14 of storage for plain and A. sativum-cheeses (411.4 +/- 4.3 and 528.7 +/- 1.6 microg g(-1), respectively). However, the presence of FC increased the proteolysis to the highest level on day 28 of storage for FC- and A. sativum-FC cheeses (641.2 +/- 0.1 and 1128.4 +/- 4.5 microg g(-1), respectively). In addition, plain- and A. sativum-yogurts with or without FC showed maximal inhibition of ACE on day 7 of storage. Fresh plain- and A. sativum-cheeses showed ACE inhibition (72.3 +/- 7.8 and 50.4 +/- 1.6 % respectively), the presence of FC in both type of cheeses reduced the ACE inhibition to 62.9 +/- 0.8 and 44.5 +/- 5.0%, respectively. However, refrigerated storage increased ACE inhibition in cheeses (p < 0.05 on day 28) in the presence of FC more than in the absence. In conclusion, the presence of FC in A. sativum-yogurt or cheese enhanced the proteolytic activity. Thus, it has potential in the development of an effective dietary strategy for hypertension associated cardiovascular diseases.
Tonon, Jair; Cecchini, Alessandra Lourenço; Brunnquell, Cláudia Roberta; Bernardes, Sara Santos; Cecchini, Rubens; Guarnier, Flávia Alessandra
2013-01-23
Peripheral skeletal muscle is altered in patients suffering from emphysema and chronic obstructive pulmonary disease (COPD). Oxidative stress have been demonstrated to participate on skeletal muscle loss of several states, including disuse atrophy, mechanical ventilation, and chronic diseases. No evidences have demonstrated the occurance in a severity manner. We evaluated body weight, muscle loss, oxidative stress, and chymotrypsin-like proteolytic activity in the gastrocnemius muscle of emphysemic hamsters. The experimental animals had 2 different severities of lung damage from experimental emphysema induced by 20 mg/mL (E20) and 40 mg/mL (E40) papain. The severity of emphysema increased significantly in E20 (60.52 ± 2.8, p < 0.05) and E40 (52.27 ± 4.7; crossed the alveolar intercepts) groups. As compared to the control group, there was a reduction on body (171.6 ± 15.9 g) and muscle weight (251.87 ± 24.87 mg) in the E20 group (157.5 ± 10.3 mg and 230.12 ± 23.52 mg, for body and muscle weight, respectively), which was accentuated in the E40 group (137.4 ± 7.2 g and 197.87 ± 10.49 mg, for body and muscle weight, respectively). Additionally, the thiobarbituric acid reactive substances (TBARS), tert-butyl hydroperoxide-initiated chemiluminescence (CL), carbonylated proteins, and chymotrypsin-like proteolytic activity were elevated in the E40 group as compared to the E20 group (p < 0.05 for all comparisons). The severity of emphysema significantly correlated with the progressive increase in CL (r = -0.95), TBARS (r = -0.98), carbonyl proteins (r = -0.99), and chymotrypsin-like proteolytic activity (r = -0.90). Furthermore, augmentation of proteolytic activity correlated significantly with CL (r = 0.97), TBARS (r = 0.96), and carbonyl proteins (r = 0.91). Taken together, the results of the present study suggest that muscle atrophy observed in this model of emphysema is mediated by increased muscle chymotrypsin-like activity, with possible involvement of oxidative stress in a severity-dependent manner.
Rimareva, L V; Overchenko, M B; Serba, E M; Trifonova, V V
1997-01-01
Screening of enzyme preparations displaying a maximum proteolytic activity at pH 4.0-5.5 and effecting deep proteolysis of plant proteins was performed. Amyloprotooryzin prepared from Aspergillus oryzae 387 containing a complex of proteolytic enzymes was the most effective. The amino acid composition of the hydrolysates obtained was studied. Amyloprotooryzin increased the contents of amino acids by 108-227%, depending on the substrate used. The enzymatic complex of amyloprotooryzin was studied; in addition, proteases, alpha-amylase, exo-beta-glucanase, and xylanase were detected in the complex.
[Treatment of surface burns with proteolytic enzymes: mathematic description of lysis kinetics].
Domogatskaia, A S; Domogatskiĭ, S P; Ruuge, E K
2003-01-01
The lysis of necrotic tissue by a proteolytic enzyme applied to the surface of a burn wound was studied. A mathematical model was proposed, which describes changes in the thickness of necrotic tissue as a function of the proteolytic activity of the enzyme. The model takes into account the inward-directed diffusion of the enzyme, the counterflow of interstitial fluid (exudates) containing specific inhibitors, and the extracellular matrix proteolysis. It was shown in terms of the quasi-stationary approach that the thickness of the necrotic tissue layer decreases exponentially with time; i.e., the lysis slows down as the thickness of the necrotic tissue layer decreases. The dependence of the characteristic time of this decrease on enzyme concentration was obtained. It was shown that, at high enzyme concentrations (more than 5 mg/ml), the entire time of lysis (after the establishment of quasi-stationary equilibrium) is inversely proportional to the concentration of the enzyme.
Proteolytic Activation Transforms Heparin Cofactor II into a Host Defense Molecule
Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M.; Malmsten, Martin; Mörgelin, Matthias
2013-01-01
The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity. PMID:23656734
Proteolytic activation transforms heparin cofactor II into a host defense molecule.
Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur
2013-06-15
The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity.
Dual Proteolytic Pathways Govern Glycolysis and Immune Competence
Lu, Wei; Zhang, Yu; McDonald, David O.; Jing, Huie; Carroll, Bernadette; Robertson, Nic; Zhang, Qian; Griffin, Helen; Sanderson, Sharon; Lakey, Jeremy H.; Morgan, Neil V.; Reynard, Louise N.; Zheng, Lixin; Murdock, Heardley M.; Turvey, Stuart E.; Hackett, Scott J.; Prestidge, Tim; Hall, Julie M.; Cant, Andrew J.; Matthews, Helen F.; Santibanez Koref, Mauro F.; Simon, Anna Katharina; Korolchuk, Viktor I.; Lenardo, Michael J.; Hambleton, Sophie; Su, Helen C.
2014-01-01
SUMMARY Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels, and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health. PMID:25525876
Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.
2017-01-01
Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858
Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases.
Shivaprasad, H V; Rajesh, R; Nanda, B L; Dharmappa, K K; Vishwanath, B S
2009-05-04
To validate the scientific basis of plant latex to stop bleeding on fresh cuts. Cysteine protease(s) from Asclepias curassavica (Asclepiadaceae) plant latex was assessed for pro-coagulant and thrombin like activities. A waxy material from the latex of Asclepias curassavica latex was removed by freezing and thawing. The resulted latex enzyme fraction was assayed for proteolytic activity using denatured casein as substrate. Its coagulant activity and thrombin like activity were determined using citrated plasma and pure fibrinogen, respectively. Inhibition studies were performed using specific protease inhibitors to know the type of protease. The latex enzyme fraction exhibited strong proteolytic activity when compared to trypsin and exerted pro-coagulant action by reducing plasma clotting time from 195 to 58 s whereas trypsin reduced clotting time marginally from 195 to 155 s. The pro-coagulant activity of this enzyme fraction was exerted by selectively hydrolyzing A alpha and B beta subunits of fibrinogen to form fibrin clot when pure fibrinogen was used as substrate as assessed by fibrinogen-agarose plate method and fibrinogen polymerization assay. Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of thrombin-induced fibrin clot and mimic thrombin like action. The proteolytic activity including thrombin like activity of Asclepias curassavica latex enzyme fraction was completely inhibited by iodoaceticacid (IAA). Cysteine proteases from Asclepias curassavica latex exhibited strong pro-coagulant action and were found to be specific in its action (Thrombin like). This could be the basis for the use of plant latex in pharmacological applications that justify their use as folk medicine.
Effects of processing and in vitro proteolytic digestion on soybean and yambean hemagglutinins.
Ojimelukwe, P C; Onuoha, C C; Obanu, Z A
1995-06-01
Some conventional processing methods were applied on yambean and soybean seeds and flour samples. They include soaking fermentation, cooking whole seeds in the presence and absence of trona, autoclaving and dry heat treatment of flour samples. Hemagglutinating activity was assayed for after processing treatments. The hemagglutinating proteins from these seeds were classified based on their solubility properties. Effects of the presence of 0.01% concentration of trypsin, pepsin and proteases on agglutination of human red blood cells were also evaluated. Most processing methods, particularly cooking whole seeds for 1-2 h, soaking and fermentation, reduced hemagglutinating activity on cow red blood cells. Size reduction accompanied by heat treatment was effective in eliminating hemagglutination. Both the albumin and globulin fractions of the soybean showed hemagglutinating activity but only the albumin fraction of the yambean had agglutinating properties. Proteolytic action of proteases was more effective in reduction of hemagglutinating activity than that of trypsin and pepsin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pas, H.H.; Robillard, G.T.
1988-07-26
The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linkedmore » cysteine was accomplished by inactivation with (/sup 14/C)iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing.« less
[The maturation steps of human immunodeficiency virus and the role of proteolysis].
Bukrinskaia, A G; Grigor'ev, V B; Korablina, E V; Gur'ev, E L; Vorkunova, G K
2010-01-01
HIV-1 virions are as immature noninfectious particles lacking a central core. Shortly after budding, virions temporally mature and acquire cores and infectious activity. The cause of maturation remains poorly studied. We have revealed that the virions produced early after infection following 24-36 hours, never mature and remain noninfectious, and only virions produced 48-72 hours after infection mature. The mature virions contain 3 times more genomic viral RNA than "early" virus. The "early" virions contain the same proteolytically cleaved Gag proteins as mature virions in contrast to the accepted version. The virus protease inhibitor Indinavir sulfate (IS) fully blocks infectivity when added early after infection. The early proteolysis of Gag precursor in the infected cells and inclusion into the virions of cellularly cleaved matrix protein (cMA) are shown in the IS-treated cells. cMA is associated with genomic viral RNA.
BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.
Sant' Ana, Carolina D; Ticli, Fabio K; Oliveira, Leandro L; Giglio, Jose R; Rechia, Carem G V; Fuly, André L; Selistre de Araújo, Heloisa S; Franco, João J; Stabeli, Rodrigo G; Soares, Andreimar M; Sampaio, Suely V
2008-11-01
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.
Biswas, C; Mandal, C
1999-02-01
Achatina amoebocyte lysate (AAL) derived from amoebocytes of Achatina fulica was activated by Gram-negative bacterial endotoxins in a time-dependent manner resulting in gel formation/coagulation. The activation and maximum proliferation of amoebocytes was observed 40 min after intramuscular injection (20 microg/snail) of endotoxin. Endotoxin-mediated proteolytic activity of AAL towards a serine-protease-specific chromogenic substrate was maximum at pH 8.0, 37 degrees C and within 15 min in a divalent-cation-dependent manner. The AAL activity induced by the endotoxin was directly dependent on the endotoxin concentration, showed a high specificity and saturated at higher endotoxin concentrations. An endotoxin-sensitive factor (ESF) was purified from AAL to apparent homogeneity by single-step affinity chromatography on a heparin-Sepharose 4B column. Native ESF of molecular weight 140 000 was composed of two identical subunits of molecular weight 70 000 attached through non-covalent association. A strong binding to endotoxin (Escherichia coli 055:B5) was exhibited by ESF with a 40-fold higher biological activity than AAL. The ESF was shown to have a unique Phe-Ile active site with regard to its alternate activation by alpha-chymotrypsin instead of endotoxin. The ESF was characterized as a serine protease type as evidenced by potent inhibition with specific inhibitors.
Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime
2015-01-01
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes. PMID:26090464
Multiplex profiling of tumor-associated proteolytic activity in serum of colorectal cancer patients.
Yepes, Diego; Costina, Victor; Pilz, Lothar R; Hofheinz, Ralf; Neumaier, Michael; Findeisen, Peter
2014-06-01
The monitoring of tumor-associated protease activity in blood specimens has recently been proposed as new diagnostic tool in cancer research. In this paper, we describe the screening of a peptide library for identification of reporter peptides (RPs) that are selectively cleaved in serum specimens from colorectal cancer patients and investigate the benefits of RP multiplexing. A library of 144 RPs was constructed that contained amino acid sequences of abundant plasma proteins. Proteolytic cleavage of RPs was monitored with MS. Five RPs that were selectively cleaved in serum specimens from tumor patients were selected for further validation in serum specimens of colorectal tumor patients (n = 30) and nonmalignant controls (n = 60). RP spiking and subsequent quantification of proteolytic fragments with LC-MS showed good reproducibility with CVs always below 26%. The linear discriminant analysis and PCA revealed that a combination of RPs for diagnostic classification is superior to single markers. Classification accuracy reached 88% (79/90) when all five markers were combined. Functional protease profiling with RPs might improve the laboratory-based diagnosis, monitoring and prognosis of malignant disease, and has to be evaluated thoroughly in future studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonproteolytic Roles of 19S ATPases in Transcription of CIITApIV Genes
Maganti, Nagini; Moody, Tomika D.; Truax, Agnieszka D.; Thakkar, Meghna; Spring, Alexander M.; Germann, Markus W.; Greer, Susanna F.
2014-01-01
Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes. PMID:24625964
O'Neal, Patrick; Alamdari, Nima; Smith, Ira; Poylin, Vitaliy; Menconi, Michael; Hasselgren, Per-Olof
2009-11-01
Muscle wasting is commonly seen in patients with hyperthyroidism and is mainly caused by stimulated muscle proteolysis. Loss of muscle mass in several catabolic conditions is associated with increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1 but it is not known if atrogin-1 and MuRF1 are upregulated in hyperthyroidism. In addition, it is not known if thyroid hormone increases the activity of proteolytic mechanisms other than the ubiquitin-proteasome pathway. We tested the hypotheses that experimental hyperthyroidism in rats, induced by daily intraperitoneal injections of 100 microg/100 g body weight of triiodothyronine (T3), upregulates the expression of atrogin-1 and MuRF1 in skeletal muscle and stimulates lysosomal, including cathepsin L, calpain-, and caspase-3-dependent protein breakdown in addition to proteasome-dependent protein breakdown. Treatment of rats with T3 for 3 days resulted in an approximately twofold increase in atrogin-1 and MuRF1 mRNA levels. The same treatment increased proteasome-, cathepsin L-, and calpain-dependent proteolytic rates by approximately 40% but did not influence caspase-3-dependent proteolysis. The expression of atrogin-1 and MuRF1 remained elevated during a more prolonged period (7 days) of T3 treatment. The results provide support for a role of the ubiquitin-proteasome pathway in muscle wasting during hyperthyroidism and suggest that other proteolytic pathways as well may be activated in the hyperthyroid state. (c) 2009 Wiley-Liss, Inc.
Memar, Bahareh; Jamili, Shahla; Shahbazzadeh, Delavar; Bagheri, Kamran Pooshang
2016-04-01
Pterois russelli is a venomous fish belonging to scorpionidae family. Regarding to high significance value for tracing potential therapeutic molecules and special agents from venomous marine creatures, the present study was aimed to characterization of the Persian Gulf lionfish venom. Proteolytic, phospholipase, hemolytic, coagulation, edematogenic and dermonecrotic activities were determined for extracted venom. The LD50 of P. russelli venom was determined by intravenous injection in white Balb/c mice. Phospholipase A2 activity was recorded at 20 μg of total venom. Coagulation activity on human plasma was shown by Prothrombin Time (PT) and activated Partial Thromboplastin Time (APTT) assays and coagulation visualized after 7 and 14 s respectively for 60 μg of crude venom. LD50 was calculated as 10.5 mg/kg. SDS-PAGE revealed the presence of major and minor protein bands between 6 and 205 kDa. Different amounts of crude venom ranged from 1.87 to 30 μg showed proteolytic activity on casein. The highest edematic activity was detected at 20 μg. Our findings showed that the edematic activity was dose dependent and persisted for 48 h after injection. The crude venom did not induce dermonecrotic activity on rabbit skin and showed no hemolytic activity on human, mouse and rabbit erythrocytes. This is the first report for phospholipase A2 and coagulation activity in venomous fish and venomous marine animals respectively. Proteolytic activity of P. russelli venom is in accordance with the other genara of scorpionidae family. According to venom activity on intrinsic and extrinsic coagulation pathways, lionfish venom would be contained an interesting pharmaceutical agent. This study is pending to further characterization of phospholipase A2, coagulation, and protease activities and also in vivo activity on animal model of surface and internal bleeding. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stygar, Dominika; Michalczyk, Katarzyna; Dolezych, Bogdan; Nakonieczny, Miroslaw; Migula, Pawel; Zaak, Maria; Sawczyn, Tomasz; Karcz-Socha, Iwona; Kukla, Michal; Zwirska-Korczala, Krystyna; Buldak, Rafal
2013-01-01
In the present study we describe the effect of chloronicotinoid pesticide (imidacloprid) on the digestive enzymes activity of the Cameraria ohridella larvae after lasting 1 year sublethal exposure to imidacloprid pesticide. Caterpillars - L4 stage (fourth instar, hyperphagic tissue-feeding phase) - were collected from chemically protected white horse chestnut trees 1 year after imidacloprid treatment, and compared with caterpillars collected from non-treated trees in a previous study. Enzymes activity of α-amylase, disaccharidases, glycosidases and proteases was assayed. The presence of pesticide in ingested food changed the digestive enzymes profile of caterpillars. The analysis of correlations between different digestive enzymes showed many significant correlations (P<0.05) among glycolytic activities like β-glucosidase and α-galactosidase activities. Statistically significant correlations for proteolytic activity were found between trypsin and chymotrypsin activity and aminopeptidase activity that occurred only in the 1st generation. PCA distinguished five primary components with eigenvalues higher than 1, from which the first two explain almost 59% of analyzed results. Surprisingly, in the pesticide treated groups significantly higher activities of sucrase and lactase in relation to control were found. In general, glycosidase (α-glucosidase, β-glucosidase and β-galactosidase) activities showed a similar pattern of activity in different generations. These results contrast with those obtained with control larvae, where significant differences in activities of α-glucosidase, β-glucosidase and β-galactosidase may result from the different quantity and quality food intake by subsequent generations of larvae. No inter-generation differences in total proteolytic activity were observed in treated larvae. The absolute value of total proteolytic activity was higher than that in the control group. The pesticide present in the vascular system of the horse chestnut tree significantly affected some of the digestive enzymes activities and - in consequence - also interrelationships between enzymes, what may affect the food digestion. Copyright © 2012 Elsevier Inc. All rights reserved.
Tsai, Shih-Jen
2017-12-22
Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.
NASA Astrophysics Data System (ADS)
Timm, Thomas; Lenz, Christof; Merkel, Dietrich; Sadiffo, Christian; Grabitzki, Julia; Klein, Jochen; Lochnit, Guenter
2015-03-01
Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline ( m/z 104.1) and phosphorylcholine ( m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.
Shimshek, Derya R.; Jacobson, Laura H.; Kolly, Carine; Zamurovic, Natasa; Balavenkatraman, Kamal Kumar; Morawiec, Laurent; Kreutzer, Robert; Schelle, Juliane; Jucker, Mathias; Bertschi, Barbara; Theil, Diethilde; Heier, Annabelle; Bigot, Karine; Beltz, Karen; Machauer, Rainer; Brzak, Irena; Perrot, Ludovic; Neumann, Ulf
2016-01-01
Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and γ-secretase have been shown to be key players in generating the proteolytic fragments of PMEL17. The β-secretase (BACE1) is responsible for the generation of amyloid-β (Aβ) fragments in the brain and is therefore proposed as a therapeutic target for Alzheimer’s disease (AD). Currently BACE1 inhibitors, most of which lack selectivity over BACE2, have demonstrated efficacious reduction of amyloid-β peptides in animals and the CSF of humans. BACE2 knock-out mice have a deficiency in PMEL17 proteolytic processing leading to impaired melanin storage and hair depigmentation. Here, we confirm BACE2-mediated inhibition of PMEL17 proteolytic processing in vitro in mouse and human melanocytes. Furthermore, we show that wildtype as well as bace2+/− and bace2−/− mice treated with a potent dual BACE1/BACE2 inhibitor NB-360 display dose-dependent appearance of irreversibly depigmented hair. Retinal pigmented epithelium showed no morphological changes. Our data demonstrates that BACE2 as well as additional BACE1 inhibition affects melanosome maturation and induces hair depigmentation in mice. PMID:26912421
Hosseininejad, A. S.; Naseri, B.; Razmjou, J.
2015-01-01
This study aimed to evaluate the feeding responses and digestive proteolytic and amylolytic activity of Helicoverpa armigera (Hübner) on 11 corn (Zea mays L.) hybrids at 25 ± 1°C, 65 ± 5% relative humidity (RH), and a photoperiod of 16:8 (L:D) h. The fourth- and fifth-instar larvae fed on hybrid K47*K19 had the highest weight of food consumption and those reared on hybrid KSC705 had the lowest value of food consumption. The highest weight gain of the larvae was observed when H. armigera were fed hybrid KLM78*MO17 and lowest when they were fed hybrids K36 * MO17, KSC705, and K35 * K36. Pupal weight of H. armigera was heaviest when larvae were fed hybrid K47*K19 and lightest when they were fed hybrid KSC705. The highest proteolytic activity of the fourth-instar larvae was observed when they were fed hybrid KSC705, and the lowest activity was observed when they were fed hybrid K47*A67. Fifth-instar larvae that fed on hybrid K47*K19 showed the highest proteolytic activity. Fourth-instar larvae that fed on hybrid K36*MO17 showed the highest amylase activity. The fifth-instar larvae fed on hybrid K47*A67 showed the maximum amylase activity and those reared on the K48*K18 showed the minimum activity. Our results indicated that K36 * MO17, KSC705, and K48 * K18 were the most unsuitable hybrids for feeding H. armigera. PMID:25688090
Polosukhina, Dar'ya I; Kanyshkova, Tat'yana G; Doronin, Boris M; Tyshkevich, Olga B; Buneva, Valentina N; Boiko, Alexey N; Gusev, Evgenii I; Nevinsky, Georgy A; Favorova, Olga O
2006-02-28
Homogeneous IgG fractions were obtained by chromatography of the sera of patients with multiple sclerosis (MS) on Protein G-Sepharose under conditions that remove non-specifically bound proteins. These IgGs contained several chelated metals, the relative amount of which decreases in the order: Fe>or=Ca>Cu>or=Zn>or=Mg>or=Mn>or=Pb>or=Co>or=Ni. In contrast to homogeneous IgGs of healthy individuals, Abs of MS patients effectively hydrolyzed human myelin basic protein (MBP). A minor metal-dependent fraction was obtained by chromatography of highly purified IgGs from MS patient on Chelex-100. This IgG fraction did not hydrolyze human MBP in the absence of Me(2+) ions but was activated after addition of Me(2+) ions: Mg(2+)>Mn(2+)>Cu(2+)>Ca(2+). Proteolytic activities of IgGs from other MS patients were also activated by other metal ions (Ni(2+), Fe(2+), Co(2+), Zn(2+), Pb(2+), and Co(2+)) and especially Ni(2+). Ni(2+)-activated IgGs were separated into distinct MBP-hydrolyzing fractions by chromatography on HiTraptrade mark Chelating Sepharose charged with Ni(2+). Detection of Mg(2+)-dependent proteolytic activity in the SDS-PAGE area corresponding only to IgG provided direct evidence that IgG from sera of MS patients possesses metal-dependent human MBP-hydrolyzing activity. Observed properties of MS abzymes distinguish them from other known mammalian metalloproteases and demonstrate their pronounced catalytic diversity. Metal-dependent IgGs from MS patients represent the first example of abzymes with metal-dependent proteolytic activity.
Starzyńska-Janiszewska, Anna; Stodolak, Bożena; Wikiera, Agnieszka
2015-01-01
Tempeh is a food product obtained from legumes by means of solid-state fermentation with Rhizopus sp. Our previous research proved that mixed-culture inoculum may also be successfully applied. The objective of present research was to study the proteolytic activity of R. microsporus var. chinensis and A. oryzae during tempeh-type fermentation of grass pea seeds, and the effect of inoculum composition on the protein level and in vitro protein bioavailability in products. Fermentation substrate were soaked and cooked grass pea seeds. Material was mixed with single- or mixed-culture inoculum, and incubated in perforated plastic bags at 30°C for 32 hrs. In the products, the proteolytic activity (pH 3, 5 and 7), glucosamine, total protein and free amino acids levels, as well as protein in vitro bioavailability and degree of protein hydrolysis were obtained. The significant correlation was found between glucosamine content and proteolytic activity in grass pea seeds fermented with Rhizopus or Aspergillus. The activities of Rhizopus proteases were higher than Aspergillus ones, which corresponded with the degree of seed protein hydrolysis. Both strains showed the highest activity of protease at pH 3. Tempeh made with pure culture of Rhizopus had 37% protein of 69% in-vitro bioavailability. Mixed-culture fermentation improved nutritional parameters of products only when the dose of Aspergillus spores in the inoculum was equal and lower than that of Rhizopus. This process resulted in higher in-vitro bioavailability of protein, slightly more efficient protein hydrolysis and higher level of free amino acids, as compared to standard tempeh. The activity of A. oryzae in tempeh-type fermentation is beneficial as long as it does not dominate the activity and/or growth of Rhizopus strain.
Petersen, Lauren M.
2014-01-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493
TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.
Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A
2018-03-13
Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.
2010-08-01
Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.
Antimicrobial activity of sodium hypochlorite-based irrigating solutions.
Poggio, Claudio; Arciola, Carla Renata; Dagna, Alberto; Chiesa, Marco; Sforza, Dario; Visai, Livia
2010-09-01
The objective of the present study was the in vitro evaluation of the antimicrobial activity of three different NaOCl-based endodontic irrigating solutions: a 5.25% conventional sodium hypochlorite solution; and two new irrigating solutions, a 5.25% sodium hypochlorite solution with the addition of a proteolytic enzyme and a surfactant; and a 5.25% sodium hypochlorite gel with inorganic silicate. Enterococcus faecalis, Staphylococcus aureus and Streptococcus mutans strains were selected to evaluate the antimicrobial activity of the endodontic irrigating solutions by the agar disc diffusion test. Paper disks were saturated with each one of the tested solutions (at room temperature and pre-warmed at 45°C) and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each irrigating solution were recorded and compared for each bacterial strain. The results were significantly different among the tested irrigating solutions: 5.25% sodium hypochlorite solution produced the highest inhibition areas; 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed the lowest zones of inhibition. Even if all tested irrigating solution possessed antibacterial activity versus all tested bacterial strains, 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed lower in vitro efficacy than 5.25% conventional sodium hypochlorite solution.
Chaperone-Mediated Autophagy in the Kidney: The Road More Traveled
Franch, Harold A.
2014-01-01
Summary Chaperone-mediated autophagy (CMA) is a lysosomal proteolytic pathway in which cytosolic substrate proteins contain specific chaperone recognition sequences required for degradation and are translocated directly across the lysosomal membrane for destruction. CMA proteolytic activity has a reciprocal relationship with macroautophagy: CMA is most active in cells in which macroautophagy is least active. Normal renal proximal tubular cells have low levels of macroautophagy, but high basal levels of CMA activity. CMA activity is regulated by starvation, growth factors, oxidative stress, lipids, aging, and retinoic acid signaling. The physiological consequences of changes in CMA activity depend on the substrate proteins present in a given cell type. In the proximal tubule, increased CMA results from protein or calorie starvation and from oxidative stress. Overactivity of CMA can be associated with tubular lysosomal pathology and certain cancers. Reduced CMA activity contributes to protein accumulation in renal tubular hypertrophy, but may contribute to oxidative tissue damage in diabetes and aging. Although there are more questions than answers about the role of high basal CMA activity, this remarkable feature of tubular protein metabolism appears to influence a variety of chronic diseases. PMID:24485032
Barnacle cement: a polymerization model based on evolutionary concepts
Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel
2009-01-01
Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892
Xia, Yun; Kong, Yunhong; Huang, Heping; Yang, Hee Eun; Forster, Robert; McAllister, Tim A
2016-12-01
In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.
Kee, Nalise Low Ah; Krause, Jason; Blatch, Gregory L; Muramoto, Koji; Sakka, Kazuo; Sakka, Makiko; Naudé, Ryno J; Wagner, Leona; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich; Mielicki, Wojciech P; Frost, Carminita L
2015-10-01
Proteases are essential for tumour progression and many are over-expressed during this time. The main focus of research was the role of these proteases in degradation of the basement membrane and extracellular matrix (ECM), thereby enabling metastasis to occur. Cancer procoagulant (CP), a protease present in malignant tumours, but not normal tissue, is a known activator of coagulation factor X (FX). The present study investigated the function of CP in cancer progression by focussing on its enzymatic specificity. FX cleavage was confirmed using SDS-PAGE and MALDI-TOF MS and compared to the proteolytic action of CP on ECM proteins, including collagen type IV, laminin and fibronectin. Contrary to previous reports, CP cleaved FX at the conventional activation site (between Arg-52 and Ile-53). Additionally, degradation of FX by CP occurred at a much slower rate than degradation by conventional activators. Complete degradation of the heavy chain of FX was only visible after 24 h, while degradation by RVV was complete after 30 min, supporting postulations that the procoagulant function of CP may be of secondary importance to its role in cancer progression. Of the ECM proteins tested, only fibronectin was cleaved. The substrate specificity of CP was further investigated by screening synthetic peptide substrates using a novel direct CP assay. The results indicate that CP is not essential for either cancer-associated blood coagulation or the degradation of ECM proteins. Rather, they suggest that this protease may be required for the proteolytic activation of membrane receptors.
Salas, Alfonso Leija; Montezuma, Tania Díaz; Fariña, German Garrido; Reyes-Esparza, Jorge; Rodríguez-Fragoso, Lourdes
2008-01-01
To evaluate the effect of genistein on the fibrosis and matrix degradation caused by experimentally induced fibrosis in rats. Hepatic fibrosis was brought about by chronic administration of carbon tetrachloride to rats. To evaluate the effect of genistein on liver fibrosis and function, total collagen content and proteolytic activity in the liver were quantified. Urokinase-type plasminogen activator (uPA) expression during experimental fibrosis was localized by immunohistochemistry. Histopathological changes were evaluated using light and electron microscopy. Animals with fibrosis and treated with genistein showed an important reduction (73%) in hepatic collagen content as well as an improvement in liver function (p < 0.001). Genistein increased the capacity of the liver to degrade type I collagen and Matrigel (3.1- and 3.7-fold, respectively; p < 0.001) in animals with liver fibrosis. Genistein increased the number of uPA-immunoreactive cells. The increase in the uPA expression correlated with an increase in proteolytic activity. Histological analysis revealed a reduction in the number of fiber septa in pericentral and perisinusoidal areas. Transmission electron micrographs of livers from animals with fibrosis and treated with genistein showed a reduction in the number of hepatic stellate cells activated and a smaller number of collagen fibers. Genistein is able to improve the liver after injury and fibrosis induced by chronic administration of carbon tetrachloride. This finding suggests that genistein has antifibrogenic potential and could therefore be useful for treating chronic liver disease. (c) 2008 S. Karger AG, Basel.
Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins
Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela
2015-01-01
Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950
Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.
Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela
2016-04-15
The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Martínez-Alonso, Mónica; Villaverde, Antonio
2010-01-01
Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield. PMID:21326941
Antibiofilm Peptides and Peptidomimetics with Focus on Surface Immobilization.
Andrea, Athina; Molchanova, Natalia; Jenssen, Håvard
2018-05-16
Bacterial biofilms pose a major threat to public health, as they are associated with at least two thirds of all infections. They are highly resilient and render conventional antibiotics inefficient. As a part of the innate immune system, antimicrobial peptides have drawn attention within the last decades, as some of them are able to eradicate biofilms at sub-minimum inhibitory concentration (MIC) levels. However, peptides possess a number of disadvantages, such as susceptibility to proteolytic degradation, pH and/or salinity-dependent activity and loss of activity due to binding to serum proteins. Hence, proteolytically stable peptidomimetics were designed to overcome these drawbacks. This paper summarizes the current peptide and peptidomimetic strategies for combating bacteria-associated biofilm infections, both in respect to soluble and surface-functionalized solutions.
