Science.gov

Sample records for proterozoic diamond-bearing kimberlites

  1. Petrochemical types of kimberlites and their diamond-bearing capacity

    NASA Astrophysics Data System (ADS)

    Kostrovitsky, Sergey

    2010-05-01

    Kimberlite rocks of Yakutian province (belong to 1 group of kimberlites after Smith, 1983) are characterized by wide variations of rock-forming oxides [Ilupin et al., 1986; Milashev, 1965; Kharkiv et al., 1991]. A number of factors could be discussed to explain the variety of chemical compositions of rocks. The first factor, explaining the regional differences in the kimberlite composition with primarily different composition of source kimberlite melt-fluid, is conventionally called «primary». All other factors are connected with the secondary redistribution of chemical components of kimberlites. Irrespective of intensity of secondary factors, the primary composition of kimberlites varies broadly, which is noticeable in kimberlites of some provinces, kimberlites fields, pipe clusters and individual pipes. The petrochemical types are classified based on the contents of such oxides as FeO, TiO2 and K2O, being relatively inert in the secondary processes. In the Yakutian Province we have distinguished 5 petrochemical types of kimberlites (Kostrovitsky et al, 2007); with principal ones - high-Mg, magnesium-ferruginous (Mg-Fe) and ferruginous-titaniferous, their composition: < 6; 6-9; 8-15 % FeOtotal and < 1; 1-2.5; 1.5-5.0 % TiO2). Some petrochemical and mineralogical criteria of diamond-bearing capacity of kimberlites were identified some time before. The essence of petrochemical criterion consists of the inverse correlation dependence between the contents FeOtotal, TiO2 in kimberlite rocks and their diamond-bearing capacity (Milashev, 1965; Krivonos, 1998). The mineralogical criteria of diamond-bearing capacity infer presence of direct dependence of the rate of capacity on the content in kimberlites of low-Ca, high-Cr garnet and chrome spinellids with Cr2O3 > 62% and TiO2 < 0.5%, of dunite-harzburgite paragenesis (Sobolev, 1974; Meyer, 1968). The acquired results are applied to evaluate «efficiency» of criteria of diamond-bearing capacity exemplified by the

  2. The potential for diamond-bearing kimberlite in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, William F.; Mudrey, M.G.

    1981-01-01

    because of the extensive cover of glacial drift and the typical small size of kimberlite bodies. If all are magnetic, they might be found by detailed aeromagnetic surveys. However, the magnetism of the Lake Ellen kimberlite appears to be caused by secondary magnetite formed during serpentinization of olivine, so an unserpentinized kimberlite may not be strongly magnetic. We suggest that one or more diamond-bearing kimberlites may exist in northern Michigan or Wisconsin, but the discovery of such bodies is unlikely unless a very thorough search is undertaken.

  3. Two diamond-bearing peridotite xenoliths from the finsch kimberlite, South Africa

    NASA Astrophysics Data System (ADS)

    Shee, S. R.; Gurney, J. J.; Robinson, D. N.

    1982-12-01

    Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at ˜1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the “wet” peridotite solidus.

  4. Diamond-bearing Rocks among Mantle Xenoliths in Kimberlites as Indicatory for the Chambers of Diamond-parental Carbonatite Magma

    NASA Astrophysics Data System (ADS)

    Litvin, Yuriy; Kuzyura, Anastasia

    2014-05-01

    Origin of diamond-bearing peridotite and eclogite rocks in kimberlites is cleared up using mantle-carbonatite model of diamond genesis (Litvin, 2007, 2009, 2013). Data of analytical mineralogy of primary inclusions in diamonds and results of physicochemical experiments on syngenetic diamond and inclusion phase relations are co-ordinated in this model (Litvin et al., 2012). It proved that diamond-parental media are presented by changeable carbon-saturated peridotite-carbonatite and eclogite-carbonatite melts. The melts are capable to form not diamonds only but their major and minor inclusions. The upper mantle is mainly composed of diamond-free peridotites which dominate over eclogites as 9 to 5 % (Mathias et al., 1970). Howewer diamond-bearing peridotites and eclogites occur rarely as demonstrated for S.Africa and Yakutia (Sobolev N., 1977). Nevertheless, origin of diamond-bearing rocks belongs to key problems of genetic mineralogy of diamond and mantle petrology due to dissimilar physicochemical and environmental conditions of formation of comparatively diamond-free rocks. Symptomatic that garnets included in diamond and these of diamond-bearing eclogite are compositionally similar (Sobolev V. et al., 1972). Garnets of diamond-bearing eclogites, inclusions in diamonds and intergrowths with them are marked by increased Na2O content (0.10-0.22%) because of Na-majorite component Na2MgSi5O12 (Bobrov & Litvin, 2011). Peridotitic garnets of diamond-bearing rocks, inclusions and intergrowths are indicated by high Cr2O3 and low CaO content over diamond-free ones. This compositional dissimilarity is compatible with formation of diamond-bearing rocks, inclusions and intergrowths in chambers of partially melted peridotite-eclogite-carbonatite-sulphide-carbon system of changeable composition. However, diamond-free rocks are products of upper-mantle magmatism based on carbonatite-free peridotite-eclogite-sulphide-carbon system. Chambers of diamond-parental carbonatite magma

  5. Shock Properties of Kimberlite

    NASA Astrophysics Data System (ADS)

    Willmott, G. R.; Proud, W. G.; Field, J. E.

    2004-07-01

    Plate impact experiments have been performed on the igneous diamond-bearing matrix kimberlite. Longitudinal and lateral stresses were measured in the uniaxial strain regime using manganin stress gauges. The shock Hugoniot of the kimberlite has been characterized at axial stresses between 1 and 9 GPa. The kimberlite has a low impedance response when compared with similar data for other geological materials. The data indicate that the rock behaves inelastically above shock stresses of 1 GPa.

  6. Middle Paleozoic kimberlite magmatism in the northeastern Siberian craton

    NASA Astrophysics Data System (ADS)

    Egorova, E. O.; Afanas'ev, V. P.; Pokhilenko, N. P.

    2016-10-01

    The mineral chemistry and crystal morphology of kimberlite pyropes from the Billyakh River placer in the northeastern Siberian craton are characterised in terms of the placer history. The pyropes bear signatures of chemical weathering (dissolution), presumably in a Middle Paleozoic laterite profile, and therefore were originally hosted by Middle Paleozoic kimberlites. The broad occurrence of placer pyropes with lateritic dissolution signatures points to the presence of Middle Paleozoic diamond-bearing kimberlites in the study area.

  7. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province

    USGS Publications Warehouse

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto

    2013-01-01

    Jurassic kimberlites in the southern Superior Province in northern Michigan contain a variety of possible lower-crustal xenoliths, including mafic garnet granulites, rare garnet-free granulites, amphibolites and eclogites. Whole-rock major-element data for the granulites suggest affinities with tholeiitic basalts. P–T estimates for granulites indicate peak temperatures of 690–730°C and pressures of 9–12 kbar, consistent with seismic estimates of crustal thickness in the region. The granulites can be divided into two groups based on trace-element characteristics. Group 1 granulites have trace-element signatures similar to average Archean lower crust; they are light rare earth element (LREE)-enriched, with high La/Nb ratios and positive Pb anomalies. Most plot to the left of the geochron on a 206Pb/€204Pb vs 207Pb/€204Pb diagram, and there was probably widespread incorporation of Proterozoic to Archean components into the magmatic protoliths of these rocks. Although the age of the Group 1 granulites is not well constrained, their protoliths appear to be have been emplaced during the Mesoproterozoic and to be older than those for Group 2 granulites. Group 2 granulites are also LREE-enriched, but have strong positive Nb and Ta anomalies and low La/Nb ratios, suggesting intraplate magmatic affinities. They have trace-element characteristics similar to those of some Mid-Continent Rift (Keweenawan) basalts. They yield a Sm–Nd whole-rock errorchron age of 1046 ± 140 Ma, similar to that of Mid-Continent Rift plume magmatism. These granulites have unusually radiogenic Pb isotope compositions that plot above the 207Pb/€204Pb vs 206Pb/€204Pb growth curve and to the right of the 4·55 Ga geochron, and closely resemble the Pb isotope array defined by Mid-Continent Rift basalts. These Pb isotope data indicate that ancient continental lower crust is not uniformly depleted in U (and Th) relative to Pb. One granulite xenolith, S69-5, contains quartz, and has a

  8. Kimberlite-Clan-Rocks in India: Significance of new VGP, T, and GP Observations.

    NASA Astrophysics Data System (ADS)

    Haggerty, S. E.

    2005-05-01

    Although India is acknowledged for the first description of diamond some 2000 BCE, it should also rightfully be credited for the 17th C recognition that diamond is a product of volcanism. With this extraordinary background, it is surprising that the host rocks remain controversial, being neither archetypical kimberlites, nor classic lamproites. Lacking affinities to micro-diamond-bearing UHPT metamorphic rocks and being unequivocally volcanic, the term Kimberlite-Clan-Rock (KCR) is applied. Over 200 KCR pipes and dikes, many of which are richly mineralized, have recently been discovered in the Diamond Corridor (1000 x 200 km) of the Eastern Dharwar Craton, and in adjoining cratons to the N and NE. From 32 absolute age determinations on KCRs, the remaining intrusions, in comparable stratigraphic settings, are assumed to be 1.1 Ga, equivalent to the Argyle lamproite (Australia, highest diamond grade), and the Premier kimberlite (RSA, largest known diamond). India has the largest number of known Proterozoic KCR intrusions that over the centuries have produced a wealth of famous diamonds. The primary source of these extraordinary stones, however, remains unknown, possibly because the unusual host rocks defy conventional exploration protocols. Six new observations make the setting even more unusual: (1) Coeval, large scale magmatism in the Kalahari (>2 m sq km) and Laurentian (>300 k cub km) Cratons at 1085-1112 Ma, during assembly of Rodinia, confirms the relation between and among KCR volcanism, LIPs, and supercontinents; Proterozoic Rodinia, into which the India KCRs, Argyle and Premier were intruded, was constructive, whereas the other, globally-wide, diamond-intrusive event, that occurred during the Mesozoic (80-120 Ma), was related to the breakup of Pangea and the dispersion of Gondwana; both events occurred during long period geomagnetic chrons implying a core relation, and superplume activity from the CMB. (2)The transcontinental Mumbai-Chennai gravity lineament

  9. Orthopyroxene survival in deep carbonatite melts: implications for kimberlites

    NASA Astrophysics Data System (ADS)

    Stone, Rebecca S.; Luth, Robert W.

    2016-07-01

    Kimberlites are rare diamond-bearing volcanic rocks that originate as melts in the Earth's mantle. The original composition of kimberlitic melt is poorly constrained because of mantle and crustal contamination, exsolution of volatiles during ascent, and pervasive alteration during and after emplacement. One recent model (Russell et al. in Nature 481(7381):352-356, 2012. doi: 10.1038/nature10740) proposes that kimberlite melts are initially carbonatitic and evolve to kimberlite during ascent through continuous assimilation of orthopyroxene and exsolution of CO2. In high-temperature, high-pressure experiments designed to test this model, assimilation of orthopyroxene commences between 2.5 and 3.5 GPa by a reaction in which orthopyroxene reacts with the melt to form olivine, clinopyroxene, and CO2. No assimilation occurs at 3.5 GPa and above. We propose that the clinopyroxene produced in this reaction can react with the melt at lower pressure in a second reaction that produces olivine, calcite, and CO2, which would explain the absence of clinopyroxene phenocrysts in kimberlites. These experiments do not confirm that assimilation of orthopyroxene for the entirety of kimberlite ascent takes place, but rather two reactions at lower pressures (<3.5 GPa) cause assimilation of orthopyroxene and then clinopyroxene, evolving carbonatitic melts to kimberlite and causing CO2 exsolution that drives rapid ascent.

  10. Welded Kimberlite?

    NASA Astrophysics Data System (ADS)

    van Straaten, B. I.; Kopylova, M. G.; Russell, J. K.; Scott Smith, B. H.

    2009-05-01

    Welding of pyroclastic deposits generally involves the sintering of hot glassy vesicular particles and requires the presence of a load and/or high temperatures. Welding can occur on various scales as observed in large welded pyroclastic flows, in small-volume agglutinated spatter rims, or as in coalesced clastogenic lava flows. In all these examples welding occurs mainly by reduction or elimination of porosity within the vesicular clasts and/or inter-clast pore space. The end result of welding in pyroclastic deposits is to produce dense, massive, coherent deposits. Here, we present a possible new end-member of the welding process: welding of non- vesicular pyroclasts in intra-crater kimberlite deposits. Kimberlite melt is a low-viscosity liquid carrying abundant crystals. Because of this, kimberlite eruptions generally produce non-vesicular pyroclasts. During welding, these pyroclast cannot deform by volume reduction to form typical fiamme. As a result, welding and compaction in kimberlites proceeds via the reduction of inter-clast pore space alone. The lack of porous pyroclasts limits the maximum amount of volumetric strain within pyroclastic kimberlite deposits to about 30%. This value is substantially lower than the limiting values for welding of more common felsic pyroclastic flows. The lower limit for volumetric strain in welded kimberlite deposits severely restricts the development of a fabric. In addition, pyroclastic kimberlite deposits commonly feature equant-shaped pyroclasts, and equant-shaped crystals. This, in turn, limits the visibility of the results of compaction and pore space reduction, as there are few deformable markers and elongate rigid markers that are able to record the strain during compaction. These features, together with the low viscosity of kimberlite magma and the stratigraphic position of these kimberlite deposits within the upper reaches of the volcanic conduit, call for careful interpretation of coherent-looking rocks in these

  11. Sedimentologic and stratigraphic constraints on emplacement of the Star Kimberlite, east-central Saskatchewan

    NASA Astrophysics Data System (ADS)

    Zonneveld, John-Paul; Kjarsgaard, Bruce A.; Harvey, Shawn E.; Heaman, Larry M.; McNeil, David H.; Marcia, Kirsten Y.

    2004-09-01

    Diamond-bearing kimberlites in the Fort à la Corne region, east-central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U-Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense

  12. The Kokchetav Massif, Kazakhstan: "Type locality" of diamond-bearing UHP metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Schertl, H.-P.; Sobolev, N. V.

    2013-02-01

    After the discovery of metamorphic coesite in crustal rocks from the Western Alps (Italy) and the Western gneiss region (Norway) in the mid 1980s of the last century, metamorphic diamond was observed only a few years later "in situ" in the Kokchetav Massif (Kazakhstan). Findings of such coesite- and diamond-bearing ultrahigh pressure metamorphic (UHP) rocks with protoliths formed or embedded in crustal levels and subsequently experienced PT-conditions within or even higher than the coesite stability field have dramatically changed our geodynamic view of orogenetic processes. These occurrences provide evidence that crustal rocks were subducted into mantle depths and exhumed to the surface. Recent studies even suggest continental subduction to depths exceeding 300 km. These rocks have been extensively studied and many new and important observations have been made. Thus far, more than 350 papers have been published on various aspects of Kokchetav UHP rocks. The Kokchetav Massif of northern Kazakhstan is part of one of the largest suture zones in Central Asia and contains slices of HP and UHP metamorphic rocks. Classical UHP rocks mainly occur in the Kumdy Kol, Barchi Kol and Kulet areas, and include a large variety of lithologies such as calcsilicate rocks, eclogite, gneisses, schists, marbles of various compositions, garnet-pyroxene-quartz rocks, and garnet peridotite. Most of them contain microdiamonds; some of which reach a grain size of 200 μm. Most diamond grains show cuboid shapes but in rare cases, diamonds within clinozoisite gneiss from Barchi Kol occur as octahhedral form. Microdiamonds contain highly potassic fluid inclusions, as well as solid inclusions like carbonates, silicates and metal sulfides, which favour the idea of diamond formation from a C-O-H bearing fluid. Nitrogen isotope data and negative δ13C values of Kokchetav diamonds indicate a metasedimentary origin. PT-estimates of Kokchetav UHP rocks yield peak metamorphic conditions of at least 43

  13. Model of kimberlite formation

    NASA Astrophysics Data System (ADS)

    Kostrovitsky, Sergey; Fiveyskaya, Lyudmila

    2013-04-01

    The critical goals in recognizing the nature of kimberlites are to find out: (1) the primary composition of melt of these rocks and (2) the principal processes of evolution of primary composition of kimberlites while ascending from mantle depth towards earth surface. Suppose, that the primary composition of kimberlite melt-fluid was in fact the composition of asthenosphere melt geochemically being close to alkaline-basalt (Hi-µ) saturated with high CO2. The genetic relation of kimberlites with basaltoids is indicated by a spatial and temporal affinity of their formation (Carlson et al, 2006; Lehmann et al, 2010; Tappe et al, 2012), similarity of the pattern of incompatible elements distribution, presence of megacryst minerals in alkaline basaltoids, Pyr-Alm garnet included, and finally, model calculation of parent melt composition for low-Cr megacryst minerals; it showed this composition to be typical for the alkaline basaltoid (Jones, 1980). At the asthenosphere level there was differentiation of basaltoid melt-fluid which was responsible for formation of its different parts with varying melt to fluid ratio and possibly varying content of alkalis (K2O). The outbreak of asthenosphere substance through lithosphere mantle proceeded by different scenarios: (a) With a noticeable dominance of fluid component kimberlites were formed by the capture and contamination of high-Mg, high-Cr rocks of lithosphere mantle that caused formation of high-Mg kimberlites. That corresponds to model of Russell (2012). (b) With a considerable proportion of melt phase depending on saturation in fluid there formed magnesium-ferriferous and ferriferous-titaniferous petrochemical types of kimberlites. There is no doubt that in formation of these kimberlite types the contamination of lithosphere material was the case, at the much lower level than in formation of high-Mg kimberlites. This model logically explains steady differences of petrochemistry of kimberlites making up clusters of

  14. Redox preconditioning deep cratonic lithosphere for kimberlite genesis - evidence from the central Slave Craton.

    PubMed

    Yaxley, G M; Berry, A J; Rosenthal, A; Woodland, A B; Paterson, D

    2017-12-01

    We present the first oxygen fugacity (fO2) profile through the cratonic lithospheric mantle under the Panda kimberlite (Ekati Diamond Mine) in the Lac de Gras kimberlite field, central Slave Craton, northern Canada. Combining this data with new and existing data from garnet peridotite xenoliths from an almost coeval kimberlite (A154-N) at the nearby Diavik Diamond Mine demonstrates that the oxygen fugacity of the Slave cratonic mantle varies by several orders of magnitude as a function of depth and over short lateral distances. The lower part of the diamond-bearing Slave lithosphere (>120-130 km deep) has been oxidized by up to 4 log units in fO2, and this is clearly linked to metasomatic enrichment. Such coupled enrichment and oxidation was likely caused by infiltrating carbonate-bearing, hydrous, silicate melts in the presence of diamond, a process proposed to be critical for "pre-conditioning" deep lithospheric mantle and rendering it suitable for later generation of kimberlites and other SiO2-undersaturated magmas.

  15. Changes in the content and crystal morphology of diamonds from Paleozoic and Mesozoic kimberlits in the northeastern Yakutian kimberlite province

    NASA Astrophysics Data System (ADS)

    Biller, Anastasia; Smelov, Alexander; Zaitsev, Albert

    2010-05-01

    The Yakutian kimberlite province combines more than 1000 kimberlite bodies. It is subdivided into two parts: southern and northeastern. The southern part contains highly diamondiferous kimberlite pipes of Middle Paleozoic age. In the northeastern part, weakly diamondiferous or barren kimberlite pipes of Paleozoic and Mesozoic age are found. The content of diamond-bearing pipes in the southern part is 27 %, and in the northeastern part - 0.06 %. The kimberlite pipes from the northeastern part are characterized by kimberlite- and Brazilian-type diamonds present in different proportions. We have made a statistical analyses of the content of morphologically different diamonds in these kimberlites with regard to their age. The most representative information was obtained for the kimberlite pipes Zapolyarnaya (360 Ma), Komsomol'skaya (382 Ma), Novinka (355 Ma), Leninrgad (380 Ma), Aerologicheskaya (409 Ma), Djanga (243 Ma), Malokuonapskaya (170 Ma), Grenada and Nadezhda (159 Ma) as well as for the Luchekan field kimberlites with an average age of 197 Ma. Diamonds from the Paleozoic and Mesozoic kimberlites reveal a reverse relationship between the contents of octahedral and rounded crystals (r = - 0.969). Such relationship is characteristic of a single geologic body. The younger kimberlites contain higher amounts of Brazilian-type diamonds. In the age interval of 400-160 Ma, the average degree of diamond content in kimberlites decreases by about 85 %, and average weight of crystals by 55 %. More complex relationships are established in the systems: octahedral crystals - kimberlite age and rounded crystals - kimberlite age. The first system is characterized by a decrease in the amount of octahedra in the 400-250 Ma interval (r = 0.848,) and their increase in the interval from 250 to 160 Ma (r = - 0.901). Characteristic of the second system is the growing content of rounded diamonds in the interval 400-250 Ma (r = - 0.835) and their decline in the interval from 250 to 160

  16. Palaeomagnetic Emplacement Temperature Determinations of Pyroclastic and Volcaniclastic Deposits in Southern African Kimberlite Pipes

    NASA Astrophysics Data System (ADS)

    Fontana, G.; Mac Niocaill, C.; Brown, R.; Sparks, R. S.; Matthew, F.; Gernon, T. M.

    2009-12-01

    Kimberlites are complex, ultramafic and diamond-bearing volcanic rocks preserved in volcanic pipes, dykes and craters. The formation of kimberlite pipes is a strongly debated issue and two principal theories have been proposed to explain pipe formation: (1) the explosive degassing of magma, and (2) the interaction of rising magma with groundwater (phreatomagmatism). Progressive thermal demagnetization studies are a powerful tool for determining the emplacement temperatures of ancient volcanic deposits and we present the first application of such techniques to kimberlite deposits. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater-fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The results provide important constraints on kimberlite emplacement mechanisms and eruption dynamics. Emplacement temperatures of >590°C for pipe-filling pyroclastic deposits

  17. The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Nowicki, Tom; Crawford, Barbara; Dyck, Darren; Carlson, Jon; McElroy, Ross; Oshust, Peter; Helmstaedt, Herb

    2004-09-01

    This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400-600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence

  18. Kimberlite ascent and eruption.

    PubMed

    Sparks, R S J; Brown, R J; Field, M; Gilbertson, M

    2007-12-13

    Wilson and Head model kimberlite ascent and eruption by considering the propagation of a volatile-rich dyke. Wilson and Head's model has features in common with Sparks et al., but it is inconsistent with geological observations and constraints on volatile solubility. Here we show that this may be due to erroneous physical assumptions.

  19. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?

    PubMed

    Giuliani, Andrea; Phillips, David; Woodhead, Jon D; Kamenetsky, Vadim S; Fiorentini, Marco L; Maas, Roland; Soltys, Ashton; Armstrong, Richard A

    2015-04-17

    Kimberlites and orangeites (previously named Group-II kimberlites) are small-volume igneous rocks occurring in diatremes, sills and dykes. They are the main hosts for diamonds and are of scientific importance because they contain fragments of entrained mantle and crustal rocks, thus providing key information about the subcontinental lithosphere. Orangeites are ultrapotassic, H2O and CO2-rich rocks hosting minerals such as phlogopite, olivine, calcite and apatite. The major, trace element and isotopic compositions of orangeites resemble those of intensely metasomatized mantle of the type represented by MARID (mica-amphibole-rutile-ilmenite-diopside) xenoliths. Here we report new data for two MARID xenoliths from the Bultfontein kimberlite (Kimberley, South Africa) and we show that MARID-veined mantle has mineralogical (carbonate-apatite) and geochemical (Sr-Nd-Hf-O isotopes) characteristics compatible with orangeite melt generation from a MARID-rich source. This interpretation is supported by U-Pb zircon ages in MARID xenoliths from the Kimberley kimberlites, which confirm MARID rock formation before orangeite magmatism in the area.

  20. Genesis of Diamond-bearing and Diamond-free Podiform Chromitites in the Luobusa Ophiolite, Tibet

    NASA Astrophysics Data System (ADS)

    Yang, J.; Xiong, F.; Xu, X.; Robinson, P. T.; Dilek, Y.; Griffin, W. L.

    2014-12-01

    Micro-diamonds, moissanite and many highly reduced minerals, such as native Fe, Cr, Ni, Si, Al, and metallic alloys, have been reported previously from podiform chromitites and peridotites of the Luobusa ophiolite in the eastern segment of the Yarlung-Zangbo suture of southern Tibet.. Similar mineral associations have now been confirmed in mantle peridotites or chromitites of 11 other ophiolites in 5 orogenic belts, in Tibet, Myanmar, North China and the Polar Urals. However, detailed studies of the Luobusa ophiolite show that not all chromitites contain these UHP and highly reduced minerals. Diamond-bearing chromitites are chiefly massive bodies composed of over 95 modal% magnesiochromite with Cr#s [100Cr/(Cr+Al)] of 77-83 and Mg#s [100Mg/(Mg+Fe)] of 71-82. Most of these bodies have sharp contacts with the host harzburgites and are only rarely enclosed in dunite envelopes. Many magnesiochromite grains in the massive chromitites contain inclusions of forsterite and pyroxene. Forsterite inclusions have Fo numbers of 97-99 and NiO contents of 1.11-1.29 wt%. Mg#s of clinopyroxene inclusions are 96-98 and those of orthopyroxene are 96-97. X-ray studies show that the olivine inclusions have very small unit cells and short cation-oxygen bond distances, suggesting crystallization at high pressure. In contrast, diamond-free chromitites typically occur as layers within thick dunite sequences or as irregular patches surrounded by dunite envelopes. They consist of variable proportions of magnesiochromite (Cr# = 76-78; Mg# = 58-61) and olivine, and have banded, nodular and disseminated textures. The dunite envelopes consist chiefly of granular olivine with a few relatively large, amoeboidal grains of magnesiochromite, and typically grade into the host peridotites with increasing pyroxene. Unlike those in the massive ores, magnesiochromite grains in nodular and disseminated chromitites lack pyroxene inclusions, and their olivine inclusions have relatively low Fo (94-96) and Ni

  1. Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst suites

    NASA Astrophysics Data System (ADS)

    Moore, Andy; Costin, Gelu

    2016-08-01

    Reversed-zoned olivines (Fe-richer cores compared to rims), appear to be ubiquitous in kimberlites with a wide distribution. These olivines generally comprise a subordinate population relative to the dominant normally zoned olivines. However, they are notably more abundant in the megacryst-rich mid-Cretaceous Monastery and early Proterozoic Colossus kimberlites, located on the Kaapvaal and Zimbabwe cratons, respectively. The reverse-zoned olivines at these two localities define compositional fields that are closely similar to those for two olivine megacryst populations of the Cr-poor association which have been documented in the Monastery kimberlite. This points to a genetic link between megacrysts and the reversed zoned olivines. The ubiquitous, occurrence of the Fe-rich (relative to the field for rims) olivines in kimberlites with a wide geographic distribution in turn argues for an intimate link between megacrysts and the host kimberlite. Some large olivines have inclusions of rounded Cr-rich clinopyroxenes, garnets and/or spinel, characterized by fine-scale, erratic internal compositional zoning. Olivines with such chemically heterogeneous Cr-rich inclusions are not derived from disaggregated mantle peridotites, but are rather linked to the Cr-rich megacryst suite. Consequently, they cannot be used as evidence that cores of a majority of kimberlitic olivines are derived from disaggregated mantle peridotites.

  2. Relation of slab-derived carbonate melts to kimberlite magma genesis and diamond formation

    NASA Astrophysics Data System (ADS)

    Golubkova, A.; Schmidt, M. W.

    2012-12-01

    kimberlite magma formation near the base of the continental lithosphere. At 8 GPa we also performed experiments with H2O, as phlogopite is a substantial phase in the kimberlite source. At oxygen fugacities near the CCO buffer, both peridotites were transformed into carbonated wherlites after the reaction with carbonatite melt. The "apparent" solidi of K2O- and CO2-rich wherlites lie below the mantle adiabat and are depressed to 1000°C in the presence of H2O at 8 GPa. Melts at the solidus differ from kimberlites; they are dolomitic (XCa 0.3-0.4) with low SiO2 content and high K2O (up to 30 wt% K2O at 8 GPa) and resemble high-Mg fluid inclusions in diamonds [Klein-BenDavid et al., 2009, Lithos]. Such melts could be a source of C for diamond growth at conditions when metal-saturated mantle dominates over carbonate melt and melts become "redox frozen". A second set of experiments was buffered close to the IW equilibrium to replicate this mechanism. In these experiments diamond/graphite precipitated and coexists with periclase, olivine, clinopyroxene, and K-bearing silicates in those mantle portions which become infested by alkali-rich slab-derived melts. These experiments demonstrate that slab derived carbonatite melts form diamond-bearing metasomatised mantle source regions at temperatures reigning at the base of the cold subcontinental lithosphere.

  3. The Carolina kimberlite, Brazil — Insights into an unconventional diamond deposit

    NASA Astrophysics Data System (ADS)

    Hunt, Lucy; Stachel, Thomas; Morton, Roger; Grütter, Herman; Creaser, Robert A.

    2009-11-01

    The diamondiferous Carolina kimberlite (Rondônia State, Brazil) is located within Proterozoic basement rocks (1.8 to 1.2 Ga) of the Amazon Craton. This "unconventional" post-Archean setting is consistent with a lack of harzburgitic (G10) garnets in heavy media concentrate from the kimberlite. Diamonds from Carolina have high nitrogen contents and in part highly negative carbon isotopic values suggesting derivation predominantly from eclogitic portions of the underlying lithospheric mantle. This is consistent with the abundance and chemistry of eclogitic garnet xenocrysts, which make up 13% of the garnets analysed: just over half of the eclogitic garnets classify as Group I (> 0.07 wt.% Na 2O), which is considered to be an indication of good diamond potential. Based on nitrogen contents and aggregation states, the majority of the Carolina diamonds indicate time averaged residence temperatures between 1100 and 1150 °C (at 1.5 Ga mantle residence). Platelet degradation was noted in the majority of diamonds, suggesting that their mantle source was affected by a transient heating event. Geothermobarometry on clinopyroxene grains derived from both surficial samples and kimberlite core indicates two distinct model geotherms: a hot "Somerset Island type" geotherm (44 mW/m 2), and a colder "Slave type" geotherm (38 mW/m 2). Grains from the kimberlite drill core exclusively reflect the lower model geotherm, whereas clinopyroxenes from surficial samples depict both gradients. Given the Triassic age (230 Ma, Rb-Sr model age on phlogopite) of the Carolina kimberlite, it is speculated that a younger generation of Cretaceous-Tertiary kimberlites in the Pimenta Bueno area may represent the source of "hotter" mantle xenocrysts seen in surficial samples. The implied change in geotherm reflects a large scale, possibly plume related, heating episode occurring between the two kimberlite events (i.e. between the Jurassic and Cretaceous) that may relate to the opening of the South

  4. Origin of the Luobusa diamond-bearing peridotites from the sub-arc mantle

    NASA Astrophysics Data System (ADS)

    Liu, Chuanzhou; Zhang, Chang; Wu, Fuyuang; Chung, Sunlin

    2016-04-01

    Ophiolites are the remnants of ancient oceanic lithosphere that were emplaced onto continental margins. Ophiolites along the E-W trending Yarlung-Tsangpo Suture (YTS), which separates the Indian plate from the Eurasian plate, have been regarded as relics of the Neo-Tethys Ocean. The Luobusa ophiolite outcrops at the eastern YTS and mainly consists of harzburgites and dunites that have been intruded by gabbroic/diabase dykes at ca 130 Ma (Zhang et al., 2015). Basaltic lavas are rarely outcropped, and volumetrically minor (< 1% by volume) chromitites are enveloped as lens and layers within dunites (Zhou et al., 1996). The Luobusa peridotites have been interpreted as mantle residues experienced melt extraction at the mid-ocean ridge and subsequently reacted with boninitic magmas in subduction zone, which gave rise to podifiorm chromitites (Zhou et al., 1996). However, such a shallow depth origin fails to explain the occurrence of diamond and other ultra-high pressure (UHP) minerals in both peridotites and chromitites (Yang et al., 2007, 2014). A mantle plume origin has been proposed for the Luobusa ophiolite to explain the UHP minerals. However, this model is not reconciled with the occurrence of low-pressure crustal minerals in both chromitites and peridotites (Robinson et al., 2015). Here we report whole-rock Re-Os isotope data, which suggest that most Luobusa peridotites have subjected to ancient melting events older than 1.9 billion years. High contents of heavy rare earth elements in clinopyroxenes support the occurrence of ancient melting in garnet stability field. Hf-Nd isotopes of clinopyroxenes, which yield young model ages as 110 Ma, with one showing the lowest ɛNd(T) value of -3, do not preserve the signatures of ancient melting but record metasomatism by subduction-related agents. Consequently, we argue that protoliths of the Luobusa peridotites originated from ancient domains in the transition zone and, together with diamond-bearing chromitites, were

  5. Lake Ellen kimberlite, Michigan, U.S.A.

    USGS Publications Warehouse

    McGee, E.S.; Hearn, B.C.

    1983-01-01

    The recently discovered Lake Ellen kimberlite, in northern Michigan, indicates that bedrock sources of diamonds found in glacial deposits in the Great Lakes area could lie within the northern U.S. Magnetic surveys show a main kimberlite 200 m in diameter and an adjacent body 25 x 90 m(?). The kimberlite cuts Proterozoic volcanic rocks that overlie Archean basement, but is post-Ordovician in age based on abundant Ordovician(?) dolomite inclusions. Xenocrysts and megacrysts are ilmenite (abundant, 12.5-19% MgO), pyropealmandine and Cr-pyrope (up to 9.3% Cr2O3), Cr-diopside (up to 4.5% Cr2O3), olivine (Fo 91), enstatite and phlogopite. The kimberlite contains fragments of crustal schist and granulite, as well as disaggregated crystals and rare xenoliths of eclogites, garnet pyroxenites and garnet peridotites from a heterogeneous upper mantle. Eclogites, up to 3 cm size, show granoblastic equant or tabular textures and consist of jadeitic cpx (up to 8.4% Na20, 15.3% Al2O3), pyrope-almandine, ? rutile ? kyanite ? sanidine ? sulfide. Garnet pyroxenite contains pyrope--(0.44% Cr2O3) + cpx (0.85% Na2O, 0.53% Cr2O3) + Mg-Al spinel. Mineral compositions of rare composite xenocrysts of garnet + cpx are distinctively peridotitic, pyroxenitic or eclogitic. Calculated temperatures of equilibration are 920-1060 ?C for the eclogites and 820-910?C for the garnet pyroxenite using the Ellis-Green method. Five peridotite garnet-clinopyroxene composite xenocrysts have calculated temperatures of 980-1120?C using the Lindsley-Dixon 20 kb solvus. Spinel pyroxenite and clinopyroxene-orthopyroxene composites have lower calculated temperatures of 735?C and 820-900?C, respectively. Kyanite-bearing eclogites must have formed at pressures greater than 18-20 kb. Using the present shield geotherm with a heat flow value of 44mW/m 2 for the time of kimberlite emplacement, the eclogite temperatures imply pressures of 35-48 kb (105-140 km) and the garnet pyroxenite temperatures indicate pressures of

  6. The temporal evolution of North American kimberlites

    NASA Astrophysics Data System (ADS)

    Heaman, Larry M.; Kjarsgaard, Bruce A.; Creaser, Robert A.

    2004-09-01

    North American kimberlite magmatism spans a period of time in excess of 1 billion years from Mesoproterozoic kimberlites in the Lake Superior and James Bay Lowlands region of Ontario to Eocene kimberlites in the Lac de Gras field, N.W.T. Based on a compilation of more than 150 robust radiometric age determinations, several distinct kimberlite emplacement patterns are recognized. In general, the temporal pattern of kimberlite emplacement in North America can be broadly subdivided into five domains: (1) a Mesoproterozoic kimberlite province in central Ontario, (2) an Eocambrian/Cambrian Labrador Sea Province in northern Québec and Labrador, (3) an eastern Jurassic Province, (4) a central Cretaceous corridor and (5) a western mixed domain that includes two Type-3 kimberlite provinces (i.e. multiple periods of kimberlite emplacement preserved in the Slave and Wyoming cratons). For some provinces the origin of kimberlite magmatism can be linked to known mantle heat sources such as mantle plume hotspots and upwelling asthenosphere attendant with continental rifting. For example, the timing and location of Mesoproterozoic kimberlites in North America coincides with and slightly precedes the timing of 1.1 Ga intracontinental rifting that culminated in the Midcontinent Rift centered in the Lake Superior region. Many of the kimberlites in the Eocambrian/Cambrian Labrador Sea province were emplaced soon after the opening of the Iapetus Ocean at about 615 Ma and may also be linked to mantle upwelling associated with continental rifting. The eastern Jurassic kimberlites record an age progression where magmatism youngs in a southeast direction from the ˜200 Ma Rankin Inlet kimberlites to the 155-126 Ma Timiskaming kimberlites. The location of several kimberlite fields and clusters in Ontario and Québec lie along a continental extension of the Great Meteor hotspot track and represents one of the best examples in the world of kimberlite magmatism triggered by mantle plumes. The

  7. Ultrabasic-basic evolution of upper mantle magmas: petrogenetic links between diamond-bearing peridotites and eclogites (on evidence of physico-chemical experiments)

    NASA Astrophysics Data System (ADS)

    Litvin, Y.

    2012-04-01

    1. Upper mantle primordial and differentiated rocks. Present notion of primordial "pyrolitic" (Ringwood, 1962) and differentiated rocks is based on peridotite-pyroxenite and eclogite-grospydite xenoliths in kimberlites. Peridotites are dominant (~95%) respectively to eclogites (~5%) but Roberts-Victor mine is more eclogitic (80%) than peridotitic (20%). Bimineral Cpx-Grt eclogites present ~63% of eclogites, that was explained by "eclogitic thermal barrier" stable over 27 GPa (O'Hara, 1968). This led to subduction version of eclogite formation contrary to mechanism of mantle peridotite differentiation that was expanding to relationship between diamond-bearing varieties. Nevertheless, Qtz/Coes-Opx and Ky/Crd eclogites exist. This stimulates experimental searching for physico-chemical mechanism of formation of all eclogite verieties from primordial peridotite during ultrabasic-basic magmatic differentiation. 2. Physico-chemical reasons for "eclogitic thermal barrier". Liquidus of primordial multicomponent peridotite (Litvin, 1991) is determined by univariant curves Ol+Opx+Cpx+L, Ol+Opx+Grt+L, Opx+Cpx+Grt+L linking together to form invariant peritectics Ol+Opx+Cpx+Grt+L (primary melt is komatiitic). Univariant curve Ol+Cpx+Grt+L emerges from the peritectics. Liquidus of peridotite-eclogite system includes "eclogitic" peritectics Coes+Opx+Cpx+Grt+L tied by emerging univariant curve Coes+ Cpx+Grt+L with another "eclogitic" peritectics Coes+Ky+Cpx+Grt+L. "Eclogitic thermal barrier" is located on Opx-Cpx-Grt plane (separating peridotitic and eclogitic compositions) as temperature maximum of univariant curve Opx+Cpx+Grt+L being connecting link between peridotitic Ol+Opx+Cpx+Grt+L and eclogitic Coes+Opx+Cpx+Grt+L peritectics. "Eclogitic thermal barrier" is insuperable obstacles for ultrabasic-basic magmatic differentiation for both equilibrium and fractional crystallization mechanisms. 3. Fractional crystallization of ultrabasic-basic magmas and continuous change-over from

  8. Kimberlite emplacement record in diamond morphology

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Y.; Chinn, I.

    2015-12-01

    Diamond resorption morphology reflects conditions and events in the host kimberlite magma and in diamond sources in subcratonic mantle. Recent experimental studies on diamond dissolution enable us now to use surface features of diamonds to examine magmatic fluid in kimberlites. This study uses optical and scanning electron microscopy examination of ~750 macro-diamonds from two kimberlites in Orapa cluster, Botswana. Kimberlite A is a simple body filled with coherent kimberlite facies (CK); kimberlite B is a complex body with two facies of coherent kimberlite and a massive volcaniclastic kimberlite facies (MVK). Distinction between kimberlite-induced and mantle-derived resorption was based on: the type of the most abundant resorption style, morphology of crystals with attached kimberlite fragments, and the study of pseudohemimorphic diamonds. Kimberlite-induced resorption is the focus of this work. The three facies in the pipe B show three contrasting diamond resorption types. Resorption in MVK facies leads to glossy rounded surfaces with fine striation and hillocks, and is identical to the resorption style in CK facies of pipe A. This type of resorption is typical for volcaniclastic facies and indicates emplacement in the presence of abundant COH fluid with high H2O:CO2 ratio (>50mol% of H2O). We propose that pipe A is a root zone supplying material to a larger kimberlite body filled with VK. The two CK in pipe B have very different resorption style. One forms similar glossy surfaces but with regular small cavities of rounded outline, while the other seems more corrosive and develops extremely rough features and deep cavities. Comparison to the experimental data suggests that the former had almost pure H2O fluid at low pressure (where solubility of SiO2 is low). The later CK facies was emplaced in the absence or very low abundance of a free fluid, and possibly in melt closer to carbonatitic composition.

  9. Kimberlites of the Man craton, West Africa

    NASA Astrophysics Data System (ADS)

    Skinner, E. M. W.; Apter, D. B.; Morelli, C.; Smithson, N. K.

