Science.gov

Sample records for proteomic robotic workcell

  1. High-Throughput Fully Automated Construction of a Multiplex Library of Mutagenized Open Reading Frames for an Insecticidal Peptide Using a Plasmid-Based Functional Proteomic Robotic Workcell with Improved Vacuum System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robotic platforms are essential for the production and screening of large numbers of expression-ready plasmid sets used to develop optimized clones and improved microbial strains. Here we demonstrate a plasmid-based integrated workcell that was used to automate the molecular biology protocols inclu...

  2. Measuring worst-case errors in a robot workcell

    SciTech Connect

    Simon, R.W.; Brost, R.C.; Kholwadwala, D.K.

    1997-10-01

    Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot`s model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors.

  3. Multisensor based robotic manipulation in an uncalibrated manufacturing workcell

    SciTech Connect

    Ghosh, B.K.; Xiao, Di; Xi, Ning; Tarn, Tzyh-Jong

    1997-12-31

    The main problem that we address in this paper is how a robot manipulator is able to track and grasp a part placed arbitrarily on a moving disc conveyor aided by a single CCD camera and fusing information from encoders placed on the conveyor and also from encoders on the robot manipulator. The important assumption that distinguishes our work from what has been previously reported in the literature is that the position and orientation of the camera and the base frame of the robot is apriori assumed to be unknown and is `visually calibrated` during the operation of the manipulator. Moreover the part placed on the conveyor is assumed to be non-planar, i.e. the feature points observed on the part is assumed to be located arbitrarily in IR{sup 3}. The novelties of the proposed approach in this paper includes a (i) multisensor fusion scheme based on complementary data for the purpose of part localization, and (ii) self-calibration between the turntable and the robot manipulator using visual data and feature points on the end-effector. The principle advantages of the proposed scheme are the following. (i) It renders possible to reconfigure a manufacturing workcell without recalibrating the relation between the turntable and the robot. This significantly shortens the setup time of the workcell. (ii) It greatly weakens the requirement on the image processing speed.

  4. Integration of vision and robotic workcell

    NASA Technical Reports Server (NTRS)

    Bossieux, T. A.

    1994-01-01

    The paper discusses the incorporation of vision into a robotic cell to obtain cell status information and use this information to influence the robot operation. It discusses both mechanical and informational solutions to the operational issues which are present. The cell uses a machine vision system to determine information about part presence in the shipping tray, part location in the tray, and tray orientation. The vision system's edge detector algorithm is used to identify the orientation of the packing trays. In addition, different vision tools are used to determine if parts are present in the trays based on the unique configuration of the individual parts. The mechanical solutions discuss the handling of medium weight (10 - 25 lb.) parts at an average cycle time of 3.1 seconds per part. The robot gripper must handle 33 different models, three identical parts at a time. This is accomplished by using stacks of rotary actuators and slides between the stacks.

  5. Use of voice recognition for control of a robotic welding workcell

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Todd, Douglas M.; Jones, Clyde S., III

    1987-01-01

    This paper describes work underway to evaluate the effectiveness of voice recognition systems as an element in the control of a robotic welding workcell. Factors being considered for control include program editor access security, preoperation checklist requirements, welding process variable control, and robot manipulator motion overrides. In the latter two categories, manual vocal control is being compared against manual tactile control and fully automatic control in terms of speed of response, accuracy, stability, reliability, and safety.

  6. Artificial awareness for robots using artificial neural nets to monitor robotic workcells

    SciTech Connect

    Tucker, S.D.; Ray, L.P.

    1997-04-01

    Current robotic systems are unable to recognize most unexpected changes in the work environment, such as tool breakage, workpiece motion, or sensor failure. Unless halted by a human operator, they are likely to continue actions that are at best inappropriate, and at worst may cause damage to the workpiece or robot. This project investigated use of Artificial Neural Networks (ANNs) to learn the expected characteristics of sensor data during normal operations, recognize when data no longer is consistent with normal operation, suspend operations and alert a human operator. Data on force and torque applied at the robot tool tip were collected from two workcells: a robotic deburring system and a robot material-handling system. Data were collected for normal operations and for operations in which a fault condition was introduced. Data simulating sensor failure and excessive sensor noise were generated. Artificial Neural Networks (ANN) were trained to classify operating conditions; several ANN architectures were tested. The selected ANNs were able to correctly classify all valid operating conditions and the majority of fault conditions over the entire range of operating conditions, having {open_quotes}learned{close_quotes} the expected force/torque data. Most faults introduced appreciable error in the data; these were correctly classified. However, a small minority of faults did not give rise to a detectable difference in force and torque data. It is believed that these faults could be detected using other sensors. The computational workload varies with the implementation, but is moderate: up to 2.3 megaflops. This makes implementation of a real-time workcell monitor feasible.

  7. The modular design of robotic workcells in a flexible production line

    NASA Astrophysics Data System (ADS)

    Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    In the case of large-scale and mass production lines often the same model of an industrial robot is used in various places of the line and is intended to various task. However, the replacement of one industrial robot to another is a long lasting and arduous process. It requires stopping all the production line and sometimes even dismantling the whole workcell. Such situations are not frequent in production lines that are not flexible. They are related the most often with the failure on an industrial robot. However, during the designing of a flexible production line the ability to replace any robot, which is unrestricted, fast and trouble-free, greatly increase the flexibility level of such line. It could be realized by modular design of the proposed production line. In this way it could be possible to change any elements of such production system. But this approach needs to apply the specialized informatics system. This paper presents the obtained design of several versions of the same production workcell. Each, succeeding version of the designed production workcell contains more and more modular elements. Thereby it would be presented the evolution of a workcell design beginning from the typical design and ending with the fully modular one. One of tools needed to realize this task is the elaboration of a base of modules and typical joint and mounting elements that could be utilised in the described designing process. It is also presented the guidance information about the designing and programming processes useful at each stage of analysed process.

  8. Development of a small gantry robotic workcell for deoxyribonucleic acid (DNA) filter array construction

    SciTech Connect

    Beugelsdijk, T.J.; Hollen, R.M.; Snider, K.T.

    1990-01-01

    At Los Alamos National Laboratory, we have constructed a primary cosmid library of human chromosome 16. This library consists of an 11-fold representation of the chromosome and is arrayed in microtiter plate format. A need has arisen in the large scale physical mapping of this chromosome, to array spots of DNA from each of these colonies onto filter media for hybridization studies. We are currently developing a small gantry robot-based workcell to array small spots of DNA in an interleaved format. This allows for the construction of a high spot density format filter array. This paper will discuss the features incorporated into this workcell for the handling of thousands of colonies and their automatic tracking and positioning onto the filter. 7 refs., 3 figs., 1 tab.

  9. Object positioning in storages of robotized workcells using LabVIEW Vision

    NASA Astrophysics Data System (ADS)

    Hryniewicz, P.; Banaś, W.; Sękala, A.; Gwiazda, A.; Foit, K.; Kost, G.

    2015-11-01

    During the manufacturing process, each performed task is previously developed and adapted to the conditions and the possibilities of the manufacturing plant. The production process is supervised by a team of specialists because any downtime causes great loss of time and hence financial loss. Sensors used in industry for tracking and supervision various stages of a production process make it much easier to maintain it continuous. One of groups of sensors used in industrial applications are non-contact sensors. This group includes: light barriers, optical sensors, rangefinders, vision systems, and ultrasonic sensors. Through to the rapid development of electronics the vision systems were widespread as the most flexible type of non-contact sensors. These systems consist of cameras, devices for data acquisition, devices for data analysis and specialized software. Vision systems work well as sensors that control the production process itself as well as the sensors that control the product quality level. The LabVIEW program as well as the LabVIEW Vision and LabVIEW Builder represent the application that enables program the informatics system intended to process and product quality control. The paper presents elaborated application for positioning elements in a robotized workcell. Basing on geometric parameters of manipulated object or on the basis of previously developed graphical pattern it is possible to determine the position of particular manipulated elements. This application could work in an automatic mode and in real time cooperating with the robot control system. It allows making the workcell functioning more autonomous.

  10. Task sequence planning in a robot workcell using AND/OR nets

    NASA Technical Reports Server (NTRS)

    Cao, Tiehua; Sanderson, Arthur C.

    1991-01-01

    An approach to task sequence planning for a generalized robotic manufacturing or material handling workcell is described. Given the descriptions of the objects in this system and all feasible geometric relationships among these objects, an AND/OR net which describes the relationships of all feasible geometric states and associated feasibility criteria for net transitions is generated. This AND/OR net is mapped into a Petri net which incorporates all feasible sequences of operations. The resulting Petri net is shown to be bounded and have guaranteed properties of liveness, safeness, and reversibility. Sequences are found from the reachability tree of the Petri net. Feasibility criteria for net transitions may be used to generate an extended Petri net representation of lower level command sequences. The resulting Petri net representation may be used for on-line scheduling and control of the system of feasible sequences. A simulation example of the sequences is described.

  11. An Industrial Perspective of CAM/ROB Fuzzy Integrated Postprocessing Implementation for Redundant Robotic Workcells Applicability for Big Volume Prototyping

    NASA Astrophysics Data System (ADS)

    Andrés, J.; Gracia, L.; Tornero, J.; García, J. A.; González, F.

    2009-11-01

    The implementation of a postprocessor for the NX™ platform (Siemens Corp.) is described in this paper. It is focused on a milling redundant robotic milling workcell consisting of one KUKA KR 15/2 manipulator (6 rotary joints, KRC2 controller) mounted on a linear axis and synchronized with a rotary table (i.e., two additional joints). For carrying out a milling task, a choice among a set of possible configurations is required, taking into account the ability to avoid singular configurations by using both additional joints. Usually, experience and knowledge of the workman allow an efficient control in these cases, but being it a tedious job. Similarly to this expert knowledge, a stand-alone fuzzy controller has been programmed with Matlab's Fuzzy Logic Toolbox (The MathWorks, Inc.). Two C++ programs complement the translation of the toolpath tracking (expressed in the Cartesian space) from the NX™-CAM module into KRL (KUKA Robot Language). In order to avoid singularities or joint limits, the location of the robot and the workpiece during the execution of the task is fit after an inverse kinematics position analysis and a fuzzy inference (i.e., fuzzy criterion in the Joint Space). Additionally, the applicability of robot arms for the manufacture of big volume prototypes with this technique is proven by means of one case studied. It consists of a big orographic model to simulate floodways, return flows and retention storage of a reservoir in the Mijares river (Puebla de Arenoso, Spain). This article deals with the problem for a constant tool orientation milling process and sets the technological basis for future research at five axis milling operations.

  12. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  13. Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments

    SciTech Connect

    Williams, Joshua M.

    2012-06-12

    Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address this problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates

  14. Industrial robots and robotics

    SciTech Connect

    Kafrissen, S.; Stephens, M.

    1984-01-01

    This book discusses the study of robotics. It provides information of hardware, software, applications and economics. Eleven chapters examine the following: Minicomputers, Microcomputers, and Microprocessors; The Servo-Control System; The Activators; Robot Vision Systems; and Robot Workcell Environments. Twelve appendices supplement the data.

  15. Modular workcells: modern methods for laboratory automation.

    PubMed

    Felder, R A

    1998-12-01

    Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.

  16. Agent-based models in robotized manufacturing cells designing

    NASA Astrophysics Data System (ADS)

    Sekala, A.; Gwiazda, A.; Foit, K.; Banas, W.; Hryniewicz, P.; Kost, G.

    2015-11-01

    The complexity of the components, presented in robotized manufacturing workcells, causes that already at the design phase is necessary to develop models presenting various aspects of their structure and functioning. These models are simplified representation of real systems and allow to, among others, systematize knowledge about the designed manufacturing workcell. They also facilitate defining and analyzing the interrelationships between its particular components. This paper proposes the agent-based approach applied for designing robotized manufacturing cells.

  17. An REU Experience with Micro Assembly Workcell Research

    ERIC Educational Resources Information Center

    Stapleton, William; Asiabanpour, Bahram; Jimenez, Jesus; Um, Dugan

    2010-01-01

    Under an NSF REU center grant REU-0755355 entitled "Micro/Nano Assembly Workcell Via Micro Visual Sensing and Haptic Feedback", Texas A&M University-Corpus Christi and Texas State University-San Marcos collaboratively hosted two groups of 10 students from different backgrounds for 10 weeks each in Summer 2008 and 2009 respectively.…

  18. Apparatus for generating a robotic plan for automatically assembling a mechanical component

    SciTech Connect

    Maciejewski, A.A.; Strip, D.R.

    1991-12-31

    This invention is comprised of an apparatus operable in combination with a robot positioned in a workcell having a preselected specification is operable to generate a program for operating the robot to assemble a mechanical component. The apparatus includes a planner for receiving as inputs a CAD model of the mechanical component to be assembled, a set of robot primitives and a set of mechanical component assembly rules for determining the conditions under which the set of robot primitives apply. The planner generates from these inputs a general, workcell specification-independent plan for assembling the mechanical component. The general plan generated by the planner is provided as an input to a compiler along with details relating to the workcell specification, and the compiler generates from these inputs a workcell specification-dependent program which operates the robot to assemble the mechanical component.

  19. Proteomics

    SciTech Connect

    Hixson, Kim K.; Lopez-Ferrer, Daniel; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2010-02-01

    Proteomics aims to characterize the spatial distribution and temporal dynamics of proteins in biological systems, the protein response to environmental stimuli, and the differences in protein states between diseased and control biological systems. Mass spectrometry (MS) plays a crucial role in enabling the analysis of proteomes and typically is the method of choice for identifying proteins present in biological systems. Peptide (and consequently protein) identifications are made by comparing measured masses to calculated values obtained from genome data. Several methodologies based on MS have been developed for the analysis of proteomes. The complexity of the biological systems requires that the proteome be separated prior to analysis. Both gel based and liquid chromatography based separations have proven very useful in this regard. Typically, separated proteins are analyzed with MS either intact (top-down proteomics) or are digested into peptides (bottom-up) prior to MS analysis. Additionally, several procedures, with and without stable isotopic labeling, have been introduced to facilitate protein quantitation (e.g. characterize changes in protein abundances between given biological states).

  20. Robotic component preparation

    SciTech Connect

    Dokos, J.R.

    1986-04-01

    This report provides information on the preparation of robotic components. Component preparation includes pretinning or solder dipping, preforming, and pretrimming of component leads. Since about 70% of all components are axial-leaded resistor-type components, it was decided to begin with them and then later develop capabilities to handle other types. The first workcell is the first phase of an overall system to pretin, preform, and pretrim all components and to feed them to an automatic insertion system. Before use of the robot, a Unimation PUMA Modal 260, pretinning and preforming was done by first hand with a shield and vented booth.

  1. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  2. Software development to support sensor control of robot arc welding

    NASA Technical Reports Server (NTRS)

    Silas, F. R., Jr.

    1986-01-01

    The development of software for a Digital Equipment Corporation MINC-23 Laboratory Computer to provide functions of a workcell host computer for Space Shuttle Main Engine (SSME) robotic welding is documented. Routines were written to transfer robot programs between the MINC and an Advanced Robotic Cyro 750 welding robot. Other routines provide advanced program editing features while additional software allows communicatin with a remote computer aided design system. Access to special robot functions were provided to allow advanced control of weld seam tracking and process control for future development programs.

  3. Making blind robots see: the synergy between fluorescent dyes and imaging devices in automated proteomics.

    PubMed

    Patton, W F

    2000-05-01

    Proteomics investigations endeavor to provide a global understanding of gene product synthesis rate, degradation rate, functional competence, posttranslational modification, subcellular distribution and physical interactions with other cell components. Protein expression encompasses an enormous dynamic range. Since rare proteins cannot be amplified by any type of PCR method, sensitive detection is critical to proteome projects. Fluorescence methods deliver streamlined detection protocols, superior detection sensitivity, broad linear dynamic range and excellent compatibility with modern microchemical identification methods such as mass spectrometry. Two general approaches to fluorescence detection of proteins are currently practiced: the covalent derivatization of proteins with fluorophores or noncovalent interaction of fluorophores either via the SDS micelle or through direct electrostatic interaction with proteins. One approach for quantifying fluorescence is to use a photomultiplier tube detector combined with a laser light scanner. In addition, fluorescence imaging is performed using a charge-coupled device camera combined with a UV light or xenon arc source. Fluorescent dyes with bimodal excitation spectra may be broadly implemented on a wide range of analytical imaging devices, permitting their widespread application to proteomics studies and incorporation into semiautomated analysis environments.

  4. Construction typification as the tool for optimizing the functioning of a robotized manufacturing system

    NASA Astrophysics Data System (ADS)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex

  5. Robot positioning based on point-to-point motion capability

    SciTech Connect

    Park, Y. S.; Cho, H. S.; Koh, K. C.

    2000-03-20

    This paper presents an optimal search method for determining the base location of a robot manipulator so that the robot can have a designated point-to-point (PTP) motion capabilities. Based on the topological characterization of the manipulator workspace and the definitions of various p-connectivity, a computational method is developed for enumerating various PTP motion capabilities into quantitative cost functions. Then an unconstrained search by minimizing the cost function yields the task feasible location of the robot base. This methodology is useful for placement of mobile manipulators and robotic workcell layout design.

  6. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  7. KC-135 materials handling robotics

    NASA Astrophysics Data System (ADS)

    Workman, Gary L.

    1991-04-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  8. Off-line programming motion and process commands for robotic welding of Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.

    1987-01-01

    The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.

  9. Graphics modelling of non-contact thickness measuring robotics work cell

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1990-01-01

    A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.

  10. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  11. Advanced robotics technology applied to mixed waste characterization, sorting and treatment

    SciTech Connect

    Wilhelmsen, K.; Hurd, R.; Grasz, E.

    1994-04-01

    There are over one million cubic meters of radioactively contaminated hazardous waste, known as mixed waste, stored at Department of Energy facilities. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing methods to safely and efficiently treat this type of waste. LLNL has automated and demonstrated a means of segregating items in a mixed waste stream. This capability incorporates robotics and automation with advanced multi-sensor information for autonomous and teleoperational handling of mixed waste items with previously unknown characteristics. The first phase of remote waste stream handling was item singulation; the ability to remove individual items of heterogeneous waste directly from a drum, box, bin, or pile. Once objects were singulated, additional multi-sensory information was used for object classification and segregation. In addition, autonomous and teleoperational surface cleaning and decontamination of homogeneous metals has been demonstrated in processing mixed waste streams. The LLNL waste stream demonstration includes advanced technology such as object classification algorithms, identification of various metal types using active and passive gamma scans and RF signatures, and improved teleoperational and autonomous grasping of waste objects. The workcell control program used an off-line programming system as a server to perform both simulation control as well as actual hardware control of the workcell. This paper will discuss the motivation for remote mixed waste stream handling, the overall workcell layout, sensor specifications, workcell supervisory control, 3D vision based automated grasp planning and object classification algorithms.

  12. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  13. Robotics

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  14. IC handling robot

    SciTech Connect

    Law, D.O.

    1986-09-01

    Allied Corporation, Bendix Kansas City Division uses many integrated circuits (ICs) which are 100% tested by receiving inspection prior to installation into the next assemblies. Testing includes functional testing followed by a burn-in cycle then additional functional testing. Before an IC can be functionally tested, it must be inserted into a custom plastic carrier which is placed into a metal magazine that fits the functional tester. The ICs are removed from both tester magazines and carriers prior to being placed into connectors mounted on a printed wiring board for burn-in. Then they are removed from the burn-in board and re-inserted into carriers and magazines for additional functional testing. Each device is handled manually a minimum of 12 times before it is accepted. This project established a robotic workcell which automatically prepares a dual in-line packaged (DIP) integrated circuit for several types of inspection operations performed by Receiving Inspection. Specific activities required to accomplish this goal included definition of the work cell, preparation of the robot and other equipment specifications, installation planning, establishment of programming routines and logic, design of operator safeguards, and development of the work cell concept into an operational unit capable of supporting production.

  15. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  16. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  17. Intelligent tools and process development for robotic edge finishing: LDRD project final report

    SciTech Connect

    Lewis, C.L.

    1997-08-01

    This report describes a project undertaken to develop an agile automated, high-precision edge finishing system, for fabricating precision parts. The project involved re-designing and adding additional capabilities to an existing finishing work-cell. The resulting work-cell may serve as prototype for production systems to be integrated in highly flexible automated production lines. The system removes burrs formed in the machining process and produces precision chamfers. The system uses an expert system to predict the burr size from the machining history. Within the CAD system, tool paths are generated for burr removal and chamfer formation. Then, the optimal grinding process is automatically selected from a database of processes. The tool trajectory and the selected process definition is then downloaded to a robotic control system to execute the operation. The robotic control system implements a hybrid fuzzy logic-classical control scheme to achieve the desired performance goals regardless of tolerance and fixturing errors. This report describes the system architecture and the system`s performance.

  18. Robotic NDE inspection of advanced solid rocket motor casings

    NASA Technical Reports Server (NTRS)

    Mcneelege, Glenn E.; Sarantos, Chris

    1994-01-01

    The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.

  19. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  20. A concept for ubiquitous robotics in industrial environment

    NASA Astrophysics Data System (ADS)

    Sallinen, Mikko; Heilala, Juhani; Kivikunnas, Sauli

    2007-09-01

    In this paper a concept for industrial ubiquitous robotics is presented. The concept combines two different approaches to manage agile, adaptable production: firstly the human operator is strongly in the production loop and secondly, the robot workcell will be more autonomous and smarter to manage production. This kind of autonomous robot cell can be called production island. Communication to the human operator working in this kind of smart industrial environment can be divided into two levels: body area communication and operator-infrastructure communication including devices, machines and infra. Body area communication can be supportive in two directions: data is recorded by means of measuring physical actions, such as hand movements, body gestures or supportive when it will provide information to user such as guides or manuals for operation. Body area communication can be carried out using short range communication technologies such as NFC (Near Field communication) which is RFID type of communication. In the operator-infrastructure communication, WLAN or Bluetooth -communication can be used. Beyond the current Human Machine interaction HMI systems, the presented system concept is designed to fulfill the requirements for hybrid, knowledge intensive manufacturing in the future, where humans and robots operate in close co-operation.

  1. Modelling of cooperating robotized systems with the use of object-based approach

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.

  2. Fully automated molecular biology routines on a plasmid-based functional proteomic workcell: Evaluation and Characterization of Yeast Strains Optimized for Growth on Xylose Expressing "Stealth" Insecticidal Peptides.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimization of genes important to production of fuel ethanol from hemicellulosic biomass for use in developing improved commercial yeast strains is necessary to meet the rapidly expanding need for ethanol. The United States Department of Agriculture has developed a fully automated platform for mol...

  3. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  4. Microsomal proteomics.

    PubMed

    Wong, Diana M; Adeli, Khosrow

    2009-01-01

    Proteomic profiling of subcellular compartments has many advantages over traditional proteomic approaches using whole cell lysates as it allows for detailed proteome analysis of a specific organelle and corresponding functional characteristics. The microsome is a critical, membranous compartment involved in the synthesis, sorting, and secretion of proteins as well as other metabolic functions. This chapter will describe detailed methods for the isolation of microsomal organelles including the ER, Golgi, and prechylomicron transport vesicle (PCTV), a recently identified vesicular system involved in intestinal lipoprotein assembly and secretion. Particular focus is given to the isolation of microsomes from primary hepatocytes and enterocytes freshly isolated from rodent liver and intestinal tissue, and their proteomic profiling using a combination of two-dimensional gel electrophoresis and mass spectrometry.

  5. Complementary data fusion in guidance and control of robot compliant motion

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Ghosh, Bijoy K.; Xi, Ning; Tarn, Tzyh-Jong

    1998-10-01

    This paper is devoted to the control problem of a robot manipulator for a class of constrained motions in an unknown environment. To accomplish a task in the presence of uncertainties, we propose a new guidance and control strategy based on multisensor fusion. Three different sensors-robot joint encoders, a wrist force-torque sensor and a vision system--are utilized for our task. First of all, a sensor-based hybrid position/force control scheme is proposed for an unknown contact surface. Secondly, a new multisensor fusion scheme is utilized to handle an uncalibrated workcell, wherein the surface on which there is a path to be followed by a robot is assumed to be unknown but visible by the vision system and the precise position and orientation of camera(s) with respect to the base frame of the robot is also assumed to be unknown. Our work is related with areas such as visual servoing, multisensor fusion and robot control for constrained motion. The main features of the proposed approach are: (1) multi-sensor fusion is used both for two disparate sensors (i.e. force- torque and visual sensors) and for complementary observed data rather than redundant ones as in traditional way; (2) visual servoing is realized on the tangent space of the unknown surface; (3) calibration of the camera with respect to the robot is not needed.

  6. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  7. Chlamydomonas proteomics.

    PubMed

    Rolland, Norbert; Atteia, Ariane; Decottignies, Paulette; Garin, Jérôme; Hippler, Michael; Kreimer, Georg; Lemaire, Stéphane D; Mittag, Maria; Wagner, Volker

    2009-06-01

    Chlamydomonas reinhardtii is a biflagellate and photosynthetic unicellular alga that has long fascinated scientists because it combines characteristics of both plants and animals. Chlamydomonas offers the simplicity of a unicellular organism that is amenable to genetic screening, molecular, and biochemical approaches, as well as to transformation of its nuclear, plastid, or mitochondrial genomes. Over the past decade, proteomics based studies of Chlamydomonas have provided major research contributions in the areas of photosynthesis, molecular biology, and evolution. This review refers to technical and biological aspects of proteomics studies that have been recently performed on the C. reinhardtii model organism.

  8. Platelet proteomics.

    PubMed

    Zufferey, Anne; Fontana, Pierre; Reny, Jean-Luc; Nolli, Severine; Sanchez, Jean-Charles

    2012-01-01

    Platelets are small cell fragments, produced by megakaryocytes, in the bone marrow. They play an important role in hemostasis and diverse thrombotic disorders. They are therefore primary targets of antithrombotic therapies. They are implicated in several pathophysiological pathways, such as inflammation or wound repair. In blood circulation, platelets are activated by several pathways including subendothelial matrix and thrombin, triggering the formation of the platelet plug. Studying their proteome is a powerful approach to understand their biology and function. However, particular attention must be paid to different experimental parameters, such as platelet quality and purity. Several technologies are involved during the platelet proteome processing, yielding information on protein identification, characterization, localization, and quantification. Recent technical improvements in proteomics combined with inter-disciplinary strategies, such as metabolomic, transcriptomics, and bioinformatics, will help to understand platelets biological mechanisms. Therefore, a comprehensive analysis of the platelet proteome under different environmental conditions may contribute to elucidate complex processes relevant to platelet function regarding bleeding disorders or platelet hyperreactivity and identify new targets for antiplatelet therapy.

  9. Robotic surgery.

    PubMed

    Oleynikov, Dmitry

    2008-10-01

    This article discusses the developments that led up to robotic surgical systems as well as what is on the horizon for new robotic technology. Topics include how robotics is enabling new types of procedures, including natural orifice endoscopic translumenal surgery in which one cannot reach by hand under any circumstances, and how these developments will drive the next generation of robots. PMID:18790158

  10. What Is Cancer Proteomics?

    MedlinePlus

    ... gov The National Institutes of Health Clinical Proteomics Technologies for Cancer Contact Us Intranet Sign Up for ... of proteomics that involves the application of proteomic technologies on clinical specimens such as blood. Cancer, in ...

  11. Swarm Robotics

    NASA Astrophysics Data System (ADS)

    Şahin, Erol; Girgin, Sertan; Bayindir, Levent; Turgut, Ali Emre

    Swarm robotics is a novel approach to the coordination of large numbers of robots and has emerged as the application of swarm intelligence to multi-robot systems. Different from other swarm intelligence studies, swarm robotics puts emphases on the physical embodiment of individuals and realistic interactions among the individuals and between the individuals and the environment. In this chapter, we present a brief review of this new approach. We first present its definition, discuss the main motivations behind the approach, as well as its distinguishing characteristics and major coordination mechanisms. Then we present a brief review of swarm robotics research along four axes; namely design, modelling and analysis, robots and problems.

  12. Robotic surgery.

    PubMed

    Stoianovici, D

    2000-09-01

    The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.

  13. Proteomics: the industrialization of protein chemistry.

    PubMed

    Patterson, S D

    2000-08-01

    Establishing a proteomics platform in the industrial setting initially required implementation of a series of robotic systems to allow a high-throughput approach to analysis and identification of differences observed on 2-D electrophoresis gels. Now, a simpler alternative approach employing chromatography-based systems is emerging for identification of many components of complex mixtures, which can also provide quantitative comparisons through the use of a new labeling methodology.