In vivo imaging of protease activity by Probody therapeutic activation
Wong, Kenneth R.; Menendez, Elizabeth; Craik, Charles S.; Kavanaugh, W. Michael; Vasiljeva, Olga
2017-01-01
Probody™ therapeutics are recombinant, proteolytically-activated antibody prodrugs, engineered to remain inert until activated locally by tumor-associated proteases. Probody therapeutics exploit the fundamental dysregulation of extracellular protease activity that exists in tumors relative to healthy tissue. Leveraging the ability of a Probody therapeutic to bind its target at the site of disease after proteolytic cleavage, we developed a novel method for profiling protease activity in living animals. Using NIR optical imaging, we demonstrated that a non-labeled anti-EGFR Probody therapeutic can become activated and compete for binding to tumor cells in vivo with a labeled anti-EGFR monoclonal antibody. Furthermore, by inhibiting matriptase activity in vivo with a blocking-matriptase antibody, we show that the ability of the Probody therapeutic to bind EGFR in vivo was dependent on protease activity. These results demonstrate that in vivo imaging of Probody therapeutic activation can be used for screening and characterization of protease activity in living animals, and provide a method that avoids some of the limitations of prior methods. This approach can improve our understanding of the activity of proteases in disease models and help to develop efficient strategies for cancer diagnosis and treatment. PMID:26546838
Hale, Laura P; Chichlowski, Maciej; Trinh, Chau T; Greer, Paula K
2010-12-01
Bromelain, a mixture of proteolytic enzymes typically derived from pineapple stem, decreases production of proinflammatory cytokines and leukocyte homing to sites of inflammation. We previously showed that short-term oral treatment with bromelain purified from pineapple stem decreased the severity of colonic inflammation in C57BL/6 Il10(-/-) mice with chronic colitis. Since fresh pineapple fruit contains similar bromelain enzymes but at different proportions, this study aimed to determine whether long-term dietary supplementation with pineapple (supplied as juice) could decrease colon inflammation and neoplasia in Il10(-/-) mice with chronic colitis as compared with bromelain derived from stem. Colitis was triggered in Il10(-/-) mice by exposure to the non-steroidal anti-inflammatory drug piroxicam. Mice with colitis were supplemented with fresh vs. boiled pineapple juice or bromelain purified from stem for up to 6 months. Experimental mice readily consumed fresh pineapple juice at a level that generated mean stool proteolytic activities equivalent to 14 mg bromelain purified from stem, while control mice received boiled juice with inactive enzymes. Survival was increased in the group supplemented with fresh rather than boiled juice (P = 0.01). Mice that received fresh juice also had decreased histologic colon inflammation scores and a lower incidence of inflammation-associated colonic neoplasia (35% versus 66%; P < 0.02), with fewer neoplastic lesions/colon (P = 0.05). Flow cytometric analysis of murine splenocytes exposed to fresh pineapple juice in vitro demonstrated proteolytic removal of cell surface molecules that can affect leukocyte trafficking and activation. These results demonstrate that long-term dietary supplementation with fresh or unpasteurized frozen pineapple juice with proteolytically active bromelain enzymes is safe and decreases inflammation severity and the incidence and multiplicity of inflammation-associated colonic neoplasia in this commonly used murine model of inflammatory bowel disease. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.
Libiaková, Michaela; Floková, Kristýna; Novák, Ondřej; Slováková, L'udmila; Pavlovič, Andrej
2014-01-01
The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed. PMID:25153528
Jaouani, Khadija; Karmous, Inès; Ostrowski, Maciej; Ferjani, Ezzedine El; Jakubowska, Anna; Chaoui, Abdelilah
2018-04-16
This work aims to give more insight into mechanisms of action of cadmium (Cd) on germinating pea seeds (Pisum sativum L. var. douce province), specifically the different ways by which Cd cations may interfere with the principal factors involved during germination process, notably storage proteins mobilization, amino acids freeing and proteolytic activities. Obtained results revealed that the process of hydrolysis of main storage proteins showed a significant disruption, which resulted in the decrease of the release of free amino acids, thus imposing a lack in nitrogen supply of essential nutrients to growing embryo under Cd stress. This hypothesis was evidenced by Cd-induced changes occurring in main purified protein fractions; Albumins, Legumins and Vicilins, during their breakdown. Besides, at enzymatic level, the activities of main proteases responsible for this hydrolysis were altered. Indeed, assays using synthetic substrates and specific protease inhibitors followed by protease activity measurements demonstrated that Cd inhibited drastically the total azocaseinolytic activity (ACA) and activities of different proteolytic classes: cysteine-, aspartic-, serine- and metallo-endopeptidases (EP), leucine- and proline-aminopeptidases (LAP and PAP, respectively), and glycine-carboxypeptidases (Gly-CP). The data here presented may suggest that the vulnerability of the embryonic axes towards Cd toxicity could be explained as a result of eventual disruption of metabolic pathways that affect mobilization of reserves and availability of nutrients. In vitro studies suggest that Cd cations may act either directly on the catalytic sites of the proteolytic enzymes, which may cause their deactivation, or indirectly via the generation of oxidative stress and overproduction of free radicals that can interact with enzymes, by altering their activity and structure. Copyright © 2018 Elsevier GmbH. All rights reserved.
Vargas, M; Segura, Á; Wu, Y-W; Herrera, M; Chou, M-L; Villalta, M; León, G; Burnouf, T
2015-02-01
Instituto Clodomiro Picado has developed an immunoglobulin G (IgG) plasma fractionation process combining a polyethylene glycol/phosphate aqueous two-phase system (ATPS), caprylic acid precipitation and anion-exchange membrane chromatography. We evaluated the purity and in vitro thrombogenicity of such IgG, in line with current international requirements. Contributions of the different production steps to reduce thrombogenicity were assessed at 0·2 l-scale, and then the methodology was scaled-up to a 10 l-scale and final products (n = 3) were analysed. Purity, immunoglobulin composition, and subclass distribution were determined by electrophoretic and immunochemical methods. The in vitro thrombogenic potential was determined by a thrombin generation assay (TGA) using a Technothrombin fluorogenic substrate. Prekallikrein activator (PKA), plasmin, factor Xa, thrombin and thrombin-like activities were assessed using S-2302, S-2251, S-2222, S-2238 and S-2288 chromogenic substrates, respectively, and FXI by an ELISA. The thrombogenicity markers were reduced mostly during the ATPS step and were found to segregate mostly into the discarded liquid upper phase. The caprylic acid precipitation eliminated the residual procoagulant activity. The IgG preparations made from the 10 l-batches contained 100% gamma proteins, low residual IgA and undetectable IgM. The IgG subclass distribution was not substantially affected by the process. TGA and amidolytic activities revealed an undetectable in vitro thrombogenic risk and the absence of proteolytic enzymes in the final product. Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk. © 2014 International Society of Blood Transfusion.
Hadadeh, Ola; Barruet, Emilie; Peiretti, Franck; Verdier, Monique; Bernot, Denis; Hadjal, Yasmine; Yazidi, Claire El; Robaglia-Schlupp, Andrée; De Paula, Andre Maues; Nègre, Didier; Iacovino, Michelina; Kyba, Michael; Alessi, Marie-Christine; Binétruy, Bernard
2012-01-01
Regulation of the extracellular matrix (ECM) plays an important functional role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiation in vitro is unknown. We found that the PA system components are expressed at very low levels in undifferentiated ESCs and that upon differentiation uPA activity is detected mainly transiently, whereas tPA activity and PAI-1 protein are maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system display reduced adipogenic capacities after induction of the gene. Furthermore, the adipogenic differentiation capacities of PAI-1−/− induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms. PMID:23145071
Dual proteolytic pathways govern glycolysis and immune competence.
Lu, Wei; Zhang, Yu; McDonald, David O; Jing, Huie; Carroll, Bernadette; Robertson, Nic; Zhang, Qian; Griffin, Helen; Sanderson, Sharon; Lakey, Jeremy H; Morgan, Neil V; Reynard, Louise N; Zheng, Lixin; Murdock, Heardley M; Turvey, Stuart E; Hackett, Scott J; Prestidge, Tim; Hall, Julie M; Cant, Andrew J; Matthews, Helen F; Koref, Mauro F Santibanez; Simon, Anna Katharina; Korolchuk, Viktor I; Lenardo, Michael J; Hambleton, Sophie; Su, Helen C
2014-12-18
Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health. Copyright © 2014 Elsevier Inc. All rights reserved.
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
Kordesedehi, Reihane; Taheri-Kafrani, Asghar; Rabbani-Khorasgani, Mohammad; Kazemi, Rezvan; Mutangadura, Daniel; Haertle, Thomas
2018-06-20
Milk is a perfect source of nutrients for neonates. When breast feeding cannot be done, an infant's alimentation is usually initiated to cow's milk, among the primary foods. It has been reported that about 2.5% of juveniles under the age of 3 years manifest allergic reactions to cow's milk proteins. Among the cow's milk proteins, casein fractions are considered as the strongest allergenic proteins. The proteolytic enzymes of lactic acid bacteria (LAB), during fermentation of dairy products, can break down milk proteins especially caseins and subsequently reduce the immune reactivity of allergenic proteins. In this research, raw bovine and camel milk samples were screened for cocci LAB strains and after isolation, their proteolytic activity against bovine milk caseins were evaluated by SDS-PAGE and RP-HPLC. The potential of cocci LAB strains on α S1 -casein degradation and their potential to break down the principle allergenic epitopes of this protein was detected using indirect competitive ELISA. Molecular identification of the best proteolytic strain was fulfilled by 16S rDNA fragment sequencing with universal primers. The obtained results demonstrated that Enterococcus faecium isolated from raw camel milk samples was the most efficient isolate in hydrolyzing Na-caseinate and α S1 -casein. Hydrolysated α S1 -casein by Enterococcus faecium was also less recognized by IgE of bovine milk allergic patients' sera in comparison with native α S1 -casein. It has been proposed that Enterococcus faecium could be an efficient strain in allergenicity reduction of cow's milk proteins. So it could be an excellent candidate to be potentially used in dairy industries. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.
1995-01-01
Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.
Plant senescence and proteolysis: two processes with one destiny
Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M. Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel
2016-01-01
Abstract Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling. PMID:27505308
Plant senescence and proteolysis: two processes with one destiny.
Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel
2016-01-01
Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling.
Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis
2018-01-01
Sepsis is recognized as a life-threatening organ dysfunctional disease that is caused by dysregulated host responses to infection. Up to now, sepsis still remains a dominant cause of multiple organ dysfunction syndrome (MODS) and death among severe condition patients. Pyroptosis, originally named after the Greek words “pyro” and “ptosis” in 2001, has been defined as a specific programmed cell death characterized by release of inflammatory cytokines. During sepsis, pyroptosis is required for defense against bacterial infection because appropriate pyroptosis can minimize tissue damage. Even so, pyroptosis when overactivated can result in septic shock, MODS, or increased risk of secondary infection. Proteolytic cleavage of gasdermin D (GSDMD) by caspase-1, caspase-4, caspase-5, and caspase-11 is an essential step for the execution of pyroptosis in activated innate immune cells and endothelial cells stimulated by cytosolic lipopolysaccharide (LPS). Cleaved GSDMD also triggers NACHT, LRR, and PYD domain-containing protein (NLRP) 3-mediated activation of caspase-1 via an intrinsic pathway, while the precise mechanism underlying GSDMD-induced NLRP 3 activation remains unclear. Hence, this study provides an overview of the recent advances in the molecular mechanisms underlying pyroptosis in sepsis. PMID:29706799
Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis.
Gao, Yu-Lei; Zhai, Jian-Hua; Chai, Yan-Fen
2018-01-01
Sepsis is recognized as a life-threatening organ dysfunctional disease that is caused by dysregulated host responses to infection. Up to now, sepsis still remains a dominant cause of multiple organ dysfunction syndrome (MODS) and death among severe condition patients. Pyroptosis, originally named after the Greek words " pyro " and " ptosis " in 2001, has been defined as a specific programmed cell death characterized by release of inflammatory cytokines. During sepsis, pyroptosis is required for defense against bacterial infection because appropriate pyroptosis can minimize tissue damage. Even so, pyroptosis when overactivated can result in septic shock, MODS, or increased risk of secondary infection. Proteolytic cleavage of gasdermin D (GSDMD) by caspase-1, caspase-4, caspase-5, and caspase-11 is an essential step for the execution of pyroptosis in activated innate immune cells and endothelial cells stimulated by cytosolic lipopolysaccharide (LPS). Cleaved GSDMD also triggers NACHT, LRR, and PYD domain-containing protein (NLRP) 3-mediated activation of caspase-1 via an intrinsic pathway, while the precise mechanism underlying GSDMD-induced NLRP 3 activation remains unclear. Hence, this study provides an overview of the recent advances in the molecular mechanisms underlying pyroptosis in sepsis.
Escobar-Henriques, Mafalda; Langer, Thomas
2006-01-01
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.
USDA-ARS?s Scientific Manuscript database
Human neutrophil elastase (HNE) and porcine pancreatic elastase (PPE) are serine proteases with destructive proteolytic activity. Because of this activity, there is considerable interest in elastase sensors. Herein we report the synthesis, characterization, and kinetic profiles of tri- and tetrapept...
Effect of high pressures on the enzymatic activity of commercial milk protein coagulants
NASA Astrophysics Data System (ADS)
Wiśniewska, Krystyna; Reps, Arnold; Jankowska, Agnieszka
2014-04-01
This study was aimed at determining the effect of high pressures in the range of 100-1000 MPa/15 min, applied in 100 MPa increments, on the coagulating and proteolytic activity of commercial coagulants produced with genetic engineering methods: Maxiren, Chymogen, Chymax and of a natural rennin preparation, Hala. The coagulating activity of Hala preparation differed compared with the other preparations, due to greater resistance to high pressures, especially in the range of 500-600 MPa. The preparations produced with genetic engineering methods lost their capability for milk protein coagulation by 500 MPa. Pressurization at 200 MPa contributed to their reduced capability for casein macroproteolysis. In contrast, an increase in Chymax, Chymogen, Maxiren and Hala preparations' hydrolytic capability for the macroproteolysis of isoelectric casein was observed upon pressure treatment at 100 and 400 MPa and for microproteolysis after pressure treatment at 200 MPa. Storage (48 h/5°C) of the pressurized preparations had an insignificant effect on their coagulating and proteolytic activities.
Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury.
Grady, T; Mah'Moud, M; Otani, T; Rhee, S; Lerch, M M; Gorelick, F S
1998-11-01
The pathological activation of digestive zymogens within the pancreatic acinar cell probably plays a central role in initiating many forms of pancreatitis. To examine the relationship between zymogen activation and acinar cell injury, we investigated the effects of secretagogue treatment on isolated pancreatic acini. Immunofluorescence studies using antibodies to the trypsinogen-activation peptide demonstrated that both CCK (10(-7) M) hyperstimulation and bombesin (10(-5) M) stimulation of isolated acini resulted in trypsinogen processing to trypsin. These treatments also induced the proteolytic processing of procarboxypeptidase A1 to carboxypeptidase A1 (CA1). After CCK hyperstimulation, most CA1 remained in the acinar cell. In contrast, the CA1 generated by bombesin was released from the acinar cell. CCK hyperstimulation of acini was associated with cellular injury, whereas bombesin treatment did not induce injury. These studies suggest that 1) proteolytic zymogen processing occurs within the pancreatic acinar cell and 2) both zymogen activation and the retention of enzymes within the acinar cell may be required to induce injury.
Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.
Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E
2013-03-01
Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action. Georg Thieme Verlag KG Stuttgart · New York.
Zhang, Xuebin; Abrahan, Carolina; Colquhoun, Thomas A.; ...
2017-04-26
Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFB CHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFB CHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFB CHS exhibits developmental expression patterns in Arabidopsis leaves, stems, andmore » siliques and strongly responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFB CHS expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFB CHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuebin; Abrahan, Carolina; Colquhoun, Thomas A.
Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFB CHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFB CHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFB CHS exhibits developmental expression patterns in Arabidopsis leaves, stems, andmore » siliques and strongly responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFB CHS expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFB CHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.« less
Takasuka, Taichi E; Acheson, Justin F; Bianchetti, Christopher M; Prom, Ben M; Bergeman, Lai F; Book, Adam J; Currie, Cameron R; Fox, Brian G
2014-01-01
β-Mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity.
Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara-Nishimura, I.; Nishimura, M.
1987-10-01
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with (/sup 35/S)methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, ..gamma.. and delta. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin bymore » the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg/sup 2 +/, and Cu/sup 2 +/, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.« less
Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S
2007-04-01
The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions.
Model for Stress-induced Protein Degradation in Lemna minor1
Cooke, Robert J.; Roberts, Keith; Davies, David D.
1980-01-01
Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588
2011-01-01
Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089
Unajak, Sasimanas; Aroonluke, Suradet; Promboon, Amornrat
2015-04-01
Cocoonase is a serine protease produced by silk moths and used for softening the cocoons so that they can escape. Degumming is one of the important steps in silk processing. This research aimed to produce an active recombinant Bombyx mori cocoonase (BmCoc) for the silk degumming process. A recombinant BmCoc was successfully expressed in a Pichia pastoris system. The purified enzyme showed specific activity of 227 U mg(-1) protein, 2.4-fold purification, 95% yield and a molecular weight of 26 kDa. The enzyme exhibited optimal temperature at 40 °C and optimal pH at 8, and showed thermal stability at 25-45 °C and pH stability at 5-9. The recombinant enzyme exhibited sericin degumming ability and color bleaching characteristics, and did not affect the fibroin fiber. The enzyme also degraded sericin substrate with a product size about 30-70 kDa. In this study, we successfully produced the active recombinant BmCoc in P. pastoris with promising functions for the Thai silk degumming process, which includes degumming, sericin degrading and color bleaching activities. Our data clearly indicated that the recombinant enzyme had proteolytic activity on sericin but not on fibroin proteins. The recombinant BmCoc has proven to be suitable for numerous applications in the silk industry. © 2014 Society of Chemical Industry.
Settachaimongkon, Sarn; Nout, M J Robert; Antunes Fernandes, Elsa C; Hettinga, Kasper A; Vervoort, Jacques M; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J; van Valenberg, Hein J F
2014-05-02
Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L. delbrueckii subsp. bulgaricus was investigated in terms of microbial growth, acidification and changes in the biochemical composition of milk during set-yoghurt fermentation. A complementary metabolomics approach was applied for global characterization of volatile and non-volatile polar metabolite profiles of yoghurt associated with proteolytic activity of the individual strains in the starter cultures. The results demonstrated that only non-proteolytic S. thermophilus (Prt-) strain performed proto-cooperation with L. delbrueckii subsp. bulgaricus. The proto-cooperation resulted in significant higher populations of the two species, faster milk acidification, significant abundance of aroma volatiles and non-volatile metabolites desirable for a good organoleptic quality of yoghurt. Headspace SPME-GC/MS and (1)H NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Furthermore, multivariate statistical analysis allows discriminating set-yoghurts fermented by different types of starter cultures according to their metabolite profiles. Our finding underlines that selection of suitable strain combinations in yoghurt starters is important for achieving the best technological performance regarding the quality of product. Copyright © 2014 Elsevier B.V. All rights reserved.
Macció, Laura; Vallés, Diego; Cantera, Ana Maria
2013-12-01
A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.
Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John
2017-01-09
Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assay Development Process | Office of Cancer Clinical Proteomics Research
Typical steps involved in the development of a mass spectrometry-based targeted assay include: (1) selection of surrogate or signature peptides corresponding to the targeted protein or modification of interest; (2) iterative optimization of instrument and method parameters for optimal detection of the selected peptide; (3) method development for protein extraction from biological matrices such as tissue, whole cell lysates, or blood plasma/serum and proteolytic digestion of proteins (usually with trypsin); (4) evaluation of the assay in the intended biological matrix to determine if e
Golikhajeh, Neshat; Razmjou, Jabraeil
2017-01-01
Digestive enzymatic activity in three geographic strains (Miandiab, Kalposh and Moghan regions) of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) reared on different sugar beet cultivars (Dorothea, Rozier, Persia and Perimer) was studied under laboratory conditions (25 ± 1 °C, 65 ± 5% RH, and a photo period of 16:8 (L:D) h photoperiod). The results of this study demonstrated that digestive protease and amylase activity of S. exigua larvae was affected by both geographic origin of the pest and host plant cultivar. Three strains reared on the same sugar beet cultivars demonstrated different levels of proteolytic and amylolytic activities in fourth and fifth instars. The highest proteolytic and amylolytic activity, in most cases, was observed in larvae collected from Kalposh region. Among different sugar beet cultivars, the highest protease activity in three strains was observed on cultivars Rozier and Perimer. Nevertheless, the highest amylase activity was seen on cultivar Dorothea, and the lowest activity was seen on cultivar Rozier. This study suggested that variations in digestive enzymatic activity of three geographic strains of S. exigua might be attributed to local adaptation with their local host plant and environmental conditions inherent by larvae. PMID:28069730
Pinsino, A; Roccheri, M C; Matranga, V
2014-02-01
In the marine environment, manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. In earlier reports we found that the exposure of Paracentrotus lividus sea urchin embryos to manganese produced phenotypes with no skeleton. In addition, manganese interfered with calcium uptake, perturbed extracellular signal-regulated kinase (ERK) signaling, affected the expression of skeletogenic genes, and caused an increase of the hsc70 and hsc60 protein levels. Here, we extended our studies focusing on the temporal activation of the p38 mitogen-activated protein kinase (p38 MAPK) and the proteolytic activity of metalloproteinases (MMPs). We found that manganese affects the stage-dependent dynamics of p38 MAPK activation and inhibits the total gelatin-auto-cleaving activity of MMPs, with the exclusion of the 90-85 kDa and 68-58 kDa MMPs, whose levels remain high all throughout development. Our findings correlate, for the first time to our knowledge, an altered activation pattern of the p38 MAPK with an aberrant MMP proteolytic activity in the sea urchin embryo. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nakonieczny, Mirosław; Michalczyk, Katarzyna; Kedziorski, Andrzej
2007-02-01
We assayed the relative activities of midgut proteolytic enzymes in individuals of the fourth (L(4)) and fifth (L(5)) instar of Apollo larvae, inhabiting Pieniny Mts (southern Poland). The comparisons between midgut tissue with glicocalyx (MT) and liquid midgut contents with peritrophic membrane (MC) were made. Optimal media pHs of the assayed proteolytic enzymes in P. apollo midgut samples were similar to those of other lepidopteran species. Endopeptidases, as well as carboxypeptidases, digested effectively in alkaline environment, while aminopeptidases were active in a broad pH range. Trypsin is probably the main endoprotease (correlation with caseinolytic activity in MC of L(5) larvae: r=0.606; p=0.004); however, its activity was low as compared with that in other leaf-eating Lepidoptera. This suggests a minor role of trypsin and chymotrypsin in protein digestion in Apollo larvae, probably due to limited availability of the leaf proteins. Instead, due to very high carboxypeptidase A activity in midgut tissue, the larvae obtain exogenous amino acids either directly or from oligopeptides and glycoproteins. High and significant positive correlations between the enzyme activity and glucosidase as well as galactosidase activities strongly support this opinion.
Cell Surface Translocation of Annexin A2 Facilitates Glutamate-induced Extracellular Proteolysis*
Valapala, Mallika; Maji, Sayantan; Borejdo, Julian; Vishwanatha, Jamboor K.
2014-01-01
Glutamate-induced elevation in intracellular Ca2+ has been implicated in excitotoxic cell death. Neurons respond to increased glutamate levels by activating an extracellular proteolytic cascade involving the components of the plasmin-plasminogen system. AnxA2 is a Ca2+-dependent phospholipid binding protein and serves as an extracellular proteolytic center by recruiting the tissue plasminogen activator and plasminogen and mediating the localized generation of plasmin. Ratiometric Ca2+ imaging and time-lapse confocal microscopy demonstrated glutamate-induced Ca2+ influx. We showed that glutamate translocated both endogenous and AnxA2-GFP to the cell surface in a process dependent on the activity of the NMDA receptor. Glutamate-induced translocation of AnxA2 is dependent on the phosphorylation of tyrosine 23 at the N terminus, and mutation of tyrosine 23 to a non-phosphomimetic variant inhibits the translocation process. The cell surface-translocated AnxA2 forms an active plasmin-generating complex, and this activity can be neutralized by a hexapeptide directed against the N terminus. These results suggest an involvement of AnxA2 in potentiating glutamate-induced cell death processes. PMID:24742684
Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan
2013-12-01
The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.
Rasmussen, Lauren; Olapade, Ola A
2016-04-01
Temporal responses of indigenous bacterial populations and proteolytic enzyme (i.e., aminopeptidase) activities in the bacterioplankton assemblages from 3 separate freshwater environments were examined after exposure to various zinc (Zn) concentrations under controlled microcosm conditions. Zn concentrations (ranging from 0 to 10 μmol/L) were added to water samples collected from the Kalamazoo River, Rice Creek, and Huron River and examined for bacterial abundance and aminopeptidase activities at various time intervals over a 48 h incubation period in the dark. The results showed that the Zn concentrations did not significantly influence total bacterial counts directly; however, aminopeptidase activities varied significantly to increasing zinc treatments over time. Also, analysis of variance and linear regression analyses revealed significant positive relationships between bacterial numbers and their hydrolytic enzyme activities, suggesting that both probably co-vary with increasing Zn concentrations in aquatic systems. The results from this study serve as additional evidence of the ecological role of Zn as an extracellular peptidase cofactor on the dynamics of bacterial assemblages in aquatic environments.
Poly-Ub-Substrate-Degradative Activity of 26S Proteasome Is Not Impaired in the Aging Rat Brain
Giannini, Carolin; Kloß, Alexander; Gohlke, Sabrina; Mishto, Michele; Nicholson, Thomas P.; Sheppard, Paul W.; Kloetzel, Peter-Michael; Dahlmann, Burkhardt
2013-01-01
Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process. PMID:23667697
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun
2011-11-15
The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the freemore » radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.« less
Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang
2015-01-01
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Bommarius, B.; Jenssen, H.; Elliott, M.; Kindrachuk, J.; Pasupuleti, Mukesh; Gieren, H; Jaeger, K.-E.; Hancock, R.E. W.
2010-01-01
Cationic antimicrobial host defense peptides (HDPs) combat infection by directly killing a wide variety of microbes, and/or modulating host immunity. HDPs have great therapeutic potential against antibiotic-resistant bacteria, viruses and even parasites, but there are substantial roadblocks to their therapeutic application. High manufacturing costs associated with amino acid precursors have limited the delivery of inexpensive therapeutics through industrial-scale chemical synthesis. Conversely, the production of peptides in bacteria by recombinant DNA technology has been impeded by the antimicrobial activity of these peptides and their susceptibility to proteolytic degradation, while subsequent purification of recombinant peptides often requires multiple steps and has not been cost-effective. Here we have developed methodologies appropriate for large-scale industrial production of HDPs; in particular, we describe (i) a method, using fusions to SUMO, for producing high yields of intact recombinant HDPs in bacteria without significant toxicity; and (ii) a simplified 2-step purification method appropriate for industrial use. We have used this method to produce seven HDPs to date (IDR1, MX226, LL37, CRAMP, HHC-10, E5 and E6). Using this technology, pilot-scale fermentation (10 L) was performed to produce large quantities of biologically active cationic peptides. Together, these data indicate that this new method represents a cost-effective means to enable commercial enterprises to produce HDPs in large-scale under Good Laboratory Manufacturing Practice (GMP) conditions for therapeutic application in humans. PMID:20713107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov
2010-07-30
Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less
Challenges in searching for therapeutics against Botulinum Neurotoxins.
Pirazzini, Marco; Rossetto, Ornella
2017-05-01
Botulinum neurotoxins (BoNTs) are the most potent toxins known. BoNTs are responsible for botulism, a deadly neuroparalytic syndrome caused by the inactivation of neurotransmitter release at peripheral nerve terminals. Thanks to their specificity and potency, BoNTs are both considered potential bio-weapons and therapeutics of choice for a variety of medical syndromes. Several variants of BoNTs have been identified with individual biological properties and little antigenic relation. This expands greatly the potential of BoNTs as therapeutics but poses a major safety problem, increasing the need for finding appropriate antidotes. Areas covered: The authors describe the multi-step molecular mechanism through which BoNTs enter nerve terminals and discuss the many levels at which the toxins can be inhibited. They review the outcomes of the different strategies adopted to limit neurotoxicity and counter intoxication. Potential new targets arising from the last discoveries of the mechanism of action and the approaches to promote neuromuscular junction recovery are also discussed. Expert opinion: Current drug discovery efforts have mainly focused on BoNT type A and addressed primarily light chain proteolytic activity. Development of pan-BoNT inhibitors acting independently of BoNT immunological properties and targeting a common step of the intoxication process should be encouraged.
Effect of amino acid substitution on biological activity of cyanophlyctin-β and brevinin-2R
NASA Astrophysics Data System (ADS)
Ghorani-Azam, Adel; Balali-Mood, Mahdi; Aryan, Ehsan; Karimi, Gholamreza; Riahi-Zanjani, Bamdad
2018-04-01
Antimicrobial peptides (AMPs), as ancient immune components, are found in almost all types of living organisms. They are bioactive components with strong antibacterial, antiviral, and anti-tumor properties. In this study, we designed three sequences of antimicrobial peptides to study the effects of structural changes in biological activity compared with original peptides, cyanophlyctin β, and brevinin-2R. For antibacterial activity, two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeroginosa) were assayed. Unlike cyanophlyctin β and brevinin-2R, the synthesized peptide (brevinin-M1, brevinin-M2 and brevinin-M3) showed no considerable antibacterial properties. Hemolytic activity of these peptides was also ignorable even at very high concentrations of 2 mg/ml. However, after proteolytic digestion by trypsin, the peptides showed antibacterial activity comparable to their original template sequences. Structural prediction suggested that the motif sequence responsible for antibacterial activity may be re-exposed to bacterial cell membrane after proteolytic digestion. Also, findings showed that only a small change in primary sequence and therefore structure of peptides may result in a significant alteration in biological activity.
Rastogi, Akriti; Sarkar, Angshuman; Chakrabarty, Dibakar
2017-06-15
Rhizostoma pulmo (Barrel Jellyfish) is one of the commonly found jellyfishes on the South-Goan coast of India. Here we present characterization of R. pulmo tentacle extract. The tentacle extracts were found to be capable of affecting the hemostatic system at three different levels, as it exhibited fibrinogenolysis, fibrinolysis and inhibition of ADP induced platelet aggregation. It preferentially cleaved the Aα chain of fibrinogen, followed by the Bβ chain and the γ chain. The tentacle extract also showed significant hemolytic activity against human RBCs and strong proteolytic activity for substrates like (azo) casein and gelatin. However, this proteolytic activity was completely inhibited by EDTA (metalloproteinase inhibitor) but not by PMSF (serine proteinase inhibitor). The extract was devoid of phospholipase activity. A semi-purified protein possessing fibrinogenolytic activity was obtained by a combination of ammonium sulphate precipitation and size exclusion HPLC. Atomic absorption analysis of this protein indicated presence of Zn 2+ and treatment with metalloproteinase inhibitor caused complete loss of activity. A 95 kDa metalloproteinase was identified in this fraction and was named Rhizoprotease. Protein Mass Fingerprinting of Rhizoprotease indicates it to be a novel protein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proteolytic activity during senescence of plants
NASA Technical Reports Server (NTRS)
Huffaker, R. C.