    2004-09-01

    The Man craton in West Africa is an Archaean craton formerly joined to the Guyana craton (South America) that was rifted apart in the Mesozoic. Kimberlites of the Man craton include three Jurassic-aged clusters in Guinea, two Jurassic-aged clusters in Sierra Leone, and in Liberia two clusters of unknown age and one Neoproterozoic cluster recently dated at ˜800 Ma. All of the kimberlites irrespective of age occur as small pipes and prolific dykes. Some of the Banankoro cluster pipes in Guinea, the Koidu pipes in Sierra Leone and small pipes in the Weasua cluster in Liberia contain hypabyssal-facies kimberlite and remnants of the so-called transitional-facies and diatreme-facies kimberlite. Most of the Man craton kimberlites are mineralogically classified as phlogopite kimberlites, although potassium contents are relatively low. They are chemically similar to mica-poor Group 1A Southern African examples. The Jurassic kimberlites are considered to represent one province of kimberlites that track from older bodies in Guinea (Droujba 153 Ma) to progressively younger kimberlites in Sierra Leone (Koidu, 146 Ma and Tongo, 140 Ma). The scarcity of diatreme-facies kimberlites relative to hypabyssal-facies kimberlites and the presence of the so-called transitional-facies indicate that the pipes have been eroded down to the interface between the root and diatreme zones. From this observation, it is concluded that extensive erosion (1-2 km) has occurred since the Jurassic. In addition to erosion, the presence of abundant early crystallizing phlogopite is considered to have had an effect on the relatively small sizes of the Man craton kimberlites.

  10. Introduction: The Proterozoic

    NASA Astrophysics Data System (ADS)

    Jenkins, Gregory S.; McKay, Christopher P.; McMenamin, Mark A. S.

    The Proterozoic (2.5 Ga-545 Ma) is perhaps the most intriguing period in Earth's history. In a typical high school physical science textbook it may be presented as a rather boring period that today's student is happy to pass over in lieu of the Mesozoic and the extinction of Tyrannosaurus rex by a large asteroid. In reality this was a period full of excitement as it opens (in the PalaeoProterozoic) with low-latitude glaciation in concert with a rise in atmospheric oxygen. The Proterozoic ends with a glacial period and a possible rise in atmospheric oxygen levels. Other highlights of the Proterozoic include: three or more severe glacial events, a long period (1 billion years) of apparent warmth without evidence of glacial deposits, significant fluctuations in δC13, two or more periods where supercontinents were assembled, cap carbonates, banded iron formations, the rise of eukaryotes and the first complex life. The juxtaposition of extreme climate conditions and major evolutionary change among complex organisms during the Proterozoic is particularly puzzling, and begs the following question: What are the factors controlling the appearance of complex life?

  11. The Igwisi Hills extrusive 'kimberlites'

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Donaldson, C. H.; Dawson, J. B.; Brown, R. W.; Ridley, W. I.

    1975-01-01

    The petrography and mineral chemistry of volcanic rocks from the Igwisi Hills in Tanzania are discussed. There is considerable evidence to suggest that the Igwisi rocks are extrusive kimberlites: a two-component nature with high P-T minerals in a low P-T matrix; the presence of chrome pyrope, Al enstatite, chrome diopside, chromite and olivine; a highly oxidized, volatile-rich matrix with serpentine, calcite, magnetite, perovskite; high Sr, Zr, and Nb contents; occurrence in a narrow isolated vent within a stable shield area. The Igwisi rocks differ from kimberlite in the lack of magnesian ilmenite, the scarcity of matrix phlogopite, and the overall low alkali content. They apparently contain material from phlogopite-bearing garnet peridotites with a primary mineral assemblage indicative of equilibrium at upper mantle temperatures and pressures. This primary assemblage was brought rapidly to the surface in a gas-charged, carbonate-rich fluid. Rapid upward transport, extrusion, and rapid cooling have tended to prevent reaction between inclusions and the carbonate-rich matrix that might otherwise have yielded a more typical kimberlite.

  12. Dynamical constraints on kimberlite volcanism

    NASA Astrophysics Data System (ADS)

    Sparks, R. S. J.; Baker, L.; Brown, R. J.; Field, M.; Schumacher, J.; Stripp, G.; Walters, A.

    2006-07-01

    Kimberlite volcanism involves the ascent of low viscosity (0.1 to 1 Pa s) and volatile-rich (CO 2 and H 2O) ultrabasic magmas from depths of 150 km or greater. Theoretical models and empirical evidence suggest ascent along narrow (˜1 m) dykes at speeds in the range > 4 to 20 m/s. With typical dyke breadths of 1 to 10 km, magma supply rates are estimated in the range 10 2 to 10 5 m 3/s with eruption durations of many hours to months. Based on observations, theory and experiments we propose a four-stage model for kimberlite eruptions to explain the main geological relationships of kimberlites. In stage I magma reaches the Earth's surface along fissures and erupts explosively due to their high volatile content. The early flow exit conditions are overpressured with choked flow conditions; an exit velocity of ˜200 m/s is estimated as representative. Explosive expansion and near surface overpressures initiate crater and pipe formation from the top downwards. In stage II under-pressures (the difference between the lithostatic pressure and pressure of the erupting mixture) develop within the evolving pipe causing rock bursting at depth, undermining overlying rocks and causing down-faulting and crater rim slumping. Rocks falling into the pipe interior are ejected by the strong explosive flows. Stage II is the erosive stage of pipe formation. As the pipe widens and deepens larger under-pressures develop enhancing pipe wall instability. A critical threshold is reached when the exit pressure falls to one atmosphere. As the pipe widens and deepens further the gas exit velocity declines and ejecta becomes trapped within the pipe, initiating stage III. A fluidised bed of pyroclasts develops within the pipe as the eruption wanes to form typical massive volcaniclastic kimberlite. Marginal breccias represent the transition between stages II and III. After the eruption stage IV is a period of hydrothermal metamorphism (principally serpentinisation) and alteration as the pipe cools

  13. The Kokchetav Massif, Kazakhstan: "Type locality" of diamond-bearing UHP metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Schertl, H.; Sobolev, N. V.

    2012-12-01

    Since the first discovery of in situ metamorphic diamond in the Kokchetav Massif in 1990, numerous scientists from different disciplines paid special attention to petrological and geochemical features, geodynamics and the mechanism of deep subduction and exhumation of UHP rocks. This discovery was a trigger for an intense search of further possible diamondiferous UHP terranes worldwide, successfully documented by numerous new findings. Thus far, more than 350 papers have been published on various aspects of the Kokchetav UHP rocks. A compilation of the most important and far-reaching implications are outlined here. PT-estimates yield peak metamorphic conditions of at least 43 kbar at temperatures of about 950-1000°C. Zircon separates show inherited Proterozoic cores and mantle with the peak of UHP metamorphism at about 537-530 Ma. Several Ar-Ar-ages on micas scatter around 529-528 and 521-517 Ma and reflect different stages of the exhumation history. Migmatization occurred during exhumation at about 526-520 Ma. Microdiamonds which reach a grain size of 300 micrometers, contain highly potassic fluid inclusions as well as solid inclusions like carbonates, different silicates and metal sulfides, which favours the idea of a diamond formation from a C-O-H bearing fluid. Nitrogen isotope data and negative δ13C values of Kokchetav diamonds indicate a metasedimentary origin. δ18O studies on garnet and clinopyroxene of a layered calcsilicate are ruling out a primitive mantle protolith; similar studies on eclogite indicate their basaltic protolith to have experienced water-rock interaction prior to UHP metamorphism. A number of unique mineralogical findings have been made. K-feldspar exsolutions in clinopyroxene demonstrate that potassium can be incorporated into the clinopyroxene structure under upper mantle pressures. Other significant observations are coesite exsolutions in titanite, quartz-rods in clinopyroxene, the discovery of K-tourmaline as well as new minerals

  14. Petrology, geochemistry and genesis of newly discovered Mesoproterozoic highly magnesian, calcite-rich kimberlites from Siddanpalli, Eastern Dharwar Craton, Southern India: products of subduction-related magmatic sources?

    NASA Astrophysics Data System (ADS)

    Chalapathi Rao, N. V.; Dongre, A.; Kamde, G.; Srivastava, Rajesh K.; Sridhar, M.; Kaminsky, F. V.

    2010-03-01

    The Siddanpalli kimberlites constitute a newly discovered cluster (SKC) of Mesoproterozoic (1090 Ma) dykes occurring in the granite-greenstone terrain of the Gadwal area in the Eastern Dharwar Craton (EDC), Southern India. They belong to coherent facies and contain serpentinized olivines (two generations), phlogopite, spinel, perovskite, ilmenite, apatite, carbonate and garnet xenocrysts. A peculiar feature of these kimberlites is the abundance of carbonate and limestone xenoliths of the eroded platformal Proterozoic (Purana) sedimentary cover of Kurnool/Bhima age. Chemically, the Siddanpalli dykes are the most magnesium-rich (up to 35 wt.% MgO) and silica-undersaturated (SiO2 < 35 wt.%) of all kimberlites described so far from the Eastern Dharwar Craton. The La/Yb ratio in the Siddanpalli kimberlites (64-105) is considerably lower than that in the other EDC kimberlites (108-145), primarily owing to their much higher HREE abundances. Since there is no evidence of any crustal contamination by granitic rocks we infer this to be a specific character of the magmatic source. A comparison of the REE geochemistry of the Siddanpalli kimberlites with petrogenetic models for southern African kimberlites suggests that they display involvement of a wide range in the degree of melting in their genesis. The different geochemical signatures of the SKC compared to the other known kimberlites in the EDC can be explained by a combination of factors involving: (i) higher degrees of partial melting; (ii) relatively shallower depths of derivation; (iii) possible involvement of subducted component in their mantle source region; and (iv) previous extraction of boninitic magmas from their geological domain.

  15. Blueball, a new kimberlite from Arkansas

    SciTech Connect

    Salpas, P.A.; Taylor, L.A.; Shervais, J.W.

    1985-01-01

    Kimberlites provide direct observation of the upper-mantle/lower-crust by their constituent minerals and inclusions. Blueball is a previously unreported kimberlite from Scott County, Arkansas. It is unrelated to the Murfreesboro kimberlite and is composed of phenocrysts of phlogopite and olivine (serpentinized), along with spinels, in a ground mass of calcite and phlogopite, with minor perovskite and apatite. Phlogopites are compositionally homogeneous, often with euhedral spinel inclusions, and occur as embayed and corroded laths (2 mm). Si+Al are insufficient to fill tetrahedral sites. Reverse pleochroism suggests that Fe/sup 3 +/ or Ti may occupy the remaining tetrahedral sites, similar to other kimberlitic phlogopites. Besides inclusions, spinel also occurs as discrete, anhedral grains with skeletal and atoll habits. Compositions of the two occurrences are the same. These have Mg-Al-chr cores and Mg-Al-mt rims (2-5 um). Based on mineral compositions, as well as whole-rock REE data, Blueball is a true kimberlite. Blueball minerals are compositionally similar to those from kimberlites occurring in other stable cratons (e.g., South Africa); they are dissimilar from those in kimberlites at plate margins (e.g., the Appalachians) indicating heterogeneity in the mantle underlying different tectonic regimes.

  16. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Giuliani, Andrea; Phillips, David; Kamenetsky, Vadim S.; Goemann, Karsten

    2016-01-01

    Kimberlite magmas are of economic and scientific importance because they represent the major host to diamonds and are probably the deepest magmas from continental regions. In addition, kimberlite magmas transport abundant mantle and crustal xenoliths, thus providing fundamental information on the composition of the sub-continental lithosphere. Despite their importance, the composition and ascent mechanism(s) of kimberlite melts remain poorly constrained. Phlogopite is one of the few minerals that preserves a history of fluid migration and magmatism in the mantle and crust and is therefore an invaluable petrogenetic indicator of kimberlite magma evolution. Here we present major and trace element compositional data for phlogopite from the Bultfontein kimberlite (Kimberley, South Africa; i.e. the kimberlite type-locality) and from entrained mantle xenoliths. Phlogopite macrocrysts ( > 0.3-0.5 mm) and microcrysts (between 0.1 and 0.3 mm) in the Bultfontein kimberlite display concentric compositional zoning patterns. The cores of these phlogopite grains exhibit compositions typical of phlogopite contained in peridotite mantle xenoliths. However, the rims of some grains show compositions analogous to kimberlite groundmass phlogopite (i.e. high Ti, Al and Ba; low Cr), whereas other rims and intermediate zones (between cores and rims) exhibit unusually elevated Cr and lower Al and Ba concentrations. The latter compositions are indistinguishable from matrix phlogopite in polymict breccia xenoliths (considered to represent failed kimberlite intrusions) and from Ti-rich overgrowth rims on phlogopite in other mantle xenoliths. Consequently, it is likely that these phlogopite grains crystallized from kimberlite melts and that the high Ti-Cr zones originated from earlier kimberlite melts at mantle depths. We postulate that successive pulses of ascending kimberlite magma progressively metasomatised the conduit along which later kimberlite pulses ascended, producing progressively

  17. Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion

    NASA Astrophysics Data System (ADS)

    Smith, C. B.; Haggerty, S. E.; Chatterjee, B.; Beard, A.; Townend, R.

    2013-12-01

    typical of ultramafic lamprophyres such as alnoite or aillikite. The significant carbonate content and the presence of accessory Ti-andradite would lead to the KCR being classified as an ultramafic lamprophyre under the IUGS classification. The Khaderpet carbonatite component shows extreme enrichment in REE approaching that of world-average carbonatite. Given the chemical and petrological characteristics of a carbonatite, along with the associated and widespread aureole of metasomatism, this phase is considered to be a late-stage fractionation product of the Khaderpet diamond-bearing ultramafic magma.

  18. Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts

    NASA Astrophysics Data System (ADS)

    Kopylova, M. G.; Kostrovitsky, S. I.; Egorov, K. N.

    2013-04-01

    Alkali carbonates, sodalite, gypsum, anhydrite, halite and sylvite are present in the groundmass and matrix of many kimberlites in the southern part of the Yakutian kimberlite province. The kimberlites were emplaced through 2 km-thick evaporite-bearing carbonate sediments saturated with brines. In the global context, southern Yakutian kimberlites are unprecedented in the amount of the crustal carbonate and evaporite material included in the pipes, as evidenced by the bulk major element chemistry and isotopic compositions of Sr, C, O, Cl and S. We present geological and hydrogeological data on country rocks and kimberlites of the Udachnaya, Mir and International'naya pipes. The secondary, crustal origin of Na, K, Cl and S-rich minerals is supported by the following: 1. A regional correlation between the geology and hydrogeology of the local country rocks and the kimberlite mineralogy, in particular the difference between southern and northern Yakutian kimberlites; 2. A restriction of halite or gypsum mineralization in the Mir and International'naya pipes to depths where pipes intersect country rock strata with similar mineralogy; 3. The localization of the highest abundances of Nasbnd Ksbnd Clsbnd S-bearing minerals in the Udachnaya East kimberlite at a depth interval that correlates across three magmatic phases of kimberlites and coincides with the roof of the halite-bearing country rock and an aquifer carrying anomalously Na-rich brines; 4. The presence of evaporite xenoliths and veins of halite, gypsum and carbonate cutting through the kimberlite and xenoliths; 5. A secondary origin of halite and alkali carbonates as observed in their textural relationships to serpentine and other groundmass minerals; 6. The geochemical and isotopic evidence for crustal contamination. Addition of crustal salts to kimberlite melt began prior to the volcanic fragmentation as a result of preferential melting and assimilation of evaporite xenoliths and may have continued in

  19. Kimberlite ascent by assimilation-fuelled buoyancy.

    PubMed

    Russell, James K; Porritt, Lucy A; Lavallée, Yan; Dingwell, Donald B

    2012-01-18

    Kimberlite magmas have the deepest origin of all terrestrial magmas and are exclusively associated with cratons. During ascent, they travel through about 150 kilometres of cratonic mantle lithosphere and entrain seemingly prohibitive loads (more than 25 per cent by volume) of mantle-derived xenoliths and xenocrysts (including diamond). Kimberlite magmas also reputedly have higher ascent rates than other xenolith-bearing magmas. Exsolution of dissolved volatiles (carbon dioxide and water) is thought to be essential to provide sufficient buoyancy for the rapid ascent of these dense, crystal-rich magmas. The cause and nature of such exsolution, however, remains elusive and is rarely specified. Here we use a series of high-temperature experiments to demonstrate a mechanism for the spontaneous, efficient and continuous production of this volatile phase. This mechanism requires parental melts of kimberlite to originate as carbonatite-like melts. In transit through the mantle lithosphere, these silica-undersaturated melts assimilate mantle minerals, especially orthopyroxene, driving the melt to more silicic compositions, and causing a marked drop in carbon dioxide solubility. The solubility drop manifests itself immediately in a continuous and vigorous exsolution of a fluid phase, thereby reducing magma density, increasing buoyancy, and driving the rapid and accelerating ascent of the increasingly kimberlitic magma. Our model provides an explanation for continuous ascent of magmas laden with high volumes of dense mantle cargo, an explanation for the chemical diversity of kimberlite, and a connection between kimberlites and cratons.

  20. Kimberlite emplacement temperatures from conodont geothermometry

    NASA Astrophysics Data System (ADS)

    Pell, Jennifer; Russell, James K.; Zhang, Shunxin

    2015-02-01

    Kimberlites are mantle-derived ultramafic rocks preserved in volcanic and sub-volcanic edifices and are the main primary source of diamonds. The temperatures of formation, transport, eruption and deposition remain poorly constrained despite their importance for understanding the petrological and thermodynamic properties of kimberlite magmas and styles of volcanic eruption. Here, we present measured values of Colour Alteration Indices (CAI) for conodonts recovered from 76 Paleozoic carbonate xenoliths found within 11 pipes from the Chidliak kimberlite field on Baffin Island, Nunavut, Canada. The dataset comprises the largest range of CAI values (1.5 to 8) and the highest CAI values reported to date for kimberlite-hosted xenoliths. Thermal models for cooling of the Chidliak kimberlite pipes and synchronous heating of conodont-bearing xenoliths indicate time windows of 10-20 000 h and, for these short time windows, the measured CAI values indicate heating of the xenoliths to temperatures of 225 to >925 °C. We equate these temperatures with the minimum temperatures of the conduit-filling kimberlite deposit (i.e. emplacement temperature, TE). The majority of the xenoliths record CAI values of between 5 and 6.5 suggesting heating of xenoliths to temperatures of 460 °C-735 °C. The highest CAI values are consistent with being heated to 700 °C-925 °C and establish the minimum conditions for welding or formation of clastogenic kimberlite deposits. Lastly, we use TE variations within and between individual pipes, in conjunction with the geology of the conduit-filling deposits, to constrain the styles of explosive volcanic eruption.

  1. Frequency of Proterozoic geomagnetic superchrons

    NASA Astrophysics Data System (ADS)

    Driscoll, Peter E.; Evans, David A. D.

    2016-03-01

    Long-term geodynamo evolution is expected to respond to inner core growth and changing patterns of mantle convection. Three geomagnetic superchrons, during which Earth's magnetic field maintained a near-constant polarity state through tens of Myr, are known from the bio/magnetostratigraphic record of Phanerozoic time, perhaps timed according to supercontinental episodicity. Some geodynamo simulations incorporating a much smaller inner core, as would have characterized Proterozoic time, produce field reversals at a much lower rate. Here we compile polarity ratios of site means within a quality-filtered global Proterozoic paleomagnetic database, according to recent plate kinematic models. Various smoothing parameters, optimized to successfully identify the known Phanerozoic superchrons, indicate 3-10 possible Proterozoic superchrons during the 1300 Myr interval studied. Proterozoic geodynamo evolution thus appears to indicate a relatively narrow range of reversal behavior through the last two billion years, implying either remarkable stability of core dynamics over this time or insensitivity of reversal rate to core evolution.

  2. Phlogopite and Quartz Lamellae in Diamond-bearing Diopside from Marbles of the Kokchetav Massif Kazakhstan: Exsolution or Replacement Reaction

    SciTech Connect

    L Dobrzhinetskaya; R Wirth; D Rhede; Z Liu; H Green

    2011-12-31

    Exsolution lamellae of pyroxene in garnet (grt), coesite in titanite and omphacite from UHPM terranes are widely accepted as products of decompression. However, interpretation of oriented lamellae of phyllosilicates, framework silicates and oxides as a product of decompression of pyroxene is very often under debate. Results are presented here of FIB-TEM, FEG-EMP and synchrotron-assisted infrared (IR) spectroscopy studies of phlogopite (Phlog) and phlogopite + quartz (Qtz) lamellae in diamond-bearing clinopyroxene (Cpx) from ultra-high pressure (UHP) marble. These techniques allowed collection of three-dimensional information from the grain boundaries of both the single (phlogopite), two-phase lamellae (phlogopite + quartz), and fluid inclusions inside of diamond included in K-rich Cpx and understanding their relationships and mechanisms of formation. The Cpx grains contain in their cores lamellae-I, which are represented by topotactically oriented extremely thin lamellae of phlogopite (that generally are two units cell wide but locally can be seen to be somewhat broader) and microdiamond. The core composition is: (Ca{sub 0.94}K{sub 0.04}Na{sub 0.02})(Al{sub 0.06}Fe{sub 0.08}Mg{sub 0.88})(Si{sub 1.98}Al{sub 0.02})O{sub 6.00}. Fluid inclusions rich in K and Si are recognized in the core of the Cpx, having no visible connections to the lamellae-I. Lamellar-II inclusions consist of micron-size single laths of phlogopite and lens-like quartz or slightly elongated phlogopite + quartz intergrowths; all are situated in the rim zone of the Cpx. The composition of the rim is (Ca{sub 0.95}Fe{sub 0.03}Na{sub 0.02})(Al{sub 0.05}Fe{sub 0.05}Mg{sub 0.90})Si{sub 2}O{sub 6}, and the rim contains more Ca, Mg than the core, with no K there. Such chemical tests support our microstructural observations and conclusion that the phlogopite lamellae-I are exsolved from the K-rich Cpx-precursor during decompression. It is assumed that Cpx-precursor was also enriched in H{sub 2}O, because

  3. Methane-related diamond crystallization in the Earth's mantle: Stable isotope evidences from a single diamond-bearing xenolith

    NASA Astrophysics Data System (ADS)

    Thomassot, E.; Cartigny, P.; Harris, J. W.; (Fanus) Viljoen, K. S.

    2007-05-01

    Mineralogical studies of deep-seated xenoliths and mineral inclusions in diamonds indicate that there is significant variability in oxygen fugacity within the Earth's upper mantle. This variability is consistent both with the occurrence of reduced (methane-bearing) or oxidized (CO 2/carbonate-bearing) fluids. Invariably, direct sampling of reduced deep fluids is not possible as they are unquenchable and re-equilibrate with either the surrounding mantle or are affected by degassing. Key information about the nature of such fluids might be found in diamond if it were possible to study a population related to a single source. Usually, diamonds within a kimberlite pipe have different parageneses and can be shown to have formed at different times and depths. We studied 59 diamonds extracted from a single diamondiferous peridotite xenolith (with a volume of only 27 cm 3), from the Cullinan mine (formerly called the Premier mine) in South Africa. Diamond sizes range from 0.0005 to 0.169 carats (0.1 to 33.8 mg). A correlation between the nitrogen contents of the diamonds (range 40 to 1430 ppm) and their nitrogen aggregation state (varying from 10 to 85% of IaB defects) is compatible with a single growth event. δ 13C-values range from - 4.2‰ to - 0.1‰, with slight internal variability measured in the largest diamonds. Nitrogen isotope measurements show δ 15N ranging from - 1.2‰ to + 7.2‰. On the centimeter scale of this upper mantle rock, the variations for nitrogen content, nitrogen aggregation state, carbon and nitrogen isotopic compositions, respectively, cover 64%, 75%, 15% and 23% of the ranges known for peridotitic diamonds. In spite of such large ranges, N-content, δ 13C and δ 15N within this diamond population are distinctly coupled. These relationships do not support a mixing of carbon sources, but are best explained by a Rayleigh distillation within the sub-continental mantle at depths > 150 km and T > 1200 °C, which precipitates diamonds from methane

  4. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  5. Using of clinopyroxene thermobarometry for the eclogites and omphacite diamond inclusions of Yakutian and worldwide kimberlites .

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Spetsius, Zdislav; Downes, Hilary; Logvinova, Alla; Ravi, Subramanian; Ntaflos, Theodoros

    2014-05-01

    Modified clinopyroxene thermobarometry (Ashchepkov et al., 2010) in combination with (Krogh, 1988) or (Nimis, Taylor, 2000) thermometers checked using 570 published runs in eclogite system clarified position of eclogites in Siberian and Worldwide SCLM (Ashchepkov et al, 2010; 2012; 2013). In Siberia Fe- eclogites related to Fe- basalts or TTG cumulates sediments and are found in the middle pyroxenite layer formed in Early Archean when eclogites can't be subducted and were remelted in near 100 -130 km (3.5-4GPa) (Udachnaya, Mir, Prianabarie) . In Middle and late Archean they locate ~5 GPa forming several deeper levels (Udachnaya). Hi- Mg arc cumulates (Horodyskyj ea, 2007) are related to the different depth and relate to Low-T geotherms starting from 7.5 to 4 GPa. Diamond omphacite inclusions from melt metasomatized eclogites or protokimberlite cumulates often trace HT geotherm. In Siberia eclogites positions in SCLM differ. In Magan terrain abundant eclogites of varying (Mg') correspond to different types. Majority (4-5 GPa, MaloBotupbinsky and Khramai) form several trends decreasing P- Fe corresponding to melt differentiation and reaction with kimberlites referring to high -T conditions. The 3.0-3.5 GPa lens traced by both high and low-Fe eclogites. Cold low Fe type are probably referring to subduction type eclogites (LT) but HT -to protokimberlite crystallization . In West Daldyn (Alakit) terrain eclogites locate in middle SCLM part. In Daldyn West they are distributed in all section. In Nakyn field (Markha terrane) Fe-rich eclogites dominate in lower SCLM like in Upper Muna fields. In northern Siberian craton part in Hapchan (Kuoyka) and Birekte terrain most eclogites belong to middle part. Those from Upper part may corresponds to TTG cumulates. Abundant eclogite diamond inclusions suggest that they should be also in the low SCLM. Proterozoic kimberlites commonly carry hot eclogites from middle part like in Wajrakarur field (KL-4) in India where Ca- rich

  6. On the geodynamic setting of kimberlite genesis

    NASA Technical Reports Server (NTRS)

    England, P.; Houseman, G.

    1984-01-01

    The emplacement of kimberlites in the North American and African continents since the early Palaeozoic appears to have occurred during periods of relatively slow motion of these continents. The distribution of kimberlites in time may reflect the global pattern of convection, which forces individual plates to move faster or slower at different times. Two-dimensional numerical experiments on a convecting layer with a moving upper boundary show two different regimes: in the first, when the upper boundary velocity is high, heat is transferred by the large-scale circulation and in the second, when the upper boundary velocity is lower, heat is predominantly transferred by thermal plumes rising from the lower boundary layer. For a reasonable mantle solidus, this second regime can give rise to partial melting beneath the moving plate, far from the plate boundaries. The transition between these modes takes place over a small range of plate velocities; for a Rayleigh number of 1,000,000 it occurs around 20 mm/yr. It is suggested that the generation of kimberlite magmas may result from thermal plumes incident on the base of a slowly moving plate.

  7. The ascent of kimberlite: Insights from olivine

    NASA Astrophysics Data System (ADS)

    Brett, R. C.; Russell, J. K.; Andrews, G. D. M.; Jones, T. J.

    2015-08-01

    Olivine xenocrysts are ubiquitous in kimberlite deposits worldwide and derive from the disaggregation of mantle-derived peridotitic xenoliths. Here, we provide descriptions of textural features in xenocrystic olivine from kimberlite deposits at the Diavik Diamond Mine, Canada and at Igwisi Hills volcano, Tanzania. We establish a relative sequence of textural events recorded by olivine during magma ascent through the cratonic mantle lithosphere, including: xenolith disaggregation, decompression fracturing expressed as mineral- and fluid-inclusion-rich sealed and healed cracks, grain size and shape modification by chemical dissolution and abrasion, late-stage crystallization of overgrowths on olivine xenocrysts, and lastly, mechanical milling and rounding of the olivine cargo prior to emplacement. Ascent through the lithosphere operates as a "kimberlite factory" wherein progressive upward dyke propagation of the initial carbonatitic melt fractures the overlying mantle to entrain and disaggregate mantle xenoliths. Preferential assimilation of orthopyroxene (Opx) xenocrysts by the silica-undersaturated carbonatitic melt leads to deep-seated exsolution of CO2-rich fluid generating buoyancy and supporting rapid ascent. Concomitant dissolution of olivine produces irregular-shaped relict grains preserved as cores to most kimberlitic olivine. Multiple generations of decompression cracks in olivine provide evidence for a progression in ambient fluid compositions (e.g., from carbonatitic to silicic) during ascent. Numerical modelling predicts tensile failure of xenoliths (disaggregation) and olivine (cracks) over ascent distances of 2-7 km and 15-25 km, respectively, at velocities of 0.1 to >4 m s-1. Efficient assimilation of Opx during ascent results in a silica-enriched, olivine-saturated kimberlitic melt (i.e. SiO2 >20 wt.%) that crystallizes overgrowths on partially digested and abraded olivine xenocrysts. Olivine saturation is constrained to occur at pressures <1 GPa; an

  8. Variations of the Fe# of garnet, olivine and other peridotite minerals in the mantle columns beneath the Yakutian kimberlites.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I.; Ntaflos, T.; Logvinova, A.; Smelov, A.; Vladykin, N.; Kostrovitsky, S.; Lelyukh, S.; Afanasiev, V.; Kuligin, S.; Minin, V.; Downes, H.; Khmelnikova, O.; Nigmatulina, E.; Tychkov, N.; Skvortsova, M.; Rotman, A.

    2012-04-01

    . The reasons of variation issinterction with the mantle melts. The fluid rich melts produced essential depletions, the basaltic ascending trap basaltic melts create the increasing Fe within the extended interval from SCLM base to top. The alkaline basalts mainly interacts within the upper part of mantle sections. The protokimberlites mainly affect the form the bas e to 41 kbars. And the lamproites whci ar more Fe# rich may produce the decreasing Fe trends from the base to top. The temporal changes of mantle Fe# 8 in Archean 9 Proterozoic and 10 (Griffin , O 'Reillly, 2003) show in he reality even Proterozoic Permier SCLM there are three separate P-Fe# trends 5, 7 and 9 % increasing upward. Similar trend for Dharvar kimberlites have Fe# 7- 10% variations. Paleozoic kimberlites Baltica. are similar to Sibrian. The Wyoming SCLM is rather Mg rich. The SCLM for Mz kimbelrites in Africa and Canada show many trends to 15 % spreading upward. RBRF grant 11-05-00060.

  9. Crystal-Chemical Correlations in Chromites from Kimberlitic and Non-Kimberlitic Sources.

    NASA Astrophysics Data System (ADS)

    Freckelton, C. N.; Flemming, R. L.

    2009-05-01

    This study explores the utility of micro X-ray diffraction (μXRD) as a tool for diamond exploration, as a compliment to current industry-standard techniques such as electron probe microanalysis (EPMA). Here we examine chromite. As one of the first phases to crystallize in mantle rocks, it is a useful indicator of upper mantle magmatic conditions in rocks that have been sampled by kimberlites. In addition, chromite does not alter easily from chemical and physical weathering processes. As such, chromite is a useful kimberlite indicator mineral in diamond exploration. We present correlations between crystal structure (unit cell) and chemical composition of chromite, (Fe,Mg)[Cr, Al]2O4, using correlated μXRD and EPMA data for 133 chromites from a three source locations: Two kimberlite sources and one non-kimberlitic source from an Archean granite/greenstone terrain. Quantitative analysis was performed using Electron Probe Microanalysis (EPMA) at Mineral Services, South Africa, prior to the loan of the samples. Randomly-oriented chromite grains, approximately 500 μm in diameter, were analyzed as previously mounted for EPMA. Micro X-ray-diffraction was performed using a Bruker D8-Discover Diffractometer, with θ-θ geometry, with CuKα radiation, operating at 40 kV and 40 mA, with nominal beam diameter of 500 μm. The data were collected in omega scan mode. Two dimensional General Area Detector Diffraction System (GADDS) images were collected for 20 minutes per image, and integrated to produce one-dimensional plots of intensity versus 2θ, for subsequent unit cell refinement using CELREF. Although all samples in this study were considered to be 'chromite', a plot of Cr/(Cr+Al) versus Fe2+/(Fe2++Mg) shows extensive substitution among four dominant members: chromite (FeCr2O4), magnesio-chromite (MgCr2O4), spinel (MgAl2O4), and hercynite (FeAl2O4), where Mg and Fe2+ substitute for one another on the tetrahedral site, and Cr and Al substitute for one another on the

  10. Spectroscopy of Moses Rock Kimberlite Diatreme

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Mustard, J. F.

    1985-01-01

    Three types of remote sensing data (Airborne Imaging Spectroscopy (AIS), NS001, Zeiss IR-photographs) were obtained for the Moses Rock kimberlite dike in southern Utah. The goal is to identify and characterize the mantle derived mafic component in such volcanic features. The Zeiss and NS001 images provide information on the regional setting and allow units of the dike to be distinguished from surrounding material. A potential unmapped satellite dike was identified. The AIS data provide characterizing information of the surface composition of the dike. Serpentized olivine-bearing soils are (tentatively) identified from the AIS spectra for a few areas within the dike.

  11. Oxygen isotope ratios in eclogites from kimberlites.

    PubMed

    Garlick, G D; Macgregor, I D; Vogel, D E

    1971-06-04

    The oxygen isotope compositions (delta(18)O) of eclogitic xenoliths from the Roberts Victor kimberlite range from 2 to 8 per mil relative to SMOW (standard mean ocean water). This surprising variation appears to be due to fractional crystallization: the eclogites rich in oxygen-18 represent early crystal accumulates; the eclogites poor in oxygen-18 represent residual liquids. Crystal-melt partitioning probably exceeded 3 per mil and is interpreted to be pressure-dependent. Anomalous enrichment of oxygen-18 in cumulate eclogites relative to ultramafic xenoliths suggests that crystal-melt partitioning increased after melt-formation but prior to crystallization.

  12. An infrared investigation of inclusion-bearing diamonds from the Venetia kimberlite, Northern Province, South Africa : implications for diamonds from craton-margin settings

    NASA Astrophysics Data System (ADS)

    Viljoen, (Fanus)

    2002-08-01

    The Venetia kimberlites in the Northern Province of South Africa sampled diamonds from the lithosphere underlying the Central Zone of the Limpopo Belt. Given the general correlation of diamond-bearing kimberlites with old stable cratons, this tectonic setting is somewhat anomalous and, therefore, it is desirable to characterise the diamonds in terms of their infrared characteristics. A suite of diamonds of known paragenesis from the Venetia mine spans a large range of nitrogen concentrations from less than the detection limit to 1,355 ppm. Diamond nitrogen contents are, on average, higher in the eclogitic diamond population relative to the websteritic and peridotitic diamonds. Nitrogen aggregation states are variable, ranging from almost pure type IaA diamond (poorly aggregated nitrogen) to pure type IaB diamond (highly aggregated nitrogen). On a nitrogen aggregation diagram two distinct groups can be identified based on nitrogen content and nitrogen aggregation state. These are a minor population of diamonds with nitrogen contents generally higher than 500 ppm and nitrogen aggregation states of less than 40% IaB, and another, dominant population that is characterised by higher and more variable nitrogen aggregation. The unusually aggregated nature of the majority of the diamonds analysed is unique to Venetia relative to other intrusives on the Kaapvaal-Kalahari craton, but is similar to aggregation states observed for diamonds from other craton margin or adjacent mobile belt settings such as the Argyle lamproite and the George Creek kimberlite. This could be a consequence of diamond mantle residence at mantle temperatures higher than the norm for other kimberlites from the interior of cratons. Deformation of the mantle, associated with dynamic processes such as orogenesis or subduction, might also be responsible for accelerating the rate of nitrogen aggregation in these diamonds. Low numbers of diamonds with degradation of platelets at the Venetia kimberlite

  13. Latest Proterozoic stratigraphy and earth history

    NASA Technical Reports Server (NTRS)

    Knoll, Andrew H.; Walter, Malcolm R.

    1992-01-01

    Novel biostratigraphic and chemostratigraphic data furnish an improved framework for stratigraphic correlation of the Proterozoic Eon as well as tools for a chronostratigraphic division of the late Proterozoic. It is argued that, in conjunction with geochronometric data, protistan microfossils and isotope geochemistry can furnish a means for an eventual integration of the latest Proterozoic Eon. Attention is given to the emerging methodologies of fossil protists and prokaryotes and of isotopic chemostratigraphy.

  14. Grade-tonnage and other models for diamond kimberlite pipes

    USGS Publications Warehouse

    Bliss, J.D.

    1992-01-01

    Grade-tonnage and other quantitative models help give reasonable answers to questions about diamond kimberlite pipes. Diamond kimberlite pipes are those diamondiferous kimberlite pipes that either have been worked or are expected to be worked for diamonds. These models are not applicable to kimberlite dikes and sills or to lamproite pipes. Diamond kimberlite pipes contain a median 26 million metric tons (mt); the median diamond grade is 0.25 carat/metric ton (ct/mt). Deposit-specific models suggest that the median of the average diamond size is 0.07 ct and the median percentage of diamonds that are industrial quality is 67 percent. The percentage of diamonds that are industrial quality can be predicted from deposit grade using a regression model (log[industrial diamonds (percent)]=1.9+0.2 log[grade (ct/mt)]). The largest diamond in a diamond kimberlite pipe can be predicted from deposit tonnage using a regression model (log[largest diamond (ct)]=-1.5+0.54 log[size (mt]). The median outcrop area of diamond pipes is 12 hectares (ha). Because the pipes have similar forms, the tonnage of the deposits can be predicted by the outcrop area (log[size (mt)]=6.5+1.0 log[outcrop area (ha)]). Once a kimberlite pipe is identified, the probability is approximately .005 that it can be worked for diamonds. If a newly discovered pipe is a member of a cluster that contains a known diamond kimberlite pipe, the probability that the new discovery can be mined for diamonds is 56 times that for a newly discovered kimberlite pipe in a cluster without a diamond kimberlite pipe. About 30 percent of pipes with worked residual caps at the surface will be worked at depth. Based on the number of discovered deposits and the area of stable craton rocks thought to be well explored in South Africa, about 10-5 diamond kimberlite pipes are present per square kilometer. If this density is applicable to the South American Precambrian Shield, more than 70 undiscovered kimberlite pipes are predicted to

  15. The Diamond Potential of the Tuwawi Kimberlite (Baffin Island, Nunavut).

    NASA Astrophysics Data System (ADS)

    Cross, J.; Kopylova, M.; Ritcey, D.; Kirkley, M.

    2009-05-01

    Baffin Island, underlain by Archean crust of the Rae craton with Paleoproterozoic reworking, is known to contain several kimberlites of possibly Cretaceous age. The most recent findings of kimberlite are located at the northwestern end of Baffin Island on the Brodeur Peninsula. The Tuwawi kimberlite, one in the cluster of 3 kimberlites, has an inverted cone shape. We studied drill core samples of kimberlite and mantle xenoliths from the Tuwawi kimberlite to constrain its diamond potential. Hypabyssal and volcaniclastic kimberlite types have been identified among available kimberlite core. Hypabyssal kimberlite is the predominant type in Tuwawi. The kimberlite consists of olivine macrocrysts set in a carbonate-serpentine groundmass with olivine microphenocrysts, phlogopite and spinel. Volcaniclastic kimberlite is characterized by the presence of 1) irregularly-shaped juvenile lapilli; 2) two semi-intermixed dark cryptocrystalline matrix materials; 3) olivine grains with a restricted size distribution and angular shapes. These features suggest mild sorting of the kimberlite, a possible incorporation of mud to the matrix, an epiclastic origin and formation in the crater facies. Peridotites and a garnet clinopyroxenite are found as xenoliths in the Tuwawi kimberlite. Peridotites include garnet lherzolite, garnet, spinel, and garnet-spinel harzburgites, and dunite. Both coarse and deformed (porphyroclastic and mosaic-porphyroclastic) textures are present within the peridotite xenoliths, and Cr- diopside from deformed xenoliths shows higher TiO2 (0.16 wt%) content than in coarse peridotites. Pyrope (Mg70-82) is present in all but one sample, whereas spinel occurs only in coarse peridotites and shows strong heterogeneity. It is controlled by random intra-grain compositional changes in FeO (from 13 to 16 wt%), MgO, Al2O3 and Cr2O3 (from 43 to 57 wt% ). Olivine and orthopyroxene in all xenoliths are very magnesian (Fo85-87 and En86-89), slightly more so in coarse

  16. Lattice preferred orientation of olivine found in diamond-bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseok; Jung, Haemyeong

    2015-04-01

    Seismic anisotropy in the upper mantle provides important constraints on mantle dynamics, continental evolution and global tectonics and is believed to be produced by the flow-induced lattice-preferred orientation (LPO) of olivine. Recent experimental studies at high pressure and temperature have suggested that the LPO of olivine is affected by pressure in addition to water and stress. However, there has been no report yet for the pressure-induced LPO of natural olivine because samples from the deep upper mantle are rare and often unsuitable for study due to ambiguous foliation and lineation. Here we show evidence of the pressure-induced LPO of natural olivine in diamond-bearing garnet peridotites from Finsch, South Africa. We found that the [010] axes of olivine are aligned subnormal to foliation and that the [001] axes are aligned subparallel to lineation, which is known as B-type LPO of olivine. The equilibrium pressure of the samples, as estimated using geobarometer, was greater than 4 GPa, indicating that the samples originated from a depth greater than ~120 km. In addition, FTIR spectroscopy of the olivine showed that the samples are dry, with a water content of less than 90±20 ppm H/Si (5.5±1.2 ppm wt. H2O). These data suggest that the samples are the first natural examples of olivine displaying B-type LPOs produced due to high pressure under dry condition. Our data indicate that the trench-parallel seismic anisotropy observed in many subduction zones in and below subducting slabs at depths greater than ~90 km under dry condition may be attributed to the pressure-induced olivine fabrics (B-type LPO) and may be interpreted as the entrainment of the sub-lithospheric mantle in the direction of subduction rather than anomalous trench-parallel flow.