  14. CASSY Robot

    NASA Astrophysics Data System (ADS)

    Pittman, Anna; Wright, Ann; Rice, Aaron; Shyaka, Claude

    2014-03-01

    The CASSY Robot project involved two square robots coded in RobotC. The goal was to code a robot to do a certain set of tasks autonomously. To begin with, our task was to code the robot so that it would roam a certain area, marked off by black tape. When the robot hit the black tape, it knew to back up and turn around. It was able to do this thanks to the light sensor that was attached to the bottom of the robot. Also, whenever the robot hit an obstacle, it knew to stop, back up, and turn around. This was primarily to prevent the robot from hurting itself if it hit an obstacle. This was accomplished by using touch sensors set up as bumpers. Once that was accomplished, we attached sonar sensors and created code so that one robot was able to find and track the other robot in a sort of intruder/police scenario. The overall goal of this project was to code the robot so that we can test it against a robot coded exactly the same, but using Layered Mode Selection Logic. Professor.

  15. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  17. (Robotic hands)

    SciTech Connect

    Mann, R.C.

    1988-09-23

    The traveler attended the International Workshop on Robot Hands at the Palace Hotel in Dubrovnik, Yugoslavia. The traveler presented a lecture on An integrated sensor system for the ORNL mobile robot.'' The traveler obtained important information on current R D efforts in multi-fingered robot hands and object recognition using touch sensing.

  18. Robot programming

    SciTech Connect

    Lozano-Perez, T.

    1982-12-01

    The industrial robot's principal advantage over traditional automation is programmability. Robots can perform arbitrary sequences of pre-stored motions or of motions computed as functions of sensory input. This paper reviews requirements for and developments in robot programming systems. The key requirements for robot programming systems examined in the paper are in the areas of sensing, world modeling, motion specification, flow of control, and programming support. Existing and proposed robot programming systems fall into three broad categories: guiding systems in which the user leads a robot through the motions to be performed, robot-level programming systems in which the user writes a computer program specifying motion and sensing, and task-level programming systems in which the user writes a computer program specifying motion and sensing, and task-level programming systems in which the user specifies operations by their desired effect on objects. A representative sample of systems in each of these categories is surveyed in the paper.

  19. HepatoProteomics: Applying Proteomic Technologies to the Study of Liver Function and Disease

    SciTech Connect

    Diamond, Deborah L.; Proll, Sean; Jacobs, Jon M.; Chan, Eric Y.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-08-01

    The wealth of human genome sequence information now available, coupled with technological advances in robotics, nanotechnology, mass spectrometry, and information systems, has given rise to a method of scientific inquiry known as functional genomics. By using these technologies to survey gene expression and protein production on a near global scale, the goal of functional genomics is to assign biological function to genes with currently unknown roles in physiology. This approach carries particular appeal in disease research, where it can uncover the function of previously unknown genes and molecular pathways that are directly involved in disease progression. With this knowledge may come improved diagnostic techniques, prognostic capabilities, and novel therapeutic approaches. In this regard, the continuing evolution of proteomic technologies has resulted in an increasingly greater impact of proteome studies in many areas of research and hepatology is no exception. Our laboratory has been extremely active in this area, applying both genomic and proteomic technologies to the analysis of virus-host interactions in several systems, including the study of hepatitis C virus (HCV) infection and HCV-associated liver disease. Since proteomic technologies are foreign to many hepatologists (and to almost everyone else), this article will provide an overview of proteomic methods and technologies and describe how they're being used to study liver function and disease. We use our studies of HCV infection and HCV-associated liver disease to present an operational framework for performing high throughput proteome analysis and extracting biologically meaningful information.

  20. The role of targeted chemical proteomics in pharmacology

    PubMed Central

    Sutton, Chris W

    2012-01-01

    Traditionally, proteomics is the high-throughput characterization of the global complement of proteins in a biological system using cutting-edge technologies (robotics and mass spectrometry) and bioinformatics tools (Internet-based search engines and databases). As the field of proteomics has matured, a diverse range of strategies have evolved to answer specific problems. Chemical proteomics is one such direction that provides the means to enrich and detect less abundant proteins (the ‘hidden’ proteome) from complex mixtures of wide dynamic range (the ‘deep’ proteome). In pharmacology, chemical proteomics has been utilized to determine the specificity of drugs and their analogues, for anticipated known targets, only to discover other proteins that bind and could account for side effects observed in preclinical and clinical trials. As a consequence, chemical proteomics provides a valuable accessory in refinement of second- and third-generation drug design for treatment of many diseases. However, determining definitive affinity capture of proteins by a drug immobilized on soft gel chromatography matrices has highlighted some of the challenges that remain to be addressed. Examples of the different strategies that have emerged using well-established drugs against pharmaceutically important enzymes, such as protein kinases, metalloproteases, PDEs, cytochrome P450s, etc., indicate the potential opportunity to employ chemical proteomics as an early-stage screening approach in the identification of new targets. PMID:22074351

  1. Lipolytic proteomics.

    PubMed

    Schittmayer, Matthias; Birner-Gruenberger, Ruth

    2012-01-01

    Activity-based proteomics (ABP) employs small molecular probes to specifically label sets of enzymes based on their shared catalytic mechanism. Given that the vast majority of lipases belong to the family of serine hydrolases and share a nucleophilic active-site serine as part of a catalytic triad, activity-based probes are ideal tools to study lipases and lipolysis. Moreover, the ability of ABP to highlight or isolate specific subproteomes results in a massive decrease of sample complexity. Thereby, in-depth analysis of enzymes of interest with mass spectrometry becomes feasible. In this review, we cover probe design, technological developments, and applications of ABP of lipases, as well as give an overview of relevant identified proteins.

  2. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  3. Robotic system

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A robot having a plurality of interconnected sections is disclosed. Each of the sections includes components which are moveable relative to components of an adjacent section. A plurality of electric motors are operably connected to at least two of said relatively moveable components to effect relative movement. A fitted, removable protective covering surrounds the sections to protect the robot.

  4. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  5. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  6. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  7. Robot visions.

    PubMed

    Castañeda, Claudia; Suchman, Lucy

    2014-06-01

    This article explores the resonating figures of primate, child, and robot in contemporary technoscientific corporealizations of the 'almost human'. We take as our model (in)organism 'Lucy the Robot Orangutan', roboticist Steve Grand's project to create an artificial life form with a mind of its own. One aspect of Lucy's figuration by Grand, we argue, which ties her to Haraway's analysis of the primate, is of the robot as a model for animal, and more specifically (or aspirationally) human, cognition. We follow the trope of 'model organism' as it is under discussion within science and technology studies and as an ironic descriptor for our own interest in Lucy as an entity/project through which to illuminate figurations within robotics more widely. Primate and robot together are forms of natureculture that help to clarify how the categories of animal and machine are entangled, while making explicit investments in their differences from one another, and from the third category of the human. We conclude, again following Haraway, by imagining what other possibilities there might be for figuring humans, robots, and their relations if we escape the reiterative imaginary of the robot as proxy for becoming human. PMID:25051585

  8. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  9. Robot visions.

    PubMed

    Castañeda, Claudia; Suchman, Lucy

    2014-06-01

    This article explores the resonating figures of primate, child, and robot in contemporary technoscientific corporealizations of the 'almost human'. We take as our model (in)organism 'Lucy the Robot Orangutan', roboticist Steve Grand's project to create an artificial life form with a mind of its own. One aspect of Lucy's figuration by Grand, we argue, which ties her to Haraway's analysis of the primate, is of the robot as a model for animal, and more specifically (or aspirationally) human, cognition. We follow the trope of 'model organism' as it is under discussion within science and technology studies and as an ironic descriptor for our own interest in Lucy as an entity/project through which to illuminate figurations within robotics more widely. Primate and robot together are forms of natureculture that help to clarify how the categories of animal and machine are entangled, while making explicit investments in their differences from one another, and from the third category of the human. We conclude, again following Haraway, by imagining what other possibilities there might be for figuring humans, robots, and their relations if we escape the reiterative imaginary of the robot as proxy for becoming human.

  10. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions. PMID:2208684

  11. [Robotic surgery].

    PubMed

    Sándor, József; Haidegger, Tamás; Kormos, Katalin; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György

    2013-10-01

    Due to the fast spread of laparoscopic cholecystectomy, surgical procedures have been changed essentially. The new techniques applied for both abdominal and thoracic procedures provided the possibility for minimally invasive access with all its advantages. Robots - originally developed for industrial applications - were retrofitted for laparoscopic procedures. The currently prevailing robot-assisted surgery is ergonomically more advantageous for the surgeon, as well as for the patient through the more precise preparative activity thanks to the regained 3D vision. The gradual decrease of costs of robotic surgical systems and development of new generations of minimally invasive devices may lead to substantial changes in routine surgical procedures. PMID:24144815

  12. [Robotic surgery].

    PubMed

    Sándor, József; Haidegger, Tamás; Kormos, Katalin; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György

    2013-10-01

    Due to the fast spread of laparoscopic cholecystectomy, surgical procedures have been changed essentially. The new techniques applied for both abdominal and thoracic procedures provided the possibility for minimally invasive access with all its advantages. Robots - originally developed for industrial applications - were retrofitted for laparoscopic procedures. The currently prevailing robot-assisted surgery is ergonomically more advantageous for the surgeon, as well as for the patient through the more precise preparative activity thanks to the regained 3D vision. The gradual decrease of costs of robotic surgical systems and development of new generations of minimally invasive devices may lead to substantial changes in routine surgical procedures.

  13. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  14. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  15. Robotic vehicle

    SciTech Connect

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  16. Robotic vehicle

    SciTech Connect

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  17. Robotic arm

    DOEpatents

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  18. Robotic animation

    NASA Astrophysics Data System (ADS)

    Kretch, S. J.

    1982-08-01

    The effectiveness of the robotic systems Place and Animate at McDonnell Douglas is discussed. The systems are designed for CAD/CAM on a kinematic basis. Place allows creation, analysis, and editing of cell descriptions as part of the CAD process, and involves primitive cell configuring prior to eventual integration of the entire robot. Objects are displayed in wire frame form and movement receives an awkwardness rating automatically, indicating the percentage of the real-world joint limit that is being approached. The same program is employed in the Animate process, where verification and debugging of the robot programs proceeds. Clearances, motion limits, and correct responses to commands are checked, allowing decisions on production to be made before any robots are actually built.

  19. [Robotic surgery].

    PubMed

    Moreno-Portillo, Mucio; Valenzuela-Salazar, Carlos; Quiroz-Guadarrama, César David; Pachecho-Gahbler, Carlos; Rojano-Rodríguez, Martín

    2014-12-01

    Medicine has experienced greater scientific and technological advances in the last 50 years than in the rest of human history. The article describes relevant events, revises concepts and advantages and clinical applications, summarizes published clinical results, and presents some personal reflections without giving dogmatic conclusions about robotic surgery. The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) defines robotic surgery as a surgical procedure using technology to aid the interaction between surgeon and patient. The objective of the surgical robot is to correct human deficiencies and improve surgical skills. The capacity of repeating tasks with precision and reproducibility has been the base of the robot´s success. Robotic technology offers objective and measurable advantages: - Improving maneuverability and physical capacity during surgery. - Correcting bad postural habits and tremor. - Allowing depth perception (3D images). - Magnifying strength and movement limits. - Offering a platform for sensors, cameras, and instruments. Endoscopic surgery transformed conceptually the way of practicing surgery. Nevertheless in the last decade, robotic assisted surgery has become the next paradigm of our era.

  20. [Robotic surgery].

    PubMed

    Moreno-Portillo, Mucio; Valenzuela-Salazar, Carlos; Quiroz-Guadarrama, César David; Pachecho-Gahbler, Carlos; Rojano-Rodríguez, Martín

    2014-12-01

    Medicine has experienced greater scientific and technological advances in the last 50 years than in the rest of human history. The article describes relevant events, revises concepts and advantages and clinical applications, summarizes published clinical results, and presents some personal reflections without giving dogmatic conclusions about robotic surgery. The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) defines robotic surgery as a surgical procedure using technology to aid the interaction between surgeon and patient. The objective of the surgical robot is to correct human deficiencies and improve surgical skills. The capacity of repeating tasks with precision and reproducibility has been the base of the robot´s success. Robotic technology offers objective and measurable advantages: - Improving maneuverability and physical capacity during surgery. - Correcting bad postural habits and tremor. - Allowing depth perception (3D images). - Magnifying strength and movement limits. - Offering a platform for sensors, cameras, and instruments. Endoscopic surgery transformed conceptually the way of practicing surgery. Nevertheless in the last decade, robotic assisted surgery has become the next paradigm of our era. PMID:25643879

  1. Robotic sampling system for an unmanned Mars mission

    NASA Technical Reports Server (NTRS)

    Chun, Wendell

    1989-01-01

    A major robotics opportunity for NASA will be the Mars Rover/Sample Return Mission which could be launched as early as the 1990s. The exploratory portion of this mission will include two autonomous subsystems: the rover vehicle and a sample handling system. The sample handling system is the key to the process of collecting Martian soils. This system could include a core drill, a general-purpose manipulator, tools, containers, a return canister, certification hardware and a labeling system. Integrated into a functional package, the sample handling system is analogous to a complex robotic workcell. Discussed here are the different components of the system, their interfaces, forseeable problem areas and many options based on the scientific goals of the mission. The various interfaces in the sample handling process (component to component and handling system to rover) will be a major engineering effort. Two critical evaluation criteria that will be imposed on the system are flexibility and reliability. It needs to be flexible enough to adapt to different scenarios and environments and acquire the most desirable specimens for return to Earth. Scientists may decide to change the distribution and ratio of core samples to rock samples in the canister. The long distance and duration of this planetary mission places a reliability burden on the hardware. The communication time delay between Earth and Mars minimizes operator interaction (teleoperation, supervisory modes) with the sample handler. An intelligent system will be required to plan the actions, make sample choices, interpret sensor inputs, and query unknown surroundings. A combination of autonomous functions and supervised movements will be integrated into the sample handling system.

  2. Handbook of industrial robotics

    SciTech Connect

    Nof, S.Y.

    1985-01-01

    This book presents papers on the application of artificial intelligence to robots used in industrial plants. Topics considered include vision systems, elements of industrial robot software, robot teaching, the off-line programming of robots, a structured programming robot language, task-level manipulator programming, expert systems, and the role of the computer in robot intelligence.

  3. Tutorial on robotics

    SciTech Connect

    Lee, C.S.G.; Gonzalez, R.C.; Fu, K.S.

    1986-01-01

    Basic fundamentals in robotics are presented in this tutorial. Topics covered are as follows: robot arm kinematics; robot arm dynamics; planning or manipulator trajectories; servo control for manipulators; force sensing and control; robot vision systems; robot programming languages; and machine intelligence and robot planning.

  4. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  5. Rehabilitation robotics.

    PubMed

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost.

  6. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  7. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  8. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  9. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  10. Robot soccer.

    PubMed

    Sammut, Claude

    2010-11-01

    Robot soccer is a test bed for a variety of robotic and Artificial Intelligence (AI) methods. Its relevance to Cognitive Science is that it confronts the designer with a task that requires the integration of almost all aspects of AI to create an agent that is capable of working in a complex, dynamic environment inhabited by other agents, some of which are cooperative and others competitive. We describe the main elements that make up a robot soccer player and how these players associate to create effective teams. We pay special attention to the architecture of the players. WIREs Cogn Sci 2010 1 824-833 For further resources related to this article, please visit the WIREs website.

  11. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  12. Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.

  13. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  14. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  15. Robotic Surgery

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  16. Proteomic Findings in Melanoma

    PubMed Central

    Sengupta, Deepanwita; Tackett, Alan J

    2016-01-01

    Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate. PMID:27274624

  17. Facing Up to Robotation.

    ERIC Educational Resources Information Center

    Chamberlin, Leslie J.

    1982-01-01

    Speculates on the effects of introducing robots into American society. Robotization will be used increasingly to reduce labor costs in business and industry. The impact of robotization on leisure time use and education are discussed. (AM)

  18. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  19. Plasmid-Based Functional Proteomic Workcell Evaluation and Characterization of Yeast Strains with Improved Growth on Xylose Expressing Xylanase A(Xyn A) and Celulase F(Cel F) from Anaerobic Fungi Orpinomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimization of various genes is important in cellulosic fuel ethanol production from S. cerevisiae to meet the rapidly expanding need for ethanol derived from hemicellulosic materials. The United States Department of Agriculture, Agricultural Research Service, has developed a fully automated p...

  20. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    PubMed

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries.

  1. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications.

  2. Proteomics data repositories

    PubMed Central

    Riffle, Michael; Eng, Jimmy K.

    2010-01-01

    The field of proteomics, particularly the application of mass spectrometry analysis to protein samples, is well-established and growing rapidly. Proteomics studies generate large volumes of raw experimental data and inferred biological results. To facilitate the dissemination of these data, centralized data repositories have been developed that make the data and results accessible to proteomics researchers and biologists alike. This review of proteomics data repositories focuses exclusively on freely-available, centralized data resources that disseminate or store experimental mass spectrometry data and results. The resources chosen reflect a current “snapshot” of the state of resources available with an emphasis placed on resources that may be of particular interest to yeast researchers. Resources are described in terms of their intended purpose and the features and functionality provided to users. PMID:19795424

  3. Proteomics Research in Schizophrenia

    PubMed Central

    Davalieva, Katarina; Maleva Kostovska, Ivana; Dwork, Andrew J.

    2016-01-01

    Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MSE) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin

  4. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  5. FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration

    SciTech Connect

    Kriikku, E.M.

    1994-08-30

    The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control.

  6. Nanoscaled Proteomic Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Lee

    2013-09-01

    Global proteomics research is currently hampered by the extremely complexity of the proteome and the absence of techniques like the polymerase chain reaction in genomics which enables multiplication of a single protein molecule. Since all the existing analytical technologies cannot overcome the detection limit and the dynamic concentration barrier, development of improved analytical technologies at nanoscale, ideally those that could recognize single protein molecule in the presence of high abundant of others, is a high priority for proteomics. In this chapter, we will show the state-of-the-art of nanoproteomics, i.e., the application of nanotechnologies to proteomics. Various nanomaterials including carbon nanomaterials, magnetic nanoparticles, silica nanoparticles, polymer and copolymer nanoparticles, metal and metal oxide nanoparticles have been used to improve sensitivity, specificity, and repeatability of proteomic analysis especially when the multidimensional separation system coupled with MALDI-TOF-MS is used. Among them, gold nanoparticles (GNPs) and carbon nanotubes (CNTs) are the two most important nanomaterials: while GNPs are frequently utilized for enzyme immobilization, high throughput bioassay, selection of target-peptides and target-protein, CNTs including single-walled carbon nanotubes (SWCNTs) and mutiple-walled carbon nanotubes (MWCNTs) have wide applications to electronic sensor, sensitive immunodetection, nanobiocatalysis, affinity probes, MALDI matrices, protein digestion, peptides enrichment and analysis. In perspectives, a deep understanding of the structures and property of nanomaterials and interdisciplinary applications of nanotechnology to proteomics will certainly be revolutionary and intellectually rewarding.

  7. Collaborations in Proteomics Research - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the sharing of proteomics reagents and protocols

  8. Proteomics analysis of human oligodendroglioma proteome.

    PubMed

    Khaghani-Razi-Abad, Solmaz; Hashemi, Mehrdad; Pooladi, Mehdi; Entezari, Maliheh; Kazemi, Elham

    2015-09-10

    Proteomics analyses enable the identification and quantitation of proteins. From a purely clinical perspective, the application of proteomics based on innovations, may greatly affect the future management of malignant brain tumors. This optimism is based on four main reasons: diagnosis, prognosis, selection of targeted therapy based on molecular profile of the brain tumor and monitoring therapeutic response, or resistance. We extracted the proteins of tumor and normal brain tissues, and then evaluated the protein purity by Bradford test. In this study, we separated the proteins by two-dimensional (2DG) gel electrophoresis methods. Then spots were analyzed, compared using statistical data and specific software and were identified by pH isoelectric, molecular weights and data banks. The protein profiles were determined using 2D gel electrophoresis and MALDI TOF/TOF mass spectrometry approaches. Simple statistical tests were used to establish a putative hierarchy in which the change in protein level was ranked according to a cut-off point with p<0.05. The 2D gel showed a total of 1328 spots among which 157 spots were under-expressed and 276 spots were overexpressed. Most proteins are subjects to post-translational modifications, where amino acid residues may be chemically modified or conjugated by small proteins like ubiquitin. Proteomics is a powerful way to identifying multiple proteins which are altered following a neuropharmacological intervention in a CNS disease. PMID:26002447

  9. Robot environment expert system

    NASA Technical Reports Server (NTRS)

    Potter, J. L.

    1985-01-01

    The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.

  10. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  11. Proteomic Assessment of Poultry Spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully characterizing the protein composition of spermatozoa is the first step in utilizing proteomics to delineate the function of sperm proteins. To date, sperm proteome maps have been partially developed for the human, mouse, rat, bull and several invertebrates. Here we report the first proteomic...

  12. Beer and wort proteomics.

    PubMed

    Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro

    2014-01-01

    Proteome analysis provides a way to identify proteins related to the quality traits of beer. A number of protein species in beer and wort have been identified by two-dimensional gel electrophoresis combined with enzyme digestion such as trypsin, followed by mass spectrometry analyses and/or liquid chromatography mass/mass spectrometry. In addition, low molecular weight polypeptides in beer have been identified by the combination of non-enzyme digestion and mass analyses. These data sets of various molecular weight polypeptides (i.e., proteomes) provide a platform for analyzing protein functions in beer. Several novel proteins related to beer quality traits such as foam stability and haze formation have been identified by analyzing these proteomes. Some of the proteins have been applied to the development of efficient protein or DNA markers for trait selection in malting barley breeding. In this chapter, recent proteome studies of beer and wort are reviewed, and the methods and protocols of beer and wort proteome analysis are described.

  13. The Cysteine Proteome

    PubMed Central

    Go, Young-Mi; Chandler, Joshua D.; Jones, Dean P.

    2015-01-01

    The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metallation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to discriminate network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome. PMID:25843657

  14. Environmental proteomics and metallomics.

    PubMed

    López-Barea, Juan; Gómez-Ariza, José Luis

    2006-04-01

    Monitoring environmental pollution using biomarkers requires detailed knowledge about the markers, and many only allow a partial assessment of pollution. New proteomic methods (environmental proteomics) can identify proteins that, after validation, might be useful as alternative biomarkers, although this approach also has its limitations, derived mainly from their application to non-model organisms. Initial studies using environmental proteomics were carried out in animals exposed to model pollutants, and led to the concept of protein expression signatures. Experiments have been carried out in model organisms (yeast, Arabidopsis, rat cells, or mice) exposed to model contaminants. Over the last few years, proteomics has been applied to organisms from ecosystems with different pollution levels, forming the basis of an environmental branch in proteomics. Another focus is connected with the presence of metals bound to biomolecules, which adds an additional dimension to metal-biomolecule and metalloprotein characterization - the field of metallomics. The metallomic approach considers the metallome: a whole individual metal or metalloid species within a cell or tissue. A metallomic analytical approach (MAA) is proposed as a new tool to study and identify metalloproteins.

  15. Blood-related proteomics.

    PubMed

    Liumbruno, Giancarlo; D'Alessandro, Angelo; Grazzini, Giuliano; Zolla, Lello

    2010-01-01

    Blood-related proteomics is an emerging field, recently gaining momentum. Indeed, a wealth of data is now available and a plethora of groups has contributed to add pieces to the jigsaw puzzle of protein complexity within plasma and blood cells. In this review article we purported to sail across the mare magnum of the actual knowledge in this research endeavour. The main strides in proteomic investigations on red blood cells, platelets, plasma and white blood cells are hereby presented in a chronological order. Moreover, a glance is given at prospective studies which promise to shift the focus of attention from the end product to its provider, the donor, in a sort of Kantian "Copernican revolution". A well-rounded portrait of the usefulness of proteomics in blood-related research is accurately given. In particular, proteomic tools could be adopted to follow the main steps of the blood-banking production processes (a comparison of collection methods, pathogen inactivation techniques, storage protocols). Thus proteomics has been recently transformed from a mere basic-research extremely-expensive toy into a dramatically-sensitive and efficient eye-lens to either delve into the depths of the molecular mechanisms of blood and blood components or to establish quality parameters in the blood-banking production chain totally anew. PMID:19567275

  16. Proteomics in alcohol research.

    PubMed

    Anni, Helen; Israel, Yedy

    2002-01-01

    The proteome is the complete set of proteins in an organism. It is considerably larger and more complex than the genome--the collection of genes that encodes these proteins. Proteomics deals with the qualitative and quantitative study of the proteome under physiological and pathological conditions (e.g., after exposure to alcohol, which causes major changes in numerous proteins of different cell types). To map large proteomes such as the human proteome, proteins from discrete tissues, cells, cell components, or biological fluids are first separated by high-resolution two-dimensional electrophoresis and multidimensional liquid chromatography. Then, individual proteins are identified by mass spectrometry. The huge amount of data acquired using these techniques is analyzed and assembled by fast computers and bioinformatics tools. Using these methods, as well as other technological advances, alcohol researchers can gain a better understanding of how alcohol globally influences protein structure and function, protein-protein interactions, and protein networks. This knowledge ultimately will assist in the early diagnosis and prognosis of alcoholism and the discovery of new drug targets and medications for treatment.

  17. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  18. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  19. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  20. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  1. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  2. The proteomics quantification dilemma.

    PubMed

    Jungblut, Peter R

    2014-07-31

    Proteomics is dominated today by the protein expression discourse, which favorites the bottom-up approach because of its high throughput and its high sensitivity. For quantification this proceeding is misleading, if a protein is present with more than one protein species in the sample to be analyzed. The protein speciation discourse considers this more realistic situation and affords the top-down procedures or at least a separation of the protein species in advance to identification and quantification. Today all of the top-down procedures are one order of magnitude less sensitive than the bottom-up ones. To increase sensitivity and to increase throughput are major challenges for proteomics of the next years. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez. PMID:24681132

  3. High-Throughput Proteomics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaorui; Wu, Si; Stenoien, David L.; Paša-Tolić, Ljiljana

    2014-06-01

    Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.

  4. Proteomics: capacity versus utility.

    PubMed

    Harry, J L; Wilkins, M R; Herbert, B R; Packer, N H; Gooley, A A; Williams, K L

    2000-04-01

    Until recently scientists studied genes or proteins one at a time. With improvements in technology, new tools have become available to study the complex interactions that occur in biological systems. Global studies are required to do this, and these will involve genomic and proteomic approaches. High-throughput methods are necessary in each case because the number of genes and proteins in even the simplest of organisms are immense. In the developmental phase of genomics, the emphasis was on the generation and assembly of large amounts of nucleic acid sequence data. Proteomics is currently in a phase of technological development and establishment, and demonstrating the capacity for high throughput is a major challenge. However, funding bodies (both in the public and private sector) are increasingly focused on the usefulness of this capacity. Here we review the current state of proteome research in terms of capacity and utility.

  5. Hexapod Robot

    NASA Technical Reports Server (NTRS)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  6. Biophotonics applied to proteomics.

    PubMed

    Faupel, Michel; Bonenfant, Débora; Schindler, Patrick; Bertrand, Eric; Mueller, Dieter; Stoeckli, Markus; Bitsch, Francis; Rohner, Tatiana; Staab, Dieter; Van Oostrum, Jan

    2007-01-01

    Since the completion of the human genome sequencing, our understanding of gene and protein function and their involvement in physiopathological states has increased dramatically, partly due to technological developments in photonics. Photonics is a very active area where new developments occur on a weekly basis, while established tools are adapted to fulfill the needs of other disciplines like genomics and proteomics. Biophotonics emerged at the interface of photonics and biology as a very straightforward and efficient approach to observe and manipulate living systems. In this chapter, we review the current applications of photonics and imaging to proteomics from 2D gels analysis to molecular imaging.

  7. Pressurized Pepsin Digestion in Proteomics

    PubMed Central

    López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana

    2011-01-01

    Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868

  8. Robotic intelligence kernel

    DOEpatents

    Bruemmer, David J.