1990-01-01
Although information has rapidly developed concerning the intracellular localization of plant proteins, relatively few reports concern the intracellular location of endo- and exo-proteolytic activities. Relatively few proteases have been purified, characterized, and associated with a specific cellular location. With the exception of the processing proteases involved in transport of proteins across membranes, little progress has yet been made concerning determination of in vivo products of specific proteases. Information on the turnover of individual proteins and the assessment of rate-limiting steps in pathways as proteins are turned over is steadily appearing. Since chloroplasts are the major site of both protein synthesis and, during senescence, degradation, it was important to show unambiguously that chloroplasts can degrade their own constituents. Another important contribution was to obtain evidence that the chloroplasts contain proteases capable of degrading their constituents. This work has been more tenuous because of the low activities found and the possibility of contamination by vacuolar enzymes during the isolation of organelles. The possible targeting of cytoplasmic proteins for degradation by facilitating their transport into vacuoles is a field which hopefully will develop more rapidly in the future. Information on targeting of proteins for degradation via the ubiquitin (Ub) degradation pathway is developing rapidly. Future research must determine how much unity exists across the different eukaryotic systems. At present, it has important implications for protein turnover in plants, since apparently Ub is involved in the degradation of phytochrome. Little information has been developed regarding what triggers increased proteolysis with the onset of senescence, although it appears to involve protein synthesis. Thus far, the evidence indicates that the complement of proteases prior to senescence is sufficient to carry out the observed protein degradation. This field of study has great practical implications, e.g. maintaining photosynthesis during seed-fill in order to obtain greater crop yields. The current use of stay green' variants in the populations of several crop plants to produce increased yields shows the potential for future development. The near future should see exciting discoveries in these areas of research that will have far reaching effects on the construction of transgenic plants for future research accomplishments and agricultural use.
The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6.
Üstün, Suayib; Börnke, Frederik
2015-05-01
Many animal and plant pathogenic bacteria inject type III effector (T3E) proteins into their eukaryotic host cells to suppress immunity. The Yersinia outer protein J (YopJ) family of T3Es is a widely distributed family of effector proteins found in both animal and plant pathogens, and its members are highly diversified in virulence functions. Some members have been shown to possess acetyltransferase activity; however, whether this is a general feature of YopJ family T3Es is currently unknown. The T3E Xanthomonas outer protein J (XopJ), a YopJ family effector from the plant pathogen Xanthomonas campestris pv vesicatoria, interacts with the proteasomal subunit Regulatory Particle AAA-ATPase6 (RPT6) in planta to suppress proteasome activity, resulting in the inhibition of salicylic acid-related immune responses. Here, we show that XopJ has protease activity to specifically degrade RPT6, leading to reduced proteasome activity in the cytoplasm as well as in the nucleus. Proteolytic degradation of RPT6 was dependent on the localization of XopJ to the plasma membrane as well as on its catalytic triad. Mutation of the Walker B motif of RPT6 prevented XopJ-mediated degradation of the protein but not XopJ interaction. This indicates that the interaction of RPT6 with XopJ is dependent on the ATP-binding activity of RPT6, but proteolytic cleavage additionally requires its ATPase activity. Inhibition of the proteasome impairs the proteasomal turnover of Nonexpressor of Pathogenesis-Related1 (NPR1), the master regulator of salicylic acid responses, leading to the accumulation of ubiquitinated NPR1, which likely interferes with the full induction of NPR1 target genes. Our results show that YopJ family T3Es are not only highly diversified in virulence function but also appear to possess different biochemical activities. © 2015 American Society of Plant Biologists. All Rights Reserved.
Petersen, Lauren M; Tisa, Louis S
2014-11-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Cousin, Hélène; Abbruzzese, Genevieve; Kerdavid, Erin; Gaultier, Alban; Alfandari, Dominique
2011-01-01
Summary ADAMs are transmembrane metalloproteases that control cell behavior by cleaving both cell adhesion and signaling molecules. The cytoplasmic domain of ADAMs can regulate the proteolytic activity by controlling the subcellular localization and/or the activation of the protease domain. Here we show that the cytoplasmic domain of ADAM13 is cleaved and translocates into the nucleus. Preventing this translocation renders the protein incapable of promoting cranial neural crest (CNC) cell migration in vivo, without affecting its proteolytic activity. In addition, the cytoplasmic domain of ADAM13 regulates the expression of multiple genes in CNC, including the protease Calpain8-a. Restoring the expression of Calpain8-a is sufficient to rescue CNC migration in the absence of the ADAM13 cytoplasmic domain. This study shows that the cytoplasmic domain of ADAM metalloproteases can perform essential functions in the nucleus of cells and may contribute substantially to the overall function of the protein. PMID:21316592
The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity
Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T.; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique
2015-01-01
ABSTRACT Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. PMID:25616895
Applicability of Yeast Extracellular Proteinases in Brewing: Physiological and Biochemical Aspects
Bilinski, Carl A.; Russell, Inge; Stewart, Graham G.
1987-01-01
A general screening survey for expression of extracellular acid proteinase production was performed on over 100 cultures belonging to the genus Saccharomyces. Although two strains of Saccharomyces cerevisiae showed positive extracellular proteinase phenotypes in plate tests, it was not possible to demonstrate proteolytic activities in cell-free culture supernatants in assays performed at beer pH values. Of several yeasts from other genera examined, Saccharomycopsis fibuligera and Torulopsis magnoliae produced extracellular proteinases with desirable properties. Proteolytic activities were detected in assays performed at beer pH values and at lower temperature. Brewer's wort served as a highly inducing medium for extracellular proteinase production, with T. magnoliae yielding enzyme of highest specific activity. In fact, commencement of enzyme production was detected shortly after the onset of exponential growth in brewer's wort. Inclusion of crude enzyme preparations in brewer's wort inoculated simultaneously with brewer's yeast reduced final ethanol yields slightly and was found to be effective in reducing chill haze formation in bottled beer. PMID:16347298
[Intracellular Protein Degradation in Growth of Atlantic Salmon, Salmo salar L].
Lysenko, L A; Kantserova, N P; Krupnova, M Yu; Veselov, A E; Nemova, N N
2015-01-01
A brief review on the common characteristics and specific features of proteolytic machinery in fish skeletal muscles (based on Atlantic salmon, Salmo salar L., Salmonidae) has been given. Among a variety of proteases in the muscle tissue, those determining protein degradation level in developing and intensively growing muscles in salmon young and by this way regulating protein retention intensity and growth at all namely lysosomal cathepsins B and D and calcium-dependent proteases (calpains) were comprehensively studied. Revealed age-related differences in intracellular protease activity in salmon skeletal muscles indicate the role of proteolysis regulation in growth in general and a specific role of the individual proteolytic enzymes in particular. The data on negative correlation of cathepsin D and calpain activity levels in muscles and the rate of weight increase in juvenile salmon were obtained. A revealed positive correlation of cathepsin B activity and morphometric parameters in fish young presumably indicates its primary contribution to non-myofibrillar protein turnover.
Dei Piu', Lucilla; Tassoni, Annalisa; Serrazanetti, Diana Isabella; Ferri, Maura; Babini, Elena; Tagliazucchi, Davide; Gianotti, Andrea
2014-07-15
Small peptides show higher antioxidant capacity than native proteins and may be absorbed in the intestine without further digestion. In our study, a protein by-product from rice starch industry was hydrolyzed with commercial proteolytic enzymes (Alcalase, Neutrase, Flavourzyme) and microbial whole cells of Bacillus spp. and the released peptides were tested for antioxidant activity. Among enzymes, Alcalase was the most performing, while microbial proteolytic activity was less efficient. Conversely, the antioxidant activity was higher in the samples obtained by microbial hydrolysis and particularly with Bacillus pumilus AG1. The sequences of low molecular weight antioxidant peptides were determined and analyzed for aminoacidic composition. The results obtained so far suggest that the hydrolytic treatment of this industrial by-product, with selected enzymes and microbial systems, can allow its exploitation for the production of functional additives and supplements rich in antioxidant peptides, to be used in new food formulas for human consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Ju Yeon; Kim, Jin Young; Park, Gun Wook; Cheon, Mi Hee; Kwon, Kyung-Hoon; Ahn, Yeong Hee; Moon, Myeong Hee; Lee, Hyoung–Joo; Paik, Young Ki; Yoo, Jong Shin
2011-01-01
A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma, without the need for complex enrichment processes or expensive antibody preparations. PMID:21940909
Proteolytic and Trypsin Inhibitor Activity in Germinating Jojoba Seeds (Simmondsia chinensis).
Samac, D; Storey, R
1981-12-01
Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling.Jojoba cotyledonary extracts were found to inhibit the enzymic activity of trypsin, chymotrypsin, and pepsin but not the protease from Aspergillus saotoi. The heat-labile trypsin inhibitor substance(s) was found in commercially processed jojoba seed meal and the albumin fraction of seed proteins. Trypsin inhibitor activity decreased with germination.
Proteolytic and Trypsin Inhibitor Activity in Germinating Jojoba Seeds (Simmondsia chinensis) 1
Samac, Deborah; Storey, Richard
1981-01-01
Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling. Jojoba cotyledonary extracts were found to inhibit the enzymic activity of trypsin, chymotrypsin, and pepsin but not the protease from Aspergillus saotoi. The heat-labile trypsin inhibitor substance(s) was found in commercially processed jojoba seed meal and the albumin fraction of seed proteins. Trypsin inhibitor activity decreased with germination. PMID:16662104
Tunable protease-activatable virus nanonodes.
Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae
2014-05-27
We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.
Tunable Protease-Activatable Virus Nanonodes
2015-01-01
We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery. PMID:24796495
Böttger, Roland; Hoffmann, Ralf; Knappe, Daniel
2017-01-01
Proteolytic degradation of peptide-based drugs is often considered as major weakness limiting systemic therapeutic applications. Therefore, huge efforts are typically devoted to stabilize sequences against proteases present in serum or plasma, obtained as supernatants after complete blood coagulation or centrifugation of blood supplemented with anticoagulants, respectively. Plasma and serum are reproducibly obtained from animals and humans allowing consistent for clinical analyses and research applications. However, the spectrum of active or activated proteases appears to vary depending on the activation of proteases and cofactors during coagulation (serum) or inhibition of such enzymes by anticoagulants (plasma), such as EDTA (metallo- and Ca2+-dependent proteases) and heparin (e.g. thrombin, factor Xa). Here, we studied the presumed effects on peptide degradation by taking blood via cardiac puncture of CD-1 mice using a syringe containing a peptide solution. Due to absence of coagulation activators (e.g. glass surfaces and damaged cells), visible blood clotting was prevented allowing to study peptide degradation for one hour. The remaining peptide was quantified and the degradation products were identified using mass spectrometry. When the degradation rates (half-life times) were compared to serum derived freshly from the same animal and commercial serum and plasma samples, peptides of three different families showed indeed considerably different stabilities. Generally, peptides were faster degraded in serum than in plasma, but surprisingly all peptides were more stable in fresh blood and the order of degradation rates among the peptides varied among the six different incubation experiments. This indicates, that proteolytic degradation of peptide-based therapeutics may often be misleading stimulating efforts to stabilize peptides at degradation sites relevant only in vitro, i.e., for serum or plasma stability assays, but of lower importance in vivo.
Lenzo, Jason C; O'Brien-Simpson, Neil M; Orth, Rebecca K; Mitchell, Helen L; Dashper, Stuart G; Reynolds, Eric C
2016-09-01
Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals-P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa-for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lenzo, Jason C.; O'Brien-Simpson, Neil M.; Orth, Rebecca K.; Mitchell, Helen L.; Dashper, Stuart G.
2016-01-01
Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals—P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa—for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis. Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals. PMID:27354442
Ji, Shengyue; Li, Weili; Zhang, Lei; Zhang, Yue; Cao, Binyun
2014-09-05
Cecropin A-melittin (CAM), a chimeric antimicrobial peptide with potent antimicrobial activity, is threatened by some special extracellular proteases when used to deal with certain drug-resistant pathogenic microbes in the gastrointestinal tract. Thus, a four-tryptophan-substitution mutant (CAM-W) from CAM was developed via the replacement of special amino acid residues to enhance the antimicrobial potency and to improve the proteolytic stability of this agent. The pharmaceutical index of CAM-W was investigated, with a focus on biological potency, cytotoxicity, and proteolytic stability, as well as pH and thermal resistance. CAM-W exhibited potent antimicrobial activity and was approximately 3-12 times higher than that of CAM. CAM-W also exhibited a strong antifungal activity against a series of common pathogenic fungi, in a lower IC50 range between 2.1mg/L and 3.3mg/L than that of its reference CAM ranging from 9.8mg/L to 14.2mg/L. Besides, CAM-W showed moderate cytotoxicity (IC50>300mg/L) in erythrocyte lysis test. In addition, CAM-W overcame challenges under various conditions, including specific temperatures (20, 30, 40, 50, 60, 70, 80, and 90°C), pH values (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0), and proteases (trypsin, pepsin, human neutrophil elastase, Pseudomonas aeruginosa elastase, and Staphylococcus aureus V8 protease) that are commonly present in human gastrointestinal tract. These results suggest that the four-tryptophan-substitution can confer CAM-W with a high pharmaceutical index, which is important for CAM-W to become a potential alternative to conventional antibiotics against bacteria and fungi associated with gastroenteritis. Copyright © 2014 Elsevier Inc. All rights reserved.
Un-nicked BoNT/B activity in human SHSY-5Y neuronal cells.
Shi, Xuerong; Garcia, Gregory E; Nambiar, Madhusoodana P; Gordon, Richard K
2008-09-01
BoNT/B holotoxin (HT) from the native source is a mixture of nicked and un-nicked forms. A previous study showed that while un-nicked HT could be transcytosed by intestinal epithelial cells, they did not correlate this with proteolytic activity or biological effect(s). Un-nicked HT is likely to be present in BoNT biological warfare agents (BWA), so it is important to investigate the relative toxicity of un-nicked HT in this BWA. To address this issue, we purified un-nicked HT from commercial sources and evaluated its ability to cleave substrates both in vitro and in vivo, and its effects on vesicle trafficking. The un-nicked HT was unable to cleave VAMPTide substrate used for in vitro proteolytic assays. Brief digestion of the un-nicked toxin with trypsin resulted in significant activation of the toxin proteolytic ability. SHSY-5Y human neuroblastoma cells were used to examine HT uptake and activation in vivo. Vesicle trafficking can be measured following K(+) stimulation of cells preloaded with [(3)H]-noradrenaline (NA). We found that highly purified un-nicked HT did inhibit NA release but at much reduced levels compared to the nicked toxin. That the reduction in NA release was due to BoNT effects on SNARE proteins was supported by the finding that VAMP-2 protein levels in un-nicked toxin treated cells was greater than those treated with nicked toxin. These results demonstrate that although un-nicked HT has markedly reduced toxicity than the nicked form, due to the preponderance in BoNT/B preparations from the native bacteria, it is a major source of toxicity. (c) 2008 Wiley-Liss, Inc.
Maunsell, Bláithín; Adams, Claire; O'Gara, Fergal
2006-01-01
In the soil bacterium Pseudomonas fluorescens M114, extracellular proteolytic activity and fluorescent siderophore (pseudobactin M114) production were previously shown to be co-ordinately negatively regulated in response to environmental iron levels. An iron-starvation extracytoplasmic function sigma factor, PbrA, required for the transcription of siderophore biosynthetic genes, was also implicated in M114 protease regulation. The current study centred on the characterization and genetic regulation of the gene(s) responsible for protease production in M114. A serralysin-type metalloprotease gene, aprA, was identified and found to encode the major, if not only, extracellular protease produced by this strain. The expression of aprA and its protein product were found to be subject to complex regulation. Transcription analysis confirmed that PbrA was required for full aprA transcription under low iron conditions, while the ferric uptake regulator, Fur, was implicated in aprA repression under high iron conditions. Interestingly, the iron regulation of AprA was dependent on culture conditions, with PbrA-independent AprA-mediated proteolytic activity observed on skim milk agar supplemented with yeast extract, when supplied with iron or purified pseudobactin M114. These effects were not observed on skim milk agar without yeast extract. PbrA-independent aprA expression was also observed from a truncated transcriptional fusion when grown in sucrose asparagine tryptone broth supplied with iron or purified pseudobactin M114. Thus, experimental evidence suggested that iron mediated its effects via transcriptional activation by PbrA under low iron conditions, while an as-yet-unidentified sigma factor(s) may be required for the PbrA-independent aprA expression and AprA proteolytic activity induced by siderophore and iron.
Takasuka, Taichi E.; Acheson, Justin F.; Bianchetti, Christopher M.; Prom, Ben M.; Bergeman, Lai F.; Book, Adam J.; Currie, Cameron R.; Fox, Brian G.
2014-01-01
β-mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity. PMID:24710170
Tsukamoto, Sachiko; Yokosawa, Hideyoshi
2006-01-01
The ubiquitin-proteasome proteolytic pathway plays a major role in selective protein degradation and regulates various cellular events including cell cycle progression, transcription, DNA repair, signal transduction, and immune response. Ubiquitin, a highly conserved small protein in eukaryotes, attaches to a target protein prior to degradation. The polyubiquitin chain tagged to the target protein is recognized by the 26S proteasome, a high-molecular-mass protease subunit complex, and the protein portion is degraded by the 26S proteasome. The potential of specific proteasome inhibitors, which act as anti-cancer agents, is now under intensive investigation, and bortezomib (PS-341), a proteasome inhibitor, has been recently approved by FDA for multiple myeloma treatment. Since ubiquitination of proteins requires the sequential action of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3), and polyubiquitination is a prerequisite for proteasome-mediated protein degradation, inhibitors of E1, E2, and E3 are reasonably thought to be drug candidates for treatment of diseases related to ubiquitination. Recently, various compounds inhibiting the ubiquitin-proteasome pathway have been isolated from natural resources. We also succeeded in isolating inhibitors against the proteasome and E1 enzyme from marine natural resources. In this review, we summarize the structures and biological activities of natural products that inhibit the ubiquitin-proteasome proteolytic pathway.
Pascual-Ruiz, S; Carrillo, L; Alvarez-Alfageme, F; Ruíz, M; Castañera, P; Ortego, F
2009-10-01
The effects of different prey regimes on the performance and digestive physiology of the spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae), were assessed. Specifically, P. maculiventris nymphs were fed on Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), larvae; Egyptian cotton leafworm (ECW); Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae); larvae; Calliphora spp. (CAL) (Diptera: Calliphoridae) pupae or a mixture of the three prey. No differences in development and weight gain were observed when P. maculiventris nymphs were fed different prey species (CPB, ECW or CAL). However, an increase in weight gain and a reduction in the duration of the stadia were observed for nymphs fed with a mixture of the three prey. To investigate the physiological background, biochemical analysis were carried out on insects dissected at the end of the feeding assay. We have found that the proteolytic activity in the salivary glands of P. maculiventris nymphs was not affected by prey species, whereas the relative activity of these proteases in the midgut depends on the prey. Moreover, gel assays proved that the proteolytic profiles of midguts from P. maculiventris nymphs feeding on CPB, ECW and CPB closely resembled those of their prey. All together, these results suggest that P. maculiventris may utilize enzymes from the prey they consume that may facilitate the process of digestion.
Single cell multiplexed assay for proteolytic activity using droplet microfluidics.
Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung
2016-07-15
Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Gang; Xu, Xiao-Xia; Yu, Jing; Li, Lin-Miao; Ju, Wen-Yan; Jin, Feng-Liang; Freed, Shoaib
2016-09-01
The proteolytic activation of prophenoloxidase (proPO) is a humoral defense mechanism in insects and crustaceans. Phenoloxidase (PO) is produced as an inactive precursor namely, proPO and is activated via specific proteolytic cleavage by proPO-activating proteinase. The current research reports two novel serine proteinase genes (PxSP1-768 bp and PxSP2-816 bp) from Plutella xylostella, encoding 255 and 271 amino acid residues, respectively. Tissue distribution analyses by semiquantitative reverse transcription-PCR (RT-PCR) revealed the resultant genes to be primarily expressed in the hemocytes, while quantitative-RT-PCR (qRT-PCR) assay showed that transcription level of PxSP1 and PxSP2 increased significantly after injection of the fungal pathogen Beauveria bassiana. Purified recombinant fusion proteins of PxSP2 and PxSP1 were injected to New Zealand white rabbits and polyclonal antibodies were generated with the titers of 1:12,800. After silencing the expression of PxSP2 by RNAi, the PO activity decreased significantly. The results show that PxSP2 is involved in prophenoloxidase activation in P. xylostella. © 2016 Wiley Periodicals, Inc.
Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩
Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.
2009-01-01
Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239
Effect of wine inhibitors on the proteolytic activity of papain from Carica papaya L. latex.
Benucci, Ilaria; Esti, Marco; Liburdi, Katia
2015-01-01
The influence of potential inhibitors naturally present in wine on the proteolytic activity of papain from Carica papaya latex was investigated to evaluate its applicability in white wine protein haze stabilization. Enzymatic activity was tested against a synthetic tripeptide chromogenic substrate in wine-like acidic medium that consisted of tartaric buffer (pH 3.2) supplemented with ethanol, free sulfur dioxide (SO2 ), grape skin and seed tannins within the average ranges of concentrations that are typical in wine. The diagnosis of inhibition type, performed with the graphical method, demonstrated that all of tested wine constituents were reversible inhibitors of papain. The strongest inhibition was exerted by free SO2 , which acted as a mixed-type inhibitor, similar to grape skin and seed tannins. Finally, when tested in table white wines, the catalytic activity of papain, even when if it was ascribable to the hyperbolic behavior of Michaelis-Menten equation, was determined to be strongly affected by free SO2 and total phenol level. © 2014 American Institute of Chemical Engineers.
Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N
2014-08-01
Search for bioactive peptides is intensifying because of the risks associated with the use of synthetic therapeutics, thus peptide liberation by lactic acid bacteria and probiotics has received a great focus. However, proteolytic capacity of these bacteria is strain specific. The study was conducted to establish proteolytic activity of Lactobacillus acidophilus (ATCC® 4356™), Lactobacillus casei (ATCC® 393™) and Lactobacillus paracasei subsp. paracasei (ATCC® BAA52™) in yogurt. Crude peptides were separated by high-speed centrifugation and tested for antioxidant and antimutagenic activities. The degree of proteolysis highly correlated with these bioactivities, and its value (11.91%) for samples containing all the cultures was double that of the control. Liberated peptides showed high radical scavenging activities with 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), IC50 1.51 and 1.63mg/ml, respectively and strong antimutagenicity (26.35%). These probiotics enhanced the generation of bioactive peptides and could possibly be commercially applied in new products, or production of novel anticancer peptides. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Nogal, María L.; González de Buitrago, Gonzalo; Rodríguez, Clara; Cubelos, Beatriz; Carrascosa, Angel L.; Salas, María L.; Revilla, Yolanda
2001-01-01
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis. PMID:11222676
Nogal, M L; González de Buitrago, G; Rodríguez, C; Cubelos, B; Carrascosa, A L; Salas, M L; Revilla, Y
2001-03-01
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis.
A novel proteolytic processing of prolysyl oxidase
Atsawasuwan, Phimon; Mochida, Yoshiyuki; Katafuchi, Michitsuna; Tokutomi, Kentaro; Mocanu, Viorel; Parker, Carol E.; Yamauchi, Mitsuo
2012-01-01
Lysyl oxidase (LOX) is an amine oxidase that is critical for the stability of connective tissues. The secreted proLOX is enzymatically quiescent and is activated through proteolytic cleavage between residue Gly162 and Asp163 (residue numbers according to the mouse LOX) by bone morphogenetic protein (BMP)-1 gene products. Here we report a novel processing of proLOX identified in vitro and in vivo. Two forms of mature LOX were identified and characterized by their immunoreactivity to specific antibodies, amine oxidase activity and mass spectrometry. One form was identified as a well characterized BMP-1 processed LOX protein. Another was found to be a truncated form of LOX (tLOX) resulting from the cleavage at the carboxy terminus of Arg192. The tLOX still appeared to retain amine oxidase activity. The results from the proLOX gene deletion and mutation experiments indicated that the processing occurs independent of the cleavage of proLOX by BMP-1 gene products and likely requires the presence of LOX propeptide. These results indicate that proLOX could be processed by two different mechanisms producing two forms of active LOX. PMID:21591931
A novel proteolytic processing of prolysyl oxidase.
Atsawasuwan, Phimon; Mochida, Yoshiyuki; Katafuchi, Michitsuna; Tokutomi, Kentaro; Mocanu, Viorel; Parker, Carol E; Yamauchi, Mitsuo
2011-01-01
Lysyl oxidase (LOX) is an amine oxidase that is critical for the stability of connective tissues. The secreted proLOX is enzymatically quiescent and is activated through proteolytic cleavage between residues Gly(162) and Asp(163) (residue numbers according to the mouse LOX) by bone morphogenetic protein (BMP)-1 gene products. Here we report a novel processing of proLOX identified in vitro and in vivo. Two forms of mature LOX were identified and characterized by their immunoreactivity to specific antibodies, amine oxidase activity, and mass spectrometry. One form was identified as a well-characterized BMP-1 processed LOX protein. Another was found to be a truncated form of LOX resulting from the cleavage at the carboxy terminus of Arg(192). The truncated form of LOX still appeared to retain amine oxidase activity. The results from the proLOX gene deletion and mutation experiments indicated that the processing occurs independent of the cleavage of proLOX by BMP-1 gene products and likely requires the presence of LOX propeptide. These results indicate that proLOX could be processed by two different mechanisms producing two forms of active LOX.
Petrova, Inna; Tolstorebrov, Ignat; Mora, Leticia; Toldrá, Fidel; Eikevik, Trygve Magne
2016-11-01
Proteolytic activity and physico-chemical characteristics were studied for Norwegian dry-cured ham at four different times of processing: raw hams, post-salted hams (3 months of processing), hams selected in the middle of the production (12 months of processing) and hams at the end of the processing (24 months). Cathepsin H activity decreased until negligible values after 3 months of processing, whereas cathepsins B and B+L were inactive at 12 months. AAP was the most active aminopeptidase whereas RAP and MAP were active just during the first 12 months of processing. Proteolysis index reached a value of 4.56±1.03 % with non-significant differences between 12 and 24 months of ripening. Peptide identification by LC-MS/MS was done and two peptides (GVEEPPKGHKGNKK and QAISNNKDQGSY) showing a linear response with the time of processing were found. Unfreezable water content and glass transition temperature were investigated using differential scanning calorimetry (DSC) technique with non-significant differences in the temperature of glass transition for 12 and 24 months of processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sakai, Kouji; Ami, Yasushi; Tahara, Maino; Kubota, Toru; Anraku, Masaki; Abe, Masako; Nakajima, Noriko; Sekizuka, Tsuyoshi; Shirato, Kazuya; Suzaki, Yuriko; Ainai, Akira; Nakatsu, Yuichiro; Kanou, Kazuhiko; Nakamura, Kazuya; Suzuki, Tadaki; Komase, Katsuhiro; Nobusawa, Eri; Maenaka, Katsumi; Kuroda, Makoto; Hasegawa, Hideki; Kawaoka, Yoshihiro; Tashiro, Masato; Takeda, Makoto
2014-05-01
Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti-IAV drugs. Such drugs could also be effective for many other respiratory viruses, including the recently emerged Middle East respiratory syndrome (MERS) coronavirus, because they are also activated by TMPRSS2 in vitro. Consequently, the present paper could have a large impact on the battle against respiratory virus infections and contribute greatly to human health.
Wyss, C; Moter, A; Choi, B-K; Dewhirst, F E; Xue, Yi; Schüpbach, P; Göbel, U B; Paster, B J; Guggenheim, B
2004-07-01
So far, little phenotypic heterogeneity has been detected in cultured oral treponemes with trypsin-like proteolytic activity, and all have been assigned to the species Treponema denticola. However, comparisons of protein patterns and antigen expression in our collection of proteolytic oral treponemes occasionally identified isolates with a unique phenotype; e.g. strain OMZ 830 (=ATCC 700768), which qualified as a 'pathogen-related oral spirochaete' due to the presence of a approximately 37 kDa protein reactive with the Treponema pallidum FlaA-specific mAb H9-2. In addition to such single isolates, a homogeneous group of seven independent strains is described that were highly motile, medium-sized, proteolytic but asaccharolytic spirochaetes and were cultured from human gingivitis, periodontitis and acute necrotizing ulcerative gingivitis in medium OMIZ-Pat supplemented with 1% human serum and antibiotics. Growth of these spirochaetes in OMIZ-Pat was not dependent on, but was stimulated by, human or bovine serum. Carbohydrates were neither required nor stimulatory for growth. The protein and antigen patterns of total cell extracts of these organisms separated by SDS-PAGE were distinct from those of all previously cultured spirochaetes, with highest similarity to T. denticola. The novel spirochaete has a 2 : 4 : 2 arrangement of the periplasmic flagella, similar to T. denticola. However, the flagellin pattern as detected by immunostaining or glycan staining of Western blots readily distinguished the novel group from T. denticola. Also, distinct from reference strains of T. denticola, none of the novel isolates displayed sialidase or dentilisin activities, both of which are expressed by most strains of T. denticola. Trypsin-like activity and other enzymes as detected by API ZYM test were similar to those of T. denticola. The status of a novel species is supported by the 16S rRNA gene sequence, with 98.5% similarity to its closest cultured relative, T. denticola. The name Treponema putidum sp. nov. is proposed (type strain OMZ 758T=ATCC 700334T=CIP 108088T).
Kucerová, H; Strnadová, M; Ludvík, J; Chaloupka, J
1999-01-01
In Bacillus megaterium, a temperature that suppresses sporulation (43 degrees C) only slightly exceeds both the optimum growth temperature and the temperature still permitting sporulation (40-41 degrees C). Here we show that, when cells grown at 35 degrees C and transferred to a sporulation medium, were subjected to shifts between 35 degrees C and the sporulation suppressing temperature (SST, 43 degrees C), their development and proteolytic activities were deeply affected. During the reversible sporulation phase that took place at 35 degrees C for 2-3 h (T2-T3), the cells developed forespores and their protein turnover was characterized by degradation of short-lived proteins and proteins made accessible to the proteolytic attack because of starvation. During the following irreversible sporulation phase refractile heat-resistant spores appeared at T4-T5. Protein turnover rate increased again after T2 and up to T8 60-70% prelabelled proteins were degraded. The SST suppressed sporulation at its beginning; at T3 no asymmetric septa were observed and the amount of heat-resistant spores at T8 was by 4-5 orders lower than at 35 degrees C. However, the cells remained viable and were able to sporulate when transferred to a lower temperature. Protein degradation was increased up to T3 but then its velocity sharply dropped and the amount of degraded protein at T8 corresponded to slightly more than one-half of that found at 35 degrees C. The cytoplasmic proteolytic activity was enhanced but the activity in the membrane fraction was decreased. When a temperature shift to SST was applied at the beginning of the irreversible sporulation phase (T2.5), the sporulation process was impaired. A portion of forespores lyzed, the others were able to complete their development but most spores were not heat-resistant and their coats showed defects. Protein degradation increased again because an effective proteolytic system was developed during the reversible sporulation phase but the amount of degraded protein was slightly lower than at 35 degrees C. A later (T4) shift to SST had no effect on the sporulation process.
The uPA/uPAR system regulates the bioavailability of PDGF-DD: implications for tumour growth.