  17. Lattice-preferred orientation of olivine found in diamond-bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseok; Jung, Haemyeong

    2015-01-01

    Seismic anisotropy in the upper mantle provides important constraints on mantle dynamics, continental evolution and global tectonics and is believed to be produced by the flow-induced lattice-preferred orientation (LPO) of olivine. Recent experimental studies at high pressure and temperature have suggested that the LPO of olivine is affected by pressure in addition to water and stress. However, there has been no report yet for the pressure-induced LPO of natural olivine because samples from the deep upper mantle are rare and often unsuitable for study due to ambiguous foliation and lineation. Here we show evidence of the pressure-induced LPO of natural olivine in diamond-bearing garnet peridotites from Finsch, South Africa. We found that the [010] axes of olivine are aligned subnormal to foliation and that the [001] axes are aligned subparallel to lineation, which is known as B-type LPO of olivine. The equilibrium pressure of the samples, as estimated using geobarometer, was greater than 4 GPa, indicating that the samples originated from a depth greater than ˜120 km. In addition, FTIR spectroscopy of the olivine showed that the samples are dry, with a water content of less than 90 ± 20 ppm H/Si (5.5 ± 1.2 ppm wt. H2O). These data suggest that the samples are the first natural examples of olivine displaying B-type LPOs produced due to high pressure under dry condition. Our data indicate that the trench-parallel seismic anisotropy observed in many subduction zones in and below subducting slabs at depths greater than ˜90 km under dry condition may be attributed to the pressure-induced olivine fabrics (B-type LPO) and may be interpreted as the entrainment of the sub-lithospheric mantle in the direction of subduction rather than anomalous trench-parallel flow.

  18. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    NASA Astrophysics Data System (ADS)

    Andreoli, M. A. G.; Przybylowicz, W. J.; Kramers, J.; Belyanin, G.; Westraadt, J.; Bamford, M.; Mesjasz-Przybylowicz, J.; Venter, A.

    2015-11-01

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr-Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  19. H 2O and CO 2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati Diamond Mine kimberlites, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Yana; Matveev, Sergei; Carlson, Jon A.

    2010-01-01

    Surface dissolution features on diamonds and Fourier Transform Infra Red spectroscopy (FTIR) of phenocrystal and xenocrystal olivines from kimberlites contain a record of magmatic fluid in kimberlite magmas. We investigated composition and behavior of kimberlitic fluid and the effect of volatiles on the eruption style and geology of kimberlites using microdiamonds and olivine concentrates from six kimberlite pipes with different lithologies and the character of diamond resorption (Ekati Diamond Mine, Northwest Territories, Canada). The study showed a clear correlation between the resorption style of diamond population of the kimberlites and the type of infrared (IR) spectra of their olivines. Four kimberlites have high quality diamonds with smooth regular surface features and high H 2O content of the olivines indicating the presence of H 2O-rich fluid during the emplacement. Fast ascent rates of fluid-rich magma can explain explosive eruption and filling the pipes with volcaniclastic kimberlite facies. Conversely, Grizzly and Leslie kimberlites have diamonds with complex sharp features diminishing diamond quality and indicating loss of the fluid. The slower ascent rates and less explosive eruption of the fluid-free magmas produced kimberlite pipes filled with magmatic facies kimberlite. Distinctive peaks in olivine IR spectra at 3356 and 3327 cm - 1 were found to correlate with the presence of hydrous magmatic fluid. Character of diamond morphology suggests that during the whole ascent of all six kimberlites, the magmatic fluid when present had a high H 2O:CO 2 ratio.

  20. Redox state of earth's upper mantle from kimberlitic ilmenites

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.; Tompkins, L. A.

    1983-01-01

    Temperatures and oxygen fugacities are reported on discrete ilmenite nodules in kimberlites from West Africa which demonstrate that the source region in the upper mantle is moderately oxidized, consistent with other nodule suites in kimberlites from southern Africa and the United States. A model is presented for a variety of tectonic settings, proposing that the upper mantle is profiled in redox potential, oxidized in the fertile asthenosphere but reduced in the depleted lithosphere.

  1. The Morphology and Composition of Groundmass Spinel in Kimberlite

    NASA Astrophysics Data System (ADS)

    Roeder, P. L.

    2003-12-01

    Chromite and chromian spinel are a common, but very minor (<1%), early phase found in the groundmass of both basalt and kimberlite. The spinel is often zoned from a chromite core to a magnetite rim depending on the original melt composition, cooling rate and the nucleation of surrounding minerals. The primary silicate minerals in many kimberlites are often destroyed by late-stage alteration leaving spinel as one of the few minerals that retains morphological and chemical evidence of the progression from an early magmatic stage to a late-stage subsolidus alteration. The composition of basaltic and kimberlitic spinel can be compared by plotting FE2#(Fe2/(Fe2+Mg)) versus FE3#(Fe3/(Fe3+Al+Cr)). The primary chromite in both basalt and kimberlite usually have FE3# <0.15 and FE2# = 0.2-0.6 whereas the late stage magnetite for both rock types is high in FE3# and FE2#. Most spinel in basalts show a consistent trend of increasing FE2# with increasing FE3# whereas kimberlitic spinel can show a variety of different trends of increasing FE3# at a constant, or even decreasing, FE2#. Evidence will be presented that suggests that trends of FE3# vs. FE2# of spinel in various kimberlites may reflect variations in cooling rate of the kimberlite. It is useful to consider the morphology and compositional variation of spinel in kimberlite in terms of four stages: 1) High Cr2O3, TiO2<1 wt.%, FE2# < 0.5, FE3# <0.1. 2) High Cr2O3, TiO2 1-3 wt.%, FE2# <0.5, FE3# <0.1. 3) Cr2O3 1-50wt.%, TiO2 3-20 wt.%, FE2# 0.4-0.9, FE3# 0.1-0.9. 4) Cr2O3 <1 wt.%, TiO2 <2 wt.%, FE2# >0.8, FE3#>0.9 . The chromite of stage 1 reflects the bulk melt composition well before intrusion of the kimberlite whereas stage 2 is thought to reflect the relatively rapid and local change in melt composition during intrusion . Stage 3 reflects a very large change in composition due to very local crystallization of the groundmass minerals and diffusion-controlled crystallization that gives rise to atoll spinels. Stage 4

  2. Petrogenesis of the Late Cretaceous northern Alberta kimberlite province

    NASA Astrophysics Data System (ADS)

    Eccles, D. Roy; Heaman, Larry M.; Luth, Robert W.; Creaser, Robert A.

    2004-09-01

    At present, 48 Late Cretaceous (ca. 70-88 Ma) kimberlitic pipes have been discovered in three separate areas of the northern Alberta: the Mountain Lake cluster, the Buffalo Head Hills field and the Birch Mountains field. The regions can be distinguished from one another by their non-archetypal kimberlite signature (Mountain Lake) or, in the case of kimberlite fields, primitive (Buffalo Head Hills) to evolved (Birch Mountains) magmatic signatures. The dominant process of magmatic differentiation is crystal fractionation and accumulation of olivine, which acts as the main criteria to distinguish between primitive and evolved Group I-type kimberlite fields in the northern Alberta. This is important from the viewpoint of diamond exploration because the majority (about 80%) of the more primitive Buffalo Head Hills kimberlites are diamondiferous, whereas the more evolved Birch Mountains pipes are barren of diamonds for the most part. Petrographically, the Buffalo Head Hills samples are distinct from the Birch Mountains samples in that they contain less carbonate, have a smaller modal abundance of late-stage minerals such as phlogopite and ilmenite, and have a higher amount of fresh, coarse macrocrystal (>0.5 mm) olivine. Consequently, samples from the Buffalo Head Hills have the highest values of MgO, Cr and Ni, and have chemistries similar to those of primitive hypabyssal kimberlite in the Northwest Territories. Based on whole-rock isotopic data, the Buffalo Head Hills K6 kimberlite has 87Sr/ 86Sr and ɛNd values similar to those of South African Group I kimberlites, whereas the Birch Mountains Legend and Phoenix kimberlites have similar ɛNd values (between 0 and +1.9), but distinctly higher 87Sr/ 86Sr values (0.7051-0.7063). The lack of whole-rock geochemical overlap between kimberlite and the freshest, least contaminated Mountain Lake South pipe rocks reflects significant mineralogical differences and Mountain Lake is similar geochemically to olivine alkali basalt

  3. Hydrothermal alteration of kimberlite by convective flows of external water.

    PubMed

    Afanasyev, A A; Melnik, O; Porritt, L; Schumacher, J C; Sparks, R S J

    Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO(18) is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.

  4. Basaltic Diatreme To Root Zone Volcanic Processes In Tuzo Kimberlite Pipe (Gahcho Kué Kimberlite Field, NWT, Canada)

    NASA Astrophysics Data System (ADS)

    Seghedi, I.; Kurszlaukis, S.; Maicher, D.

    2009-05-01

    Tuzo pipe is infilled by a series of coherent and fragmental kimberlite facies types typical for a diatreme to root zone transition level. Coherent or transitional coherent kimberlite facies dominate at depth, but also occur at shallow levels, either as dikes or as individual or agglutinated coherent kimberlite clasts (CKC). Several fragmental kimberlite varieties fill the central and shallow portions of the pipe. The definition, geometry and extent of the geological units are complex and are controlled by vertical elements. Specific for Tuzo is: (1) high abundance of locally derived xenoliths (granitoids and minor diabase) between and within the kimberlite phases, varying in size from sub-millimeter to several tens of meters, frequent in a belt-like domain between 120-200 m depth in the pipe; (2) the general presence of CKC, represented by round-subround, irregular to amoeboid-shaped clasts with a macrocrystic or aphanitic texture, mainly derived from fragmentation of erupting magma and less commonly from previously solidified kimberlite, as well as recycled pyroclasts. In addition, some CKC are interpreted to be intersections of a complex dike network. This diversity attests formation by various volcanic processes, extending from intrusive to explosive; (3) the presence of bedded polymict wall- rock and kimberlite breccia occurring mostly in deep levels of the pipe below 345 m depth. The gradational contact relationships of these deposits with the surrounding kimberlite rocks and their location suggest that they formed in situ. The emplacement of Tuzo pipe involved repetitive volcanic explosions alternating with periods of relative quiescence causing at least partial consolidation of some facies. The volume deficit in the diatreme-root zone after each eruption was compensated by gravitational collapse of overlying diatreme tephra and pre-fragmented wall-rock xenoliths. Highly explosive phases were alternating with weak explosions or intrusive phases, suggesting

  5. Origin of salts and alkali carbonates in the Udachnaya East kimberlite: Insights from petrography of kimberlite phases and their carbonate and evaporite xenoliths

    NASA Astrophysics Data System (ADS)

    Kopylova, M. G.; Gaudet, M.; Kostrovitsky, S. I.; Polozov, A. G.; Yakovlev, D. A.

    2016-11-01

    The Udachnaya East kimberlite is characterized by the presence of chlorides, sulfates and alkali carbonates. This highly atypical mineralogy underpinned a model for an anhydrous alkali-rich primary kimberlite melt, despite the absence of petrographic studies providing textural context to the exotic minerals. The present work documents the petrography of the Udachnaya East kimberlite in order to address this problem. The pipe comprises two varieties of Fort-a-la-Corne type pyroclastic kimberlite, olivine-rich and magmaclast-rich, and coherent kimberlite. These kimberlites entrain xenoliths of limestones, altered shales and siltstones, halite-dominated rocks, dolomites, and coarse calcite rocks. The distinct varieties of the Udachnaya East kimberlite carry different populations of crustal xenoliths, which partially control the mineralogy of the host kimberlite. In magmaclast-rich pyroclastic kimberlite, where halite is absent from the crustal xenoliths, it is not observed in the interclast matrix, or within the magmaclasts. Halite occurs in the interclast matrix of olivine-rich pyroclastic kimberlite, where halite xenoliths are common. Large, 30 cm halite xenoliths are uniquely restricted to the coherent kimberlite and show a strong reaction with it. The halite xenoliths are sourced from depths of - 1500 to - 630 m, where carbonate beds host multiple karst cavities filled with halite and gypsum and occasional sedimentary evaporites. The style of secondary mineralization at Udachnaya depends on whether the kimberlite is coherent or pyroclastic. Shortite, pirssonite and other alkali carbonates replacing calcite and possibly serpentine are abundant only in porous pyroclastic kimberlites of both types and in their shale/siltstone xenoliths. The lower porosity of the coherent kimberlite prevented the interaction of kimberlite with Na brines. Serpentinization localized around halite xenoliths started at temperatures above 500 °C, as indicated by its association with high

  6. Geochemical Analysis and Classification of the Gates-Adah Kimberlite Dike

    NASA Astrophysics Data System (ADS)

    Jurkowski, C.; Harris, D.; Patton, N. R.

    2014-12-01

    The Gates-Adah Kimberlite dike is a NW-SE striking vertical ultramafic igneous intrusion located in Adah, southwestern Pennsylvania. A previous compositional study of the kimberlite considered classifying the kimberlite, either Group I or Group II, to be problematic. Major and trace element (including REE) analysis using X-ray Fluoresence and ICP-MS was performed on a sample collected from the dike by the Washington State University GeoAnalytical lab in order to better classify the kimberlite as Group I or II. Comparison of major elements to South African kimberlite suggests that the Gates-Adah kimberlite most closely resembles a Group I kimberlite. Comparable major element concentrations between South African Group I kimberlite and Gates-Adah kimberlite include TiO2, Al2O3, FeO, MgO, and CaO. Assessment of calculated clay mineral and tectosilicate content relative to unaltered phlogopite and olivine was performed using a contamination equation in order to understand the extent of emplacement conditions and weathering of the kimberlite using weight percent of normalized major elements (contamination index C.I.). Uncontaminated Group I kimberlite has a C.I. near 1.0 and some apparently fresh and contamination-free micaceous Group II kimberlite has a C.I. up to 1.5 . The Gates-Adah kimberlite has a C.I. level of 1.14 suggesting greater similarity to a Group I kimberlite. Similarly an Ilmenite index (Ilm.I.) was calculated using the weight percents of normalized major elements to further classify the Gates-Adah kimberlite. Group I kimberlite and Group II kimberlite should not exceed 0.52 and 0.47, respectively and the Gates-Adah kimberlite has an Ilm.I. of 0.42. Two thin sections were produced from the Gates-Adah kimberlite dike. Minerals present in Group I kimberlite include: Olivine, phlogopite, serpentine, ilmenite, and diopside. Phenocrysts of anhedral serpentinized olivine were found along with ilmenite, diopside, enstatie, and phlogopite in thin section. Large

  7. Coalingite from kimberlite breccia of the Manchary pipe, Central Yakutia

    NASA Astrophysics Data System (ADS)

    Zayakina, N. V.; Oleinikov, O. B.; Vasileva, T. I.; Oparin, N. A.

    2015-12-01

    Coalingite, Mg10Fe2(CO3)(OH)24 · 2H2O, rare Mg-Fe hydrous carbonate, has been found in the course of the mineralogical study of a disintegrated kimberlite breccia from the Manchary pipe of the Khompu-May field located in the Tamma Basin, Central Yakutia, 100 km south of Yakutsk. Coalingite occurs as small reddish brown platelets, up to 0.2 mm in size. It is associated with lizardite, chrysotile and brucite, which are typical kimberlitic assemblage. Coalingite is a supergene mineral, but in this case, it is produced by the interaction of brucite-bearing kimberlite and underground water circulating through a vertical or oblique fault zone.

  8. Garnets from the Camafuca-Camazambo kimberlite (Angola).

    PubMed

    Correia, Eugénio A; Laiginhas, Fernando A T P

    2006-06-01

    This work presents a geochemical study of a set of garnets, selected by their colors, from the Camafuca-Camazambo kimberlite, located on northeast Angola. Mantle-derived garnets were classified according to the scheme proposed by Grütter et al. (2004) and belong to the G1, G4, G9 and G10 groups. Both sub-calcic (G10) and Ca-saturated (G9) garnets, typical, respectively, of harzburgites and lherzolites, were identified. The solubility limit of knorringite molecule in G10D garnets suggests they have crystallized at a minimum pressure of about 40 to 45 kbar (4-4.5 GPa). The occurrence of diamond stability field garnets (G10D) is a clear indicator of the potential of this kimberlite for diamond. The chemistry of the garnets suggests that the source for the kimberlite was a lherzolite that has suffered a partial melting that formed basaltic magma, leaving a harzburgite as a residue.

  9. An integrated model of kimberlite ascent and eruption.

    PubMed

    Wilson, Lionel; Head Iii, James W

    2007-05-03

    Diatremes are carrot-shaped bodies forming the upper parts of very deep magmatic intrusions of kimberlite rock. These unusual, enigmatic and complex features are famous as the source of diamonds. Here we present a new model of kimberlite ascent and eruption, emphasizing the extremely unsteady nature of this process to resolve many of the seemingly contradictory characteristics of kimberlites and diatremes. Dyke initiation in a deep CO2-rich source region in the mantle leads to rapid propagation of the dyke tip, below which CO2 fluid collects, with a zone of magmatic foam beneath. When the tip breaks the surface of the ground, gas release causes a depressurization wave to travel into the magma. This wave implodes the dyke walls, fragments the magma, and creates a 'ringing' fluidization wave. Together, these processes form the diatreme. Catastrophic magma chilling seals the dyke. No precursor to the eruption is felt at the surface and the processes are complete in about an hour.

  10. Samarium-neodymium systematics in kimberlites and in the minerals of garnet lherzolite inclusions

    USGS Publications Warehouse

    Basu, A.R.; Tatsumoto, M.

    1979-01-01

    The initial ratios of neodymium-143 to neodymium-144 in kimberlites ranging in age between 90 ?? 106 to 1300 ?? 106 years from South Africa, India, and the United States are different from the corresponding ratios in the minerals of peridotite inclusions in the kimberlites but are identical to the ratios in the basaltic achondrite Juvinas at the times of emplacement of the respective kimberlite pipes. This correlation between the kimberlites and Juvinas, which represents the bulk chondritic earth in rare-earth elements, strongly indicates that the kimberlite's source in the mantle is chondritic in rare-earth elements and relatively primeval in composition. Copyright ?? 1979 AAAS.

  11. Samarium-neodymium systematics in kimberlites and in the minerals of garnet lherzolite inclusions.

    PubMed

    Basu, A R; Tatsumoto, M

    1979-07-27

    The initial ratios of neodymium-143 to neodymium-144 in kimberlites ranging in age between 90 x 10(6) to 1300 x 10(6) years from South Africa, India, and the United States are different from the corresponding ratios in the minerals of peridotite inclusions in the kimberlites but are identical to the ratios in the basaltic achondrite Juvinas at the times of emplacement of the respective kimberlite pipes. This correlation between the kimberlites and Juvinas, which represents the bulk chondritic earth in rare-earth elements, strongly indicates that the kimberlite's source in the mantle is chondritic in rare-earth elements and relatively primeval in composition.

  12. UHP-UHT peak conditions and near-adiabatic exhumation path of diamond-bearing garnet-clinopyroxene rocks from the Eger Crystalline Complex, North Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Haifler, Jakub; Kotková, Jana

    2016-04-01

    Intermediate garnet-clinopyroxene rocks from the Eger Crystalline Complex, North Bohemian Massif, contain microdiamonds enclosed in garnet and zircon. The variable mineral assemblage of these rocks allows for an evaluation of the P-T evolution using numerous univariant equilibria and thermodynamic modelling, in addition to the ternary feldspar solvus, Ti-in-garnet, Zr-in-rutile and Ti-in-zircon thermometry. Zircon mantle domains with diamond inclusions contain 111-189 ppm Ti, reflecting temperatures of 1037-1117 °C. The peak pressure consistent with diamond stability corresponds to c. 4.5-5.0 GPa. Ti-in-garnet thermometry using the Ti content of diamond-bearing garnet core yielded temperatures of 993-1039 °C at c. 5.0 GPa. An omphacite inclusion in garnet (reflecting c. 2.3-2.4 GPa at c. 1050 °C) and metastably preserved kyanite represent relics of eclogite-facies conditions. The dominant high-pressure granulite-facies mineral assemblage of low-Ca garnet, diopsidic clinopyroxene, antiperthitic feldspar and quartz equilibrated at 1.8-2.1 GPa and c. 1050 °C, based on the XGrs isopleth of the garnet mantle, garnet-feldspar-kyanite-quartz univariant equilibria and ternary feldspar solvus. Our thermodynamic modelling shows that a steep decrease of XGrs from a maximum core value of 0.32 to 0.17 at the rim as well as a rimward XMg increase (from 0.42 to 0.50) are consistent with significant decompression without heating. The latter is related to omphacite and kyanite breakdown reactions producing garnet and plagioclase. The Ti content in the rim zone of zircon (13-42 ppm), exsolved plagioclase and K-feldspar associated with matrix diopside and garnet rim, and late biotite reflect temperatures of c. 830-900 °C at c. 1.4 GPa. A similar temperature is recorded by matrix rutile grains, containing 2028-4390 ppm Zr and representing a relatively homogeneous population in contrast to rutile enclosed in garnet with variable Zr content. Our results show that the garnet

  13. Chasing the Late Jurassic APW Monster Shift in Ontario Kimberlites

    NASA Astrophysics Data System (ADS)

    Kent, D. V.; Muttoni, G.; Gee, J. S.; Kjarsgaard, B. A.

    2012-12-01

    A 30° gap was recognized in a composite APW path when global poles from predominantly igneous rocks were assembled in North American coordinates using plate reconstructions (Kent & Irving 2010 JGR). The 'monster shift' occurred between a 160-190 Ma cluster of mean poles at 75-80°N 90-110°E to a 140-145 Ma grouping centered at 60-65°N ~200°E. There are hardly any intermediate igneous poles whereas the rather divergent directions from the Late Jurassic Morrison Formation published by Steiner & Helsley (1975 GSA Bulletin) are subject to adjustments for Colorado Plateau rotation and sedimentary inclination error, neither of which are precisely known for this redbed unit sampled in Colorado. On the other hand, similar large rapid swings have been recognized in the Late Jurassic APW path for Adria (Channell et al. 2010 Paleo3), suggesting a global phenomena. In an effort to fill the data gap between ~145 and 160 Ma, we sampled accessible outcrops/subcrops of kimberlites in the Timiskaming area of Ontario, Canada, that are associated with high precision U-Pb perovskite ages (Heamon & Kjarsgaard 2000 EPSL). We report initial results from two of the intrusions: the 153.6±2.4 Ma Peddie kimberlite from outcrop and the Triple B kimberlite that was accessible by trenching and is assumed to be the same age as the nearby 153.7±1.8 Ma Seed kimberlite as delineated by aeromagnetic surveys and borings. Systematic progressive thermal demagnetization indicated in each unit a dominant characteristic component with unblocking temperatures to 575° that presumably reflect a magnetite carrier that will be checked by further rock magnetic experiments. Samples from the Peddie kimberlite had stable downward (normal polarity) magnetizations whose mean direction gives a paleopole at 73°N 184°E. In contrast, samples from the Triple B kimberlite have upward (reverse polarity) magnetizations with a well-grouped direction whose (north) paleopole is 78°N 197°E, proximal to the Peddie

  14. Experimental Study of Surface Dissolution Features on Kimberlite Indicator Minerals

    NASA Astrophysics Data System (ADS)

    McIsaac, E.; Fedortchouk, Y.

    2009-05-01

    During the ascent to the Earth's surface kimberlite magmas entrain mantle minerals - chromites, ilmenites, garnets and the most desirable - diamonds. Kimberlite magma partially dissolves these minerals during the ascent, producing different types of surface features on the minerals. Experiments showed that surface features on diamonds can be used to constrain composition of magmatic fluid. However, examining mantle minerals with more complex chemical compositions, such as chromites and ilmenites, could provide more detailed information about the composition and evolution of fluid system in the magmas, as determination of the depth of their entrainment is possible. This study experimentally investigates dissolution of chromites and ilmenites in melts with C-O-H fluid. The surface features produced at these conditions are then compared to the surface features on minerals recovered from kimberlites. The experiments were done in a piston-cylinder apparatus at 1350 - 1400°C and 1 GPa. Rounded natural mineral grains were placed in a synthetic mixture of Ca-Mg-Si-C-H-O composition with 0, 5, 13, 15, and 31 wt% H2O and 0, 5, and 27 wt% CO2. The experimental results investigated using Field-Emission Scanning Electron Microscope showed that angular step-like dissolution surfaces, which are common for natural kimberlitic chromites, develop only in the presence of H2O-rich fluid phase. The reaction of chromite with H2O dissolved in the melt and with dry melt caused smoothing of chromite surfaces. Chromite dissolution in CO2-rich melts produced rounded and polyhedral relief features. Both the smooth and polyhedral types of features are not typical for natural kimberlite-hosted chromite grains. Ilmenite underwent rapid dissolution at our experimental conditions. In H2O-rich fluid ilmenite produced "pyramidal" type of surface features previously described as the most common for natural kimberlitic ilmenites. The experimental results were compared to the natural minerals

  15. How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Kamenetsky, Maya B.; Weiss, Yakov; Navon, Oded; Nielsen, Troels F. D.; Mernagh, Terrence P.

    2009-11-01

    The origin of alkali carbonates and chlorides in the groundmass of unaltered Udachnaya-East kimberlites in Siberia is still controversial. Contrary to existing dogma that the Udachnaya-East kimberlite was either contaminated by the crustal sediments or platform brines, magmatic origin of the groundmass assemblage has been proposed on the basis of melt immiscibility textures, melt inclusion studies, and strontium and neon isotope compositions. We further tested the idea of alkali- and chlorine enrichment of the kimberlite parental melt by studying olivine-hosted melt inclusions and secondary serpentine in kimberlites from the Slave Craton, Canada (Gahcho Kué, Jericho, Aaron and Leslie pipes) and southern West Greenland (Majuagaa dyke). Host olivine phenocrysts closely resemble groundmass olivine from the Udachnaya-East kimberlite in morphology, compositions (high-Fo, low-Ca), complex zoning with cores of varying shapes and compositions and rims of constant Fo. Melt inclusions in olivine consist of several translucent and opaque daughter phases and vapour bubble(s). The daughter crystals studied in unexposed inclusions by laser Raman spectroscopy and in carefully exposed inclusions by WDS-EDS are represented by Na-K chlorides, calcite, dolomite, magnesite, Ca-Na, Ca-Na-K and Ca-Mg-Ba carbonates, bradleyite Na 3 Mg(CO 3)(PO 4), K-bearing nahpoite Na 2(HPO 4), apatite, phlogopite and tetraferriphlogopite, unidentified sulphates, Fe sulphides, djerfisherite, pyrochlore (Na,Ca) 2Nb 2O 6(OH,F), monticellite, Cr-spinel and Fe-Ti oxides. High abundances of Na, K (e.g., (Na + K)/Ca = 0.15-0.85) and incompatible trace elements in the melt inclusions are confirmed by LA-ICPMS analysis of individual inclusions. Heating experiments show that melting of daughter minerals starts and completes at low temperatures (~ 100 °C and 600 °C, respectively), further reinforcing the similarity with the Udachnaya-East kimberlite. Serpentine minerals replacing olivine in some of the studied

  16. Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton

    NASA Astrophysics Data System (ADS)

    Kopylova, M. G.; Afanasiev, V. P.; Bruce, L. F.; Thurston, P. C.; Ryder, J.

    2011-12-01

    detrital material. The clasts could have originated as close as the northern Wawa-Abitibi Terrane or as distant as the Opatica terrane. The pre-2.7 Ga diamonondiferous cratonic root below the Southern Superior was removed in the Neoarchean-Proterozoic. The existence of Archean kimberlites and deep diamondiferous roots below smaller pre-2.7 Ga protocratons emphasizes the similarity of Neoarchean and Phanerozoic mantle processes.

  17. A Re Os isotope and PGE study of kimberlite-derived peridotite xenoliths from Somerset Island and a comparison to the Slave and Kaapvaal cratons

    NASA Astrophysics Data System (ADS)

    Irvine, Gordon J.; Pearson, D. Graham; Kjarsgaard, B. A.; Carlson, R. W.; Kopylova, M. G.; Dreibus, G.

    2003-12-01

    The concentrations of platinum-group elements (PGE; Os, Ir, Ru, Pd and Pt) and Re, and the Os isotopic compositions were determined for 33 lithospheric mantle peridotite xenoliths from the Somerset Island kimberlite field. The Os isotopic compositions are exclusively less radiogenic than estimates of bulk-earth ( 187Os/ 188Os as low as 0.1084) and require a long-term evolution in a low Re-Os environment. Re depletion model ages ( TRD) indicate that the cratonic lithosphere of Somerset Island stabilised by at least 2.8 Ga, i.e. in the Neoarchean and survived into the Mesozoic to be sampled by Cretaceous kimberlite magmatism. An Archean origin also is supported by thermobarometry (Archean lithospheric keels are characterised by >150 km thick lithosphere), modal mineralogy and mineral chemistry observations. The oldest ages recorded in the lithospheric mantle beneath Somerset Island are younger than the Mesoarchean (>3 Ga) ages recorded in the Slave craton lithospheric mantle to the southwest [Irvine, G.J., et al., 1999. Age of the lithospheric mantle beneath and around the Slave craton: a Rhenium-Osmium isotopic study of peridotite xenoliths from the Jericho and Somerset Island kimberlites. Ninth Annual V.M. Goldschmidt Conf., LPI Cont., 971: 134-135; Irvine, G.J., et al., 2001. The age of two cratons: a PGE and Os-Isotopic study of peridotite xenoliths from the Jericho kimberlite (Slave craton) and the Somerset Island kimberlite field (Churchill Province). The Slave-Kaapvaal Workshop, Merrickville, Ontario, Canada]. Younger, Paleoproterozoic, TRD model ages for Somerset Island samples are generally interpreted as the result of open system behaviour during metasomatic and/or magmatic processes, with possibly the addition of new lithospheric material during tectono-thermal events related to the Taltson-Thelon orogen. PGE patterns highly depleted in Pt and Pd generally correspond to older Archean TRD model ages indicating closed system behaviour since the time of

  18. Discovery of kimberlite in a magnetically noisy environment: a case study of the Syferfontein and Goedgevonden kimberlites (Invited)

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Van Buren, R.

    2013-12-01

    Airborne geophysical methods play an important role in the exploration for kimberlites. As regions become more intensively explored, smaller kimberlites, which can be extremely difficult to find, are being targeted. These smaller kimberlites, as evidenced by the M-1 Maarsfontein pipe in the Klipspringer cluster in South Africa, can be highly profitable. The Goedgevonden and Syferfontein pipes are small kimberlites (~0.2 ha) ~25 km NNE of Klerksdorp in South Africa. The Goedgevonden pipe has been known since the 1930s and is diamondiferous, but not commercially viable due to small stone size and low quality of stones. In the early 1990s, Gold Fields used this pipe as a typical kimberlite to collect example geophysical data. The nearby (~1 km to the east) Syferfontein pipe is not diamondiferous but was discovered in 1994 as part of a speculative airborne EM survey conducted by Gold Fields and Geodass (now CGG) as part of their case study investigations. Both kimberlites have had extensive ground geophysical survey data collected and have prominent magnetic, gravity and EM responses that aided in the delineation of the pipes. These pipes represent a realistic and challenging case study target due to their small size and the magnetically noisy environment into which they have been emplaced. The discovery of the Syferfontein pipe in 1994 stimulated further testing of airborne methods, especially as the surface was undisturbed. These pipes are located in a region that hosts highly variably magnetized Hospital Hill shales, dolerite dykes and Ventersdorp lavas, a 2-3 m thick resistive ferricrete cap and significant cultural features such as an electric railroad and high tension power line. Although the kimberlites both show prominent magnetic anomalies on ground surveys, the airborne data are significantly noisy and the pipes do not show up as well determined targets. However, the clay-rich weathered zone of the pipes provides an ideal target for the EM method, and both

  19. The Nd and Sr isotopic evolution of Proterozoic seawater

    NASA Astrophysics Data System (ADS)

    Derry, Louis A.; Jacobsen, Stein B.

    1988-04-01

    Nd isotope measurements on banded iron formations and phosphorites, and Sr isotope measurements on carbonates, indicate that during both the Early and Late Proterozoic, hydrothermal input to the oceans was a significant fraction of the total input to ocean chemistry. Isotopic data from Early Proterozoic clastic sediments show systematic differences from coeval chemical sediments. These differences become less marked toward the end of the Proterozoic. This implies a higher hydrothermal water to river water flux ratio during the Early Proterozoic. The significant changes in seawater isotopic composition during the Proterozoic reflect the transition from mantle dominated Archean oceans to a typically modern system.

  20. Proterozoic geology and ore deposits of Arizona

    USGS Publications Warehouse

    Karlstrom, Karl E.

    1991-01-01

    Proterozoic rocks in Arizona have been the focus of interest for geologists since the late 1800's. Early investigations, led by the U.S. Geological Survey, focused on the extensive ore deposits hosted by Proterozoic rocks. By the 1960's, these studies, combined with theses from academic institutions and the efforts of the Arizona Geological Survey, had produced a rich data base of geologic maps, primarily of the central part of the Transition Zone. The chronological significance of these maps became much better known with the application of U-Pb geochronology by L.Y. Silver and his students starting in the 1960's. The 1970's and early 1980's were marked by numerous contributions from Masters and Ph.D students at a variety of academic institutions, and continued work by the U.S. Geological Survey. Interest in ore deposits persisted and there was an increasing interest in interpretation of the tectonic history of Proterozoic rocks in terms of plate tectonic models, as summarized in papers by Phillip Anderson, Ed DeWitt, Clay Conway, Paul Lindberg, and J.L Anderson in the 1989 Arizona Geological Society Digest 17: "Geologic Evolution of Arizona". The present volume: "Proterozoic Geology and Ore deposits of Arizona" builds upon A.G.S. Digest 17, and presents the results of geologic investigations from the latter part of the 1980's. A number of the papers are condensed versions of MS theses done by students at Northern Arizona University. These papers are based upon 1:10,000 mapping and structural analysis of several areas in Arizona. The geologic maps from each of these studies are available separately as part of the Arizona Geological Survey Contributed Map Series. These detailed maps, plus the continuing mapping efforts of the U.S.G.S. and students at other academic institutions, form an ever improving data base for continuing attempts to understand the Proterozoic geology and ore deposits of Arizona

  1. The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province.

    PubMed

    Yaxley, Gregory M; Kamenetsky, Vadim S; Nichols, Geoffrey T; Maas, Roland; Belousova, Elena; Rosenthal, Anja; Norman, Marc

    2013-01-01

    Kimberlites are a volumetrically minor component of the Earth's volcanic record, but are very important as the major commercial source of diamonds and as the deepest samples of the Earth's mantle. They were predominantly emplaced from ≈2,100 Ma to ≈10 ka ago, into ancient, stable regions of continental crust (cratons), but are also known from continental rifts and mobile belts. Kimberlites have been reported from almost all major cratons on all continents except for Antarctica. Here we report the first bona fide Antarctic kimberlite occurrence, from the northern Prince Charles Mountains, emplaced during the reactivation of the Lambert Graben associated with rifting of India from Australia-Antarctica. The samples are texturally, mineralogically and geochemically typical of Group I kimberlites from more classical localities. Their ≈120 Ma ages overlap with those of many kimberlites from other world-wide localities, extending a vast Cretaceous, Gondwanan kimberlite province, for the first time, into Antarctica.

  2. The origin of pelletal lapilli in explosive kimberlite eruptions.

    PubMed

    Gernon, T M; Brown, R J; Tait, M A; Hincks, T K

    2012-05-15

    Kimberlites are volatile-rich magmas from mantle depths of ≥ 150  km and are the primary source of diamonds. Kimberlite volcanism involves the formation of diverging pipes or diatremes, which are the locus of high-intensity explosive eruptions. A conspicuous and previously enigmatic feature of diatreme fills are 'pelletal lapilli'--well-rounded clasts consisting of an inner 'seed' particle with a complex rim, thought to represent quenched juvenile melt. Here we show that these coincide with a transition from magmatic to pyroclastic behaviour, thus offering fundamental insights into eruption dynamics and constraints on vent conditions. We propose that pelletal lapilli are formed when fluid melts intrude into earlier volcaniclastic infill close to the diatreme root zone. Intensive degassing produces a gas jet in which locally scavenged particles are simultaneously fluidised and coated by a spray of low-viscosity melt. A similar origin may apply to pelletal lapilli in other alkaline volcanic rocks, including carbonatites, kamafugites and melilitites.

  3. Petrological characteristics of the Masontown, Pennsylvania kimberlite dike

    SciTech Connect

    Prellwitz, H.S.; Bikerman, M. . Dept. of Geology and Planetary Science)

    1993-03-01

    The Masontown, PA, kimberlite dike intrudes flat-lying Pennsylvanian and early Permian sedimentary rocks, via a pre-existing vertical fault zone, contact relationship indicate a low temperature of intrusion. The kimberlite consists of a phenocryst mineral assemblage which includes olivine, phlogopite, Ti rich oxides, and very fine grained carbonate, that is believed to be of primary origin. Most of the olivine has been altered to serpentine, and post emplacement fractures are filled with secondary carbonate. Most of the mineral grains have reaction rims, which record high pressure/temperature melt conditions that later changed into a lower pressure/temperature environment. Vertical alignment of the mineral grains suggest an upward flow direction. Lithospheric mantle xenoliths of garnet lherzolite and crustal xenoliths of biotite gneiss show probable compositions of deep-seated rocks. These rocks are normally inaccessible because they are converted by a thick Paleozoic sedimentary blanket in this area.

  4. Isotope fractionation related to kimberlite magmatism and diamond formation

    SciTech Connect

    Galimov, E.M. )

    1991-06-01

    This paper deals with a model of carbon isotope fractionation presumed to accompany the movement of mantle fluids. In the first part of the article, the experimental data and the relationships revealed are generalized and discussed; the remainder of the paper describes the model. The isotope compositions of different forms of carbon related to kimberlite magmatism vary widely. In diamonds, {delta}{sup 13}C values range from {minus}34.5 to +2.8{per thousand}. Carbonate-bearing autholiths in kimberlites occur enriched in {sup 13}C up to +35{per thousand}. Organic matter, including that occurring in fluid inclusions of magmatic minerals of kimberlites, is depleted in {sup 13}C down to {minus}30{per thousand}. It is concluded that the {delta}{sup 13}C-distribution for diamonds is specific for a particular occurrence. Principal differences in isotopic distribution patterns for diamonds of ultrabasic and basic paragenesis exist. Isotopically light diamonds are related only to the latter. The intention of the model is to explain the observed variations of carbon isotope composition of diamond and other carbonaceous substances related to kimberlite magmatism. The model is based on the interaction of reduced sub-asthenospehric fluid with a relatively oxidized lithosphere. It is suggested that diamonds of ultrabasic paragenesis are produced during interaction of the fluid with sheared garnet lbherzolite which is considered to be primitive mantle rock. During contact with the more oxidized mantle, reduced carbon (CH{sub 4}) may partially be converted to CO{sub 2}. Isotope exchange in CO{sub 2}-CH{sub 4} system, conbined with Rayleigh distillation, may provide a significant isotope fractionation. Diamonds of the basic (eclogitic) paragenesis are considered to be realted to this fractionated carbon. Also, occurrence of carbonate material highly enriched in {sup 13}C is explained by the model.

  5. Growth of bultfonteinite and hydrogarnet in metasomatized basalt xenoliths in the B/K9 kimberlite, Damtshaa, Botswana: insights into hydrothermal metamorphism in kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Buse, Ben; Schumacher, John C.; Sparks, R. Stephen J.; Field, Matthew

    2010-10-01

    Metamorphic assemblages within Karoo basalt xenoliths, found within volcaniclastic kimberlite of the B/K9 pipe, Damtshaa, Botswana, constrain conditions of kimberlite alteration. Bultfonteinite and chlorite partially replace the original augite-plagioclase assemblage, driven by the serpentinisation of the kimberlite creating strong chemical potential gradients for Si and Mg. Hydrogarnet and serpentine replace these earlier metamorphic assemblages as the deposits cool. The bultfonteinite (ideally Ca2SiO2[OH,F]4) and hydrogarnet assemblages require a water-rich fluid containing F-, and imply hydrothermal alteration dominated by external fluids rather than autometamorphism from deuteric fluids. Bultfonteinite and hydrogarnet are estimated to form at temperatures of ca. 350-250°C, which are similar to those for serpentinisation. Alteration within the B/K9 kimberlite predominantly occurs between 250 and 400°C. We attribute these conditions to increased efficiency of mass transfer and chemical reactions below the critical point of water and a consequence of volume-increasing serpentinisation and metasomatic reactions that take place over this temperature range. A comparison of the B/K9 kimberlite with kimberlites from Venetia, South Africa suggests that the composition and mineralogy of included xenoliths affects the alteration assemblages within kimberlite deposits.

  6. In-vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement: An example from the Fox kimberlite, Ekati Diamond Mine, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Cas, R. A. F.; Crawford, B. B.

    2008-06-01

    The origins of massive, poorly sorted fragmental kimberlite and kimberlite breccias in the diatremes of kimberlite volcanic pipes is currently poorly understood. Studies of the textural features of the major infill of the Fox kimberlite, Ekati Diamond Mine, NWT, Canada, show that it may have formed as a result of the collapse of the explosive eruption column above the vent into the deep open pipe during the climactic stage of the eruption. As the eruption intensity increased the column became critically overloaded with dense particles and rapidly collapsed onto itself. Unlike deposits typically preserved from column collapse events, such as ignimbrites, some portion of the collapsing mass was trapped in the deep pipe, forming a distinct type of pyroclastic deposit, "in-vent/vent-fill column collapse lapilli-tuff". This deposit has previously been tentatively identified as tuffisitic kimberlite (TK) or massive volcaniclastic kimberlite (MVK), based on broadly similar textural characteristics with these lithologies. Though every individual deposit will have formed under slightly different circumstances, mass emplacement from column collapse is proposed as a viable model for massive volcaniclastic kimberlite emplacement, based on extrapolation of modern volcanological processes.