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  9. Humanoid Robot

    NASA Technical Reports Server (NTRS)

    Linn, Douglas M. (Inventor); Ambrose, Robert O. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Platt, Robert (Inventor); Mehling, Joshua S. (Inventor); Radford, Nicolaus A. (Inventor); Strawser, Phillip A. (Inventor); Bridgwater, Lyndon (Inventor); Wampler, II, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor); Reich, David M. (Inventor); Hargrave, Brian (Inventor); Parsons, Adam H. (Inventor); Permenter, Frank N. (Inventor); Davis, Donald R. (Inventor)

    2013-01-01

    A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.

  10. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1985-01-01

    This book presents the papers given at a conference which examined artificial intelligence and image processing in relation to robotics. Topics considered at the conference included feature extraction and pattern recognition for computer vision, image processing for intelligent robotics, robot sensors, image understanding and artificial intelligence, optical processing techniques in robotic applications, robot languages and programming, processor architectures for computer vision, mobile robots, multisensor fusion, three-dimensional modeling and recognition, intelligent robots applications, and intelligent robot systems.

  11. Xylem sap proteomics.

    PubMed

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  12. “Seed Proteomics"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a compo...

  13. Proteomics of extremophiles.

    PubMed

    Burg, Dominic; Ng, Charmaine; Ting, Lily; Cavicchioli, Ricardo

    2011-08-01

    Functional genomic approaches, such as proteomics, greatly enhance the value of genome sequences by providing a global level assessment of which genes are expressed, when genes are expressed and at what cellular levels gene products are synthesized. With over 1000 complete genome sequences of different microorganisms available, and DNA sequencing for environmental samples (metagenomes) producing vast amounts of gene sequence data, there is a real opportunity and a clear need to generate associated functional genomic data to learn about the source microorganisms. In contrast to the technological advances that have led to the accelerated rate and ease at which DNA sequence data can be generated, mass spectrometry based proteomics remains a technically sophisticated and exacting science. In recognition of the need to make proteomics more accessible to a growing number of environmental microbiologists so that the 'functional genomics gap' may be bridged, this review strives to demystify proteomic technologies and describe ways in which they have been applied, and more importantly, can be applied to study the physiology and ecology of extremophiles.

  14. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  15. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  16. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. PMID:23582470

  17. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  18. Robotic Surveying

    SciTech Connect

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  19. The Human Eye Proteome Project: perspectives on an emerging proteome.

    PubMed

    Semba, Richard D; Enghild, Jan J; Venkatraman, Vidya; Dyrlund, Thomas F; Van Eyk, Jennifer E

    2013-08-01

    There are an estimated 285 million people with visual impairment worldwide, of whom 39 million are blind. The pathogenesis of many eye diseases remains poorly understood. The human eye is currently an emerging proteome that may provide key insight into the biological pathways of disease. We review proteomic investigations of the human eye and present a catalogue of 4842 nonredundant proteins identified in human eye tissues and biofluids to date. We highlight the need to identify new biomarkers for eye diseases using proteomics. Recent advances in proteomics do now allow the identification of hundreds to thousands of proteins in tissues and fluids, characterization of various PTMs and simultaneous quantification of multiple proteins. To facilitate proteomic studies of the eye, the Human Eye Proteome Project (HEPP) was organized in September 2012. The HEPP is one of the most recent components of the Biology/Disease-driven Human Proteome Project (B/D-HPP) whose overarching goal is to support the broad application of state-of-the-art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. The large repertoire of investigative proteomic tools has great potential to transform vision science and enhance understanding of physiology and disease processes that affect sight.

  20. Robotic Intelligence Kernel: Communications

    SciTech Connect

    Walton, Mike C.

    2009-09-16

    The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.

  1. Robotic space colonies

    NASA Technical Reports Server (NTRS)

    Schenker, P.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper reviews recent advances in these technologies, with a particular focus on experimental state-of-the-art robot work crew system demonstrations at JPL, that are being conducted now to begin to realize the futuristic robotic colony vision.

  2. Robotic Lander Prototype

    NASA Video Gallery

    NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar Lander ...

  3. Robotic Lander Development Project

    NASA Video Gallery

    The Robotic Lander Development Project at the Marshall Center is testing a prototype lander that will aid in the design and development of a new generation of small, smart, versatile robotic lander...

  4. Proteome research in food science.

    PubMed

    Pischetsrieder, Monika; Baeuerlein, Rainer

    2009-09-01

    The proteome is the totality of proteins present in a biological sample. In contrast to the static genome, the proteome is highly dynamic, influenced by the genome and many external factors, such as the state of development, tissue type, metabolic state, and various interactions. Thus, the proteome reflects very closely the biological (and chemical) processes occurring in a system. For proteome analysis, gel based and shotgun methods are most widely applied. Because of the potential to generate a systematic view of protein composition and biological as well as chemical interactions, the application of proteome analysis in food science is steadily growing. This tutorial review introduces several fields in food science, where proteomics has been successfully applied: analysis of food composition, safety assessment of genetically modified food, the search for marker proteins for food authentication, identification of food allergens, systematic analysis of the physiological activity of food, analysis of the effects of processing on food proteins and the improvement of food quality.

  5. Proteomics Discovery of Disease Biomarkers.

    PubMed

    Ahram, Mamoun; Petricoin, Emanuel F

    2008-01-01

    Recent technological developments in proteomics have shown promising initiatives in identifying novel biomarkers of various diseases. Such technologies are capable of investigating multiple samples and generating large amount of data end-points. Examples of two promising proteomics technologies are mass spectrometry, including an instrument based on surface enhanced laser desorption/ionization, and protein microarrays. Proteomics data must, however, undergo analytical processing using bioinformatics. Due to limitations in proteomics tools including shortcomings in bioinformatics analysis, predictive bioinformatics can be utilized as an alternative strategy prior to performing elaborate, high-throughput proteomics procedures. This review describes mass spectrometry, protein microarrays, and bioinformatics and their roles in biomarker discovery, and highlights the significance of integration between proteomics and bioinformatics.

  6. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  7. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  8. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  9. The Robots Are Coming!

    ERIC Educational Resources Information Center

    Watt, Molly

    1984-01-01

    Describes two robots that can be communicated with in Logo--Topo and Tasman Turtle--and briefly presents merchandise information on Topo II and Turtle Tot. Educational issues and possibilities related to robot use in school classrooms are discussed, and a school visit to introduce students to robots is recounted. (MBR)

  10. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  11. Robotic Intelligence Kernel: Visualization

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.

  12. Robotic Follow Algorithm

    SciTech Connect

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  13. Robotics development programs overview

    SciTech Connect

    Heckendorn, F.M.

    1990-11-01

    This paper discusses the applications of robotics at the Westinghouse Savannah River Site. The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Site (SRS) in many areas of Robotics and Remote Vision. An overview of the current and near term future developments are presented. The driving forces for Robotics and Vision developments at SRS include the classic reasons for industrial robotics installation (i.e. repetitive and undesirable jobs) and those reasons related to radioactive environments. Protection of personnel from both radiation and radioactive contamination benefit greatly from both Robotics and Telerobotics. Additionally, the quality of information available from remote locations benefits greatly from the ability to visually monitor and remotely sense. The systems discussed include a glovebox waste handling and bagout robot, a shielded cells robot for radioactive waste sample transfer, waste handling gantry robots, a two armed master/slave manipulator as an attachment to a gantry robot, navigation robot research/testing, demonstration of the mobile underwater remote cleaning and inspection device, a camera deployment robot to support remote crane operations and for deployment of radiation sensors directly over a hazardous site, and demonstration of a large mobile robot for high radiation environments. Development of specialized and limited life vision/viewing systems for hazardous environments is also discussed.

  14. Proteomics of the Lysosome

    PubMed Central

    Lübke, Torben; Lobel, Peter; Sleat, David

    2009-01-01

    Defects in lysosomal function have been associated with numerous monogenic human diseases typically classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this is the identification of its constituent proteins by proteomic analyses. To date, the mammalian lysosome has been shown to contain ~ 60 soluble luminal proteins and ~25 transmembrane proteins. However, recent proteomic studies based upon affinity purification of soluble components or subcellular fractionation to obtain both soluble and membrane components suggest that there may be many more of both classes of protein resident within this organelle than previously appreciated. Discovery of such proteins has important implications for understanding the function and the dynamics of the lysosome but can also lead the way towards the discovery of the genetic basis for human diseases of hitherto unknown etiology. Here, we describe current approaches to lysosomal proteomics and data interpretation and review the new lysosomal proteins that have recently emerged from such studies. PMID:18977398

  15. The proteome of schizophrenia

    PubMed Central

    Nascimento, Juliana M; Martins-de-Souza, Daniel

    2015-01-01

    On observing schizophrenia from a clinical point of view up to its molecular basis, one may conclude that this is likely to be one of the most complex human disorders to be characterized in all aspects. Such complexity is the reflex of an intricate combination of genetic and environmental components that influence brain functions since pre-natal neurodevelopment, passing by brain maturation, up to the onset of disease and disease establishment. The perfect function of tissues, organs, systems, and finally the organism depends heavily on the proper functioning of cells. Several lines of evidence, including genetics, genomics, transcriptomics, neuropathology, and pharmacology, have supported the idea that dysfunctional cells are causative to schizophrenia. Together with the above-mentioned techniques, proteomics have been contributing to understanding the biochemical basis of schizophrenia at the cellular and tissue level through the identification of differentially expressed proteins and consequently their biochemical pathways, mostly in the brain tissue but also in other cells. In addition, mass spectrometry-based proteomics have identified and precisely quantified proteins that may serve as biomarker candidates to prognosis, diagnosis, and medication monitoring in peripheral tissue. Here, we review all data produced by proteomic investigation in the last 5 years using tissue and/or cells from schizophrenic patients, focusing on postmortem brain tissue and peripheral blood serum and plasma. This information has provided integrated pictures of the biochemical systems involved in the pathobiology, and has suggested potential biomarkers, and warrant potential targets to alternative treatment therapies to schizophrenia. PMID:27336025

  16. Impacts of industrial robots

    SciTech Connect

    Ayres, R.; Miller, S.

    1981-11-01

    This report briefly describes robot technology and goes into more depth about where robots are used, and some of the anticipated social and economic impacts of their use. A number of short term transitional issues, including problems of potential displacement, are discussed. The ways in which robots may impact the economics of batch production are described. A framework for analyzing the impacts of robotics on economywide economic growth and employment is presented. Human resource policy issues are discussed. A chronology of robotics technology is also given.

  17. [Robotics in pediatric surgery].

    PubMed

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  18. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  19. Molecular Biologist's Guide to Proteomics

    PubMed Central

    Graves, Paul R.; Haystead, Timothy A. J.

    2002-01-01

    The emergence of proteomics, the large-scale analysis of proteins, has been inspired by the realization that the final product of a gene is inherently more complex and closer to function than the gene itself. Shortfalls in the ability of bioinformatics to predict both the existence and function of genes have also illustrated the need for protein analysis. Moreover, only through the study of proteins can posttranslational modifications be determined, which can profoundly affect protein function. Proteomics has been enabled by the accumulation of both DNA and protein sequence databases, improvements in mass spectrometry, and the development of computer algorithms for database searching. In this review, we describe why proteomics is important, how it is conducted, and how it can be applied to complement other existing technologies. We conclude that currently, the most practical application of proteomics is the analysis of target proteins as opposed to entire proteomes. This type of proteomics, referred to as functional proteomics, is always driven by a specific biological question. In this way, protein identification and characterization has a meaningful outcome. We discuss some of the advantages of a functional proteomics approach and provide examples of how different methodologies can be utilized to address a wide variety of biological problems. PMID:11875127

  20. Marsupial robots for law enforcement

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.

    2001-02-01

    Marsupial robots are a type of heterogeneous mobile robot team. A mother robot transports, supports, and recovers one or more daughter robots. This paper will cover the marsupial robot concept, the application of law enforcement, and recent results in collaborative teleoperation for the related task of urban search and rescue.

  1. Proteome Studies of Filamentous Fungi

    SciTech Connect

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.

  2. Proteomics research in India: an update.

    PubMed

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-01

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India.

  3. Proteomics research in India: an update.

    PubMed

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-01

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. PMID:25868663

  4. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  5. Humanlike robots: the upcoming revolution in robotics

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  6. Proteome complexity and the forces that drive proteome imbalance.

    PubMed

    Harper, J Wade; Bennett, Eric J

    2016-01-01

    The cellular proteome is a complex microcosm of structural and regulatory networks that requires continuous surveillance and modification to meet the dynamic needs of the cell. It is therefore crucial that the protein flux of the cell remains in balance to ensure proper cell function. Genetic alterations that range from chromosome imbalance to oncogene activation can affect the speed, fidelity and capacity of protein biogenesis and degradation systems, which often results in proteome imbalance. An improved understanding of the causes and consequences of proteome imbalance is helping to reveal how these systems can be targeted to treat diseases such as cancer. PMID:27629639

  7. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  8. Applying robotics to HAZMAT

    NASA Astrophysics Data System (ADS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-02-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  9. Robots in modern industry

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1981-01-01

    A survey is presented of robotic device types and capabilities, and an assessment is made of the relative benefits they confer in present and planned numbers on such industrial countries as Japan, the U.S., and West Germany. Attention is also given to possible social impacts of large-scale implementation, and the need for close consultation between management and labor is stressed. It is reported that, while the hourly cost of robot labor remained at between $4.00 and $4.60 over the period 1960-present, human hourly labor costs (including fringe benefits) have risen from less than $4.00 to nearly $17.00. Among the types of devices described are: (1) remotely controlled manipulator vehicles; (2) undersea robotic craft; (3) servo-controlled robots; and (4) articulated robots. Also covered are robot programming languages derived from such standard languages as ALGOL, FORTRAN, and BASIC.

  10. Robotics and industrial inspection

    SciTech Connect

    Casasent, D.P.

    1983-01-01

    Image processing algorithms are discussed, taking into account hidden information in early visual processing, three-dimensional shape recognition by moirecorrelation, spatial-frequency representations of images with scale invariant properties, image-based focusing, the computational structure for the Walsh-Hadamard transform, a hybrid optical/digital moment-based robotic pattern recognition system, affordable implementations of image processing algorithms, and an analysis of low-level computer vision algorithms for implementation on a very large scale integrated processor array. Other topics considered are related to government programs and needs in robotics, DoD research and applications in robotics, time-varying image processing and control, industrial robotics, industrial applications of computer vision, and object perception and mensuration for robotics. Attention is given to laser scanning techniques for automatic inspection of heat-sealed film packages, computer software for robotic vision, and computerized tomography on a logarithmic polar grid.

  11. Multigait soft robot

    PubMed Central

    Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.

    2011-01-01

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978

  12. Multigait soft robot.

    PubMed

    Shepherd, Robert F; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A; Stokes, Adam A; Mazzeo, Aaron D; Chen, Xin; Wang, Michael; Whitesides, George M

    2011-12-20

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.

  13. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  14. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  15. INL Multi-Robot Control Interface

    SciTech Connect

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  16. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  17. Robotic liver surgery.

    PubMed

    Leung, Universe; Fong, Yuman

    2014-10-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  18. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  19. Viselike Robotic Gripper

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    Split-rail/roller bearing system minimizes both friction and jamming under side loads. Viselike, high-performance, general-purpose robot hand developed for use in both industry and outer space. Device, called "split-rail parallel gripper", is simple, compact, inexpensive, rugged, light enough to be used on small robots, strong enough to be used on large robots to lift loads up to 100 lbs, and capable of gripping objects up to 7 in. wide.

  20. Robotics in neurosurgery.

    PubMed

    McBeth, Paul B; Louw, Deon F; Rizun, Peter R; Sutherland, Garnette R

    2004-10-01

    Technological developments in imaging guidance, intraoperative imaging, and microscopy have pushed neurosurgeons to the limits of their dexterity and stamina. The introduction of robotically assisted surgery has provided surgeons with improved ergonomics and enhanced visualization, dexterity, and haptic capabilities. This article provides a historical perspective on neurosurgical robots, including image-guided stereotactic and microsurgery systems. The future of robot-assisted neurosurgery, including the use of surgical simulation tools and methods to evaluate surgeon performance, is discussed.

  1. Kinematics of robot wrists

    NASA Astrophysics Data System (ADS)

    Paul, R. P.; Stevenson, C. N.

    1983-05-01

    Robots for use in assembly and other interactive tasks must be able to respond to both forces and velocity commands within their workspace. By considering a general six-joint robot it is shown that all such robots are limited in their ability to respond in orientation to feedback commands. It is also shown that it is simple to predict, if not to avoid, these regions of degeneracy in which the manipulator loses a degree of freedom.

  2. The seed nuclear proteome

    PubMed Central

    Repetto, Ombretta; Rogniaux, Hélène; Larré, Colette; Thompson, Richard; Gallardo, Karine

    2012-01-01

    Understanding the regulatory networks coordinating seed development will help to manipulate seed traits, such as protein content and seed weight, in order to increase yield and seed nutritional value of important food crops, such as legumes. Because of the cardinal role of the nucleus in gene expression, sub-proteome analyses of nuclei from developing seeds were conducted, taking advantage of the sequences available for model species. In this review, we discuss the strategies used to separate and identify the nuclear proteins at a stage when the seed is preparing for reserve accumulation. We present how these data provide an insight into the complexity and distinctive features of the seed nuclear proteome. We discuss the presence of chromatin-modifying enzymes and proteins that have roles in RNA-directed DNA methylation and which may be involved in modifying genome architecture in preparation for seed filling. Specific features of the seed nuclei at the transition between the stage of cell divisions and that of cell expansion and reserve deposition are described here which may help to manipulate seed quality traits, such as seed weight. PMID:23267364

  3. Asteroid Redirect Mission: Robotic Segment

    NASA Video Gallery

    This concept animation illustrates the robotic segment of NASA's Asteroid Redirect Mission. The Asteroid Redirect Vehicle, powered by solar electric propulsion, travels to a large asteroid to robot...

  4. [Robotic surgery: marking time?].

    PubMed

    van der Poel, Henk G; Beerlage, Harry P; Klaver, Sjoerd O

    2013-01-01

    Robot-assisted surgery provides the next step in surgical evolution. Where laparoscopic surgery shortened both hospital stay and recovery, it often prolonged the surgical procedure. Novel laparoscopic instruments such as robotic systems improve visibility and patient outcome. Recent randomized studies show improved functional patient outcome after robot-assisted laparoscopic prostatectomy. Introduction of image-guided surgical technologies is aided by robotic systems. Outside medicine, randomized controlled studies in technological improvements are non-existent. A careful monitoring of study results is mandatory for the introduction of novel technologies in the field of medicine.

  5. The robotics review 1

    SciTech Connect

    Khatib, O.; Craig, J.J.; Lozano-Perez, T.

    1989-01-01

    Theoretical and implementation issues in robotics are discussed in reviews of recent investigations. Sections are devoted to programming, planning, and learning; sensing and perception; kinematics, dynamics, and design; and motion and force control. Particular attention is given to a robust layered control system for a mobile robot, camera calibration for three-dimensional machine vision, walking vehicles, design and control of direct-drive vehicles, an efficient parallel algorithm for robot inverse dynamics, stability problems in contact tasks, and kinematics and reaction-moment compensation for satellite-mounted robot manipulators.

  6. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing.

  7. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  8. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  9. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  10. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  11. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. PMID:24267426

  12. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  13. Immunocapture strategies in translational proteomics

    PubMed Central

    Fredolini, Claudia; Byström, Sanna; Pin, Elisa; Edfors, Fredrik; Tamburro, Davide; Iglesias, Maria Jesus; Häggmark, Anna; Hong, Mun-Gwan; Uhlen, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2016-01-01

    Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field’s current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics. PMID:26558424

  14. Ovarian Cancer Proteomic, Phosphoproteomic, and Glycoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples,

  15. A guide to the Proteomics Identifications Database proteomics data repository.

    PubMed

    Vizcaíno, Juan Antonio; Côté, Richard; Reisinger, Florian; Foster, Joseph M; Mueller, Michael; Rameseder, Jonathan; Hermjakob, Henning; Martens, Lennart

    2009-09-01

    The Proteomics Identifications Database (PRIDE, www.ebi.ac.uk/pride) is one of the main repositories of MS derived proteomics data. Here, we point out the main functionalities of PRIDE both as a submission repository and as a source for proteomics data. We describe the main features for data retrieval and visualization available through the PRIDE web and BioMart interfaces. We also highlight the mechanism by which tailored queries in the BioMart can join PRIDE to other resources such as Reactome, Ensembl or UniProt to execute extremely powerful across-domain queries. We then present the latest improvements in the PRIDE submission process, using the new easy-to-use, platform-independent graphical user interface submission tool PRIDE Converter. Finally, we speak about future plans and the role of PRIDE in the ProteomExchange consortium.

  16. Multi-robot control interface

    DOEpatents

    Bruemmer, David J.; Walton, Miles C.

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  17. Proteomics of early zebrafish embryos

    PubMed Central

    Link, Vinzenz; Shevchenko, Andrej; Heisenberg, Carl-Philipp

    2006-01-01

    Background Zebrafish (D. rerio) has become a powerful and widely used model system for the analysis of vertebrate embryogenesis and organ development. While genetic methods are readily available in zebrafish, protocols for two dimensional (2D) gel electrophoresis and proteomics have yet to be developed. Results As a prerequisite to carry out proteomic experiments with early zebrafish embryos, we developed a method to efficiently remove the yolk from large batches of embryos. This method enabled high resolution 2D gel electrophoresis and improved Western blotting considerably. Here, we provide detailed protocols for proteomics in zebrafish from sample preparation to mass spectrometry (MS), including a comparison of databases for MS identification of zebrafish proteins. Conclusion The provided protocols for proteomic analysis of early embryos enable research to be taken in novel directions in embryogenesis. PMID:16412219

  18. Proteomics in Rheumatoid Arthritis Research

    PubMed Central

    Park, Yune-Jung; Chung, Min Kyung; Hwang, Daehee

    2015-01-01

    Although rheumatoid arthritis (RA) is the most common chronic inflammatory autoimmune disease, diagnosis of RA is currently based on clinical manifestations, and there is no simple, practical assessment tool in the clinical field to assess disease activity and severity. Recently, there has been increasing interest in the discovery of new diagnostic RA biomarkers that can assist in evaluating disease activity, severity, and treatment response. Proteomics, the large-scale study of the proteome, has emerged as a powerful technique for protein identification and characterization. For the past 10 years, proteomic techniques have been applied to different biological samples (synovial tissue/fluid, blood, and urine) from RA patients and experimental animal models. In this review, we summarize the current state of the application of proteomics in RA and its importance in identifying biomarkers and treatment targets. PMID:26330803

  19. Proteomics: Technology Development and Applications

    PubMed Central

    Jayaraman, Arul

    2009-01-01

    Technology development in and the application of proteomics are emerging areas among the chemical engineers and others who presented at the 2008 American Institute of Chemical Engineers (AIChE) Annual Meeting. Overall, the centennial meeting offered a broad current perspective on the discipline of chemical engineering as it enters its second century. Biomedical and biochemical engineering continue to grow as important facets of the discipline. Within these, the value and applicability of proteomics were demonstrated in a number of interesting presentations. This year, as in the recent past, the AIChE Annual meeting was held in conjunction with the American Electrophoresis Society (AES) Annual Meeting. AES presenters offered further academic and industrial viewpoints on the still-developing role of proteomics and proteomic technologies in biological and clinical analyses. PMID:19210124

  20. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  1. Plant secretome proteomics

    PubMed Central

    Alexandersson, Erik; Ali, Ashfaq; Resjö, Svante; Andreasson, Erik

    2013-01-01

    The plant secretome refers to the set of proteins secreted out of the plant cell into the surrounding extracellular space commonly referred to as the apoplast. Secreted proteins maintain cell structure and acts in signaling and are crucial for stress responses where they can interact with pathogen effectors and control the extracellular environment. Typically, secreted proteins contain an N-terminal signal peptide and are directed through the endoplasmic reticulum/Golgi pathway. However, in plants many proteins found in the secretome lack such a signature and might follow alternative ways of secretion. This review covers techniques to isolate plant secretomes and how to identify and quantify their constituent proteins. Furthermore, bioinformatical tools to predict secretion signals and define the putative secretome are presented. Findings from proteomic studies and important protein families of plant secretomes, such as proteases and hydrolases, are highlighted. PMID:23378846

  2. Imaging beyond the proteome

    PubMed Central

    Chang, Pamela V.; Bertozzi, Carolyn R.

    2013-01-01

    Imaging technologies developed in the early 20th century achieved contrast solely by relying on macroscopic and morphological differences between the tissues of interest and the surrounding tissues. Since then, there has been a movement toward imaging at the cellular and molecular level in order to visualize biological processes. This rapidly growing field is known as molecular imaging. In the last decade, many methodologies for imaging proteins have emerged. However, most of these approaches cannot be extended to imaging beyond the proteome. Here, we highlight some of the recently developed technologies that enable imaging of non-proteinaceous molecules in the cell: lipids, signalling molecules, inorganic ions, glycans, nucleic acids, small-molecule metabolites, and protein post-translational modifications such as phosphorylation and methylation. PMID:22801420

  3. Spectral library searching in proteomics.

    PubMed

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data.

  4. Robotics: Generation soft

    NASA Astrophysics Data System (ADS)

    Mazzolai, Barbara; Mattoli, Virgilio

    2016-08-01

    Meet the octobot, the first robot to be made entirely from soft materials. Powered by a chemical reaction and controlled by a fluidic logic circuit, it heralds a generation of soft robots that might surpass conventional machines. See Letter p.451

  5. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.

  6. Robotics in gynecologic surgery.

    PubMed

    Frick, A C; Falcone, T

    2009-06-01

    Robotic surgery has evolved from an investigational surgical approach to a clinically useful adjunct in multiple surgical specialties over the past decade. Advocates of robotic-assisted gynecologic surgery revere the system's wristed instrumentation, ergonomic positioning, and three-dimensional high-definition vision system as significant improvements over laparoscopic equipment's four degrees of freedom and two-dimensional laparoscope that demand the surgeon stand throughout a procedure. The cost, lack of haptic feedback, and the bulky size of the equipment make robotics less attractive to others. Studies evaluating outcomes in robotic-assisted gynecologic surgery are limited. Multiple small retrospective studies demonstrate the safety and feasibility of robotic hysterectomy. With increased surgeon experience, operative times are similar to, or shorter than, laparoscopic cases. Robotic assistance can facilitate suturing in laparoscopic myomectomies, and is associated with decreased blood loss and a shorter hospital stay, although may require longer operative times. Robotic assistance has also been applied to multiple procedures in the subspecialties of infertility, urogynecology and gynecologic oncology with good success and relatively low morbidity. However, further research is warranted to better evaluate the relative benefits and costs of robotic assisted gynecologic surgery.

  7. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  8. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  9. Randomization in robot tasks

    NASA Technical Reports Server (NTRS)

    Erdmann, Michael

    1992-01-01

    This paper investigates the role of randomization in the solution of robot manipulation tasks. One example of randomization is shown by the strategy of shaking a bin holding a part in order to orient the part in a desired stable state with some high probability. Randomization can be useful for mobile robot navigation and as a means of guiding the design process.

  10. Robotics and Industrial Arts.

    ERIC Educational Resources Information Center

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  11. Going Green Robots

    ERIC Educational Resources Information Center

    Nelson, Jacqueline M.

    2011-01-01

    In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)

  12. INL Generic Robot Architecture

    SciTech Connect

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  13. Robot Rodeo 2013

    ScienceCinema

    Deuel, Jake

    2016-07-12

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  14. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality. PMID:26390078

  15. Robotic Intelligence Kernel: Architecture

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.

  16. Robot Rodeo 2013

    SciTech Connect

    Deuel, Jake

    2013-08-27

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  17. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  18. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  19. Education by Robot!

    ERIC Educational Resources Information Center

    Cobb, Cheryl

    2004-01-01

    This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…

  20. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  1. The Succinated Proteome

    SciTech Connect

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John; Frizell, Norma

    2014-03-30

    Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succination may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.

  2. The proteome of human saliva

    NASA Astrophysics Data System (ADS)

    Griffin, Timothy J.

    2013-05-01

    Human saliva holds tremendous potential for transforming disease and health diagnostics given its richness of molecular information and non-invasive collection. Enumerating its molecular constituents is an important first step towards reaching this potential. Among the molecules in saliva, proteins and peptides arguably have the most value: they can directly indicate biochemical functions linked to a health condition/disease state, and they are attractive targets for biomarker assay development. However, cataloging and defining the human salivary proteome is challenging given the dynamic, chemically heterogeneous and complex nature of the system. In addition, the overall human saliva proteome is composed of several "sub-proteomes" which include: intact full length proteins, proteins carrying post-translational modifications (PTMs), low molecular weight peptides, and the metaproteome, derived from protein products from nonhuman organisms (e.g. microbes) present in the oral cavity. Presented here will be a summary of communal efforts to meet the challenge of characterizing the multifaceted saliva proteome, focusing on the use of mass spectrometry as the proteomic technology of choice. Implications of these efforts to characterize the salivary proteome in the context of disease diagnostics will also be discussed.