Ehnman, M; Li, H; Fredriksson, L; Pietras, K; Eriksson, U
2009-01-29
Members of the platelet-derived growth factor (PDGF) family are mitogens for cells of mesenchymal origin and have important functions during embryonic development, blood vessel maturation, fibrotic diseases and cancer. In contrast to the two classical PDGFs, the novel and less well-characterized members, PDGF-CC and PDGF-DD, are latent factors that need to be processed extracellularly by activating proteases, before they can mediate PDGF receptor activation. Here, we elucidate the structural requirements for urokinase plasminogen activator (uPA)-mediated activation of PDGF-DD, as well as the intricate interplay with uPA receptor (uPAR) signalling. Furthermore, we show that activated PDGF-DD, in comparison to latent, more potently transforms NIH/3T3 cells in vitro. Conversely, xenograft studies in nude mice demonstrate that cells expressing latent PDGF-DD are more tumorigenic than those expressing activated PDGF-DD. These findings imply that a fine-tuned proteolytic activation, in the local milieu, controls PDGF-DD bioavailability. Moreover, we suggest that proteolytic activation of PDGF-DD reveals a retention motif mediating interactions with pericellular components. Our proposed mechanism, where uPA not only generates active PDGF-DD, but also regulates its spatial distribution, provides novel insights into the biological function of PDGF-DD.
Gomes, Ana S; Kamisaka, Yuko; Harboe, Torstein; Power, Deborah M; Rønnestad, Ivar
2014-02-19
Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and β subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach's role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach's proteolytic capacity and its increased peristaltic activity. Putative osmoregulatory competence of the GI-tract, inferred by abundance of Na+/K+-ATPase α transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis. The functional specialization of the GI-tract was not exclusive to metamorphosis, and its osmoregulatory capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach's involvement in appetite regulation via ghrelin.
Errasti, María E; Prospitti, Anabela; Viana, Carolina A; Gonzalez, Mariana M; Ramos, Márcio V; Rotelli, Alejandra E; Caffini, Néstor O
2016-06-01
Extracts rich in cysteine proteases obtained from fruits of Pseudananas macrodontes (Pm), Bromelia balansae (Bb), and B. hieronymi (Bh) have previously shown an anti-inflammatory effect on animal models. Given the close relationship between hemostasis and inflammation, it is attractive to investigate therapeutic agents capable of modulating both systems. The aim of this work was to study the effect of Pm, Bb, and Bh on fibrin(ogen) and blood coagulation compared with stem bromelain (Bro). Action on fibrinogen was electrophoretically and spectrophotometrically evaluated, fibrinolytic activity was measured both electrophoretically and by the fibrin plate assay, and the effect on blood coagulation was studied by conventional coagulation tests (PT and APPT). All extracts showed the same proteolytic preference for fibrinogen subunits, that is Aα > Bβ, whereas γ was partially hydrolyzed by 100-fold concentration increase. Unlike Bro, cysteine proteases of Pm, Bb, and Bh increased absorbance at 540 nm of fibrinogen solution, suggesting thrombin-like activity, which was time-dependent and reached maximum values at lower concentration. All extracts showed the same proteolytic preference for fibrin subunits; however Pm, Bb, and Bh showed lower fibrinolytic activity than Bro at the assayed concentrations. Although Bb acted only as anticoagulant, Pm, Bh, and unexpectedly Bro showed dual action on blood coagulation: at low concentration showed procoagulant effect and at high concentration anticoagulant effect. Results reveal new plant species as potential sources of pharmacological agents for the treatment of a wide range of hemostatic disorders as well as to wound healing.
The role of fungal proteinases in pathophysiology of Stachybotrys chartarum.
Yike, Iwona; Rand, Thomas; Dearborn, Dorr G
2007-10-01
The adverse health effects of Stachybotrys chartarum have often been linked to exposure to the trichothecene mycotoxins. Recent studies have shown that in addition to mycotoxins this fungus is capable of producing and secreting in vivo proteins such as hemolysins and proteinases. Spore extracts obtained from a high trichothecene producing isolate JS 58-17 exhibited a significantly lower proteolytic activity compared to the low trichothecene producer, JS 58-06. Growing isolates on rice or potato dextrose agar results in higher proteolytic activity of the spores compared to those grown on drywall. Proteinases in the spore extracts can hydrolyze gelatin and collagen I and IV. Analysis of zymograms shows the presence of several proteins with proteolytic activity in the spores of S. chartarum. Human tracheal epithelial cells exposed to spore extracts produced significantly higher levels of IL-6, IL-8, and TNF-alpha than control cells. This stimulation of cytokine production was completely abolished by Pefabloc, a serine protease inhibitor. Neutrophil numbers and proinflammatory cytokine (IL1-beta and TNF-alpha) concentrations were highly elevated in the lungs of 7 day old rat pups exposed intratracheally to 4 x 10(4) spores/gm body weight compared to control. No significant differences in those inflammatory indices in vivo were noted between the treatments with the high trichothecene producer, isolate JS 58-17 and JS 58-06, which does not produce macrocyclic trichothecenes. Immunohistochemistry revealed reduced collagen IV labeling in spore-induced lung granulomas in rat pups exposed to both isolates. These results suggest that proteinases from S. chartarum spores significantly contribute to lung inflammation and injury.
Hoyte, Ashley C; Jamin, Augusta V; Koneru, Pratibha C; Kobe, Matthew J; Larue, Ross C; Fuchs, James R; Engelman, Alan N; Kvaratskhelia, Mamuka
2017-12-01
The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Voura, Evelyn B.; English, Jane L.; Yu, Hoi-Ying E.; Ho, Andrew T.; Subarsky, Patrick; Hill, Richard P.; Hojilla, Carlo V.; Khokha, Rama
2013-01-01
To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment. PMID:24194929
Katchman, Alexander; Yang, Lin; Zakharov, Sergey I; Kushner, Jared; Abrams, Jeffrey; Chen, Bi-Xing; Liu, Guoxia; Pitt, Geoffrey S; Colecraft, Henry M; Marx, Steven O
2017-08-22
Calcium influx through the voltage-dependent L-type calcium channel (Ca V 1.2) rapidly increases in the heart during "fight or flight" through activation of the β-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of β-adrenergic activation of cardiac Ca V 1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α 1C and C-terminal proteolytic cleavage of the α 1C subunit. We generated transgenic mice expressing an α 1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for β-adrenergic regulation of Ca V 1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute β-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α 1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α 1C Prevention of C-terminal cleavage did not alter β-adrenergic stimulation of Ca V 1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α 1C in β-adrenergic stimulation of Ca V 1.2, and show that phosphoregulatory sites on α 1C are not redundant and do not each fractionally contribute to the net stimulatory effect of β-adrenergic stimulation. Further, proteolytic cleavage of α 1C is not required for β-adrenergic stimulation of Ca V 1.2.
Cleavage and shedding of E-cadherin after induction of apoptosis.
Steinhusen, U; Weiske, J; Badock, V; Tauber, R; Bommert, K; Huber, O
2001-02-16
Apoptotic cell death induces dramatic molecular changes in cells, becoming apparent on the structural level as membrane blebbing, condensation of the cytoplasm and nucleus, and loss of cell-cell contacts. The activation of caspases is one of the fundamental steps during programmed cell death. Here we report a detailed analysis of the fate of the Ca(2+)-dependent cell adhesion molecule E-cadherin in apoptotic epithelial cells and show that during apoptosis fragments of E-cadherin with apparent molecular masses of 24, 29, and 84 kDa are generated by two distinct proteolytic activities. In addition to a caspase-3-mediated cleavage releasing the cytoplasmic domain of E-cadherin, a metalloproteinase sheds the extracellular domain from the cell surface during apoptosis. Immunofluorescence analysis confirmed that concomitant with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulates in the cytosol. In the presence of inhibitors of caspase-3 and/or metalloproteinases, cleavage of E-cadherin was almost completely blocked. The simultaneous cleavage of the intracellular and extracellular domains of E-cadherin may provide a highly efficient mechanism to disrupt cadherin-mediated cell-cell contacts in apoptotic cells, a prerequisite for cell rounding and exit from the epithelium.
Surface expression of ω-transaminase in Escherichia coli.
Gustavsson, Martin; Muraleedharan, Madhu Nair; Larsson, Gen
2014-04-01
Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.
Surface Expression of ω-Transaminase in Escherichia coli
Gustavsson, Martin; Muraleedharan, Madhu Nair
2014-01-01
Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity. PMID:24487538
Hauptmann, Peter; Lehle, Ludwig
2008-07-04
N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.
Proteolytic processing of endogenous and recombinant beta 4 integrin subunit
1992-01-01
The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432
Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.
Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.
Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants
Buch, Franziska; Kaman, Wendy E.; Bikker, Floris J.; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992
Ayyash, Mutamed; Al-Nuaimi, Amna K; Al-Mahadin, Suheir; Liu, Shao-Quan
2018-01-15
This study aimed to investigate in vitro the health-promoting benefits (anticancer activity, α-amylase and α-glucosidase inhibition, angiotensin-converting-enzyme (ACE)-inhibition, antioxidant and proteolytic activity) of camel milk fermented with indigenous probiotic strains of Lactobacillus spp., compared with fermented bovine milk. The three camel milk probiotic strains Lb. reuteri-KX881777, Lb. plantarum-KX881772, Lb. plantarum-KX881779 and a control strain Lb. plantarum DSM2468 were employed to ferment camel and bovine milks separately. The proteolytic and antioxidant activity of water soluble extracts (WSEs) from all fermented camel milks were higher than those of fermented bovine milk. α-Amylase inhibition of WSEs were >34% in both milk types fermented with all strains during storage periods, except the WSE of camel milk fermented by Lp.K772. The highest ACE-inhibition of the WSE from camel milk fermented by Lr.K777 was >80%. The proliferations of Caco-2, MCF-7 and HELA cells were more inhibited when treated with the WSE of fermented camel milk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Johansson, A; Hänström, L; Kalfas, S
2000-08-01
Actinobacillus actinomycetemcomitans produces a pore-forming leukotoxin that lyses human polymorphonuclear leukocytes and monocytes. Certain proteolytic bacteria may coexist with A. actinomycetemcomitans in periodontal pockets. We aimed therefore to examine whether oral bacteria can modify the leukotoxicity of A. actinomycetemcomitans. A total of 55 strains representing 45 bacterial species of the subgingival flora were tested. Each strain was incubated with the highly toxic strain of A. actinomycetemcomitans HK 1519 and the leukotoxic activity of the suspension against human polymorphonuclear leukocytes was determined from the activity of the lactate dehydrogenase released upon lysis of the leukocytes. Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Prevotella melaninogenica and Prevotella loeschii inhibited the leukotoxicity of A. actinomycetemcomitans cells as well as the activity of leukotoxin purified from the same strain. The bacterial strains without the ability to block leukotoxic activity also failed to destroy pure leukotoxin even after 5 h of incubation. The proteolytic degradation of leukotoxin by P. gingivalis was mainly dependent on the activity of the enzymes R- and K-gingipains. P. intermedia and P. nigrescens also degraded the leukotoxin by enzymes. The results imply a role of the periodontal microflora in modifying the virulence of A. actinomycetemcomitans by destroying its leukotoxin.
de Sousa, Karina Pires; Atouguia, Jorge; Silva, Marcelo Sousa
2010-05-01
Metalloproteinases (MMP) belong to the family of cation dependent endopeptidases that degrade matrices at physiological pH and to cleave extracellular matrix proteins. They play an important role in diverse physiological and pathological processes; not only there diverse types of MMP differ in structure and functionally, but also their enzymatic activity is regulated at multiple levels. Trying to shed some light over the processes that govern the pathology of African Trypanosomiasis, the aim of the present study was to examine the proteolytic activity of the crude trypanosome protein extract obtained from the bloodstream forms of Trypanosoma brucei brucei parasites. We hereby report the partial biochemical characterization of a neutral Trypanosoma brucei-metalloproteinase that displays marked proteolytic activities on gelatin and casein, with a molecular mass of approximately 40 kDa, whose activity is strongly dependent of pH and temperature. Furthermore, we show that this activity can be inhibited by classical MMP inhibitors such as EDTA, EGTA, phenantroline, and also by tetracycline and derivatives. This study has a relevant role in the search for new therapeutical targets, for the use of metalloproteinases inhibitors as treatment strategies, or as enhancement to trypanocidal drugs used in the treatment of the disease.
Antioxidant and Antiproliferative Activities of Heterofucans from the Seaweed Sargassum filipendula
Costa, Leandro Silva; Fidelis, Gabriel Pereira; Telles, Cinthia Beatrice Silva; Dantas-Santos, Nednaldo; Camara, Rafael Barros Gomes; Cordeiro, Sara Lima; Pereira Costa, Mariana Santana Santos; Almeida-Lima, Jailma; Melo-Silveira, Raniere Fagundes; Oliveira, Ruth Medeiros; Albuquerque, Ivan Rui Lopes; Andrade, Giulianna Paiva Viana; Rocha, Hugo Alexandre Oliveira
2011-01-01
Fucan is a term used to denominate a type of polysaccharide which contains substantial percentages of l-fucose and sulfate ester groups. We obtained five heterofucans from Sargassum filipendula by proteolytic digestion followed by sequential acetone precipitation. These heterofucans are composed mainly of fucose, glucose, glucuronic acid, galactose and sulfate. These fucans did not show anticoagulant activity in PT and aPTT tests. Their antioxidant activity was evaluated using the follow tests; total antioxidant capacity, scavenging hydroxyl and superoxide radicals, reducing power and ferrous ion [Fe(II)] chelating. All heterofucans displayed considerable activity, especially SF-1.0v which showed the most significant antioxidant potential with 90.7 ascorbic acid equivalents in a total antioxidant capacity test and similar activity when compared with vitamin C in a reducing power assay. The fucan antiproliferative activity was performed with HeLa, PC3 and HepG2 cells using MTT test. In all tested conditions the heterofucans exhibited a dose-dependent effect. The strongest inhibition was observed in HeLa cells, where SF-1.0 and SF-1.5 exhibited considerable activity with an IC50 value of 15.69 and 13.83 μM, respectively. These results clearly indicate the beneficial effect of S. filipendula polysaccharides as antiproliferative and antioxidant. Further purification steps and additional studies on structural features as well as in vivo experiments are needed to test the viability of their use as therapeutic agents. PMID:21747741
Cathepsin B is not the processing enzyme for mouse prorenin.
Mercure, Chantal; Lacombe, Marie-Josée; Khazaie, Khashayarsha; Reudelhuber, Timothy L
2010-05-01
Renin, an aspartyl protease that catalyzes the rate-limiting step in the renin-angiotensin system (RAS), is proteolytically activated by a second protease [referred to as the prorenin processing enzyme (PPE)] before its secretion from the juxtaglomerular cells of the kidney. Although several enzymes are capable of activating renin in vitro, the leading candidate for the PPE in the kidney is cathepsin B (CTSB) due to is colocalization with the renin precursor (prorenin) in juxtaglomerular cell granules and because of its site-selective activation of human prorenin both in vitro and in transfected tissue culture cell models. To verify the role of CTSB in prorenin processing in vivo, we tested the ability of CTSB-deficient (CTSB-/-) mice to generate active renin. CTSB-/- mice do not exhibit any overt symptoms (renal malformation, preweaning mortality) typical of an RAS deficiency and have normal levels of circulating active renin, which, like those in control animals, rise more than 15-fold in response to pharmacologic inhibition of the RAS. The mature renin enzyme detected in kidney lysates of CTSB-/- mice migrates at the same apparent molecular weight as that in control mice, and the processing to active renin is not affected by chloroquine treatment of the animals. Finally, the distribution and morphology of renin-producing cells in the kidney is normal in CTSB-/- mice. In conclusion, CTSB-deficient mice exhibit no differences compared with controls in their ability to generate active renin, and our results do not support CTSB as the PPE in mice.
Multitarget molecular hybrids of cinnamic acids.
Peperidou, Aikaterini; Kapoukranidou, Dorothea; Kontogiorgis, Christos; Hadjipavlou-Litina, Dimitra
2014-12-02
In an attempt to synthesize potential new multitarget agents, 11 novel hybrids incorporating cinnamic acids and paracetamol, 4-/7-hydroxycoumarin, benzocaine, p-aminophenol and m-aminophenol were synthesized. Three hybrids-2e, 2a, 2g-and 3b were found to be multifunctional agents. The hybrid 2e derived from the phenoxyphenyl cinnamic acid and m-acetamidophenol showed the highest lipoxygenase (LOX) inhibition and analgesic activity (IC50 = 0.34 μΜ and 98.1%, whereas the hybrid 3b of bromobenzyloxycinnamic acid and hymechromone exhibited simultaneously good LOX inhibitory activity (IC50 = 50 μΜ) and the highest anti-proteolytic activity (IC50= 5 μΜ). The hybrid 2a of phenyloxyphenyl acid with paracetamol showed a high analgesic activity (91%) and appears to be a promising agent for treating peripheral nerve injuries. Hybrid 2g which has an ester and an amide bond presents an interesting combination of anti-LOX and anti-proteolytic activity. The esters were found very potent and especially those derived from paracetamol and m-acetamidophenol. The amides follow. Based on 2D-structure-activity relationships it was observed that both steric and electronic parameters play major roles in the activity of these compounds. Molecular docking studies point to the fact that allosteric interactions might govern the LOX-inhibitor binding.
Davies, K J; Lin, S W
1988-01-01
E. coli contains a soluble proteolytic pathway which can recognize and degrade oxidatively denatured proteins and protein fragments, and which may act as a "secondary antioxidant defense." We now provide evidence that this proteolytic pathway is distinct from the previously described ATP-dependent, and protease "La"-dependent, pathway which may degrade other abnormal proteins. Cells (K12) which were depleted of ATP, by arsenate treatment or anaerobic incubation (after growth on succinate), exhibited proteolytic responses to oxidative stress which were indistinguishable from those observed in cells with normal ATP levels. Furthermore, the proteolytic responses to oxidative damage by menadione or H2O2 were almost identical in the isogenic strains RM312 (a K12 derivative) and RM1385 (a lon deletion mutant of RM312). Since the lon (or capR) gene codes for the ATP-dependent protease "La," these results indicate that neither ATP nor protease "La" are required for the degradation of oxidatively denatured proteins. We next prepared cell-free extracts of K12, RM312, and RM1385 and tested the activity of their soluble proteases against proteins (albumin, hemoglobin, superoxide dismutase, catalase) which had been oxidatively denatured (in vitro) by exposure to .OH, .OH + O2- (+O2), H2O2, or ascorbate plus iron. The breakdown of oxidatively denatured proteins was several-fold higher than that of untreated proteins in extracts from all three strains, and ATP did not stimulate degradation. Incubation of extracts at 45 degrees C, which inactivates protease "La," actually stimulated the degradation of oxidatively denatured proteins. Although Ca2+ had little effect on proteolysis, serine reagents, transition metal chelators, and hemin effectively inhibited the degradation of oxidatively denatured proteins in both intact cells and cell-free extracts. Degradation of oxidatively denatured proteins in cell-free extracts was maximal at pH 7.8, and was unaffected by dialysis of the extracts against membranes with molecular weight cutoffs as high as 50,000. Our results indicate the presence of a neutral, ATP- and calcium- independent proteolytic pathway in the E. coli cytosol, which contains serine- and metallo- proteases (with molecular weights greater than 50,000), and which preferentially degrades oxidatively denatured proteins.
Röschmann, K; Farhat, K; König, P; Suck, R; Ulmer, A J; Petersen, A
2009-09-01
Group 1 allergens from grass pollen (e.g. Phl p 1, the major allergen of timothy grass Phleum pratense) cause IgE reactivity in about 95% of allergic subjects and exist in all grass species. The respiratory epithelium represents a first line of contact of the immune system with airborne allergens, functions as physical barrier and is an important immunological regulation system. The aim of this study was to investigate the interaction of Phl p 1 with human respiratory epithelium to elucidate the contribution of epithelial cells to the development of allergic reactions. Purified Phl p 1 was used to stimulate A549 cells and transient transfected HEK293 cells. mRNA level of different mediators were investigated by real-time PCR, release of the mediators was determined by ELISA. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and an ex vivo model of the murine trachea were used to investigate a potential proteolytic activity of Phl p 1. Phl p 1 activates respiratory epithelial cells as measured by induction of IL-6, IL-8 and TGF-beta mRNA and release. Phl p 1, in contrast to Der p 1 from the house dust mite, does not exert proteolytic activity, as investigated by microscopic observation and MTT test. In an ex vivo model of the murine trachea we were able to show that Der p 1, in contrast to Phl p 1, enhances the transportation velocity of particles by the trachea, presumably by ATP released from the injured epithelium. We conclude that under physiological conditions Phl p 1 affects tracheal epithelial cells through a non-proteolytic activity. Enhancement of TGF-beta expression induced by Phl p 1 together with the increased release of IL-6 and IL-8 might provide an indirect mechanism through which the allergen may cross the epithelial barrier and attracts immunocompetent cells.
El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis
2015-01-01
Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132
Quirós Orlich, José R; Valverde Chavarría, Silvia; Ulloa Rojas, Juan B
2014-08-01
The proteolytic digestive activity and growth of Parachromis dovii larvae during the ontogeny were evaluated in a recirculation system using two feeding strategies during a 28-day period. Larvae were reared using two feeding protocols (three replicates each): (A) Artemia nauplii (at satiation), fed from exogenous feeding [8 days after hatching (DAH)] until 15 DAH followed by nauplii substitution by formulated feed (20% day(-1)) until 20 DAH and then formulated feed until 28 DAH; (B) formulated feed (100 % BW daily) from exogenous feeding until 28 DAH. Levels of acid (pepsin type) and alkaline digestive proteases as well as growth and survival of larvae were measured along the feeding period. Survival was high and similar between treatments: 98.9 ± 0.0 for Artemia, 97.3 ± 0.0% for formulated feed. The specific growth rate for length and weight was higher in larvae fed with Artemia nauplii than in larvae reared with formulated feed: 3.4 ± 0.1 versus 1.8 ± 0.1% day(-1) for body length (P = 0.009) and 12.2 ± 0.1 versus 6.5 ± 0.3% day(-1) for body weight (P = 0.002). The acid and alkaline proteolytic activity was detected, in both treatments, from the beginning of the experiment, at 8 DAH. The total enzymatic activity (U larva(-1)) for acid and alkaline proteases was higher in larvae reared with Artemia after 12 DAH, whereas the specific enzymatic activity was similar for both enzyme types in the two treatments. The results suggest that P. dovii larvae were capable to digest formulated diets from the beginning of exogenous feeding and that they could be reared with formulated feeds. However, the formulated feed used should be nutritionally improved because of the poor growth obtained in this research.
Antiacanthain A: New proteases isolated from Bromelia antiacantha Bertol. (Bromeliaceae).
Vallés, Diego; Cantera, Ana M B
2018-07-01
Crude extract (CE) from pulp of Bromelia antiacantha Bertol. mature fruit, contains at least 3 cysteine proteases with proteolytic activity. By single step cation exchange chromatography (Hi-trap SP-HP) of partially purified CE, the protease with the lowest pI, Antiacanthain A (AntA), was isolated. It showed maximum activity at pH9, and 75% of remaining activity was maintained over a wide pH range (pH6-10). The AntA activity exhibits a constant increase up to 70°C. Maintains almost 100% of its activity at 45 at pH6 and 9. A 60% of AntA was active by titration with specific inhibitor, E64. Amidasic activity was studied with pyroglutamyl-phenyl-leucyl-paranitroaniline (PFLNA) substrate having higher AntA catalytic efficiency of (k cat /K m =470s -1 M -1 ) relative to stem bromelain (k cat /K m =305s -1 M -1 ). Esterase activity using p-nitrophenyl esters of N-α-CBZ-l-Lysine (z-L-LysONp) showed a 10-fold higher catalytic efficiency for AntA (k cat /K m =6376s -1 M -1 ) relative to stem bromelain (k cat /K m =688s -1 M -1 ). Incubation with 8M Urea did not affect AntA activity and remained unchanged for 18h, with 6M GndHCl resulted in a 41% decrease in activity after 30min incubation, maintained this activity 18h. AntA exhibits high sequence identity with proteases of the Bromeliaceae family. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Ming; Pang, Bo; Du, Ya-Nan; Zhang, Yi-Peng; Liu, Wen
2017-06-01
2,2'-Bipyridine (2,2'-BiPy) is an attractive core structure present in a number of biologically active natural products, including the structurally related antibiotics caerulomycins (CAEs) and collismycins (COLs). Their biosynthetic pathways share a similar key 2,2'-BiPy-l-leucine intermediate, which is desulfurated or sulfurated at C5, arises from a polyketide synthase/nonribosomal peptide synthetase hybrid assembly line. Focusing on the common off-line modification steps, we here report that the removal of the "auxiliary" l-leucine residue relies on the metallo-dependent amidohydrolase activity of CaeD or ColD. This activity leads to the production of similar 2,2'-BiPy carboxylate products that then receive an oxime functionality that is characteristic for both CAEs and COLs. Unlike many metallo-dependent amidohydrolase superfamily proteins that have been previously reported, these proteins (particularly CaeD) exhibited a strong zinc ion-binding capacity that was proven by site-specific mutagenesis studies to be essential to proteolytic activity. The kinetics of the conversions that respectively involve CaeD and ColD were analyzed, showing the differences in the efficiency and substrate specificity of these two proteins. These findings would generate interest in the metallo-dependent amidohydrolase superfamily proteins that are involved in the biosynthesis of bioactive natural products.
Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan
2012-01-01
Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045
Silva, Carlos A; Ianzer, Danielle A; Portaro, Fernanda C V; Konno, Katsuhiro; Faria, Marcella; Fernandes, Beatriz L; Camargo, Antonio C M
2008-09-01
BPPs have been identified in the venom of the Bothrops jararaca snake, or deduced from precursor proteins expressed either in the venom gland or in the brain of the snake. Their potentiating activity on bradykinin (Bk) is assumed to occur through a somatic angiotensin-converting enzyme (sACE) inhibitory mechanism. We have demonstrated that synthetic BPPs show remarkable functional differences, despite their high amino acid sequence similarities. Recently, we demonstrated that BPP-10c, after i.p. administration, was found in its intact form and in the form of a unique metabolite (des-Pro(10) BPP-10c) in mouse urine. Given this finding, we selected a number of BPPs with different structure-activities - BPP-5a (
New intracellular activities of matrix metalloproteinases shine in the moonlight.
Jobin, Parker G; Butler, Georgina S; Overall, Christopher M
2017-11-01
Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.
The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity.
Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique
2015-03-15
Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. © 2015. Published by The Company of Biologists Ltd.
Llorente, Berta E; Brutti, Cristina B; Caffini, Néstor O
2004-12-29
The study of proteinase expression in crude extracts from different organs of the globe artichoke (Cynara scolymus L.) disclosed that enzymes with proteolytic and milk-clotting activity are mainly located in mature flowers. Maximum proteolytic activity was recorded at pH 5.0, and inhibition studies showed that only pepstatin, specific for aspartic proteinases, presented a significant inhibitory effect. Such properties, in addition to easy enzyme inactivation by moderate heating, make this crude protease extract potentially useful for cheese production. Adsorption with activated carbon, together with anion exchange and affinity chromatography, led to the isolation of a heterodimeric milk-clotting proteinase consisting of 30- and 15-kDa subunits. MALDI-TOF MS of the 15-kDa chain determined a 15.358-Da mass, and the terminal amino sequence presented 96% homology with the smaller cardosin A subunit. The amino terminal sequence of the 30-kDa chain proved to be identical to the larger cardosin A subunit. Electrophoresis evidenced proteinase self-processing that was confirmed by immunoblots presenting 62-, 30-, and 15-kDa bands.
Finotti, Paola
2006-08-01
Much attention has been given to the role played by serine proteases in the development and worsening of vascular complications in Type 1 diabetes mellitus. A generalized increase in proteolytic activity, either due to a true increase in concentration of specific proteases or defects of their protease inhibitors, represents an early marker of diabetes. However, the precise molecular mechanism whereby an unopposed proteolytic activity leads to overt vascular alterations has not fully been elucidated as yet. The picture is further complicated by the fact that, although sharing the same function, serine proteases constitute a structurally heterogeneous class of molecules. Besides classical proteases, for most part belonging to coagulative and fibrinolytic systems, other unrelated molecules exhibit serine-like protease activity and are capable of triggering both inflammatory and immune reactions. The specific role of these non classical serine proteases in the complex pathogenesis of diabetes and its vascular complications is attracting a new investigative interest, as these molecules may represent additional therapeutic targets. This review will focus on most recent acquisitions on this issue relevant to Type 1 diabetes.
López-Jiménez, Alberto J; Basak, Trayambak; Vanacore, Roberto M
2017-10-13
Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.
Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán
2015-09-24
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Jepsen, Malene R.; Kløverpris, Søren; Mikkelsen, Jakob H.; Pedersen, Josefine H.; Füchtbauer, Ernst-Martin; Laursen, Lisbeth S.; Oxvig, Claus
2015-01-01
Mammalian stanniocalcin-2 (STC2) is a secreted polypeptide widely expressed in developing and adult tissues. However, although transgenic expression in mice is known to cause severe dwarfism, and targeted deletion of STC2 causes increased postnatal growth, its precise biological role is still unknown. We found that STC2 potently inhibits the proteolytic activity of the growth-promoting metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). Proteolytic inhibition requires covalent binding of STC2 to PAPP-A and is mediated by a disulfide bond, which involves Cys-120 of STC2. Binding of STC2 prevents PAPP-A cleavage of insulin-like growth factor-binding protein (IGFBP)-4 and hence release within tissues of bioactive IGF, required for normal growth. Concordantly, we show that STC2 efficiently inhibits PAPP-A-mediated IGF receptor signaling in vitro and that transgenic mice expressing a mutated variant of STC2, STC2(C120A), which is unable to inhibit PAPP-A, grow like wild-type mice. Our work identifies STC2 as a novel proteinase inhibitor and a previously unrecognized extracellular component of the IGF system. PMID:25533459
Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing.
Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael
2017-06-08
Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.
Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing
Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E.; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael
2017-01-01
Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates. PMID:28594355
Al-Sheraji, Sadeq Hasan; Ismail, Amin; Manap, Mohd Yazid; Mustafa, Shuhaimi; Yusof, Rokiah Mohd
2012-11-01
The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms. This is the first study reported on produce synbiotic yoghurt as a functional food for specified health uses contains bifidobacteria and M. pajang fibrous polysaccharides. M. pajang fibrous polysaccharides can be used as a prebiotic particularly in dairy products to increase the viability and activity of bifidobacteria which can be used as probiotic to exert health benefit to the human by yoghurt that is considered common use in society; thus, the benefits of synbiotic yoghurt are readily accessible to the member of society. © 2012 Institute of Food Technologists®
Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu
2013-01-01
Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.
Pranjol, Md Zahidul I; Gutowski, Nicholas J; Hannemann, Michael; Whatmore, Jacqueline L
2018-01-01
Epithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum. Copyright © 2017 Elsevier B.V. All rights reserved.
Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik
2016-09-10
A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Intercellular Transfer of a Soluble Viral Superantigen
Reilly, Melissa; Mix, Denise; Reilly, Andrew A.; Yang Ye, Xiang; Winslow, Gary M.
2000-01-01
Mouse mammary tumor virus (MMTV) superantigens (vSAgs) can undergo intercellular transfer in vivo and in vitro such that a vSAg can be presented to T cells by major histocompatibility complex (MHC) class II proteins on antigen-presenting cells (APCs) that do not express the superantigen. This process may allow T-cell activation to occur prior to viral infection. Consistent with these findings, vSAg produced by Chinese hamster ovary (CHO) cells was readily transferred to class II IE and IA (H-2k and H-2d) proteins on a B-cell lymphoma or mouse splenocytes. Fixed class II-expressing acceptor cells were used to demonstrate that the vSAg, but not the class II proteins, underwent intercellular transfer, indicating that vSAg binding to class II MHC could occur directly at the cell surface. Intercellular transfer also occurred efficiently to splenocytes from endogenous retrovirus-free mice, indicating that other proviral proteins were not involved. Presentation of vSAg7 produced by a class II-negative, furin protease-deficient CHO variant (FD11) was unsuccessful, indicating that proteolytic processing was a requisite event and that proteolytic activity could not be provided by an endoprotease on the acceptor APC. Furthermore, vSAg presentation was effected using cell-free supernatant from class II-negative, vSAg-positive cells, indicating that a soluble molecule, most likely produced by proteolytic processing, was sufficient to stimulate T cells. Because the membrane-proximal endoproteolytic cleavage site in the vSAg (residues 68 to 71) was not necessary for intercellular transfer, the data support the notion that the carboxy-terminal endoproteolytic cleavage product is an active vSAg moiety. PMID:10954523
Inhibition of human neutrophil elastase by α1-antitrypsin functionalized colloidal microcarriers.