  7. Linear stability analysis for hydrothermal alteration of kimberlitic rocks

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Belyaeva, Ekaterina

    2016-06-01

    The influx of groundwater into hot kimberlite deposits results in the reaction of water with olivine-rich rocks. The products of the reaction are serpentine and release of latent heat. The rise of temperature due to the heat release increases the rate of the reaction. Under certain conditions, this self-speeding up of the reaction can result in instabilities associated with a significantly higher final serpentinization in slightly warmer regions of the kimberlite deposit. We conduct linear stability analysis of serpentinization in an isolated volume of porous kimberlitic rocks saturated with water and an inert gas. There is a counteracting interplay between the heat release tending to destabilize the uniform distribution of parameters and the heat conduction tending to stabilize it by smoothing out temperature perturbations. We determine the critical spatial scale separating the parameters where one phenomenon dominates over another. The perturbations of longer-than-critical length grow, whereas the perturbations of shorter-than-critical length fade. The analytical results of the linear stability analysis are supported by direct numerical simulations using a full nonlinear model.

  8. Kimberlite emplacement models — The implications for mining projects

    NASA Astrophysics Data System (ADS)

    Jakubec, Jaroslav

    2008-06-01

    The significance of the emplacement model for kimberlite pipes, or sheets, is commonly recognized in resource geology. However, its importance is not always appreciated in the mine design process. The fact is that knowledge of the orebody geometry, character of the contact zones, internal structures, rock mass competency and distribution of inclusions could directly influence the selection of the underground mining method, pit wall stability, dilution, treatability, and the dewatering strategy. The problems are exacerbated in smaller pipes and narrower sheets, and in more irregular shapes; they are more apparent in underground mining as opposed to open cast. Various kimberlite emplacement processes have a major impact on the nature of the kimberlite orebody and host rocks that will influence the mine design and mining strategy. Failure to understand these processes can adversely affect the economic outcome for developing a mine. It is therefore important to investigate those processes in order to better characterize the mining constraints and risks, and more accurately predict the mine's economic viability.

  9. Regulation of atmospheric oxygen during the Proterozoic

    NASA Astrophysics Data System (ADS)

    Laakso, Thomas A.; Schrag, Daniel P.

    2014-02-01

    Many studies suggest that oxygen has remained near modern levels throughout the Phanerozoic, but was much less abundant from the “Great Oxygenation Event” around 2.4 Ga until the late Neoproterozoic around 600 Ma (Kump, 2008). Using a simple model, we show that the maintenance of atmospheric pO2 at ∼1% of present atmospheric levels (PAL) is inconsistent with modern biogeochemical cycling of carbon, sulfur and iron unless new feedbacks are included. Low oxygen conditions are stable in our model if the flux of phosphorus to the oceans was greatly reduced during the Proterozoic. We propose a mechanism to reduce this flux through the scavenging of phosphate ions with an “iron trap” driven by greater surface mobility of ferrous iron in a low pO2 world. Incorporating this feedback leads to two stable equilibria for atmospheric oxygen, the first quantitative hypothesis to explain both Proterozoic and Phanerozoic O2 concentrations.

  10. Proterozoic ocean redox and biogeochemical stasis

    PubMed Central

    Reinhard, Christopher T.; Planavsky, Noah J.; Robbins, Leslie J.; Partin, Camille A.; Gill, Benjamin C.; Lalonde, Stefan V.; Bekker, Andrey; Konhauser, Kurt O.; Lyons, Timothy W.

    2013-01-01

    The partial pressure of oxygen in Earth’s atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (∼2.5–0.543 Ga). However, the trajectory and mechanisms of Earth’s oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (∼1.8–0.8 Ga). Given the coupling between redox-sensitive trace element cycles and planktonic productivity, various models for mid-Proterozoic ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients, with potential ecological constraints on emerging eukaryotic life. Here, we exploit the differing redox behavior of molybdenum and chromium to provide constraints on seafloor redox evolution by coupling a large database of sedimentary metal enrichments to a mass balance model that includes spatially variant metal burial rates. We find that the metal enrichment record implies a Proterozoic deep ocean characterized by pervasive anoxia relative to the Phanerozoic (at least ∼30–40% of modern seafloor area) but a relatively small extent of euxinic (anoxic and sulfidic) seafloor (less than ∼1–10% of modern seafloor area). Our model suggests that the oceanic Mo reservoir is extremely sensitive to perturbations in the extent of sulfidic seafloor and that the record of Mo and chromium enrichments through time is consistent with the possibility of a Mo–N colimited marine biosphere during many periods of Earth’s history. PMID:23515332

  11. A Laughing Gas Greenhouse for the Proterozoic?

    NASA Astrophysics Data System (ADS)

    Roberson, A. L.; Roadt, J.; Halevy, I.; Kasting, J. F.

    2010-12-01

    An anoxic, sulfidic ‘Canfield ocean’ during the Proterozoic (0.75-2.3 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The limitation on copper, specifically, would have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N2O to N2. Today, only about 5-6 percent of denitrification results in release of N2O. If all denitrification stopped at N2O during the Proterozoic, the N2O flux could have been 15-20 times higher than today. Other parts of the nitrogen cycle should have been able to operate at rates comparable to today, as catalysts for these reactions should have existed. The high N2O flux should have created higher atmospheric N2O concentrations; although this effect may have been offset by faster rates of N2O photolysis if O2 concentrations were lower than today. N2O concentrations of 0.3 to 30 ppmv, along with methane levels of 30-100 ppm, could have kept the surface warm during the Proterozoic without necessitating high CO2 levels. The high methane concentrations were a consequence of lack of dissolved O2 and sulfate in the deep ocean, which should have led to a high CH4 flux from marine sediments. A second oxygenation event at the end of the Proterozoic would have resulted in a shift to a more modern ocean and, consequently, more modern concentrations of atmospheric N2O and CH4.

  12. The Fazenda Largo off-craton kimberlites of Piauí State, Brazil

    NASA Astrophysics Data System (ADS)

    Kaminsky, Felix V.; Sablukov, Sergei M.; Sablukova, Ludmila I.; Zakharchenko, Olga D.

    2009-10-01

    In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area - Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos - this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the 'Transbrasiliano Lineament'. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.

  13. [Proterozoic history and present state of cyanobacteria].

    PubMed

    Sergeev, V N; Gerasimenko, L M; Zavarzin, G A

    2002-01-01

    The paper delves into the main regularities of the distribution of fossil microorganisms in Precambrian rocks, beginning from the Archean Eon about 3.5 billion years ago and ending in the Cambrian Period about 0.5 billion years ago. The paper analyzes facial peculiarities in the lateral differentiation of microfossils in Proterozoic basins and the main stages of temporal changes in fossil cyanobacterial communities, which are based on the irreversible succession of physicochemical conditions on the Earth and the evolution of eukaryotic microorganisms and their incorporation into prokaryotic ecosystems. To gain insight into Proterozoic fossil records, modern stratified cyanobacterial mats built up from layers of prokaryotes are considered. The analysis of phosphatization, carbonatization, and silification processes in modern algal-bacterial communities suggests that analogous processes took place in Proterozoic microbiotas. A comparison of modern and Precambrian living forms confirms the inference that cyanobacterial communities are very conservative and have changed insignificantly both morphologically and physiologically during the past two billion years.

  14. In-situ assimilation of mantle minerals by kimberlitic magmas - Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa)

    NASA Astrophysics Data System (ADS)

    Soltys, Ashton; Giuliani, Andrea; Phillips, David; Kamenetsky, Vadim S.; Maas, Roland; Woodhead, Jon; Rodemann, Thomas

    2016-07-01

    The lack of consensus on the possible range of initial kimberlite melt compositions and their evolution as they ascend through and interact with mantle and crustal wall rocks, hampers a complete understanding of kimberlite petrogenesis. Attempts to resolve these issues are complicated by the fact that kimberlite rocks are mixtures of magmatic, xenocrystic and antecrystic components and, hence, are not directly representative of their parental melt composition. Furthermore, there is a lack of direct evidence of the assimilation processes that may characterise kimberlitic melts during ascent, which makes understanding their melt evolution difficult. In this contribution we provide novel constraints on the interaction between precursor kimberlite melts and lithospheric mantle wall rocks. We present detailed textural and geochemical data for a carbonate-rich vein assemblage that traverses a garnet wehrlite xenolith [equilibrated at ~ 1060 °C and 43 kbar (~ 140-145 km)] from the Bultfontein kimberlite (Kimberley, South Africa). This vein assemblage is dominated by Ca-Mg carbonates, with subordinate oxide minerals, olivine, sulphides, and apatite. Vein phases have highly variable compositions indicating formation under disequilibrium conditions. Primary inclusions in the vein minerals and secondary inclusion trails in host wehrlite minerals contain abundant alkali-bearing phases (e.g., Na-K bearing carbonates, Mg-freudenbergite, Na-bearing apatite and phlogopite). The Sr-isotope composition of vein carbonates overlaps those of groundmass calcite from the Bultfontein kimberlite, as well as perovskite from the other kimberlites in the Kimberley area. Clinopyroxene and garnet in the host wehrlite are resorbed and have Si-rich reaction mantles where in contact with the carbonate-rich veins. Within some veins, the carbonates occur as droplet-like, globular segregations, separated from a similarly shaped Si-rich phase by a thin meniscus of Mg-magnetite. These textures are

  15. Hydrothermal alteration of kimberlite by convective flows of external water

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Melnik, Oleg; Porritt, Lucy; Schumacher, John; Sparks, Steve

    2015-04-01

    Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. In order to simulate cooling of a kimberlite body by external water influx, we have used a modified version of the filtration code MUFITS (www.mufits.imec.msu.ru). The code is developed for simulation of multiphase multicomponent flows in porous media in a wide range of pressures and temperatures, including sub-critical and supercritical conditions. It solves mass conservation laws for individual components (water and a proxy component, not participating in serpentinisation) together with energy equation for the system as a whole including the solid rock matrix, and Darcy transport equations for different phases. Two modifications of the code were implemented: Serpentinisation of the olivine leads to a decrease in the density of the rock matrix and filling pore spaces resulting in significant decrease in porosity and permeability; latent heat of serpentinisation is accounted for in the energy equation. The simulation results indicate that large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe

  16. Kimberlite Trends at the Surface and at Depth

    NASA Astrophysics Data System (ADS)

    Snyder, D. B.; Lockhart, G.

    2004-05-01

    Although the focus of much study as the host rock for diamonds, the emplacement mechanisms and structure of kimberlite deposits remains only poorly perceived. Recent application of geochronological and seismic techniques to the Lac De Gras kimberlite field that is home to the world's newest diamond mines in NW Canada revealed unexpected correlation in structural trends. The best fitting patterns for the variation in SKS splitting delay times for the Lac de Gras teleseismic stations are consistently those of two horizontal layers. The fast axis of each lower layer trends 045-050° and delay times are 0.9-1.0 seconds. Upper layers show greater variability; beneath the Ekati Diamond Mine, the fast axis trends 012° with a delay time of 0.45 seconds. At depths of about 120 km, the radial component of receiver functions from this same station has maximum amplitude at 285-290° and the transverse component at about 320\\deg; together these indicate a horizontal symmetry axis for hexagonal anisotropy at 108/288° and an associated fast axis at 018/198° . The 120 km depth is the top or bottom of the mantle layer containing this anisotropy; the large maximum amplitudes observed suggest it is here the bottom of the upper layer. Precise ages of over 40 kimberlites in the Lac de Gras field were constrained using standard Rb/Sr and U/Pb isotopic dating techniques correlated with a local geomagnetic polarity timescale; they indicate that one kimberlite group erupted from 75 to 64 Ma along a generally east-west (100-110° ) trend. Another 58.9±1.2 Ma group has a similar trend, whereas younger 55.4±0.5, 53.2±0.3 and 47.5±0.5 Ma clusters show tighter grouping along northeast (37-45° ) trends. The inferred age and direction of trends at both the surface and at >120 km depth suggests that kimberlites erupt along fractures controlled by continental stress fields related to global plate motions. This provides important clues about where to search for additional diamond deposits

  17. Geology of the Mwadui kimberlite, Shinyanga district, Tanzania

    NASA Astrophysics Data System (ADS)

    Stiefenhofer, J.; Farrow, D. J.

    2004-09-01

    The Mwadui pipe represents the largest diamondiferous kimberlite ever mined and is an almost perfectly preserved example of a kimberlitic crater in-fill, albeit without the tuff ring. The geology of Mwadui can be subdivided into five geological units, viz. the primary pyroclastic kimberlite (PK), re-sedimented volcaniclastic kimberlite deposits (RVK), granite breccias (subdivided into two units), the turbidite deposits, and the yellow shales listed in approximate order of formation. The PK can be further subdivided into two units—lithic-rich ash and lapilli tuffs which dominate the succession, and lithic-poor juvenile-rich ash and lapilli tuffs. The lower crater is well bedded down to at least 684 m from present surface (extent of current drill data). The bedding is defined by the presence of juvenile-rich lapilli tuffs vs. lithic-rich lapilli tuffs, and the systematic variation in granite content and clast size within much of the lithic-rich lapilli tuffs. Four distinct types of bedding have been identified in the pyroclastic deposits. Diffuse zones characterised by increased granite abundance and size, and upward-fining units, represent the dominant types throughout the deposit. Lateral heterogeneity was observed, in addition to the vertical changes, suggesting that the eruption was quite heterogeneous, or that more than one vent may have been present. The continuous nature of the bedding in the pyroclastic material and the lack of ash-partings suggest deposition from a high concentration (ejecta), sustained eruption column at times, e.g. the massive, very diffusely stratified deposits. The paucity of tractional bed forms suggest near vertical particle trajectories, i.e. a clear air-fall component, but the poorly sorted, matrix-supported nature of the deposits suggest that pyroclastic flow and/or surge processes may also have been active during the eruption. Available diamond sampling data were examined and correlated with the geology. Data derive from the old

  18. Exceptional preservation of fossils in an Upper Proterozoic shale

    NASA Technical Reports Server (NTRS)

    Butterfield, N. J.; Knoll, A. H.; Swett, K.

    1988-01-01

    An exceptionally well-preserved and distinctive assemblage of Late Proterozoic fossils from subtidal marine shales is reported. In addition to the spheromorphic acritarchs and cyanobacteria sheaths routinely preserved in Proterozoic rocks, this assemblage includes multicellular algae, a diverse assortment of morphologically complex protistan vesicles, and probable heterotrophic bacteria. Thus, it provides one of the clearest and most taxonomically varied views of Proterozoic life yet reported.

  19. Dating kimberlite emplacement with zircon and perovskite (U-Th)/He geochronology

    NASA Astrophysics Data System (ADS)

    Stanley, Jessica R.; Flowers, Rebecca M.

    2016-11-01

    Kimberlites provide rich information about the composition and evolution of cratonic lithosphere. Accurate geochronology of these eruptions is key for discerning spatiotemporal trends in lithospheric evolution, but kimberlites can sometimes be difficult to date with available methods. We explored whether (U-Th)/He dating of zircon and perovskite can serve as reliable techniques for determining kimberlite emplacement ages. We obtained zircon and/or perovskite (U-Th)/He (ZHe, PHe) dates from 16 southern African kimberlites. Most samples with abundant zircon yielded reproducible ZHe dates (≤15% dispersion) that are in good agreement with published eruption ages. The majority of dated zircons were xenocrystic. Zircons with reproducible dates were fully reset during eruption or resided at temperatures above the ZHe closure temperature prior to entrainment in the kimberlite magma. Not dating hazy and radiation damaged grains can help avoid anomalous results for more shallowly sourced zircons that underwent incomplete damage annealing and/or partial He loss during the eruptive process. All seven kimberlites dated with PHe yielded reproducible (≤15% dispersion) and reasonable results. We conducted two preliminary perovskite 4He diffusion experiments, which suggest a PHe closure temperature of >300°C. Perovskite in kimberlites is unlikely to be xenocrystic and its relatively high temperature sensitivity suggests that PHe dates will typically record emplacement rather than postemplacement processes. ZHe and PHe geochronology can effectively date kimberlite emplacement and provide useful complements to existing techniques.

  20. Multi-stage kimberlite evolution tracked in zoned olivine from the Benfontein sill, South Africa

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Taylor, Lawrence A.

    2016-10-01

    Olivine is the dominant mineral present in kimberlite magmas; however, due to the volatile-rich nature of most kimberlites, they rarely survive late-stage serpentinisation. Here we present major and trace element data for a rare example of ultra-fresh olivine in a macrocrystic calcite kimberlite from the Benfontein kimberlite sill complex. Olivines are characterised by xenocrystic cores surrounded by multiple growth zones representing melt crystallisation and late-stage equilibration. Two distinct core populations are distinguished: Type 1) low Fo (88-89), Ni-rich, Ca- and Na-rich cores, interpreted here to be the result of carbonate-silicate metasomatism potentially as part of the earliest stages of kimberlite magmatism, and Type 2) high Fo (91-93), Ni-rich, low-Ca cores derived from a typical garnet peridotite mantle source. In both cases, the cores have transitional margins (Fo89-90) representing equilibration with a proto-kimberlite melt. Trace element concentrations, in particular Cr, of these transition zones suggest formation of the proto-kimberlite melt through assimilation of orthopyroxene from the surrounding garnet peridotite lithology. Trace element trends in the surrounding melt-zone olivine (Fo87-90) suggest evolution of the kimberlite through progressive olivine crystallisation. The final stages of olivine growth are represented by Fe-rich (Fo85) and P-rich olivine indicating kimberlite evolution to mafic compositions. Fine (< 60 μm), Mg-rich olivine rims (Fo94-98) represent equilibration with the final stages of kimberlite evolution back to Fe-poor carbonatitic melts. We present a step-by-step model for kimberlite magma genesis and evolution from mantle to crust tracked by the chemistry of olivines in the Benfontein kimberlite. These steps include early stages of metasomatism and mantle assimilation followed by direct crystallisation of the kimberlite melt and late-stage equilibration with the evolved carbonatitic residual liquids. The Ca contents

  1. (U-Th)/He dating of kimberlites-A case study from north-eastern Kansas

    USGS Publications Warehouse

    Blackburn, T.J.; Stockli, D.F.; Carlson, R.W.; Berendsen, P.

    2008-01-01

    Dating kimberlite intrusive rocks by radiogenic isotope geochronology often is a difficult task, complicated by both the lack of dateable minerals within kimberlite as well as significant sample alteration that can degrade samples and alter parent-daughter ratios. This study presents a new geochronologic tool for timing the emplacement of kimberlites using the (U-Th)/He system to date the cooling of common kimberlite phenocrystic and xenocrystic minerals. To demonstrate the use of this technique, new apatite, titanite, zircon, magnetite and garnet (U-Th)/He ages constrain the timing of emplacement for the Stockdale, Tuttle, Baldwin Creek, Bala, and Leonardville kimberlite pipes, located in Riley County, Kansas. Zircon from the Tuttle pipe and titanite from the Stockdale pipe yield (U-Th)/He ages of 108.6 ?? 9.6??Ma and 106.4 ?? 3.1??Ma, respectively. These data are consistent with new Tuttle kimberlite Rb-Sr analyses of phlogopite megacrysts that give a five point isochron age of 106.6 ?? 1.0??Ma. Similarly, an apatite (U-Th)/He age of 85.3 ?? 2.3??Ma from the Baldwin Creek kimberlite is in agreement with a Rb-Sr phlogopite age of 88.4 ?? 2.7??Ma. These dates demonstrate that (U-Th)/He thermochronometry provides reliable timing constraints on the cooling of common kimberlite xenocrystic phases, thereby timing kimberlite emplacement. In addition to the use of more commonly used apatite and zircon (U-Th)/He thermochronometers, we produced reliable emplacement ages of 103.0 ?? 7.5??Ma for the Bala kimberlite using (U-Th)/He dating of phenocrystic magnetite and an age of 98.8 ?? 8.9??Ma for the Tuttle kimberlite using (U-Th)/He dating of megacrystic garnet. In contrast, kimberlitic apatite (U-Th)/He ages from the Stockdale, Bala, Tuttle, and Leonardville kimberlites yield ages ranging from 67.3 ?? 4.4??Ma to 64.3 ?? 5.6??Ma, suggesting a local, possibly hydrothermal reheating event resulting in resetting of the apatite (U-Th)/He clock in latest Cretaceous to earliest

  2. Use of high-resolution ground-penetrating radar in kimberlite delineation

    USGS Publications Warehouse

    Kruger, J.M.; Martinez, A.; Berendsen, P.

    1997-01-01

    High-resolution ground-penetrating radar (GPR) was used to image the near-surface extent of two exposed Late Cretaceous kimberlites intruded into lower Permian limestone and dolomite host rocks in northeast Kansas. Six parallel GPR profiles identify the margin of the Randolph 1 kimberlite by the up-bending and termination of limestone reflectors. Five radially-intersecting GPR profiles identify the elliptical margin of the Randolph 2 kimberlite by the termination of dolomite reflectors near or below the kimberlite's mushroom-shaped cap. These results suggest GPR may augment magnetic methods for the delineation of kimberlites or other forceful intrusions in a layered host rock where thick, conductive soil or shale is not present at the surface.

  3. Results of 40Ar/39Ar dating of phlogopites from kelyphitic rims around garnet grains (Udachnaya-Vostochnaya kimberlite pipe)

    NASA Astrophysics Data System (ADS)

    Yudin, D. S.; Tomilenko, A. A.; Alifirova, T. A.; Travin, A. V.; Murzintsev, N. G.; Pokhilenko, N. P.

    2016-07-01

    40Ar/39Ar dating of phlogopite from kelyphitic rims around garnet grains from the Udachnaya-Vostochnaya kimberlite pipe in the Sakha (Yakutia) Republic (Russia) revealed that when this mineral has contact with a kimberlite melt its age corresponds (within error limits) to that of the formation of the kimberlite pipe, thus indicating that the method may be used for dating kimberlites and related rocks. In mantle xenoliths, kelyphitic phlogopites rimming garnet grains partially lose radiogenic Ar, which results in a complex age spectrum. Rejuvenation of the K/Ar system in them is determined by the thermal impact of the kimberlite melt on captured rocks.

  4. Magnetic properties of xenoliths from Yakut kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Tselebrovskiy, Alexey; Maksimochkin, Valeriy

    2014-05-01

    Lower continental crust is poorly known due to its limited availability. One source of information about the formation of the lower crust is the study of xenoliths found in kimberlites, mainly peridotites, eclogites and other rocks made by the kimberlite magma to the surface from great depths. Magnetic methods can solve problems related on the one hand, the definition of the phase composition of natural ferrimagnetics responsible for the magnetic properties of rocks, and on the other - with the establishment of the thermodynamic conditions in which they were formed - their genesis. For example, in [1, 2], there were differences in the magnetic properties of kimberlites taken from tubes with different diamond productivity. In this work, studies have been conducted of the magnetic properties and mineralogy of xenoliths from 10 Yakut kimberlit pipes, courtesy of Doctor of Geological and Mineralogical Sciences V. K. Garanin. Found that the natural remanent magnetization (NRM) and magnetic susceptibility (k0) of the investigated samples varies widely: NRM = (0.002-12.59) A/m, k0 = (0.23-59.9)*10-3 SI. Magnetic properties vary by species: average NRM peridotites (0.002-0.32) A/m order of magnitude smaller eclogitic rocks (0.58-12.59) A/m. Thermomagnetic analysis (TMA) of the test samples showed the presence of xenoliths of the ferromagnetic phase with a Curie point close to Tc magnetite. Because of the high correlation between the values of NRM, k0 and ferrimagnetic saturation magnetization (SM) can be inferred that the magnetic properties of the rocks studied at temperatures above ambient is basically determined by the concentration of magnetite in them. Besides magnetite TMA were also identified ferrimagnetic phase with Curie temperatures from -50°C to -125°C. Mineralogical analysis performed on three samples of peridotite tubes Udachnaya, Yubileynaya and Mir and two samples of eclogite tubes Udachnaya and Komsomolskaya, showed that at temperatures below room

  5. New data for Eclogites and mantle xenocrysts and megacrysts from kimberlites of Dharwar craton , southern India.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Ravi, Subramanian; Shankar Nayak, Shiva; Kaminsky, , Felix; Naflos, Theodoros; Vladykin, Nikolai

    2013-04-01

    Eclogitic mantle xenoliths from Proterozoic (1100) Kalyandurg kimberlite field (KL-4 pipe) Dharwar craton, India as well as the xenocrysts from pipes Wajrakarur kimberlite field pipes and others were analyzed by EPMA and LAM ICP MS methods. The eclogites (often with kyanite) (Patel et al., 2006) are composed mainly from garnet and Cpx, intergrain material is mainly represented by the carbonates and Ca- silicates. Garnets reveal Hi- CaO content to (10-12%) and Cpx are omphacites very low in FeO (1-3%) high Al2O3 (8-14% ) and Na2O (2-6 %) differing from the studied samples (Patel et al., 2009). The typical grosspidites (with kyanites coesite, K-Cpx and sanidine) have irregular compositions of minerals and fingerprint structures probably related to the crystallization from fluid. The compositions of the Cpx from Wajrakarur and other pipes reveal Hi - Cr2O3 (5%) content often higher then FeO and Na2O (4%). Garnets are in Lherzolite field in CaO - Cr2O3 (to 12%) diagram. Ilmenites with TiO2 variations (58-42%) show two trends of Cr2O3 enrichments accompanied by the general NiO and V2O5 decrease. Trace element s for eclogitic Cpx reveal high La/Ybn ratios, Eu peaks and flattened HREE. Garnet REE are not equilibrated and highly inclined. The TRE spiderdiagrams show depletion in HFSE (Ta>Nb), the most depleted show Y through for most depleted varieties. Garnets reveal U peak but low Sr CPx peaks in both Ba and Sr. The REE patterns Cpx xenocrysts from Wajrakarur are very similar in shape with varying incompatible part. They are showing high La/Ybn by the order of 2 and small humps in Ce-Pr. Spidergrams show small depletion in Zr- Hf and U and all incompatible elements and through in Pb . The REE of ilmenite xenocrysts show two models: high La/Ybn by 2 orders or nearly flattened patterns. Chromites show depletion in La-Pr elements. Ilmenite's TRE spiderrams show peaks in Nb-Ta and Pb and Zr- Hf . PTXFO2 diagrams for SCLM beneath the Wajrakarur and nearby fields show rather

  6. Subcalcic diopsides from kimberlites: Chemistry, exsolution microstructures, and thermal history

    USGS Publications Warehouse

    McCallister, R.H.; Nord, G.L.

    1981-01-01

    Twenty-six subcalcic diopside megacrysts (Ca/(Ca+ Mg)) = 0.280-0.349, containing approximately 10 mol% jadeite, from 15 kimberlite bodies in South Africa, Botswana, Tanzania, and Lesotho, have been characterized by electron microprobe analysis, X-ray-precession photography, and transmission electron microscopy. Significant exsolution of pigeonite was observed only in those samples for which Ca/(Ca+Mg)???0.320. The exsolution microstructure consists of coherent (001) lamellae with wavelengths ranging from 20 to 31 nm and compositional differences between the hosts and lamellae ranging from 10 to 30 mol% wollastonite. These observations suggest that the exsolution reaction mechanism was spinodal decomposition and that the megacrysts have been quenched at various stages of completion of the decomposition process. Annealing experiments in evacuated SiO2 glass tubes at 1,150?? C for 128 hours failed to homogenize microstructure, whereas, at 5 kbar and 1,150?? C for only 7.25 hours, the two lattices were homogenized. This "pressure effect" suggests that spinodal decomposition in the kimberlitic subcalcic diopside megacrysts can only occur at depths less than ???15 km; the cause of the effect may be the jadeite component in the pyroxene. "Apparent quench" temperatures for the exsolution process in the megacrysts range from 1,250?? C to 990?? C, suggesting that decomposition must have commenced at temperatures of more than ???1,000?? C. These P-T limits lead to the conclusion that, in those kimberlites where spinodal decomposition has occurred in subcalcic diopside megacrysts, such decomposition occurred at shallow levels (<15 km) and, at the present erosion level, temperatures must have been greater than 1,000?? C. ?? 1981 Springer-Verlag.

  7. Temporal, geomagnetic and related attributes of kimberlite magmatism at Ekati, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Lockhart, Grant; Grütter, Herman; Carlson, Jon

    2004-09-01

    This paper outlines the development of a multi-disciplinary strategy to focus exploration for economic kimberlites on the Ekati property. High-resolution aeromagnetic data provide an over-arching spatial and magnetostratigraphic framework for exploration and kimberlite discovery at Ekati, and hence also for this investigation. The temporal, geomagnetic, spatial and related attributes of kimberlites with variable diamond content have been constrained by judiciously augmenting the information gathered during routine exploration with detailed, laboratory-based or field-based investigations. The natural remanent magnetisation of 36 Ekati kimberlites has been correlated with their age as determined by isotopic dating techniques, and placed in the context of a well-constrained geomagnetic polarity timescale. Kimberlite magmatism occurred over the period 75 to 45 Ma, in at least five temporally discrete intrusive episodes. Based on current evidence, the older kimberlites (75 to 59 Ma) have low diamond contents and are distributed throughout the property. Younger kimberlites (56 to 45 Ma) have moderate to high diamond contents and occur in three distinct intrusive corridors with NNE to NE orientations. Economic kimberlite pipes erupted at 55.4±0.4 Ma along the A154-Lynx intrusive corridor, which is 7 km wide and oriented at 015°, and at 53.2±0.3 Ma along the Panda intrusive corridor, which is 1 km wide and oriented at 038°. The intrusion ages straddle a paleopole reversal at Chron C24n, consistent with the observation that the older economic kimberlites present as aeromagnetic "low" anomalies while the younger economic pipes are characterised as aeromagnetic "highs". The aeromagnetic responses for these kimberlites are generally muted because they contain volcaniclastic rock types with low magnetic susceptibility. Kimberlites throughout the Ekati property carry a primary natural magnetic remanence (NRM) vector in Ti-bearing groundmass magnetite, and it dominates over

  8. Terminal Proterozoic reorganization of biogeochemical cycles.

    PubMed

    Logan, G A; Hayes, J M; Hieshima, G B; Summons, R E

    1995-07-06

    The Proterozoic aeon (2,500-540 million years ago) saw episodic increases in atmospheric oxygen content, the evolution of multicellular life and, at its close, an enormous radiation of animal diversity. These profound biological and environmental changes must have been linked, but the underlying mechanisms have been obscure. Here we show that hydrocarbons extracted from Proterozoic sediments in several locations worldwide are derived mainly from bacteria or other heterotrophs rather than from photosynthetic organisms. Biodegradation of algal products in sedimenting matter was therefore unusually complete, indicating that organic material was extensively reworked as it sank slowly through the water column. We propose that a significant proportion of this reworking will have been mediated by sulphate-reducing bacteria, forming sulphide. The production of sulphide and consumption of oxygen near the ocean surface will have inhibited transport of O2 to the deep ocean. We find that preservation of algal-lipid skeletons improves at the beginning of the Cambrian, reflecting the increase in transport by rapidly sinking faecal pellets. We suggest that this rapid removal of organic matter will have increased oxygenation of surface waters, leading to a descent of the O2-sulphide interface to the sea floor and to marked changes in the marine environment, ultimately contributing to the Cambrian radiation.

  9. Terminal Proterozoic reorganization of biogeochemical cycles

    NASA Technical Reports Server (NTRS)

    Logan, G. A.; Hayes, J. M.; Hieshima, G. B.; Summons, R. E.

    1995-01-01

    The Proterozoic aeon (2,500-540 million years ago) saw episodic increases in atmospheric oxygen content, the evolution of multicellular life and, at its close, an enormous radiation of animal diversity. These profound biological and environmental changes must have been linked, but the underlying mechanisms have been obscure. Here we show that hydrocarbons extracted from Proterozoic sediments in several locations worldwide are derived mainly from bacteria or other heterotrophs rather than from photosynthetic organisms. Biodegradation of algal products in sedimenting matter was therefore unusually complete, indicating that organic material was extensively reworked as it sank slowly through the water column. We propose that a significant proportion of this reworking will have been mediated by sulphate-reducing bacteria, forming sulphide. The production of sulphide and consumption of oxygen near the ocean surface will have inhibited transport of O2 to the deep ocean. We find that preservation of algal-lipid skeletons improves at the beginning of the Cambrian, reflecting the increase in transport by rapidly sinking faecal pellets. We suggest that this rapid removal of organic matter will have increased oxygenation of surface waters, leading to a descent of the O2-sulphide interface to the sea floor and to marked changes in the marine environment, ultimately contributing to the Cambrian radiation.

  10. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism

    NASA Astrophysics Data System (ADS)

    Bulanova, Galina P.; Walter, Michael J.; Smith, Chris B.; Kohn, Simon C.; Armstrong, Lora S.; Blundy, Jon; Gobbo, Luiz

    2010-10-01

    We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca-Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (-5 to -10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (-12 to -15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (-25‰), and host inclusions have compositions akin to high-pressure-temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.

  11. Thermodynamic Modelling of Volatiles in Kimberlite Ascent and Eruption

    NASA Astrophysics Data System (ADS)

    Russell, J. K.; Gordon, T. M.

    2009-04-01

    The unique aspect of kimberlite magmas is their potential for having high dissolved contents of primary volatiles (e.g., H2O + CO2 > 15 wt. %) coupled to a high ascent rate. The high ascent rates help couple the exsolved fluid to the magma as it rises to the point of eruption. During ascent the system evolves from a system featuring 30-40% suspended solids in a silicate melt to a system that is volumetrically dominated by the exsolved fluids (due to exsolution and expansion). The physical-chemical properties of kimberlite melt govern the transport and eruption behaviour of kimberlite magmas. For example, exsolution of a CO2-H2O fluid phase provides a logical and efficient means of reducing magma density and promoting the buoyancy critical for rapid ascent and eruption. The composition of the exsolved fluid depends on the total dissolved fluid content of the melt as well as the T-P ascent path. Under conditions of equilibrium degassing (e.g., closed system), the original dissolved fluid content limits the range of fluid compositions produced during ascent. Under perfect fractional degassing (open system), increments of equilibrium fluid are released and "fractionated". Such situations arise when 2-phase flow (melt and gas) develops and the gas phase decouples from the host magma. Separated two-phase flow is likely to develop in kimberlite and allows for highly transient fluid compositions beginning with fluids extremely enriched in CO2, and ending with H2O-dominated fluid. The physical properties and behaviour of the fluids during ascent are, thus, constantly changing in response to the evolving fluid composition. Here we use computational models calibrated on experimental data for multicomponent melts (e.g., MELTS; Ghiorso & Sack 1995) saturated with a CO2-H2O fluid (e.g., Papale et al. 2006) to explore the physical-chemical properties of volatile-saturated kimberlite during ascent and eruption. The exsolved magmatic fluid is modelled as mixtures of CO2 and H2O. No

  12. Role of Volatiles in Kimberlite Ascent and Eruption

    NASA Astrophysics Data System (ADS)

    Russell, J. K.; Gordon, T. M.

    2009-05-01

    The unique aspect of kimberlite magmas is their potential for having high dissolved contents of primary volatiles (e.g., H2O and CO2) coupled to a high ascent rate. The high ascent rates help couple the exsolved fluid to the magma as it rises to the point of eruption. During ascent the system evolves from a system featuring 30-40% suspended solids in a silicate melt to a system that is volumetrically dominated by the exsolved fluids (due to exsolution and expansion). The physical-chemical properties of kimberlite melt govern the transport and eruption behaviour of kimberlite magmas. For example, exsolution of a CO2-H2O fluid phase provides a logical and efficient means of reducing magma density and promoting the buoyancy critical for rapid ascent and eruption. The composition of the exsolved fluid depends on the total dissolved fluid content of the melt as well as the T-P ascent path (e.g., Holloway & Blank 1994). Under conditions of equilibrium degassing (e.g., closed system), the original dissolved fluid content limits the range of fluid compositions produced during ascent. Under perfect fractional degassing (open system), increments of equilibrium fluid are released and "fractionated". Such situations arise when 2-phase flow (melt and gas) develops and the gas phase decouples from the host magma. Separated two-phase flow is likely to develop in kimberlite and allows for highly transient fluid compositions beginning with fluids extremely enriched in CO2, and ending with H2O-dominated fluid. The physical properties and behaviour of the fluids during ascent are, thus, constantly changing in response to the evolving fluid composition. Here we use computational models calibrated on experimental data for multicomponent melts (e.g., MELTS; Ghiorso & Sack 1995) saturated with a CO2-H2O fluid (e.g., Papale et al. 2006) to explore the physical-chemical properties of volatile-saturated kimberlite during ascent and eruption. The exsolved magmatic fluid is modelled as

  13. Picroilmenites in Yakutian kimberlites: variations and genetic models

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I. V.; Alymova, N. V.; Logvinova, A. M.; Vladykin, N. V.; Kuligin, S. S.; Mityukhin, S. I.; Downes, H.; Stegnitsky, Yu. B.; Prokopiev, S. A.; Salikhov, R. F.; Palessky, V. S.; Khmel'nikova, O. S.

    2014-09-01

    Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10-100)/PM with La / Ybn ~ 10

  14. Picroilmenites in Yakutian kimberlites: variations and genetic models

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I. V.; Alymova, N. V.; Logvinova, A. M.; Vladykin, N. V.; Kuligin, S. S.; Mityukhin, S. I.; Stegnitsky, Y. B.; Prokopyev, S. A.; Salikhov, R. F.; Palessky, V. S.; Khmel'nikova, O. S.

    2013-08-01

    Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modelling shows that long compositional trends for the ilmenites are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of picroilmenite's parental magmas was estimated for the three distinct phases of kimberlite activity from Yubileynaya and closely located Aprelskaya pipes showing heating and increase of Fe of mantle peridotites minerals from stage to stage and splitting of the magmatic system in the final stages. High pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (Group 1) reflect the conditions of high temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/C1 and have flattened, spoon-like or S- or W-shaped REE patterns with Pb > 1. These result from melting and crystallization in melt - feeding channels in the base of the lithosphere, where high temperature dunite - harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group2) trace the high temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during the melt migration within the channels. Group 2 ilmenites reveal inclined REE enriched patterns (10-100)/C1 with La/Ybn 10-25 similar to those derived from kimberlites, and HFSE peaks (typical megacrysts). A

  15. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    NASA Astrophysics Data System (ADS)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding

  16. Sulfides in diamonds and in xenoliths from kimberlite pipes of Yakutiia

    NASA Astrophysics Data System (ADS)

    Bulanova, Galina P.; Spetsius, Zdislav V.; Leskova, Nelli V.

    The characteristics of sulfides from diamonds and xenoliths are compared using literature data on the mineralogy of sulfides in diamonds and in deep-seated xenoliths from kimberlite pipes. Results are presented on the Fe-Ni-Cu-Co-S mineral systems of mantle associations, sulfide inclusions in diamonds and megacrystals of kimberlite rocks, and minerals of the Fe-Ni-Cu-Co-S system in mantle xenoliths from kimberlite pipes. Particular consideration is given to the nature of sulfide mineralization in mantle xenoliths and diamonds.

  17. Potential for diamond in kimberlites from Michigan and Montana as indicated by garnet xenocryst compositions

    USGS Publications Warehouse

    McGee, E.S.

    1988-01-01

    The Williams kimberlite in north-central Montana and the Lake Ellen kimberlite in northern Michigan contain diagnostic xenoliths and xenocrysts which indicate that diamonds may be present. To date, however, no diamonds have been reported from either locality. In this study, particular compositions of garnet xenocrysts which are associated with diamond elsewhere were sought as an indication of the potential for diamond in the Williams and Lake Ellen kimberlites. For this study, garnets were carefully selected for purple color in order to increase the chance of finding the subcalcic chrome-rich compositions that are associated with the presence of diamond. -Author

  18. Uncertainty-based grade modelling of kimberlite: A case study of the Jay kimberlite pipe, EKATI Diamond Mine, Canada

    NASA Astrophysics Data System (ADS)

    Harrison, Sara; Leuangthong, Oy; Crawford, Barbara; Oshust, Peter

    2009-11-01

    Understanding uncertainty in resource models is a significant requirement of mineral resource evaluation. Geostatistical simulation is one method that can be used to quantify uncertainty and Sequential Gaussian Simulation (SGS) is one of the easiest techniques to understand and implement. Using SGS provides both a spatial model of a given variable and the ranges around that variable at any number of scales. The Jay kimberlite pipe is located in the southeastern quadrant of the EKATI property. Drilling to date has identified three kimberlitic domains characterized by varying lithological properties. These domains are not separated by hard contacts, but rather by boundaries that are transitional. Within these domains, vertical trends exist; in particular, diamond grade increases with depth. For these reasons, Jay required an in-depth investigation of the best uncertainty-based grade modelling method to use. Grade was modelled by organic SGS and by using the stepwise conditional transform (SCT) to incorporate a trend into the simulation routine. Although the SGS results were valid, they did not fully reproduce the trend and therefore, the results did not fully match the geological interpretation of the deposit. The SCT results reproduced the trend, however, did not correspond to the variability of the data and therefore under-represented the actual uncertainty in the model. This was confirmed through detailed uncertainty calculation and probabilistic resource classification. Therefore, the SGS model was chosen as the preferred uncertainty-based grade model for the Jay pipe.

  19. Arsenic stress after the Proterozoic glaciations

    PubMed Central

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life. PMID:26635187

  20. Arsenic stress after the Proterozoic glaciations

    NASA Astrophysics Data System (ADS)

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  1. Arsenic stress after the Proterozoic glaciations.

    PubMed

    Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-04

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  2. Mineralogical zoning of the diamondiferous areas: Application experience of paragenetic analysis of garnets from kimberlites

    NASA Astrophysics Data System (ADS)

    Samdanov, D. A.; Afanasiev, V. P.; Tychkov, N. S.; Pokhilenko, N. P.

    2016-03-01

    Paragenetic analysis of pyropes from alluvial deposits of the Muna—Markha interfluve (Sakha-Yakutia Republic) made it possible to distinguish relatively uniform areas that are promising for the discovery of kimberlite bodies.

  3. The internal geology and emplacement history of the Renard 2 kimberlite, Superior Province, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Fitzgerald, C. E.; Hetman, C. M.; Lepine, I.; Skelton, D. S.; McCandless, T. E.