  3. Intelligent Articulated Robot

    NASA Astrophysics Data System (ADS)

    Nyein, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.

  4. Honda humanoid robots development.

    PubMed

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.

  5. ProteomeGRID: towards a high-throughput proteomics pipeline through opportunistic cluster image computing for two-dimensional gel electrophoresis.

    PubMed

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2004-12-01

    The quest for high-throughput proteomics has revealed a number of critical issues. Whilst improved two-dimensional gel electrophoresis (2-DE) sample preparation, staining and imaging issues are being actively pursued by industry, reliable high-throughput spot matching and quantification remains a significant bottleneck in the bioinformatics pipeline, thus restricting the flow of data to mass spectrometry through robotic spot excision and protein digestion. To this end, it is important to establish a full multi-site Grid infrastructure for the processing, archival, standardisation and retrieval of proteomic data and metadata. Particular emphasis needs to be placed on large-scale image mining and statistical cross-validation for reliable, fully automated differential expression analysis, and the development of a statistical 2-DE object model and ontology that underpins the emerging HUPO PSI GPS (Human Proteome Organization Proteomics Standards Initiative General Proteomics Standards). The first step towards this goal is to overcome the computational and communications burden entailed by the image analysis of 2-DE gels with Grid enabled cluster computing. This paper presents the proTurbo framework as part of the ProteomeGRID, which utilises Condor cluster management combined with CORBA communications and JPEG-LS lossless image compression for task farming. A novel probabilistic eager scheduler has been developed to minimise make-span, where tasks are duplicated in response to the likelihood of the Condor machines' owners evicting them. A 60 gel experiment was pair-wise image registered (3540 tasks) on a 40 machine Linux cluster. Real-world performance and network overhead was gauged, and Poisson distributed worker evictions were simulated. Our results show a 4:1 lossless and 9:1 near lossless image compression ratio and so network overhead did not affect other users. With 40 workers a 32x speed-up was seen (80% resource efficiency), and the eager scheduler reduced the

  6. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  7. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  8. Enabling Proteomics Discovery Through Visual Analysis

    SciTech Connect

    Havre, Susan L.; Singhal, Mudita; Payne, Deborah A.; Lipton, Mary S.; Webb-Robertson, Bobbie-Jo M.

    2005-05-01

    With the completion of the Human Genome Project and the sequencing of large genomes, proteomics is the new big challenge. A proteome is the collection of all the proteins present in an organism at a given moment. Unlike the genome, the proteome is dynamic, changing continuously in response to tens of thousands of intra- and extra-cellular environmental signals. Proteomics is the study of proteomes under different conditions—for example, over time, under different environments, or in different disease states. Because proteins are the key actors in cellular processes and proteomics is the study of not one or two proteins at a time but whole proteomes, proteomics has a key role in revealing the complex processes of cells at a global or systems level. There are several high-throughput proteomics techniques; all generate data faster than the data can currently be analyzed. The tremendous size and complexity of the high-throughput experimental data make it very difficult to process and interpret. The success of proteomics will rely on high-throughput experimental techniques coupled with sophisticated visual analysis and data mining methods. This article presents the motivation for developing visual analysis tools for proteomic data and demonstrates their application to proteomics research with a visualization tool named Peptide Permutation and Protein Prediction, or PQuad. PQuad is a functioning visual analytic tool in operation at the Pacific Northwest National Laboratory for the study of systems biology. PQuad supports the exploration of proteins identified by proteomic techniques in the context of supplemental biological information.

  9. Robotic Surgery for Thoracic Disease

    PubMed Central

    Yoshida, Yasuhiro; Iwasaki, Akinori

    2016-01-01

    Robotic surgeries have developed in the general thoracic field over the past decade, and publications on robotic surgery outcomes have accumulated. However, controversy remains about the application of robotic surgery, with a lack of well-established evidence. Robotic surgery has several advantages such as natural movement of the surgeon’s hands when manipulating the robotic arms and instruments controlled by computer-assisted systems. Most studies have reported the feasibility and safety of robotic surgery based on acceptable morbidity and mortality compared to open or video-assisted thoracic surgery (VATS). Furthermore, there are accumulated data to indicate longer operation times and shorter hospital stay in robotic surgery. However, randomized controlled trials between robotic and open or VATS procedures are needed to clarify the advantage of robotic surgery. In this review, we focused the literature about robotic surgery used to treat lung cancer and mediastinal tumor. PMID:26822625

  10. Guarded Motion for Mobile Robots

    SciTech Connect

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  11. Partner Ballroom Dance Robot -PBDR-

    NASA Astrophysics Data System (ADS)

    Kosuge, Kazuhiro; Takeda, Takahiro; Hirata, Yasuhisa; Endo, Mitsuru; Nomura, Minoru; Sakai, Kazuhisa; Koizumi, Mizuo; Oconogi, Tatsuya

    In this research, we have developed a dance partner robot, which has been developed as a platform for realizing the effective human-robot coordination with physical interaction. The robot could estimate the next dance step intended by a human and dance the step with the human. This paper introduce the robot referred to as PBDR (Partner Ballroom Dance Robot), which has performed graceful dancing with the human in EXPO 2005, Aichi, Japan.

  12. Consolidation of proteomics data in the Cancer Proteomics database.

    PubMed

    Arntzen, Magnus Ø; Boddie, Paul; Frick, Rahel; Koehler, Christian J; Thiede, Bernd

    2015-11-01

    Cancer is a class of diseases characterized by abnormal cell growth and one of the major reasons for human deaths. Proteins are involved in the molecular mechanisms leading to cancer, furthermore they are affected by anti-cancer drugs, and protein biomarkers can be used to diagnose certain cancer types. Therefore, it is important to explore the proteomics background of cancer. In this report, we developed the Cancer Proteomics database to re-interrogate published proteome studies investigating cancer. The database is divided in three sections related to cancer processes, cancer types, and anti-cancer drugs. Currently, the Cancer Proteomics database contains 9778 entries of 4118 proteins extracted from 143 scientific articles covering all three sections: cell death (cancer process), prostate cancer (cancer type) and platinum-based anti-cancer drugs including carboplatin, cisplatin, and oxaliplatin (anti-cancer drugs). The detailed information extracted from the literature includes basic information about the articles (e.g., PubMed ID, authors, journal name, publication year), information about the samples (type, study/reference, prognosis factor), and the proteomics workflow (Subcellular fractionation, protein, and peptide separation, mass spectrometry, quantification). Useful annotations such as hyperlinks to UniProt and PubMed were included. In addition, many filtering options were established as well as export functions. The database is freely available at http://cancerproteomics.uio.no.

  13. Proteomic analysis and discovery using affinity proteomics and mass spectrometry.

    PubMed

    Olsson, Niclas; Wingren, Christer; Mattsson, Mikael; James, Peter; O'Connell, David; Nilsson, Fredrik; Cahill, Dolores J; Borrebaeck, Carl A K

    2011-10-01

    Antibody-based microarrays are a rapidly evolving affinity-proteomic methodology that recently has shown great promise in clinical applications. The resolution of these proteomic analyses is, however, directly related to the number of data-points, i.e. antibodies, included on the array. Currently, this is a key bottleneck because of limited availability of numerous highly characterized antibodies. Here, we present a conceptually new method, denoted global proteome survey, opening up the possibility to probe any proteome in a species-independent manner while still using a limited set of antibodies. We use context-independent-motif-specific antibodies directed against short amino acid motifs, where each motif is present in up to a few hundred different proteins. First, the digested proteome is exposed to these antibodies, whereby motif-containing peptides are enriched, which then are detected and identified by mass spectrometry. In this study, we profiled extracts from human colon tissue, yeast cells lysate, and mouse liver tissue to demonstrate proof-of-concept.

  14. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  15. Robotic comfort zones

    NASA Astrophysics Data System (ADS)

    Likhachev, Maxim; Arkin, Ronald C.

    2000-10-01

    The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.

  16. Robotic systems in surgery.

    PubMed

    Bargar, W L; Carbone, E J

    1993-10-01

    Computer-driven robots and medical imaging technology may soon enable surgeons to plan and execute intricate procedures with unprecedented precision. Our experience in introducing a robotic system for use in an active role in cementless total hip replacement surgery has convinced us that the marriage of these two technologies-robotics and medical imaging-is likely to change the way many types of surgical procedures are performed. The ability to link an image-based preoperative plan with its surgical execution by a robot may be the key to improved outcomes. Research and development of robotic systems for a wide variety of medical applications is underway at a number of prestigious institutions. Grenoble University has developed the IGOR (Imaged Guided Operating Robot) system. This six-axis robot has performed more than 400 interventions, acting as a positioner for brain surgery in both biopsy and therapeutic procedures. AlephMed and Digital are currently assisting the developers in integrating image analysis into the system. Future development plans include an application for spinal surgery. PMID:25951597

  17. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  18. Door breaching robotic manipulator

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Erik; Parrington, Lawrence; von Muehlen, Stephan

    2008-04-01

    As unmanned systems become more commonplace in military, police, and other security forces, they are tasked to perform missions that the original hardware was not designed for. Current military robots are built for rough outdoor conditions and have strong inflexible manipulators designed to handle a wide range of operations. However, these manipulators are not well suited for some essential indoor tasks, including opening doors. This is a complicated kinematic task that places prohibitively difficult control challenges on the robot and the operator. Honeybee and iRobot have designed a modular door-breaching manipulator that mechanically simplifies the demands upon operator and robot. The manipulator connects to the existing robotic arm of the iRobot PackBot EOD. The gripper is optimized for grasping a variety of door knobs, levers, and car-door handles. It works in conjunction with a compliant wrist and magnetic lock-out mechanism that allows the wrist to remain rigid until the gripper has a firm grasp of the handle and then bend with its rotation and the swing of the door. Once the door is unlatched, the operator simply drives the robot through the doorway while the wrist compensates for the complex, multiple degree-of-freedom motion of the door. Once in the doorway the operator releases the handle, the wrist pops back into place, and the robot is ready for the next door. The new manipulator dramatically improves a robot's ability to non-destructively breach doors and perform an inspection of a room's content, a capability that was previously out of reach of unmanned systems.

  19. Proteomics in evolutionary ecology.

    PubMed

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  20. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  1. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  2. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  3. Robotic liver resection technique.

    PubMed

    Hart, Marquis E; Precht, Andrew

    2013-01-01

    The robotic approach to hepatic resection has evolved because of advances in laparoscopy and digital technology and based on the modern understanding of hepatic anatomy. Robotic technology has allowed for the development of a minimally invasive approach, which is conceptually similar to the open approach. The major differences are improved visualization and smaller incisions without a haptic interface. As a result, the operative strategy is reliant on visual cues and knowledge of hepatic surgical anatomy. Development of a robotic liver resection program ideally occurs in the setting of a comprehensive liver program with significant experience in all aspects of surgical liver care.

  4. Robotics: An introduction

    SciTech Connect

    Mc Cloy, D.; Harris, D.

    1986-01-01

    This book is an account encompassing the entire range of disciplines involved in robotics: mechanical, electrical, electronic, and software design, as well as the related technologies of pick-and-place devices, walking machines, teleoperators, and prosthetics. The book explores the evolution of robotics and major trends in the field, and covers an array of robot configurations and mechanisms. It also looks at fundamentals such as actuation, control, measurement, computers, sensing and interaction with the environment, and pattern recognition. Important economic and financial aspects as well as safety and social implications are detailed.

  5. Robots and telechirs

    SciTech Connect

    Thring, M.W.

    1985-01-01

    This volume outlines an engineering approach and includes relevant social aspects of the impact of robotic automation. The book explains the basic principles and theory, discusses design and investigates current methods to produce practical, reliable robots. Specific topics include the theory and practice of mechanical arms, hands and legs. The use of robotics in industry and of telechirs in mines, underwater, and in such dangerous situations as handling explosives are also covered, as are the mechanisms of the human body in doing these tasks.

  6. Walking Humanoid Robot Lola

    NASA Astrophysics Data System (ADS)

    Schwienbacher, Markus; Favot, Valerio; Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz

    Based on the experience gathered from the walking robot Johnnie the new performance enhanced 25-DoF humanoid robot Lola was built. The goal of this project is to realize a fast, human-like walking. This paper presents different aspects of this complex mechatronic system. Besides the overall lightweight construction, custom build multi-sensory joint drives with high torque brush-less motors were crucial for reaching the performance goal. A decentralized electronics architecture is used for joint control and sensor data processing. A simulation environment serves as a testbed for the walking control, to minimize the risk of damaging the robot hardware during real world experiments.

  7. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  8. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  9. Proteomic approaches to bacterial differentiation

    SciTech Connect

    Norbeck, Angela D.; Callister, Stephen J.; Monroe, Matthew E.; Jaitly, Navdeep; Elias, Dwayne A.; Lipton, Mary S.; Smith, Richard D.

    2006-12-01

    While genomic approaches have been applied for the detection and identification of individual bacteria within microbial communities, analogous proteomics approaches have been effectively precluded due to their inherent complexity. An in silico assessment of peptides that could potentially be present in the proteomes of artificial simple and complex communities was performed to evaluate the effect of proteome complexity on species detection. A mass spectrometry-based proteomics approach was employed to experimentally detect and validate the predicted tryptic peptides initially identified as distinctive within the simple community. An assessment of peptide distinctiveness and the potential for mapping to a particular bacterium within a community was made throughout each step of the study. A second in silico assessment of peptide distinctiveness for a complex community of 25 microorganisms was conducted to investigate the levels of instrumental performance that would be required to experimentally detect these peptides, as well as how performance varied with complexity (e.g., the number of different microorganisms). The experimental data for a simple community showed that it is feasible to predict, observe, and to quantify distinctive peptides from one organism in the presence of at least a 100-fold greater abundance of another, thus yielding putative markers for identifying a bacterium of interest. This work represents a first step towards quantitative proteomic characterization of complex microbial communities and the possible development of community wide markers of perturbations to such communities.

  10. The proteome browser web portal.

    PubMed

    Goode, Robert J A; Yu, Simon; Kannan, Anitha; Christiansen, Jeffrey H; Beitz, Anthony; Hancock, William S; Nice, Edouard; Smith, A Ian

    2013-01-01

    In 2010, the Human Proteome Organization launched the Human Proteome Project (HPP), aimed at identifying and characterizing the proteome of the human body. To support complete coverage, one arm of the project will take a gene- or chromosomal-centric strategy (C-HPP) aimed at identifying at least one protein product from each protein-coding gene. Despite multiple large international biological databases housing genomic and protein data, there is currently no single system that integrates updated pertinent information from each of these data repositories and assembles the information into a searchable format suitable for the type of global proteomics effort proposed by the C-HPP. We have undertaken the goal of producing a data integration and analysis software system and browser for the C-HPP effort and of making data collections from this resource discoverable through metadata repositories, such as Australian National Data Service's Research Data Australia. Here we present our vision and progress toward the goal of developing a comprehensive data integration and analysis software tool that provides a snapshot of currently available proteomic related knowledge around each gene product, which will ultimately assist in analyzing biological function and the study of human physiology in health and disease.

  11. Proteomic insights into floral biology.

    PubMed

    Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng

    2016-08-01

    The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26945514

  12. Proteome of Hydra Nematocyst*

    PubMed Central

    Balasubramanian, Prakash G.; Beckmann, Anna; Warnken, Uwe; Schnölzer, Martina; Schüler, Andreas; Bornberg-Bauer, Erich; Holstein, Thomas W.; Özbek, Suat

    2012-01-01

    Stinging cells or nematocytes of jellyfish and other cnidarians represent one of the most poisonous and sophisticated cellular inventions in animal evolution. This ancient cell type is unique in containing a giant secretory vesicle derived from the Golgi apparatus. The organelle structure within the vesicle comprises an elastically stretched capsule (nematocyst) to which a long tubule is attached. During exocytosis, the barbed part of the tubule is accelerated with >5 million g in <700 ns, enabling a harpoon-like discharge (Nüchter, T., Benoit, M., Engel, U., Ozbek, S., and Holstein, T. W. (2006) Curr. Biol. 16, R316–R318). Hitherto, the molecular components responsible for the organelle's biomechanical properties were largely unknown. Here, we describe the proteome of nematocysts from the freshwater polyp Hydra magnipapillata. Our analysis revealed an unexpectedly complex secretome of 410 proteins with venomous and lytic but also adhesive or fibrous properties. In particular, the insoluble fraction of the nematocyst represents a functional extracellular matrix structure of collagenous and elastic nature. This finding suggests an evolutionary scenario in which exocytic vesicles harboring a venomous secretome assembled a sophisticated predatory structure from extracellular matrix motif proteins. PMID:22291027

  13. High-throughput proteomics

    NASA Astrophysics Data System (ADS)

    Lesley, Scott A.; Nasoff, Marc; Kreusch, Andreas; Spraggon, Glen

    2001-04-01

    Proteomics has become a major focus as researchers attempt to understand the vast amount of genomic information. Protein complexity makes identifying and understanding gene function inherently difficult. The challenge of studying proteins in a global way is driving the development of new technologies for systematic and comprehensive analysis of protein structure and function. We are addressing this challenge through instrumentation and approaches to rapidly express, purify, crystallize, and mutate large numbers of human gene products. Our approach applies the principles of HTS technologies commonly used in pharmaceutical development. Genes are cloned, expressed, and purified in parallel to achieve a throughput potential of hundreds per day. Our instrumentation allows us to produce tens of milligrams of protein from 96 separate clones simultaneously. Purified protein is used for several applications including a high-throughput crystallographic screening approach for structure determination using automated image analysis. To further understand protein function, we are integrating a mutagenesis and screening approach. By combining these key technologies, we hope to provide a fundamental basis for understanding gene function at the protein level.

  14. Robotics and remote systems applications

    SciTech Connect

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  15. Robotic follow system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID

    2007-05-01

    Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.

  16. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  17. Microprocessors, Robotics, and Work.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    1982-01-01

    The author explores several recent technological developments which will have an impact on future technical education. These developments include the revolution in information services, robotics, job changes and eliminations, changing role of the worker, and quality of life. (CT)

  18. Robotic heart surgery.

    PubMed

    Zenati, M A

    2001-01-01

    Advances in computer and robotic technology are transforming cardiac surgery, overcoming the limitations of conventional endoscopic tools. Using minimal access through 5 millimeter ports, computer-enhanced instruments provide superhuman dexterity through tremor filtration and motion scaling, and are capable of precise manipulation in confined body cavities. Using these technologies, endoscopic beating heart coronary bypass surgery as well as complex mitral valve repairs have been performed in the last few years. However, the current world experience with robotic heart surgery is mostly anecdotal, retrospective, and noncontrolled. Results of rigorous prospective randomized studies in the United States under Food and Drug Administration approved protocols, are awaited. The use of robotic telemanipulation technology for heart surgery is restricted in the United States to patients enrolled in clinical studies in a few elite centers. Further refinement in robotic and image-guided technology for cardiac surgery may further expand the use of computer enhanced instrumentation in the near future.

  19. Robotics in Colorectal Surgery

    PubMed Central

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895

  20. Robots on the Roof

    NASA Video Gallery

    The Aerosol Robotic Network (AERONET) is one of the first places that scientists turn when volcanoes, wildfires, pollution plumes, dust storms and many other phenomena—both natural and manmade—...

  1. Operator roles in robotics

    SciTech Connect

    Lyman, J.; Madni, A.M.

    1984-01-01

    The authors suggest that operator roles in robotics can be classified under the categories of monitor, manager, and maintainer. With increasingly sophisticated applications of machine intelligence, however, these roles will require explicit and continuing reassessment. 5 references.

  2. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed. PMID:26643022

  3. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  4. DOE Robotics Project

    SciTech Connect

    Not Available

    1991-01-01

    This document provide the bimonthly progress reports on the Department of Energy (DOE) Robotics Project by the University of Michigan. Reports are provided for the time periods of December 90/January 91 through June 91/July 91. (FI)

  5. Rolling friction robot fingers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1992-01-01

    A low friction, object guidance, and gripping finger device for a robotic end effector on a robotic arm is disclosed, having a pair of robotic fingers each having a finger shaft slideably located on a gripper housing attached to the end effector. Each of the robotic fingers has a roller housing attached to the finger shaft. The roller housing has a ball bearing mounted centering roller located at the center, and a pair of ball bearing mounted clamping rollers located on either side of the centering roller. The object has a recess to engage the centering roller and a number of seating ramps for engaging the clamping rollers. The centering roller acts to position and hold the object symmetrically about the centering roller with respect to the X axis and the clamping rollers act to position and hold the object with respect to the Y and Z axis.

  6. K-10 Robots

    NASA Video Gallery

    Robots, scientists, engineers and flight controllers from NASA's Ames Research Center at Moffett Field, Calif., and NASA's Johnson Space Center in Houston, gathered at NASA Ames to perform a series...

  7. Robotics and neuroscience.

    PubMed

    Floreano, Dario; Ijspeert, Auke Jan; Schaal, Stefan

    2014-09-22

    In the attempt to build adaptive and intelligent machines, roboticists have looked at neuroscience for more than half a century as a source of inspiration for perception and control. More recently, neuroscientists have resorted to robots for testing hypotheses and validating models of biological nervous systems. Here, we give an overview of the work at the intersection of robotics and neuroscience and highlight the most promising approaches and areas where interactions between the two fields have generated significant new insights. We articulate the work in three sections, invertebrate, vertebrate and primate neuroscience. We argue that robots generate valuable insight into the function of nervous systems, which is intimately linked to behaviour and embodiment, and that brain-inspired algorithms and devices give robots life-like capabilities.

  8. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  9. Robots in operating theatres.

    PubMed Central

    Buckingham, R. A.; Buckingham, R. O.

    1995-01-01

    Robots designed for surgery have three main advantages over humans. They have greater three dimensional spatial accuracy, are more reliable, and can achieve much greater precision. Although few surgical robots are yet in clinical trials one or two have advanced to the stage of seeking approval from the UK's Medical Devices Agency and the US Federal Drug Administration. Safety is a key concern. A robotic device can be designed in an intrinsically safe way by restricting its range of movement to an area where it can do no damage. Furthermore, safety can be increased by making it passive, guided at all times by a surgeon. Nevertheless, some of the most promising developments may come from robots that are active (monitored rather than controlled by the surgeon) and not limited to intrinsically safe motion. Images Fig 1 Fig 3 Fig 4 PMID:8520340

  10. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  11. Wheeled hopping robot

    DOEpatents

    Fischer, Gary J.

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  12. Robotic inguinal hernia repair.

    PubMed

    Escobar Dominguez, Jose E; Gonzalez, Anthony; Donkor, Charan

    2015-09-01

    Inguinal hernias have been described throughout the history of medicine with many efforts to achieve the cure. Currently, with the advantages of minimally invasive surgery, new questions arise: what is going to be the best approach for inguinal hernia repair? Is there a real benefit with the robotic approach? Should minimally invasive hernia surgery be the standard of care? In this report we address these questions by describing our experience with robotic inguinal hernia repair. PMID:26153353

  13. Proteomics technology in systems biology.

    PubMed

    Smith, Jeffrey C; Figeys, Daniel

    2006-08-01

    It has now become apparent that a full understanding of a biological process (e.g. a disease state) is only possible if all biomolecular interactions are taken into account. Systems biology works towards understanding the intricacies of cellular life through the collaborative efforts of biologists, chemists, mathematicians and computer scientists and recently, a number of laboratories around the world have embarked upon such research agendas. The fields of genomics and proteomics are foundational in systems biology studies and a great deal of research is currently being conducted in each worldwide. Moreover, many technological advances (particularly in mass spectrometry) have led to a dramatic rise in the number of proteomic studies over the past two decades. This short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies. PMID:16880956

  14. Robotic surgery in gynecology

    PubMed Central

    Sinha, Rooma; Sanjay, Madhumati; Rupa, B.; Kumari, Samita

    2015-01-01

    FDA approved Da Vinci Surgical System in 2005 for gynecological surgery. It has been rapidly adopted and it has already assumed an important position at various centers where this is available. It comprises of three components: A surgeon's console, a patient-side cart with four robotic arms and a high-definition three-dimensional (3D) vision system. In this review we have discussed various robotic-assisted laparoscopic benign gynecological procedures like myomectomy, hysterectomy, endometriosis, tubal anastomosis and sacrocolpopexy. A PubMed search was done and relevant published studies were reviewed. Surgeries that can have future applications are also mentioned. At present most studies do not give significant advantage over conventional laparoscopic surgery in benign gynecological disease. However robotics do give an edge in more complex surgeries. The conversion rate to open surgery is lesser with robotic assistance when compared to laparoscopy. For myomectomy surgery, Endo wrist movement of robotic instrument allows better and precise suturing than conventional straight stick laparoscopy. The robotic platform is a logical step forward to laparoscopy and if cost considerations are addressed may become popular among gynecological surgeons world over. PMID:25598600

  15. Robotic surgery in gynecology.

    PubMed

    Sinha, Rooma; Sanjay, Madhumati; Rupa, B; Kumari, Samita

    2015-01-01

    FDA approved Da Vinci Surgical System in 2005 for gynecological surgery. It has been rapidly adopted and it has already assumed an important position at various centers where this is available. It comprises of three components: A surgeon's console, a patient-side cart with four robotic arms and a high-definition three-dimensional (3D) vision system. In this review we have discussed various robotic-assisted laparoscopic benign gynecological procedures like myomectomy, hysterectomy, endometriosis, tubal anastomosis and sacrocolpopexy. A PubMed search was done and relevant published studies were reviewed. Surgeries that can have future applications are also mentioned. At present most studies do not give significant advantage over conventional laparoscopic surgery in benign gynecological disease. However robotics do give an edge in more complex surgeries. The conversion rate to open surgery is lesser with robotic assistance when compared to laparoscopy. For myomectomy surgery, Endo wrist movement of robotic instrument allows better and precise suturing than conventional straight stick laparoscopy. The robotic platform is a logical step forward to laparoscopy and if cost considerations are addressed may become popular among gynecological surgeons world over. PMID:25598600

  16. Robotic assisted andrological surgery

    PubMed Central

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  17. Robotic assisted andrological surgery.

    PubMed

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE).

  18. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  19. Proteomic Analysis of Menstrual Blood*

    PubMed Central

    Yang, Heyi; Zhou, Bo; Prinz, Mechthild; Siegel, Donald

    2012-01-01

    Menstruation is the expulsion of the endometrial lining of the uterus following a nearly month long preparation for embryo implantation and pregnancy. Increasingly, the health of the endometrium is being recognized as a critical factor in female fertility, and proteomes and transcriptomes from endometrial biopsies at different stages of the menstrual cycle have been studied for both diagnostic and therapeutic purposes (1 Kao, L. C., et al. 2003 Endocrinology 144, 2870–2881; Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617–630; DeSouza, L., et al. 2005 Proteomics 5, 270–281). Disorders of the uterus ranging from benign to malignant tumors, as well as endometriosis, can cause abnormal menstrual bleeding and are frequently diagnosed through endometrial biopsy (Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617–630; Ferenczy, A. 2003 Maturitas 45, 1–14). Yet the proteome of menstrual blood, an easily available noninvasive source of endometrial tissue, has yet to be examined for possible causes or diagnoses of infertility or endometrial pathology. This study employed five different methods to define the menstrual blood proteome. A total of 1061 proteins were identified, 361 were found by at least two methods and 678 were identified by at least two peptides. When the menstrual blood proteome was compared with those of circulating blood (1774 proteins) and vaginal fluid (823 proteins), 385 proteins were found unique to menstrual blood. Gene ontology analysis and evaluation of these specific menstrual blood proteins identified pathways consistent with the processes of the normal endometrial cycle. Several of the proteins unique to menstrual blood suggest that extramedullary uterine hematopoiesis or parenchymal hemoglobin synthesis may be occurring in late endometrial tissue. The establishment of a normal menstrual blood proteome is necessary for the evaluation of its usefulness as a diagnostic tool for infertility and uterine pathologies. Identification of

  20. Robotic hand with modular extensions

    SciTech Connect

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  1. Advances of Proteomic Sciences in Dentistry

    PubMed Central

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-01-01

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379

  2. Microbial proteomics: the quiet revolution

    SciTech Connect

    Seraphin, Bertrand; Hettich, Robert {Bob} L

    2012-01-01

    Technological developments in DNA sequencing and their application to study thousands of microbial genomes or even microbial ecosystems still today often make the headlines of general newspapers and scientific journals. These revolutionary changes are hiding another revolution that is unfolding more quietly in the background: the development of microbial proteomics to study genome expression products. It is important to recognize that while DNA sequencing reveals extensive details about the genomic potential of an organism or community, proteomic measurements reveal the functional gene products that are present and operational under specific environmental conditions, and thus perhaps better characterize the critical biomolecules that execute the life processes (enzymes, signaling, structural factors, etc.).