Reibetanz, Uta; Schönberg, Maria; Rathmann, Sophie; Strehlow, Vincent; Göse, Martin; Leßig, Jacqueline
2012-07-24
Layer-by-layer (LbL)-coated microcarriers offer a good opportunity as transport systems for active agents into specific cells and tissues. The assembling of oppositely charged polyelectrolytes enables a modular construction of the carriers and therefore an optimized integration and application of drug molecules. Here, we report the multilayer incorporation and transport of α(1)-antitrypsin (AT) by colloidal microcarriers. AT is an anti-inflammatory agent and shows inhibitory effects toward its pro-inflammatory antagonist, human neutrophil elastase (HNE). The highly proteolytic enzyme HNE is released by polymorphonuclear leukocytes (PMNs) during inflammatory processes and can cause host tissue destruction and pain. The high potential of this study is based on a simultaneous intra- and extracellular application of AT-functionalized LbL carriers. Carrier application in PMNs results in significant HNE inhibition within 21 h. Microcarriers phagocytosed by PMNs were time dependently decomposed inside phagolysosomes, which enables the step-by-step release of AT. Here, AT inactivates HNE before being released, which avoids a further HNE concentration increase in the extracellular space and, subsequently, reduces the risk of further tissue destruction. Additionally, AT surface-functionalized microcarriers allow the inhibition of already released HNE in the extracellular space. Finally, this study demonstrates the successful application of LbL carriers for a concurrent extra- and intracellular HNE inhibition aiming the rebalancing of protease and antiprotease concentrations and the subsequent termination of chronic inflammations.
ERIC Educational Resources Information Center
Pizauro, Joao M., Jr.; Ferro, Jesus A.; de Lima, Andrea C. F.; Routman, Karina S.; Portella, Maria Celia
2004-01-01
The present research describes an efficient procedure to obtain high levels of trypsinogen and chymotrypsinogen by using a simple, rapid, and easily reproducible method. The extraction process and the time-course of activation of zymogens can be carried out in a single laboratory period, without sophisticated equipment. The main objective was to…
da Silva, Ronivaldo Rodrigues; Souto, Tatiane Beltramini; de Oliveira, Tássio Brito; de Oliveira, Lilian Caroline Gonçalves; Karcher, Daniel; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rodrigues, André; Rosa, Jose C; Cabral, Hamilton
2016-08-01
In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C. The peptidase was stable at pH values ranging from 3 to 5 and temperatures of up 45 °C for 60 min. Dramatic reductions in proteolytic activity were observed with exposure to sodium dodecyl sulfate, and aluminum and copper (II) chloride. Peptidase was inhibited by pepstatin A, and mass spectrometry analysis identified four peptide fragments (TWSISYGDGSSASGILAK, ASNGGGGEYIFGGYDSTK, GSLTTVPIDNSR, and GWWGITVDRA), similar to rhizopuspepsin. The analysis of catalytic specificity showed that the coagulant activity of the peptidase was higher than the proteolytic activity and that there was a preference for aromatic, basic, and nonpolar amino acids, particularly methionine, with specific cleavage of the peptide bond between phenylalanine and methionine. Thus, this peptidase may function as an important alternative enzyme in milk clotting during the preparation of cheese.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Shang-Jyh; School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan; Su, Jen-Liang
The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibitionmore » of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole inhibits IκBα degradation and NF-κB nucleus translocation. ► Osthole suppresses EMT by repressing vimentin and inducing E-cadherin expression.« less
Proteolytic Regulation of the Intestinal Epithelial Barrier: Mechanisms and Interventions
2014-09-01
DSS protocol to evaluate molecular markers of acute inflammation in the subepithelial lamina propria, including quantity and nature of immune cell...will be investigated by immunostaining of colonic segments for Ki-67, a nuclear protein preferentially expressed during active phases of the cell
Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger
Lopes, Fernanda Cortez; Silva, Lucas André Dedavid e; Tichota, Deise Michele; Daroit, Daniel Joner; Velho, Renata Voltolini; Pereira, Jamile Queiroz; Corrêa, Ana Paula Folmer; Brandelli, Adriano
2011-01-01
A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism. PMID:22007293
Magliano, Ana C M; da Silva, Flávia Maia; Teixeira, Marta M G; Alfieri, Silvia C
2009-11-01
Acanthamoeba spp., known to cause keratitis and granulomatous encephalitis in humans, are frequently isolated from a variety of water sources. Here we report for the first time the characterization of an Acanthamoeba sp. (ACC01) isolated from tap water in Brazil. This organism is currently being maintained in an axenic growth medium. Phylogenetic analysis based on SSU rRNA gene sequences positioned the new isolate in genotype T4, closest to the keratitis-causing isolate, A. polyphaga ATCC 30461 ( approximately 99% similarity). Acanthamoeba ACC01 and A. polyphaga 30461 both grew at 37 degrees C and were osmotically resistant, multiplying in hyperosmolar medium. Both isolates secreted comparable amounts of proteolytic enzymes, including serine peptidases that were optimally active at a near neutral/alkaline pH and resolved identically in gelatin gels. Incubation of gels at pH 4.0 with 2mM DTT also indicated the secretion of similar cysteine peptidases. Altogether, the results point to the pathogenic potential of Acanthamoeba ACC01.
Naegleria fowleri: contact-dependent secretion of electrondense granules (EDG).
Chávez-Munguía, Bibiana; Villatoro, Lizbeth Salazar; Omaña-Molina, Maritza; Rodríguez-Monroy, Marco Aurelio; Segovia-Gamboa, Norma; Martínez-Palomo, Adolfo
2014-07-01
The free living amoeba Naegleria fowleri is pathogenic to humans but also to other mammalians. These amoebae may invade the nasal mucosa and migrate into the brain causing cerebral hemorrhagic necrosis, a rapidly fatal infection. Knowledge of the cytolytic mechanism involved in the destruction of brain tissues by Naegleria trophozoites is limited. In other amoebic species, such as Entamoeba histolytica, we have previously reported the possible lytic role of small cytoplasmic components endowed with proteolytic activities, known as electrondense granules (EDG). Using transmission electron microscopy we now report that EDG, seldom found in long term cultured N. fowleri, are present in abundance in trophozoites recovered from experimental mice brain lesions. Numerous EDG were also observed in amoebae incubated with collagen substrates or cultured epithelial cells. SDS-PAGE assays of concentrated supernatants of these trophozoites, containing EDG, revealed proteolytic activities. These results suggest that EDG may have a clear role in the cytopathic mechanisms of this pathogenic amoeba. Copyright © 2014 Elsevier Inc. All rights reserved.
Rodrigues, Silas P.; Ventura, José A.; Aguilar, Clemente; Nakayasu, Ernesto S.; Choi, HyungWon; Sobreira, Tiago J. P.; Nohara, Lilian L.; Wermelinger, Luciana S.; Almeida, Igor C.; Zingali, Russolina B.; Fernandes, Patricia M. B.
2012-01-01
Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers’ regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. PMID:22465191
Structural Insights into the Allosteric Operation of the Lon AAA+ Protease.
Lin, Chien-Chu; Su, Shih-Chieh; Su, Ming-Yuan; Liang, Pi-Hui; Feng, Chia-Cheng; Wu, Shih-Hsiung; Chang, Chung-I
2016-05-03
The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saito, Takashi; Iwata, Nobuhisa; Tsubuki, Satoshi; Takaki, Yoshie; Takano, Jiro; Huang, Shu-Ming; Suemoto, Takahiro; Higuchi, Makoto; Saido, Takaomi C
2005-04-01
Expression of somatostatin in the brain declines during aging in various mammals including apes and humans. A prominent decrease in this neuropeptide also represents a pathological characteristic of Alzheimer disease. Using in vitro and in vivo paradigms, we show that somatostatin regulates the metabolism of amyloid beta peptide (Abeta), the primary pathogenic agent of Alzheimer disease, in the brain through modulating proteolytic degradation catalyzed by neprilysin. Among various effector candidates, only somatostatin upregulated neprilysin activity in primary cortical neurons. A genetic deficiency of somatostatin altered hippocampal neprilysin activity and localization, and increased the quantity of a hydrophobic 42-mer form of Abeta, Abeta(42), in a manner similar to presenilin gene mutations that cause familial Alzheimer disease. These results indicate that the aging-induced downregulation of somatostatin expression may be a trigger for Abeta accumulation leading to late-onset sporadic Alzheimer disease, and suggest that somatostatin receptors may be pharmacological-target candidates for prevention and treatment of Alzheimer disease.
Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Potluri, Srilatha; Fu, Xiu-Qing; Luo, Zhen-Ge; Nagappan, Guhan; Chan, Jia Pei; Hempstead, Barbara; Son, Young-Jin; Lu, Bai
2013-06-12
During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.
Singh, Raja B; Hryshko, Larry; Freed, Darren; Dhalla, Naranjan S
2012-02-01
We tested whether the activation of proteolytic enzymes, calpain, and matrix metalloproteinases (MMPs) during ischemia-reperfusion (I/R) is mediated through oxidative stress. For this purpose, isolated rat hearts were subjected to a 30 min global ischemia followed by a 30 min reperfusion. Cardiac function was monitored and the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, calpain, and MMP were measured. Depression of cardiac function and Na(+)/K(+)-ATPase activity in I/R hearts was associated with increased calpain and MMP activities. These alterations owing to I/R were similar to those observed in hearts perfused with hypoxic medium, H(2)O(2) and xanthine plus xanthine oxidase. The I/R-induced changes were attenuated by ischemic preconditioning as well as by perfusing the hearts with N-acetylcysteine or mercaptopropionylglycine. Inhibition of MMP activity in hearts treated with doxycycline depressed the I/R-induced changes in cardiac function and Na(+)/K(+)-ATPase activity without affecting the calpain activation. On the other hand, inhibition of calpain activity upon treatment with leupeptin or MDL 28170 significantly reduced the MMP activity in addition to attenuating the I/R-induced alterations in cardiac function and Na(+)/K(+)-ATPase activity. These results suggest that the I/R-induced depression in Na(+)/K(+)-ATPase and cardiac function may be a consequence of the increased activities of both calpain and MMP because of oxidative stress in the heart.
Detection of proteolytic activity by covalent tethering of fluorogenic substrates in zymogram gels.
Deshmukh, Ameya A; Weist, Jessica L; Leight, Jennifer L
2018-05-01
Current zymographic techniques detect only a subset of known proteases due to the limited number of native proteins that have been optimized for incorporation into polyacrylamide gels. To address this limitation, we have developed a technique to covalently incorporate fluorescently labeled, protease-sensitive peptides using an azido-PEG3-maleimide crosslinker. Peptides incorporated into gels enabled measurement of MMP-2, -9, -14, and bacterial collagenase. Sensitivity analysis demonstrated that use of peptide functionalized gels could surpass detection limits of current techniques. Finally, electrophoresis of conditioned media from cultured cells resulted in the appearance of several proteolytic bands, some of which were undetectable by gelatin zymography. Taken together, these results demonstrate that covalent incorporation of fluorescent substrates can greatly expand the library of detectable proteases using zymographic techniques.
Churion, Kelly A; Rogers, Robert E; Bayless, Kayla J; Bondos, Sarah E
2016-12-01
Separation of full-length protein from proteolytic products is challenging, since the properties used to isolate the protein can also be present in proteolytic products. Many separation techniques risk non-specific protein adhesion and/or require a lot of time, enabling continued proteolysis and aggregation after lysis. We demonstrate that proteolytic products aggregate for two different proteins. As a result, full-length protein can be rapidly separated from these fragments by filter flow-through purification, resulting in a substantial protein purity enhancement. This rapid approach is likely to be useful for intrinsically disordered proteins, whose repetitive sequence composition and flexible nature can facilitate aggregation. Copyright © 2016 Elsevier Inc. All rights reserved.
Seixas, Felipe Nael; Rios, Edson Antônio; Martinez de Oliveira, André Luiz; Beloti, Vanerli; Poveda, Justa Maria
2018-08-01
Serrano Catarinense cheese is a raw bovine milk cheese produced in the region of Santa Catarina, Brazil. Twelve representative strains of Leuconostoc isolated from 20 samples of this artisanal cheese were selected and submitted for evaluation of the acidifying, proteolytic, autolytic, aminopeptidase and lipolytic activities, NaCl and acid resistance, production of dextran and biogenic amines and antimicrobial activity. The aim was to genetically and technologically characterize the Leuconostoc strains in order to use them in mixed starter cultures for cheese manufacture. Leuconostoc mesenteroides subsp. mesenteroides was the species that accounted for the largest proportion of isolates of Leuconostoc genus. Two leuconostoc isolates stood out in the acidifying activity, with reduction in pH of 1.12 and 1.04 units. The isolates showed low proteolytic and autolytic activity. Most of the isolates were dextran producers, presented good resistance to the salt and pH conditions of the cheese and showed antimicrobial activity against cheese pathogen bacteria, and none of them produced biogenic amines. These results allowed the selection of five strains (UEL 04, UEL 12, UEL 18, UEL 21 and UEL 28) as good candidates for use as adjunct cultures for cheese manufacture. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, L.G.; Pell, E.J.
Exposing hybrid poplar (Populus maximowizii x trichocarpa) plants to ozone (O[sub 3]) resulted in an acceleration of the visual symptoms of senescence and a decrease in the activity and quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Whole plants, crude leaf extracts, and isolated intact chloroplasts of hybrid poplar clone 245 were used to test the hypothesis that O[sub 3]-induced structural modifications of Rubisco affect the activity of this key photosynthetic enzyme. Proteolytic activity, per se, could not account for losses in Rubisco; acidic and alkaline protease activities declined or were unaffected in foliage of O[sub 3]-treated poplar saplings. In vitro treatment ofmore » leaf extracts with O[sub 3] decreased total Rubisco activity and binding of the enzyme's transition-state analog, 2-carboxyarabinitol bisphosphate. Additionally, O[sub 3] increased the loss of Rubisco large subunit (LSU) when extracts were incubated at 37[degrees]C. Treatment of isolated intact chloroplasts with O[sub 3] accelerated both the loss of the 55-kD Rubisco LSU and the accumulation of Rubisco LSU aggregates, as visualized by immunoblotting. The time-dependent modification in rubisco structure was the primary response of the isolated organelles to O[sub 3] treatment, with little proteolytic degradation of the LSU detected. 32 refs., 5 figs., 1 tab.« less
Shakerian, Mansour; Razavi, Seyed Hadi; Ziai, Seyed Ali; Khodaiyan, Faramarz; Yarmand, Mohammad Saeid; Moayedi, Ali
2015-04-01
In this study, the effects of fat (0.5 %, 3.2 % and 5.0 %), inulin (0.0 and 1.0 %) and starter culture (0.0 %, 0.5 %, 1.0 % and 1.5 %) on the angiotensin converting enzyme (ACE)-inhibitory activity of probiotic yogurt containing non-viable bacteria were assessed. Proteolytic activities of bacteria were also investigated. Yogurts were prepared either using a sole yogurt commercial culture including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus or bifidobacterium animalis BB-12 and Lactobacillus acidophilus La5 in addition to yogurt culture. Relative degrees of proteolysis were found to be considerably higher in yogurt samples than UHT milk as the control. Both regular and probiotic yogurts showed considerable ACE-inhibitory activities. Results showed that degree of proteolysis was not influenced by different fat contents, while was increased by high concentration of starter culture (1.5 % w/w) and reduced by inulin (1 % w/w). ACE-inhibitory activities of yogurt were also negatively affected by the presence of inulin and high levels of fat (5 % w/w). Moreover, yogurt containing probiotic bacteria showed higher inhibitory against ACE in comparison to the yogurt prepared with non-probiotic strains.
Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory
2011-01-01
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles has been demonstrated as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β-amyloid (Aβ) peptides that accumulate in Alzheimer’s disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrasts with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin function. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. PMID:21925292
BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.
Yi, Hua-Shan; Pan, Cai-Xia; Pan, Chun; Song, Juan; Hu, Yan-Fen; Wang, La; Pan, Min-Hui; Lu, Cheng
2014-02-28
In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Both human neutrophil elastase (HNE) and porcine pancreatic elastase (PPE) are serine proteases that have been associated with destructive proteolytic activity when their levels are elevated in chronic diseases. Thus there is considerable interest in the development of elastase sensors. Nanocyrsta...
Influence of native catfish mucus on Flavobacterium columnare growth and proteolytic activity
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to 1) characterize the terminal glycosylation pattern (TGP) of catfish mucus, 2) determine t...
Longmire, J.L.; Lewis, A.K.; Hildebrand, C.E.
1988-01-21
A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduces the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without effect on the protocol.
Mancilla-Olea, Maria Inocente; Ortega-López, Jaime; Figueroa-Angulo, Elisa E; Avila-González, Leticia; Cárdenas-Guerra, Rosa Elena; Miranda-Ozuna, Jesús F T; González-Robles, Arturo; Hernández-García, Mar Saraí; Sánchez-Ayala, Lizbeth; Arroyo, Rossana
2018-04-01
Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Llorente, Berta E; Obregón, Walter David; Avilés, Francesc X; Caffini, Néstor O; Vairo-Cavalli, Sandra
2014-09-15
Artichoke (Cynara scolymus L.) flower extract was assayed with the aim of replacing animal rennet in the manufacture of Gouda-type cheeses from bovine milk. Floral extract coagulated milk within a suitable time for use on an industrial scale, while the yield of cheese obtained was equal to that achieved with bovine abomasum. Five proteolytic fractions with milk-clotting activity were isolated in a two-step purification protocol, three belonging to the cardosin group. Cheeses made with C. scolymus proteases must be brined for a longer period (40 h) to prevent overproteolysis and avoid the development of a background flavor. The type of coagulant (bovine or vegetable) had no significant effect on the cheeses' chemical parameters analyzed throughout ripening, and no significant organoleptic differences were detected between those manufactured with C. scolymus or animal rennet. The results indicate that C. scolymus flower extract is suitable for replacing animal rennet in the production of Gouda-type cheeses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Torres-Bonilla, Kristian A; Floriano, Rafael S; Schezaro-Ramos, Raphael; Rodrigues-Simioni, Léa; da Cruz-Höfling, Maria Alice
2017-06-01
Colombian colubrid snake venoms have been poorly studied. They represent a great resource of biological, ecological, toxinological and pharmacological research. We assessed some enzymatic properties and neuromuscular effects of Erythrolamprus bizona and Pseudoboa neuwiedii venoms from Colombia. Proteolytic, amidolytic and phospholipase A 2 (PLA 2 ) activities were analyzed using colorimetric assays and the neuromuscular activity was analyzed in chick biventer cervicis (BC) preparations. The venom of both species showed very low PLA 2 and amidolytic activities; however, both exhibited high proteolytic activity, which in E. bizona venom surpassed that of P. neuwiedii venom. E. bizona and P. neuwiedii venoms provoked partial neuromuscular blockade, which was more prominent in P. neuwiedii venom. E. bizona venom (30 μg/ml) induced a significant potentiation of the contracture response to exogenous ACh (110 μM), which was not accompanied by twitch height alteration, whereas the highest venom concentration (100 μg/ml) inhibited contracture responses to both ACh and KCl (40 mM). In contrast, P. neuwiedii venom (30 and 100 μg/ml) caused significant reduction in the contracture responses to exogenous ACh and KCl. The morphological analyses showed high myotoxic effects in the muscle fibers of BC incubated with either venoms; however, they are more prominent in the P. neuwiedii venom. Our results suggest that the myotoxicity of the venom of the two Colombian species can be ascribed to their high proteolytic activity. An interesting data was the potentiation of the ACh-induced contracture, but not the twitch height, caused by E. bizona venom, at a concentration that is harmless to muscle fibers integrity. This phenomenon remains to be further elucidated, and suggest that a possible involvement of post-synaptic receptors cannot be discarded. This work is a contribution to expand the knowledge on colubrid venoms; it allows envisaging that the two venoms offer the potential to go further in the identification of their components and biological targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bonatti, S; Cancedda, F D
1982-04-01
Cytoplasmic extracts prepared from Sindbis virus-infected chicken embryo fibroblasts pulse-chase-labeled with [35S]methionine 6 h postinfection were analyzed on a highly resolving sodium dodecyl sulfate-gel either directly or after various treatments. The results we obtained suggest that (i) the proteolytic cleavage which converts PE2 to E2 glycoprotein takes place intracellularly, before or at least during the formation of complex-type oligosaccharide side chains; and (ii) E1 glycoprotein undergoes a complex maturation pattern. Newly synthesized E1 has a molecular weight of 53,000: shortly thereafter, this 53,000 (53K) form was converted to a 50K form. Subsequently, the 50K form decreased its apparent molecular weight progressively and eventually comigrated with E1 glycoprotein present in the extracellular virus, which displays a molecular weight of 51,000 to 52,000. The conversion of the 53K to the 50K form was not the result of a proteolytic processing and did not depend on glycosylation or disulfide bridge formation and exchange. The possible mechanisms of this conversion are discussed. The second conversion step (from the 50K to the 51-52K form) was due to the formation of complex-type oligosaccharide and was reversed by incubating the cellular extracts with neuraminidase before electrophoretic analysis.
Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacoby, I.; Tegler, L. T.; Pochekailov, S.
2012-04-01
Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus,more » led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.« less
NASA Astrophysics Data System (ADS)
Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver
2018-05-01
Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell signaling. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver
2018-04-01
Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell signaling. [Figure not available: see fulltext.
McSweeney, Christopher S.; Palmer, Brian; Bunch, Rowan; Krause, Denis O.
1999-01-01
Tannins in forages complex with protein and reduce the availability of nitrogen to ruminants. Ruminal bacteria that ferment protein or peptides in the presence of tannins may benefit digestion of these diets. Bacteria from the rumina of sheep and goats fed Calliandra calothyrsus (3.6% N and 6% condensed tannin) were isolated on proteinaceous agar medium overlaid with either condensed (calliandra tannin) or hydrolyzable (tannic acid) tannin. Fifteen genotypes were identified, based on 16S ribosomal DNA-restriction fragment length polymorphism analysis, and all were proteolytic and fermented peptides to ammonia. Ten of the isolates grew to high optical density (OD) on carbohydrates (glucose, cellobiose, xylose, xylan, starch, and maltose), while the other isolates did not utilize or had low growth on these substrates. In pure culture, representative isolates were unable to ferment protein that was present in calliandra or had been complexed with tannin. One isolate, Lp1284, had high protease activity (80 U), a high specific growth rate (0.28), and a high rate of ammonia production (734 nmol/min/ml/OD unit) on Casamino Acids and Trypticase Peptone. Phylogenetic analysis of the 16S ribosomal DNA sequence showed that Lp1284 was related (97.6%) to Clostridium botulinum NCTC 7273. Purified plant protein and casein also supported growth of Lp1284 and were fermented to ammonia. This is the first report of a proteolytic, ammonia-hyperproducing bacterium from the rumen. In conclusion, a diverse group of proteolytic and peptidolytic bacteria were present in the rumen, but the isolates could not digest protein that was complexed with condensed tannin. PMID:10388706
Matagne, André; Bolle, Laetitia; El Mahyaoui, Rachida; Baeyens-Volant, Danielle; Azarkan, Mohamed
2017-06-01
Crude pineapple proteases extract (aka stem bromelain; EC 3.4.22.4) is an important proteolytic mixture that contains enzymes belonging to the cysteine proteases of the papain family. Numerous studies have been reported aiming at the fractionation and characterization of the many molecular species present in the extract, but more efforts are still required to obtain sufficient quantities of the various purified protease forms for detailed physicochemical, enzymatic and structural characterization. In this work, we describe an efficient strategy towards the purification of at least eight enzymatic forms. Thus, following rapid fractionation on a SP-Sepharose FF column, two sub-populations with proteolytic activity were obtained: the unbound (termed acidic) and bound (termed basic) bromelain fractions. Following reversible modification with monomethoxypolyethylene glycol (mPEG), both fractions were further separated on Q-Sepharose FF and SP-Sepharose FF, respectively. This procedure yielded highly purified molecular species, all titrating ca. 1 mol of thiol group per mole of enzyme, with distinct biochemical properties. N-terminal sequencing allowed identifying at least eight forms with proteolytic activity. The basic fraction contained previously identified species, i.e. basic bromelain forms 1 and 2, ananain forms 1 and 2, and comosain (MEROPS identifier: C01.027). Furthermore, a new proteolytic species, showing similarities with basic bomelain forms 1 and 2, was discovered and termed bromelain form 3. The two remaining species were found in the acidic bromelain fraction and were arbitrarily named acidic bromelain forms 1 and 2. Both, acidic bromelain forms 1, 2 and basic bromelain forms 1, 2 and 3 are glycosylated, while ananain forms 1 and 2, and comosain are not. The eight protease forms display different amidase activities against the various substrates tested, namely small synthetic chromogenic compounds (DL-BAPNA and Boc-Ala-Ala-Gly-pNA), fluorogenic compounds (like Boc-Gln-Ala-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC), and proteins (azocasein and azoalbumin), suggesting a specific organization of their catalytic residues. All forms are completely inhibited by specific cysteine and cysteine/serine protease inhibitors, but not by specific serine and aspartic protease inhibitors, with the sole exception of pepstatin A that significantly affects acidic bromelain forms 1 and 2. For all eight protease forms, inhibition is also observed with 1,10-phenanthrolin, a metalloprotease inhibitor. Metal ions (i.e. Mn 2+ , Mg 2+ and Ca 2+ ) showed various effects depending on the protease under consideration, but all of them are totally inhibited in the presence of Zn 2+ . Mass spectrometry analyses revealed that all forms have a molecular mass of ca. 24 kDa, which is characteristic of enzymes belonging to the papain-like proteases family. Far-UV CD spectra analysis further supported this analysis. Interestingly, secondary structure calculation proves to be highly reproducible for all cysteine proteases of the papain family tested so far (this work; see also Azarkan et al., 2011; Baeyens-Volant et al., 2015) and thus can be used as a test for rapid identification of the classical papain fold. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zulueta, Aida; Caretti, Anna; Campisi, Giuseppe Matteo; Brizzolari, Andrea; Abad, Jose Luis; Paroni, Rita; Signorelli, Paola; Ghidoni, Riccardo
2017-07-01
Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well. The present study investigates the role of sphingolipids in the cigarette smoke-induced damage of human airway epithelial cells. Lung epithelial cells were pre-treated with sphingolipid synthesis inhibitors (myriocin or XM462) and then exposed to a mixture of nicotine, acrolein, formaldehyde, and acetaldehyde, the major toxic cigarette smoke components. The inflammatory and proteolytic responses were investigated by analysis of the mRNA expression (RT-PCR) of cytokines IL-1β and IL-8, and matrix metalloproteinase-9 and of the protein expression (ELISA) of IL-8. Ceramide intracellular amounts were measured by LC-MS technique. Ferric-reducing antioxidant power test and superoxide anion radical scavenging activity assay were used to assess the antioxidant power of the inhibitors of ceramide synthesis. We here show that ceramide synthesis is enhanced under treatment with a cigarette smoke mixture correlating with increased expression of inflammatory cytokines and matrix metalloproteinase 9. The use of inhibitors of ceramide synthesis protected from smoke induced damages such as inflammation, oxidative stress, and proteolytic imbalance in airways epithelia.
A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin.
Whittington, A Carl; Mason, Andrew J; Rokyta, Darin R
2017-04-01
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
Wannun, Phirawat; Piwat, Supatcharin; Teanpaisan, Rawee
2016-06-01
Fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11, was purified, characterized, and optimized in conditions for bacterial growth and bacteriocin production. Fermencin SD11 was purified using three steps of ammonium sulfate precipitation, gel filtration chromatography, and reverse-phase high-performance liquid chromatography. The molecular weight was found to be 33,000 Da using SDS-PAGE and confirmed as 33,593.4 Da by liquid chromatography-mass spectrometry. Fermencin SD11 exhibited activity against a wide range of oral pathogens including cariogenic and periodontogenic pathogens and Candida. The active activity was stable between 60 - 80 °C in a pH range of 3.0 to 7.0. It was sensitive to proteolytic enzymes (proteinase K and trypsin), but it was not affected by α-amylase, catalase, lysozyme, and saliva. The optimum conditions for growth and bacteriocin production of L. fermentum SD11 were cultured at acidic with pH of 5.0-6.0 at 37 or 40 °C under aerobic or anaerobic conditions for 12 h. It is promising that L. fermentum SD11 and its bacteriocin may be an alternative approach for promoting oral health or prevention of oral diseases, e.g., dental caries and periodontitis, which would require further clinical trials.
Serine protease activity of Cur l 1 from Curvularia lunata augments Th2 response in mice.
Tripathi, Prabhanshu; Kukreja, Neetu; Singh, B P; Arora, Naveen
2009-05-01
Studies with mite allergens demonstrated that proteolytic activity augments allergic airway inflammation. This knowledge is limited to few enzyme allergens. The objective of this study is to investigate the effect of serine protease Cur l 1 from Curvularia lunata in airway inflammation/hyper-responsiveness. Cur l 1 was purified and inactivated using a serine protease inhibitor. Balb/c mice were sensitized with enzymatically active Cur l 1 or C. lunata extract. Sensitized mice were given booster dose on day 14 with active or inactivated Cur l 1. Intranasal challenge was given on day 28, 29, and 30. Airway hyper-responsiveness was measured by plethysmography. Blood, bronchoalveolar lavage fluid (BALF), spleen, and lungs from mice were analyzed for cellular infiltration, immunoglobulins, and cytokine levels. Mice challenged with enzymatically active Cur l 1 demonstrated significantly higher airway inflammation than inactive Cur l 1 group mice (p < 0.01). There was a significant difference in serum IgE and IgG1 levels among mice immunized with active Cur l 1 and inactive Cur l 1 (p < 0.01). IL-4 and IL-5 were higher in BALF and splenocyte culture supernatant of active Cur l 1 than inactive Cur l 1 mice. Lung histology revealed increased eosinophil infiltration, goblet cell hyperplasia and mucus secretion in active group. Proteolytic activity of Cur l 1 plays an important role in airway inflammation and the inactivated Cur l 1 has potential to be explored for immunotherapy.
Bone Marrow Stromal Cells Stimulate an Angiogenic Program that Requires Endothelial MT1-MMP
Kachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J.
2012-01-01
Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis. PMID:22262018
Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic
Bird, Gregory H.; Madani, Navid; Perry, Alisa F.; Princiotto, Amy M.; Supko, Jeffrey G.; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G.; Walensky, Loren D.