    2009-11-01

    The Renard 2 kimberlite is located in the Otish Mountains region of Quebec, Canada and is one of the largest pipes in the Renard cluster. The cluster consists of nine kimberlite bodies and was discovered in 2001 by Ashton Mining of Canada Inc. and its joint venture partner SOQUEM Inc. Renard 2 was emplaced into Archean meta-greywacke derived migmatite, gneiss and granite of the Opinaca Subprovince of the eastern Superior Province at approximately 640.5 ± 2.8 Ma. An undetermined amount of erosion has occurred since emplacement with the present surface expression of the pipe estimated to be 0.75 ha. This kimberlite is interpreted as a steep-sided diatreme with minor irregularities in the external shape. The dominant infill is a massive volcaniclastic kimberlite (MVK) that is classified as tuffisitic kimberlite breccia (TKB) and is characterized by a high proportion of granitoid country rock xenoliths. A second dominant infill is a texturally complex, less diluted coherent kimberlite (CK) characterized locally by a transitional textures between CK and TKB. Surrounding the diatreme is a significant zone of variable width comprised of extensively brecciated country rock (+/-kimberlite) and referred to as marginal breccia. In addition to the two main rock types infilling the pipe, a number of hypabyssal kimberlite (HK) dykes and irregular shaped intrusions occur throughout the body, along the pipe contacts, within the marginal breccia and in the surrounding country rock. Geological features displayed by Renard 2 are similar to those described from Class 1 kimberlites of the Kimberley area of South Africa, the Gahcho Kué cluster of Canada and the Pimenta Bueno kimberlite field of Brazil. The economic evaluation of Renard 2 is in progress and to date has included extensive diamond and reverse circulation drilling as well as the collection of an underground bulk sample. Results from material sampled from Renard 2, including a 2449 tonne bulk sample, suggest Renard 2 has

  4. Abundance and distribution of mineral components associated with Moses Rock (kimberlite) diatreme

    NASA Technical Reports Server (NTRS)

    Mustard, J. F.; Pieters, C. M.

    1986-01-01

    The surface mineralogy in and around Moses Rock diatreme, a kimberlite-bearing dike in SW Utah, was examined using internally calibrated Airborne Imaging Spectrometer (AIS) data. Distinct near-infrared absorption characteristics of clays, gypsum, and serpentine (a key marker for kinberlite concentration) allowed the surface units containing these components to be identified spatially and the relative abundance of each component measured. Within the dike itself, channels and dispersed components of kimberlite and blocks of country rocks were accurately determined.

  5. Diamonds in an upper mantle peridotite nodule from kimberlite in southern wyoming

    USGS Publications Warehouse

    McCallum, M.E.; Eggler, D.H.

    1976-01-01

    Diamonds in a serpentinized garnet peridotite nodule from a diatreme in southern Wyoming are the first known occurrence in an upper mantle peridotite xenolith from a kimberlite intrusion in North America as well as the second authenticated occurrence of diamonds from kimberlite pipes in North America. The nodule is believed to have come from a section of depleted (partially melted) Iherzolite at a depth of 130 to 180 kilometers.

  6. Diamonds in an upper mantle peridotite nodule from kimberlite in southern wyoming.

    PubMed

    McCallum, M E; Eggler, D H

    1976-04-16

    Diamonds in a serpentinized garnet peridotite nodule from a diatreme in southern Wyoming are the first known occurrence in an upper mantle peridotite xenolith from a kimberlite intrusion in North America as well as the second authenticated occurrence of diamonds from kimberlite pipes in North America. The nodule is believed to have come from a section of depleted (partially melted) lherzolite at a depth of 130 to 180 kilometers.

  7. Tuffisitic kimberlites from the Wesselton Mine, South Africa: Mineralogical characteristics relevant to their formation

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Skinner, E. Michael W.; Scott Smith, Barbara H.

    2009-11-01

    Tuffisitic kimberlites from the Wesselton Mine consist, in order of formation, of the following primary components: chloritized olivine macrocrysts and phenocrysts; magmaclasts; cryptocrystalline diopside-phlogopite-rich mantles, and a smectite-chlorite interclast matrix. Magmaclasts consist of one to several crystals of chloritized olivine set in a microcrystalline groundmass of diopside, apatite, perovskite, spinel and chloritized and fresh phlogopite, the latter commonly rimming chloritized olivines. Magmaclasts have some similarities to holocrystalline hypabyssal kimberlite but lack monticellite, carbonate, carbonate-serpentine segregations and atoll spinels. Spinels in the magmaclasts show only a limited compositional evolution relative to spinels in spatially-associated hypabyssal kimberlite. Pre-existing solids, including discrete olivine grains, magmaclasts and most xenoliths, are mantled by acicular diopside and phlogopite. The interclast matrix is now represented by mixed layer phyllosilicates (chlorite-smectites) that are poorer in alumina and iron than chlorite pseudomorphing olivine and microlitic phlogopite and diopside. The interclast chlorite-smectite is considered to represent former phlogopite which has undergone late-stage deuteric hydrothermal-like modification. The interclast matrix crystallized from the volatile-rich remnants of the magma. None of the constituents of tuffisitic kimberlites, including the chlorite or chlorite-smectites, represent material formed from externally-derived fluids. These primary textures are unique to kimberlites and only form in certain circumstances. Tuffisitic kimberlites formed by progressive crystallization and volatile exsolution-induced segregation and/or disruption within a kimberlite magma (magmaclasts, mantles, interclast matrix) during a continuum of rapidly changing conditions in a subsurface (subvolcanic) magmatic system. This continuum represents a transition from a degassing magmatic system to a

  8. The geology and emplacement history of the Pigeon kimberlite, EKATI Diamond Mine, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Crawford, Barbara; Hetman, Casey; Nowicki, Tom; Baumgartner, Mike; Harrison, Sara

    2009-11-01

    The Pigeon kimberlite is located approximately 6 km to the northwest of the Koala cluster of the EKATI Diamond Mine, and is presently one of ten kimberlite occurrences in the EKATI resource development plan. It was emplaced along a regional lithological contact between syn-Yellowknife Supergroup granitoid rocks and Yellowknife Supergroup metasedimentary rocks that were covered by a now eroded veneer of poorly consolidated muddy sediments. Detailed age dating has not been undertaken, however the emplacement age is inferred from sedimentary xenoliths present within the pipe to range between 45-75 Ma. Pigeon is a small kimberlite body, estimated to be approximately 3.5 ha at surface, consisting of a steep-sided pipe that can be separated into four main geological domains that are characterized by contrasting textures, different diamond characteristics and unique mineral abundance and compositional signatures. The uppermost portion of the body consists of mud-rich resedimented volcaniclastic kimberlite that was formed by the deposition of extra crater deposits by debris flow type processes into an open diatreme. Texturally complex kimberlite is present within the lower portion of the kimberlite and includes rocks that display a range of features consistent with coherent (magmatic) and less common volcaniclastic (fragmental) rocks. This texturally complex zone is interpreted to represent a clastogenic deposit formed by a low energy eruption within an open diatreme.

  9. Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya G.; Gurney, John J.; Daniels, Leon R. M.

    More than 99% of mineral inclusions in diamonds from the River Ranch pipe in the Late Archean Limpopo Mobile Belt (Zimbabwe), are phases of harzburgitic paragenesis, namely olivine (Fo92-93), orthopyroxene (Mg#=93), G10 garnets and chromites. The diamond inclusion (DI) chemistry demonstrates a limited overlap with River Ranch kimberlite macrocrysts: the DI garnets are more Ca-undersaturated, and DI spinel and garnet are more Mg-rich. Most River Ranch diamond inclusions were equilibrated at T=1080-1320°C, P=47-61kbar, and fO2 between IW and WM buffers. The P/T profile beneath the Limpopo Mobile Belt (LMB) is consistent with a paleo-heat flow of 41-42mW/m2, similar to calculations for Roberts Victor, but hotter than for the Finsch, Kimberley, Koffiefontein and Premier Mines. This is ascribed to the younger tectonothermal age of the LMB and its proximity to Late Archean oceans. Like diamond inclusions from all other kimberlites studied, the River Ranch DI have a lithospheric affinity and therefore indicate that an ancient, chemically depleted, thick (at least 200km) mantle root existed beneath the Limpopo Mobile Belt 530-540Ma ago. The mantle root might have developed beneath the continental Central Zone of the LMB as early as the Archean, and could be alien to the overthrust allochthonous sheet of the Limpopo Belt. Oxygen fugacity estimates for diamond inclusions at River Ranch are similar to other diamondiferous harzburgites beneath the Kaapvaal craton, indicating that the Kaapvaal mantle as a whole was well buffered and homogeneous with respect to fO2 at the time of peridotitic diamond crystallization.

  10. The first allanite-bearing eclogite xenolith in kimberlite

    NASA Astrophysics Data System (ADS)

    Trojman-Nichols, S.; Heaman, L.

    2015-12-01

    Here we report the first allanite-bearing mantle eclogite xenolith, entrained in the 173 Ma Jericho kimberlite pipe, located in the Slave craton, northwestern Canada. This eclogite is unique among the other Jericho eclogites by an extreme LREE enrichment in all phases, and garnet alteration rims that are more calcic than the garnet cores. Allanite is an abundant accessory phase, present as dull orange, subhedral crystals. Other minerals in the paragenesis are garnet, clinopyroxene, apatite and sulfides; two compositionally and texturally distinct generations of phlogopite constitute a secondary paragenesis where allanite is no longer stable. Allanite in this sample is La-, Ce- and Th- rich, with concentrations at the weight % level, while Y is only present at the relatively low concentration of ~100 ppm. Electron backscatter imaging reveals complex zonation within the allanite crystals that is off-centre, non-symmetric, and patchy. It is often asserted that eclogite xenoliths represent subducted oceanic lithosphere, despite significant differences in the composition and mineralogy between mantle-derived eclogite xenoliths and eclogite massif material. Both types of eclogite occurrences can contain quartz/coesite; massif eclogites often have small, sparse allanite inclusions, but allanite has never been reported in eclogite xenoliths in kimberlite. Allanite in massif eclogite is thought to form during subduction by the break-down of lawsonite and the incorporation of LREE into zoisite. Lawsonite breaks down into grossular and H20 at high pressures, which may explain the anomalous high-Ca rims measured in some garnets in this sample. This allanite-bearing eclogite may provide an unprecedented window for exploring a crucial stage of eclogite metamorphism and fluid mobilization in subduction zones. In addition, the U-Pb systematics currently under investigation may constrain the age of eclogitization.

  11. Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    Kaminsky, Felix V.; Sablukov, Sergei M.; Belousova, Elena A.; Andreazza, Paulo; Tremblay, Mousseau; Griffin, William L.

    2010-01-01

    The Juina diamond field, in the 1970-80s, was producing up to 5-6 million carats per year from rich placer deposits, but no economic primary deposits had been found in the area. In 2006-2007, Diagem Inc. discovered a group of diamondiferous kimberlitic pipes within the Chapadão Plateau (Chapadão, or Pandrea cluster), at the head of a drainage system which has produced most of the alluvial diamonds mined in the Juina area. Diamonds from placer deposits and newly discovered kimberlites are identical; they have super-deep origins from the upper-mantle and transition zone. Field observations and petrographic studies have identified crater-facies kimberlitic material at seven separate localities. Kimberlitic material is represented by tuffs, tuffisites and various epiclastic sediments containing chrome spinel, picroilmenite, manganoan ilmenite, zircon and diamond. The diamond grade varies from 0.2-1.8 ct/m 3. Chrome spinel has 30-61 wt.% Cr 2O 3. Picroilmenite contains 6-14 wt.% MgO and 0.2-4 wt.% Cr 2O 3. Manganoan ilmenite has less than 3 wt.% MgO and 0.38-1.41 wt.% MnO. The 176Hf/ 177Hf ratio in kimberlitic zircons is 0.028288-0.28295 with ɛHf = 5.9-8.3, and lies on the average kimberlite trend between depleted mantle and CHUR. The previously known barren and weakly diamondiferous kimberlites in the Juina area have ages of 79-80 Ma. In contrast, zircons from the newly discovered Chapadão kimberlites have a mean 206Pb/ 238U age of 93.6 ± 0.4 Ma, corresponding to a time of magmatic activity related to the opening of the southern part of the Atlantic Ocean. The most likely mechanism of the origin of kimberlitic magma is super-deep subduction process that initiated partial melting of zones in lower mantle with subsequent ascent of proto-kimberlitic magma.

  12. The environmental distribution of late proterozoic organisms

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    1991-01-01

    Along present day coast lines, the environmental distributions of prokaryotic and protistan populations are often sharply delimited. Realized habitat ranges are generally narrower than those circumscribed by physiological tolerances, suggesting the importance of organism-organism interactions in the determination of population distributions. Microfossil populations preserved in silicified carbonates, dolomites, and shales of the 700-800 Ma old Akademikerbreen Group, Svalbard, and elsewhere indicate that the environmental distributions were defined equally clearly during the Proterozoic Eon. The Draken Conglomerate Formation is a tidal flat/lagoonal complex in which we have distinguished five principle biofacies containing a total of 42 taxa. Supratidal to subtidal gradients include the increasing abundance and diversity of both mat dweller microbenthos and allochthonous (principally planktonic) organisms, as well as a taphonomically important pattern of decreasing sheath thickness among mat builder microorganisms. The seaward barriers of Akademikerbreen lagoons were oolitic shoals, and these contain about a dozen endolithic and epilithic species not observed elsewhere in the group. Subtidal environments below fair weather wave base are represented by mudstones of the Svanbergfjellet Formation. These contain abundant and diverse cyanobacteria-like fossils generally similar to but specifically different from those found in tidal flat sediments, as well as diverse unicellular protists (some of impressive morphological complexity) and at least half a dozen cellularly preserved metaphyte populations. In all, more than 80 species are distributed among Akademikerbreen lithologies. Fossil assemblages from Svalbard and elsewhere illustrate the potential for a much finer paleoecological, biostratigraphic, and, hence, evolutionary resolution of the early fossil record.

  13. Argon isotopic studies of minerals in kimberlites, mantle xenoliths and diamonds, from selected southern African localities

    SciTech Connect

    Phillips, D.

    1989-01-01

    The occurrence, composition, behavior and origin of excess argon components, in mantle phases hosted by southern African kimberlites, is evaluated using furnace step-heating and laser-probe analytical techniques. Laser-probe {sup 40}Ar/{sup 39}Ar analyses of phlogopite from the swartruggens kimberlite dyke (145 Ma), and Premier diatreme ({approximately}1200 Ma) lherzolite xenoliths, yielded apparent ages decreasing from high ages at grain centres to values approaching the age of kimberlite intrusion, along grain margins. The old apparent ages are attributed excess radiogenic argon, with high {sup 40}Ar/{sup 39}Ar ratios (> 15,000), incorporated prior to kimberlite intrusion under conditions of locally high argon partial pressure. The preservation of the excess argon components is dependent on the timing of melt devolatilization, temperature, cooling rate and the characteristic radius for argon diffusion. Swartruggens phlogopite grains also display chlorine zonations, measured by a neutron activation technique and the laser probe. Fluorine contents, determined by electron microprobe were uniform. Halogen analyses of Premier xenolith phlogopite revealed minor variations. {sup 40}Ar/{sup 39}Ar laser-probe analyses of eclogitic suite clinopyroxene inclusions in diamonds from the Premier kimberlite yielded an age of 1198 {plus minus} 6 Ma, indistinguishable from the inferred time of intrusion of the host kimberlite ({approximately}1200 Ma). This implies diamond formation synchronous with, or no more than {approximately}20 Ma before kimberlite generation. The associated initial {sup 40}Ar/{sup 39}Ar ratio of 334 {plus minus} 50 is similar to the present day atmospheric composition. It is suggested that late-stage equilibration with {sup 36}Ar-rich fluids, derived either from primordial mantle, or from subducted atmospheric argon, is the most likely explanation for this low {sup 40}Ar/{sup 39}Ar value.

  14. Geochemical Dissection of a Kimberlite: What Makes up a Whole Rock Analysis?

    NASA Astrophysics Data System (ADS)

    Malarkey, J.; Pearson, D. G.; Davidson, J. P.; Nowell, G. M.; Kjarsgaard, B.; Ottley, C. J.

    2009-05-01

    The elemental and isotopic composition of "primary" kimberlite magma and its relationship to basaltic magmas has been the subject of considerable debate for decades. We present a trace element and isotopic study of multiple mineral phases from a kimberlite and compare these to an olivine melilitite with significantly less visible crustal input. Our objective is to determine whether different mineral phases clearly record different stages of crustal contamination in the evolving kimberlite and to assess which phases are most likely to give the best information about potential source regions. We have analysed phlogopite, perovskite, olivine and calcite from a Group I kimberlite from Jos, Somerset Island. These results are compared with olivine, melilite, phlogopite, perovskite and apatite hand picked from an olivine melilitite from Saltpetre Kop (SPK), S. Africa. Melilitites are less obviously affected by crustal contamination and are generally less altered by low-T processes than kimberlites, yet they contain several minerals in common with kimberlites and therefore offer a good, simpler analogue system. Preliminary Sr isotope data from the melilitite confirm that melilite, olivine and perovskite have similar initial 87Sr/86Sr ratios to the whole rock; while the later crytsallising phases, apatite and phlogopite, show increasingly more radiogenic values. Together they define a reasonable Rb-Sr isochron age of ~77±3.4Ma close to the published emplacement age (72.5-76.8Ma, [1]), suggesting that crustal assimilation is relatively minor. In contrast, preliminary results from the Jos kimberlite are more complex and not consistent with closed system behavior. Variations in initial 87Sr/86Sr both within and between the different mineral phases so far analysed can be explained by a combination of factors that include progressive crustal contamination and source heterogeneity. [1] Duncan et al (1978), Geological Magazine, 115, 317-396

  15. Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery?

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Kamenetsky, Maya B.; Golovin, Alexander V.; Sharygin, Victor V.; Maas, Roland

    2012-11-01

    An ultrabasic/ultramafic composition of kimberlite magmas is difficult to reconcile with existing models of the kimberlite mantle source and melting conditions, inferred magma temperatures and rheological properties, and the style of magma ascent and emplacement. The inconsistencies in current thinking indicate serious flaws in understanding kimberlite magma compositions. Much of the uncertainty over true kimberlite compositions may stem from almost ubiquitous hydration and leaching of kimberlite rocks. This study presents petrographic and geochemical data for kimberlite samples largely unaffected by postmagmatic modification, from the Devonian Udachnaya-East pipe in Siberia. These samples are unusually enriched in chlorine and sodium, yet they are essentially anhydrous. These features are consistent with the phase composition of the groundmass which is dominated by minerals such as Na-Ca carbonates, Na-K chlorides and sulphates which appear to be - in our samples - co-magmatic with common silicates and oxides, but are unknown in other kimberlites, or rarely found within magmatic assemblages. We suggest that a kimberlite parent melt of essentially non-silicate composition, with high concentrations of alkalis, CO2 and Cl may be a viable alternative to the currently favoured water-rich, high-Mg model primary melt. Entrainment of mantle silicates into such a melt en route to the surface, followed by gravitational accumulation of mantle olivine and liquidus oxides (perovskite, Cr-spinel) at the bottom of vertically extensive magma bodies after emplacement, would explain the observed properties of kimberlite magma/rock, notably enrichment in olivine and trace elements in the hypabyssal kimberlite facies. A carbonate melt composition would retain attributes of the standard model such as trace element enrichment via low degrees of partial melting, it would explain low temperatures of crystallisation and the exceptional rheological properties that enable kimberlite primary

  16. Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)

    NASA Astrophysics Data System (ADS)

    Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander

    2016-04-01

    Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of

  17. Identification of kimberlite bodies in Brazil from a 3D audio-magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    De Lugao, P. P.; Eric, C. D. O.; Loureiro, F. O.; Arantes, P. R.; Pastana, A. F.

    2015-12-01

    We report on a succesfull identification of kimberlite bodies in Brazil through the use of the electromagnetic technique audio-magnetotelluric (AMT). Macnae (1979) writes that "In one large survey in South Africa, electromagnetic (EM) techniques have proven to be remarkably effective in detecting the presence of weathered clays or epiclastic kimberlite contained within the pipes." Full tensor AMT data were acquired at 65 points (stations) in a 3D configuration with frequencies ranging from 10kHz to 1Hz. The survey was located in the NW portion of the Mato Grosso state, Brazil, in na area of thick jungle coverage. During the AMT survey, few outcrops were seen because of the dense forest cover. Usually, the occurrences found were of sand deposits, indicating the occurence of Fazenda Casa Branca and Utiariti Formations and gravel from Salto das Nuvens Formation, widely used in paving trails n this region. In the area of the survey, three main targets were confirmed/identified: Kimberlite Area 1 - a classic kimberlite in the region, with the crater facies with different clasts and distinct size. We noted the occurrence of a red-brown soil and an unusual vegetation in this area. The resistivity model provided confirmed the presence of Kimberlite Area 1 and was used to identify other two areas. Area of Interest 1 - area with atypical vegetation along a trail. There is an excavation that displays soil of white color with several blocks present, there are small quartz crystal agglomerates in these blocks. The resistivity model cleary shows a conductive body here, indicative of the presence of a kimberlite. Area of Interest 2 - the presence of a kimberlite was confirmed, not exactly where the targeted Area 2 was, but the southwest of it. Close to this area, there was a very fine rock and a few blocks of pure silica, probably indicating a kimberlitic intrusion. In summary, the 3D resistivity model in depth obtained from inversion of the AMT data confirmed and identified

  18. The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Bussweiler, Y.; Stone, R. S.; Pearson, D. G.; Luth, R. W.; Stachel, T.; Kjarsgaard, B. A.; Menzies, A.

    2016-07-01

    Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These `polymineralic inclusions' have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside → forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical

  19. Pristine Early Eocene wood buried deeply in kimberlite from northern Canada.

    PubMed

    Wolfe, Alexander P; Csank, Adam Z; Reyes, Alberto V; McKellar, Ryan C; Tappert, Ralf; Muehlenbachs, Karlis

    2012-01-01

    We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada's Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ(18)O and δ(2)H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12-17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information.

  20. Sr and Nd isotope composition of deformed peridotite xenoliths from Udachnaya kimberlite pipe

    NASA Astrophysics Data System (ADS)

    Surgutanova, E. A.; Agashev, A. M.; Demonterova, E. I.; Golovin, A. V.; Pokhilenko, N. P.

    2016-11-01

    New results of Rb-Sr and Sm-Nd isotope analyses have been obtained on samples of deformed peridotite xenoliths collected from the Udachnaya kimberlite pipe (Yakutia). The data obtained imply two main stages of metasomatic alteration of the lithospheric mantle base matter in the central part of the Siberian Craton. Elevated ratios of Sr isotopes may be considered as evidence of an ancient stage of metasomatic enrichment by a carbonatite melt. The acquired Nd isotope composition together with the geochemistry of the deformed peridotite xenoliths suggests that the second stage of metasomatic alteration took place shortly before formation of the kimberlite melt. The metasomatic agent of this stage had a silicate character and arrived from an asthenosphere source, common for the normal OIB type (PREMA) and the Group-I kimberlite.

  1. Various growth environments of cloudy diamonds from the Malobotuobia kimberlite field (Siberian craton)

    NASA Astrophysics Data System (ADS)

    Skuzovatov, Sergei; Zedgenizov, Dmitry; Howell, Daniel; Griffin, William L.

    2016-11-01

    Microinclusions of high-density fluids (HDF's) occur in cloudy diamonds from the Mir and Internatsionalnaya kimberlite pipes (Malobotuobia kimberlite field, Siberian platform). These HDFs are of typical high-Mg carbonatitic composition; a few diamonds contain microinclusions that define a low-Mg carbonatitic to silicic trend. The observed variations are interpreted as resulted from mixing of two contrasting fluids derived from the partial melting mainly of carbonated peridotite (the high-Mg carbonatitic HDFs) and eclogite (silica-rich HDFs and HDFs with high Ca/(Ca + Mg + Fe)). Immiscibility of carbonatitic and silica-rich fluids provides a possible mechanism for the co-existence of the observed HDFs but needs further proof. The uniform carbon isotope composition of cloudy diamonds with high-Mg carbonatitic microinclusions from both kimberlite pipes implies a single peridotitic source.

  2. Pristine Early Eocene Wood Buried Deeply in Kimberlite from Northern Canada

    PubMed Central

    Wolfe, Alexander P.; Csank, Adam Z.; Reyes, Alberto V.; McKellar, Ryan C.; Tappert, Ralf; Muehlenbachs, Karlis

    2012-01-01

    We report exceptional preservation of fossil wood buried deeply in a kimberlite pipe that intruded northwestern Canada’s Slave Province 53.3±0.6 million years ago (Ma), revealed during excavation of diamond source rock. The wood originated from forest surrounding the eruption zone and collapsed into the diatreme before resettling in volcaniclastic kimberlite to depths >300 m, where it was mummified in a sterile environment. Anatomy of the unpermineralized wood permits conclusive identification to the genus Metasequoia (Cupressaceae). The wood yields genuine cellulose and occluded amber, both of which have been characterized spectroscopically and isotopically. From cellulose δ18O and δ2H measurements, we infer that Early Eocene paleoclimates in the western Canadian subarctic were 12–17°C warmer and four times wetter than present. Canadian kimberlites offer Lagerstätte-quality preservation of wood from a region with limited alternate sources of paleobotanical information. PMID:23029080

  3. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  4. Metasomatic enrichment of Proterozoic mantle south of the Kaapvaal Craton, South Africa: origin of sinusoidal REE patterns in clinopyroxene and garnet

    NASA Astrophysics Data System (ADS)

    le Roex, Anton; Class, Cornelia

    2016-02-01

    indicates regional metasomatism by melts of various compositions. The strong HREEN depletion is interpreted to reflect the effect of initial melt depletion in the early Proterozoic, with melting extending into the spinel stability field requiring an oceanic realm, and again later in the Mesoproterozoic (Namaqua Orogeny). The superimposed incompatible element enrichment indicates subsequent multiple enrichment events by rising alkaline melts similar in composition to kimberlite or ultramafic alkaline lamprophyre, possibly related to Mesozoic plume upwelling beneath the region, that reintroduced clinopyroxene into the depleted Proterozoic harzburgite protolith.

  5. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites

    PubMed

    Kelley; Wartho

    2000-07-28

    Kimberlite eruptions bring exotic rock fragments and minerals, including diamonds, from deep within the mantle up to the surface. Such fragments are rapidly absorbed into the kimberlite magma so their appearance at the surface implies rapid transport from depth. High spatial resolution Ar-Ar age data on phlogopite grains in xenoliths from Malaita in the Solomon Islands, southwest Pacific, and Elovy Island in the Kola Peninsula, Russia, indicate transport times of hours to days depending upon the magma temperature. In addition, the data show that the phlogopite grains preserve Ar-Ar ages recorded at high temperature in the mantle, 700 degrees C above the conventional closure temperature.

  6. New data on kimberlite and lamproite magmatism in diamondiferous areas in the Western Urals

    NASA Astrophysics Data System (ADS)

    Goloburdina, Marina

    2014-05-01

    Rare potassic alkaline-ultrabasic rocks were first studied in the western slope of the Middle Urals (Perm Region) in the multiphase Blagodatsky Massif. They are represented by olivine-sanidine lamproite and kimberlite. Based on materials of bore-hole sections of up to ~ 500 m deep and trenches (~ 3.5 m x 2 km), it was identified that thin alkaline-ultrabasic rock bodies consist of pipe-like, vein and dyke intrusions. Alkaline-ultrabasic rocks are associated in the massive with PZ2 essexite-dolerite, trachydolerite and V2 trachybasalt. Rock contacts between one another and with terrigenous rocks (V2) and sandstone (D1) are tectonic or intrusive. Kimberlite is of specific mineral composition. It is characterized by the presence not only of three generations of olivine, but also altered melilite, sanidine, leucite that suggests that these rocks are transitional between kimberlite and lamproite. According to the classification of R.H. Mitchell (1995), similar rocks are an extreme member of Group II kimberlites. Such kimberlites are known in the Kroonstad area, South Africa (Besterskraal North, Voorspoed Mine) (G.H. Howarth, E. Michael et al., 2011). Chemical composition of the rocks varies widely due to superimposed transformations expressed in chloritization, silicification, carbonatization, micatization, hematitization, leucoxenization, albitization. Distribution of rare elements and rare earth elements in alkaline-ultrabasic rocks are similar to those in kimberlites of the Timan and the Arkhangelsk diamondiferous province. Accessory minerals are rare pyrope of lherzolite paragenesis, diopside, chrome-spinelide, picroilmenite and large zircons similar to those of kimberlite. Single diamonds of dodecahedroid shape have been found in bulk samples. They are typical of alluvial diamond occurrences and deposits of the Urals. Isotopic dating of zircons (SRIMP-II) yields the age of the alkaline-ultrabasic rocks corresponding to the Middle Paleozoic (D2-C1) and shows that

  7. Tuffisitic Kimberlites and Their Emplacement Processes: A Review of Some Current Hypotheses

    NASA Astrophysics Data System (ADS)

    Mitchell, R. H.

    2009-05-01

    Kimberlite diatremes are filled by the variety of kimberlite known variously as tuffisitic kimberlite (TK), volcaniclastic kimberlite (VK), subvolcanic magmaclastic kimberlite (SMK), or autolithic tuff breccia (AKB). The distinctive characteristics of these rock type are reviewed and compared with other volcaniclastic diatreme- zone rocks occurring in melilitite vents. It is shown that TKs are petrologically unique in consisting of massive unsorted matrix-to-clast supported rocks containing anhedral olivine macrocrysts and subhedral phenocrysts; a specific assemblage of sub-spherical to elliptical magmaclasts (formerly pelletal lapilli), xenolithic and autolithic clasts, thin cryptocrystalline mantles of microlitic diopside, phlogopite and apatite on the preceding constituents, and an interclast material consisting mainly of mixed layer phyllosilicates (chlorite-smectite) with lesser diopside. Magmaclasts are defined as solidified former melt-bearing clasts formed during, or prior to, emplacement by any process of magma disruption. Magmaclasts in TKs consist of chlorite-pseudomorphed olivine, fresh phlogopite, spinel, perovskite, apatite and chlorite. Petrologically they are similar to the groundmass of hypabyssal kimberlites but lack monticellite and carbonates. Microlitic diopside mantles decorating magmaclasts grade continuously into the interclast matrix and represent a continuum of crystallization. Clastic or carbonate matrices, accretionary and/or deformed welded or vesicular clasts are absent from TKs. Mechanisms proposed for the formation of TKs include fluidization, phreatomagmatism , embryonic pipe modification, and in-vent column collapse; however it very possible that diatremes are unlikely to form by any single process. TK formation has been considered to represent either downward or upwards migration of the foci of volcanic activity. Apart from their terminology, outstanding problems in TK genesis include: the formation of the magmaclasts and their

  8. Spatial distribution of kimberlite in the Slave craton, Canada: a geometrical approach

    NASA Astrophysics Data System (ADS)

    Stubley, M. P.

    2004-09-01

    Exploration within the Slave craton has revealed clusters of kimberlite intrusions, commonly with internally consistent geochemical and temporal characteristics. Translation diagrams ("Fry analysis") allow an unbiased geometrical examination of the distance and direction between each kimberlite occurrence and all others in the database. Recurrent patterns are visually accentuated due to the square function in data density. Circular histograms quantify the azimuthal density of kimberlite at various distances. For this study, the database comprises the geographic position of 212 kimberlite occurrences of which 70% are from the Lac de Gras field (LDG). Analyses are presented separately for the LDG data and for all non-LDG data in order to test for regional variations and to avoid overwhelming the craton-scale studies by the high density of LDG data. Empirical grouping of kimberlite locations results in delineation of five elliptical clusters that encompass all but four kimberlite occurrences. Clusters within the western part of the craton are elongate to the north-northeast and align within a narrow zone ("Western Corridor"). Elsewhere, the clusters are elongate to the northwest or west-northwest and appear to be arranged en echelon within a poorly defined north-northwest trending zone ("Central Corridor"). Geometrical spatial analyses of kimberlite locations highlight the craton-scale pattern of emplacement within the two main corridors. At regional and local scales, individual intrusions are preferentially located towards the west-northwest (ca. 280°) and north-northeast (ca. 015°) of other intrusions, and these orientations are interpreted to reflect upper mantle trends in magma generation. At local scales (10-25 km), kimberlite of the central and southern craton tends to be located to the northeast (ca. 045°), and possibly weakly to the east-northeast (ca. 070°), of other intrusions, and these orientations correspond to major crustal fractures systems. It is

  9. Modeling the Consequences of Proterozoic Oxygenation

    NASA Astrophysics Data System (ADS)

    Bachan, A.; Kump, L. R.

    2013-12-01

    state iron removal is dominated by pyrite precipitation allowing for elevated phosphate regeneration. Furthermore, in the model, the weathering input of cations and phosphate accompanied by sulfate moderates the reduction in pCO2 that otherwise results from elevated organic carbon burial. Thus, a positive feedback arises where O2 production from organic carbon burial triggers additional sulfide oxidation which leads to further organic carbon burial. This process continues until the sulfide reservoir is depleted, after which δ13C values return to near zero and the model settles into a new steady state with a higher pO2. In total, our modeling supports the idea that the late Proterozoic carbon isotope anomaly can be understood as the manifestation of oxidizing power, triggered externally, and amplified internally, propagating through the earth system.

  10. Limited role for methane in the mid-Proterozoic greenhouse.

    PubMed

    Olson, Stephanie L; Reinhard, Christopher T; Lyons, Timothy W

    2016-10-11

    Pervasive anoxia in the subsurface ocean during the Proterozoic may have allowed large fluxes of biogenic CH4 to the atmosphere, enhancing the climatic significance of CH4 early in Earth's history. Indeed, the assumption of elevated pCH4 during the Proterozoic underlies most models for both anomalous climatic stasis during the mid-Proterozoic and extreme climate perturbation during the Neoproterozoic; however, the geologic record cannot directly constrain atmospheric CH4 levels and attendant radiative forcing. Here, we revisit the role of CH4 in Earth's climate system during Proterozoic time. We use an Earth system model to quantify CH4 fluxes from the marine biosphere and to examine the capacity of biogenic CH4 to compensate for the faint young Sun during the "boring billion" years before the emergence of metazoan life. Our calculations demonstrate that anaerobic oxidation of CH4 coupled to SO4(2-) reduction is a highly effective obstacle to CH4 accumulation in the atmosphere, possibly limiting atmospheric pCH4 to less than 10 ppm by volume for the second half of Earth history regardless of atmospheric pO2 If recent pO2 constraints from Cr isotopes are correct, we predict that reduced UV shielding by O3 should further limit pCH4 to very low levels similar to those seen today. Thus, our model results likely limit the potential climate warming by CH4 for the majority of Earth history-possibly reviving the faint young Sun paradox during Proterozoic time and challenging existing models for the initiation of low-latitude glaciation that depend on the oxidative collapse of a steady-state CH4 greenhouse.

  11. Limited role for methane in the mid-Proterozoic greenhouse

    PubMed Central

    Olson, Stephanie L.; Reinhard, Christopher T.; Lyons, Timothy W.

    2016-01-01

    Pervasive anoxia in the subsurface ocean during the Proterozoic may have allowed large fluxes of biogenic CH4 to the atmosphere, enhancing the climatic significance of CH4 early in Earth’s history. Indeed, the assumption of elevated pCH4 during the Proterozoic underlies most models for both anomalous climatic stasis during the mid-Proterozoic and extreme climate perturbation during the Neoproterozoic; however, the geologic record cannot directly constrain atmospheric CH4 levels and attendant radiative forcing. Here, we revisit the role of CH4 in Earth’s climate system during Proterozoic time. We use an Earth system model to quantify CH4 fluxes from the marine biosphere and to examine the capacity of biogenic CH4 to compensate for the faint young Sun during the “boring billion” years before the emergence of metazoan life. Our calculations demonstrate that anaerobic oxidation of CH4 coupled to SO42− reduction is a highly effective obstacle to CH4 accumulation in the atmosphere, possibly limiting atmospheric pCH4 to less than 10 ppm by volume for the second half of Earth history regardless of atmospheric pO2. If recent pO2 constraints from Cr isotopes are correct, we predict that reduced UV shielding by O3 should further limit pCH4 to very low levels similar to those seen today. Thus, our model results likely limit the potential climate warming by CH4 for the majority of Earth history—possibly reviving the faint young Sun paradox during Proterozoic time and challenging existing models for the initiation of low-latitude glaciation that depend on the oxidative collapse of a steady-state CH4 greenhouse. PMID:27671638

  12. Limited role for methane in the mid-Proterozoic greenhouse

    NASA Astrophysics Data System (ADS)

    Olson, Stephanie L.; Reinhard, Christopher T.; Lyons, Timothy W.

    2016-10-01

    Pervasive anoxia in the subsurface ocean during the Proterozoic may have allowed large fluxes of biogenic CH4 to the atmosphere, enhancing the climatic significance of CH4 early in Earth’s history. Indeed, the assumption of elevated pCH4 during the Proterozoic underlies most models for both anomalous climatic stasis during the mid-Proterozoic and extreme climate perturbation during the Neoproterozoic; however, the geologic record cannot directly constrain atmospheric CH4 levels and attendant radiative forcing. Here, we revisit the role of CH4 in Earth’s climate system during Proterozoic time. We use an Earth system model to quantify CH4 fluxes from the marine biosphere and to examine the capacity of biogenic CH4 to compensate for the faint young Sun during the “boring billion” years before the emergence of metazoan life. Our calculations demonstrate that anaerobic oxidation of CH4 coupled to SO42- reduction is a highly effective obstacle to CH4 accumulation in the atmosphere, possibly limiting atmospheric pCH4 to less than 10 ppm by volume for the second half of Earth history regardless of atmospheric pO2. If recent pO2 constraints from Cr isotopes are correct, we predict that reduced UV shielding by O3 should further limit pCH4 to very low levels similar to those seen today. Thus, our model results likely limit the potential climate warming by CH4 for the majority of Earth history—possibly reviving the faint young Sun paradox during Proterozoic time and challenging existing models for the initiation of low-latitude glaciation that depend on the oxidative collapse of a steady-state CH4 greenhouse.

  13. Diamond resorption features as a new method for examining conditions of kimberlite emplacement

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Yana

    2015-10-01

    The study develops a new approach utilizing parameters of trigonal etch pits on diamond crystals to infer the conditions of diamond residence in kimberlite magma. Diamond crystals from dissolution experiments conducted at 1 GPa and 1150-1350 °C in the presence of H2O-rich or CO2-rich fluid were studied with atomic force microscopy (AFM). The AFM data of resorbed diamond surfaces show that much deeper surface relief was produced in CO2 fluid. It also clearly distinguishes the profiles of the trigonal etch pits forming regular flat-bottomed trigons in H2O fluid, and round- or pointed-bottomed trigons in CO2 fluid. The relationship between the diameter and the depth of the trigonal pits is found to be another important indicator of the fluid composition. Dissolution in H2O fluid develops trigons with constant diameter and variable depth where the diameter increases with temperature. Trigons developed in CO2 fluid have a large range of diameters showing a strong positive correlation with the depth. The developed criteria applied to the natural diamond crystals from three Ekati Mine kimberlites indicate significant variation in CO2-H2O ratio and temperature of their magmatic fluid. This conclusion based on diamond resorption agrees with the mineralogy of microphenocrysts and groundmass of the studied kimberlites offering new method to study crystallization conditions of kimberlite magma.

  14. Microbial Response in Peat Overlying Kimberlite Pipes in The Attawapiskat Area, Northern Ontario

    NASA Astrophysics Data System (ADS)

    Donkervoort, L. J.; Southam, G.

    2009-05-01

    Exploration for ore deposits occurring under thick, post-mineralized cover requires innovative methods and instrumentation [1]. Buried kimberlite pipes 'produce' geochemical conditions such as increased pH and decreased Eh in overlying peat [2] that intuitively select for bacterial populations that are best able to grow and, which in turn affect the geochemistry producing a linked signal. A microbiological study of peat was conducted over the Zulu kimberlite in the Attawapiskat area of the James Bay Lowlands to determine if the type of underlying rock influences the diversity and populations of microorganisms living in the overlying peat. Peat was sampled along an 800 m transect across the Zulu kimberlite, including samples underlain by limestone. Microbial populations and carbon source utilization patterns of peat samples were compared between the two underlying rock types. Results demonstrate an inverse relationship of increased anaerobic populations and lower biodiversity directly above the kimberlite pipe. These results support a reduced 'column' consistent with the model presented by Hamilton [3]. The combination of traditional bacterial enumeration and community- level profiling represents a cost-effective and efficient exploration technique that can serve to compliment both geophysical and geochemical surveys. [1] Goldberg (1998) J. Geochem. Explor. 61, 191-202 [2] Hattori and Hamilton (2008) Appl. Geochem. 23, 3767-3782 [3] Hamilton (1998) J. Geochem. Explor. 63, 155-172

  15. Diamond Morphology: Link to Metasomatic Events in the Mantle or Record of Evolution of Kimberlitic Fluid?

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Y.