  3. Liquid MALDI MS Analysis of Complex Peptide and Proteome Samples.

    PubMed

    Wiangnon, Kanjana; Cramer, Rainer

    2016-09-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is well-known to be a powerful technique for the analysis of biological samples. By using glycerol-based liquid support matrices (LSMs) instead of conventional MALDI matrices the power of this technique can be extended further. In this study, we exploited LSMs for the identification of complex samples, that is, the Lactobacillus proteome and a bovine serum albumin (BSA) digest. Liquid and solid MALDI samples were manually and robotically prepared by coupling a nanoflow high-performance liquid chromatography (nanoHPLC) system to an automated MALDI sample spotting device. MS and MS/MS data were successfully acquired at the femtomole level using TOF/TOF as well as Q-TOF instrumentation and used for protein identification searching sequence databases. For the BSA digest analysis, liquid MALDI samples resulted in peptide mass fingerprints, which led to a higher confidence in protein identification compared with solid (crystalline) MALDI samples; however, postsource decay (PSD) MS/MS analysis of both the proteome of Lactobacillus plantarum WCFS1 cells and BSA digest showed that further optimization of the formation and detection of peptide fragment ions is still needed for liquid MALDI samples, as the MS/MS ion search score was lower than that for the solid MALDI samples, reflecting the poorer quality of the liquid MALDI-PSD spectra, which can be attributed to the differences in PSD parameters and their optimization that is currently achievable. PMID:27418427

  4. Liquid MALDI MS Analysis of Complex Peptide and Proteome Samples.

    PubMed

    Wiangnon, Kanjana; Cramer, Rainer

    2016-09-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is well-known to be a powerful technique for the analysis of biological samples. By using glycerol-based liquid support matrices (LSMs) instead of conventional MALDI matrices the power of this technique can be extended further. In this study, we exploited LSMs for the identification of complex samples, that is, the Lactobacillus proteome and a bovine serum albumin (BSA) digest. Liquid and solid MALDI samples were manually and robotically prepared by coupling a nanoflow high-performance liquid chromatography (nanoHPLC) system to an automated MALDI sample spotting device. MS and MS/MS data were successfully acquired at the femtomole level using TOF/TOF as well as Q-TOF instrumentation and used for protein identification searching sequence databases. For the BSA digest analysis, liquid MALDI samples resulted in peptide mass fingerprints, which led to a higher confidence in protein identification compared with solid (crystalline) MALDI samples; however, postsource decay (PSD) MS/MS analysis of both the proteome of Lactobacillus plantarum WCFS1 cells and BSA digest showed that further optimization of the formation and detection of peptide fragment ions is still needed for liquid MALDI samples, as the MS/MS ion search score was lower than that for the solid MALDI samples, reflecting the poorer quality of the liquid MALDI-PSD spectra, which can be attributed to the differences in PSD parameters and their optimization that is currently achievable.

  5. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  6. What is Proteomics? - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The term "proteome" refers to the entire complement of proteins, including the modifications made to a particular set of proteins, produced by an organism or a cellular system. This will vary with time and distinct requirements, such as stresses, that a cell or organism undergoes.

  7. Proteomics Funding Opportunity - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    To expand the understanding of how cells sense and respond to changes in their physical environment, the NCI is seeking to perform proteomic assays on the panel of cell lines grown on a variety of substrates. These assays will provide insight into changes in protein levels or phosphorylation changes that could reflect the activity of mechano-transduction pathways.

  8. An overview of artificial intelligence and robotics. Volume 2: Robotics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    This report provides an overview of the rapidly changing field of robotics. The report incorporates definitions of the various types of robots, a summary of the basic concepts, utilized in each of the many technical areas, review of the state of the art and statistics of robot manufacture and usage. Particular attention is paid to the status of robot development, the organizations involved, their activities, and their funding.

  9. Robots for Astrobiology!

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  10. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  11. Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities

    ERIC Educational Resources Information Center

    Simkins, Michael

    2008-01-01

    Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…

  12. Robots Aboard International Space Station

    NASA Video Gallery

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  13. Basic Operational Robotics Instructional System

    NASA Technical Reports Server (NTRS)

    Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John

    2013-01-01

    The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.

  14. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  15. Industrial Robots on the Line.

    ERIC Educational Resources Information Center

    Ayres, Robert; Miller, Steve

    1982-01-01

    Explores the history of robotics and its effects upon the manufacturing industry. Topics include robots' capabilities and limitations, the factory of the future, displacement of the workforce, and implications for management and labor. (SK)

  16. ISS Update: Robotic Refueling Mission

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Alex Janas, robotics operator from the Goddard Space Flight Center, about the Robotic Refueling Mission that has been taking place on the space stati...

  17. Robots and Kids: Classroom Encounters.

    ERIC Educational Resources Information Center

    Slesnick, Twila

    1984-01-01

    Describes how three different levels of students interacted with three different commercially available robots. Considers the educational value of these devices and provides a list of seven robots (indicating their source, computer compatibility, language, current cost, capabilities, and options). (JN)

  18. Artificial intelligence: Robots with instincts

    NASA Astrophysics Data System (ADS)

    Adami, Christoph

    2015-05-01

    An evolutionary algorithm has been developed that allows robots to adapt to unforeseen change. The robots learn behaviours quickly and instinctively by mining the memory of their past achievements. See Letter p.503

  19. Pediatric robotic urologic surgery-2014.

    PubMed

    Kearns, James T; Gundeti, Mohan S

    2014-07-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide. PMID:25197187

  20. The speciation of the proteome

    PubMed Central

    Jungblut, Peter R; Holzhütter, Hermann G; Apweiler, Rolf; Schlüter, Hartmut

    2008-01-01

    Introduction In proteomics a paradox situation developed in the last years. At one side it is basic knowledge that proteins are post-translationally modified and occur in different isoforms. At the other side the protein expression concept disclaims post-translational modifications by connecting protein names directly with function. Discussion Optimal proteome coverage is today reached by bottom-up liquid chromatography/mass spectrometry. But quantification at the peptide level in shotgun or bottom-up approaches by liquid chromatography and mass spectrometry is completely ignoring that a special peptide may exist in an unmodified form and in several-fold modified forms. The acceptance of the protein species concept is a basic prerequisite for meaningful quantitative analyses in functional proteomics. In discovery approaches only top-down analyses, separating the protein species before digestion, identification and quantification by two-dimensional gel electrophoresis or protein liquid chromatography, allow the correlation between changes of a biological situation and function. Conclusion To obtain biological relevant information kinetics and systems biology have to be performed at the protein species level, which is the major challenge in proteomics today. PMID:18638390

  1. Periodontal Proteomics: Wonders Never Cease!

    PubMed Central

    Grover, Harpreet Singh; Kapoor, Shalini; Saksena, Neha

    2013-01-01

    Proteins are vital parts of living organisms, as they are integral components of the physiological metabolic pathways of cells. Periodontal tissues comprise multicompartmental groups of interacting cells and matrices that provide continuous support, attachment, proprioception, and physical protection for the teeth. The proteome map, that is, complete catalogue of the matrix and cellular proteins expressed in alveolar bone, cementum, periodontal ligament, and gingiva, is to be explored for more in-depth understanding of periodontium. The ongoing research to understand the signalling pathways that allow cells to divide, differentiate, and die in controlled manner has brought us to the era of proteomics. Proteomics is defined as the study of all proteins including their relative abundance, distribution, posttranslational modifications, functions, and interactions with other macromolecules, in a given cell or organism within a given environment and at a specific stage in the cell cycle. Its application to periodontal science can be used to monitor health status, disease onset, treatment response, and outcome. Proteomics can offer answers to critical, unresolved questions such as the biological basis for the heterogeneity in gingival, alveolar bone, and cemental cell populations. PMID:24490073

  2. The proteome of human retina

    PubMed Central

    Zhang, Pingbo; Dufresne, Craig; Turner, Randi; Ferri, Sara; Venkatraman, Vidya; Karani, Rabia; Lutty, Gerard A.; Van Eyk, Jennifer E.; Semba, Richard D.

    2014-01-01

    The retina is a delicate tissue that detects light, converts photochemical energy into neural signals, and transmits the signals to the visual cortex of the brain. A detailed protein inventory of the proteome of the normal human eye may provide a foundation for new investigations into both the physiology of the retina and the pathophysiology of retinal diseases. To provide an inventory, proteins were extracted from five retinas of normal eyes and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed in duplicate using LC-MS/MS on an Orbitrap Elite mass spectrometer. A total of 3,436 non-redundant proteins were identified in the human retina, including 20 unambiguous protein isoforms, of which 8 have not previously been demonstrated to exist at the protein level. The proteins identified in the retina included most of the enzymes involved in the visual cycle and retinoid metabolism. One hundred and fifty-eight proteins that have been associated with age-related macular degeneration were identified in the retina. The MS proteome database of the human retina may serve as a valuable resource for future investigations of retinal biology and disease. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD001242. PMID:25407473

  3. Proteomics of foodborne bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on recent research on foodborne bacterial pathogens that use mass spectrometry-based proteomic techniques as well as protein microarrays. Mass spectrometry ionization techniques (e.g. electrospray ionization and matrix-assisted laser desorption/ionization), analyzers (e.g. ion ...

  4. Teen Sized Humanoid Robot: Archie

    NASA Astrophysics Data System (ADS)

    Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter

    This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).

  5. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  6. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  7. Modular robotic architecture

    NASA Astrophysics Data System (ADS)

    Smurlo, Richard P.; Laird, Robin T.

    1991-03-01

    The development of control architectures for mobile systems is typically a task undertaken with each new application. These architectures address different operational needs and tend to be difficult to adapt to more than the problem at hand. The development of a flexible and extendible control system with evolutionary growth potential for use on mobile robots will help alleviate these problems and if made widely available will promote standardization and cornpatibility among systems throughout the industry. The Modular Robotic Architecture (MRA) is a generic control systern that meets the above needs by providing developers with a standard set of software hardware tools that can be used to design modular robots (MODBOTs) with nearly unlimited growth potential. The MODBOT itself is a generic creature that must be customized by the developer for a particular application. The MRA facilitates customization of the MODBOT by providing sensor actuator and processing modules that can be configured in almost any manner as demanded by the application. The Mobile Security Robot (MOSER) is an instance of a MODBOT that is being developed using the MRA. Navigational Sonar Module RF Link Control Station Module hR Link Detection Module Near hR Proximi Sensor Module Fluxgate Compass and Rate Gyro Collision Avoidance Sonar Module Figure 1. Remote platform module configuration of the Mobile Security Robot (MOSER). Acoustical Detection Array Stereoscopic Pan and Tilt Module High Level Processing Module Mobile Base 566

  8. Robotic Microsurgery Optimization

    PubMed Central

    Brahmbhatt, Jamin V; Gudeloglu, Ahmet; Liverneaux, Philippe

    2014-01-01

    The increased application of the da Vinci robotic platform (Intuitive Surgical Inc.) for microsurgery has led to the development of new adjunctive surgical instrumentation. In microsurgery, the robotic platform can provide high definition 12×-15× digital magnification, broader range of motion, fine instrument handling with decreased tremor, reduced surgeon fatigue, and improved surgical productivity. This paper presents novel adjunctive tools that provide enhanced optical magnification, micro-Doppler sensing of vessels down to a 1-mm size, vein mapping capabilities, hydro-dissection, micro-ablation technology (with minimal thermal spread-CO2 laser technology), and confocal microscopy to provide imaging at a cellular level. Microsurgical outcomes from the use of these tools in the management of patients with infertility and chronic groin and testicular pain are reviewed. All these instruments have been adapted for the robotic console and enhance the robot-assisted microsurgery experience. As the popularity of robot-assisted microsurgery grows, so will its breadth of instrumentation. PMID:24883272

  9. Quantum robots plus environments.

    SciTech Connect

    Benioff, P.

    1998-07-23

    A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions is discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.

  10. Controlling multiple groups of robots

    NASA Astrophysics Data System (ADS)

    Hor, MawKae

    1992-11-01

    Coordinating multiple robots has attracted researchers' interests for many years. However, most of the problems being studied deal with multiple robots acted only within a single group. Coordinated robots are categorized into different groups when the coordination involves robots interchange or heterogeneous motion during the manipulation process. In such a case, coordination between robot groups has to be considered. This is required in certain types of coordinated manipulations such as passing an object, held by multiple robots, between groups of robots or rotating or rolling an object, held by multiple robots, continuously. In the former task, coordinations are made between two isotropic groups of robots whereas in the latter task, coordinations are made between non-isotropic groups of robots. This paper investigates problems related to the control and coordinating of multiple groups of robots. We analyze various kind of tasks of these types and propose a hierarchical control mechanism in achieving these coordinations. Scenarios and limitations for these tasks are presented and discussed. A hybrid force and position control principle is employed in both global and local planning and control. A hierarchical architecture is used to control different levels of the control and planning primitives. The primitives developed for controlling individual robot group can be adopted in this architecture. The primitives in one level offer services only to those in its neighboring levels and hides them from the details of actual service implementations hence reducing the system designing complexity.

  11. Robot teachers: The very idea!

    PubMed

    Sharkey, Amanda

    2015-01-01

    Insufficient attention has been paid to the use of robots in classrooms. Robot "teachers" are being developed, but because Kline ignores such technological developments, it is not clear how they would fit within her framework. It is argued here that robots are not capable of teaching in any meaningful sense, and should be deployed only as educational tools.

  12. Future perspectives in robotic surgery.

    PubMed

    Wedmid, Alexei; Llukani, Elton; Lee, David I

    2011-09-01

    Robotics of the current day have advanced significantly from early computer-aided design/manufacturing systems to modern master-slave robotic systems that replicate the surgeon's exact movements onto robotic instruments in the patient. • Globally >300,000 robotic procedures were completed in 2010, including ≈98,000 robot-assisted radical prostatectomies. • Broadening applications of robotics for urological procedures are being investigated in both adult and paediatric urology. • The use of the current robotic system continues to be further refined. Increasing experience has optimized port placement reducing arm collisions to allow for more expedient surgery. Improved three-dimensional camera magnification provides improved intraoperative identification of structures. • Robotics has probably improved the learning curve of laparoscopic surgery while still maintaining its patient recovery advantages and outcomes. • The future of robotic surgery will take this current platform forward by improving haptic (touch) feedback, improving vision beyond even the magnified eye, improving robot accessibility with a reduction of entry ports and miniaturizing the slave robot. • Here, we focus on the possible advancements that may change the future landscape of robotic surgery.

  13. Robotics: Applications and social implications

    SciTech Connect

    Ayres, R.U.; Miller, S.M.

    1983-01-01

    Robots are expected to dramatically alter the U.S. economy in the 1980s. In this assessment of their effects on everyday life, the authors examine the scope of the robotics revolution and provide recommendations for a smooth introduction of robots into American industry.

  14. Robot Technology: Implications for Education.

    ERIC Educational Resources Information Center

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  15. Future perspectives in robotic surgery.

    PubMed

    Wedmid, Alexei; Llukani, Elton; Lee, David I

    2011-09-01

    Robotics of the current day have advanced significantly from early computer-aided design/manufacturing systems to modern master-slave robotic systems that replicate the surgeon's exact movements onto robotic instruments in the patient. • Globally >300,000 robotic procedures were completed in 2010, including ≈98,000 robot-assisted radical prostatectomies. • Broadening applications of robotics for urological procedures are being investigated in both adult and paediatric urology. • The use of the current robotic system continues to be further refined. Increasing experience has optimized port placement reducing arm collisions to allow for more expedient surgery. Improved three-dimensional camera magnification provides improved intraoperative identification of structures. • Robotics has probably improved the learning curve of laparoscopic surgery while still maintaining its patient recovery advantages and outcomes. • The future of robotic surgery will take this current platform forward by improving haptic (touch) feedback, improving vision beyond even the magnified eye, improving robot accessibility with a reduction of entry ports and miniaturizing the slave robot. • Here, we focus on the possible advancements that may change the future landscape of robotic surgery. PMID:21917107

  16. Humans and Robots. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses human movement and robotic human movement simulators. The activity for students in grades 5-12 provides a history of robotic movement and includes making an End Effector for the robotic arms used on the Space Shuttle and the International Space Station (ISS). (MVL)

  17. Adaptive Language Games with Robots

    NASA Astrophysics Data System (ADS)

    Steels, Luc

    2010-11-01

    This paper surveys recent research into language evolution using computer simulations and robotic experiments. This field has made tremendous progress in the past decade going from simple simulations of lexicon formation with animallike cybernetic robots to sophisticated grammatical experiments with humanoid robots.

  18. The problem with multiple robots

    NASA Technical Reports Server (NTRS)

    Huber, Marcus J.; Kenny, Patrick G.

    1994-01-01

    The issues that can arise in research associated with multiple, robotic agents are discussed. Two particular multi-robot projects are presented as examples. This paper was written in the hope that it might ease the transition from single to multiple robot research.

  19. Robotic Design for the Classroom

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Burns, Kaylynn

    2001-01-01

    This slide presentation reviews the use of robotic design to interest students in science and engineering. It describes one program, BEST, and resources that area available to design and create a robot. BEST is a competition for sixth and seventh graders that is designed to engage gifted and talented students. A couple of scenarios involving the use of a robot are outlined.

  20. The universal robot

    NASA Technical Reports Server (NTRS)

    Moravec, Hans

    1993-01-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  1. RX130 Robot Calibration

    NASA Astrophysics Data System (ADS)

    Fugal, Mario

    2012-10-01

    In order to create precision magnets for an experiment at Oak Ridge National Laboratory, a new reverse engineering method has been proposed that uses the magnetic scalar potential to solve for the currents necessary to produce the desired field. To make the magnet it is proposed to use a copper coated G10 form, upon which a drill, mounted on a robotic arm, will carve wires. The accuracy required in the manufacturing of the wires exceeds nominal robot capabilities. However, due to the rigidity as well as the precision servo motor and harmonic gear drivers, there are robots capable of meeting this requirement with proper calibration. Improving the accuracy of an RX130 to be within 35 microns (the accuracy necessary of the wires) is the goal of this project. Using feedback from a displacement sensor, or camera and inverse kinematics it is possible to achieve this accuracy.

  2. The universal robot

    NASA Astrophysics Data System (ADS)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  3. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    An overview of applied research and development at NASA-Goddard (GSFC) on mechanisms and the collision avoidance skin for robots is presented. First the work on robot end effectors is outlined, followed by a brief discussion on robot-friendly payload latching mechanisms and compliant joints. This, in turn, is followed by the collision avoidance/management skin and the GSFC research on magnetostrictive direct drive motors. Finally, a new project, the artificial muscle, is introduced. Each of the devices is described in sufficient detail to permit a basic understanding of its purpose, fundamental principles of operation, and capabilities. In addition, the development status of each is reported along with descriptions of breadboards and prototypes and their test results. In each case, the implications of the research for commercialization is discussed. The chronology of the presentation will give a clear idea of both the evolution of the R&D in recent years and its likely direction in the future.

  4. Robotically assisted ultrasound interventions

    NASA Astrophysics Data System (ADS)

    Ding, Jienan; Swerdlow, Dan; Wang, Shuxin; Wilson, Emmanuel; Tang, Jonathan; Cleary, Kevin

    2008-03-01

    The goal of this project is to develop a robotic system to assist the physician in minimally invasive ultrasound interventions. In current practice, the physician must manually hold the ultrasound probe in one hand and manipulate the needle with the other hand, which can be challenging, particularly when trying to target small lesions. To assist the physician, the robot should not only be capable of providing the spatial movement needed, but also be able to control the contact force between the ultrasound probe and patient. To meet these requirements, we are developing a prototype system based on a six degree of freedom parallel robot. The system will provide high bandwidth, precision motion, and force control. In this paper we report on our progress to date, including the development of a PC-based control system and the results of our initial experiments.

  5. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  6. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Rochlis-Zumbado, Jennifer; Sandor, Aniko; Ezer, Neta

    2012-01-01

    Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularies

  7. Technical vision for robots

    NASA Astrophysics Data System (ADS)

    1985-01-01

    A new invention by scientists who have copied the structure of a human eye will help replace a human telescope-watching astronomer with a robot. It will be possible to provide technical vision not only for robot astronomers but also for their industrial fellow robots. So far, an artificial eye with dimensions close to those of a human eye discerns only black-and-white images. But already the second model of the eye is to perceive colors as well. Polymers which are suited for the role of the coat of an eye, lens, and vitreous body were applied. The retina has been replaced with a bundle of the finest glass filaments through which light rays get onto photomultipliers. They can be positioned outside the artificial eye. The main thing is to prevent great losses in the light guide.

  8. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  9. NCI Launches Proteomics Assay Portal - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass

  10. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  11. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  12. Segway robotic mobility platform

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Morrell, John; Mullens, Katherine D.; Burmeister, Aaron B.; Miles, Susan; Farrington, Nathan; Thomas, Kari M.; Gage, Douglas W.

    2004-12-01

    The Segway Robotic Mobility Platform (RMP) is a new mobile robotic platform based on the self-balancing Segway Human Transporter (HT). The Segway RMP is faster, cheaper, and more agile than existing comparable platforms. It is also rugged, has a small footprint, a zero turning radius, and yet can carry a greater payload. The new geometry of the platform presents researchers with an opportunity to examine novel topics, including people-height sensing and actuation modalities. This paper describes the history and development of the platform, its characteristics, and a summary of current research projects involving the platform at various institutions across the United States.

  13. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  14. Robotics and ergonomics.

    PubMed

    Stylopoulos, Nicholas; Rattner, David

    2003-12-01

    Industrial robotics have proven the benefit of using an untiring machine to perform precise repetitive tasks in uncomfortable or dangerous for humans environments. Highly skilled surgeons are trained to operate and adapt to difficult conditions. They are even capable of developing intelligent mechanisms to exploit a variety of tactile, visual, and other cues. The robotic systems, however, can enhance the surgeon's capability to perform a wide variety of tasks. They cannot replace the surgeon's problem-solving ability. Instead, they will redefine his role. They will significantly enhance the surgeon's skills and dexterity by providing their complementary capabilities and an ergonomically efficient and more user-friendly working environment.

  15. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  16. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  17. SDIO robotics in space applications

    NASA Technical Reports Server (NTRS)

    Iliff, Richard

    1990-01-01

    Robotics in space supporting the Strategic Defense System (SDS) program is discussed. Ongoing initiatives which are intended to establish an initial Robotics in Space capability are addressed. This is specifically being referred to as the Satellite Servicing System (SSS). This system is based on the NASA Orbital Maneuvering Vehicle (OMV) with a Robotic Manipulator(s) based on the NASA Flight Telerobotic Servicer (FTS) and other SSS equipment required to do the satellite servicing work attached to the OMV. Specific Robotics in Space Requirements which have resulted from the completion of the Robotics Requirements Study Contract are addressed.

  18. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  19. Recent advances in chemical proteomics: exploring the post-translational proteome.

    PubMed

    Tate, Edward W

    2008-11-01

    Identification and quantification of multiple proteins from complex mixtures is a central theme in post-genomic biology. Despite recent progress in high-throughput proteomics, proteomic analysis of post-translationally modified (PTM) proteins remains particularly challenging. This mini-review introduces the emerging field of chemical proteomics and reviews recent advances in chemical proteomic technology that are offering striking new insights into the functional biology of post-translational modification.

  20. Exploring the potential of public proteomics data

    PubMed Central

    Vaudel, Marc; Verheggen, Kenneth; Csordas, Attila; Ræder, Helge; Berven, Frode S.; Martens, Lennart; Vizcaíno, Juan A.

    2015-01-01

    In a global effort for scientific transparency, it has become feasible and good practice to share experimental data supporting novel findings. Consequently, the amount of publicly available MS‐based proteomics data has grown substantially in recent years. With some notable exceptions, this extensive material has however largely been left untouched. The time has now come for the proteomics community to utilize this potential gold mine for new discoveries, and uncover its untapped potential. In this review, we provide a brief history of the sharing of proteomics data, showing ways in which publicly available proteomics data are already being (re‐)used, and outline potential future opportunities based on four different usage types: use, reuse, reprocess, and repurpose. We thus aim to assist the proteomics community in stepping up to the challenge, and to make the most of the rapidly increasing amount of public proteomics data. PMID:26449181

  1. Open Issues in Evolutionary Robotics.

    PubMed

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  2. Hiding robot inertia using resonance.

    PubMed

    Vallery, Heike; Duschau-Wicke, Alexander; Riener, Robert

    2010-01-01

    To enable compliant training modes with a rehabilitation robot, an important prerequisite is that any undesired human-robot interaction forces caused by robot dynamics must be avoided, either by an appropriate mechanical design or by compensating control strategies. Our recently proposed control scheme of "Generalized Elasticities" employs potential fields to compensate for robot dynamics, including inertia, beyond what can be done using closed-loop force control. In this paper, we give a simple mechanical equivalent using the example of the gait rehabilitation robot Lokomat. The robot consists of an exoskeleton that is attached to a frame around the patient's pelvis. This frame is suspended by a springloaded parallelogram structure. The mechanism allows vertical displacement while providing almost constant robot gravity compensation. However, inertia of the device when the patient's pelvis moves up and down remains a source of large interaction forces, which are reflected in increased ground reaction forces. Here, we investigate an alternative suspension: To hide not only gravity, but also robot inertia during vertical pelvis motion, we suspend the robot frame by a stiff linear spring that allows the robot to oscillate vertically at an eigenfrequency close to the natural gait frequency. This mechanism reduces human-robot interaction forces, which is demonstrated in pilot experimental results. PMID:21095916

  3. Hiding robot inertia using resonance.

    PubMed

    Vallery, Heike; Duschau-Wicke, Alexander; Riener, Robert

    2010-01-01

    To enable compliant training modes with a rehabilitation robot, an important prerequisite is that any undesired human-robot interaction forces caused by robot dynamics must be avoided, either by an appropriate mechanical design or by compensating control strategies. Our recently proposed control scheme of "Generalized Elasticities" employs potential fields to compensate for robot dynamics, including inertia, beyond what can be done using closed-loop force control. In this paper, we give a simple mechanical equivalent using the example of the gait rehabilitation robot Lokomat. The robot consists of an exoskeleton that is attached to a frame around the patient's pelvis. This frame is suspended by a springloaded parallelogram structure. The mechanism allows vertical displacement while providing almost constant robot gravity compensation. However, inertia of the device when the patient's pelvis moves up and down remains a source of large interaction forces, which are reflected in increased ground reaction forces. Here, we investigate an alternative suspension: To hide not only gravity, but also robot inertia during vertical pelvis motion, we suspend the robot frame by a stiff linear spring that allows the robot to oscillate vertically at an eigenfrequency close to the natural gait frequency. This mechanism reduces human-robot interaction forces, which is demonstrated in pilot experimental results.

  4. Proteomics and Ovarian Cancer: Integrating Proteomics Information Into Clinical Care

    PubMed Central

    Hays, John L.; Kim, Geoffrey; Giuroiu, Iulia; Kohn, Elise C.

    2010-01-01

    The power of proteomics allows unparalleled opportunity to query the molecular mechanisms of a malignant cell and the tumor microenvironment in patients with ovarian cancer and other solid tumors. This information has given us insight into the perturbations of signaling pathways within tumor cells and has aided the discovery of new drug targets for the tumor and possible prognostic indicators of outcome and disease response to therapy. Proteomics analysis of serum and ascites has also given us sources with which to discover possible early markers for the presence of new disease and for the progression of established cancer throughout the course of treatment. Unfortunately, this wealth of information has yielded little to date in changing the clinical care of these patients from a diagnostic, prognostic, or treatment perspective. The rational examination and translation of proteomics data in the context of past clinical trials and the design of future clinical trials must occur before we can march forward into the future of personalized medicine. PMID:20561909

  5. [Robotic surgery in gynecology].