2010-01-01
The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability. PMID:20660316
HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination1
Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia
2016-01-01
Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. PMID:26912343
Lenfant, M; Millerioux, L; Blazsek, I; Duchange, N
1983-01-01
A spleen-derived immunosuppressive peptide (SDIP) has been purified to homogeneity. Its physicochemical properties (electrophoretic mobility, u.v. spectra, absence of dansyl derivative) and its enzymatic susceptibilities (proteolytic enzymes, RNase, and DNase) were similar to those of the thymic hormone 'FTS'. SDIP and FTS were eluted with identical retention times in high performance liquid chromatography analysis in three different systems. When tested in sheep cell rosettes, and in the FTS radioimmunoassay in J.F. Bach's laboratory, SDIP presented an activity similar to FTS. In order to compare the thymic hormone to SDIP the biological activity of FTS was determined in in vivo and in in vitro humoral immunity reactions to a T-dependent antigen. As SDIP, FTS inhibited in vivo and in vitro the 19S-bearing cell formation during the last step of the differentiation of the lymphocytes, in the same range of concentration. The two factors appeared to stimulate the incorporation of [3H]-thymidine into the DNA of short-term cultures of thymocytes. The similarity of biological properties of SDIP and FTS together with the similarity observed in the physico-chemical and biochemical properties led to the conclusion that bovine spleen contains a factor similar to FTS. PMID:6682089
2012-03-28
metabolic activity (Hatheway, 1988) and genetic composition (Collins, 1998; Hill et al., 2007). Group I includes type A strains and proteolytic...environment with temperatures ranging from 4ºC to 40°C, a pH range from 4.6 to 7.0, and water activity greater than 0.94 (aW is intensity with which water...al., 1998b) indicate that it is similar to BoNT/A in terms of the toxicity and duration of activity . A 2004 study evaluated the electrophysical
Nickerson, Nicholas N; Joag, Vineet; McGavin, Martin J
2008-09-01
The Staphylococcus aureus proteolytic cascade consists of a metalloprotease aureolysin (Aur), which activates a serine protease zymogen proSspA, which in turn activates the SspB cysteine protease. As with other M4 metalloproteases, including elastase of Pseudomonas aeruginosa, the propeptide of proAur contains an N-terminal fungalysin-thermolysin-propeptide (FTP) domain. Autocatalytic activation of proAur was initiated by processing at T85 downward arrowL(86) in the FTP domain. This differed from the mechanism described for proElastase, where the FTP domain has an RY motif in place of TL(86), and processing occurred at the junction of the propeptide and metalloprotease domains, which remained as an inactive complex during passage across the outer membrane. When TL(86) in the FTP domain was replaced with RY, an intact N-terminal propeptide was secreted, but the M4 metalloprotease domain was degraded. Consequently, this segment of the FTP domain promotes intramolecular processing of proAur while bestowing a chaperone function, but discourages processing within the FTP domain of proElastase, where activation must be co-ordinated with passage across a second membrane. We conclude that the FTP domain of proAur is adapted to facilitate a rapid autocatalytic activation mechanism, consistent with the role or proAur as initiator of the staphylococcal proteolytic cascade.
Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu
2013-01-01
Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996
Reporters to monitor cellular MMP12 activity
NASA Astrophysics Data System (ADS)
Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten
2010-02-01
Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.
Spier, Michele R; Siepmann, Francieli B; Staack, Larissa; Souza, Priscila Z; Kumar, Vikas; Medeiros, Adriane B P; Soccol, Carlos R
2016-10-02
The development of stable enzymes is a key issue in both the food and feed industries. Consequently, the aim of the current study is to evaluate the impact of various additives (sodium chloride, sodium citrate, mannitol, methylparaben, polyethylene glycol 3350, ethylenediaminetetraacetic acid disodium salt, and a serine protease inhibitor) on the stability of a mushroom phytase produced by solid-state cultivation and recovery. Also observed was the effect of the additives on microbial growth inhibition by monitoring both the change in optical density over 30 days of storage and proteolytic activity. Initially, eight experimental formulations were prepared along with a control. After screening, a 3(2) factorial design was applied to define suitable concentrations of the selected additives. Among the eight formulations tested, the formulation containing NaCl, PEG 3350, and methylparaben retained all of the initial phytase activity after 50 days of storage, with no detected interference from protease activity. Sodium citrate, a metal chelation agent, presented the unusual effect of reducing protease activity in the formulations. Although all formulations presented better phytase stability when compared to the control, NaCl and PEG were both able to prolong the stability of the enzyme activity and also to inhibit microbial growth during storage, making them favorable for application as food and feed additives.
COMPARATIVE STUDIES OF THREE METHODS FOR MEASURING PEPSIN ACTIVITY
Loken, Merle K.; Terrill, Kathleen D.; Marvin, James F.; Mosser, Donn G.
1958-01-01
Comparison has been made of a simple method originated by Absolon and modified in our laboratories for assay of proteolytic activity using RISA (radioactive iodinated serum albumin—Abbott Laboratories), with the commonly used photometric methods of Anson and Kunitz. In this method, pepsin was incubated with an albumin substrate containing RISA, followed by precipitation of the undigested substrate with trichloroacetic acid and measurement of radioactive digestion products in the supernatant fluid. The I131—albumin bond was shown in the present studies to be altered only by the proteolytic activity, and not by the incubation procedures at various values of pH. Any free iodine present originally in the RISA was removed by a single passage through a resin column (amberlite IRA-400-C1). Pepsin was shown to be most stable in solution at a pH of 5.5. Activity of pepsin was shown to be maximal when it was incubated with albumin at a pH of 2.5. Pepsin activity was shown to be altered in the presence of various electrolytes. Pepsin activity measured by the RISA and Anson methods as a function of concentration or of time of incubation indicated that these two methods are in good agreement and are equally sensitive. Consistently smaller standard errors were obtained by the RISA method of pepsin assay than were obtained with either of the other methods. PMID:13587910
Activated release of membrane-anchored TGF-alpha in the absence of cytosol
1993-01-01
The ectodomain of proTGF-alpha, a membrane-anchored growth factor, is converted into soluble TGF-alpha by a regulated cellular proteolytic system that recognizes proTGF-alpha via the C-terminal valine of its cytoplasmic tail. In order to define the biochemical components involved in proTGF-alpha cleavage, we have used cells permeabilized with streptolysin O (SLO) that have been extensively washed to remove cytosol. PMA, acting through a Ca(2+)-independent protein kinase C, activates cleavage as efficiently in permeabilized cells as it does in intact cells. ProTGF-alpha cleavage is also stimulated by GTP gamma S through a mechanism whose pharmacological properties suggest the involvement of a heterotrimeric G protein acting upstream of the PMA- sensitive Ca(2+)-independent protein kinase C. Activated proTGF-alpha cleavage is dependent on ATP hydrolysis, appears not to require vesicular traffic, and acts specifically on proTGF-alpha that has reached the cell surface. These results indicate that proTGF-alpha is cleaved from the cell surface by a regulated system whose signaling, recognition, and proteolytic components are retained in cells devoid of cytosol. PMID:8314849
Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.
Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna
2015-01-01
Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901
Purification and autolysis of the ficin isoforms from fig (Ficus carica cv. Sabz) latex
Zare, Hamid; Moosavi-Movahedi, Ali Akbar; Salami, Maryam; Mirzaei, Morteza; Saboury, Ali Akbar; Sheibani, Nader
2013-01-01
Ficin (EC 3.4.22.3), a cysteine endoproteolytic protease in fig trees’ latex, has multiple isoforms. Until now, no data on autolysis of individual ficins (ficin isoforms) are available. Following purification, ficins’ autolysis was determined by HPLC chromatogram changes and ultrafiltrations at different temperatures and storage times. These results showed that the number of HPLC peaks in latex proteins purification of Ficus carica cv. Sabz varied from previous fig varieties or cultivars. Proteolytic activity of ficins was inhibited by specific cysteine protease inhibitors, confirming the participation of the cysteine residue in the active site. The zeta potential of the first two eluted peaks (I and II) was negative, while that of other peaks were positive. All ficins were susceptible to autolysis when stored at high temperatures. In contrast, only the last two ficins (B, C) were prone to autolysis at cold temperature after long storage period. The rate of degradation of the ficins was significantly increased with the increased storage time. The ficin (A) related to peak (III) had the highest and the lowest surface hydrophobic patches and ratio of autolytic to proteolytic activity, respectively. PMID:23312458
Weaver, Matt; Workman, Gail; Schultz, Chad R.; Lemke, Nancy; Rempel, Sandra A.; Sage, E. Helene
2011-01-01
The matricellular SPARC-family member hevin (Sparc-like 1/SPARCL-1/SC1/Mast9) contributes to neural development and alters tumor progression in a range of mammalian models. Based on sequence similarity, we hypothesized that proteolytic digestion of hevin would result in SPARC-like fragments (SLF) that affect the activity and/or location of these proteins. Incubation of hevin with matrix metalloproteinase-3 (MMP-3), a protease known to cleave SPARC, produced a limited number of peptides. Sequencing revealed the major proteolytic products to be SPARC-like in primary structure. In gliomas implanted into murine brain, a SLF was associated with SPARC in the neovasculature but not with hevin, the latter prominent in the astrocytes encompassed by infiltrating tumor. In this model of invasive glioma that involves MMP-3 activity, host-derived SLF was not observed in the extracellular matrix adjacent to tumor cells. In contrast, it occurred with its homolog SPARC in the angiogenic response to the tumor. We conclude that MMP-3-derived SLF is a marker of neovessels in glioma, where it could influence the activity of SPARC. PMID:21688302
Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins
Yun, Thomas H.; Cott, Jessica E.; Tapping, Richard I.; Slauch, James M.
2009-01-01
The immune response to infection includes activation of the blood clotting system, leading to extravascular fibrin deposition to limit the spread of invasive microorganisms. Some bacteria have evolved mechanisms to counteract this host response. Pla, a member of the omptin family of Gram-negative bacterial proteases, promotes the invasiveness of the plague bacterium, Yersinia pestis, by activating plasminogen to plasmin to digest fibrin. We now show that the endogenous anticoagulant tissue factor pathway inhibitor (TFPI) is also highly sensitive to proteolysis by Pla and its orthologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium. Using gene deletions, we demonstrate that bacterial inactivation of TFPI requires omptin expression. TFPI inactivation is mediated by proteolysis since Western blot analysis showed that TFPI cleavage correlated with loss of anticoagulant function in clotting assays. Rates of TFPI inactivation were much higher than rates of plasminogen activation, indicating that TFPI is a better substrate for omptins. We hypothesize that TFPI has evolved sensitivity to proteolytic inactivation by bacterial omptins to potentiate procoagulant responses to bacterial infection. This may contribute to the hemostatic imbalance in disseminated intravascular coagulation and other coagulopathies accompanying severe sepsis. PMID:18988866
An, Young Jun; Na, Jung-Hyun; Kim, Myung-Il; Cha, Sun-Shin
2015-10-01
Lon proteases degrade defective or denature proteins as well as some folded proteins for the control of cellular protein quality. There are two types of Lon proteases, LonA and LonB. Each consists of two functional components: a protease component and an ATPase associated with various cellular activities (AAA+ module). Here, we report the 2.03 -resolution crystal structure of the isolated AAA+ module (iAAA+ module) of LonB from Thermococcus onnurineus NA1 (TonLonB). The iAAA+ module, having no bound nucleotide, adopts a conformation virtually identical to the ADP-bound conformation of AAA+ modules in the hexameric structure of TonLonB; this provides insights into the ATP-independent proteolytic activity observed in a LonB protease. Structural comparison of AAA+ modules between LonA and LonB revealed that the AAA+ modules of Lon proteases are separated into two distinct clades depending on their structural features. The AAA+ module of LonB belongs to the -H2 & Ins1 insert clade (HINS clade)- defined for the first time in this study, while the AAA+ module of LonA is a member of the HCLR clade.
Pineda, María E; Girón, María E; Estrella, Amalid; Sánchez, Elda E; Aguilar, Irma; Fernandez, Irma; Vargas, Alba M; Scannone, Héctor; Rodríguez-Acosta, Alexis
2008-01-01
Earlier studies have revealed the ability of sera from several mammals to neutralize the toxic effects of snake venom. The Venezuelan opossum (Didelphis marsupialis) is one that has been found to inhibit hemorrhagic and proteolytic activities of venoms from many species of snakes. In this article it is shown that the opossum sera and its 0.15DM fraction were able to completely neutralize both hemorrhagic and hydrolysis (proteolysis) of casein effects induced by venom of the Lansberg's hognose pit viper (Porthidium lansbergii hutmanni). We have used DEAE-cellulose ion exchange chromatography to collect protein fractions from D. marsupialis sera which were able to defend mice from the lethal effects of P.l. hutmanni venom. The fractions separated were homogeneous by conventional electrophoresis using SDS-PAGE. The protein bands obtained contained molecular weights of approximately 6 to 220 kDa. These results revealed the presence of proteases inhibitors in the opossum sera fractions and the inhibition of venom activity by opossum sera suggesting a reciprocal adaptation at the molecular level.
Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju
2017-10-01
Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development
2016-01-01
Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy. PMID:28104930
Mengele, K; Harbeck, N; Reuning, U; Magdolen, V; Schmitt, M
2005-08-01
Proteolytic factors belonging t the plasminogen activator family (plasmin, u-PA, t-PA, u-PAR, PAI-1, and PAI-2), which usually are involved in blood clotting and degradation of blood clots, are also present in healthy and diseased tissue of the kidney, lung, liver, gastro-intestinal tract, breast, prostate, ovary, and brain. These factors are engaged in brain development, angiogenesis and vascular invasion, wound healing as well as in placenta development and embryogenesis. Plasminogen activators u-PA and t-PA, their inhibitors PAI-1 and PAI-2, and the u-PA-receptor (u-PAR, CD87) are often elevated in solid malignant tumour tissues compared to their normal counterparts. In breast cancer patients, an elevated tumour tissue extract antigen content of u-PA, PAI-1, and u-PAR is associated with increased tumour aggressiveness and poor prognosis; in contrary, an elevated content of t-PA and PAI-2 indicates a favourable prognosis. For clinical relevant determination of these proteolytic factors in tumour tissue extracts, only enzymo-immunometric tests (ELISA) are recommended. Enzymometric and enzymographic tests are actually conducted only in an experimental, preclinical context.
Analysis of specific proteolytic digestion of the peptidoglutaminase-asparaginase of koji molds.
Ito, Kotaro; Koyama, Yasuji
2014-09-01
AsGahB, a peptidoglutaminase-asparaginase acting as the main glutaminase in Aspergillus sojae, was previously purified from the cytoplasm of overexpressing strains. Here, we found that specific proteolytic digestion of AsGahB by extracellular proteases of koji molds is similar to that of AsGahA which exists in proteolytic form under solid-state culture. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Plant Viral Proteases: Beyond the Role of Peptide Cutters
Rodamilans, Bernardo; Shan, Hongying; Pasin, Fabio; García, Juan Antonio
2018-01-01
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Todd, P. W.
1985-01-01
A variety of proteolytic and micolytic enzumes, mechanical procedures, and changes in the ionic environment, especially Ca chelation, are used for dispersal of monolayer grown cells. If either chelating agents or mechanical dispersion are used alone, the cell yield is often low and suspensions of single cells are difficult to obtain. Confluent monolayers treated with EDTA tend to be released from their surfaces in sheets, and clumps of cells remain even after further incubation in EDTA. Crude trypsin is the most popular dispersal agent and is known to contain a variety of contaminating enzymes which contribute to the dispersal of cells. A variety of cell injuries resulting from the activity of proteolytic enzymes are reported. It is shown that crystalline trypsin is least harmful to cell integrity as judged by trypan blue uptake.
Activity-based mass spectrometric characterization of proteases and inhibitors in human saliva
Sun, Xiuli; Salih, Erdjan; Oppenheim, Frank G.; Helmerhorst, Eva J.
2009-01-01
Proteases present in oral fluid effectively modulate the structure and function of some salivary proteins and have been implicated in tissue destruction in oral disease. To identify the proteases operating in the oral environment, proteins in pooled whole saliva supernatant were separated by anion-exchange chromatography and individual fractions were analyzed for proteolytic activity by zymography using salivary histatins as the enzyme substrates. Protein bands displaying proteolytic activity were particularly prominent in the 50–75 kDa region. Individual bands were excised, in-gel trypsinized and subjected to LC/ESI-MS/MS. The data obtained were searched against human, oral microbial and protease databases. A total of 13 proteases were identified all of which were of mammalian origin. Proteases detected in multiple fractions with cleavage specificities toward arginine and lysine residues, were lactotransferrin, kallikrein-1, and human airway trypsin-like protease. Unexpectedly, ten protease inhibitors were co-identified suggesting they were associated with the proteases in the same fractions. The inhibitors found most frequently were alpha-2-macroglobulin-like protein 1, alpha-1-antitrypsin, and leukocyte elastase inhibitor. Regulation of oral fluid proteolysis is highly important given that an inbalance in such activities has been correlated to a variety of pathological conditions including oral cancer. PMID:20011683
Hammami, Amal; Fakhfakh, Nahed; Abdelhedi, Ola; Nasri, Moncef; Bayoudh, Ahmed
2018-03-01
The present work aims to study the simultaneous production of highly alkaline proteases and thermostable α-amylases by a newly isolated bacterium Bacillus mojavensis SA. The optimum pH and temperature of amylase activity were 9.0 and 55°C, respectively, while those of the proteolytic activity were 12.0 and 60°C, respectively. Both α-amylase and protease enzymes showed a high stability towards a wide range of pH and temperature. Furthermore, SA crude enzymes were relatively stable towards non-ionic (Tween 20, Tween 80 and Triton X-100) and anionic (SDS) surfactants, as well as oxidizing agents. Both activities were improved by the presence of polyethylene glycol 4000 and glycerol. Additionally, the crude enzymes showed excellent stability against various solid and liquid detergents. Wash performance analysis revealed that the SA crude enzymes exhibited a remarkable efficiency in the removal of a variety type of stains, such as blood, chocolate, coffee and oil. On the other side, SA proteases revealed a potential dehairing activity of animal hide without chemical assistance or fibrous proteins hydrolysis. Thus, considering their promising properties, B. mojavensis SA crude enzymes could be used in several biotechnological bioprocesses. Copyright © 2017 Elsevier B.V. All rights reserved.
Vijayakumar, Mayakrishnan; Ilavenil, Soundharrajan; Kim, Da Hye; Arasu, Mariadhas Valan; Priya, Kannappan; Choi, Ki Choon
2015-04-01
The aim of the present study was to determine the probiotic potential of the lactic acid bacteria Lactobacillus plantarum KCC-24 (L. plantarum KCC-24), that was isolated and characterized from Italian ryegrass (Lolium multiflorum) forage. The following experiments were performed to assess the probiotic characteristics such as antifungal activity, antibiotic susceptibility, resistance to low pH, stimulated gastric juice and bile salts, proteolytic activity, auto-aggregation, cell surface hydrophobicity, and in vitro antioxidant property. The isolated L. plantarum KCC-24 exhibited significant antifungal activity against the various fungal strains of Aspergillus fumigatus (73.43%), Penicillium chrysogenum (59.04%), Penicillium roqueforti (56.67%), Botrytis elliptica (40.23%), Fusarium oxysporum (52.47%) and it was susceptible to numerous antibiotics, survived in low pH, was resistant to stimulated gastric juices and bile salts (0.3% w/v). Moreover, L. plantarum KCC-24 exhibited good proteolytic activity. In addition L. plantarum KCC-24 showed potent antioxidant and hydrogen peroxide resistant property. In conclusion, the isolated L. plantarum KCC-24 exhibited several characteristics to prove it's excellent as a potential probiotic candidate for developing quality food for ruminant animals and human. Copyright © 2015 Elsevier Ltd. All rights reserved.
Noël, A; Santavicca, M; Stoll, I; L'Hoir, C; Staub, A; Murphy, G; Rio, M C; Basset, P
1995-09-29
Matrix metalloproteinases (matrixins) constitute a group of extracellular proteinases belonging to the metzincin superfamily. They are involved in both physiological and pathological tissue remodeling processes, including those associated with cancer progression. Stromelysin-3, which is expressed in most invasive human carcinomas, is a matrix metalloproteinase with unusual functional properties. In particular, its mature form does not cleave any of the major extracellular matrix components. To define critical structural determinants involved in controlling stromelysin-3 proteolytic activity, we have used site-directed mutagenesis. We show that the deletion of at least 175 C-terminal amino-acids is sufficient to endow mouse stromelysin-3 with activities against casein, laminin, and type IV collagen. In the case of the human enzyme, however, a further and single Ala-235-->Pro substitution is necessary to observe similar activities. Ala-235, which characterizes human stromelysin-3 among matrixins, is located immediately after the C terminus of the "Met-turn," which forms a hydrophobic basis for the catalytic zinc atom in the metzincin family. We conclude that human stromelysin-3 has gained specific functional properties during evolution by amino acid substitution in the catalytic zinc environment, and that it represents an attractive target for specific inhibitors that may be used to prevent cancer progression.
Mohan Kumar, N S; Kishore, Vijay; Manonmani, H K
2014-01-01
L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.
Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients.
Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K
2013-03-01
Germination can be used to improve the sensory and nutritional properties of cereal and pseudocereal grains. Oat and quinoa are rich in minerals, vitamins and fibre while quinoa also contains high amounts of protein of a high nutritional value. In this study, oat and quinoa malts were produced and incorporated in a rice and potato based gluten free formulation. Germination of oat led to a drastic increase of α-amylase activity from 0.3 to 48 U/g, and minor increases in proteolytic and lipolytic activities. Little change was observed in quinoa except a decrease in proteolytic activity from 9.6 to 6.9 U/g. Oat malt addition decreased batter viscosities at both proofing temperature and during heating. These changes led to a decrease in bread density from 0.59 to 0.5 g/ml and the formation of a more open crumb, but overdosing of oat malt deteriorated the product as a result of excessive amylolysis during baking. Quinoa malt had no significant effect on the baking properties due to low α-amylase activity. Despite showing a very different impact on the bread quality, both malts influenced the electrophoretic patterns of rice flour protein similarly. This suggests that malt induced proteolysis does not influence the technological properties of a complex gluten free formulation.
Parisi, Mónica G; Moreno, Silvia; Fernández, Graciela
2008-04-01
A dual function protein was isolated from Allium sativum bulbs and was characterized. The protein had a molecular mass of 25-26 kDa under non-reducing conditions, whereas two polypeptide chains of 12.5+/-0.5 kDa were observed under reducing conditions. E-64 and leupeptin inhibited the proteolytic activity of the protein, which exhibited characteristics similar to cysteine peptidase. The enzyme exhibited substrate specificity and hydrolyzed natural substrates such as alpha-casein (K(m): 23.0 microM), azocasein, haemoglobin and gelatin. It also showed a high affinity for synthetic peptides such as Cbz-Ala-Arg-Arg-OMe-beta-Nam (K(m): 55.24 microM, k(cat): 0.92 s(-1)). The cysteine peptidase activity showed a remarkable stability after incubation at moderate temperatures (40-50 degrees C) over a pH range of 5.5-6.5. The N-terminus of the protein displayed a 100% sequence similarity to the sequences of a mannose-binding lectin isolated from garlic bulbs. Moreover, the purified protein was retained in the chromatographic column when Con-A Sepharose affinity chromatography was performed and the protein was able to agglutinate trypsin-treated rabbit red cells. Therefore, our results indicate the presence of an additional cysteine peptidase activity on a lectin previously described.
Neurotrophins regulate ApoER2 proteolysis through activation of the Trk signaling pathway.
Larios, Jorge A; Jausoro, Ignacio; Benitez, Maria-Luisa; Bronfman, Francisca C; Marzolo, Maria-Paz
2014-09-19
ApoER2 and the neurotrophin receptors Trk and p75(NTR) are expressed in the CNS and regulate key functional aspects of neurons, including development, survival, and neuronal function. It is known that both ApoER2 and p75(NTR) are processed by metalloproteinases, followed by regulated intramembrane proteolysis. TrkA activation by nerve growth factor (NGF) increases the proteolytic processing of p75(NTR) mediated by ADAM17. Reelin induces the sheeding of ApoER2 ectodomain depending on metalloproteinase activity. However, it is not known if there is a common regulation mechanism for processing these receptors. We found that TrkA activation by NGF in PC12 cells induced ApoER2 processing, which was dependent on TrkA activation and metalloproteinases. NGF-induced ApoER2 proteolysis was independent of mitogen activated protein kinase activity and of phosphatidylinositol-3 kinase activity. In contrast, the basal proteolysis of ApoER2 increased when both kinases were pharmacologically inhibited. The ApoER2 ligand reelin regulated the proteolytic processing of its own receptor but not of p75(NTR). Finally, in primary cortical neurons, which express both ApoER2 and TrkB, we found that the proteolysis of ApoER2 was also regulated by brain-derived growth factor (BDNF). Our results highlight a novel relationship between neurotrophins and the reelin-ApoER2 system, suggesting that these two pathways might be linked to regulate brain development, neuronal survival, and some pathological conditions.
Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts
Zhalyalov, Ansar S.; Panteleev, Mikhail A.; Gracheva, Marina A.; Ataullakhanov, Fazoil I.
2017-01-01
Fibrinolysis is a cascade of proteolytic reactions occurring in blood and soft tissues, which functions to disintegrate fibrin clots when they are no more needed. In order to elucidate its regulation in space and time, fibrinolysis was investigated using an in vitro reaction-diffusion experimental model of blood clot formation and dissolution. Clotting was activated by a surface with immobilized tissue factor in a thin layer of recalcified blood plasma supplemented with tissue plasminogen activator (TPA), urokinase plasminogen activator or streptokinase. Formation and dissolution of fibrin clot was monitored by videomicroscopy. Computer systems biology model of clot formation and lysis was developed for data analysis and experimental planning. Fibrin clot front propagated in space from tissue factor, followed by a front of clot dissolution propagating from the same source. Velocity of lysis front propagation linearly depended on the velocity clotting front propagation (correlation r2 = 0.91). Computer model revealed that fibrin formation was indeed the rate-limiting step in the fibrinolysis front propagation. The phenomenon of two fronts which switched the state of blood plasma from liquid to solid and then back to liquid did not depend on the fibrinolysis activator. Interestingly, TPA at high concentrations began to increase lysis onset time and to decrease lysis propagation velocity, presumably due to plasminogen depletion. Spatially non-uniform lysis occurred simultaneously with clot formation and detached the clot from the procoagulant surface. These patterns of spatial fibrinolysis provide insights into its regulation and might explain clinical phenomena associated with thrombolytic therapy. PMID:28686711
DAG1, no gene for RNA regulation?
Brancaccio, Andrea
2012-04-10
DAG1 encodes for a precursor protein that liberates the two subunits featured by the dystroglycan (DG) adhesion complex that are involved in an increasing number of cellular functions in a wide variety of cells and tissues. Aside from the proteolytic events producing the α and β subunits, especially the former undergoes extensive "post-production" modifications taking place within the ER/Golgi where its core protein is both N- and O-decorated with sugars. These post-translational events, that are mainly orchestrated by a plethora of certified, or putative, glycosyltransferases, prelude to the excocytosis-mediated trafficking and targeting of the DG complex to the plasma membrane. Extensive genetic and biochemical evidences have been accumulated so far on α-DG glycosylation, while little is know on possible regulatory events underlying the chromatine activation, transcription or post-transcription (splicing and escape from the nucleus) of DAG1 or of its mRNA. A scenario is envisaged in which cells would use a sort of preferential, and scarcely regulated, route for DAG1 activation, that would imply fast mRNA transcription, maturation and export to the cytosol, and would prelude to the multiple time-consuming enzymatic post-translational activities needed for its glycosylation. Such a provocative view might be helpful to trigger future work aiming at disclosing the complete molecular mechanisms underlying DAG1 activation and at improving our knowledge of any pre-translational step that is involved in dystroglycan regulation. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Weitman, D.; Etlinger, J. D.
1992-01-01
Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.
Kumar, G N Mohan; Knowles, Lisa O; Knowles, N Richard
2015-11-01
Zebra chip disease of potato decreases protease inhibitor levels resulting in enhanced serine-type protease activity, decreased protein content and altered protein profiles of fully mature tubers. Zebra-chip (ZC), caused by Candidatus Liberibacter solanacearum (CLso), is a relatively new disease of potato that negatively affects growth, yield, propagation potential, and fresh and process qualities of tubers. Diseased plants produce tubers with characteristic brown discoloration of vascular tissue accompanied by elevated levels of free amino acids and reducing sugars. Here we demonstrate that ZC disease induces selective protein catabolism in tubers through modulating protease inhibitor levels. Soluble protein content of tubers from CLso-infected plants was 33% lower than from non-infected plants and electrophoretic analyses revealed substantial reductions in major tuber proteins. Patatin (~40 kDa) and ser-, asp- (22 kDa) and cys-type (85 kDa) protease inhibitors were either absent or greatly reduced in ZC-afflicted tubers. In contrast to healthy (non-infected) tubers, the proteolytic activity in CLso infected tubers was high and the ability of extracts from infected tubers to inhibit trypsin (ser-type) and papain (cys-type) proteases greatly attenuated. Moreover, extracts from CLso-infected tubers rapidly catabolized proteins purified from healthy tubers (40 kDa patatin, 22 kDa protease inhibitors, 85 kDa potato multicystatin) when subjected to proteolysis individually. In contrast, crude extracts from non-infected tubers effectively inhibited the proteolytic activity from ZC-afflicted tubers. These results suggest that the altered protein profile of ZC afflicted tubers is largely due to loss of ser- and cys-type protease inhibitors. Further analysis revealed a novel PMSF-sensitive (ser) protease (ca. 80-120 kDa) in CLso infected tubers. PMSF abolished the proteolytic activities responsible for degrading patatin, the 22 kDa protease inhibitor(s) and potato multicystatin by CLso infected tubers. The disease-induced loss of patatin and protease inhibitors therefore appears to be modulated by ser-type protease(s). The selective catabolism of proteins in ZC-afflicted tubers undoubtedly affects downstream aspects of carbohydrate and amino acid metabolism, which is ultimately reflected by the accumulation of reducing sugars, free amino acids and reduced sprouting capacity.
Identification of a maize chlorotic dwarf virus silencing suppressor protein
USDA-ARS?s Scientific Manuscript database
Maize chlorotic dwarf virus (MCDV), a member of the genus Waikavirus, family Secoviridae, has a 11784 nt (+)ssRNA genome that encodes a 389 kDa proteolytically processed polyprotein. We show that an N-terminal 78kDa polyprotein (R78) has silencing suppressor activity, that it is cleaved by the viral...
Bacillus thuringiensis toxins trigger receptor shedding from gypsy moth midgut cells
Algimantas P. Valaitis
2007-01-01
The mechanism of action of the Cry1 insecticidal proteins produced by Bacillus thuringiensis (Bt) begins with the processing of these proteins in the larval gut. After proteolytic activation, the Bt toxins bind to specific midgut receptors and insert into the membrane of the gut epithelial cells, causing insect death.
Antivenom activity of opossum (Didelphis marsupialis) serum fraction.
Rodriguez-Acosta, A; Aguilar, I; Giron, M E
1995-01-01
We have found an opossum serum fraction of approximately 97,000 mol. wt to be highly proficient in inactivating the haemorrhagic and proteolytic fractions of Bothrops lanceolatus venom. This antivenom substance, isolated from opossum serum or a synthetic peptide based on the aforementioned protein, would probably be useful in the medical management of Bothrops accidents.
1990-02-01
procaryotic systems (12. 45). Certain eucaryotic ically cleaved by a trypsin-like proteas: ito produce a recep- viruses are currently being explored as...19847. Proteolytic activation of anthrax toxin bound to cellular recep- ACKN()WEIX;NMNTS tor%.. p. 111-112. In F. Fehrenbach et al. ifed.). Bacterial
Lee, D.; Ryle, A. P.
1967-01-01
Methods are described for the isolation and purification of pepsinogen D, a minor zymogen occurring to the extent of about 5% of the potential proteolytic activity in neutral extracts of the pig gastric mucosa. The physical and chemical properties of this zymogen indicate that it is very similar to, if not identical with, dephosphopepsinogen. ImagesFig. 3. PMID:4167464
The yogurt amino acid profile's variation during the shelf-life.