    2009-05-01

    Morphology and surface features on diamonds show tremendous variation even within a single kimberlite body reflecting a complex history of growth and dissolution. But does the diamond surface record the conditions in the several mantle sources sampled by the rising kimberlite magma, or evolution of the fluid system in the kimberlite magma itself? To address this question I revised morphological classification of diamonds from several kimberlite pipes from EKATI Mine property, N.W.T., Canada. The novelty of the approach, compared to the existing classifications, is in utilizing a random but large dataset of diamond dissolution experiments accumulated by several researchers including myself. These experiments have shown that similar forms (e.g. trigon etch pits) can be produced in a variety of conditions and environments, whereas their shape and size would depend on the reactant. Similarly, different types of resorption features always form together and can be used for deriving the composition of oxidizing fluid. The proposed classification method is focused on relating various types of diamond surfaces to the composition and conditions of oxidizing media. The study uses parcels of micro-and macro-diamonds (total of 125 carats) from Misery, Grizzly, Leslie and Koala kimberlites, EKATI Mine property, Northwest Territories, Canada. Only octahedron and hexoctahedron diamonds were selected (total ~600 stones). Diamond surfaces were studied using an optical and Field- Emission Scanning Electron Microscope to define resorption elements - simple surface features. These elements were identified for each of the three categories: 1) present on octahedral faces (well-preserved diamonds), 2) present on hexoctahedral faces (rounded resorbed diamonds), and 3) frosting (micro-features). Consistent associations of several elements define Resorption Types of diamonds, which form during a single oxidizing event. We further relate these types to the composition of the C-H-O + chlorides

  16. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa

    NASA Astrophysics Data System (ADS)

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew

    2011-10-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200-440°C and in crater-filling talus breccias and volcaniclastic breccias at <180°C. The results from the K1 and K2 pipes at Venetia suggest emplacement temperatures for the vent-filling breccias of 260°C to >560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10-30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300-400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation

  17. Macrocrystal phlogopite Rb-Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene

    NASA Astrophysics Data System (ADS)

    Creaser, Robert A.; Grütter, Herman; Carlson, Jon; Crawford, Barbara

    2004-09-01

    New Rb-Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (˜61 Ma) to Middle Eocene time (˜45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (˜74 Ma). Within this age range, emplacement episodes at ˜48, 51-53, 55-56 and 59-61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (˜47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55-56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb-Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51-53 and 55-56 Ma periods of kimberlite magmatism.

  18. Role of fluid in the mechanism of formation of volcaniclastic and coherent kimberlite facies: a diamond perspective

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Yana; Chinn, Ingrid

    2016-04-01

    Dissolution features on diamonds recovered from kimberlites vary depending on the dissolution conditions and can be used as a reliable proxy for volatiles and their role in kimberlite emplacement. Volatiles determine the mechanism of magma emplacement; variation in volatile content and CO2/CO2+H2O ratio may affect the geology of kimberlite bodies and formation of coherent vs. volcaniclastic kimberlite facies. Here we examine the evolution of a kimberlite system during ascent using the resorption morphology of its diamond population. We use 655 macro-diamonds from a complex kimberlite pipe in the Orapa kimberlite field (Botswana) to examine the role of volatiles in the formation of the three facies comprising this pipe: two coherent kimberlite facies (CKA and CKB) and one massive volcaniclastic facies (MVK). The diamonds come from three drillholes through each of the studied kimberlite facies. Separate diamond samples derived from 2 - 13 m intervals were combined into 40 m depth intervals for statistical purposes. Four independent morphological methods allowed us to reliably discriminate products of resorption in kimberlite magma from resorption in the mantle, and use the former in our study. We found that the proportion of diamonds with kimberlitic resorption is the lowest in CKA - 22%, medium in MVK - 50%, and highest in CKB - 73%, and it increases with depth in each of the drillholes. Each kimberlite facies shows its own style of kimberlite-induced resorption on rounded tetrahexahedron (THH) diamonds: glossy surfaces in MVK, rough corroded surfaces in CKB, and combination of glossy surfaces with chains of circular pits in CKA, where these pits represent the initial stages of development of corrosive features observed on CKB diamonds. Based on the results of our previous experimental studies we propose that resorption of MVK diamonds is a product of interaction with COH fluid, resorption of CKB diamonds is a product of interaction with a volatile

  19. [Study on the FTIR spectra of OH in olivines from mengyin kimberlite].

    PubMed

    Ai, Qun; Yang, Zhi-jun; Zeng, Xiang-qing; Zheng, Yun-long; Hu, Piao-ye

    2013-09-01

    The results of FTIR spectra study of OH in olivines from Mengyin kimberlite show that there are more than 60 OH absorption peaks in the range of 3800-3000 cm(-1). We identified four major spectral features in the OH absorption bands of kimberlitic olivines. One is with nuOH in the range of 3800-3700 cm(-1), which is caused by the vapour of the room circumstance, and can not be regarded as intrinsic or non-intrinsic nuOH of the olivines. Another one is with nuOH in the range of 3710-3620 cm(-1), which belongs to three "water"-bearing minerals including serpentine, talc and Mg-bearing amphiboles, which is the non-intrinsic nuOH of the olivines. There is the possibility that H in hydrous minerals mainly entered into olivines during post-emplacement processes of the kimberlite magma. The third one is with nuOH in the range of 3620-3425 cm(-1), which originated from H occupying the Si-defect in the olivine structure, forming humite-like defects, and/or the defects that H occupies (Mg,Fe)-depletion, which is certainly attributed to the intrinsic nuOH of the olivines. In this case, H possibly entered into olivines following its immersion in the high temperature and rich fluid kimberlite magma in the mantle circumstance. The last one is with nuOH in the range of 3425-3000 cm(-1). In this area, nuOH is assigned to fluid inclusions of the olivines, and is the non-intrinsic nuOH of olivines. Fluid inclusions can enter into the olivines either during post-emplacement processes of the kimberlite magma or during the periods that olivines were formed in the mantle.

  20. Mantle-derived argon components in phlogopite from southern African kimberlites

    SciTech Connect

    Phillips, D.; Onstott, T.C.

    1985-01-01

    Application of the /sup 40/Ar//sup 39/Ar dating technique to kimberlite geochronology often yields discordant spectra with ages that are much older than the inferred time of emplacement of the kimberlite body. In the past, these anomalously high ages have been attributed to the presence of excess radiogenic /sup 49/Ar incorporated into the mineral phases either pre- or syn- emplacement of the kimberlite. Detailed /sup 40/Ar//sup 39/Ar stepheating analyses on phlogopite xenocrysts from Southern African kimberlites revealed the presence of excess argon. Discrimination between different reservoirs of argon, contained in the phlogopite, was best achieved using plots of /sup 36/Ar//sup 40/Ar versus /sup 39/Ar//sup 40/Ar. High /sup 36/Ar//sup 40/Ar ratios for the low temperature steps are interpreted as resulting from atmospheric contamination (/sup 40/Ar//sup 36/Ar = 295.5). At the highest temperature steps (1100/sup 0/-1200/sup 0/C), the /sup 36/Ar//sup 40/Ar ratios increase dramatically. Least squares fits of the high temperature components yield /sup 40/Ar//sup 36/Ar initial ratios ranging from 340 to 366. These values correspond closely to those obtained by Allegre et al. (1983) for Hawaiian basalts. This suggest that either the xenocrystic phlogopites within the kimberlites or the vapor phase within which they crystallized were derived from an undegassed mantle source. The release of this mantle reservoir at high temperatures requires a high retentivity site for the argon within the phlogopite structure. As phlogopite appears to retain its structural water to high temperatures, the argon may be trapped within the hydroxyl sites of the mica.

  1. Geochemistry of Eclogite Xenoliths from Kimberlite Pipe Udachnaya

    NASA Astrophysics Data System (ADS)

    Agashev, Aleksey; Pokhilenko, Ludmila; Pokhilenko, Nikolai

    2016-04-01

    A suite of 17 unique big (1 to 20 kg) and fresh ecligite xenoliths from Udachnaya kimberlite pipe have been studied for their whole-rock and minerals major and trace elements composition.Whole rock major elements composition of the Udachnaya eclogite xenoliths suite have a great variability in their MgO contents (9-19Wt%). Based on major elements composition Udachnaya eclogites can be subdivided in two subsets, high magnesian (Mg# 68.8-81.9) and low magnesian (Mg# 56.8-59). High variations also shown by Al2O3 and Na2O concentrations and high Mg# samples tend to contain less of those oxides then low Mg# samples with some exceptions. Two eclogitic groups are clearly different in style of inter-elements correlations. FeO and CaO contents are positively correlate with MgO in low Mg# group of eclogites but negatively in high Mg# group. The same relations present between Al2O3 contents of eclogite group with their Mg#. Compared to present day MORB composition eclogite samples have similar contents of most of elements with some depletion in TiO2 and P2O5 and enrichment in MgO and K2O. The variability of these elements concentrations can be related to melt extraction while elevated K2O can indicate late metasomatic enrichment. In terms of trace elements composition Udachnaya eclogites are enriched over PM but comparable to that of MORB composition, except significant enrichment in LILE elements (Rb, Ba, K, Sr). The records of both subduction related processes and mantle metasomatism could be find in geochemical features of these rocks. Most of the eclogites show positive Eu anomaly which is direct evidence of plagioclase accumulation in eglogites protolith. Variation of La/Yb ratio (1-11), in majority of samples are the range 2-4 indicates different degrees of samples metasomatic enrichment in LREE. Udachnaya eclogites have range of Sm/Nd ratio from 0.25 to 0.5 (MORB is 0.32) which positive covariates with Nd content. This trend could not be a result of melt extraction nor

  2. Liberia’s Post-War Recovery: Key Issues and Developments

    DTIC Science & Technology

    2007-08-30

    Announces the Discovery of Kimberlite in Liberia and Progress with Gold Exploration,” January 9, 2006. Several other firms are involved in diamond...strong indications of a kimberlite , or pipes of igneous, volcanic, often diamond-bearing material, in Grand Cape County.83 If the kimberlite is verified

  3. A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa.

    PubMed

    Mernagh, Terrence P; Kamenetsky, Vadim S; Kamenetsky, Maya B

    2011-10-01

    Raman spectroscopy has been used for the identification of both common and uncommon minerals in melt inclusions in Group-I kimberlites from Siberia, Canada, SW Greenland and South Africa. The melt inclusions all contained high abundances of alkali-Ca carbonates, with varying proportions of cations, and Na-Ca-Ba sulphates. In accordance with its dry mineralogy, no hydrated carbonates or sulphates were detected in melt inclusions from the Udachnaya-East kimberlite. In contrast, the melt inclusions in kimberlites from Canada, South Africa and SW Greenland were found to contain bassanite, pirssonite, and hydromagnesite suggesting that greater amounts of water were present in their residual magmas. This suggests that enrichment in alkali carbonates and sulphates is widespread across a range of Group-I kimberlites and implies that they commonly have an alkali-, and sulphur-rich residual liquid.

  4. Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa

    NASA Astrophysics Data System (ADS)

    Deines, Peter; Harris, J. W.; Gurney, J. J.

    1993-06-01

    Data on cubic diamonds with a very restricted delta C-13 range, a relatively high and constant nitrogen content, and low nitrogen aggregation state, from the Orapa kimberlite are analyzed. Results confirm the conclusion of the earlier studies (Deines, 1980; Deines et al., 1984, 1987, 1989) that a multitude of diamond sources and formation processes must be considered for the formation of diamonds recovered from any kimberlite.

  5. Bridging Two Worlds: From the Archean to the Proterozoic

    NASA Technical Reports Server (NTRS)

    Schopf, J. William

    2000-01-01

    As now known, the Archean and Proterozoic appear to have been different worlds: the geology (tectonic style, basinal distribution, dominant rock types), atmospheric composition (O2, CO21, CH4), and surface environment (day-length, solar luminosity, ambient temperature) all appear to have changed over time. And virtually all paleobiologic indicators can be interpreted as suggesting there were significant biotic differences as well: (1) Stromatolites older than 2.5 Ga are rare relative to those of the Proterozoic; their biotic components are largely unknown; and the biogenicity of those older than approx. 3.2 Ga has been questioned. (2) Bona fide microfossils older than approx. 2.4 Ga are rare, poorly preserved, and of uncertain biological relations. Gaps of hundreds of millions of years in the known record make it impossible to show that Archean microorganisms are definitely part of the 2.4 Ga-to-present evolutionary continuum. and (3) In rocks older than approx. 2.2 Ga, the sulfur isotopic record is subject to controversy; phylogenetically distinctive bio-markers are unknown; and nearly a score of geologic units contain organic carbon anomalously light isotopically (relative to that of the Proterozoic and Phanerozoic) that may reflect the presence of Archaeans ("Archaebacteria of earlier classifications) but may not (since cellularly preserved Archean-age Archaeans have never been identified).

  6. Reply on: "Comment on: The ascent of kimberlite: Insights from olivine" authored by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119-131

    NASA Astrophysics Data System (ADS)

    Brett, R. Curtis; Russell, J. K.; Andrews, G. D. M.; Jones, T. J.

    2016-04-01

    The Kamenetsky (2016) comment on the Kimberlite Factory model proposed by Brett et al. (2015) asserts, ;A cornerstone of this model is a specific, carbonatitic composition of proto-kimberlite melts ascending through the sub-cratonic lithospheric mantle; and ;… the major thrust of the study hinges on the premise that the parental kimberlite melt is carbonatitic;. This is a clear misstatement of our central thesis, which is to utilize the attributes of olivine xenocrysts to constrain the physical ascent of kimberlite. Brett et al.'s study does not hinge on the premise that parental kimberlite melt is carbonatitic. Rather, our interpretation that kimberlite melt originates as near carbonatitic hinges on our novel observation that early ;carbonate sealed cracks provide evidence of melt being drawn into decompression cracks and precipitating; (p. 129). Our connection between this observation and our interpretation is tied explicitly to earlier published works ;in this regard, the carbonate-filled sealed cracks strongly support to the hypothesis that all kimberlite magmas originate as carbonatitic-melts (e.g.,Russell et al., 2012, 2013;Kamenetsky et al., 2013; Pilbeam et al., 2013; Kamenetsky and Yaxley, 2015; Bussweiler et al., 2015); (p. 129). To state that our interpretation is based on a pre-existing bias towards a model of a carbonatitic origin of kimberlite magmas is incorrect. Rather, our new observational data independently demonstrates that the presence of carbonate-sealed cracks formed during kimberlite ascent.

  7. Reply to the Discussion by Mitchell and Tappe on “Kimberlites and aillikites as probes of the continental lithospheric mantle”

    NASA Astrophysics Data System (ADS)

    Francis, D.; Patterson, M.

    2010-03-01

    We thank Mitchell and Tappe for giving us the opportunity to discuss the nature of kimberlite magmas. We agree with Mitchell and Tappe about the importance of mineralogy, but the mineralogy of interstitial phases in kimberlites can shed little light on the origin of kimberlite magmas. Our use of cation units enables the interpretation of kimberlite whole-rock compositions in terms of the stoichiometry of their constituent minerals. When viewed in this manner, the variation in the whole-rock compositions of kimberlites clearly indicates that they are mixtures of harzburgitic lithospheric mantle and a carbonate-rich liquid. Aillikites are systematically more Fe-rich than kimberlites, but both contain less silica than olivine, such that they would evolve to lower Si contents via olivine fractionation. The opposite is true of olivine lamproites and meimechites. Although kimberlite whole-rock compositions do not reliably predict diamond grade on a local scale, there is a clear correlation between diamond grade and kimberlite composition on a global scale, which likely has the same explanation as the correlation between G10 garnets and diamonds. Considering that there is still no officially accepted definition of kimberlite, refusal to even consider the implications of their whole-rock compositional variation verges on lack of scientific due diligence.

  8. Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: Evidence for mantle metasomatism associated with kimberlite melts

    NASA Astrophysics Data System (ADS)

    Kargin, A. V.; Sazonova, L. V.; Nosova, A. A.; Tretyachenko, V. V.

    2016-10-01

    Here we present major and trace element data for garnet and clinopyroxene from mantle-derived peridotite xenoliths of the Grib kimberlite, the Arkhangelsk diamond province, Russia, and provide new insights into the metasomatic processes that occur within the subcontinental lithospheric mantle (SCLM) during the kimberlite generation and ascent. The mantle xenoliths examined in this study are both coarse and sheared garnet peridotites and consist of olivine, orthopyroxene, clinopyroxene, garnet with minor ilmenite, magnetite, and Cr-spinel. Based on garnet and clinopyroxene composition, two groups of peridotite are recognized. One group contains high-Ti, light rare earth elements (LREE) enriched garnets and low-Mg# clinopyroxenes with low (La/Sm)n (C1 chondrite-normalized) values. This mineral assemblage was in equilibrium with a high-temperature carbonate-silicate metasomatic agent, presumably, a protokimberlite melt. Pressure-temperature (P-T) estimates (T = 1220 °C and P = 70 kbar) suggest that this metasomatic event occurred at the base of the SCLM. Another group contains low-Ti garnet with normal to sinusoidal rare earth elements (REE) distribution patterns and high-Mg# clinopyroxenes with wide range of (La/Sm)n values. The geochemical equilibrium between garnet and clinopyroxene coupled with their REE composition indicates that peridotite mantle experienced metasomatic transformation by injection of a low-Ti (after crystallizations of the ilmenite megacrysts) kimberlite melt that subsequently percolated through a refractory mantle column. Peridotites of this group show a wide range of P-T estimates (T = 730-1070 °C and P = 22-44 kbar). It is suggested that evolution of a kimberlite magma from REE-enriched carbonate-bearing to carbonate-rich ultramafic silicate compositions with lower REE occurs during the ascent and interaction with a surrounding lithospheric mantle, and this process leads to metasomatic modification of the SCLM with formation of both high

  9. Why lower diatremes in kimberlitic and non-kimberlitic systems are non-stratified, homogenized, and contain steep internal contacts: episodic bursts and debris jets

    NASA Astrophysics Data System (ADS)

    Ross, P.; White, J. D.; Kurszlaukis, S.; Lorenz, V.; Zimanowski, B.; Buettner, R.; McClintock, M.

    2009-05-01

    In both kimberlitic and non-kimberlitic systems, the volcaniclastic fill of the lower diatreme zone is often described as "homogenized" or "well mixed". Although the components come from different sources, the deposits display "a crude degree of textural and lithological consistency" (Clement and Reid, 1989, "Kimberlites and related rocks", p. 632-646). Bedding is typically absent from the lower diatreme but in some pipes, columnar bodies of volcaniclastic material occur. These bodies have steep contacts with, and a different grain size, componentry, etc. than, the enclosing host. Sometimes the difference can be subtle and the contacts gradational, making recognition difficult. Good examples are documented from Arizona and Antarctica in basaltic systems and such columnar bodies are also known in kimberlites, where they are sometimes called "feeder conduits". Both the homogenized aspect of many diatremes, and the generation of steep internal contacts, have been attributed to whole-pipe fluidization by some recent workers. This process is unlikely to occur in large pipes because it would take a huge amount of gas being emitted at a sufficient rate to fluidize the whole pipe. Other recent models call for Plinian-scale eruptions. However it is clear that small episodic bursts, not sustained Plinian plumes, must explain the genesis of the hundreds of relatively thin beds in maar tephra rims (maar- diatreme volcanoes do not generate large ignimbrites or thick widespread pyroclastic fall layers). Here we examine what these episodic bursts may do to the underground part of the maar-diatreme volcano. An explosion at deep levels in the pipe will generate enough gas to mobilize newly fragmented magma and existing debris upward into a "debris jet", typically much narrower than the width of the diatreme. Debris jets propagate within the existing diatreme fill and may or may not reach the surface. Experimental studies can be used to illustrate the processes at work. With time

  10. Application of Fe-Ti oxide dissolution experiments to the petrogenesis of the Ekati Diamond Mine kimberlites, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Kressall, R.; Fedortchouk, Y.; McCammon, C. A.

    2015-12-01

    Composition of kimberlites is ambiguous due to assimilation and fractional crystallization. We propose that the evolution history of minerals can be used to decipher the magmatic history of kimberlites. We use Fe-Ti oxides (chromite and ilmenite) from six kimberlites from the Ekati Diamond Mine and dissolution experiments to elucidate the petrogenesis of kimberlites. Experiments at 0.1 MPa and variable ƒO2s in a diopside-anorthite melt show that the dissolution rate of ilmenite is highly sensitive to ƒO2. No significant difference was observed in chromite. Zoning in chromite is related to the Fe-content and oxidation state of the melt. Experiments at 1 GPa explore the development of chromite surface resorption features in the system Ca-Mg-Si-H-C-O. Five kimberlites contain a low abundance of ilmenite, owing to a relatively high ƒO2, though ilmenite constituted 65% of oxide macocrysts in one kimberlite. Chromite compositions evolve from Mg-chromite to magnesio-ulvöspinel-magnetite (MUM) in all but one kimberlite where chromite evolves to a pleonaste composition perhaps as a result of rapid emplacement. The high abundance of MUM spinel and low abundance of ilmenite in the matrix could be related to the change in the stable Ti-phase with increasing ƒO2. Core compositions of macrocrysts vary for different mantle sources but rims converge to a composition slightly more oxidized and Mg-rich than chromite from depleted peridotite. Ilmenite commonly has rims composed of perovskite, titanite and MUM. We suggest a model where the kimberlite melt composition is controlled by the co-dissolution and co-precipitation of silicates (predominantly orthopyroxene and olivine) to explain chromite evolution in kimberlites. Resorption-related surface features on chromite macrocrysts show trigon protrusions-depressions on {111} faces and step-like features along the crystal edges resembling products of experiments in H2O fluid. We propose predominantly H2O magmatic fluid in Ekati

  11. Inclusions of crichtonite group minerals in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia

    NASA Astrophysics Data System (ADS)

    Rezvukhin, D. I.; Malkovets, V. G.; Sharygin, I. S.; Kuzmin, D. V.; Gibsher, A. A.; Litasov, K. D.; Pokhilenko, N. P.; Sobolev, N. V.

    2016-02-01

    The results of study of crichtonite group minerals in pyropes from the Internatsionalnaya kimberlite pipe are reported. Most of the studied samples are characterized by high concentrations of Sr, Ca, Na, and LREEs in comparison with minerals of the LIMA series from kimberlites of South Africa, whereas the average concentrations of Ba and K are significantly lower. Crichtonite group minerals in pyropes are characterized by predomination of Na over K in most samples and by a high concentration of Al2O3 (up to 4.5 wt %). Findings of inclusions of crichtonite group minerals with high concentrations of incompatible elements provide evidence for the metasomatic origin of host chromium-rich pyropes.

  12. The petrogenesis of oceanic kimberlites and included mantle megacrysts: The Malaitan alnoite

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.

    1988-01-01

    The study of unambiguous suboceanic mantle was facilitated by the occurrence of anomalous kimberlite-type intrusives on Malaita in the Solomon Islands. The pseudo-kimberlites were termed alnoites, and are basically mica lamprophyres with melilite in the ground mass. Alnoitic magmas were explosively intruded into the Ontong Java Plateau (OJP) 34 Ma ago. The OJP is a vastly overthickened portion of the Pacific plate which now abuts the Indo-Australian plate. Malaita is considered to be the obducted leading edge of the OJP. Initial diapiric upwelling beneath the OJP produced the proto-alnoite magma. After impingement on the rigid lithosphere, megacrysts fractionation occurred, with augites precipitating first, representing the parental magma. Sea water-altered oceanic crust, which underplated the OJP, was assimilated by the proto-alnoite magma during megacrysts fractionation (AFC).

  13. Ar-40/Ar-39 laser-probe dating of diamond inclusions from the Premier kimberlite

    NASA Technical Reports Server (NTRS)

    Phillips, D.; Onstott, T. C.; Harris, J. W.

    1989-01-01

    The results of Ar-40/Ar-39 laser-probe analyses of individual eclogitic clinopyroxene inclusions from Premier diamonds are reported which yield a mean age of 1198 + or - 14 Myr. This age agrees well with Sm-Nd and Ar-40/Ar-39 analyses on similar Premier inclusions and is indistinguishable from the inferred time of emplacement of the host kimberlite, which implies that diamond formation was essentially synchronous with kimberlite generation. The extrapolated nonradiogenic Ar-40/Ar-36 ratio of 334 + or - 102 is similar to the present-day atmospheric composition. This value is inconsistent with Sr and Nd isotopic signatures from Premier eclogite inclusions, which suggest a depleted mantle source. Preentrapment equilibration of the inclusions with an Ar-36-rich fluid is the most probable explanation for the low nonradiogenic composition.

  14. Geology and diamond distribution of the 140/141 kimberlite, Fort à la Corne, central Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Berryman, Adrian K.; Scott Smith, Barbara H.; Jellicoe, Brent C.

    2004-09-01

    The Cretaceous age Fort à la Corne (FALC) kimberlite province comprises at least 70 bodies, which were emplaced near the edge of the Western Canadian Interior Seaway during cycles of marine transgression and regression. Many of the bodies were formed during a marine regression by a two-stage process, firstly the excavation of shallow, but wide, craters and then subsequent infilling by xenolith-poor, crater-facies, subaerial, primary pyroclastic kimberlite. The bodies range in size up to 2000 m in diameter but are mainly less than 200 m thick and thus comprise relatively thin, but high volume, pyroclastic kimberlite deposits. Each body is composed of contrasting types of kimberlite reflecting different volcanic histories and, therefore, are considered separately. The 140/141 kimberlite is the largest delineated body in the province, estimated to have an areal extent below glacial Quaternary sediments in excess of 200 ha. The infilling of the 140/141 crater is complex, resulting from multiple phases of kimberlite. The central part of the infill is dominated by several contrasting phases of kimberlite. One of these phases is a primary pyroclastic airfall mega-graded bed up to 130 m in thickness. The constituents grade in size from very fine to coarse macrocrystic kimberlite, through to a basal breccia. The mega-graded bed is a widespread feature within parts of the body examined to date and at this current stage of evaluation appears to explain a variable diamond distribution within a tested portion of the pipe. A second different phase of kimberlite is interpreted as representing a younger nested crater within the mega-graded bed. Centrally located thicker intersections (>450 m) of this younger kimberlite may indicate a vent for the kimberlite crater. The thickness of the mega-graded bed increases with proximity to the younger kimberlite in the study area. Macrodiamond minibulk sample grades from the mega-graded bed have been obtained from nine large diameter drill

  15. Comment on: "The ascent of kimberlite: Insights from olivine" by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119-131

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.

    2016-04-01

    Brett et al. (2015) proposed a kimberlite factory model that ;…involves carbonatitic proto-kimberlite melts preferentially assimilating Opx xenocrysts as they transit the cratonic mantle lithosphere to evolve into silicic-hydrous melts that reach olivine saturation during ascent; (p. 130). A cornerstone of this model is a specific, carbonatitic composition of proto-kimberlite melts ascending through the subcratonic lithospheric mantle ;…whereby parental carbonatitic magmas are progressively converted to kimberlite (e.g., Russell et al., 2012, 2013; Bussweiler et al., 2015); (p. 120). The model by Brett et al. (2015) is based on observations of ;the carbonate-sealed cracks; in olivine that ;…strongly support to the hypothesis that all kimberlite magmas originate as carbonatitic-melts (e.g., Russell et al., 2012, 2013; Kamenetsky et al., 2013; Pilbeam et al., 2013; Kamenetsky and Yaxley, 2015; Bussweiler et al., 2015).; (p. 129). While the major thrust of the study by Brett et al. (2015) hinges on the premise that the parental kimberlite melt is carbonatitic, the overwhelming majority in the kimberlite community still prefers a carbonated ultramafic/ultrabasic composition for parental kimberlite melts. Thus the suggestion that kimberlites have an initial carbonatite composition is not less than ;a paradigm shift; in the kimberlite petrology. It appears that a carbonatite origin for kimberlites has been proposed in many studies that significantly pre-date the publications starting from 2012 that they cite, but which unfortunately are overlooked by Brett et al. (2015). It is, therefore, worth acknowledging the research which has previously advanced this unorthodox idea.

  16. Garnet peridotites from Williams kimberlites, north-central Montana, U.S.A

    USGS Publications Warehouse

    Hearn, B.C.; McGee, E.S.

    1983-01-01

    Two Williams kimberlites, 250x350m and 37x390m, in the eastern part of a swarm of 30 middle Eocene alnoitic diatremes in north-central Montana, USA, contain xenoliths of garnet-bearing lherzolites, harzburgites and dunites, in addition to spinel peridotites and upper and lower crustal amphibolites and granulites. Colluvial purple, red, and pink garnets are dominantly Mg- and Cr-rich, indicating their derivation From peridotites or megacrysts, and have CaO and Cr2O3 contents that fall in the lherzolite trend. Temperatures were calculated by the Lindsley-Dixon 20 kb method for lherzolites and by the O'Neill-Wood method for harzburgites and dunites, and pressures were calculated by the MacGregor method, or were assumed to be 50 kb for dunites. Most peridotites equilibrated at 1220-1350?C and 50-60 kb, well above a 44mW/m2 shield geotherm and on or at higher P than the graphite-diamond boundary. Four lherzolites are low T-P (830-990?C, 23-42 kb) and are close to the shield geotherm. All four low T-P lherzolites have coarse textures whereas the high T-P cluster has both coarse and porphyroclastic textures, indicating a range of conditions of deformation and recrystallization in a restricted high T-P range. The tiny size (0.01-0.2 mm) of granulated and euhedral olivines in several xenoliths shows that deformation was occurring just prior to incorporation in kimberlite and that ascent was rapid enough (40-70 km/hr) to retard Further coarsening of fine-grained olivine. For other high T-P peridotites, cessation of deformation and beginning of recrystallization before or during inclusion in kimberlite is suggested by larger (up to 3mm) euhedral olivines in a matrix of fine granulated olivine or by optical continuity of large and nearby small olivines. Two low T-P lherzolites contain distinctive, phlogopite-rimmed, 5-8mm clots of moderate-Cr garnet + Cr-spinel + Cr-diopside + enstatite that are inferred to have formed by reaction of an initial high-Cr garnet brought into the

  17. Tracing the stepwise oxygenation of the Proterozoic ocean.

    PubMed

    Scott, C; Lyons, T W; Bekker, A; Shen, Y; Poulton, S W; Chu, X; Anbar, A D

    2008-03-27

    Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth's atmosphere. Geochemical data suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.

  18. Tectonics and metallogenesis of Proterozoic rocks of the Reading Prong

    USGS Publications Warehouse

    Gundersen, L.C.S.

    2004-01-01

    Detailed geologic mapping, petrography, and major and trace-element analyses of Proterozoic rocks from the Greenwood Lake Quadrangle, New York are compared with chemical analyses and stratigraphic information compiled for the entire Reading Prong. A persistent regional stratigraphy is evident in the mapped area whose geochemistry indicates protoliths consistent with a back-arc marginal basin sequence. The proposed marginal basin may have been floored by an older sialic basement and overlain by a basin-fill sequence consisting of a basal tholeiitic basalt, basic to intermediate volcanic or volcaniclastic rocks and carbonate sediments, a bimodal calc-alkaline volcanic sequence, and finally volcaniclastic, marine, and continental sediments. The presence of high-chlorine biotite and scapolite may indicate circulation of brine fluids or the presence of evaporite layers in the sequence. Abundant, stratabound magnetite deposits with a geologic setting very unlike that of cratonic, Proterozoic banded-iron formations are found throughout the proposed basin sequence. Associated with many of the magnetite deposits is unusual uranium and rare-earth element mineralization. It is proposed here that these deposits formed in an exhalative, volcanogenic, depositional environment within an extensional back-arc marginal basin. Such a tectonic setting is consistent with interpretations of protoliths in other portions of the Reading Prong, the Central Metasedimentary Belt of the Canadian Grenville Province, and recent interpretation of the origin of the Franklin lead-zinc deposits, suggesting a more cohesive evolving arc/back-arc tectonic model for the entire Proterozoic margin of the north-eastern portion of the North American craton. Published by Elsevier Ltd.

  19. Isotopes, ice ages, and terminal Proterozoic earth history.

    PubMed

    Kaufman, A J; Knoll, A H; Narbonne, G M

    1997-06-24

    Detailed correlations of ancient glacial deposits, based on temporal records of carbon and strontium isotopes in seawater, indicate four (and perhaps five) discrete ice ages in the terminal Proterozoic Eon. The close and repeated stratigraphic relationship between C-isotopic excursions and glaciogenic rocks suggests that unusually high rates of organic carbon burial facilitated glaciation by reducing atmospheric greenhouse capacity. The emerging framework of time and environmental change contributes to the improved resolution of stratigraphic and evolutionary pattern in the early fossil record of animals.

  20. Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds.

    PubMed

    Cartigny, Pierre; Chinn, Ingrid; Viljoen, K S; Robinson, Derek

    2004-05-07

    Microdiamonds from the Akluilâk minette dykes (Nunavut, Canada) are similar to diamonds formed in subducted metamorphic rocks. High concentrations of unaggregated nitrogen and positive delta(15)N suggest that the microdiamonds formed within rocks subducted to ultrahigh pressures before being sampled by the minette magma 1.8 billion years ago. This ultrahigh pressure metamorphism in North America, probably related to the Trans-Hudson orogen (about 2 billion years ago), extends the occurrence of ultrahigh pressure metamorphism from 0.6 billion years to before 1.8 billion years ago and suggests that Phanerozoic-type subductions were active by the Early Proterozoic.

  1. Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: Insights on volcanic and resedimentation processes

    NASA Astrophysics Data System (ADS)

    Nowicki, Tom; Porritt, Lucy; Crawford, Barbara; Kjarsgaard, Bruce

    2008-06-01

    The Ekati property, Northwest Territories, Canada, hosts in excess of 150 volcanic kimberlite pipes occupied by a wide variety of rock types including coherent, magmatic material and a range of fragmental, volcaniclastic deposits of both pyroclastic and resedimented origin. Geochemical analysis of a suite of samples from several of these bodies provides valuable insight into the nature of their components and the processes by which they form. Observed variations in the bulk composition of coherent kimberlites correlate with their mode of emplacement and petrographic characteristics. High-volume bodies of coherent kimberlite, occurring within and in several cases dominating volcanic pipes (pipe-fill CK), are depleted in CO 2 and key incompatible elements (e.g. Ti and Nb) but enriched in Ni and SiO 2 relative to samples from narrow kimberlite dyke intrusions. The composition and certain textural features of pipe-fill CK can be interpreted to reflect formation by pyroclastic processes that involved a loss of volatiles and fines, and a concentration of olivine crystals relative to intrusive magmatic kimberlite. If this is the case, then the apparent coherent character of these rocks suggests that they represent coalescence of hot, fluidal pyroclasts (i.e. spatter) generated by fire-fountain style eruptions. Samples of massive pyroclastic kimberlite (PK) are geochemically similar to pipe-fill CK but generally show a greater degree of depletion of incompatible elements, suggestive of more explosive eruption processes and a greater degree of physical fractionation. The geochemical data support petrographic observations that Ekati PK contains very little xenolithic material. Resedimented volcaniclastic kimberlite (RVK) shows variable degrees of enrichment in Al 2O 3 relative to PK. The extent of Al-enrichment correlates with the proportion of dark, fine-grained clastic matrix material in the RVK samples and their composition can be explained as a mixture of a very olivine

  2. Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions

    NASA Astrophysics Data System (ADS)

    Cas, R. A. F.; Hayman, P.; Pittari, A.; Porritt, L.

    2008-06-01

    Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models

  3. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  4. Paleomagnetism of Middle Proterozoic mafic intrusions and Upper Proterozoic (Nankoweap) red beds from the Lower Grand Canyon Supergroup, Arizona

    NASA Astrophysics Data System (ADS)

    Weil, Arlo B.; Geissman, John W.; Heizler, Matt; Van der Voo, Rob

    2003-11-01

    Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, dm=9.3°) and early Late Proterozoic (ca. 850-900 Ma) at 10°S, 163°E (dp=3.5°, dm=7.0°). A new 40Ar/ 39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred ˜200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.

  5. Causes and consequences of mid-Proterozoic anoxia

    NASA Astrophysics Data System (ADS)

    Derry, Louis A.

    2015-10-01

    Evidence for low pO2 and a ferruginous ocean characterize the mid-Proterozoic (1.8-0.8 Ga). Considerations of redox sources and sinks imply that generation of O2 via organic carbon (Corg) burial must be low to maintain a low pO2 atmosphere for geologically long intervals, yet low oxygen should result in increased Corg preservation. Marine export production must therefore be low to limit Corg burial and O2 generation. Formation of ferrous phosphate can buffer deepwater phosphate (Pi) to levels an order of magnitude or more below those in the modern ocean, limiting export production. Low deepwater Pi is consistent with the hiatus in sedimentary phosphorite deposits during the mid-Proterozoic, and low pO2 limits formation of sedimentary iron deposits (BIF). We propose that low pO2 was maintained by P limitation resulting from ferrous phosphate buffering. The near-absence of BIF and phosphorite deposition is direct and indirect consequences of the low pO2, respectively.

  6. Caledonian and Proterozoic terrane accretion in the southwest Baltic Sea

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Krawczyk, C. H.

    1999-12-01

    A marine seismic reflection survey was carried out in 1996 by DEKORP, Potsdam, and BGR, Hannover in the SW Baltic Sea. Several tectonic lineaments were crossed nearly perpendicularly, for example, the Caledonian Deformation Front which is assumed to mark the northern boundary of the terrane Avalonia which accreted to Baltica ca. 400 Ma. Here, a bivergent collision is clearly observed, confirming early ideas from the BABEL survey. The NE-dipping reflections in the uppermost mantle are interpreted as signs of the subducted Tornquist Ocean. A similar tectonic style of compression and indentation is observed in the Proterozoic crust northeast of Bornholm, where in addition a remarkable crustal thickening and a strong increase of reflection power is observed. The three DEKORP lines in this area provide a certain three-dimensional control and allows extension of similar observations from the BABEL line A southward. This Proterozoic terrane accretion seems to be connected to major tectonic lineaments in southern Sweden, either to the Gothian Thrust or the Sveconorwegian Front.

  7. Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Knoll, A. H.

    1996-01-01

    Silicified carbonates of the late Mesoproterozoic to early Neoproterozoic Society Cliffs Formation, Baffin Island, contain distinctive microfabrics and microbenthic assemblages whose paleo-environmental distribution within the formation parallels the distribution of these elements through Proterozoic time. In the Society Cliffs Formation, restricted carbonates--including microdigitate stromatolites, laminated tufa, and tufted microbial mats--consist predominantly of synsedimentary cements; these facies and the cyanobacterial fossils they contain are common in Paleoproterozoic successions but rare in Neoproterozoic and younger rocks. Less restricted tidal-flat facies in the formation are composed of laminated microbialites dominated by micritic carbonate lithified early, yet demonstrably after compaction; these strata contain cyanobacteria that are characteristic in Neoproterozoic rocks. Within the formation, the facies-dependent distribution of microbial populations reflects both the style and timing of carbonate deposition because of the strong substrate specificity of benthic cyanobacteria. A reasonable conclusion is that secular changes in microbenthic assemblages through Proterozoic time reflect a decrease in the overall representation of rapidly lithified carbonate substrates in younger peritidal environments, as well as concomitant changes in the taphonomic window of silicification through which early life is observed.

  8. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    PubMed Central

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500–750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end. PMID:26739600

  9. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans.

    PubMed

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-07

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  10. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    NASA Astrophysics Data System (ADS)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (~2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  11. Continental growth through time by underplating of subducted oceanic crust: Evidence from kimberlites in South Africa and SW Pacific

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Neal, Clive R.

    1988-01-01

    In the dynamic model of plate tectonics, it is evident that crustal components are returned to the mantle by subduction. Chemical signatures of these subducted components were identified in ocean island volcanics and in island arc volcanics. Indeed, an origin involving a subducted protolith was postulated for certain types of xenoliths in kimberlite, including diamonds. Recent studies of eclogite xenoliths in kimberlite from southern Africa and megacrysts form the Malaitan alnoite, Solomon islands, indicate that lithospheric underplating by subducted oceanic crust has occurred in these two contrasting areas. The results of new eclogite studies from the Bellsbank kimberlite, South Africa, and isotopic data from the Malaitan alnoite megacryst suite. This forms the basis for discerning the role of lithospheric underplating in the growth of cratons and in the evolution of mantle-derived magma.

  12. High-resolution Seismic Reflection Imaging of Thin, Diamondiferous Kimberlite Dykes and Sills

    NASA Astrophysics Data System (ADS)

    Hammer, P. T.; Clowes, R. M.; Ramachandran, K.

    2003-12-01

    A unique seismic reflection experiment has successfully imaged a thin, diamondiferous kimberlite dyke intruded into granitic host rock. Although the typical dyke thickness is only 1-3 m, it is mapped from the near-surface to 1500 m depth. Such an application of seismic techniques to the diamond exploration and mining industry is unusual because the primary exploration targets are near-vertical kimberlite pipes that often are detected using magnetic and electromagnetic techniques. Subhorizontal dykes and sills do exist but they are poor potential field targets and have not been discovered by these techniques. However, one sub-horizontal structure, the Snap Lake dyke, was discovered in 1997 in the Archean Slave geological province of the Northwest Territories, Canada by tracking indicator minerals in the glacial till overburden. The Snap Lake dyke is a thin, dipping sheet that extends over at least 25 square km and plunges at approximately 15 degrees. The intrusion is richly diamondiferous and currently in the permitting stage for development of an underground mine. Its discovery heightened industry interest in dykes and sills, both in terms of their potential economic value and the information they yield regarding kimberlite emplacement. Since seismic reflection methods are especially well suited for mapping subhorizontal structures, dykes and sills have the potential to be excellent seismic targets. As a result, the Snap Lake seismic program was carried out to evaluate the seismic reflection method as a tool for exploration and deposit characterization of subhorizontal kimberlite intrusions. Snap Lake provides a superb test site for such a study because the dyke's gross geometry and composition have been determined through a substantial drilling program. Prior to the seismic field experiment, drill-core samples from the kimberlite and host rocks were used to measure P velocities and densities. These data were used to generate finite-difference and reflectivity

  13. The Homestead kimberlite, central Montana, USA: Mineralogy, xenocrysts, and upper-mantle xenoliths

    USGS Publications Warehouse

    Carter, Hearn B.

    2004-01-01

    The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25-30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca-Al-Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites. Garnet xenocrysts are mainly Cr-pyropes, of which 2-12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7-11 wt.% MgO and 0.8-1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17-0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample. Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet-spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic. Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite

  14. Crystallization of diamond from a silicate melt of kimberlite composition in high-pressure and high-temperature experiments

    SciTech Connect

    Arima, Makoto; Nakayama, Kazuhiro ); Akaishi, Minoru; Yamaoka, Shinobu; Kanda, Hisao )

    1993-11-01

    In high-pressure and high-temperature experiments (1800-2200[degrees]C and 7.0-7.7 GPa), diamond crystallized and grew in a volatile-rich silicate melt of kimberlite composition. This diamond has well-developed [111] faces, and its morphologic characteristics resemble those of natural diamond but differ from those of synthetic diamond grown from metallic solvent-catalysts. The kimberlite melt has a strong solvent-catalytic effect on diamond formation, supporting the view that some natural diamonds crystallized from volatile-rich melts in the upper mantle. 19 refs., 3 figs., 1 tab.