    PubMed

    Hibner, Michał; Marianowski, Piotr; Szymusik, Iwona; Wielgós, Mirosław

    2012-12-01

    Introduction of robotic surgery in the first decade of the 21 century was one of the biggest breakthroughs in surgery since the introduction of anesthesia. For the first time in history the surgeon was placed remotely from the patient and was able to operate with the device that has more degrees of freedom than human hand. Initially developed for the US Military in order to allow surgeons to be removed from the battlefield, surgical robots quickly made a leap to the mainstream medicine. One of the first surgical uses for the robot was cardiac surgery but it is urology and prostate surgery that gave it a widespread popularity Gynecologic surgeons caught on very quickly and it is estimated that 31% of hysterectomies done in the United States in 2012 will be done robotically. With over half a million hysterectomies done each year in the US alone, gynecologic surgery is one of the main driving forces behind the growth of robotic surgery Other applications in gynecology include myomectomy oophorectomy and ovarian cystectomy resection of endometriosis and lymphadenectomy Advantages of the surgical robot are clearly seen in myomectomy The wrist motion allows for better more precise suturing than conventional "straight stick" laparoscopy The strength of the arms allow for better pulling of the suture and the third arm for holding the suture on tension. Other advantage of the robot is scaling of the movements when big movement on the outside translates to very fine movement on the inside. This enables much more precise surgery and may be important in the procedures like tubal anastomosis and implantation of the ureter Three-dimensional vision provides excellent depth of field perception. It is important for surgeons who are switching from open surgeries and preliminary evidence shows that it may allow for better identification of lesions like endometriosis. Another big advantage of robotics is that the surgeon sits comfortably with his/her arms and head supported. This

  6. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    PubMed Central

    Bennike, Tue Bjerg; Barnaby, Omar; Steen, Hanno; Stensballe, Allan

    2015-01-01

    Synovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein concentration, content, and synovial fluid volume change dramatically during active joint diseases and inflammation, and the proteome composition of healthy synovial fluid is incompletely characterized. We performed a normative proteomics analysis of porcine synovial fluid, and report data from optimizing proteomic methods to investigate the proteome of healthy porcine synovial fluid (Bennike et al., 2014 [1]). We included an evaluation of different proteolytic sample preparation techniques, and an analysis of posttranslational modifications with a focus on glycosylation. We used pig (Sus Scrofa) as a model organism, as the porcine immune system is highly similar to human and the pig genome is sequenced. Furthermore, porcine model systems are commonly used large animal models to study several human diseases. In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935. PMID:26543887

  7. Fruit harvesting robots in Japan.

    PubMed

    Kondo, N; Monta, M; Fujiura, T

    1996-01-01

    We have developed harvesting robots for tomato, petty-tomato, cucumber and grape in Japan. These robots mainly consist of manipulators, end-effectors, visual sensors and traveling devices. These mechanisms of the robot components were developed based on the physical properties of the work objects. The robots must work automatically by themselves in greenhouses or fields, since we are considering for one operator to tend several robots in the production system. The system is modeled after Japanese agriculture which is commonly seen to produce many kinds of crops in greenhouses and in many small fields intensively. Bioproduction in space is somewhat similar to the agricultural system in Japan, because few operators have to work in a small space. Employing robots for bioproduction in space is considered desirable in near future. The following is a description of the harvesting robots.

  8. Fruit harvesting robots in Japan

    NASA Astrophysics Data System (ADS)

    Kondo, N.; Monta, M.; Fujiura, T.

    We have developed harvesting robots for tomato /1/, petty-tomato, cucumber /2/ and grape /3/ in Japan. These robots mainly consist of manipulators, end-effectors, visual sensors and traveling devices. These mechanisms of the robot components were developed based on the physical properties of the work objects. The robots must work automatically by themselves in greenhouses or fields, since we are considering for one operator to tend several robots in the production system. The system is modeled after Japanese agriculture which is commonly seen to produce many kinds of crops in greenhouses and in many small fields intensively. Bioproduction in space is somewhat similar to the agricultural system in Japan, because few operators have to work in a small space. Employing robots for bioproduction in space is considered desirable in near future. The following is a description of the harvesting robots.

  9. Intelligent Robots for Factory Automation

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Oh, S. J.

    1985-04-01

    Industrial robots are now proven technology in a variety of applications including welding, materials handling, spray painting, machine loading and assembly. However, to fully realize the potential of these universal manipulators , "intelligence" needs to be added to the industrial robot. This involves adding sensory capability and machine intelligence to the controls. The "intelligence" may be added externally or as integral components of the robot. These new "intelligent robots" promise to greatly enhance the versatility of the robot for factory applications. The purpose of this paper is to present a brief review of the techniques and applications of intelligent robots for factory automation and to suggest possible designs for the intelligent robot of the future.

  10. Proteomic approaches in research of cyanobacterial photosynthesis.

    PubMed

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  11. Biospecimen Solicitation - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A funding opportunity in support of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) seeks to prospectively procure tumor samples, collected for proteomics investigation.

  12. Proteomics of Leaf Tissues from Populus

    SciTech Connect

    Hurst, Gregory {Greg} B; Yang, Xiaohan; Tschaplinski, Timothy J; Tuskan, Gerald A; Lankford, Patricia K; Shah, Manesh B; Jawdy, Sara; Gunter, Lee E; Engle, Nancy L

    2010-01-01

    Trees of the genus Populus are farmed commercially for wood and fiber, and are a potential bioenergy crop. As a scientific model organism, P. trichocarpa was the first forest tree for which the genome sequence has been determined. Knowledge of the Populus proteome will provide a deeper understanding of gene expression patterns in various tissues of the plant. To build on our previous profile of the proteome of xylem tissue in Populus (Kalluri et al., Proteomics 2009, 9, 4871), we are currently developing methods for studying the proteome of Populus leaves.

  13. Informatics solutions for high-throughput proteomics.

    PubMed

    Topaloglou, Thodoros

    2006-06-01

    The success of mass-spectrometry-based proteomics as a method for analyzing proteins in biological samples is accompanied by challenges owning to demands for increased throughput. These challenges arise from the vast volume of data generated by proteomics experiments combined with the heterogeneity in data formats, processing methods, software tools and databases that are involved in the translation of spectral data into relevant and actionable information for scientists. Informatics aims to provide answers to these challenges by transferring existing solutions from information management to proteomics and/or by generating novel computational methods for automation of proteomics data processing.

  14. Quantitative Proteomic Analysis of the Human Nucleolus.

    PubMed

    Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2016-01-01

    Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a "time-lapse" view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts. PMID:27576725

  15. Proteomic biomarkers in lung cancer.

    PubMed

    Pastor, M D; Nogal, A; Molina-Pinelo, S; Carnero, A; Paz-Ares, L

    2013-09-01

    The correct understanding of tumour development relies on the comprehensive study of proteins. They are the main orchestrators of vital processes, such as signalling pathways, which drive the carcinogenic process. Proteomic technologies can be applied to cancer research to detect differential protein expression and to assess different responses to treatment. Lung cancer is the number one cause of cancer-related death in the world. Mostly diagnosed at late stages of the disease, lung cancer has one of the lowest 5-year survival rates at 15 %. The use of different proteomic techniques such as two-dimensional gel electrophoresis (2D-PAGE), isotope labelling (ICAT, SILAC, iTRAQ) and mass spectrometry may yield new knowledge on the underlying biology of lung cancer and also allow the development of new early detection tests and the identification of changes in the cancer protein network that are associated with prognosis and drug resistance. PMID:23606351

  16. Brucella proteomes--a review.

    PubMed

    DelVecchio, Vito G; Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy A; Kraycer, Jo Ann; Estock, Frank; Elzer, Phil; Mujer, Cesar V

    2002-12-20

    The proteomes of selected Brucella spp. have been extensively analyzed by utilizing current proteomic technology involving 2-DE and MALDI-MS. In Brucella melitensis, more than 500 proteins were identified. The rapid and large-scale identification of proteins in this organism was accomplished by using the annotated B. melitensis genome which is now available in the GenBank. Coupled with new and powerful tools for data analysis, differentially expressed proteins were identified and categorized into several classes. A global overview of protein expression patterns emerged, thereby facilitating the simultaneous analysis of different metabolic pathways in B. melitensis. Such a global characterization would not have been possible by using time consuming and traditional biochemical approaches. The era of post-genomic technology offers new and exciting opportunities to understand the complete biology of different Brucella species.

  17. Human Saliva Proteome and Transcriptome

    PubMed Central

    Hu, S.; Li, Y.; Wang, J.; Xie, Y.; Tjon, K.; Wolinsky, L.; Loo, R.R.O.; Loo, J.A.; Wong, D.T.

    2007-01-01

    This paper tests the hypothesis that salivary proteins and their counterpart mRNAs co-exist in human whole saliva. Global profiling of human saliva proteomes and transcriptomes by mass spectrometry (MS) and expression microarray technologies, respectively, revealed many similarities between saliva proteins and mRNAs. Of the function-known proteins identified in saliva, from 61 to 70% were also found present as mRNA transcripts. For genes not detected at both protein and mRNA levels, we made further efforts to determine if the counterpart is present. Of 19 selected genes detected only at the protein level, the mRNAs of 13 (68%) genes were found in saliva by RT-PCR. In contrast, of many mRNAs detected only by microarrays, their protein products were found in saliva, as reported previously by other investigators. The saliva transcriptome may provide preliminary insights into the boundary of the saliva proteome. PMID:17122167

  18. Touch Sensor for Robots

    NASA Technical Reports Server (NTRS)

    Primus, H. C.

    1986-01-01

    Touch sensor for robot hands provides information about shape of grasped object and force exerted by gripper on object. Pins projecting from sensor create electrical signals when pressed. When grasped object depresses pin, it contacts electrode under it, connecting electrode to common electrode. Sensor indicates where, and how firmly, gripper has touched object.

  19. Robot Serviced Space Facility

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R. (Inventor)

    1992-01-01

    A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.

  20. An Inexpensive Robotics Laboratory.

    ERIC Educational Resources Information Center

    Inigo, R. M.; Angulo, J. M.

    1985-01-01

    Describes the design and implementation of a simple robot manipulator. The manipulator has three degrees of freedom and is controlled by a general purpose microcomputer. The basis for the manipulator (which costs under $100) is a simple working model of a crane. (Author/JN)

  1. Savannah River Site Robotics

    ScienceCinema

    None

    2016-07-12

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  2. Brain controlled robots

    PubMed Central

    Kawato, Mitsuo

    2008-01-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey’s motor cortex in Miguel Nicolelis’s lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the “Computational Brain Project.” CB-i’s locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey’s voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  3. Industrial robot's vision systems

    NASA Astrophysics Data System (ADS)

    Iureva, Radda A.; Raskin, Evgeni O.; Komarov, Igor I.; Maltseva, Nadezhda K.; Fedosovsky, Michael E.

    2016-03-01

    Due to the improved economic situation in the high technology sectors, work on the creation of industrial robots and special mobile robotic systems are resumed. Despite this, the robotic control systems mostly remained unchanged. Hence one can see all advantages and disadvantages of these systems. This is due to lack of funds, which could greatly facilitate the work of the operator, and in some cases, completely replace it. The paper is concerned with the complex machine vision of robotic system for monitoring of underground pipelines, which collects and analyzes up to 90% of the necessary information. Vision Systems are used to identify obstacles to the process of movement on a trajectory to determine their origin, dimensions and character. The object is illuminated in a structured light, TV camera records projected structure. Distortions of the structure uniquely determine the shape of the object in view of the camera. The reference illumination is synchronized with the camera. The main parameters of the system are the basic distance between the generator and the lights and the camera parallax angle (the angle between the optical axes of the projection unit and camera).

  4. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  5. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  6. Robotic and Survey Telescopes

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  7. [Radical prostatectomy - pro robotic].

    PubMed

    Gillitzer, R

    2012-05-01

    Anatomical radical prostatectomy was introduced in the early 1980s by Walsh and Donker. Elucidation of key anatomical structures led to a significant reduction in the morbidity of this procedure. The strive to achieve similar oncological and functional results to this gold standard open procedure but with further reduction of morbidity through a minimally invasive access led to the establishment of laparoscopic prostatectomy. However, this procedure is complex and difficult and is associated with a long learning curve. The technical advantages of robotically assisted surgery coupled with the intuitive handling of the device led to increased precision and shortening of the learning curve. These main advantages, together with a massive internet presence and aggressive marketing, have resulted in a rapid dissemination of robotic radical prostatectomy and an increasing patient demand. However, superiority of robotic radical prostatectomy in comparison to the other surgical therapeutic options has not yet been proven on a scientific basis. Currently robotic-assisted surgery is an established technique and future technical improvements will certainly further define its role in urological surgery. In the end this technical innovation will have to be balanced against the very high purchase and running costs, which remain the main limitation of this technology.

  8. Information Robots and Manipulators.

    ERIC Educational Resources Information Center

    Katys, G. P.; And Others

    In the modern concept a robot is a complex automatic cybernetics system capable of executing various operations in the sphere of human activity and in various respects combining the imitative capacity of the physical and mental activity of man. They are a class of automatic information systems intended for search, collection, processing, and…

  9. Robots in the Kindergarten.

    ERIC Educational Resources Information Center

    Keller, Joan; Shanahan, Dolores

    1983-01-01

    Describes work with kindergarten children to improve their development of estimation, decision making, divergent thinking, directionality, numerical concepts, and creative problem solving skills through learning to program and control the robot Big Trak, a truck which moves along the floor in response to their commands. (EAO)

  10. Mathematics and "Lego" Robots

    ERIC Educational Resources Information Center

    Hansen, Janus Halkier; Traeholt, Rune

    2007-01-01

    For the last four years, Soenderholm School, near the town of Aalborg, Northjutland, Denmark, has had an optional subject in the seventh grade called First "Lego" League (FLL). FLL is an international contest which aims to advance pupils' scientific interest. The task is for participants to build and program a "Lego" robot able to solve eight…

  11. Robotically assisted gynaecological surgery.

    PubMed

    Falcone, Tommaso; Steiner, Charles P

    2002-05-01

    Industry has used robots successfully for fine, delicate, repetitive tasks for decades. Recently, robots have been introduced into clinical medicine and specifically into the surgical suite. Voice algorithms have been developed that allow voice activation of some types of equipment in the operating room, such as the laparoscope or the light source. Advances in computer software have allowed a computer controller to translate a surgeon's movements from the handles located in a console to the robotic arms that hold the surgical instruments. This console is placed away from the surgical table. Clinical experience is limited and there are few published clinical trials. The initial trials have focused on laparoscopic microsuturing such as that performed during coronary bypass surgery or tubal anastomosis. Preliminary results have demonstrated that laparoscopic coronary bypass surgery with the internal mammary artery can be achieved. In gynaecological surgery, laparoscopic tubal reanastomosis can be performed using the same technique that has been used traditionally at laparotomy. Future clinical trials will assess whether other gynaecological procedures can be performed with robotic assistance. PMID:12082211

  12. Robotically assisted gynaecological surgery.

    PubMed

    Falcone, Tommaso; Steiner, Charles P

    2002-05-01

    Industry has used robots successfully for fine, delicate, repetitive tasks for decades. Recently, robots have been introduced into clinical medicine and specifically into the surgical suite. Voice algorithms have been developed that allow voice activation of some types of equipment in the operating room, such as the laparoscope or the light source. Advances in computer software have allowed a computer controller to translate a surgeon's movements from the handles located in a console to the robotic arms that hold the surgical instruments. This console is placed away from the surgical table. Clinical experience is limited and there are few published clinical trials. The initial trials have focused on laparoscopic microsuturing such as that performed during coronary bypass surgery or tubal anastomosis. Preliminary results have demonstrated that laparoscopic coronary bypass surgery with the internal mammary artery can be achieved. In gynaecological surgery, laparoscopic tubal reanastomosis can be performed using the same technique that has been used traditionally at laparotomy. Future clinical trials will assess whether other gynaecological procedures can be performed with robotic assistance.

  13. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  14. Savannah River Site Robotics

    SciTech Connect

    2010-01-01

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  15. A visual approach to proteomics.

    PubMed

    Nickell, Stephan; Kofler, Christine; Leis, Andrew P; Baumeister, Wolfgang

    2006-03-01

    Cryo-electron tomography is an emerging imaging technique that has unique potential for molecular cell biology. At the present resolution of 4-5 nm, large supramolecular structures can be studied in unperturbed cellular environments and, in the future, it will become possible to map molecular landscapes inside cells in a more comprehensive manner. 'Visual proteomics' aims to complement and extend mass-spectrometry-based inventories, and to provide a quantitative description of the macromolecular interactions that underlie cellular functions.

  16. Recent developments in quantitative proteomics.

    PubMed

    Becker, Christopher H; Bern, Marshall

    2011-06-17

    Proteomics is the study of proteins on a large scale, encompassing the many interests scientists and physicians have in their expression and physical properties. Proteomics continues to be a rapidly expanding field, with a wealth of reports regularly appearing on technology enhancements and scientific studies using these new tools. This review focuses primarily on the quantitative aspect of protein expression and the associated computational machinery for making large-scale identifications of proteins and their post-translational modifications. The primary emphasis is on the combination of liquid chromatography-mass spectrometry (LC-MS) methods and associated tandem mass spectrometry (LC-MS/MS). Tandem mass spectrometry, or MS/MS, involves a second analysis within the instrument after a molecular dissociative event in order to obtain structural information including but not limited to sequence information. This review further focuses primarily on the study of in vitro digested proteins known as bottom-up or shotgun proteomics. A brief discussion of recent instrumental improvements precedes a discussion on affinity enrichment and depletion of proteins, followed by a review of the major approaches (label-free and isotope-labeling) to making protein expression measurements quantitative, especially in the context of profiling large numbers of proteins. Then a discussion follows on the various computational techniques used to identify peptides and proteins from LC-MS/MS data. This review article then includes a short discussion of LC-MS approaches to three-dimensional structure determination and concludes with a section on statistics and data mining for proteomics, including comments on properly powering clinical studies and avoiding over-fitting with large data sets.

  17. Recent Developments in Quantitative Proteomics

    PubMed Central

    Becker, Christopher H.; Bern, Marshall

    2010-01-01

    Proteomics is the study of proteins on a large scale, encompassing the many interests scientists and physicians have in their expression and physical properties. Proteomics continues to be a rapidly expanding field, with a wealth of reports regularly appearing on technology enhancements and scientific studies using these new tools. This review focuses primarily on the quantitative aspect of protein expression and the associated computational machinery for making large-scale identifications of proteins and their post-translational modifications. The primary emphasis is on the combination of liquid chromatography-mass spectrometry (LC-MS) methods and associated tandem mass spectrometry (LC-MS/MS). Tandem mass spectrometry, or MS/MS, involves a second analysis within the instrument after a molecular dissociative event in order to obtain structural information including but not limited to sequence information. This review further focuses primarily on the study of in vitro digested proteins known as bottom-up or shotgun proteomics. A brief discussion of recent instrumental improvements precedes a discussion on affinity enrichment and depletion of proteins, followed by a review of the major approaches (label-free and isotope-labeling) to making protein expression measurements quantitative, especially in the context of profiling large numbers of proteins. Then a discussion follows on the various computational techniques used to identify peptides and proteins from LC-MS/MS data. This review article then includes a short discussion of LC-MS approaches to three-dimensional structure determination and concludes with a section on statistics and data mining for proteomics, including comments on properly powering clinical studies and avoiding over-fitting with large data sets. PMID:20620221

  18. Proteomics: analytical tools and techniques.

    PubMed

    MacCoss, M J; Yates, J R

    2001-09-01

    Scientists have long been interested in measuring the effects of different stimuli on protein expression and metabolism. Analytical methods are being developed for the automated separation, identification, and quantitation of all of the proteins within the cell. Soon, investigators will be able to observe the effects of an experiment on every protein (as opposed to a selected few). This review presents a discussion of recent technological advances in proteomics in addition to exploring current methodological limitations.

  19. [Variability of healthy human proteome].

    PubMed

    Pakharukova, N A; Pastushkova, L Kh; Moshkovskiĭ, S A; Larina, I M

    2012-01-01

    The purpose of this review is to analyze investigations devoted to characteristic of protein variability and diversity of their posttranslational modifications in healthy humans. The numerous researches have demonstrated that proteomic profile has a considerable both intra- and inter-individual variability, and quite often normal variability of some proteins can be comparable to changes observed in pathological processes. Results obtained by our research group have confirmed high intra-individual variability of serum low-molecular subproteome of healthy volunteers, certified by a special medial committee. Proteins characterized by high variability in normal conditions (e.g. haptoglobin--0-40 mg/ml; lysozyme--0,01-0,1 mg/ml; C-reactive protein--0,01-0,3 mg/ml) should be excluded from the list of potential biomarkers. On the contrary, proteins and peptides characterized by insignificant dispersion in healthy population (such as albumin--coefficient of variation (CV) 9%; transferrin--CV14%; C3c complement--CV 17%, alpha-1 acid glycoprotein--CV 21%, alpha2-macroglobulin--CV 20%; transthyretin fragment--CV 28,3% and beta-chain alpha2-HS-glycoprotein--CV 29,7%) can provide us with important information about state of health. Thus investigations of plasticity in proteomic profiles of healthy humans will help to correct reference intervals used in clinical proteomics. PMID:23289293

  20. Human saliva proteome: an overview

    NASA Astrophysics Data System (ADS)

    Griffin, Timothy J.

    2014-06-01

    Human saliva contains a rich mixture of biomolecules. Proteins are a major component of this mixture. Given their role as the molecular effectors within biological systems, ranging from catalysis to transport to structure, proteins have great potential as biomarkers of health and disease. The ability to collect these salivary biomarkers easily using non-invasive means makes saliva proteins even more attractive for diagnostic applications. Thousands of proteins are now to be known to be present in human saliva - discovered using proteomic technologies. Emerging technologies are now making it possible to go beyond large-scale cataloging of salivary proteins. These include approaches to catalog protein contributions from the community of microorganisms residing in the oral cavity (metaproteomics) that may reflect the health state of the human host. New mass spectrometry-based proteomics methods are also emerging, shifting the emphasis from large-scale discovery experiments to hypothesis-driven assays for profiling proteins of interest within saliva, enabling validation of their association with specific health conditions. This paper provides a brief overview of efforts to catalog the proteome of human saliva. Recent developments making possible characterization of the metaproteome of human saliva will be discussed, and technologies driving new mass spectrometry-based assays for targeted analysis of proteins within complex samples, such as saliva.

  1. Proteomic Investigations into Hemodialysis Therapy.

    PubMed

    Bonomini, Mario; Sirolli, Vittorio; Pieroni, Luisa; Felaco, Paolo; Amoroso, Luigi; Urbani, Andrea

    2015-01-01

    The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane's performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane's bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research. PMID:26690416

  2. Protein Neighbors and Proximity Proteomics*

    PubMed Central

    Rees, Johanna S.; Li, Xue-Wen; Perrett, Sarah; Lilley, Kathryn S.; Jackson, Antony P.

    2015-01-01

    Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest. PMID:26355100

  3. CMPD: cancer mutant proteome database.

    PubMed

    Huang, Po-Jung; Lee, Chi-Ching; Tan, Bertrand Chin-Ming; Yeh, Yuan-Ming; Julie Chu, Lichieh; Chen, Ting-Wen; Chang, Kai-Ping; Lee, Cheng-Yang; Gan, Ruei-Chi; Liu, Hsuan; Tang, Petrus

    2015-01-01

    Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes.

  4. CMPD: cancer mutant proteome database

    PubMed Central

    Huang, Po-Jung; Lee, Chi-Ching; Tan, Bertrand Chin-Ming; Yeh, Yuan-Ming; Julie Chu, Lichieh; Chen, Ting-Wen; Chang, Kai-Ping; Lee, Cheng-Yang; Gan, Ruei-Chi; Liu, Hsuan; Tang, Petrus

    2015-01-01

    Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes. PMID:25398898

  5. Forensic Proteomics of Poxvirus Production

    SciTech Connect

    Wunschel, David S.; Tulman, Edan; Engelmann, Heather E.; Clowers, Brian H.; Geary, Steven J.; Robinson, Aaron C.; Liao, Xiaofen

    2013-08-27

    The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signature of their production system. Here we have explored a proteomic analysis of Vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins, and several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.

  6. Robot mother ship design

    NASA Astrophysics Data System (ADS)

    Budulas, Peter P.; Young, Stuart H.; Emmerman, Philip J.

    2000-07-01

    Small physical agents will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); chemical and biological agent detection, logistics, sentry; and communications relay will have advanced sensor and mobility characteristics. The mother ship much effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. The mother ship concept presented in this paper includes the case where the mother ship is itself a robot or a manned system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the robot teams. The mother ship must also establish a robust communications network between the agents and is an up-link point for disseminating the intelligence gathered by the smaller agents; and, because of its global knowledge, provides the high-level information fusion, control and planning for the collaborative physical agents. Additionally, the mother ship incorporates battlefield visualization, information fusion, and multi-resolution analysis, and intelligent software agent technology, to support mission planning and execution. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of a robot mother ship. This research includes docking, battlefield visualization, intelligent software agents, adaptive communications, information fusion, and multi- modal human computer interaction.

  7. Soldier universal robot controller

    NASA Astrophysics Data System (ADS)

    Hyams, Jeffrey; Batavia, Parag; Liao, Elizabeth; Somerville, Andrew

    2008-04-01

    The Soldier Universal Robot Controller (SURC) is a modular OCU designed for simultaneous control of heterogeneous unmanned vehicles. It has a well defined, published API., defined using XML schemas, that allows other potential users of the system to develop their own modules for rapid integration with SURC. The SURC architecture is broken down into three layers: User Interface, Core Functions, and Transport. The User Interface layer is the front end module which provides the human computer interface for user control of robots. The Core layer is further divided into the following modules: Capabilities, Tactical, Mobility, and World Model. The Capabilities module keeps track of the known robots and provides a list of specifications and services. The Mobility module provides path planning via D*, while the Tactical module provides higher level mission planning (multi-agent/multi-mission) capabilities for collaborative operations. The World Model module is a relational database which stores world model objects. Finally, a Transport module provides translation from the SURC architecture to the robot specific messaging protocols (such as JAUS). This allows fast integration of new robot protocols into an existing SURC implementation to enable a new system to rapidly leverage existing SURC capabilities. The communication between different modules within the SURC architecture is done via XML. This gives developers and users the flexibility to extend existing messages without breaking backwards compatibility. The modularity of SURC offers users and developers alike the capability to create custom modules and plug them into place, as long as they follow the pre defined messaging API for that module.

  8. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  9. 30 Years of Robotic Surgery.

    PubMed

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics. PMID:27177648

  10. 30 Years of Robotic Surgery.

    PubMed

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  11. Robots hooked on drugs. Robotic automation expands pharmacy services.

    PubMed

    Marietti, C

    1997-11-01

    Hospitals are not known for automating labor-intensive tasks but robots are just beginning to make inroads in health-care. The first--and still only--robot grew from a class assignment to use an established technology in a new growth industry. The established technology was bar coding; the industry health-care; and the result a robotic device for the hospital pharmacy.

  12. Robotic repair of scrotal bladder hernia during robotic prostatectomy.

    PubMed

    Sung, Ee-Rah; Park, Sung Yul; Ham, Won Sik; Jeong, Wooju; Lee, Woo Jung; Rha, Koon Ho

    2008-09-01

    We report a case of scrotal bladder hernia in a 68-year-old man who was also diagnosed with prostate cancer. We fixed the herniated portion of the bladder using robotics after having successfully accomplished robotic prostatectomy. To the best of our knowledge, this is the first case report on simultaneous repair of scrotal bladder hernia and prostate cancer where both pathological findings have been treated with the assistance of robotics at a single operation. PMID:27628264

  13. Applications of Proteomic Technologies to Toxicology

    EPA Science Inventory

    Proteomics is the large-scale study of gene expression at the protein level. This cutting edge technology has been extensively applied to toxicology research recently. The up-to-date development of proteomics has presented the toxicology community with an unprecedented opportunit...

  14. Global Proteome Analysis of Leptospira interrogans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...

  15. Proteomics: Protein Identification Using Online Databases

    ERIC Educational Resources Information Center

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  16. Endosperm and Amyloplast Proteomes of Wheat Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in proteomics and genomics have improved our understanding of the gluten proteins, a complex and functionally important protein group. Proteomic approaches also have been used to identify other proteins that may play roles in wheat flour functionality, to assign genes for gluten proteins to...

  17. Centennial Paper: Proteomics in animal science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomics holds significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we wil...