Germani, A; Luneia, R; Nigro, F; Vitiello, V; Donini, L M; del Balzo, V
2014-01-01
To analyze the yogurt amino acid profile starting from marketing through the whole shelf-life. The evaluation of the proteolytic activity of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus, allows to deduce their vitality during the shelf-life period and within 45 days. Three types of full fats yogurts have been analyzed (a) natural white (b) sweet white and (c) whole fruit - in two stages: t0 (first day of shelf-life) and t1 (end of shelf-life). The proteins have been analyzed by the Kjeldahl method and the amino acid profile by HPLC. In natural yogurt a significant increase of the amount of free amino acids has been observed during the period of shelf-life (97%). In the sweetened full fats and fruit yogurt, instead, there is a lower increase of respectively 33% and 39% In whole milk natural yogurt, based on our data, the proteolytic activity seems to persist during the entire period of the shelf-life and this can be considered an index of bacterial survival, especially of Lactobacillus delbrueckii subsp. bulgaricus during the marketing process.
Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Choi, HyungWon; Sobreira, Tiago J P; Nohara, Lilian L; Wermelinger, Luciana S; Almeida, Igor C; Zingali, Russolina B; Fernandes, Patricia M B
2012-06-18
Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. Copyright © 2012 Elsevier B.V. All rights reserved.
Interactome disassembly during apoptosis occurs independent of caspase cleavage.
Scott, Nichollas E; Rogers, Lindsay D; Prudova, Anna; Brown, Nat F; Fortelny, Nikolaus; Overall, Christopher M; Foster, Leonard J
2017-01-12
Protein-protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas-mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome-wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Yucel-Lindberg, T; Jansson, H; Glaumann, H
1991-01-01
Administration of the antimalaria drug chloroquine increased the number of autophagic vacuoles (AVs) in the rat pancreas. Ultrastructural analysis showed that AVs contained segregated organelles such as mitochondria, zymogen granules, peroxisomes and small portions of cytoplasm. The maximum number of AVs was observed after 3 h of chloroquine treatment. The effect lasted for 12 h and almost disappeared after 16 h. The increase in AVs caused by chloroquine made it possible to isolate them in a discontinuous Metrizamide gradient with high purity. The proteolytic capacity of the AVs isolated after different chloroquine exposure times was measured after prelabeling pancreatic proteins with an injection of L-(1-14C)leucine 16 h before sacrifice. Protein degradation in isolated AVs increased during the first 6 h of chloroquine exposure and then returned to control values 16 h after the administration. In addition, the activities of two lysosomal enzymes, acid phosphatase and cathepsin B, increased in the AV-fractions following chloroquine treatment. It is concluded that the augmented proteolysis in the isolated AVs is due to a combination of increased substrate content and increased proteolytic lysosomal enzyme activities.
[Cell-derived microparticles unveil their fibrinolytic and proteolytic function].
Doeuvre, Loïc; Angles-Cano, Eduardo
2009-01-01
Cell-derived microparticles (MP) are membrane microvesicles, 0.1-1 microm in size, shed by cells following activation or during apoptosis in a variety of pathological conditions. MPs released by blood cells or by vascular endothelial cells display molecular signatures that allow their identification and functional characterization. In addition, they provide tissue factor (TF) and a procoagulant phospholipid surface. Therefore, at present, the most strongly established applied research on MPs is their procoagulant activity as a determinant of thrombotic risk in various clinical conditions. Previous studies have indicated that MPs derived from malignant cells express matrix metalloproteinases, urokinase and its receptor (uPA/uPAR) that, in the presence of plasminogen, may act in concert to degrade extracellular matrix proteins. Recently, it was shown that MPs from TNFa-stimulated endothelial cells served as a surface for interaction with plasminogen and its conversion into plasmin by the uPA/uPAR system expressed at their surface. This capacity of MPs to promote plasmin generation confers them a new profibrinolytic and proteolytic function that may be of relevance in fibrinolysis, cell migration, angiogenesis, dissemination of malignant cells, cell detachment and apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.
Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gutmore » of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.« less
O'Donoghue, Anthony J; Knudsen, Giselle M; Beekman, Chapman; Perry, Jenna A; Johnson, Alexander D; DeRisi, Joseph L; Craik, Charles S; Bennett, Richard J
2015-06-16
Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.
Kim, Seung-Jin; Choi, Hojung; Park, Sung-Soo; Chang, Chawnshang; Kim, Eungseok
2011-01-01
Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, is highly expressed in prostate cancer although the SCD protein has been known to be rapidly turned over by proteolytic cleavage. The present data demonstrate that SCD can promote proliferation of androgen receptor (AR)-positive LNCaP prostate cancer cells and enhance dihydrotestosterone (DHT)-induced AR transcriptional activity, resulting in increased expression of prostatespecific antigen (PSA) and kallikrein-related peptidase 2 (KLK2). Interestingly, among the previously reported SCDderived peptides produced by proteolytic cleavage of SCD, a peptide spanning amino acids 130-162 of SCD (SCDCoRNR) contained the CoRNR box motif (LFLII) and enhanced AR transcriptional activity. In contrast, a mutant SCD-CoRNR in which Leu136 was replaced by Ala had no effect on AR transcriptional activity. Moreover, SCDCoRNR directly interacted with AR and inhibited RIP140 suppression of AR transactivation. Knockdown of the SCD gene by SCD microRNA suppressed AR transactivation with decreased cell proliferation, suggesting that SCD may regulate the proliferation of LNCaP cells via modulation of AR transcriptional activity. Moreover, ectopic expression of SCD in LNCaP cells facilitated LNCaP tumor formation and growth in nude mice. Together, the data indicate that SCD plays a key role in the regulation of AR transcriptional activity in prostate cancer cells. PMID:21331774
Proteases induce secretion of collagenase and plasminogen activator by fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werb, Z.; Aggeler, J.
1978-04-01
We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continuedmore » presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.« less
Stanyer, Lee; Jorgensen, Wenche; Hori, Osamu; Clark, John B; Heales, Simon J R
2008-09-01
The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000 microM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.
Comparison of the fibrin-binding activities in the N- and C-termini of fibronectin.
Rostagno, A A; Schwarzbauer, J E; Gold, L I
1999-03-01
Fibronectin (Fn) binds to fibrin in clots by covalent and non-covalent interactions. The N- and C-termini of Fn each contain one non-covalent fibrin-binding site, which are composed of type 1 (F1) structural repeats. We have previously localized the N-terminal site to the fourth and fifth F1 repeats (4F1.5F1). In the current studies, using proteolytic and recombinant proteins representing both the N- and C-terminal fibrin-binding regions, we localized and characterized the C-terminal fibrin-binding site, compared the relative fibrin-binding activities of both sites and determined the contribution of each site to the fibrin-binding activity of intact Fn. By fibrin-affinity chromatography, a protein composed of the 10F1 repeat through to the C-terminus of Fn (10F1-COOH), expressed in COS-1 cells, and 10F1-12F1, produced in Saccharomyces cerevisiae, displayed fibrin-binding activity. However, since 10F1 and 10F1.11F1 were not active, the presence of 12F1 is required for fibrin binding. A proteolytic fragment of 14.4 kDa, beginning 14 residues N-terminal to 10F1, was isolated from the fibrin-affinity matrix. Radio-iodinated 14.4 kDa fibrin-binding peptide/protein (FBP) demonstrated a dose-dependent and saturable binding to fibrin-coated wells that was both competitively inhibited and reversed by unlabelled 14.4 kDa FBP. Comparison of the fibrin-binding affinities of proteolytic FBPs from the N-terminus (25.9 kDa FBP), the C-terminus (14.4 kDa) and intact Fn by ELISA yielded estimated Kd values of 216, 18 and 2.1 nM, respectively. The higher fibrin-binding affinity of the N-terminus was substantiated by the ability of both a recombinant 4F1.5F1 and a monoclonal antibody (mAb) to this site to maximally inhibit biotinylated Fn binding to fibrin by 80%, and by blocking the 90% inhibitory activity of a polyclonal anti-Fn, by absorption with the 25.9 kDa FBP. We propose that whereas the N-terminal site appears to contribute to most of the binding activity of native Fn to fibrin, the specific binding of the C-terminal site may strengthen this interaction.
Comparison of the fibrin-binding activities in the N- and C-termini of fibronectin.
Rostagno, A A; Schwarzbauer, J E; Gold, L I
1999-01-01
Fibronectin (Fn) binds to fibrin in clots by covalent and non-covalent interactions. The N- and C-termini of Fn each contain one non-covalent fibrin-binding site, which are composed of type 1 (F1) structural repeats. We have previously localized the N-terminal site to the fourth and fifth F1 repeats (4F1.5F1). In the current studies, using proteolytic and recombinant proteins representing both the N- and C-terminal fibrin-binding regions, we localized and characterized the C-terminal fibrin-binding site, compared the relative fibrin-binding activities of both sites and determined the contribution of each site to the fibrin-binding activity of intact Fn. By fibrin-affinity chromatography, a protein composed of the 10F1 repeat through to the C-terminus of Fn (10F1-COOH), expressed in COS-1 cells, and 10F1-12F1, produced in Saccharomyces cerevisiae, displayed fibrin-binding activity. However, since 10F1 and 10F1.11F1 were not active, the presence of 12F1 is required for fibrin binding. A proteolytic fragment of 14.4 kDa, beginning 14 residues N-terminal to 10F1, was isolated from the fibrin-affinity matrix. Radio-iodinated 14.4 kDa fibrin-binding peptide/protein (FBP) demonstrated a dose-dependent and saturable binding to fibrin-coated wells that was both competitively inhibited and reversed by unlabelled 14.4 kDa FBP. Comparison of the fibrin-binding affinities of proteolytic FBPs from the N-terminus (25.9 kDa FBP), the C-terminus (14.4 kDa) and intact Fn by ELISA yielded estimated Kd values of 216, 18 and 2.1 nM, respectively. The higher fibrin-binding affinity of the N-terminus was substantiated by the ability of both a recombinant 4F1.5F1 and a monoclonal antibody (mAb) to this site to maximally inhibit biotinylated Fn binding to fibrin by 80%, and by blocking the 90% inhibitory activity of a polyclonal anti-Fn, by absorption with the 25.9 kDa FBP. We propose that whereas the N-terminal site appears to contribute to most of the binding activity of native Fn to fibrin, the specific binding of the C-terminal site may strengthen this interaction. PMID:10024513
Nucleic acid isolation process
Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.
1990-01-01
A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.
Alvarez-Flores, Miryam Paola; Furlin, Daniel; Ramos, Oscar H. P.; Balan, Andrea; Konno, Katsuhiro; Chudzinski-Tavassi, Ana Marisa
2011-01-01
Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not γ-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X. PMID:21177860
Extraction of an urease-active organo-complex from soil.
NASA Technical Reports Server (NTRS)
Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.
1972-01-01
Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.
Coral Pathogens Identified for White Syndrome (WS) Epizootics in the Indo-Pacific
Sussman, Meir; Willis, Bette L.; Victor, Steven; Bourne, David G.
2008-01-01
Background White Syndrome (WS), a general term for scleractinian coral diseases with acute signs of advancing tissue lesions often resulting in total colony mortality, has been reported from numerous locations throughout the Indo-Pacific, constituting a growing threat to coral reef ecosystems. Methodology/Principal Findings Bacterial isolates were obtained from corals displaying disease signs at three WS outbreak sites: Nikko Bay in the Republic of Palau, Nelly Bay in the central Great Barrier Reef (GBR) and Majuro Atoll in the Republic of the Marshall Islands, and used in laboratory-based infection trials to satisfy Henle-Koch's postulates, Evan's rules and Hill's criteria for establishing causality. Infected colonies produced similar signs to those observed in the field following exposure to bacterial concentrations of 1×106 cells ml−1. Phylogenetic 16S rRNA gene analysis demonstrated that all six pathogens identified in this study were members of the γ-Proteobacteria family Vibrionacae, each with greater than 98% sequence identity with the previously characterized coral bleaching pathogen Vibrio coralliilyticus. Screening for proteolytic activity of more than 150 coral derived bacterial isolates by a biochemical assay and specific primers for a Vibrio family zinc-metalloprotease demonstrated a significant association between the presence of isolates capable of proteolytic activity and observed disease signs. Conclusion/Significance This is the first study to provide evidence for the involvement of a unique taxonomic group of bacterial pathogens in the aetiology of Indo-Pacific coral diseases affecting multiple coral species at multiple locations. Results from this study strongly suggest the need for further investigation of bacterial proteolytic enzymes as possible virulence factors involved in Vibrio associated acute coral infections. PMID:18560584
Kastenbauer, E R; Hochgesand, K; Hochstrasser, K; Tappermann, G
1975-07-01
Proteolytic enzymes such as pepsine or papaine are able to split IgG antibodies into large fragments in vitro. These immunoglobulin fragments (IgG, IgA, IgM) were now detected in vivo from the purulent secretions of cholesteatoma, chronic otitis media and radical mastoid cavities. During chronic otitis media the intact immunoglobulins are split due to the proteolytic activity of neutral proteinases. These fragments were qualitatively and quantitatively investigated by means of various immunological procedures. After the immunoelectrophoretic separation of the purulent middle-ear-secretions and after diffusion against anti-IgG-, anti-IgA- and anti-IgM- serum double precipitate lines could be observed especially in middle-ear-secretion with a bacterial flora of pseudomonas aeruginosa (pyocyanea) and of the proteus-providencia-group. This was the first proof of the presence of split products of the immunoglobulins. The exact demonstration of these split products could be carried out by gel-filtration and fractionation of the intact and split immunoglobulins. During chronic otitis media intact immunoglobulins are split by leucocytic and extracellular bacterial proteinases into fragments of different molecular weight. The most malignant extracellular proteinases with the greatest proteolytic activity against intact immunoglobulins are the bacterial proteinases of pseudomonas aeruginosa. These proteinases can not be inhibited by the other serum proteinaseinhibitors except for alpha-2-macroglobulin of the human blood serum. This inhibitor has a very high molecular weight so that we can not find it in a higher concentration in the middle-ear-secretion. We can liberate this inhibitor by injuring the blood vessels during a tympanoplasty. In this way we get an inhibitory effect against these proteinases and combined with an appropriate antibiotic therapy we can cure a chronic otitis media.
Scannell, Amalia G M; Kenneally, Paul M; Arendt, Elke K
2004-06-01
Porcine longissimus dorsi muscles were cured by brine injection. Curing brine containing 15% (w/v) NaCl, 1.33% (w/v) glucose, 750 ppm sodium nitrite, and appropriate levels of either Lactobacillus sakei LAD, L. sakei LAD plus Kocuria varians FT4 (formally Micrococcus varians), L. sakei LAD plus papain and GDL (glucono-delta-lactone) plus K. varians FT4, was injected to the muscle at a pumping rate 15% w/v. The effect of these treatments on the proteolysis in the ham system was compared to a control ham, produced without starter culture and containing GDL acidulant to control pH and antibiotics to reduce the contribution of background microflora. Hydrolysis of sarcoplasmic and myofibrillar protein fractions was evaluated by SDS-PAGE and reverse phase-HPLC. Hams with different treatments were also investigated for differences in amino acid profile, protein and non-protein nitrogen level, colour, pH, water activity and moisture and microbiological evolution. There was no significant difference in the gross compositional analysis of any of the treatments compared to the control. There was no significant difference (p>0.05) in the protein content, non-protein nitrogen level, SDS-PAGE and free amino acid analysis between the control ham and ham inoculated with proteolytic starter culture. However, it was observed that hams containing starter cultures exhibited decreases in certain peptide fractions and corresponding increases in some free amino acids compared to the uninoculated control. It can be concluded that, while the principle mechanisms resulting in the proteolysis of this non-dried ham product involve the activity of endogeneous cathepsins, the addition of proteolytic starter cultures influence the amino acid profile thereby potentially enhancing the sensorial attributes of the ham. Copyright 2004 Elsevier B.V.
Degradation of oxidatively denatured proteins in Escherichia coli.
Davies, K J; Lin, S W
1988-01-01
When exposed to oxidative stress, by oxygen radicals or H2O2, E. coli exhibited decreased growth, decreased protein synthesis, and dose-dependent increases in protein degradation. The quinone menadione induced proteolysis when cells were incubated in air, but was not effective when cells were incubated without oxygen. Anaerobically grown cells also exhibited significantly lower proteolytic capacity than did cells that were grown aerobically. Xanthine plus xanthine oxidase (which generate O2- and H2O2) caused a stimulation of proteolysis which was inhibitable by catalase, but not by superoxide dismutase: Indicating that H2O2 was responsible for the increased protein degradation. Indeed, H2O2 alone was effective in inducing increased intracellular proteolysis. Two-dimensional polyacrylamide gel electrophoresis of [3H]leucine labeled E. coli revealed greater than 50% decreases in the concentrations of 10-15 cell proteins following H2O2 or menadione exposure, while several other proteins were less severely affected. To test for the presence of soluble proteases, we prepared cell-free extracts of E. coli and incubated them with radio-labeled protein substrates. E. coli extracts degraded casein and globin polypeptides at rapid rates but showed little activity with native proteins such as superoxide dismutase, hemoglobin, bovine serum albumin, or catalase. When these same proteins were denatured by exposure to oxygen radicals or H2O2, however, they became excellent substrates for degradation in E. coli extracts. Studies with albumin revealed correlations greater than 0.95 between the degree of oxidative denaturation and proteolytic susceptibility. Pretreatment of E. coli with menadione or H2O2 did not increase the proteolytic capacity of cell extracts; indicating that neither protease activation, nor protease induction were required.(ABSTRACT TRUNCATED AT 250 WORDS)
Gaspari, Marco; Chiesa, Luca; Nicastri, Annalisa; Gabriele, Caterina; Harper, Valeria; Britti, Domenico; Cuda, Giovanni; Procopio, Antonio
2016-12-06
The ability of tandem mass spectrometry to determine the primary structure of proteolytic peptides can be exploited to trace back the organisms from which the corresponding proteins were extracted. This information can be important when food products, such as protein powders, can be supplemented with lower-quality starting materials. In order to dissect the origin of proteinaceous material composing a given unknown mixture, a two-step database search strategy for bottom-up nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) data was implemented. A single nanoLC-MS/MS analysis was sufficient not only to determine the qualitative composition of the mixtures under examination, but also to assess the relative percent composition of the various proteomes, if dedicated calibration curves were previously generated. The approach of two-step database search for qualitative analysis and proteome total ion current (pTIC) calculation for quantitative analysis was applied to several binary and ternary mixtures which mimic the composition of milk replacers typically used in calf feeding.
Li, Wei-Fen; Feng, Jie; Xu, Zi-Rong; Yang, Cai-Mei
2004-03-15
To investigate effects of non-starch polysaccharides(NSP) enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley. Sixty crossbred piglets averaging 13.5 kg were randomly assigned to two treatment groups with three replications (pens) based on sex and mass. Each group was fed on the diet based on barley with or without added NSP enzymes (0.15%) for a 40-d period. At the end of the experiment the pigs were weighed. Three piglets of each group were chosen and slaughtered. Pancreas, digesta from the distal end of the duodenum and jejunal mucosa were collected for determination. Activities of the digestive enzymes trypsin, chymotrypsin, amylase and lipase were determined in the small intestinal sections as well as in homogenates of pancreatic tissue. Maltase, sucrase, lactase and gamma-glutamyl transpeptidase (gamma-GT) activities were analyzed in jejunal mucosa. Supplementation with NSP enzymes improved growth performance of piglets. It showed that NSP enzymes had no effect on digestive enzyme activities in pancreas, but decreased the activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents by 57.56%, 76.08%, 69.03% and 40.22%(P<0.05) compared with control, and increased gamma-GT activities in jejunal mucosa by 118.75%(P<0.05). Supplementation with NSP enzymes in barley based diets could improve piglets' growth performance, decrease activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents and increase gamma-GT activities in jejunal mucosa.
da Silva, Fernanda Kerche Paes; Brück, Dieter W; Brück, Wolfram M
2017-09-15
The use of insects as a source of protein is becoming an important factor for feeding an increasing population. After protein extraction for food use, the insect exoskeleton may offer the possibility for the production of added value products. Here, the aim was to isolate bacteria from the surface of farmed mealworms (Tenebrio molitor Linnaeus, 1758) for the production of chitinous material from insect exoskeletons using microbial fermentation. Isolates were screened for proteases and acid production that may aid deproteination and demineralisation of insects through fermentation to produce chitin. Selected isolates were used single-step (isolated bacteria only) or two-step fermentations with Lactobacillus plantarum (DSM 20174). Two-step fermentations with isolates from mealworm exoskeletons resulted in a demineralisation of 97.9 and 98.5% from deproteinated mealworm fractions. Attenuated total reflectance-Fourier- transform infrared spectroscopy analysis showed that crude chitin was produced. However, further optimisation is needed before the process can be upscaled. This is, to our knowledge, the first report using microbial fermentation for the extraction of chitin from insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rehosting of Bacterial Chaperones for High-Quality Protein Production▿
Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio
2009-01-01
Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ping; Paterson, Reay G.; Leser, George P.
2012-09-06
Paramyxovirus hemagglutinin-neuraminidase (HN) plays roles in viral entry and maturation, including binding to sialic acid receptors, activation of the F protein to drive membrane fusion, and enabling virion release during virus budding. HN can thereby directly influence virulence and in a subset of avirulent Newcastle disease virus (NDV) strains, such as NDV Ulster, HN must be proteolytically activated to remove a C-terminal extension not found in other NDV HN proteins. Ulster HN is 616 amino acids long and the 45 amino acid C-terminal extension present in its precursor (HN0) form has to be cleaved to render HN biologically active. Heremore » we show that Ulster HN contains an inter-subunit disulfide bond within the C-terminal extension at residue 596, which regulates HN activities and neuraminidase (NA) domain dimerization. We determined the crystal structure of the dimerized NA domain containing the C-terminal extension, which extends along the outside of the sialidase {beta}-propeller domain and inserts C-terminal residues into the NA domain active site. The C-terminal extension also engages a secondary sialic acid binding site present in NDV HN proteins, which is located at the NA domain dimer interface, that most likely blocks its attachment function. These results clarify how the Ulster HN C-terminal residues lead to an auto-inhibited state of HN, the requirement for proteolytic activation of HN{sub 0} and associated reduced virulence.« less
Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle.
O'Brien, R A; Ostberg, A J; Vrbová, G
1978-01-01
1. The mechanism responsible for the elimination of polyneuronal innervation in developing rat soleus muscles was studied electrophysiologically and histologically. 2. Initially all the axons contacting a single end-plate have simple bulbous terminals. As elimination proceeds one axon develops terminal branches while the other terminals remain bulbous and may be seen in contact with, or a short distance away from, the end-plate. It is suggested that the branched terminal remains in contact with the muscle fibre while the other terminals withdraw. 3. At a time when polyneuronal innervation can no longer be detected electrophysiologically, the histological technique still shows the presence of end-plates contacted by more than one nerve terminal. 4. The effect of activity on the disappearance of polyneuronal innervation was examined. Activity was increased by electrical stimulation of the right sciatic nerve. This procedure also produced reflex activity in the contralateral limb. In both cases polyneuronal innervation was eliminated more rapidly in the active muscles. 5. The finding that proteolytic enzymes are released from muscles treated with acetylcholine (ACh), and the observation of the more rapid elimination of supernumerary terminals at the end-plates of active muscles, lead to the suggestion that superfluous nerve-muscle contacts are removed by the proteolytic enzymes in response to neuromuscular activity. The selective stabilization of only one of the terminals is discussed in the light of these results. Images Plate 1 Plate 2 PMID:722562
HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination.
Diaz-Mendoza, Mercedes; Dominguez-Figueroa, Jose D; Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel
2016-04-01
Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. © 2016 American Society of Plant Biologists. All Rights Reserved.
Soares, Filippe Elias de Freitas; Braga, Fabio Ribeiro; de Araújo, Jackson Victor; Lima, Walter dos Santos; de Queiroz, José Humberto
2015-01-01
The dog acts as a reservoir and environmental disseminator of potentially zoonotic parasites. The objective of this work was to study the fungus Monacrosporium thaumasium regarding its nematicidal potential in laboratory trials and its proteolytic profile. The in vitro test was carried out through two assays (A and B). In assay A, conidia of the fungus N34a were added in positive coprocultures for Angiostrongylus vasorum. In assay B, crude extract (treated group) and distilled water (control group) were added to coprocultures. Next, the proteolytic profile of crude extract of the nematophagous fungus M. thaumasium (NF34a) was revealed by performing a zymogram. There was a reduction (p<0.01) in the averages of larvae recovered from the treated groups (conidia and crude extract) in relation to control groups. The zymogram suggested that the nematophagous fungus M. thaumasium produces a protease of approximately 40 kDa. The results of this work confirm that the conidia as well as the crude extract of the fungus M. thaumasium may be used to control A. vasorum L1. The proteolytic profile suggested the presence of one protease (Mt1) of approximately 40 kDa that in the future may be used in biological control of L1 of this nematode. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
AAA-ATPases in Protein Degradation
Yedidi, Ravikiran S.; Wendler, Petra; Enenkel, Cordula
2017-01-01
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea. PMID:28676851
AAA-ATPases in Protein Degradation.
Yedidi, Ravikiran S; Wendler, Petra; Enenkel, Cordula
2017-01-01
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.
Theoret, James R; Li, Jihong; Navarro, Mauricio A; Garcia, Jorge P; Uzal, Francisco A; McClane, Bruce A
2018-01-01
Many Clostridium perfringens strains produce NanI as their major sialidase. Previous studies showed that NanI could potentiate C. perfringens epsilon toxin cytotoxicity by enhancing the binding of this toxin to host cells. The present study first determined that NanI exerts similar cytotoxicity-enhancing effects on C. perfringens enterotoxin and beta toxin, which are also important toxins for C. perfringens diseases (enteritis and enterotoxemia) originating in the gastrointestinal (GI) tract. Building upon previous work demonstrating that purified trypsin can activate NanI activity, this study next determined that purified chymotrypsin or mouse intestinal fluids can also activate NanI activity. Amino acid sequencing then showed that this effect involves the N-terminal processing of the NanI protein. Recombinant NanI (rNanI) species corresponding to major chymotrypsin- or small intestinal fluid-generated NanI fragments possessed more sialidase activity than did full-length rNanI, further supporting the proteolytic activation of NanI activity. rNanI species corresponding to proteolysis products also promoted the cytotoxic activity and binding of enterotoxin and beta toxin more strongly than did full-length rNanI. Since enterotoxin and beta toxin are produced in the intestines during human and animal disease, these findings suggest that intestinal proteases may enhance NanI activity, which in turn could further potentiate the activity of intestinally active toxins during disease. Coupling these new results with previous findings demonstrating that NanI is important for the adherence of C. perfringens to enterocyte-like cells, NanI sialidase is now emerging as a potential auxiliary virulence factor for C. perfringens enteritis and enterotoxemia. Copyright © 2017 American Society for Microbiology.
Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.
2013-06-17
Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significantmore » improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.« less
2010-09-01
interact with neighboring ECMmole- cules to promote this activity. This interaction sometimes pro- motes remodeling of the ECM to create amore conducive...cells remaining on the upper filter were scraped off gently using a cotton swab, and the inserts were gently washed with PBS. Those cells that migrated
USDA-ARS?s Scientific Manuscript database
Proteolytic activities in extracts from three nematodes, the plant parasites Heterodera glycines and Meloidogyne incognita, and the free-living Panagrellus redivivus, were surveyed for substrate preferences using a battery of seven FRET-modified peptide substrates, all derived from members of the la...
ERIC Educational Resources Information Center
Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.
2007-01-01
Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…
Evolution of proteolytic indicators during storage of broiler wooden breast meat.
Soglia, F; Zeng, Z; Gao, J; Puolanne, E; Cavani, C; Petracci, M; Ertbjerg, P
2018-04-01
In the past few yr, an emerging muscle abnormality termed wooden breast (WB) was found to affect broilers' Pectoralis major muscles. Although different studies have been performed in order to evaluate the effect of WB on meat quality, there is no evidence concerning its impact on the proteolytic processes taking place during meat aging. Thus, this study aimed at investigating the effect of a 7-day storage of broiler breast fillets on free calcium concentration, calpain activity, and proteolysis. Both the superficial and the deep layers of the Pectoralis major muscles were considered. Although similar electrophoretic profiles were observed by comparing the corresponding sampling positions, an evident lack of a high-molecular weight protein band, ascribed to nebulin, was found in the superficial layer of the WB fillets at 10 h postmortem. Compared to normal fillets (NB), both the superficial and the deep layer of WB exhibited a significantly higher amount of free calcium at 168 h postmortem (96 and 88 vs. 20 and 53 μM; P ≤ 0.001). Casein zymograms evidenced the presence of μ/m-calpain and its autolyzed form migrating as a doublet within the gel. Interestingly, neither the occurrence of WB nor the intra-fillet sampling position exerted any relevant effect on calpain activity. Indeed, a significant reduction (P ≤ 0.05) in the unautolyzed μ/m-calpain activity coupled with a remarkable increase (P ≤ 0.05) in the autolyzed form activity was observed during storage. Concurrently, if compared to NB, a significantly larger (P ≤ 0.05) amount of desmin was detected in both the superficial and the deep layers of the WB samples at 10 h postmortem. Then, a sharp decrease of the intact desmin band coupled with a progressive accumulation of its 39-kDa degradation fragment was observed without any significant difference among groups. In conclusion, the increased hardness that typically affects the WB cases seemed not to be exclusively attributable to differences in the proteolytic processes taking place within the postmortem period.
Baccino, F M; Tessitore, L; Cecchini, G; Messina, M; Zuretti, M F; Bonelli, G; Gabriel, L; Amenta, J S
1982-01-01
1. The loss of liver protein occurring in rats starved for 24 h was largely prevented by the administration of repeated doses of cycloheximide, an inhibitor of protein synthesis. Similar effects were produced on tubulin, a 'fixed' liver protein. 2. Starvation accelerated, whereas cycloheximide markedly lowered, the rate of protein radioactivity decay after labelling with [3H]valine or [14C]bicarbonate, indicating that changes in catabolic rates played an important role in the above regulations of liver protein mass. 3. The total activity of several lysosomal hydrolases showed little change in livers of starved rats, but a marked progressive decline developed after the administration of cycloheximide, particularly in the activities of cathepsins B, D and L as well as acid ribonuclease. There was no evidence that these changes might be due to endogenous inhibitors (at least for cathepsin B activity, which fell to less than 30% of the control values) or enzyme leakage into the bloodstream; rather, plasma beta-galactosidase and beta-N-acetylglucosaminidase activities fell progressively during the cycloheximide treatment. 4. Endogenous proteolytic rates, measured in vitro by incubating subcellular preparations from livers prelabelled in vivo with [3H]valine, were markedly decreased in cycloheximide-treated animals. 5. The osmotic fragility of hepatic lysosomes, appreciably enhanced in starved animals, after cycloheximide treatment was found to be even lower than in fed controls. 6. The present data are consistent with the view that in starved animals the loss of liver protein is mostly accounted for by increased breakdown, due, in part at least, to enhanced autophagocytosis. 7. Cycloheximide largely counteracted these effects of starvation, altering the liver from being 'poised' in a proteolytic direction to a protein-sparing condition. The present data suggest that, besides suppression of the autophagic processes, a decrease in the lysosomal proteolytic enzyme system may also play a role in this regulation, and they seem to provide further circumstantial evidence for the existence of co-ordinating mechanisms between protein synthesis and degradation. PMID:7150250
Shivalingu, B R; Vivek, H K; Priya, B S; Soujanya, K N; Swamy, S Nanjunda
2016-12-01
The proteases from turmeric species have procoagulant and fibrinogenolytic activity. This provides a scientific basis for traditional use of turmeric to stop bleeding and promote wound healing processes. Our previous studies revealed that fibrinogenolytic action of crude enzyme fraction of Curcuma aromatica Salisb., was found to be more influential than those of Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. Hence, the purpose of this study is to purify and characterize protease from C. aromatica and to explore its role in wound healing process. The protease was purified by Sephadex G-50 gel permeation chromatography. Peak with potent proteolytic activity was subjected to rechromatography and then checked for homogeneity by SDS-PAGE and native PAGE. Furthermore purity of the peak was assessed by RP-HPLC and MALDI-TOF. The biochemical properties, type of protease, kinetic studies, fibrinogenolytic, coagulant and fibrinolytic activities were carried out. The two proteolytic peaks were fractionated in gel permeation chromatography. Among these, the peak-II showed potent proteolytic activity with specific activity of 10units/mg/min and named as C. aromatica protease-II (CAP-II). This protein resolved into a single sharp band both in SDS-PAGE (reducing and non-reducing) as well as in native (acidic) PAGE. It is a monomeric protein, showing sharp peak in RP-HPLC and its relative molecular mass was found to be 12.378kDa. The caseinolytic and fibrinolytic activity of CAP-II was completely inhibited by phenylmethylsulfonylfluoride (PMSF). The CAP-II exhibited optimum temperature of 45°C and optimum pH of 7.5. The Km and Vmax of CAP-II was found to be 1.616µg and 1.62units/mg/min respectively. The CAP-II showed hydrolysis of all three subunits of fibrinogen in the order Aα>Bß>γ. The CAP-II exhibited strong procoagulant activity by reducing the human plasma clotting time. It also showed fibrinolytic activity by complete hydrolysis of α-polymer and γ-γ dimer present in fibrin. The CAP-II is a novel serine protease from C. aromatica, which has been demonstrated to stop bleeding and initiate wound healing through its procoagulant and fibrin(ogen)olytic activities. Our study demonstrates the possible role of CAP-II, as therapeutic enzyme to stop bleeding at the time of wounding. Copyright © 2016 Elsevier GmbH. All rights reserved.