  15. Comparative characteristic of diamonds with olivine inclusions from the Ebelyakh placer and kimberlite pipes of the Yakutian Diamondiferous Province

    NASA Astrophysics Data System (ADS)

    Ugap'eva, S. S.; Pavlushin, A. D.; Goryainov, S. V.; Afanasiev, V. P.; Pokhilenko, N. P.

    2016-05-01

    The results of morphological examination and the character of the structural orientation and estimation of residual pressure calculated from spectra of combination dispersion in olivine inclusions within diamonds of the Ebelyakh placer and kimberlite pipes of the Yakutian Diamondiferous Province are presented. The data analysis aimed at revealing indications of similarity and/or differences between diamonds from the pipes and the placer. Differences in the structural orientation and spectra of combination dispersion of the inclusions of olivine in dodecahedroids of placers of the northeastern part of the Siberian Platform support the assumption of their non-kimberlite nature.

  16. Mn-ilmenites from the Norris kimberlite: metasomatism in the mantle of the south appalachians

    SciTech Connect

    Klobcar, C.L.; Taylor, L.A.

    1985-01-01

    Kimberlites provide petrologists a tantalyzingly diverse sample of the mantle. The Norris kimberlite (30 mile North of Knoxville, Tennessee) contains a unique suite of ilmenite nodules and megacrysts that span a wide compositional range. Some nodules contain the highest MnO contents yet reported (up to 71 mol% MnTiO/sub 3/). These ilmenites reflect redox changes in the upper mantle/lower crust and are our only samples of the mantle underlying the South Appalachians. Ilmenite can be divided into three groups: I high MnO (to 31 wt%), low MgO (<1 wt%); II High Mgo (to 15 wt%), low Cr/sub 2/O/sub 3/ (<1 wt%); and III High Cr/sub 2/O/sub 3/ (to 6.5 wt%) high MgO (to 12 wt%). Ilmenite can also be grouped by Fe/sup 2 +//Fe/sup 2 +/ + Fe/sup 3 +/ (Fe') into low Fe' (<0.8) and high Fe' (>0.8) (cf. Tompkins and Haggerty, 1985). Type II shows no marked increase in MgO from core to rim, common in other kimberlites; Fe' is also constant. Type I occurs in a variety of forms and is secondary to Types II and III. These ilmenites reflect a distinct evolution in the redox conditions which occurred during their formation. Type I (high MnO) formed at some later time and involved a highly-reducing form of metasomatism. Alteration of ilmenites also formed perovskite and spinel. This represents a unique type of Mn metasomatism and emphasizes the heterogeneity of the mantle of the N.A. craton.

  17. PGE distribution in deformed lherzolites of the Udachnaya kimberlite pipe (Yakutia)

    NASA Astrophysics Data System (ADS)

    Ilyina, O. V.; Tychkov, N. S.; Agashev, A. M.; Golovin, A. V.; Izokh, A. E.; Kozmenko, O. A.; Pokhilenko, N. P.

    2016-04-01

    The results of the first study of the PGE distribution in deformed lherzolites of the Udachnaya kimberlite pipe (Yakutia) are presented here. The complex character of evolution of the PGE composition in the Deformed lherzolites is assumed to be the result of silicate metasomatism. At the first stage, growth in the amount of clinopyroxene and garnet in the rock is accompanied by a decrease in the concentration of the compatible PGE (Os, Ir). During the final stage, the rock is enriched with incompatible PGE (Pt, Pd) and Re possible due to precipitation of submicron-sized particles of sulfides in the interstitial space of these mantle rocks.

  18. Tychite in mantle xenoliths from kimberlites: The first find and a new genetic type

    NASA Astrophysics Data System (ADS)

    Sharygin, I. S.; Golovin, A. V.; Korsakov, A. V.; Pokhilenko, N. P.

    2016-03-01

    Tychite Na6Mg2(CO3)4(SO3) is a rare natural Na and Mg sulfatocarbonate. It is found only as minor mineral in deposits of saline lakes in the United States, Canada, Uganda, and China. In these continental evaporites tychite has sedimentary genesis. In this study, we report the first occurrence of tychite as a crystal phase in the melt inclusions in olivine from mantle xenoliths of the Udachnaya-East kimberlite pipe. This find provides an evidence for the probability of tychite crystallization from melts; i.e., this rare sulfatocarbonate may have a magmatic origin as well.

  19. On the unusual characteristics of the diamonds from Letšeng-la-Terae kimberlites, Lesotho

    NASA Astrophysics Data System (ADS)

    Bowen, Debbie C.; Ferraris, Ray D.; Palmer, Claire E.; Ward, John D.

    2009-11-01

    The Letšeng-la-Terae kimberlites are situated 3100 m above sea level in the Maloti Mountains of Lesotho, southern Africa. The principal economic bodies are two Late Cretaceous, low grade, 1-3.5 carats/hundred ton (cpht), kimberlite pipes that host high-value diamonds realising US 2000-2500/carat (/ct) in 2008 terms. Locally, the larger kimberlite body is referred to as the Main Pipe (17.2 ha) and the smaller one is called the Satellite Pipe (5.2 ha). These pipes, and their associated eluvial and proximal alluvial deposits, are renowned for yielding large, "D" colour, gem quality diamonds, including + 100 carat (ct) stones. Earlier artisanal effort (1959-1977) and formal mining (1977-1982) produced 335,000 carats (cts), including the 601 ct Lesotho Brown in 1968. In 2003, Letšeng Diamonds Limited re-commenced mining operations and had produced 265,000 cts by the end of July 2008, including 24 + 100 ct diamonds, the largest of which was the 603 ct Lesotho Promise. We report here on the unusual characteristics of the Letšeng diamond population that include: 75% gem quality that is more commonly associated with alluvial diamond deposits, large average stone size of ca. 1 carat/stone (ct/stn) that is also more typical of certain alluvial diamond placers, high-yielding, rounded to flattened irregular, resorbed dodecahedral shapes (Main Pipe 67% and Satellite Pipe 87%) with subordinate dodecahedral macle (Main Pipe 32% and Satellite Pipe 12%) and broken (ca. 1%) forms. In both pipes the octahedral component is virtually absent (< 0.1%), economically favourable colour mix (ca. 33% white colour diamonds in both pipes), abundance of nitrogen-free, "D" colour, Type IIa diamonds that dominate the internationally recognised "special" stone size fraction which covers all diamonds larger than + 10.8 cts (Main Pipe 32% and Satellite Pipe 51%). During 2008, these larger, "special" diamonds commanded prices in excess of US 15,000/ct, contributing ca. 75% of the revenue generated

  20. Crustal thickening during Proterozoic metamorphism and deformation in New Mexico

    NASA Astrophysics Data System (ADS)

    Grambling, Jeffrey A.

    1986-02-01

    Proterozoic rocks in northern and central New Mexico underwent simultaneous metamorphism and deformation, tentatively dated at 1410 Ma. Structural relationships record a minimum of 20% 30% shortening during the latter part of deformation, and chemical zoning in garnet and plagioclase indicates a 20% increase in depth of burial during the same interval. Locally, deformation thickened the upper continental crust by at least 20%. This crustal thickening was distributed over a broad area and caused rocks across 75 000 km2 to recrystallize at peak metamorphic conditions near 525 °C and 4 kbar. The metamorphic terrane cooled isobarically, at rates less than 5 °C/m.y. Such slow cooling may be normal at middle crustal depths. Preservation of the regionally uniform peak metamorphic conditions reflects an unusual tectonic history: heat from the metamorphic event outlasted deformation, and the terrane was not subjected to rapid uplift following its thermal peak.

  1. Buried Proterozoic foredeep under the Western Canada Sedimentary Basin?

    NASA Astrophysics Data System (ADS)

    Boerner, D. E.; Kurtz, R. D.; Craven, J. A.; Rondenay, S.; Qian, W.

    1995-04-01

    Electromagnetic studies of the Precambrian basement beneath the Western Canada Sedimentary Basin in Alberta indicate a narrow linear conductivity anomaly spatially correlated with a strong positive magnetic feature, the Red Deer high. The conductor is located below sedimentary cover near the top of the crystalline basement and has limited depth extent. We propose that this anomalous feature represents graphitic metasedimentary rocks in the euxinic-flysch facies of a Proterozoic foredeep sequence. The strong magnetic anomaly results from an associated iron formation deposited on the outer ramp of the foredeep. This model explains the geophysical anomalies, has analogues on the exposed shield, and is consistent with the timing, deformation history, and known geology of the Precambrian basement.

  2. Proterozoic microfossils revealing the time of algal divergences

    NASA Astrophysics Data System (ADS)

    Moczydlowska-Vidal, Malgorzata

    2010-05-01

    Proterozoic microfossils revealing the time of algal divergences Małgorzata Moczydłowska-Vidal Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden (malgo.vidal@pal.uu.se) Morphological and reproductive features and cell wall ultrastructure and biochemistry of Proterozoic acritarchs are used to determine their affinity to modern algae. The first appearance datum of these microbiota is traced to infer a minimum age of the divergence of the algal classes to which they may belong. The chronological appearance of microfossils that represent phycoma-like and zygotic cysts and vegetative cells and/or aplanospores, respectively interpreted as prasinophyceaen and chlorophyceaen microalgae, is related to the Viridiplantae phylogeny. These divergence times differ from molecular clock estimates, and the palaeontological evidence suggests that they are older. The best examples of unicellular, organic-walled microfossils (acritarchs) from the Mesoproterozoic to Early Ordovician are reviewed to demonstrate features, which are indicative of their affinity to photosynthetic microalgae. The first indication that a microfossil may be algal is a decay- and acid-resistant cell wall, which reflects its biochemistry and ultrastructure, and probably indicates the ability to protect a resting/reproductive cyst. The biopolymers synthesized in the cell walls of algae and in land plants ("plant cells"), such as sporopollenin/algaenan, are diagnostic for photosynthetic taxa and were inherited from early unicellular ancestors. These preservable cell walls are resistant to acetolysis, hydrolysis and acids, and show diagnostic ultrastructures such as the trilaminar sheath structure (TLS). "Plant cell" walls differ in terms of chemical compounds, which give high preservation potential, from fungal and animal cell walls. Fungal and animal cells are fossilized only by syngenetic permineralization, whereas "plant cells" are fossilized as body

  3. Clay Mineralogy and Organic Carbon Burial in Proterozoic Basins

    NASA Astrophysics Data System (ADS)

    Tosca, N. J.; Johnston, D. T.; Mushegian, A.; Rothman, D. H.; Knoll, A. H.

    2008-12-01

    Pedogenic, or soil-derived, clay minerals have long been implicated in the efficiency of organic matter (OM) burial and coincident accumulation of atmospheric oxygen. As diagenesis and metamorphism obscure pedogenic clays in many Precambrian rocks, clay mineralogy and its role in OM burial through much of geologic time remains incompletely understood. In this study we analyzed the mineralogy and total organic carbon (TOC) of a number of organic rich shales deposited in Late Archean to Early Cambrian sedimentary basins. Across all samples, diagenetic transformation of pre-existing smectite minerals has led to the predominance of glauconite and the diagenetic 1M and 1Md illite polytypes, which, collectively, can be thought of as "proto-smectite". The correlations between TOC and illite crystallinity suggest that OM burial and preservation in the Proterozoic proceeded by the physical aggregation of OM and pedogenic clays upon deposition. This association, in turn, led to the interference of OM with the illitization process, resulting in the ubiquitous relationship between high surface area (or, finely crystalline) material and high TOC. This interpretation is consistent with suggestions that the preservation of OM after burial proceeds by physical exclusion, with mineral surfaces effectively isolating OM from enzymatic breakdown. Together, it appears that the deposition of pedogenic clays has remained broadly constant over Proterozoic time and into the Early Cambrian, which is incompatible with the hypothesis that late Neoproterozoic oxygenation was influenced by increases in pedogenic clay production. As no clear temporal relationship exists between clays and OM, Precambrian oxygenation was likely controlled by other mechanisms.

  4. H2O-CO2 solubility in low SiO2-melts and the unique mode of kimberlite degassing and emplacement

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Morizet, Yann; Gaillard, Fabrice

    2016-08-01

    Kimberlites are the most deep-seated magmas in the mantle and ascend to the surface at an impressive speed, travelling hundreds of kilometres in just hours while carrying a substantial load of xenolithic material, including diamonds. The ascent dynamics of these melts are buoyancy-controlled and certainly driven by outgassing of volatile species, presumably H2O and CO2, summing to concentration level of ca 15-30 wt.% in kimberlite melts. We provide H2O-CO2 solubility data obtained on quenched glasses that are synthetic analogues of kimberlite melts (SiO2 content ranging from 18 to 28 wt.%). The experiments were conducted in the pressure range 100 to 350 MPa. While the CO2 solubility can reach 20 wt.%, we show that the H2O solubility in these low silica melts is indistinguishable from that found for basalts. Moreover, whereas in typical basalts most of the water exsolves at shallower pressure than the CO2, the opposite relationship is true for the low-SiO2 composition investigated. These data show that kimberlites can rise to depths of the upper crust without suffering significant degassing and must release large quantities of volatiles (>15 wt.%) within the very last few kilometres of ascent. This unconventional degassing path may explain the characteristic pipe, widening-upward from a ≤2.5 km deep root zone, where kimberlites are mined for diamonds. Furthermore, we show that small changes in melt chemistry and original volatile composition (H2O vs. CO2) provide a single mechanism to explain the variety of morphologies of kimberlite pipes found over the world. The cooling associated to such massive degassing must freeze a large quantity of melt explaining the occurrence of hypabyssal kimberlite. Finally, we provide strong constraints on the primary volatile content of kimberlite, showing that the water content reported for kimberlite magma is mostly reflective of secondary alteration.

  5. Sm-Nd, K-Ar and petrologic study of some kimberlites from eastern United States and their implication for mantle evolution

    USGS Publications Warehouse

    Basu, A.R.; Rubury, E.; Mehnert, H.; Tatsumoto, M.

    1984-01-01

    We provide new data on Sm-Nd systematics, K-Ar dating and the major element chemistry of kimberlites from the eastern United States (mostly from central New York State) and their constituent mineral phases of olivine, clinopyroxene, garnet, phlogopite and perovskite. In addition, we report Nd-isotopes in a few kimberlites from South Africa, Lesotho and from the eastern part of China. The major element compositions of the New York dike rocks and of their constituent minerals including a xenolith of eclogite are comparable with those from the Kimberley area in South Africa. The K-Ar age of emplacement of the New York dikes is further established to be 143 Ma. We have analyzed the Nd-isotopic composition of the following kimberlites and related rocks: Nine kimberlite pipes from South Africa and Lesotho, two from southern India; one from the U.S.S.R., fifteen kimberlite pipes and related dike rocks from eastern and central U.S. and two pipes from the Shandong Province of eastern China. The age of emplacement of these kimberlites ranges from 1300 million years to 90 million years. The initial Nd-isotopic compositions of these kimberlitic rocks expressed as e{open}NdIwith respect to a chondritic bulk-earth growth-curve show a range between 0 and +4, with the majority of the kimberlites being in the range 0 to +2. This range is not matched by any other suite of mantle-derived igneous rocks. This result strengthens our earlier conclusion that kimberlitic liquids are derived from a relatively primeval and unique mantle reservoir with a nearly chondritic Sm/Nd ratio. ?? 1984 Springer-Verlag.

  6. Garnet peridotite xenoliths in a Montana, U.S.A., kimberlite

    USGS Publications Warehouse

    Carter, Hearn B.; Boyd, F.R.

    1975-01-01

    Within a swarm of late middle Eocene subsilicic-alkalic diatremes, one diatreme 270 by 370 m and an associated dike contain common xenoliths of granulite and rare xenoliths of spinel peridotite and garnet peridotite. Six garnet lherzolite xenoliths have been found and these show a range of textures. Four are granular, and two are intensely sheared. Phlogopite is absent from the intensely sheared xenoliths and is thought to be primary in part in the granular xenoliths. Estimated temperatures and depths of equilibration of xenolith pyroxenes range from 920??C, 106 km (32 kbar) to 1315??C, 148 km (47 kbar). The xenoliths show increasing amounts of deformation with greater inferred depths of origin. The temperature-depth points suggest a segment of an Eocene geotherm for Montana which is similar in slope to the steep portion of the pyroxene-determined Lesotho geotherm (Boyd and Nixon, this volume) and is considerably steeper than typical calculated shield and continental geotherms at present. The steep trend could be a result of plate-tectonic shearing and magma ascension within an Eocene low-velocity zone. Preservation of intensely sheared textures requires rapid transport of material from about 150 km depth during active deformation of relatively dry rock. The occurrence of monticellite peridotite in this kimberlite diatreme suggests that magmas which crystallized to monticellite peridotite at relatively shallow depth could be one of the primitive types of kimberlite magma. ?? 1975.

  7. [Research on the X-ray fluorescence spectrometry method to determine trace elements in kimberlite].

    PubMed

    Zhang, Lei; Yan, Chuan-wei; Lu, Yi

    2003-04-01

    It is very important to detect trace elements for kilmberlite. Through improving the working conditions of X-ray fluorescence spectrometer and optimizing the analytical conditions, the determination method of trace elements, such as Sc, Cr, Ni, Y, Nb, La, in kimberlite was worked out. The method has been successfully applied to the determination of trace elements in over 2 thousand samples of kimberlite from Liaoning province. The detection limits of the method were relatively low (the detection limit of Sc droped from 9.54 to 2.83 micrograms.g-1 and the detection limit of La droped from 21.68 micrograms.g-1 to 9.18 micrograms.g-1), i.e. 2.83, 2.15, 2.20, 1.17, 1.05 and 9.18 micrograms.g-1 for Sc, Cr, Ni, Y, Nb and La, respectively. The precision of the method was very high with 2.10%-7.09% of RSD (n = 20). Compared with ICP spectrometry this method is satisfactory. The method has proven to be simple and rapid with low cost and high efficiency.

  8. [Study on the micro-infrared spectra and origin of polycrystalline diamonds from Mengyin kimberlite pipes].

    PubMed

    Yang, Zhi-Jun; Liang, Rong; Zeng, Xiang-Qing; Ge, Tie-Yan; Ai, Qun; Zheng, Yun-Long; Peng, Ming-Sheng

    2012-06-01

    The natural polycrystalline diamonds from the Mengyin kimberlite pipes can be classified as the euhedral faceted polycrystalline diamonds and anhedral rounded polycrystalline diamonds. The results of micro-FTIR spectra characterization of the polycrystalline diamonds show that the concentration of nitrogen is low, varying from 16.69 to 72.81 microgram per gram and is different among different diamond grains or position in polycrystalline diamonds. The euhedral faceted polycrystalline diamonds are Ia AB type and have higher concentration of A-center defects than B-center defects. Most of the anhedral rounded polycrystalline diamonds are Ia AB type and have higher content of B-center defects. A minority of the anhedral rounded polycrystalline diamonds have C-center, A-center and B-center defects simultaneously. The polycrystalline diamonds probably originated from the relatively deeper mantle and were not formed in diamond nucleation stage, but in the diamond growth period or some special conditions after the diamond grains were formed already. Furthermore, the euhedral faceted polycrystalline diamonds were formed slightly later and the anhedral rounded polycrystalline diamonds were formed obviously earlier than the diamond single crystals from the Mengyin kimberlite pipes.

  9. Peridotite xenoliths from the Jagersfontein kimberlite pipe: I. Primary and primary-metasomatic mineralogy

    SciTech Connect

    Harte, B. ); Gurney, J.J. ); Winterburn, P.A. Isotope Geochemistry Facility, Pretoria )

    1990-02-01

    The geochemistry and textures of peridotite xenoliths from the Jagersfontein kimberlite pipe are reported. The xenoliths have a primary mineralogy of olivine {plus minus} orthopyroxene {plus minus} clinopyroxene {plus minus} garnet {plus minus} spinel. They are subdivided into coarse and deformed xenoliths corresponding to high- and low-temperature estimates, respectively. Coarse-grained xenoliths are further subdivided into low- and medium-temperature groups. Mineral chemistry of these two groups is distinct, e.g., clinopyroxene 100 Al/(Al + Cr) 24 to 60 and 60 to 70 in the medium- and low-temperature groups, respectively. Low-temperature xenoliths have undergone exsolution of pyroxene, spinel, and garnet in their pyroxenes. Primary modal metasomatism has occurred in the coarse xenoliths with the replacement of orthopyroxene by edenitic amphibole in the low-temperature xenoliths and of clinopyroxene by low-Ti phlogopite in the medium-temperature xenoliths. The amphibole stability limit confines it to shallower depths. Metasomatized xenoliths have been enriched in K, Na, Al, and Ca, and trace incompatible elements. Metasomatism is considered to have occurred at round 1 Ga by the infiltration of, and reaction with, ascending H{sub 2}O-rich fluids with Sr and Nd isotopic characteristics similar to group II kimberlites. The widespread chemical equilibrium seen in metasomatized xenoliths suggests that the particularly distinctive features of the low-temperature Jagersfontein xenoliths, namely exsolution and very low equilibration temperatures, may also be a result of the primary metasomatism.

  10. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D.

    2014-11-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic and Artic were warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis, and stable isotopes (δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual to annual scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean temperature estimate of 11.4 °C (1σ = 1.8 °C) based on δ18O. Dual-isotope spectral analysis suggests that multidecadal climate cycles similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30 year timescales.

  11. Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil

    NASA Astrophysics Data System (ADS)

    Read, George; Grutter, Herman; Winter, Stewart; Luckman, Nigel; Gaunt, Frank; Thomsen, Fernando

    2004-09-01

    The Quiricó Basin covers an area of 10,000 km 2 and is situated to the west of the conventionally defined southwestern margin of the Archean São Francisco craton in Minas Gerais State, Brazil. The sedimentary infill of the Quiricó Basin consists of lightly metamorphosed shallow marine clastic bedrock sediments of the Bambuı´ Group (˜650±15 Ma), unconformably overlain by Early Cretaceous terrigenous lacustrine (Quiricó Formation), alluvial fan (Abaeté Formation) and fluvial/aeolian (Três Barras Formation) deposits of the Areado Group. Rare kimberlites and ubiquitous kamafugites of the Alto Paranaı´ba Igneous Province (APIP) erupted through the recently deposited sediments of the Quiricó Basin in the time period 95-61 Ma. The 120-m-thick Mata da Corda Group overlies the Late Cretaceous Areado Group over an area of 8000 km 2 and is composed largely of extrusive kamafugite and related volcanosedimentary material. Unusually large diamonds with proximal surface features and population characteristics are well known to occur in rivers and streams that drain the stratigraphic succession in the Quiricó Basin, prompting the search for their presumably local primary source(s) and a possibly associated Archean basement or cratonic root. Conceptual exploration models for this setting may in part be based on the diamondiferous 120 Ma Canastra and 95 Ma Três Ranchos kimberlites, but require reconciliation with the observed abundance of 85-61 Ma old diamond-free kamafugites. Field relations and carefully controlled stratigraphic samples show that a distinctive mantle-derived indicator mineral suite occurs in the Maxixe Member, a volcaniclastic breccia unit that occurs at the base of the Mata da Corda Group. A detailed thermobarometric comparison of mantle-derived xenocrystic clinopyroxene compositions from this member with clinopyroxene populations derived from kimberlites and kamafugites situated in the Quiricó Basin shows a distinct and abrupt change in

  12. Geothermobarometry for ultramafic assemblages from the Emeishan Large Igneous Province, Southwest China and the Nikos and Zulu Kimberlites, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2009-05-01

    To understand and contrast the origins of ultramafic assemblages from basaltic and kimberlitic rocks and their associated deposits, such as V-Ti magnetite and Ni-Cu-(PGE) sulfide deposits and diamond, applicable thermobarometers were evaluated and applied to the ultramafic assemblages from the Emeishan Large Igneous Province (ELIP), Southwest China and from the Nikos and Zulu Kimberlites of Nunavut, Canada. The ELIP is located in the Yangtze Block, Southwest China and composed of Permian Emeishan Flood basalt (EFB) and associated layered mafic-ultramafic intrusions. Some of these intrusions host V-Ti magnetite deposits; while others contain Ni-Cu-(PGE) sulfide deposits. It is not clear why some intrusions host magnetite deposits and others contain sulfide deposits. The P-T conditions for the ultramafic assemblages from the mafic-ultramafic intrusions in the ELIP were calculated in order to understand the origins and the associated mineral deposits. The ultramafic assemblages are peridotite, olivine pyroxenite, pyroxenite in the layered intrusions and the common minerals include spinel, olivine, clinopyroxene, orthopyroxene, and minor magnetite and ilmenite. Using a two pyroxene thermometer and a Ca-Mg exchange barometer between olivine and clinopyroxene, a spinel-olivine-clinopyroxene-orthopyroxene assemblage from the Xinjie intrusion yields a T-P of 905°C and 17 kbar; and a similar assemblage from the Jinbaoshan intrusion yields a T-P of 1124°C and 31 kbar. The Nikos kimberlite, near Elwin Bay on Somerset Island, is located at the northeast end of the northeast-southwest kimberlite zone; and the Zulu kimberlite is located on the neighboring Brodeur Peninsula of Baffin Island, Nunavut. The ultramafic assemblages from the Canadian Kimberlites include garnet lherzolite, garnet-spinel lherzolite, spinel lherzolite, dunite, garnet websterite, spinel websterite and garnet clinopyroxenite. The calculated P-T conditions are in the range of 760 to 1180°C and 25 to 60

  13. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals

    NASA Astrophysics Data System (ADS)

    Planavsky, Noah J.; Reinhard, Christopher T.; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H.; Johnson, Thomas; Fischer, Woodward W.; Lyons, Timothy W.

    2014-10-01

    The oxygenation of Earth’s surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth’s surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.

  14. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.

    PubMed

    Planavsky, Noah J; Reinhard, Christopher T; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H; Johnson, Thomas; Fischer, Woodward W; Lyons, Timothy W

    2014-10-31

    The oxygenation of Earth's surface fundamentally altered global biogeochemical cycles and ultimately paved the way for the rise of metazoans at the end of the Proterozoic. However, current estimates for atmospheric oxygen (O2) levels during the billion years leading up to this time vary widely. On the basis of chromium (Cr) isotope data from a suite of Proterozoic sediments from China, Australia, and North America, interpreted in the context of data from similar depositional environments from Phanerozoic time, we find evidence for inhibited oxidation of Cr at Earth's surface in the mid-Proterozoic (1.8 to 0.8 billion years ago). These data suggest that atmospheric O2 levels were at most 0.1% of present atmospheric levels. Direct evidence for such low O2 concentrations in the Proterozoic helps explain the late emergence and diversification of metazoans.

  15. Some key issues in reconstructions of Proterozoic supercontinents

    NASA Astrophysics Data System (ADS)

    Zhao, Guochun; Sun, Min; Wilde, Simon A.; Li, Sanzhong; Zhang, Jian

    2006-10-01

    Supercontinents containing most of the earth's continental crust are considered to have existed at least twice in Proterozoic time. The younger one, Rodinia, formed at ˜1.0 Ga by accretion and collision of fragments produced by breakup of the older supercontinent, Columbia, which was assembled by global-scale 2.0-1.8 Ga collisional events. Little consensus has been reached regarding configurations of these supercontinents because of some unresolved issues concerning continental fits. One of these issues concerns how Siberia was related to Laurentia. Previous reconstructions that consider the Aldan Shield of Siberia as a continuation of the Wyoming Province of Laurentia have been largely abandoned in favor of models connecting Siberia to northern Laurentia, but it remains controversial which part of Siberia is contiguous with northern Laurentia. Also at issue is the western Laurentia-Australia-East Antarctica connection. Most Rodinia reconstructions place Australia, together with East Antarctica, adjacent to either western Canada (the SWEAT hypothesis) or the western United States (the AUSWUS hypothesis). However, recent studies combining paleomagnetic and isotopic age data have called into question the validity of SWEAT, AUSWUS and other variants. Another issue is the position of North China in Rodinia/Columbia. Limited paleomagnetic data seem to be consistent with the Paleo-Mesoproterozoic North China-Siberia/Baltica connection, whereas geological data support the recently proposed Archean to Mesoproterozoic North China-India connection. Controversial issues have also been raised about the timing and history of the amalgamation and fragmentation of South America and West Africa. Both geological and paleomagnetic data suggest that South America (São Francisco and Amazonia Cratons) and West Africa (Congo and West African Cratons) coalesced into a single landmass along the 2.1-2.0 Ga Transamazonian/Eburnean orogens. However, whether they were divorced and then re

  16. Microfossils' diversity from the Proterozoic Taoudeni Basin, Mauritania

    NASA Astrophysics Data System (ADS)

    Beghin, Jérémie; Houzay, Jean-Pierre; Blanpied, Christian; Javaux, Emmanuelle

    2014-05-01

    Prokaryotes and microscopic eukaryotes are known to have appeared well before the Cambrian's adaptative radiation which flourished perceptibly as a generalized macroscopic world. What do we know about the trigger events which stimulated eukaryotic diversification during the Proterozoic? Biological innovations or environmental changes, and indeed probably both (Knoll et al., 2006), played a fundamental role controlling this important step of life's evolution on Earth. Javaux (2011), proposed a diversification pattern of early eukaryotes divided into three steps and focusing on different taxonomic levels, from stem group to within crown group, of the domain Eukarya. Here, we present a new, exquisitely preserved and morphologically diverse assemblage of organic-walled microfossils from the 1.1 Ga El Mreiti Group of the Taoudeni Basin (Mauritania). The assemblage includes beautifully preserved microbial mats comprising pyritized filaments, prokaryotic filamentous sheaths and filaments, microfossils of uncertain biological affinity including smooth isolated and colonial sphaeromorphs (eukaryotes and/or prokaryotes), diverse protists (ornamented and process-bearing acritarchs), as well multicellular microfossils interpreted in the literature as possible xanthophyte algae. Several taxa are reported for the first time in Africa, but are known worldwide. This study improves microfossil diversity previously reported by Amard (1986) and shows purported xanthophyte algae contrary to a previous biomarker study suggesting the absence of eukaryotic algae, other than acritarchs, in the basin (Blumenberg et al., 2012). This new microfossil assemblage and others provide, all together, evidences of early and worldwide diversification of eukaryotes. Thereby, those first qualitative results also provide a basis for further and larger quantitative studies on the Taoudeni Basin. To better understand the palaeobiology (stem or crown group, aerobic or anaerobic metabolism) and

  17. Climate, paleoecology and abrupt change during the Late Proterozoic: A consideration of causes and effects

    NASA Astrophysics Data System (ADS)

    McMenamin, Mark A. S.

    This chapter examines the influence of the biosphere on the initiation, and termination of, the glaciations of the late Proterozoic. Recent considerations suggest that the biosphere controlled the timing of the onset of glaciation and also controlled the timing of the end of glaciation. Massive carbonate accumulation and giant stromatolites of the Late Proterozoic, combined with major blooms of phytoplankton, led to significant drops in the carbon dioxide content of the atmosphere, and forced climate from greenhouse to icehouse conditions. Cryoconites and hyperscums, each with a distinctively adapted cryophilic microbiota, developed during the Proterozoic ice ages and may have been a factor in melting the ice. The Proterozoic Tindir Group, Alaska provides evidence for such a cryophilic microbiota. Only by invoking the activity of such organisms can we explain the rapidity of deglaciation. A propensity to accumulate massive carbonates was present before the glaciation as well as after the deposition of the cap carbonates. Substrate disturbance by burrowing metazoa after the ice ages disrupted the microbial mat component of Proterozoic carbonate sequestration. Stromatolites after the glaciation tend to have porous, clotted and thrombolitic textures instead of evenly laminated textures and would therefore be less effective at retaining carbon dioxide (as carbonate and organic matter) and keeping it out of marine circulation. Newly emergent, burrowing metazoa of the Late Proterozoic eventually halted the development of ice-age inducing conditions, and may have prevented even worse glaciations by releasing hydrocarbons sequestered in seafloor sediment.

  18. Liberia’s Post-War Recovery: Key Issues and Developments

    DTIC Science & Technology

    2006-01-30

    International (DFI) Ltd. announced that it had discovered strong indications of a kimberlite , or pipe of igneous, volcanic, often diamond-bearing material...in Grand Cape County. DFI is also involved in gold exploration in Liberia. See DFI, “Diamond Fields Announces the Discovery of Kimberlite in Liberia

  19. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dongre, Ashish N.; Viljoen, K. S.; Rao, N. V. Chalapathi; Gucsik, A.

    2016-04-01

    Although Ti-rich garnets are commonly encountered in the groundmass of many alkaline igneous rocks, they are comparatively rare in kimberlites. Here we report on the occurrence of Ti-rich garnets in the groundmass of the P-15 and KL-3 kimberlites from the diamondiferous Wajrakarur field in the Eastern Dharwar craton of southern India. These garnets contain considerable Ti (11.7-23.9 wt.% TiO2), Ca (31.3-35.8 wt.% CaO), Fe (6.8-15.5 wt.% FeOT) and Cr (0.04-9.7 wt.% Cr2O3), but have low Al (0.2-5.7 wt.% Al2O3). In the case of the P-15 kimberlite they display a range in compositions from andradite to schorlomite, with a low proportion of grossular (andradite(17.7-49.9)schorlomite(34.6-49.5)-grossular(3.7-22.8)-pyrope(1.9-10.4)). A few grains also contain significant chromium and represent a solid solution between schorlomite and uvarovite. The Ti-rich garnets in the KL-3 kimberlite, in contrast, are mostly schorlomitic (54.9-90.9 mol %) in composition. The Ti-rich garnets in the groundmass of these two kimberlites are intimately associated with chromian spinels, perhaps suggesting that the garnet formed through the replacement of spinel. From the textural evidence, it appears unlikely that the garnets could have originated through secondary alteration, but rather seem to have formed through a process in which early magmatic spinels have reacted with late circulating, residual fluids in the final stages of crystallization of the kimberlite magma. Raman spectroscopy provides evidence for low crystallinity in the spinels which is likely to be a result of their partial transformation into andradite during their reaction with a late-stage magmatic (kimberlitic) fluid. The close chemical association of these Ti-rich garnets in TiO2-FeO-CaO space with those reported from ultramafic lamprophyres (UML) is also consistent with results predicted by experimental studies, and possibly implies a genetic link between kimberlite and UML magmas. The occurrence of Ti-rich garnets of

  20. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.

    PubMed

    Johnston, D T; Wolfe-Simon, F; Pearson, A; Knoll, A H

    2009-10-06

    Molecular oxygen (O(2)) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580-550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O(2) production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O(2) budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe(2+) rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms.

  1. Proterozoic to mesozoic mobile-belt geology, Pensacola Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Schmidt, D. L.

    The Pensacola Mountains consist of four unconformable sequences of: (1) graywacke (oldest), (2) platform, (3) molasses, and (4) continental (youngest) deposits. The first sequence of Middle Proterozoic graywacke deposits (Patuxent Formation) consists of turbidite quartzbearing sandstone and slate and volcanic rocks. The second sequence consist of extensive platform deposits of Lower Cambrian archaeocyathidbearing limestone and Middle Cambrian trilobitebearing limestone (Nelson Limestone) that are overlain by shale (Wiens Formation), and silicic volcanic rocks (Gambacorta Formation) including rhyolitic ignimbrite of caldera origin. The third sequence, The pre-Devonian Neptune Group consists of of basal orogenic conglomerate and more than 1,500 m of quartz-sandstone molasse that resulted from the erosion of the early Paleozoic mountains of the Ross orogeny. The fourth sequence of continental deposits of the Beacon Supergroup consists of Devonian quartz sanstone (Dover Sandstone), Permian glacial tillite (Gale Mudstone), and Permian siltstone and shale (Pecora Formation) containing glossopterid-bearing coal beds. During Early and Middle Jurassic time, and Transantarctic continental rift extensionally split the East Antarctic craton from West Antarctica as Gondwanaland began to break up. The continental rifting was shortly followed, during Late Jurassic time, by more vigorous extension resulting from major transform faulting.

  2. Proterozoic diabase sills of northern Ontario: Magnetic properties and history

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Borradaile, G. J.; Baker, D.; Lucas, K.

    2004-02-01

    Magnetic fabrics show that a series of massive diabase sills ("Logan sills") possess flow fabrics away from the midcontinental Proterozoic rift system, near its triple junction on the north shore of Lake Superior. Their intense remanences are commonly antiparallel to the geomagnetic field, requiring some knowledge of natural remanent magnetization in order to interpret of ground magnetic surveys. Thermal demagnetization, low-temperature demagnetization, and the combined techniques yield differently oriented characteristic remanence vectors in some of these sills. Although the commonly reported "Keweenawan" reversed paleofield direction is verified by most A components, the orientation of vectors within sites and through the thickness of sills is large and may be attributed to reversals, excursions, and secular variation. B components are mostly down, but their orientation distribution is poorly concentrated. Low-temperature demagnetization, prior to thermal demagnetization, tends to improve the consistency of vectors defined in subsequent thermal demagnetization. Moreover, in some cases, three to five cycles of low-temperature demagnetization alone produces the same result as the more time-consuming thermal demagnetization. Some within-site scatter of the A components is large, and some anomalous specimen directions and alternate polarities may be associated with platinum group mineralization. Whereas the grand mean direction for all sites lies on the available apparent polar wander path between 1100 and 1300 Ma, the mean paleopole locations differ at the 95% level for different demagnetization treatments of specimens from the same sites.

  3. Spatial, temporal, mineralogical, and compositional variations in Mesozoic kimberlitic magmatism in New York State

    NASA Astrophysics Data System (ADS)

    Bailey, David G.; Lupulescu, Marian V.

    2015-01-01

    Mesozoic kimberlitic magmatism was geographically widespread across central New York State, and nearly 90 distinct intrusions have been discovered since the first "serpentinite body" was described over 175 years ago. Most of the intrusions are narrow (< 30 cm wide), near vertical, north-south oriented dikes, although three larger, irregular diatremes are also known. Previous studies assumed that all of the intrusions were genetically and temporally related, and often examined only a small sub-set of the intrusions. By combining modern samples with historic samples in the collections of the New York State Museum and Hamilton College, we were able to obtain detailed mineralogical and geochemical data on samples from 27 distinct intrusions. The intrusions can be divided into four distinct groups on the basis of both mineralogy and geochemistry, and previously published radiometric age dates suggest that these four groups may also have distinct emplacement ages. Group A intrusions are exposed on the western margin of Cayuga Lake near Ithaca, and are characterized by olivine and phlogopite macrocrysts in a serpentine and phlogopite-rich matrix. These intrusions are relatively Ti-rich and contain abundant perovskite grains in the groundmass that yielded U-Pb crystallization ages of ~ 146 Ma (Heaman and Kjarsgaard, 2000). Group B intrusions are exposed over a relatively large area surrounding Ithaca, and are characterized by having a diverse macrocryst assemblage that includes pyrope, diopside, and spinel in addition to olivine and phlogopite. These intrusions are the most incompatible and REE enriched, and are chemically similar to the Kirkland Lake kimberlites in eastern Ontario. Intrusion ages for this group cluster between 125 and 110 Ma. Group C intrusions are all found within the city of Syracuse, and are similar to the Group B intrusions in both mineralogy and chemistry. They appear to be somewhat older, with intrusion ages of 135-125 Ma. Finally, Group D

  4. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian

    USGS Publications Warehouse

    Leung, I.; Guo, W.; Friedman, I.; Gleason, J.

    1990-01-01

    Considerable debate surrounds the existence of silicon carbide in nature, mostly owing to the problem of possible contamination by man-made SiC. Recently, Gurney1 reviewed reports of rare SiC inclusions in diamonds, and noted that SiC can only be regarded as a probable rather than proven cogenetic mineral. Here we report our observation of clusters of SiC coexisting with diamond in a kimberlite from Fuxian, China. Macrocrysts of ??-SiC are overgrown epitaxially by ??-SiC, and both polymorphs are structurally well ordered. We have also measured the carbon isotope compositions of SiC and diamonds from Fuxian. We find that SiC is more enriched in 12C than diamond by 20% relative to the PDB standard. Isotope fractionation might have occurred through an isotope exchange reaction in a common carbon reservoir. Silicon carbide may thus ultimately provide information on carbon cycling in the Earth's mantle.

  5. Helium isotopic variability within single diamonds from the Orapa kimberlite pipe

    NASA Technical Reports Server (NTRS)

    Kurz, Mark D.; Jenkins, William J.; Lott, Dempsey E., III; Gurney, John J.

    1987-01-01

    The possible relationships between diamond mineralogy and helium isotopes were investigated by measuring the distribution and isotopic composition of He in a suite of well-characterized one-carat diamonds from the Orapa kimberlite, Botswana. The results of crushing in vacuo experiments indicated that most of He was contained in the matrix, rather than in the inclusions of the diamonds. Step-heating of individual diamonds at 2000 C released He of He-3/He-4 ratios that differed by up to a factor of 100 among the two heating steps, revealing large isotopic variations within individual diamonds. It is suggested that this internal isotopic variability is the result of stepwise graphitization: the first heating step initiates graphitization which nucleates around defects in a diamond, and the second step graphitizes the relatively defect-free regions of the diamond. This explanation predicts that the highest He-3/He-4 ratios should be found in most perfect crystals.

  6. Airborne IP: examples from the Mount Milligan deposit, Canada, and the Amakinskaya kimberlite pipe, Russia

    NASA Astrophysics Data System (ADS)

    Viezzoli, Andrea; Kaminski, Vlad

    2016-07-01

    There have been multiple occurrences in the literature in the past several years of what has been referred to as the induced polarisation (IP) effect in airborne time domain electromagnetic (TDEM) data. This phenomenon is known to be responsible for incorrect inversion modelling of electrical resistivity, lower interpreted depth of investigation (DOI) and lost information about chargeability of the subsurface and other valuable parameters. Historically, there have been many suggestions to account for the IP effect using the Cole-Cole model. It has been previously demonstrated that the Cole-Cole model can be effective in modelling synthetic TDEM transients. In the current paper we show the possibility of extracting IP information from airborne TDEM data using this same concept, including inverse modelling of chargeability from TDEM data collected by VTEM, with field examples from Canada (Mt Milligan deposit) and Russia (Amakinskaya kimberlite pipe).