  18. The promise of proteomics in animal science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomics hold significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we will...

  19. Structural characterization of the human proteome.

    PubMed

    Müller, Arne; MacCallum, Robert M; Sternberg, Michael J E

    2002-11-01

    This paper reports an analysis of the encoded proteins (the proteome) of the genomes of human, fly, worm, yeast, and representatives of bacteria and archaea in terms of the three-dimensional structures of their globular domains together with a general sequence-based study. We show that 39% of the human proteome can be assigned to known structures. We estimate that for 77% of the proteome, there is some functional annotation, but only 26% of the proteome can be assigned to standard sequence motifs that characterize function. Of the human protein sequences, 13% are transmembrane proteins, but only 3% of the residues in the proteome form membrane-spanning regions. There are substantial differences in the composition of globular domains of transmembrane proteins between the proteomes we have analyzed. Commonly occurring structural superfamilies are identified within the proteome. The frequencies of these superfamilies enable us to estimate that 98% of the human proteome evolved by domain duplication, with four of the 10 most duplicated superfamilies specific for multicellular organisms. The zinc-finger superfamily is massively duplicated in human compared to fly and worm, and occurrence of domains in repeats is more common in metazoa than in single cellular organisms. Structural superfamilies over- and underrepresented in human disease genes have been identified. Data and results can be downloaded and analyzed via web-based applications at http://www.sbg.bio.ic.ac.uk.

  20. Spatial awareness in robotic theatre.

    PubMed

    Ark, Sandip; Williams, Joanne

    2016-03-01

    As surgical and anaesthetic procedures become more complex, operating theatres need to be larger and multi-purpose to accommodate specialist equipment such as the Da Vinci Robot. The Da Vinci theatre at The Royal Wolverhampton NHS trust (RWT) is a modern theatre equipped and designed specifically for robotic surgery. When we first began to perform robotic surgery at RWT we faced many challenges on how to maximise the space available to us, whilst striving to minimise the chance of desterilisation. PMID:27149830

  1. Space Station robotics planning tools

    NASA Technical Reports Server (NTRS)

    Testa, Bridget Mintz

    1992-01-01

    The concepts are described for the set of advanced Space Station Freedom (SSF) robotics planning tools for use in the Space Station Control Center (SSCC). It is also shown how planning for SSF robotics operations is an international process, and baseline concepts are indicated for that process. Current SRMS methods provide the backdrop for this SSF theater of multiple robots, long operating time-space, advanced tools, and international cooperation.

  2. [Robotic surgery: toy or tool?].

    PubMed

    Vallancien, Guy; Cathelineau, Xavier; Rozet, François; Barret, Eric

    2005-05-01

    Telemanipulation has been developed for industrial purposes since the 1970s. More recently, telemanipulated arms entered the operating room. This paper briefly describes the history of surgical robotics and discusses the advantages and disadvantages for both patients and surgeons. The authors advocate the development of robotic surgery, as it facilitates the training of young surgeons and can be useful during certain phases of an operation. Thus, robotic surgery is more a promising tool than a simple toy.

  3. Control of Single Wheel Robots

    NASA Astrophysics Data System (ADS)

    Xu, Yangsheng; Ou, Yongsheng

    This monograph presents a novel concept of a mobile robot, which is a single-wheel, gyroscopically stabilized robot. The robot is balanced by a spinning wheel attached through a two-link manipulator at the wheel bearing, and actuated by a drive motor. This configuration conveys significant advantages including insensitivity to attitude disturbances, high maneuverability, low rolling resistance, ability to recover from falls, and amphibious capability for potential applications on both land and water.

  4. Climbing robot. [caterpillar design

    NASA Technical Reports Server (NTRS)

    Kerley, James J. (Inventor); May, Edward L. (Inventor); Ecklund, Wayne D. (Inventor)

    1993-01-01

    A mobile robot for traversing any surface consisting of a number of interconnected segments, each interconnected segment having an upper 'U' frame member, a lower 'U' frame member, a compliant joint between the upper 'U' frame member and the lower 'U' frame member, a number of linear actuators between the two frame members acting to provide relative displacement between the frame members, a foot attached to the lower 'U' frame member for adherence of the segment to the surface, an inter-segment attachment attached to the upper 'U' frame member for interconnecting the segments, a power source connected to the linear actuator, and a computer/controller for independently controlling each linear actuator in each interconnected segment such that the mobile robot moves in a caterpillar like fashion.

  5. Robotic Waterjet System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA needed a way to safely strip old paint and thermal protection material from reusable components from the Space Shuttle; to meet this requirement, Marshall Space Flight Center teamed with United Technologies' USBI Company and developed a stripping system based on hydroblasting. United Technology spun off a new company, Waterjet Systems, to commercialize and market the technology. The resulting ARMS (Automated Robotic Maintenance Systems), employ waterblasts at 55,000 pounds per square inch controlled by target-sensitive robots. The systems are used on aircraft and engine parts, and the newest application is on ships, where it not only strips but catches the ensuing wastewater. This innovation results in faster, cheaper stripping with less clean-up and reduced environmental impact.

  6. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-01-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  7. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-12-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  8. Simulation of robot manipulators

    SciTech Connect

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-03-01

    This paper describes Oak Ridge National Laboratory`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories` Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment.

  9. NASA's Lunar Robotic Program

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2006-01-01

    Before returning humans to the Moon for mankind s seventh lunar landing, NASA will embark upon a series of robotic missions with International partnership, executed within the construct of an integrated program, designed specifically to prepare the way for this further human exploration. The Lunar Precursors Robotic Exploration Program (LPRP) will acquire knowledge about the moon and its environment, as well as to develop operational experience and infrastructure, all needed to bring about sustained human exploration in the lunar environment. This paper presents an overview of the program in its early stages, a review of the currently planned missions, highlights of several of the program s important features and objectives, and a discussion of the challenges faced as we move forward to prepare for a return of people to the Moon.

  10. 3D light robotics

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark; Banas, Andrew

    2016-04-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale domains gradually demand the development of a new generation of disruptive tools, not only for passively observing at nanoscopic scales, but also for actively reaching into and effectively handling constituents in this size domain. This intriguing mindset has recently led to the emergence of a novel research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short.

  11. Autonomous Realtime Threat-Hunting Robot (ARTHR

    ScienceCinema

    INL

    2016-07-12

    Idaho National Laboratory researchers developed an intelligent plug-and-play robot payload that transforms commercial robots into effective first responders for deadly chemical, radiological and explosive threats.

  12. Autonomous Realtime Threat-Hunting Robot (ARTHR

    SciTech Connect

    INL

    2008-05-29

    Idaho National Laboratory researchers developed an intelligent plug-and-play robot payload that transforms commercial robots into effective first responders for deadly chemical, radiological and explosive threats.

  13. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  14. ARIES NDA Robot operators` manual

    SciTech Connect

    Scheer, N.L.; Nelson, D.C.

    1998-05-01

    The ARIES NDA Robot is an automation device for servicing the material movements for a suite of Non-destructive assay (NDA) instruments. This suite of instruments includes a calorimeter, a gamma isotopic system, a segmented gamma scanner (SGS), and a neutron coincidence counter (NCC). Objects moved by the robot include sample cans, standard cans, and instrument plugs. The robot computer has an RS-232 connection with the NDA Host computer, which coordinates robot movements and instrument measurements. The instruments are expected to perform measurements under the direction of the Host without operator intervention. This user`s manual describes system startup, using the main menu, manual operation, and error recovery.

  15. NASA Robotics for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fischer, RIchard T.

    2007-01-01

    This presentation focuses on NASA's use of robotics in support of space exploration. The content was taken from public available websites in an effort to minimize any ITAR or EAR issues. The agenda starts with an introduction to NASA and the "Vision for Space Exploration" followed by NASA's major areas of robotic use: Robotic Explorers, Astronaut Assistants, Space Vehicle, Processing, and In-Space Workhorse (space infrastructure). Pictorials and movies of NASA robots in use by the major NASA programs: Space Shuttle, International Space Station, current Solar Systems Exploration and Mars Exploration, and future Lunar Exploration are throughout the presentation.

  16. Sensory Interactive Teleoperator Robotic Grasping

    NASA Technical Reports Server (NTRS)

    Alark, Keli; Lumia, Ron

    1997-01-01

    As the technological world strives for efficiency, the need for economical equipment that increases operator proficiency in minimal time is fundamental. This system links a CCD camera, a controller and a robotic arm to a computer vision system to provide an alternative method of image analysis. The machine vision system which was employed possesses software tools for acquiring and analyzing images which are received through a CCD camera. After feature extraction on the object in the image was performed, information about the object's location, orientation and distance from the robotic gripper is sent to the robot controller so that the robot can manipulate the object.

  17. Robotic systems in orthopaedic surgery.

    PubMed

    Lang, J E; Mannava, S; Floyd, A J; Goddard, M S; Smith, B P; Mofidi, A; Seyler, T M; Jinnah, R H

    2011-10-01

    Robots have been used in surgery since the late 1980s. Orthopaedic surgery began to incorporate robotic technology in 1992, with the introduction of ROBODOC, for the planning and performance of total hip replacement. The use of robotic systems has subsequently increased, with promising short-term radiological outcomes when compared with traditional orthopaedic procedures. Robotic systems can be classified into two categories: autonomous and haptic (or surgeon-guided). Passive surgery systems, which represent a third type of technology, have also been adopted recently by orthopaedic surgeons. While autonomous systems have fallen out of favour, tactile systems with technological improvements have become widely used. Specifically, the use of tactile and passive robotic systems in unicompartmental knee replacement (UKR) has addressed some of the historical mechanisms of failure of non-robotic UKR. These systems assist with increasing the accuracy of the alignment of the components and produce more consistent ligament balance. Short-term improvements in clinical and radiological outcomes have increased the popularity of robot-assisted UKR. Robot-assisted orthopaedic surgery has the potential for improving surgical outcomes. We discuss the different types of robotic systems available for use in orthopaedics and consider the indication, contraindications and limitations of these technologies.

  18. Robotic systems in orthopaedic surgery.

    PubMed

    Lang, J E; Mannava, S; Floyd, A J; Goddard, M S; Smith, B P; Mofidi, A; Seyler, T M; Jinnah, R H

    2011-10-01

    Robots have been used in surgery since the late 1980s. Orthopaedic surgery began to incorporate robotic technology in 1992, with the introduction of ROBODOC, for the planning and performance of total hip replacement. The use of robotic systems has subsequently increased, with promising short-term radiological outcomes when compared with traditional orthopaedic procedures. Robotic systems can be classified into two categories: autonomous and haptic (or surgeon-guided). Passive surgery systems, which represent a third type of technology, have also been adopted recently by orthopaedic surgeons. While autonomous systems have fallen out of favour, tactile systems with technological improvements have become widely used. Specifically, the use of tactile and passive robotic systems in unicompartmental knee replacement (UKR) has addressed some of the historical mechanisms of failure of non-robotic UKR. These systems assist with increasing the accuracy of the alignment of the components and produce more consistent ligament balance. Short-term improvements in clinical and radiological outcomes have increased the popularity of robot-assisted UKR. Robot-assisted orthopaedic surgery has the potential for improving surgical outcomes. We discuss the different types of robotic systems available for use in orthopaedics and consider the indication, contraindications and limitations of these technologies. PMID:21969424

  19. Students Learn About Station Robotics

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, Robotics Systems Flight Controller Jason Dyer participates in a Digital Learning Network (DLN) event with students at East Stroudsber...

  20. European and international collaboration in affinity proteomics.

    PubMed

    Stoevesandt, Oda; Taussig, Michael J

    2012-06-15

    In affinity proteomics, specific protein-binding molecules (a.k.a. binders), principally antibodies, are applied as reagents in proteome analysis. In recent years, advances in binder technologies have created the potential for an unprecedented view on protein expression and distribution patterns in plasma, cells and tissues and increasingly on protein function. Particular strengths of affinity proteomics methods include detecting proteins in their natural environments of cell or tissue, high sensitivity and selectivity for detection of low abundance proteins and exploiting binding actions such as functional interference in living cells. To maximise the use and impact of affinity reagents, it will be essential to create comprehensive, standardised binder collections. With this in mind, the EU FP7 programme AFFINOMICS (http://www.affinomics.org), together with the preceding EU programmes ProteomeBinders and AffinityProteome, aims to extend affinity proteomics research by generating a large-scale resource of validated protein-binding molecules for characterisation of the human proteome. Activity is directed at producing binders to about 1000 protein targets, primarily in signal transduction and cancer, by establishing a high throughput, coordinated production pipeline. An important aspect of AFFINOMICS is the development of highly efficient recombinant selection methods, based on phage, cell and ribosome display, capable of producing high quality binders at greater throughput and lower cost than hitherto. The programme also involves development of innovative and sensitive technologies for specific detection of target proteins and their interactions, and deployment of binders in proteomics studies of clinical relevance. The need for such binder generation programmes is now recognised internationally, with parallel initiatives in the USA for cancer (NCI) and transcription factors (NIH) and within the Human Proteome Organisation (HUPO). The papers in this volume of New

  1. Cooperative robotic sentry vehicles

    NASA Astrophysics Data System (ADS)

    Feddema, John T.; Lewis, Christopher L.; Klarer, Paul; Eisler, G. R.; Caprihan, Rahul

    1999-08-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories' Intelligent Systems and Robotics Center is developing and testing the feasibility of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform a surround task. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight 'Roving All Terrain Lunar Explorer Rovers' (RATLER), a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. For the surround task, both potential field and A* search path planners have been added to the base-station and vehicles. At the base-station, the operator specifies goal and exclusion regions on a GIS map. The path planner generates vehicles paths that are previewed by the operator. Once the operator has validated the path, the appropriate information is downloaded t the vehicles. For the potential field path planner, the polygons and line segments that represent the obstacles and goals are downloaded to the vehicles, instead of the simulated paths. On board the vehicles, the same potential field path planner generates the path except that it uses the true location of itself and the nearest neighboring vehicle. For the A* path planner, the actual path is downloaded to the vehicles because of limited on-board computational power.

  2. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  3. Robots: Fantasy and Reality

    SciTech Connect

    Calder, Neil

    2007-04-27

    A irreverent non-technical review of the history of surprisingly animate machines, from ancient Egypt to current times. Areas include teleoperators for hazardous environments, assembly systems, medical applications, entertainment, and science fiction. The talk has over 100 slides, covering such varied topics as Memnon son of Dawn, Droz's automata, Vaucanson's duck, cathedral clocks, Von Kempelen's chess player, household robots, Asimov's laws, Disneyland, dinosaurs, and movie droids and cyborgs.

  4. (Computer vision and robotics)

    SciTech Connect

    Jones, J.P.

    1989-02-13

    The traveler attended the Fourth Aalborg International Symposium on Computer Vision at Aalborg University, Aalborg, Denmark. The traveler presented three invited lectures entitled, Concurrent Computer Vision on a Hypercube Multicomputer'', The Butterfly Accumulator and its Application in Concurrent Computer Vision on Hypercube Multicomputers'', and Concurrency in Mobile Robotics at ORNL'', and a ten-minute editorial entitled, It Concurrency an Issue in Computer Vision.'' The traveler obtained information on current R D efforts elsewhere in concurrent computer vision.

  5. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  6. Robotic Intelligence Kernel: Driver

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel-Driver is built on top of the RIK-A and implements a dynamic autonomy structure. The RIK-D is used to orchestrate hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a single cognitive behavior kernel that provides intrinsic intelligence for a wide variety of unmanned ground vehicle systems.

  7. 2000 FIRST Robotics Competition

    NASA Technical Reports Server (NTRS)

    Purman, Richard

    2000-01-01

    The New Horizons Regional Education Center (NHREC) in Hampton, VA sought and received NASA funding to support its participation in the 2000 FIRST Robotics competition. FIRST, Inc. (For Inspiration and Recognition of Science and Technology) is an organization which encourages the application of creative science, math, and computer science principles to solve real-world engineering problems. The FIRST competition is an international engineering contest featuring high school, government, and business partnerships.

  8. Robotic tele-existence

    NASA Technical Reports Server (NTRS)

    Tachi, Susumu; Arai, Hirohiko; Maeda, Taro

    1989-01-01

    Tele-existence is an advanced type of teleoperation system that enables a human operator at the controls to perform remote manipulation tasks dexterously with the feeling that he or she exists in the remote anthropomorphic robot in the remote environment. The concept of a tele-existence is presented, the principle of the tele-existence display method is explained, some of the prototype systems are described, and its space application is discussed.

  9. Self-navigating robot

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1978-01-01

    Rangefinding equipment and onboard navigation system determine best route from point to point. Research robot has two TV cameras and laser for scanning and mapping its environment. Path planner finds most direct, unobstructed route that requires minimum expenditure of energy. Distance is used as measure of energy expense, although other measures such as time or power consumption (which would depend on the topography of the path) may be used.

  10. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  11. Robotics for port security

    NASA Astrophysics Data System (ADS)

    Smuda, William; Freiburger, Lonnie A.; Gerhart, Grant R.; Mallon, Lawrence

    2004-09-01

    The capacity through the use of robots with on board visual, NBC and HAZMAT sensors to rapidly and continuously screen convoys and staged exposed assets would be a force multiplier and measurably improve base and force protection at both inbound and outbound DOD and commercial facilities. This paper chronicles our experiment with the ODIS robot at the Ports of Los Angeles (POLA) and Long Beach (POLB) in July of 2003. POLA & POLB are responsible for moving over 30% of the United States trade goods. Queues of 54" container trucks routinely exceed 100 trucks, extending for over a mile from the port entrances. Spotted equipment and convoys at staging areas are a high visibility and value assets to a terrorist incident. The POLA/POLB scenario is also representative of TRANSCOM operations at the port of Basra during current operation in Iraq. The California Highway Patrol is responsible for physically inspecting these vehicles for roadworthiness and contraband, a dangerous and dirty job. We will also discuss the use of ODIS robots for this task.

  12. Robotic nuclear sample management

    SciTech Connect

    Hollen, R.M.; Beugelsdijk, T.J.; Temer, D.J.; Hopkins, V.A.

    1987-01-01

    The Analytical Chemistry Group of the Los Alamos National Laboratory processes in excess of 4000 plutonium metal samples each year. Depending on what specific elements are to be determined, each sample must be cut into fractions for distribution to the various task areas for specific analyses in areas such as mass spectrometry. A unique laboratory automation system has been developed based on a commercially available Zymate II robot. The robot consists of a central arm that operates in a hollow cylindrical work envelop and has four degrees of freedom. Accessible to the arm are standard Zymark laboratory stations, which include an analytical balance, a reagent dispensing station, a capping station, and vial racks. Custom stations designed and constructed by an in-house robotics group for corrosive environments include a vial capping station, a pipette tip shucker, and a vial dispenser. Initial reliability testing is currently in progress. Copper metal samples are being used in lieu of plutonium to identify areas in which mechanical adjustments are needed or in which the software needs modification. The system is projected to be commissioned during January 1988. Future plane include the addition of capabilities to accommodate plutonium oxide samples.

  13. ROBOT TASK SCENE ANALYZER

    SciTech Connect

    William R. Hamel; Steven Everett

    2000-08-01

    Environmental restoration and waste management (ER and WM) challenges in the United States Department of Energy (DOE), and around the world, involve radiation or other hazards which will necessitate the use of remote operations to protect human workers from dangerous exposures. Remote operations carry the implication of greater costs since remote work systems are inherently less productive than contact human work due to the inefficiencies/complexities of teleoperation. To reduce costs and improve quality, much attention has been focused on methods to improve the productivity of combined human operator/remote equipment systems; the achievements to date are modest at best. The most promising avenue in the near term is to supplement conventional remote work systems with robotic planning and control techniques borrowed from manufacturing and other domains where robotic automation has been used. Practical combinations of teleoperation and robotic control will yield telerobotic work systems that outperform currently available remote equipment. It is believed that practical telerobotic systems may increase remote work efficiencies significantly. Increases of 30% to 50% have been conservatively estimated for typical remote operations. It is important to recognize that the basic hardware and software features of most modern remote manipulation systems can readily accommodate the functionality required for telerobotics. Further, several of the additional system ingredients necessary to implement telerobotic control--machine vision, 3D object and workspace modeling, automatic tool path generation and collision-free trajectory planning--are existent.

  14. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  15. The Virtual Robotics Laboratory

    SciTech Connect

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  16. Goddard Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-01

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'×20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  17. The Virtual Robotics Laboratory

    SciTech Connect

    Kress, R.L.; Love, L.J.

    1997-03-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  18. Robotic Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Echols, Raymond

    2006-01-01

    This presentation describes current Lunar Exploration plans and objectives. It begins with specific statements from the President s vision for U.S. Space Exploration which pertain to robotic lunar missions. An outline of missions objectives is provided, along with a high-level schedule of events through the year 2025. Focus is then given to the Lunar Robotic and Precursor Program (LPRP) to describe objectives and goals. Recent developments in the Program are explained - specifically, the renaming of the RLEP program to "LPRP" and the movement of the program office to MSFC. A brief summary of the synergy expected between the robotic and crewed missions, with the LSAM descent stage Project is given. The Lunar Reconnaissance Orbiter mission, with its co-manifested Lunar Crater Observation and Sensing Satellite (LCROSS), is then described with an overview of the payloads and mission objectives. Finally, information is given about the expected future of the LPRP program and Exploration and the development of a compressive Lunar Exploration Architecture.

  19. Robotic tool change mechanism

    NASA Technical Reports Server (NTRS)

    Voellmer, George M. (Inventor)

    1991-01-01

    An assembly of three major components is disclosed which included a wrist interface plate which is secured to the wrist joint of a robotic arm, a tool interface plate which is secured to each tool intended for use by the robotic arm, and a tool holster for each tool attached to the interface plate. The wrist interface plate and a selected tool interface plate are mutually connectable together through an opening or recess in the upper face of the interface plate by means of a notched tongue protruding from the front face of the wrist interface plate which engages a pair of spring-biased rotatable notched wheels located within the body of the tool interface plate. The tool holster captures and locks onto the tool interface plate by means of a pair of actuation claws including a locking tab and an unlocking wedge which operate respective actuation bosses on each of the notched wheels in response to a forward and backward motion of the tool interface plate as a result of motion of the robotic arm to either park the tool or use the tool.

  20. The walking robot project

    NASA Technical Reports Server (NTRS)

    Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.

    1991-01-01

    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.

  1. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  2. Multisensor robot navigation system

    NASA Astrophysics Data System (ADS)

    Persa, Stelian; Jonker, Pieter P.

    2002-02-01

    Almost all robot navigation systems work indoors. Outdoor robot navigation systems offer the potential for new application areas. The biggest single obstacle to building effective robot navigation systems is the lack of accurate wide-area sensors for trackers that report the locations and orientations of objects in an environment. Active (sensor-emitter) tracking technologies require powered-device installation, limiting their use to prepared areas that are relative free of natural or man-made interference sources. The hybrid tracker combines rate gyros and accelerometers with compass and tilt orientation sensor and DGPS system. Sensor distortions, delays and drift required compensation to achieve good results. The measurements from sensors are fused together to compensate for each other's limitations. Analysis and experimental results demonstrate the system effectiveness. The paper presents a field experiment for a low-cost strapdown-IMU (Inertial Measurement Unit)/DGPS combination, with data processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost ISA (Inertial Sensor Assembly) and because of the relatively small area of the trajectory. The scope of this experiment was to test the feasibility of an integrated DGPS/IMU system of this type and to develop a field evaluation procedure for such a combination.

  3. Toxic metal proteomics: reaction of the mammalian zinc proteome with Cd²⁺.

    PubMed

    Namdarghanbari, Mohammad Ali; Bertling, Joseph; Krezoski, Susan; Petering, David H

    2014-07-01

    The hypothesis was tested that Cd(2+) undergoes measureable reaction with the Zn-proteome through metal ion exchange chemistry. The Zn-proteome of pig kidney LLC-PK1 cells is relatively inert to reaction with competing ligands, including Zinquin acid, EDTA, and apo-metallothionein. Upon reaction of Cd(2+) with the Zn-proteome, Cd(2+) associates with the proteome and near stoichiometric amounts of Zn(2+) become reactive with these chelating agents. The results strongly support the hypothesis that Cd(2+) displaces Zn(2+) from native proteomic binding sites resulting in the formation of a Cd-proteome. Mobilized Zn(2+) becomes adventitiously bound to proteome and available for reaction with added metal binding ligands. Cd-proteome and Zn-metallothionein readily exchange metal ions, raising the possibility that this reaction restores functionality to Cd-proteins. In a parallel experiment, cells were exposed to Cd(2+) and pyrithione briefly to generate substantial proteome-bound Cd(2+). Upon transition to a Cd(2+) free medium, the cells generated new metallothionein protein over time that bound most of the proteomic Cd(2+) as well as additional Zn(2+). PMID:24529759

  4. The International Proteomics Tutorial Programme (IPTP): a teaching tool box for the proteomics community.

    PubMed

    James, Peter

    2011-09-01

    The most critical functions of the various proteomics organisations are the training of young scientists and the dissemination of information to the general scientific community. The education committees of the Human Proteome Organisation (HUPO) and the European Proteomics Association (EuPA) together with their national counterparts are therefore launching the International Proteomics Tutorial Programme to meet these needs. The programme is being led by Peter James (Sweden), Thierry Rabilloud (France) and Kazuyuki Nakamura (Japan). It involves collaboration between the leading proteomics journals: Journal of Proteome Research, Journal of Proteomics, Molecular and Cellular Proteomics, and Proteomics. The overall level is aimed at Masters/PhD level students who are starting out their research and who would benefit from a solid grounding in the techniques used in modern protein-based research. The tutorial program will cover core techniques and basics as an introduction to scientists new to the field. At a later stage the programme may be expanded with a series of more advanced topics focussing on the application of proteomics techniques to biological problem solving. The entire series of articles and slides will be made freely available for teaching use at the Journals and Organisations homepages and at a special website, www.proteomicstutorials.org.

  5. Exploring TeleRobotics: A Radio-Controlled Robot

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2007-01-01

    Robotics is a rich and exciting multidisciplinary area to study and learn about electronics and control technology. The interest in robotic devices and systems provides the technology teacher with an excellent opportunity to make many concrete connections between electronics, control technology, and computers and science, engineering, and…

  6. Eclectic theory of intelligent robots

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Ghaffari, M.; Liao, X.; Ali, S. M. Alhaj; Sarkar, Saurabh; Reynolds, Scott; Mathur, Kovid

    2007-09-01

    The purpose of this paper is to introduce a concept of eclecticism for the design, development, simulation and implementation of a real time controller for an intelligent, vision guided robots. The use of an eclectic perceptual, creative controller that can select its own tasks and perform autonomous operations is illustrated. This eclectic controller is a new paradigm for robot controllers and is an attempt to simplify the application of intelligent machines in general and robots in particular. The idea is to uses a task control center and dynamic programming approach. However, the information required for an optimal solution may only partially reside in a dynamic database so that some tasks are impossible to accomplish. So a decision must be made about the feasibility of a solution to a task before the task is attempted. Even when tasks are feasible, an iterative learning approach may be required. The learning could go on forever. The dynamic database stores both global environmental information and local information including the kinematic and dynamic models of the intelligent robot. The kinematic model is very useful for position control and simulations. However, models of the dynamics of the manipulators are needed for tracking control of the robot's motions. Such models are also necessary for sizing the actuators, tuning the controller, and achieving superior performance. Simulations of various control designs are shown. Much of the model has also been used for the actual prototype Bearcat Cub mobile robot. This vision guided robot was designed for the Intelligent Ground Vehicle Contest. A novel feature of the proposed approach lies in the fact that it is applicable to both robot arm manipulators and mobile robots such as wheeled mobile robots. This generality should encourage the development of more mobile robots with manipulator capability since both models can be easily stored in the dynamic database. The multi task controller also permits wide

  7. Robotic mitral valve surgery.

    PubMed

    Kypson, Alan P; Nifong, L Wiley; Chitwood, W Randolph

    2003-12-01

    A renaissance in cardiac surgery has begun. The early clinical experience with computer-enhanced telemanipulation systems outlines the limitations of this approach despite some procedural success. Technologic advancements, such as the use of nitinol U-clips (Coalescent Surgical Inc., Sunnyvale, CA) instead of sutures requiring manual knot tying, have been shown to decrease operative times significantly. It is expected that with further refinements and development of adjunct technologies, the technique of computer-enhanced endoscopic cardiac surgery will evolve and may prove to be beneficial for many patients. Robotic technology has provided benefits to cardiac surgery. With improved optics and instrumentation, incisions are smaller. The ergometric movements and simulated three-dimensional optics project hand-eye coordination for the surgeon. The placement of the wristlike articulations at the end of the instruments moves the pivoting action to the plane of the mitral annulus. This improves dexterity in tight spaces and allows for ambidextrous suture placement. Sutures can be placed more accurately because of tremor filtration and high-resolution video magnification. Furthermore, the robotic system may have potential as an educational tool. In the near future, surgical vision and training systems might be able to model most surgical procedures through immersive technology. Thus, a "flight simulator" concept emerges where surgeons may be able to practice and perform the operation without a patient. Already, effective curricula for training teams in robotic surgery exist. Nevertheless, certain constraints continue to limit the advancement to a totally endoscopic computer-enhanced mitral valve operation. The current size of the instruments, intrathoracic instrument collisions, and extrathoracic "elbow" conflicts still can limit dexterity. When smaller instruments are developed, these restraints may be resolved. Furthermore, a working port incision is still required for

  8. Legume proteomics: Progress, prospects, and challenges.

    PubMed

    Rathi, Divya; Gayen, Dipak; Gayali, Saurabh; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Legumes are the major sources of food and fodder with strong commercial relevance, and are essential components of agricultural ecosystems owing to their ability to carry out endosymbiotic nitrogen fixation. In recent years, legumes have become one of the major choices of plant research. The legume proteomics is currently represented by more than 100 reference maps and an equal number of stress-responsive proteomes. Among the 48 legumes in the protein databases, most proteomic studies have been accomplished in two model legumes, soybean, and barrel medic. This review highlights recent contributions in the field of legume proteomics to comprehend the defence and regulatory mechanisms during development and adaptation to climatic changes. Here, we attempted to provide a concise overview of the progress in legume proteomics and discuss future developments in three broad perspectives: (i) proteome of organs/tissues; (ii) subcellular compartments; and (iii) spatiotemporal changes in response to stress. Such data mining may aid in discovering potential biomarkers for plant growth, in general, apart from essential components involved in stress tolerance. The prospect of integrating proteome data with genome information from legumes will provide exciting opportunities for plant biologists to achieve long-term goals of crop improvement and sustainable agriculture.