Dual functionality of β-tryptase protomers as both proteases and cofactors in the active tetramer.
Maun, Henry R; Liu, Peter S; Franke, Yvonne; Eigenbrot, Charles; Forrest, William F; Schwartz, Lawrence B; Lazarus, Robert A
2018-04-16
Human β-tryptase, a tetrameric trypsin-like serine protease, is an important mediator of the allergic inflammatory responses in asthma. During acute hypersensitivity reactions, mast cells degranulate, releasing active tetramer as a complex with proteoglycans. Extensive efforts have focused on developing therapeutic β-tryptase inhibitors, but its unique activation mechanism is less well explored. Tryptase is active only after proteolytic removal of the pro-domain followed by tetramer formation via two distinct symmetry-related interfaces. We show that the cleaved I16G mutant cannot tetramerize, likely due to impaired insertion of its N-terminus into its 'activation pocket', indicating allosteric linkage at multiple sites on each protomer. We engineered cysteines into each of the two distinct interfaces (Y75C for small or I99C for large) to assess the activity of each tetramer and disulfide-locked dimer. Using size-exclusion chromatography and enzymatic assays, we demonstrate that the two large tetramer interfaces regulate enzymatic activity, elucidating the importance of this protein-protein interaction for allosteric regulation. Notably, the I99C large interface dimer is active, even in the absence of heparin. We show that a monomeric β-tryptase mutant (I99C*:Y75A:Y37bA where C* is cysteinylated Cys99) cannot form a dimer or tetramer, yet is active, but only in the presence of heparin. Thus heparin both stabilizes the tetramer and allosterically conditions the active site. We hypothesize that each β-tryptase protomer in the tetramer has two distinct roles, acting both as a protease and as a cofactor for its neighboring protomer, to allosterically regulate enzymatic activity, providing a rationale for direct correlation of tetramer stability with proteolytic activity. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.
Komori, Yumiko; Hifumi, Toru; Yamamoto, Akihiko; Sakai, Atsushi; Sawabe, Kyoko; Nikai, Toshiaki
2017-01-01
Rhabdophis lateralis, a colubrid snake distributed throughout the continent of Asia, has recently undergone taxonomic revisions. Previously, Rhabdophis lateralis was classified as a subspecies of R. tigrinus (Yamakagashi) until 2012, when several genetic differences were discovered which classified this snake as its own species. To elucidate the toxicity of venom from this poorly studied colubrid, various biological activities were compared between the venom from the two snake species. The components of their venom were compared by the elution profiles of reversed-phase HPLC and SDS-PAGE, and gel filtrated fractions were tested for effects on blood coagulation. Proteolytic activities of these fractions were also assayed by using synthetic substrates, fibrinogen, and matrix proteins. Similar to the R. tigrinus venom, the higher molecular weight fraction of R. lateralis venom contained a prothrombin activator. Both prothrombin time (PT) and activated partial thromboplastin time (APTT) of human plasma were shortened by the addition of R. lateralis and R. tigrinus venom. The thrombin formation was estimated by the uses of SDS-PAGE and chromogenic substrates. These venom fractions also possessed very specific proteinase activity on human fibrinogen, but the substrates for matrix metalloproteinase, such as collagen and laminin, were not hydrolyzed. However, there were some notable differences in reactivity to synthetic substrates for matrix metalloproteinase, and R. tigrinus venom possessed relatively higher activity. Our chemical investigation indicates that the components included in both venoms resemble each other closely. However, the ratio of components and proteolytic activity of some ingredients are slightly different, indicating differences between two closely-related snakes. PMID:29149042
Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua
2014-01-01
Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability. PMID:24810807
HMEC-1 adopt the mixed amoeboid-mesenchymal migration type during EndMT.
Kryczka, Jakub; Przygodzka, Patrycja; Bogusz, Helena; Boncela, Joanna
2017-06-01
The contribution of endothelial cells to scar and fibrotic tissue formation is undisputedly connected to their ability to undergo the endothelial-to-mesenchymal transition (EndMT) towards fibroblast phenotype-resembling cells. The migration model of fibroblasts and fibroblast-resembling cells is still not fully understood. It may be either a Rho/ROCK-independent, an integrin- and MMP-correlated ECM degradation-dependent, a mesenchymal model or Rho/ROCK-dependent, integrin adhesion- and MMP activity-independent, an amoeboid model. Here, we hypothesized that microvascular endothelial cells (HMEC-1) undergoing EndMT adopt an intermediate state of drifting migration model between the mesenchymal and amoeboid protrusive types in the early stages of fibrosis. We characterized the response of HMEC-1 to TGF-β2, a well-known mediator of EndMT within the microvasculature. We observed that TGF-β2 induces up to an intermediate mesenchymal phenotype in HMEC-1. In parallel, MMP-2 is upregulated and is responsible for most proteolytic activity. Interestingly, the migration of HMEC-1 undergoing EndMT is dependent on both ECM degradation and invadosome formation associated with MMP-2 proteolytic activity and Rho/ROCK cytoskeleton contraction. In conclusion, the transition from mesenchymal towards amoeboid movement highlights a molecular plasticity mechanism in endothelial cell migration in skin fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zha, H; Jeffs, A; Dong, Y; Lewis, G
2018-05-01
Tail fan necrosis (TFN) is a common condition found in commercially exploited spiny lobsters that greatly diminishes their commercial value. Bacteria possessing proteolytic, chitinolytic and lipolytic capabilities were associated with TFN in spiny lobsters, Jasus edwardsii. In this study, 69 bacterial isolates exhibiting all the three enzymatic capabilities from the haemolymph and tail fans of J. edwardsii with and without TFN were further characterized and compared, including morphology, biofilm formation, antimicrobial activity, antimicrobial resistance, and production of siderophores, melanin and ammonia. The genomic patterns of the most common Vibrio crassostreae isolates were also compared between TFN-affected and unaffected lobsters. Biofilm formation was stronger in bacterial isolates from both haemolymph and tail fans of TFN-affected lobsters compared to those from the unaffected lobsters, while melanin production and siderophore production were stronger in the isolates from tail fans of lobsters with TFN. By contrast, the other characteristics of isolates were similar in lobsters with and without TFN. The Vib. crassostreae isolates from the affected lobsters had similar genomic patterns. Overall, the results indicate that in addition to proteolytic, chitinolytic and lipolytic activities, the bacteria associated with TFN commonly have enhanced activity of important virulence factors, including biofilm formation, melanin production and siderophore production. © 2018 John Wiley & Sons Ltd.
Rueda, Analiz; Sifuentes, Cecilia; Gilman, Robert H; Gutiérrez, Andrés H; Piña, Ruby; Chile, Nancy; Carrasco, Sebastián; Larson, Sandra; Mayta, Holger; Verástegui, Manuela; Rodriguez, Silvia; Gutiérrez-Correa, Marcel; García, Héctor H; Sheen, Patricia; Zimic, Mirko
2011-12-01
Neurocysticercosis is an endemic parasitic disease caused by Taenia solium larva. Although the mechanism of infection is not completely understood, it is likely driven by proteolytic activity that degrades the intestinal wall to facilitate oncosphere penetration and further infection. We analyzed the publicly available T. solium EST/DNA library and identified two contigs comprising a full-length cDNA fragment very similar to Echinococcus granulosus Ag5 protein. The T. solium cDNA sequence included a proteolytic trypsin-like-domain in the C-terminal region, and a thrombospondin type-1 adherence-domain in the N-terminal region. Both the trypsin-like and adherence domains were expressed independently as recombinant proteins in bacterial systems. TsAg5 showed marginal trypsin-like activity and high sequence similarity to Ag5. The purified antigens were tested in a Western immunoblot assay to diagnose human neurocysticercosis. The sensitivity of the trypsin-like-domain was 96.36% in patients infected with extraparenchymal cysts, 75.44% in patients infected with multiple cysts, and 39.62% in patients with a single cyst. Specificity was 76.70%. The thrombospondin type-1 adherence-domain was not specific for neurocysticercosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Koutsioumpa, Marina; Hatziapostolou, Maria; Mikelis, Constantinos; Koolwijk, Pieter; Papadimitriou, Evangelia
2009-01-14
Pleiotrophin is an 18 kDa secreted polypeptide growth factor with direct pro-angiogenic and tumorigenic properties. Pleiotrophin is a substrate for proteolytic enzymes, such as plasmin, leading to proteolytic fragments with distinct activities on endothelial cell activation in vitro or angiogenesis in vivo. Aprotinin is a naturally occurring broad spectrum protease inhibitor, used widely in cardiac surgery due to its ability to inhibit plasmin and reduce perioperative bleeding. Since we have seen that aprotinin inhibits proteolysis of pleiotrophin by plasmin, the aim of the present study was to evaluate the possible role of pleiotrophin in the effects of aprotinin on angiogenesis and human endothelial cell migration. Our data demonstrate that aprotinin, in a concentration-dependent manner, is angiogenic in the chicken embryo chorioallantoic membrane assay in vivo and induces human endothelial cell migration in vitro. Aprotinin inhibits pleiotrophin proteolysis and induces expression and secretion of pleiotrophin through an AP-1-dependent transcriptional activation of the pleiotrophin gene, and pleiotrophin seems to mediate the stimulatory effects of aprotinin on cell migration through its receptor protein tyrosine phosphatase beta/zeta. The stimulatory effect of aprotinin on pleiotrophin expression and cell migration may explain, at least partly, the problems observed with the clinical use of aprotinin.
Cavello, Ivana A; Hours, Roque A; Cavalitto, Sebastián F
2012-01-01
Paecilomyces lilacinus (Thom) Samson LPS 876, a locally isolated fungal strain, was grown on minimal mineral medium containing "hair waste," a residue from the hair-saving unhairing process, and produced a protease with keratinolytic activity. This enzyme was biochemically characterized. The optimum reaction conditions, determined with a response surface methodology, were 60°C and pH 6.0. It was remarkably stable in a wide range of pHs and temperatures. Addition of Ca(2+), Mg(2+), or sorbitol was found to be effective in increasing thermal stability of the protease. PMSF and Hg(2+) inhibited the proteolytic activity indicating the presence of a thiol-dependent serine protease. It showed high stability toward surfactants, bleaching agents, and solvents. It was also compatible with commercial detergents (7 mg/mL) such as Ariel, Skip, Drive, and Ace, retaining more than 70% of its proteolytic activity in all detergents after 1 h of incubation at 40°C. Wash performance analysis revealed that this protease could effectively remove blood stains. From these properties, this enzyme may be considered as a potential candidate for future use in biotechnological processes, as well as in the formulation of laundry detergents.
The biochemical and functional food properties of the bowman-birk inhibitor.
Losso, Jack N
2008-01-01
The Bowman-Birk inhibitor (BBI) is a small water-soluble protein present in soybean and almost all monocotyledonous and dicotyledonous seeds. The molecular size of BBI ranges from 1,513 Da to about 20,000 Da. BBI is to seeds what alpha(1)-antitrypsin is to humans. Soy-based food products rich in BBI include soybean grits, soymilk, oilcake, soybean isolate, and soybean protein concentrate. BBI is stable within the pH range encountered in most foods, can withstand boiling water temperature for 10 min, resistant to the pH range and proteolytic enzymes of the gastrointestinal tract, bioavailable, and not allergenic. BBI reduces the proteolytic activities of trypsin, chymotrypsin, elastase, cathepsin G, and chymase, serine protease-dependent matrix metalloproteinases, urokinase protein activator, mitogen activated protein kinase, and PI3 kinase, and upregulates connexin 43 (Cx43) expression. Several studies have demonstrated the efficacy of BBI against tumor cells in vitro, animal models, and human phase IIa clinical trials. FDA considers BBI as a drug. In 1999, FDA allowed a health claim on food labels stating that a daily diet containing 25 grams of soy protein, also low in saturated fat and cholesterol, may reduce the risk of heart disease [corrected] This review highlights the biochemical and functional food properties of the Bowman-Birk inhibitor.
Identification of Breast Cancer Specific Proteolytic Activities for Targeted Prodrug Activation
2006-05-01
volume of fluid that can be obtained from ECF of human breast cancers is to use a phage display approach. To accomplish this, we have designed a...affinity support, followed by a randomized protease substrate sequence and the carboxyl-terminal domain of M13 gene III. Each fusion protein was displayed ...PSMA) (35). Substrate phage can be created either as a monovalent or as pentavalent display (34). Both approaches have their own advantages and
Renin in differential diagnosis of hypertension.
NASA Technical Reports Server (NTRS)
Oparil, S.; Haber, E.
1971-01-01
Renin is a proteolytic enzyme secreted by the kidney. Techniques for the direct measurement of renin content of human blood are not available at the present time. Two of the best known causes of remediable hypertension can be diagnosed from abnormalities in renin activity and aldosterone production. In renovascular hypertension, renin secretion is increased because of impaired glomerular perfusion. The renin activity assay, when applied in a carefully controlled fashion, is a useful screening test for treatable causes of hypertension.
Esaulenko, E E; Khil'chuk, M A; Bykov, I M
2013-01-01
The results of the study of activity of digestive proteases (pepsin, trypsin, chymotrypsin) in homogenates of stomach, pancreas and duodenum in experimental animals have been presented. Rats were exposed to intoxication with carbon tetrachloride (subcutaneous administration of a 50% oil solution of CCl4 in the dose of 0.5 ml per 100 g body weight) for three days and then they were given analysed oils (black nut, walnut and flax oil) intragastrically by gavage at a dose of 0.2 ml per day within 23 days. Pepsin level in gastric mucosa homogenates and chymotrypsin activity in pancreatic homogenates were determined by method of N.P. Pyatnitskiy based on on the ability of enzymes to coagulate dairy-acetate mixture, respectively, at 25 degrees C and 35 degrees C. Trypsin activity in homogenates of pancreatic was determined by method of Erlanger - Shaternikova colorimetrically. It has been established that intoxication with CCl4 decreased the synthesis of proteolytic enzymes of the stomach (by 51%) and pancreas (by 70-78%). Injections of analysed vegetable oils to animals contributed to the normalization of proteolytic enzymes synthesis. The conclusion that there are prospects of using the analysed vegetable oils containing large quantity of polyunsaturated fatty acids (omega-3 and omega-6) for the correction of detected biochemical abnormalities has been done.
Palaniyandi, S A; Yang, S H; Suh, J-W
2013-07-01
To study the antifungal mechanism of proteases from Streptomyces phaeopurpureus strain ExPro138 towards Colletotrichum coccodes and to evaluate its utilization as biofungicide. We screened proteolytic Streptomyces strains from the yam rhizosphere with antifungal activity. Forty proteolytic Streptomyces were isolated, among which eleven isolates showed gelatinolytic activity and antagonistic activity on C. coccodes. Of the 11 isolates, protease preparation from an isolate designated ExPro138 showed antifungal activity. 16S rDNA sequence analysis of the strain showed 99% similarity with Streptomyces phaeopurepureus (EU841588.1). Zymography analysis of the ExPro138 culture filtrate revealed that the strain produced several extracellular proteases. The protease preparation inhibited spore germination, spore adhesion to polystyrene surface and appressorium formation. Microscopic study of the interaction between ExPro138 and C. coccodes revealed that ExPro138 was mycoparasitic on C. coccodes. The protease preparation also reduced anthracnose incidence on tomato fruits compared with untreated control. This study demonstrates possibility of utilizing antifungal proteases derived from antagonistic microbes as biofungicide. Microbial proteases having the ability to inhibit spore adhesion and appressorium formation could be used to suppress infection establishment by foliar fungal pathogens at the initial stages of the infection process. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.
Mahmood, Qaisar; Wang, Guang-Fa; Wu, Gang; Wang, Huan; Zhou, Chang-Xin; Yang, Hong-Yu; Liu, Zhi-Rong; Han, Feng; Zhao, Kui
2017-02-15
Salvianolic acid A (SAA) is obtained from Chinese herb Salviae Miltiorrhizae Bunge (Labiatae), has been reported to have the protective effects against cardiovascular and neurovascular diseases. The aim of present study was to investigate the relationship between the effectiveness of SAA against neurovascular injury and its effects on calpain activation and endothelial nitric oxide synthase (eNOS) uncoupling. SAA or vehicle was given to C57BL/6 male mice for seven days before the occlusion of middle cerebral artery (MCAO) for 60min. High-resolution positron emission tomography scanner (micro-PET) was used for small animal imaging to examine glucose metabolism. Rota-rod time and neurological deficit scores were calculated after 24h of reperfusion. The volume of infarction was determined by Nissl-staining. The calpain proteolytic activity and eNOS uncoupling were determined by western blot analysis. SAA administration increased glucose metabolism and ameliorated neuronal damage after brain ischemia, paralleled with decreased neurological deficit and volume of infarction. In addition, SAA pretreatment inhibited eNOS uncoupling and calpain proteolytic activity. Furthermore, SAA inhibited peroxynitrite (ONOO - ) generation and upregulates AKT, FKHR and ERK phosphorylation. These findings strongly suggest that SAA elicits a neurovascular protective role through the inhibition of eNOS uncoupling and ONOO - formation. Moreover, SAA attenuates spectrin and calcineurin breakdown and therefore protects the brain against ischemic/reperfusion injury. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath
2014-04-01
Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guerrero, Andres; Dallas, David C.; Contreras, Stephanie; Chee, Sabrina; Parker, Evan A.; Sun, Xin; Dimapasoc, Lauren; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.
2014-01-01
An extensive mass spectrometry analysis of the human milk peptidome has revealed almost 700 endogenous peptides from 30 different proteins. Two in-house computational tools were created and used to visualize and interpret the data through both alignment of the peptide quasi-molecular ion intensities and estimation of the differential enzyme participation. These results reveal that the endogenous proteolytic activity in the mammary gland is remarkably specific and well conserved. Certain proteins—not necessarily the most abundant ones—are digested by the proteases present in milk, yielding endogenous peptides from selected regions. Our results strongly suggest that factors such as the presence of specific proteases, the position and concentration of cleavage sites, and, more important, the intrinsic disorder of segments of the protein drive this proteolytic specificity in the mammary gland. As a consequence of this selective hydrolysis, proteins that typically need to be cleaved at specific positions in order to exert their activity are properly digested, and bioactive peptides encoded in certain protein sequences are released. Proteins that must remain intact in order to maintain their activity in the mammary gland or in the neonatal gastrointestinal tract are unaffected by the hydrolytic environment present in milk. These results provide insight into the intrinsic structural mechanisms that facilitate the selectivity of the endogenous milk protease activity and might be useful to those studying the peptidomes of other biofluids. PMID:25172956
NASA Astrophysics Data System (ADS)
Obaid, Girgis; Spring, Bryan Q.; Bano, Shazia; Hasan, Tayyaba
2017-12-01
The emergence of fluorescently labeled therapeutic antibodies has given rise to molecular probes for image-guided surgery. However, the extraneous interstitial presence of an unbound and nonspecifically accumulated probe gives rise to false-positive detection of tumor tissue and margins. Thus, the concept of tumor-cell activation of smart probes provides a potentially superior mechanism of delineating tumor margins as well as small tumor deposits. The combination of molecular targeting with intracellular activation circumvents the presence of extracellular, nonspecific signals of targeted probe accumulation. Here, we present a demonstration of the clinical antibodies cetuximab (cet, anti-EGFR mAb) and trastuzumab (trast, anti-HER-2 mAb) conjugated to Alexa Fluor molecules and IRDye QC-1 quencher optimized at the ratio of 1∶2∶6 to provide the greatest degree of proteolytic fluorescence activation, synonymous with intracellular lysosomal degradation. The cet-AF-Q-C1 conjugate (1∶2∶6) provides up to 9.8-fold proteolytic fluorescence activation. By preparing a spectrally distinct, irrelevant sham IgG-AF-QC-1 conjugate, a dual-activatable probe approach is shown to enhance the specificity of imaging within an orthotopic AsPC-1 pancreatic cancer xenograft model. The dual-activatable approach warrants expedited clinical translation to improve the specificity of image-guided surgery by spectrally decomposing specific from nonspecific probe accumulation, binding, and internalization.
Borkowska, Sylwia; Suszynska, Malwina; Ratajczak, Janina; Ratajczak, Mariusz Z
2016-01-01
We found that diurnal activation of the three evolutionarily ancient proteolytic cascades in peripheral blood (PB), namely, the complement, coagulation, and fibrinolytic cascades, late at night or in the early morning hours, precedes the diurnal release of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into PB in wild-type mice. Moreover, activation of the distal part of the complement cascade (ComC), involving cleavage of the fifth component (C5), seems to play a crucial role in pharmacological mobilization of HSPCs. In order to shed more light on the role of diurnal rhythms in the egress of HSPCs, we studied diurnal changes in the number of circulating HSPCs in C5-deficient mice and did not observe diurnal changes in the number of these cells circulating in PB in C5(-/-) animals. Based on this finding, we conclude that activation of the distal part of the ComC, C5 cleavage, and release of C5a and desArgC5a are required in executing the diurnal release of HSPCs from BM into PB. Moreover, the fact that C5(-/-) mice still displayed normal activation of the coagulation and fibrinolytic cascades indicates that, of all the proteolytic cascades, the ComC is the dominant player regulating diurnal egress of HSPCs.
Lee, Mi-Hwa; Lee, Jiyeon; Nam, Young-Do; Lee, Jong Suk; Seo, Myung-Ji; Yi, Sung-Hun
2016-03-16
A wild-type microorganism exhibiting antimicrobial activities was isolated from the Korean traditional fermented soybean food Chungkookjang and identified as Bacillus sp. LM7. During its stationary growth phase, the microorganism secreted an antimicrobial substance, which we partially purified using a simple two-step procedure involving ammonium sulfate precipitation and heat treatment. The partially purified antimicrobial substance, Anti-LM7, was stable over a broad pH range (4.0-9.0) and at temperatures up to 80 °C for 30 min, and was resistant to most proteolytic enzymes and maintained its activity in 30% (v/v) organic solvents. Anti-LM7 inhibited the growth of a broad range of Gram-positive bacteria, including Bacillus cereus and Listeria monocytogenes, but it did not inhibit lactic acid bacteria such as Lactobacillus plantarum and Lactococcus lactis subsp. Lactis. Moreover, unlike commercially available nisin and polymyxin B, Anti-LM7 inhibited certain fungal strains. Lastly, liquid chromatography-mass spectrometry analysis of Anti-LM7 revealed that it contained eight lipopeptides belonging to two families: four bacillomycin D and four surfactin analogs. These Bacillus sp. LM7-produced heterogeneous lipopeptides exhibiting extremely high stability and a broad antimicrobial spectrum are likely to be closely related to the antimicrobial activity of Chungkookjang, and their identification presents an opportunity for application of the peptides in environmental bioremediation, pharmaceutical, cosmetic, and food industries. Copyright © 2015 Elsevier B.V. All rights reserved.
A type III effector antagonizes death receptor signalling during bacterial gut infection.
Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L
2013-09-12
Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.
Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle.
Lu, Ying; Wu, Jiayi; Dong, Yuanchen; Chen, Shuobing; Sun, Shuangwu; Ma, Yong-Bei; Ouyang, Qi; Finley, Daniel; Kirschner, Marc W; Mao, Youdong
2017-07-20
The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly. Copyright © 2017 Elsevier Inc. All rights reserved.
Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge
2008-12-10
The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.
Highlights in BACE1 Inhibitors for Alzheimer's Disease Treatment
NASA Astrophysics Data System (ADS)
Coimbra, Judite R. M.; Marques, Daniela F. F.; Baptista, Salete J.; Pereira, Cláudia M. F.; Moreira, Paula I.; Dinis, Teresa C. P.; Santos, Armanda E.; Salvador, Jorge A. R.
2018-05-01
Alzheimer's Disease (AD) is a severe neurodegenerative disorder and the most common type of dementia in the elderly. The clinical symptoms of AD include a progressive loss of memory and impairment of cognitive functions interfering with daily life activities. The main neuropathological features consist in extracellular Amyloid-β (Aβ) plaque deposition and intracellular Neurofibrillary Tangles (NFTs) of hyperphosphorylated Tau. Understanding the pathophysiological mechanisms that underlie neurodegeneration in AD is essential for rational design of neuroprotective agents able to prevent disease progression. According to the “Amyloid Cascade Hypothesis” the critical molecular event in the pathogenesis of AD is the accumulation of Aβ neurotoxic oligomers. Since the proteolytic processing of Amyloid Precursor Protein (APP) by β-secretase (BACE1) is the rate-limiting step in the production of Aβ, this enzyme is considered a major therapeutic target and BACE1 inhibitors have the potential to be disease-modifying drugs for AD treatment. Therefore, intensive efforts to discover and develop inhibitors that can reach the brain and effectively inhibit BACE1 have been pursued by several groups worldwide. The aim of this review is to highlight the progress in the discovery of potent and selective small BACE1 inhibitors over the past decade.
Biosynthesis of human myeloperoxidase.
Nauseef, William M
2018-03-15
Members of Chordata peroxidase subfamily [1] expressed in mammals, including myeloperoxidase (MPO), eosinophil peroxidase (EPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO), express conserved motifs around the heme prosthetic group essential for their activity, a calcium-binding site, and at least two covalent bonds linking the heme group to the protein backbone. Although most studies of the biosynthesis of these peroxidases have focused on MPO, many of the features described occur during biosynthesis of other members of the protein subfamily. Whereas MPO biosynthesis includes events typical for proteins generated in the secretory pathway, the importance and consequences of heme insertion are events uniquely associated with peroxidases. This Review summarizes decades of work elucidating specific steps in the biosynthetic pathway of human MPO. Discussion includes cotranslational glycosylation and subsequent modifications of the N-linked carbohydrate sidechains, contributions by molecular chaperones in the endoplasmic reticulum, cleavage of the propeptide from proMPO, and proteolytic processing of protomers and dimerization to yield mature MPO. Parallels between the biosynthesis of MPO and TPO as well as the impact of inherited mutations in the MPO gene on normal biosynthesis will be summarized. Lastly, specific gaps in our knowledge revealed by this review of our current understanding will be highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.
Detection of protease and protease activity using a single nanoscrescent SERS probe
Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank
2013-01-29
This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.
Detection of protease and protease activity using a single nanocrescent SERS probe
Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank
2015-09-29
This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.
Dual allosteric activation mechanisms in monomeric human glucokinase
Whittington, A. Carl; Larion, Mioara; Bowler, Joseph M.; Ramsey, Kristen M.; Brüschweiler, Rafael; Miller, Brian G.
2015-01-01
Cooperativity in human glucokinase (GCK), the body’s primary glucose sensor and a major determinant of glucose homeostatic diseases, is fundamentally different from textbook models of allostery because GCK is monomeric and contains only one glucose-binding site. Prior work has demonstrated that millisecond timescale order-disorder transitions within the enzyme’s small domain govern cooperativity. Here, using limited proteolysis, we map the site of disorder in unliganded GCK to a 30-residue active-site loop that closes upon glucose binding. Positional randomization of the loop, coupled with genetic selection in a glucokinase-deficient bacterium, uncovers a hyperactive GCK variant with substantially reduced cooperativity. Biochemical and structural analysis of this loop variant and GCK variants associated with hyperinsulinemic hypoglycemia reveal two distinct mechanisms of enzyme activation. In α-type activation, glucose affinity is increased, the proteolytic susceptibility of the active site loop is suppressed and the 1H-13C heteronuclear multiple quantum coherence (HMQC) spectrum of 13C-Ile–labeled enzyme resembles the glucose-bound state. In β-type activation, glucose affinity is largely unchanged, proteolytic susceptibility of the loop is enhanced, and the 1H-13C HMQC spectrum reveals no perturbation in ensemble structure. Leveraging both activation mechanisms, we engineer a fully noncooperative GCK variant, whose functional properties are indistinguishable from other hexokinase isozymes, and which displays a 100-fold increase in catalytic efficiency over wild-type GCK. This work elucidates specific structural features responsible for generating allostery in a monomeric enzyme and suggests a general strategy for engineering cooperativity into proteins that lack the structural framework typical of traditional allosteric systems. PMID:26283387
Dual allosteric activation mechanisms in monomeric human glucokinase.
Whittington, A Carl; Larion, Mioara; Bowler, Joseph M; Ramsey, Kristen M; Brüschweiler, Rafael; Miller, Brian G
2015-09-15
Cooperativity in human glucokinase (GCK), the body's primary glucose sensor and a major determinant of glucose homeostatic diseases, is fundamentally different from textbook models of allostery because GCK is monomeric and contains only one glucose-binding site. Prior work has demonstrated that millisecond timescale order-disorder transitions within the enzyme's small domain govern cooperativity. Here, using limited proteolysis, we map the site of disorder in unliganded GCK to a 30-residue active-site loop that closes upon glucose binding. Positional randomization of the loop, coupled with genetic selection in a glucokinase-deficient bacterium, uncovers a hyperactive GCK variant with substantially reduced cooperativity. Biochemical and structural analysis of this loop variant and GCK variants associated with hyperinsulinemic hypoglycemia reveal two distinct mechanisms of enzyme activation. In α-type activation, glucose affinity is increased, the proteolytic susceptibility of the active site loop is suppressed and the (1)H-(13)C heteronuclear multiple quantum coherence (HMQC) spectrum of (13)C-Ile-labeled enzyme resembles the glucose-bound state. In β-type activation, glucose affinity is largely unchanged, proteolytic susceptibility of the loop is enhanced, and the (1)H-(13)C HMQC spectrum reveals no perturbation in ensemble structure. Leveraging both activation mechanisms, we engineer a fully noncooperative GCK variant, whose functional properties are indistinguishable from other hexokinase isozymes, and which displays a 100-fold increase in catalytic efficiency over wild-type GCK. This work elucidates specific structural features responsible for generating allostery in a monomeric enzyme and suggests a general strategy for engineering cooperativity into proteins that lack the structural framework typical of traditional allosteric systems.