  9. Visualizing Meta-Features in Proteomic Maps

    PubMed Central

    2011-01-01

    Background The steps of a high-throughput proteomics experiment include the separation, differential expression and mass spectrometry-based identification of proteins. However, the last and more challenging step is inferring the biological role of the identified proteins through their association with interaction networks, biological pathways, analysis of the effect of post-translational modifications, and other protein-related information. Results In this paper, we present an integrative visualization methodology that allows combining experimentally produced proteomic features with protein meta-features, typically coming from meta-analysis tools and databases, in synthetic Proteomic Feature Maps. Using three proteomics analysis scenarios, we show that the proposed visualization approach is effective in filtering, navigating and interacting with the proteomics data in order to address visually challenging biological questions. The novelty of our approach lies in the ease of integration of any user-defined proteomic features in easy-to-comprehend visual representations that resemble the familiar 2D-gel images, and can be adapted to the user's needs. The main capabilities of the developed VIP software, which implements the presented visualization methodology, are also highlighted and discussed. Conclusions By using this visualization and the associated VIP software, researchers can explore a complex heterogeneous proteomics dataset from different perspectives in order to address visually important biological queries and formulate new hypotheses for further investigation. VIP is freely available at http://pelopas.uop.gr/~egian/VIP/index.html. PMID:21798033

  10. Proteomic analysis of Chinese hamster ovary cells.

    PubMed

    Baycin-Hizal, Deniz; Tabb, David L; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N; Krag, Sharon S; Cole, Robert N; Palsson, Bernhard O; Zhang, Hui; Betenbaugh, Michael

    2012-11-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  11. Proteomics: methodologies and applications in oncology.

    PubMed

    Wouters, Bradly G

    2008-04-01

    Few technological developments have created as much excitement and skepticism as proteomics over their potential to change clinical diagnostic and prognostic procedures. Proteomics concerns itself with the characterization and function of all cellular proteins, the ultimate determinants of cellular function. As such, it represents the end result of all mechanisms of gene regulation and thus offers tremendous potential for characterizing biology. In much the same way as what has occurred with the genome, the scientific community is coming to grips with the fact that the proteome, although enormously complex, is finite. It is conceivable that we will learn the identity of all possible proteins, including all posttranslational modifications. The rate of protein discovery continues to accelerate in large part because of improvements in mass spectrometry-based technologies coupled with improved genomic databases and bioinformatic tools. In addition, there is reason to believe that proteomics is on the verge of moving from a methodology that requires repeated proteome "discovery" to one that can more systematically profile proteomes. This review discusses current proteomic-based technologies and the efforts of scientists to move them into the clinic for use in patients treated with radiotherapy and other modalities.

  12. Proteomics of the periconception milieu.

    PubMed

    Fazeli, Alireza; Moein Vaziri, Najmeh; Holt, William Vincent

    2015-02-01

    There is increasing realisation that human health status in adulthood depends critically upon environmental conditions pertaining around the time of conception and during pregnancy. Poor maternal diet or adverse environmental conditions around the periconception period somehow induces the resultant embryo to adapt predictively in order to survive this level of stress for the whole of its life. However, if there is a mismatch between expectation and reality, where the conditions during later life are better than expected, things go wrong and the adult suffers a range of illnesses, including diabetes, heart disease, hypertension and stroke. Understanding the molecular signals that direct the early embryo to adopt appropriate adaptations to suit its future life would be extremely valuable. However, although it appears to be an ideal task for proteomic applications, there are technical, ethical and practical limitations to what can be achieved with the current framework of proteomic technology. Here, we review what has been achieved to date, explain some of the experimental problems and suggest some strategies for taking this field forward.

  13. Brain Proteomics of Anopheles gambiae

    PubMed Central

    Dwivedi, Sutopa B.; Muthusamy, Babylakshmi; Kumar, Praveen; Kim, Min-Sik; Nirujogi, Raja Sekhar; Getnet, Derese; Ahiakonu, Priscilla; De, Gourav; Nair, Bipin; Gowda, Harsha; Prasad, T.S. Keshava; Kumar, Nirbhay

    2014-01-01

    Abstract Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future. PMID:24937107

  14. Bioinformatic challenges in targeted proteomics.

    PubMed

    Reker, Daniel; Malmström, Lars

    2012-09-01

    Selected reaction monitoring mass spectrometry is an emerging targeted proteomics technology that allows for the investigation of complex protein samples with high sensitivity and efficiency. It requires extensive knowledge about the sample for the many parameters needed to carry out the experiment to be set appropriately. Most studies today rely on parameter estimation from prior studies, public databases, or from measuring synthetic peptides. This is efficient and sound, but in absence of prior data, de novo parameter estimation is necessary. Computational methods can be used to create an automated framework to address this problem. However, the number of available applications is still small. This review aims at giving an orientation on the various bioinformatical challenges. To this end, we state the problems in classical machine learning and data mining terms, give examples of implemented solutions and provide some room for alternatives. This will hopefully lead to an increased momentum for the development of algorithms and serve the needs of the community for computational methods. We note that the combination of such methods in an assisted workflow will ease both the usage of targeted proteomics in experimental studies as well as the further development of computational approaches. PMID:22866949

  15. MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.

    PubMed

    Berger, Sebastian T; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-10-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. PMID:26223766

  16. Neural Stem Cells (NSCs) and Proteomics*

    PubMed Central

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  17. Neural Stem Cells (NSCs) and Proteomics.

    PubMed

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  18. Students Compete at Robotics Competition

    ERIC Educational Resources Information Center

    Technology Teacher, 2005

    2005-01-01

    July 22-23, 2005 the Indiana Robotics Invitational (IRI) was held at Lawrence North High school in Indianapolis. The IRI began in Indiana in May 2000 with 20 teams. The first invitational was nicknamed the "Hoosier Havoc." The event was coordinated by FIRST robotics team #45 (the Techno-Kats) from Kokomo, Indiana. Today, the former Hoosier Havoc…

  19. Robotics: Past, Present, and Future.

    ERIC Educational Resources Information Center

    Dunne, Maurice J.

    Robots are finally receiving wide-spread attention as a means to realize the goal of automating factories. In the 1960's robot use was limited by unfavorable acquisition and operating costs and the affordable control technology limiting applications to relatively simple jobs. During the 1970's productivity of manufacturing organizations declined…

  20. Rotorcraft and Enabling Robotic Rescue

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2010-01-01

    This paper examines some of the issues underlying potential robotic rescue devices (RRD) in the context where autonomous or manned rotorcraft deployment of such robotic systems is a crucial attribute for their success in supporting future disaster relief and emergency response (DRER) missions. As a part of this discussion, work related to proof-of-concept prototyping of two notional RRD systems is summarized.

  1. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.

  2. Characterization Of Robot Work Cell

    NASA Technical Reports Server (NTRS)

    Anderson, Ronald R.; Paternoster, Vincent Y.; Guthmiller, Wayne A.

    1990-01-01

    Iterative process of measurement and computation used to characterize work cell of robot, increasing accuracy of mathematical model of work cell. Characterization needed because model used in off-line programming (OLP) to compute paths to control motion of robot. Increases accuracies of model and paths.

  3. Robotic Welding and Inspection System

    SciTech Connect

    H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

    2008-06-01

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  4. Human Resource Implications of Robotics.

    ERIC Educational Resources Information Center

    Hunt, H. Allan; Hunt, Timothy L.

    A study examined the job creation and job displacement potential of industrial robots in the United States and specifically, in Michigan, by 1990. To complete an analysis of the impact of robotics on the American labor force, researchers combined data from previous forecasts of future unit and dollar sales projections and from interviews with…

  5. Social robots for health applications.

    PubMed

    Breazeal, Cynthia

    2011-01-01

    Social robots are designed to interact with people in a manner that is consistent with human social psychology. They are a particularly intriguing technology in health domains due to their ability to engage people along social and emotional dimensions. In this paper, we highlight a number of interesting opportunities for social robots in healthcare related applications.

  6. Robotic joint experiments under ultravacuum

    NASA Technical Reports Server (NTRS)

    Borrien, A.; Petitjean, L.

    1988-01-01

    First, various aspects of a robotic joint development program, including gearbox technology, electromechanical components, lubrication, and test results, are discussed. Secondly, a test prototype of the joint allowing simulation of robotic arm dynamic effects is presented. This prototype is tested under vacuum with different types of motors and sensors to characterize the functional parameters: angular position error, mechanical backlash, gearbox efficiency, and lifetime.

  7. Robot Forearm and Dexterous Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    An electromechanical hand-and-forearm assembly has been developed for incorporation into an anthropomorphic robot that would be used in outer space. The assembly is designed to offer manual dexterity comparable to that of a hand inside an astronaut s suit; thus, the assembly may also be useful as a prosthesis or as an end effector on an industrial robot.

  8. Robotic Welding Of Injector Manifold

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Shelley, D. Mark

    1992-01-01

    Brief report presents history, up through October 1990, of continuing efforts to convert from manual to robotic gas/tungsten arc welding in fabrication of main injector inlet manifold of main engine of Space Shuttle. Includes photographs of welding machinery, welds, and weld preparations. Of interest to engineers considering establishment of robotic-welding facilities.

  9. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.

  10. Robotics as an Educational Tool.

    ERIC Educational Resources Information Center

    Miglino, Orazio; Lund, Henrik Hautop; Cardaci, Maurizio

    1999-01-01

    Explores a new educational application of Piaget's theories of cognitive development: the use, as a teaching tool, of physical robots conceived as artificial organisms. Reviews educational projects using real robots. Shows that the use of intelligent systems to enlarge the view of biological reality could become an integral part of curricula in…

  11. Resources for Underwater Robotics Education

    ERIC Educational Resources Information Center

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  12. Selected reaction monitoring applied to proteomics.

    PubMed

    Gallien, Sebastien; Duriez, Elodie; Domon, Bruno

    2011-03-01

    Selected reaction monitoring (SRM) performed on triple quadrupole mass spectrometers has been the reference quantitative technique to analyze small molecules for several decades. It is now emerging in proteomics as the ideal tool to complement shotgun qualitative studies; targeted SRM quantitative analysis offers high selectivity, sensitivity and a wide dynamic range. However, SRM applied to proteomics presents singularities that distinguish it from small molecules analysis. This review is an overview of SRM technology and describes the specificities and the technical aspects of proteomics experiments. Ongoing developments aiming at increasing multiplexing capabilities of SRM are discussed; they dramatically improve its throughput and extend its field of application to directed or supervised discovery experiments.

  13. Optimal isolation of mitochondria for proteomic analyses.

    PubMed

    Stimpson, Scott E; Coorssen, Jens R; Myers, Simon J

    2015-04-15

    Considering the key role of mitochondria in cellular (dys)functions, we compared a standard isolation protocol, followed by lysis in urea/detergent buffer, with a commercially available isolation buffer that rapidly yields a mitochondrial protein fraction. The standard protocol yielded significantly better overall resolution and coverage of both the soluble and membrane mitochondrial proteomes; although the kit was faster, it resulted in recovery of only approximately 56% of the detectable proteome. The quality of "omic" analysis depends on sample handling; for large-scale protein studies, well-resolved proteomes are highly dependent on the purity of starting material and the rigor of the extraction protocol. PMID:25596337

  14. Accounting for population variation in targeted proteomics

    SciTech Connect

    Fujimoto, Grant M.; Monroe, Matthew E.; Rodriguez, Larissa M.; Wu, Chaochao; MacLean, Brendan; Smith, Richard D.; MacCoss, Michael; Payne, Samuel H.

    2014-01-03

    Individual proteomes typically differ from the reference human proteome at ~10,000 single amino acid variants. When viewed at the population scale, this individual variation results in a wide variety of protein sequences. In targeted proteomics experiments, such variability would confound accurate protein quantification. To facilitate researchers in identifying target peptides with high variability within the human population we have created the Population Variation plug-in for Skyline, which provides easy access to the polymorphisms stored in dbSNP. Given a set of peptides, the tool reports minor allele frequency for common polymorphisms. We highlight the importance of considering genetic variation by applying the tool to public datasets.

  15. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. PMID:27118167

  16. Trends in mass spectrometry instrumentation for proteomics.

    PubMed

    Smith, Richard D

    2002-12-01

    Mass spectrometry has become a primary tool for proteomics because of its capabilities for rapid and sensitive protein identification and quantitation. It is now possible to identify thousands of proteins from microgram sample quantities in a single day and to quantify relative protein abundances. However, the need for increased capabilities for proteome measurements is immense and is now driving both new strategies and instrument advances. These developments include those based on integration with multi-dimensional liquid separations and high accuracy mass measurements and promise more than order of magnitude improvements in sensitivity, dynamic range and throughput for proteomic analyses in the near future.

  17. Proteomics/genomics and signaling in lymphocytes.

    PubMed

    Wollscheid, Bernd; Watts, Julian D; Aebersold, Ruedi

    2004-06-01

    Recent technological advances in genomics, proteomics and bioinformatics have offered new insights into the molecular mechanisms that underlie lymphocyte signaling and function, and the development of new tools in these areas has opened up new avenues for biological investigation. By adding a quantitative dimension to lymphocyte proteome profiling, molecular machines and spatiotemporal regulatory processes can now be analyzed using such discovery-driven approaches. Biologists employing genomic and proteomic tools are gathering data at increasing speed and their struggle to extract maximal biological information is helped by new software tools that enable the detailed comparison of multiple datasets.

  18. Robotic systems for homeland security

    NASA Astrophysics Data System (ADS)

    Esser, Brian; Miller, Jon; Huston, Dryver R.; Bourn, Phil

    2004-07-01

    This paper will present the concept of utilizing various mobile robotic platforms for homeland security. Highly specialized mobile robots equipped with the proper sensors and data processing capabilities have the ability to provide security and surveillance for a wide variety of applications. Large infrastructure components, such as bridges, pipelines, dams, and electrical power grids pose severe challenges for monitoring, surveillance, and protection against man-made and natural hazards. The structures are enormous, often with awkward and dangerous configurations that make it difficult, if not impossible, for continuous human surveillance. Properly outfitted robots have the potential to provide long-term surveillance without requiring continuous human supervision. Furthermore, these robotic platforms can have disaster mitigation capabilities such as evaluation of infrastructure integrity at the disaster site. The results presented will include proof-of-concept robotic platforms equipped with various sensor arrays, as well as discussion of design criteria for numerous homeland security applications.

  19. Interactive robots in experimental biology.

    PubMed

    Krause, Jens; Winfield, Alan F T; Deneubourg, Jean-Louis

    2011-07-01

    Interactive robots have the potential to revolutionise the study of social behaviour because they provide several methodological advances. In interactions with live animals, the behaviour of robots can be standardised, morphology and behaviour can be decoupled (so that different morphologies and behavioural strategies can be combined), behaviour can be manipulated in complex interaction sequences and models of behaviour can be embodied by the robot and thereby be tested. Furthermore, robots can be used as demonstrators in experiments on social learning. As we discuss here, the opportunities that robots create for new experimental approaches have far-reaching consequences for research in fields such as mate choice, cooperation, social learning, personality studies and collective behaviour.

  20. Artificial heart for humanoid robot

    NASA Astrophysics Data System (ADS)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  1. Robotic control and inspection verification

    NASA Technical Reports Server (NTRS)

    Davis, Virgil Leon

    1991-01-01

    Three areas of possible commercialization involving robots at the Kennedy Space Center (KSC) are discussed: a six degree-of-freedom target tracking system for remote umbilical operations; an intelligent torque sensing end effector for operating hand valves in hazardous locations; and an automatic radiator inspection device, a 13 by 65 foot robotic mechanism involving completely redundant motors, drives, and controls. Aspects concerning the first two innovations can be integrated to enable robots or teleoperators to perform tasks involving orientation and panal actuation operations that can be done with existing technology rather than waiting for telerobots to incorporate artificial intelligence (AI) to perform 'smart' autonomous operations. The third robot involves the application of complete control hardware redundancy to enable performance of work over and near expensive Space Shuttle hardware. The consumer marketplace may wish to explore commercialization of similiar component redundancy techniques for applications when a robot would not normally be used because of reliability concerns.

  2. Teleautonomous guidance for mobile robots

    NASA Technical Reports Server (NTRS)

    Borenstein, J.; Koren, Y.

    1990-01-01

    Teleautonomous guidance (TG), a technique for the remote guidance of fast mobile robots, has been developed and implemented. With TG, the mobile robot follows the general direction prescribed by an operator. However, if the robot encounters an obstacle, it autonomously avoids collision with that obstacle while trying to match the prescribed direction as closely as possible. This type of shared control is completely transparent and transfers control between teleoperation and autonomous obstacle avoidance gradually. TG allows the operator to steer vehicles and robots at high speeds and in cluttered environments, even without visual contact. TG is based on the virtual force field (VFF) method, which was developed earlier for autonomous obstacle avoidance. The VFF method is especially suited to the accommodation of inaccurate sensor data (such as that produced by ultrasonic sensors) and sensor fusion, and allows the mobile robot to travel quickly without stopping for obstacles.

  3. Robotics in invasive cardiac electrophysiology.

    PubMed

    Shurrab, Mohammed; Schilling, Richard; Gang, Eli; Khan, Ejaz M; Crystal, Eugene

    2014-07-01

    Robotic systems allow for mapping and ablation of different arrhythmia substrates replacing hand maneuvering of intracardiac catheters with machine steering. Currently there are four commercially available robotic systems. Niobe magnetic navigation system (Stereotaxis Inc., St Louis, MO) and Sensei robotic navigation system (Hansen Medical Inc., Mountain View, CA) have an established platform with at least 10 years of clinical studies looking at their efficacy and safety. AMIGO Remote Catheter System (Catheter Robotics, Inc., Mount Olive, NJ) and Catheter Guidance Control and Imaging (Magnetecs, Inglewood, CA) are in the earlier phases of implementations with ongoing feasibility and some limited clinical studies. This review discusses the advantages and limitations related to each existing system and highlights the ideal futuristic robotic system that may include the most promising features of the current ones.

  4. Robotic surgery - advance or gimmick?

    PubMed

    De Wilde, Rudy L; Herrmann, Anja

    2013-06-01

    Robotic surgery is increasingly implemented as a minimally invasive approach to a variety of gynaecological procedures. The use of conventional laparoscopy by a broad range of surgeons, especially in complex procedures, is hampered by several drawbacks. Robotic surgery was created with the aim of overcoming some of the limitations. Although robotic surgery has many advantages, it is also associated with clear disadvantages. At present, the proof of superiority over access by laparotomy or laparoscopy through large randomised- controlled trials is still lacking. Until results of such trials are present, a firm conclusion about the usefulness of robotic surgery cannot be drawn. Robotic surgery is promising, making the advantages of minimally invasive surgery potentially available to a large number of surgeons and patients in the future.

  5. Robotic-assisted knee arthroplasty.

    PubMed

    Banerjee, Samik; Cherian, Jeffrey J; Elmallah, Randa K; Jauregui, Julio J; Pierce, Todd P; Mont, Michael A

    2015-01-01

    Robotics in total knee arthroplasty (TKA) has undergone vast improvements. Although some of the systems have fallen out of favor due to safety concerns, there has been recent increased interest for semi-active haptic robotic systems that provide intraoperative tactile feedback to the surgeon. The potential advantages include improvements in radiographic outcomes, reducing the incidence of mechanical axis malalignment of the lower extremity and better tissue balance. Proponents of robotic technology believe that these improvements may lead to superior functional outcomes and implant survivorship. We aim to discuss robotic technology development, outcomes of unicompartmental and total knee arthroplasty and the future outlook. Short-term follow-up studies on robotic-assisted knee arthroplasty suggest that, although some alignment objectives may have been achieved, more studies regarding functional outcomes are needed. Furthermore, studies evaluating the projected cost-benefit analyses of this new technology are needed before widespread adoption. Nevertheless, the short-term results warrant further evaluation. PMID:26365088

  6. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.

    PubMed

    Lindahl, Marika; Mata-Cabana, Alejandro; Kieselbach, Thomas

    2011-06-15

    Ten years ago, proteomics techniques designed for large-scale investigations of redox-sensitive proteins started to emerge. The proteomes, defined as sets of proteins containing reactive cysteines that undergo oxidative post-translational modifications, have had a particular impact on research concerning the redox regulation of cellular processes. These proteomes, which are hereafter termed "disulfide proteomes," have been studied in nearly all kingdoms of life, including animals, plants, fungi, and bacteria. Disulfide proteomics has been applied to the identification of proteins modified by reactive oxygen and nitrogen species under stress conditions. Other studies involving disulfide proteomics have addressed the functions of thioredoxins and glutaredoxins. Hence, there is a steadily growing number of proteins containing reactive cysteines, which are probable targets for redox regulation. The disulfide proteomes have provided evidence that entire pathways, such as glycolysis, the tricarboxylic acid cycle, and the Calvin-Benson cycle, are controlled by mechanisms involving changes in the cysteine redox state of each enzyme implicated. Synthesis and degradation of proteins are processes highly represented in disulfide proteomes and additional biochemical data have established some mechanisms for their redox regulation. Thus, combined with biochemistry and genetics, disulfide proteomics has a significant potential to contribute to new discoveries on redox regulation and signaling.

  7. MRH-5 Robot/Student Manual.

    ERIC Educational Resources Information Center

    Fox Valley Technical Coll., Appleton, WI.

    This student manual for the Miller MRH-5 welding robot contains nine modules on how to: safely operate the MRH-5 robot; recognize different types of data; weld a part programming the MRH-5; re-teach an already taught program; weld various joints with the MRH-5 robot; weld a desk plaque with the MRH-5 robot; perform editing functions; check/edit…

  8. A Mini-Curriculum for Robotics Education.

    ERIC Educational Resources Information Center

    Jones, Preston K.

    This practicum report documents the development of a four-lesson multimedia program for robotics instruction for fourth and seventh grade students. The commercial film "Robot Revolution" and the videocassette tape "Robotics" were used, along with two author-developed slide/audiotape presentations and 14 overhead transparency foils. Two robots,…

  9. Design-Oriented Enhanced Robotics Curriculum

    ERIC Educational Resources Information Center

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  10. Robotic System For Greenhouse Or Nursery

    NASA Technical Reports Server (NTRS)

    Gill, Paul; Montgomery, Jim; Silver, John; Heffelfinger, Neil; Simonton, Ward; Pease, Jim

    1993-01-01

    Report presents additional information about robotic system described in "Robotic Gripper With Force Control And Optical Sensors" (MFS-28537). "Flexible Agricultural Robotics Manipulator System" (FARMS) serves as prototype of robotic systems intended to enhance productivities of agricultural assembly-line-type facilities in large commercial greenhouses and nurseries.

  11. Robotic Arm Unwrapped

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken shortly after NASA's Phoenix Mars Lander touched down on the surface of Mars, shows the spacecraft's robotic arm in its stowed configuration, with its biobarrier successfully unpeeled. The 'elbow' of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

    The biobarrier is an extra precautionary measure for protecting Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars.

    Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have appeared during the final steps before launch and during the journey to Mars will not contact the robotic arm.

    After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

    The base of the lander's Meteorological Station can be seen in this picture on the upper left. Because only the base of the station is showing, this image tells engineers that the instrument deployed successfully.

    The image was taken on landing day, May 25, 2008, by the spacecraft's Surface Stereo Imager.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Remote robotic countermine systems

    NASA Astrophysics Data System (ADS)

    Wells, Peter

    2010-04-01

    QinetiQ North America (QNA) has approximately 27 years experience in the mine/countermine mission area. Our expertise covers mine development, detection, and neutralization and has always been intertwined with deployment of remote robotic systems. Our countermine payload systems have been used to detect limpet mines on ship hulls, antiassault mines in shallow water and littoral zones and currently for clearance and render safe of land-based routes. In our talk, we will address the challenges encountered in addressing the ongoing countermine mission over a diverse range of operational scenarios, environmental conditions and strategic priorities.

  13. Compliant Joints For Robots

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr.

    1990-01-01

    Compliant joints devised to accommodate misalignments of tools and/or workpieces with respect to robotic manipulators. Has characteristics and appearance of both universal-joint and cable-spring-type flexible shaft coupling. Compliance derived from elastic properties of short pieces of cable. Compliance of joint determined by lengths, distances between, relative orientations, thickness of strands, number of strands, material, amount of pretwist, and number of short pieces of cable. Worm-drive mechanism used to adjust lengths to vary compliance as needed during operation.

  14. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  15. Robotics in colorectal surgery.

    PubMed

    Hance, J; Rockall, T; Darzi, A

    2004-01-01

    Minimally invasive surgery has been shown to offer many advantages to general surgical patients but has not been widely adopted for colorectal disease. Initial fears surrounding the oncological safety of laparoscopic colectomies have largely subsided but the technical challenges still remain. Surgical robots or telemanipulators present the laparoscopic surgeon with unrivaled dexterity and vision, which may allow colonic resections to be completed with greater ease. Although initial studies suggest promising results using currently available systems, it will take further time for patient benefits to be proven, therefore justifying the greater expense of operating with this new technology.

  16. Hazardous-Materials Robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Edmonds, Gary O.

    1995-01-01

    Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.

  17. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  18. The TAOS Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Lehner, Matthew; Wen, C.-Y.; Wang, J.-H.; Marshall, S. L.; Schwamb, M. E.; Zhang, Z.-W.; Bianco, F. B.; Gimmarco, J.; Porrata, R.; Alcock, C.; Axelrod, T.; Byun, Y.-I.; Chen, W. P.; Cook, K. H.; Dave, R.; Kim, D.-W.; King, S.-K.; Lee, T.; Lin, H.-C.; Wang, S.-Y.; Yen, W.-L.; Rice, J. A.; de Pater, I.; Szentgyorgyi, A.; Geary, J.; Norton, T.; Reyes-Ruiz, M.

    2011-03-01

    The Taiwanese-American Occultation survey (TAOS) operate four small telescopes in central Taiwan to search for occultations by small (~1 km diameter) Kuiper Belt Objects. The system is fully robotic, requiring human intervention only in the event of hardware failures. However, the status of the system during observations is monitored remotely via smart-phone. A successor survey, the Transneptunian Automated Occultation Survey (TAOS II) is currently being constructed. This next generation survey will be more than one hundred times as sensitive as the earlier survey. In this paper, we summarize the science goals of the surveys, describe the two surveys, and discuss the lessons learned in automating the TAOS observations.

  19. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  20. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas M. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2013-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.