  7. Statistical Characteristics of Xenoliths in the Antioch Kimberlite Pipe, Marshall County, Northeastern Kansas

    USGS Publications Warehouse

    Kotov, S.; Berendsen, P.

    2002-01-01

    Geometrical characteristics of xenoliths in the Antioch kimberlite pipe have been considered in statistical terms. A method of conversion of 2D intersections to 3D dimensions was used. It has been shown that the Rosin-Rammler distribution of mass leads to the Weibull distribution of sizes, whereas a fractal distribution of sizes can be expressed as the Pareto distribution. Lognormal, Weibull, and Pareto distributions have been tested as model distributions. The Pareto distribution could be the most appropriate model for the distribution of xenoliths. This conclusion is in agreement with the general concept that the xenoliths formed as a result of an underground explosion without additional breakage occurring during magma transport. The final distribution maybe shifted from the initial model as a result of processes of redistribution and sorting of xenoliths in liquid-crystalline flows. ?? 2002 International Association for Mathematical Geology.

  8. Inclusions of Cr- and Cr-Nb-Rutile in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia

    NASA Astrophysics Data System (ADS)

    Rezvukhin, D. I.; Malkovets, V. G.; Sharygin, I. S.; Kuzmin, D. V.; Litasov, K. D.; Gibsher, A. A.; Pokhilenko, N. P.; Sobolev, N. V.

    2016-02-01

    The results of study of rutile inclusions in pyrope from the Internatsionalnaya kimberlite pipe are presented. Rutile is characterized by unusually high contents of impurities (up to 25 wt %). The presence of Cr2O3 (up to 9.75 wt %) and Nb2O5 (up to 15.57 wt %) are most typical. Rutile inclusions often occur in assemblage with Ti-rich oxides: picroilmenite and crichtonite group minerals. The Cr-pyropes with inclusions of rutile, picroilmenite, and crichtonite group minerals were formed in the lithospheric mantle beneath the Mirnyi field during their joint crystallization from melts enriched in Fe, Ti, and other incompatible elements as a result of metasomatic enrichment of the depleted lithospheric mantle.

  9. Sr-Nd-Pb isotope systematics of mantle xenoliths from Somerset Island kimberlites: Evidence for lithosphere stratification beneath Arctic Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, S. S.; Simonetti, A.; Francis, D.

    2001-11-01

    Sr, Nd, and Pb isotopic compositions were determined for a suite of Archean garnet peridotite and garnet pyroxenite xenoliths and their host Nikos kimberlite (100 Ma) from Somerset Island to constrain the isotopic character of the mantle root beneath the northern Canadian craton. The Nikos peridotites are enriched in highly incompatible trace elements (La/Sm N = 4-6), and show 143Nd/ 144Nd (t) (0.51249-0.51276) and a large range in 87Sr/ 86Sr (t) (0.7047-0.7085) and Pb ( 206Pb/ 204Pb (t) = 17.18 to 19.03) isotope ratios that are distinct from those estimated for "depleted mantle" compositions at the time of kimberlite emplacement. The Nd isotopic compositions of the peridotites overlap those of the Nikos kimberlite, suggesting that the xenoliths were contaminated with kimberlite or a kimberlite-related accessory phase (i.e., apatite). The highly variable Sr and Pb isotopic compositions of the peridotites, however, indicate that kimberlite contribution was restricted to very small amounts (˜1 wt % or less). The high-temperature peridotites (>1100°C) that sample the deep Somerset lithosphere trend toward more radiogenic 87Sr/ 86Sr (t) (0.7085) and unradiogenic 206Pb/ 204Pb (t) (17.18) isotopic ratios than those of the low-temperature peridotites (<1100°C). This is in agreement with Sr isotopic compositions of clinopyroxene from the low-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7038-0.7046) that are significantly less radiogenic than those of clinopyroxene from the high-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7052-0.7091). The depth correlation of Sr isotopes for clinopyroxene and Sr and Pb isotopic compositions for the Nikos whole-rocks indicate that the deep Somerset lithosphere (>160 km) is isotopically distinct from the shallow lithospheric mantle. The isotopic stratification with depth suggests that the lower lithosphere is probably younger and may have been added to the existing Archean shallow mantle in a Phanerozoic magmatic event. The radiogenic Sr

  10. Continental accretion: contrasting Mesozoic and Early Proterozoic tectonic regimes in North America

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.; Chomiak, Beverly

    1996-11-01

    Juvenile continental crust was accreted to southern and western North America during the Early Proterozoic and Mesozoic, respectively. Graywacke, granite, granodiorite, and basalt comprise most of the accreted Early Proterozoic crust, whereas graywacke, andesite, basalt, and granodiorite comprise most of the Mesozoic crust. In addition, carbonates, ultramafics, pelagic sediments, and tonalite/diorite are minor but important components in the juvenile Mesozoic crust, whereas rhyolites are important in the Early Proterozoic crust. Mesozoic supracrustal rocks vary significantly in chemical composition, while Early Proterozoic supracrustals have a limited compositional range and exhibit a linear relation between many element concentrations suggesting a genetic linkage between accreted terranes. Although SiO 2, Al 2O 3, FeO, and incompatible elements are more enriched in Early Proterozoic than in Mesozoic supracrustal rocks, negative Eu anomalies are typical of rocks of both ages. Early Proterozoic granitoids are enriched in LILE (large ion lithophile elements) compared to Mesozoic granitoids, and granitoids of both ages of are enriched in LILE and have larger Eu anomalies than associated supracrustal rocks. Accreted Mesozoic upper crust is similar to andesite in chemical composition, and the bulk crust is similar to basaltic andesite. In contrast, accreted Early Proterozoic upper crust and bulk crust are similar to granodiorite and andesite, respectively. Incompatible elements are depleted in the Mesozoic compared to the Early Proterozoic crust, but both crustal types have negative NbTa anomalies. Depending on the composition assumed for the lower crust, both ages of crust have either very small or negligible Eu anomalies. Lifespans of the Early Proterozoic terranes (time interval between oldest rocks in a terrane and its collision with North America) are 20-80 My, whereas lifespans of Mesozoic terranes are 50-500 My, with most falling between 50 and 200 My. Within

  11. Reconstructing Earth's Surface Oxidation Across The Archean- Proterozoic Transition

    NASA Astrophysics Data System (ADS)

    Kaufman, A. J.; Guo, Q.; Strauss, H.; Schröder, S.; Gutzmer, J.; Wing, B. A.; Baker, M.; Bekker, A.; Jin, Q.; Kim, S.; Farquhar, J.

    2010-12-01

    The Archean-Proterozoic transition is characterized by the widespread deposition of organic-rich shale, sedimentary iron formation, glacial diamictite, and marine carbonates recording profound carbon isotope anomalies, but notably lacks bedded evaporites. All deposits reflect environmental changes in oceanic and atmospheric redox states, in part associated with Earth’s earliest ice ages. Time-series data for multiple sulfur isotopes from carbonate associated sulfate as well as sulfides in the glaciogenic Duitschland Formation of the Transvaal Supergroup, South Africa, capture the concomitant buildup of sulfate in the ocean and the loss of mass independent sulfur isotope fractionation. This is arguably associated with the atmospheric rise of oxygen (as well as the protective ozone layer) coincident with profound changes in ocean chemistry and biology. The loss of the MIF signal within the Duitschland succession is in phase with the earliest recorded positive carbon isotope anomaly, convincingly linking these environmental perturbations to the Great Oxidation Event (ca. 2.3 Ga). The emergence of cyanobacteria and oxygenic photosynthesis may be associated with a geochemical “whiff of oxygen” recorded in 2.5 Ga sediments. If true, the delay in the GOE can then be understood in terms of a finite sink for molecular oxygen - ferrous iron, which was abundant in deep Neoarchean seawater and sequestered in a worldwide episode of iron formation deposition ending shortly before accumulation of the Duitschland Formation. Insofar as early Paleoproterozoic glaciation is associated with oxygenation of a methane-rich atmosphere, we conclude that Earth’s earliest ice age(s) and the onset of a modern and far more energetic carbon cycle are directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  12. A global survey of Precambrian evaporites: Implications for Proterozoic paleoenvironments

    NASA Astrophysics Data System (ADS)

    Evans, D. A.

    2006-05-01

    Evaporites are sedimentary rocks comprising minerals that crystallized from supersaturation of surface waters due to solar-driven desiccation. They, or their metamorphic relics and pseudomorphs, are abundant in the geologic record and document changes in paleoclimate, sealevel, and marine chemistry. Phanerozoic evaporites have been well described and summarized, in no small part due to their role as hydrocarbon seals, as well as sources of salinity in hydrothermal fluids that concentrate metal deposits. Precambrian evaporites are abundant in discrete number of instances but are generally less voluminous; their long-term preservation is limited by subsurface mineral dissolution as well as tectonic crustal recycling. Unlike Precambrian glacial deposits, which have been globally catalogued several times during the past fifty years, Precambrian evaporites have been compiled only partially in a few rare studies. A new, global survey of Precambrian evaporites (mainly pseudomorphs after gypsum, anhydrite, and halite) documents over 100 examples, including ten of Archean age. About 20 deposits have total preserved or estimated salt volumes exceeding 1000 cubic km, and these are restricted to the Proterozoic Era. One of the most impressive episodes of evaporite deposition in the entire geologic record occurred at about 800 Ma, coincident with the onset of Rodinia supercontinental fragmentation. These evaporites are preserved primarily as calcium-sulfates, totalling about 350,000 cubic km in volume. The next major global peak in evaporite deposition occurred in late Ediacaran to Early Cambrian time, totalling more than 1.5 million cubic km of mixed sulfates and halites. These peaks rival the great salt records of the Late Devonian, Late Permian, and Late Jurassic, and the molar volumes of deposited salt are comparable to the current inventory of oceanic salinity. Questions for future consideration include: what does the removal of this much salinity from the oceans, in these

  13. Deformation styles in the Proterozoic Pinal schist, Pinal Mountains, Arizona

    SciTech Connect

    Keep, M.; Hansen, V. . Geology Dept.)

    1993-02-01

    A > 3 km thick, ductile, east-trending shear zone in the Pinal Peak map area, near Globe, Arizona, reveals contact metamorphism of the Pinal schist, through intrusion of the Proterozoic Madera granodiorite, and synchronous deformation of both units. The exposed shear zone comprises approximately 40 anastomosing shear zones, ranging in thickness from 10 cm to 40 cm, which cut both the Pinal schist and the Madera granodiorite. The shear zones have sharp boundaries that separate sheared material from massive zones lacking strong foliation, elongation lineation, and ductile deformation fabrics. The shear zones are characterized by well-developed, generally N- and NW- trending elongation lineation, and hand-sample scale S-C fabrics. Microstructures in Pinal schist and Madera granodiorite include S-C fabrics, mica fish', porphyroblast tails, and grain-shape- and lattice-preferred orientation of minerals, most of which indicate top-to-the-south displacement, consistent with field interpretations. Locally microstructures indicate top-to-the-north shear. Quartz c-axis fabrics were measured for 14 samples of Pinal schist and Madera granodiorite. Fabric diagrams show symmetric and symmetric double girdles, and activation of high temperature slip systems is evidenced by clustering of maxima in the center of the stereonet, parallel to the y-axis, in some plots. Symmetric fabrics indicate coaxial flattening. Asymmetric fabrics indicate top-to-the-north displacement, opposite to the shear sense derived from the majority of field and microstructural measurements. This may be indicative of a late-phase of backsliding on the shear zone, which could reset the quartz lattice fabrics. The high temperature slip systems of the quartz may be evidence for intrusion of the Madera granodiorite being early syn-tectonic in nature.

  14. Earliest Phanerozoic or latest Proterozoic fossils from the Arabian Shield

    USGS Publications Warehouse

    Cloud, P.; Awramik, S.M.; Morrison, K.; Hadley, D.G.

    1979-01-01

    We report here the first biologically definable fossils from pre-Saq (pre-Middle Cambrian) rocks of the Arabian Shield. They include the distinctive helically coiled tubular filaments of the oscillatorialean blue-green alga Obruchevella parva as well as two size classes of spheroidal unicells of uncertain affinity. Also present is the conical stromatolite Conophyton and unidentified stromatolites. All occur in cherty limestones of the Jubaylah Group, northern Saudi Arabia, a nonmarine to locally marine taphrogeosynclinal sequence that fills depressions along the northwest-trending Najd faults. Conophyton has heretofore been found only in strata older than about 680 Ma (except for puzzling records in modern hot springs) while Obruchevella is so far known only from rocks between about 680 and 470 Ma old. Thus it appears that the Jubaylah Group is close to the Proterozoic-Phanerozoic transition. The simple spheroidal nanno-fossils are not diagnostic as to age. Their relationships within what appears to be early diagenetic chert suggest a classical algal-mat association. The brecciated and microchanneled appearance of much of the fossiliferous rock, its locally dolomitic nature, and the prevalence of cryptalgalaminate favors a very shallow, locally turbulent, and perhaps episodically exposed marine or marginal marine setting. The Jubaylah Group lies unconformably beneath the Siq Sandstone (basal member of the Saq Sandstone) of medial Cambrian age, rests nonconformably on crystalline basement, and has yielded a K-Ar whole-rock age (on andesitic basalt) of ???540 Ma. To judge from the fossils, however, that age may be as much as 100 Ma or more too young. ?? 1979.

  15. A Modern Analogue for Proterozoic Inverse Carbon Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Diefendorf, A. F.; Freeman, K. H.; Pearson, A.

    2008-12-01

    The carbon isotope distribution preserved in sedimentary lipids changes near the Neoproterozoic-Cambrian boundary. In older samples, n-alkyl lipids contain more 13C than both isoprenoid lipids and kerogen [1]. In younger samples, the opposite prevails. Although extreme heterotrophy has been invoked as a mechanism to explain the enrichment in 13C [2], here we suggest another explanation. The switch may reflect a fundamental transition from an oligotrophic ocean dominated by prokaryotic biomass, to an ocean in which carbon fixation is more intensive and burial is dominated by eukaryotic biomass. An analogue for Proterozoic ordering is found in the modern, oligotrophic Pacific Ocean, where n-alkyl lipids of picoplankton (0.2-0.5 μm particulate matter) contain excess 13C relative to the same lipids found in larger size classes (> 0.5 μm). Picoplanktonic lipids are heavier isotopically (-18 ‰) than both the sterols of eukaryotes (-23 ‰ to -26 ‰) and the total organic matter (-20 ‰; TOM). The 0.2-0.5 μm size class also has a distinct chain-length abundance profile. Although large particles must be the vehicle for total carbon export, paradoxically the lipid component of export production appears to be dominated by the 0.2-0.5 μm source. The picoplanktonic chain lengths and isotopic composition dominate lipids of TOM at 670 meters. When the ratio of prokaryotic to eukaryotic production is high, as in the modern central Pacific Ocean, it appears that exported material has an inverse carbon isotope signature similar to that preserved in Precambrian samples. [1] Logan, G. A. et al., Nature 376:53-56 (1995). [2] Rothman, D. H. et al., PNAS 100:8124-8129 (2003).

  16. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin.

    PubMed

    Shen, Yanan; Knoll, Andrew H; Walter, Malcolm R

    2003-06-05

    Many independent lines of evidence document a large increase in the Earth's surface oxidation state 2,400 to 2,200 million years ago, and a second biospheric oxygenation 800 to 580 million years ago, just before large animals appear in the fossil record. Such a two-staged oxidation implies a unique ocean chemistry for much of the Proterozoic eon, which would have been neither completely anoxic and iron-rich as hypothesized for Archaean seas, nor fully oxic as supposed for most of the Phanerozoic eon. The redox chemistry of Proterozoic oceans has important implications for evolution, but empirical constraints on competing environmental models are scarce. Here we present an analysis of the iron chemistry of shales deposited in the marine Roper Basin, Australia, between about 1,500 and 1,400 million years ago, which record deep-water anoxia beneath oxidized surface water. The sulphur isotopic compositions of pyrites in the shales show strong variations along a palaeodepth gradient, indicating low sulphate concentrations in mid-Proterozoic oceans. Our data help to integrate a growing body of evidence favouring a long-lived intermediate state of the oceans, generated by the early Proterozoic oxygen revolution and terminated by the environmental transformation late in the Proterozoic eon.

  17. The x ray microprobe determination of chromium oxidation state in olivine from lunar basalt and kimberlitic diamonds

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    The synchrotron x-ray microprobe is being used to obtain oxidation state information on planetary materials with high spatial resolution. Initial results on chromium in olivine from various sources including laboratory experiments, lunar basalt, and kimberlitic diamonds are reported. The lunar olivine was dominated by Cr(2+) whereas the diamond inclusions had Cr(2+/Cr(3+) ratios up to about 0.3. The simpliest interpretation is that the terrestrial olivine crystallized in a more oxidizing environment than the lunar olivine.

  18. Peculiarities of mantle lithosphere beneath the large kimberlite pipes in different regions for Siberian craton

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Logvinova, Alla; Ntaflos, Theodoros; Vladykin, Nikolai; Spetsius, Zdislav; Kostrovitsky, Sergey; Stegnitsky, Yuri; Prokopyev, Sergey

    2016-04-01

    Comparison of the structure of the mantle columns and mineralogy of the large kimberlite pipes in Yakutia from the different regions, kimberlite fields and mantle terranes in Yakutia allowed several assumptions. 1. The large kimberlite pipes possibly trace the ancient magma feeders occurred in the time of the continent growth. Commonly kimberlites and large pipes are tracing the deep faults and lineaments tracing the ancient sutures, rift zones, trans -lithospheric faults and other permeable structures, which may be parallel to the ancient continental margins. Large pipes locate at the periodic distance like volcanoes in arc settings tracing the "volcanic fronts". 2. Large pipes commonly contain the higher amounts of the sub-calcic garnets representing the dunitic associations (Stachel et al., 2008). In ophiolites dunites veins are representing the channels for the melt transfer (Kelemen et al., 2002). It is likely that ancient large magmatic arc system could have also deep seated roots represented by the (sub calcic) garnet - bearing dunitic systems. 3. Many large pipes including Udachnaya (Pokhilenko et al., 1999) and Mir (Roden et al., 2006) contain in mantle roots high amount of various pyroxenites. The most ancient pyroxenites are supplementary to the dunitic associations. But mostly they represent the materials from the re-melted eclogites and partial and hybrid melts (plume and subduction -related). They are concentrating in the traps in the lithosphere base, in the middle part of mantle section and in the basaltic trap 2.0-3.0 GPa. Pyroxenites in the lithosphere base in some cases are vary abundant but mostly they are protokimberlitic cumulates from of the latest stages of plume activity. Products of the melts crystallization from the earlier stages represent easy melting material at the lithosphere base could be the traps for the later plume melts. 5. Large pipes as a rule reveal contrast layering which is favorite for the capturing of the material from

  19. Provenance of zircon xenocrysts in the Neoproterozoic Brauna Kimberlite Field, São Francisco Craton, Brazil: Evidence for a thick Palaeoproterozoic lithosphere beneath the Serrinha block

    NASA Astrophysics Data System (ADS)

    Donatti-Filho, José Paulo; Oliveira, Elson P.; McNaughton, Neal J.

    2013-08-01

    The 642 Ma-old Brauna Kimberlite Field is located on the northeastern sector of the São Francisco Craton (Serrinha block) and is one of the rare Neoproterozoic kimberlitic events in South America. Zircon xenocrysts from the volumetric most important kimberlite pipes Brauna 03, Brauna 07 and Brauna 04 were used as a tool to identify different components of the lithosphere beneath the northeast region of the São Francisco craton. A composite kimberlite sample of eight representative and different drill holes and three samples of the host rocks (Nordestina granodiorite) were sampled for SHRIMP geochronology. The results were compared with precise U-Pb age data for the regional rocks, i.e. the Archaean basement and the Palaeoproterozoic Rio Itapicuru greenstone belt. Samples from the Nordestina granodiorite gave three different ages: 2155 Ma in the western part of the batholith, 2139 Ma in its central part, and 2132 Ma in its eastern part. Zircon 207Pb/206Pb ages of the Brauna kimberlite zircon grains spread over the timespan 2107-2223 Ma and indicate four age groups at 2105 ± 3 Ma, 2138 ± 7 Ma, 2166 ± 5 Ma, and 2198 ± 4 Ma. Source rocks for the three former age groups can be found in the Rio Itapicuru greenstone belt, including zircon xenocrysts from the Nordestina granodiorite, whereas the latter age group has not yet been reported in the Serrinha block. The new zircon ages show that only rocks of the Palaeoproterozoic Rio Itapicuru greenstone belt and of a hidden 2.17-2.20 Ga crust were sampled by the kimberlite magma during its ascent through the lithosphere. It is proposed that there is none or a few Archaean crust beneath the kimberlite emplacement area, hence implying a thick Palaeoproterozoic lithosphere for this portion of the São Francisco craton.

  20. The influence of complex intra- and extra-vent processes on facies characteristics of the Koala Kimberlite, NWT, Canada: volcanology, sedimentology and intrusive processes

    NASA Astrophysics Data System (ADS)

    Porritt, Lucy A.; Cas, Ray A. F.

    2011-08-01

    The Koala kimberlite, Northwest Territories, Canada, is a small pipe-like body that was emplaced into the Archean Koala granodiorite batholith and the overlying Cretaceous to Tertiary sediments at ~53 Ma. Koala is predominantly in-filled by a series of six distinct clastic deposits, the lowermost of which has been intruded by a late stage coherent kimberlite body. The clastic facies are easily distinguished from each other by variations in texture, and in the abundance and distribution of the dominant components. From facies analysis, we infer that the pipe was initially partially filled by a massive, poorly sorted, matrix-supported, olivine-rich lapilli tuff formed from a collapsing eruption column during the waning stage of the pipe-forming eruption. This unit is overlain by a granodiorite cobble-boulder breccia and a massive, poorly sorted, mud-rich pebbly-sandstone. These deposits represent post-eruptive gravitational collapse of the unstable pipe walls and mass wasting of tephra forming the crater rim. The crater then filled with water within which ~20 m of non-kimberlitic, wood-rich, silty sand accumulated, representing up to 47,000 years of quiescence. The upper two units in the Koala pipe are both olivine rich and show distinct grain-size grading. These units are interpreted to have been deposited sub-aqueously, from pyroclastic flows sourced from one or more other kimberlite volcanoes. The uppermost units in the Koala pipe highlight the likelihood that some kimberlite pipes may be only partially filled by their own eruptive products at the cessation of volcanic activity, enabling them to act as depocentres for pyroclastic and sedimentary deposits from the surrounding volcanic landscape. Recognition of these exotic kimberlite deposits has implications for kimberlite eruption and emplacement processes.

  1. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans.

    PubMed

    Arnold, G L; Anbar, A D; Barling, J; Lyons, T W

    2004-04-02

    How much dissolved oxygen was present in the mid-Proterozoic oceans between 1.8 and 1.0 billion years ago is debated vigorously. One model argues for oxygenation of the oceans soon after the initial rise of atmospheric oxygen approximately 2.3 billion years ago. Recent evidence for H(2)S in some mid-Proterozoic marine basins suggests, however, that the deep ocean remained anoxic until much later. New molybdenum isotope data from modern and ancient sediments indicate expanded anoxia during the mid-Proterozoic compared to the present-day ocean. Consequently, oxygenation of the deep oceans may have lagged that of the atmosphere by over a billion years.

  2. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes

    NASA Astrophysics Data System (ADS)

    Evans, David A. D.

    2006-11-01

    Palaeomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and palaeoclimate zones. Proterozoic glacial deposits laid down in near-equatorial palaeomagnetic latitudes can be explained by `snowball Earth' episodes, high orbital obliquity or markedly non-uniformitarian geomagnetic fields. Here I present a global palaeomagnetic compilation of the Earth's entire basin-scale evaporite record. Magnetic inclinations are consistent with low orbital obliquity and a geocentric-axial-dipole magnetic field for most of the past two billion years, and the snowball Earth hypothesis accordingly remains the most viable model for low-latitude Proterozoic ice ages. Efforts to reconstruct Proterozoic supercontinents are strengthened by this demonstration of a consistently axial and dipolar geomagnetic reference frame, which itself implies stability of geodynamo processes on billion-year timescales.

  3. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes.

    PubMed

    Evans, David A D

    2006-11-02

    Palaeomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and palaeoclimate zones. Proterozoic glacial deposits laid down in near-equatorial palaeomagnetic latitudes can be explained by 'snowball Earth' episodes, high orbital obliquity or markedly non-uniformitarian geomagnetic fields. Here I present a global palaeomagnetic compilation of the Earth's entire basin-scale evaporite record. Magnetic inclinations are consistent with low orbital obliquity and a geocentric-axial-dipole magnetic field for most of the past two billion years, and the snowball Earth hypothesis accordingly remains the most viable model for low-latitude Proterozoic ice ages. Efforts to reconstruct Proterozoic supercontinents are strengthened by this demonstration of a consistently axial and dipolar geomagnetic reference frame, which itself implies stability of geodynamo processes on billion-year timescales.

  4. Proterozoic geochronologic and isotopic boundary in NW Arizona

    SciTech Connect

    Chamberlain, K.R.; Bowring, S.A. )

    1990-05-01

    U-Pb ages determined from zircon, sphene, and apatite in conjunction with Pb isotopic analyses of alkali feldspar establish a regional geochronological framework and constrain the location of a major north-trending Proterozoic crustal boundary in northwestern Arizona. Two regions west of the boundary (Hualapai Mountains and Lost Basin Range-Garnet Mountain) are characterized by complex U-Pb zircon systematics, evidence for inheritance of an older zircon component (1.8-2.3 Ga), and elevated {sup 207}Pb/{sup 204}Pb from feldspars compared to the east. Although the discordia patterns are complex, supracrustal rocks are interpreted to be ca. 1.73 Ga and are intruded by plutonic rocks ca. 1.70 Ga. Deformation is younger than ca. 1.70 Ga foliated granites and older than the 1,682 {plus minus} 4 Ma Garnet Mt. monzogranite. The rocks in one area east of the boundary (Cottonwood Cliffs) are characterized by relatively simple U-Pb zircon systematics, no evidence for inheritance of any older component, and feldspar {sup 207}/{sup 204}Pb near model mantle values. Supracrustal rocks are older than 1.73 Ga, as they are intruded by a 1,730 {plus minus} 9 Ma foliated granodiorite. Timing of deformation is constrained by the late syn-kinematic Valentine granite dated at 1,713 {plus minus} 12 Ma. Mineral ages indicate that the rocks on either side of the boundary had different cooling histories and inferentially, different uplift histories. West of the boundary, the cooling history is inferred from minerals separated from an amphibolite: metamorphic zircon is 1,687 +13/{minus}8 Ma, sphene is 1,660 {plus minus} 5 Ma, hornblende has a {sup 40}Ar/{sup 39}Ar age of 1,552 {plus minus} 5 Ma, and apatite has a U-Pb age of 1,520 {plus minus} 45 Ma. East of the boundary an amphibolite has sphene with an age of 1,670 {plus minus} 11 Ma and apatite with an age of 1,630 {plus minus} 8 Ma.

  5. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Logvinova, A. M.; Zedgenizov, D. A.; Pokhilenko, N. P.; Malygina, E. V.; Kuzmin, D. V.; Sobolev, A. V.

    2009-11-01

    Peridotite xenoliths and diamonds from kimberlites represent an important source of information about the composition of the continental lithosphere at depths exceeding 120-150 km. Ultramafic (or peridotitic) U(P)-type of geological environment is dominating at these depths compared to eclogitic (E-type). Olivine is the most typical mineral both of peridotite xenoliths and as diamond inclusions in most kimberlites worldwide. In spite of its simple chemical composition it contains a number of petrogenetically significant minor elements such as Ti, Al, Mn, Ca, Cr, Ni, Co in low concentrations, mostly below 0.1 wt.% of oxide except of NiO. More than 500 industrial quality diamonds of size range between 0.8 and 3 mm containing olivine inclusions sometimes associated with enstatite, pyrope, chrome diopside and chromite were selected from current diamond production of nine major Siberian diamond mines. This collection also includes revised olivine diamond inclusions from Arkhangelsk (Russia), Majhgawan (India) diamond mines and Urals (Russia) alluvial mines. More than 30% of studied samples were prepared for analysis of olivines on a single polished surface with diamond. More than 300 peridotite xenoliths were selected for olivine studies from a representative collection from unaltered kimberlites of Udachnaya diamond mine. These xenoliths include low-temperature coarse lherzolites, harzburgites and dunites which are represented by spinel, garnet-spinel and garnet varieties. More than 70 xenoliths of high-temperature porphyroclastic (sheared) lherzolites from Udachnaya are also included in the examined collection. Olivines were analyzed for major and minor elements with a JEOL JXA 8200 electron microprobe at the Max-Planck Institute of Chemistry, Mainz. Special efforts were made to obtain high precision and accuracy in electron microprobe analyses, especially, for Ti, Al, Ni, Co, Ca, Mn and Cr. These elements were analyzed by using long counting time and high beam

  6. CONTINUITY BETWEEN EASTERN AND WESTERN BUSHVELD COMPLEX, SOUTH AFRICA, CONFIRMED BY XENOLITHS FROM KIMBERLITE

    NASA Astrophysics Data System (ADS)

    Ashwal, L. D.; Webb, S. J.; Cawthorn, G.

    2009-12-01

    The eastern and western limbs of the Bushveld Complex, South Africa have been interpreted by some as dipping sheets of mafic cumulate rocks ever since the modeling of gravity and geoelectrical data by Meyer & de Beer (Nature 325, 610, 1987). However, re-interpretation of the regional gravity data by Cawthorn & Webb (Tectonophys. 330, 195, 2001), with consideration of isostatic crustal flexure and depressing of the Moho, allows Bushveld to be modeled as a single, connected body. This is consistent with the anomalously thick sub-Bushveld crust (to 48 km) as revealed by seismic data (Nguuri et al, Geophys. Res. Lett 28, 2501, 2001). Here we provide direct evidence from xenoliths in kimberlite for a regionally interconnected Bushveld Complex, implying its emplacement as a single sill-like body ~400 km across and ~8 km thick. The Cretaceous Palmietgat Group 1 kimberlites, located mid-way between the eastern and western lobes, about 70 km N of Pretoria, form a cluster of 6 pipes linked by dikes, over a distance of ~3 km. The K15W pipe is actively mined for diamonds. We recovered 5 small (~4 cm across) xenoliths of pyroxenitic rocks in the waste pile representing the high density portion of crushed material that was rejected for diamond recovery by a Sortex apparatus. The xenoliths are medium-grained orthopyroxene cumulates (80-90% opx) with interstitial zoned plagioclase (8-15%), clinopyroxene (<1-2%) and phlogopite. One sample contains ~2% of small, euhedral chromite grains. Orthopyroxenes have mg# = 75-80, with Al2O3 = 0.4-0.6 wt%, Cr2O3 = 0.4-0.5 wt% and TiO2 = 0.19-0.22 wt% and clinopyroxenes have mg# = 82-85. Disseminated chromites show a limited compositional range, with average Fe3+:Al:Cr = 0.55:0.25:1.03 and mg# = 12.6. These compositions match well with Bushveld Complex cumulate rocks, particularly with those from the Upper Critical Zone, which shows orthopyroxenes with mg# = 78-82, and similar Ti, Al and Cr concentrations to those measured here. Likewise, Upper

  7. Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe) — evidence for metasomatic conditions of growth

    NASA Astrophysics Data System (ADS)

    Bulanova, G. P.; Muchemwa, E.; Pearson, D. G.; Griffin, B. J.; Kelley, S. P.; Klemme, S.; Smith, C. B.

    2004-09-01

    Syngenetic inclusions of yimengite K (Cr, Ti, Mg, Fe, Al) 12O 19, a potassium member of the magnetoplumbite mineral group, have been recorded in an octahedral macrodiamond from the Sese kimberlite (50 km south of Masvingo, Zimbabwe). One yimengite inclusion carries lamellae of chromite suggesting peridotitic diamond paragenesis. The diamond and inclusions were studied in situ in a plate polished parallel to (011). Cathodoluminescence (CL) imaging has shown blue colour and octahedral zonation of the diamond, lack of cracks and the location of five yimengites in different growth zones. Nitrogen (N) contents (at. ppm) in the diamond determined by Fourier transform infrared spectroscopy (FTIR) steadily decrease from 576 (core) to 146 (rim). N aggregation (%1aB) is correspondingly 40% in the core and 30% in the rim. Hydrogen (H) content is high in the core, moderate in the intermediate and very high in the rim zones. Four yimengites were dated using the laser 40Ar/ 39Ar method. Three inclusions yielded total gas ages that agree with, or are younger than, or within error of, the Sese kimberlite eruption age (538±11 Ma) but may be compromised by gas loss. One inclusion, with the highest tapped interface gas yield, gave a total gas age of 892±21 Ma that is a likely minimum yimengite age. Time-T °C constraints from N aggregation systematics give a range of possible ages from kimberlite eruption date back to Archean and do not resolve the variable results of the 40Ar/ 39Ar dating. Compared with the published chemistry of yimengite from kimberlites, inclusions from the Sese diamond contain higher Al, Mg, and Sr and have lower concentration of Fe 3+. The chondrite-normalised REE pattern of the yimengite shows enrichment in LREE and depletion in HREE, but LREE/HREE fractionations are lower than for lindsleyite-mathiasite series mantle titanates and rather similar to the REE concentrations in kimberlite and lamproite rocks. It is suggested that Sese yimengite formed in the

  8. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Bussweiler, Yannick; Foley, Stephen F.; Prelević, Dejan; Jacob, Dorrit E.

    2015-04-01

    This study presents detailed petrographical and geochemical investigations on remarkably fresh olivines in kimberlites from the EKATI Diamond Mine™ located in the Tertiary/Cretaceous Lac de Gras kimberlite field within the Slave craton of Canada. Olivine, constituting about 42 vol.% of the analyzed samples, can be divided into two textural groups: (i) macrocrystic olivines, > 100 μm sub-rounded crystals and (ii) groundmass olivines, < 100 μm subhedral crystals. Olivines from both populations define two distinct chemical trends; a "mantle trend" with angular cores, showing low Ca (< 0.1 wt.% CaO) and high Ni (0.3-0.4 wt.% NiO) at varying Mg# (0.86-0.93), contrasts with a "melt trend" typified by thin (< 100 μm) rims with increasing Ca (up to 1.0 wt.% CaO) and decreasing Ni (down to 0.1 wt.% NiO) contents at constant Mg# (~ 0.915). These findings are in agreement with recent studies suggesting that virtually all olivine is composed of xenocrystic (i.e. mantle-related) cores with phenocrystic (i.e. melt-related) overgrowths, thereby challenging the traditional view that the origin of kimberlitic olivine can be distinguished based on size and morphology. The two main trends can be further resolved into sub-groups refining the crystallization history of olivine; the mantle trend indicates a multi-source origin that samples the layered lithosphere below the Slave craton, whereas the melt trend represents multi-stage crystallization comprising a differentiation trend starting at mantle conditions and a second trend controlled by the crystallization of additional phases (e.g. chromite) and changing magma conditions (e.g. oxidation). These trends are also seen in the concentrations of trace elements not routinely measured in olivine (e.g. Na, P, Ti, Co, Sc, Zr). Trace element mapping with LA-ICP-MS reveals the distribution of these elements within olivine grains. The trace element distribution between the two trends appears to be consistent with phenocrystic olivine

  9. A sulfur isotope study of pyrite genesis: The mid-proterozoic Newland formation, belt supergroup, Montana

    NASA Astrophysics Data System (ADS)

    Strauss, Harald; Schieber, Jürgen

    1990-01-01

    Different generations of sedimentary pyrite from the Mid-Proterozoic Newland Formation, USA, have been analysed for their sulfur isotopic compositions. The results indicate bacterial sulfate reduction as the pyrite forming process. The δ 34S values for early diagenetic pyrite, around -14%., are in contrast to dominantly more positive values for many other Middle Proterozoic units. A progressive reduction of sulfate availability during diagenesis can be recognized by an increase in 34S content (Rayleigh Distillation) as well as through detailed petrographic observations. Contemporaneous seawater had a sulfur isotopic ratio between +14 and +18%. as measured from sedimentary barite within the unit.

  10. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield

    SciTech Connect

    Stacey, J.S.; Hedge, C.E.

    1984-05-01

    The authors report zircon U-Pb, feldspar common Pb, whole-rock Sm-Nd, and Rb-Sr data from sample Z-103, a fine-grained granodiorite from the Jabal Khida region of the Saudi Arabian Shield (lat 21/sup 0/19'N; long 44/sup 0/50'W). The measurements yield conclusive evidence for continental crust of early Proterozoic age (approx.1630 Ma) at that locality. Furthermore, lead-isotope data indicate an even earlier, perhaps Archean, crustal history for the source of the lower Proterozoic rocks. 17 references, 4 figures, 1 table.

  11. Latest Proterozoic to early Cambrian sedimentary-tectonic evolution of a passive margin sequence, northeastern Washington

    SciTech Connect

    Lindsey, K.A.; Gaylord, D.R.

    1987-08-01

    The late Proterozoic to Early Cambrian Three Sisters formation, Addy Quartzite, and Gypsy Quartzite lie near the base of the Cordilleran miogeocline in northeastern Washington. Detailed stratigraphic and sedimentary examination of these units extends understanding of the evolution of western North America. These units were deposited on a newly rifted passive margin and record the final stages of late Proterozoic rifting and the early stages of subsequent early Paleozoic subsidence and transgression. The three Sisters formation, Addy Quartzite, and Gypsy Quartzite are correlative with the Brigham Group in southeastern Idaho and Utah, the Gold Creek Quartzite in northern Idaho, and the Flathead Quartzite in Montana and Wyoming.

  12. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland.

    PubMed

    Knoll, A H; Hayes, J M; Kaufman, A J; Swett, K; Lambert, I B

    1986-06-26

    Analyses of stratigraphically continuous suites of samples from Upper Proterozoic sedimentary successions of East Greenland, Spitsbergen and Nordaustlandet (Svalbard) provide an approximation to the secular variation in carbon isotope ratios during a geologically and biologically important period of change from around 900 million years ago to the beginning of the Cambrian period. Late Riphean carbonates and organic material show a stratigraphically useful pattern of enrichment in 13C relative to Phanerozoic or earlier Proterozoic samples. Isotopic compositions of isolated samples from other localities are consistent with a worldwide extended interval of enhanced organic burial and consequent net survival of oxidized material, probably O2, just before the initial radiation of metazoans.

  13. Stress modelling of magma storage zones and its implications for rapid kimberlitic magma ascent

    NASA Astrophysics Data System (ADS)

    Baruah, A.; Mandal, N.

    2012-12-01

    Rapid ascent of low viscous kimberlitic magmas is reflected from the presence of meta-stable diamond phenocrysts. Existing models suggest that high velocity magma ascent takes place as a mechanical coupling interaction between the CO2-rich volatile phase originating from the magma and the hydraulic fracture (Type-I). However, for such fracturing to occur at a depth of ~200 km, the system need to have a huge tensile stress to overcome the lithostatic pressure (~60 Kb) and the tensile strength of the rocks (0.4 - 0.5 Kb). The objective of the present work is to present a mechanical model and show the specific conditions in which the magma storage zone (MSZ) can build up such large tensile stresses to cause fracturing for magma ascent. Finite Element (FE) method was employed to map the stress field in the mantle rock around a magma chamber. MSZ was modeled as a semi-elliptical zone at bottom of the model of 150 km depth and 300 km width. Two types of FE modelling was performed considering two factors: (1) density contrast (Δρ) between magma and ambient mantle, and (2) shape (Ar: ratio of vertical and horizontal dimensions) of the MSZ. Figure 1 show the Δρ contrasts required for tensile fracturing to occur at the MSZ tip for different values of their Ar. Results reveal a distinct zone of maximum tensile stresses in the neighborhood of the MSZ, suggesting the potential locations of tensile fracturing. It shows that the tensile stress magnitude decreases exponentially away from the MSZ top vertically. The results illustrate a nonlinear relation of stress with increasing Δρ (Figure 1). We show that for models with Ar >1 there is a localization of tensile stress at the MSZ tip, and for the models with Ar << 1 it diffuse along the boundary (Figure 2). We also show that for a particular Δρ, tensile stress increases for increasing Ar. The results indicate that MSZ with large Ar are more potential for tensile fracturing to occur at their vertices. Considering the

  14. Paleoclimatology of the Early Paleogene using Kimberlite-Hosted Mummified Wood from the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D. J.

    2011-12-01

    Fifty-five million years ago, during the Paleocene-Eocene transition, average global temperatures were 4 - 7°C warmer than today and tropical forest ecosystems persisted in Arctic regions for millennia (ref. 1). Superimposed on this warmth were several hyperthermal periods of intense warming (10 - 12°C above modern-day average), such as the Paleocene-Eocene Thermal Maximum (PETM; 55.5 Ma), caused by an influx of isotopically-light carbon of unknown origin into the atmosphere (ref. 2). During this time, massive kimberlite eruptions buried forest fragments under pyroclastic debris. Evidence can be found in several diamondiferous kimberlite mines in the Northwest Territories of Canada, aged at 56.0 ±0.7 Ma (Diavik Mine) and 53.2 ±0.3 Ma (Ekati Mine) (ref. 3). Due to these unique burial conditions, the original woody material is intact (i.e. not petrified) allowing paleoclimatic analyses from wood growing before and after the PETM. Morelet Wavelet Analysis detected a significant 4 - 7 year periodicity in tree-ring width suggesting Cenozoic El Niño climate cycles were similar to those existing today, thus validating paleoclimatic models (ref. 4). In addition, evidence of wood-boring insect galleries within samples suggests the existence of a rich ecosystem above the Arctic Circle. Our multi-proxy study of δ13C, δ18O, and δD isotope ratios in α-cellulose at sub-annual scales will permit a better understanding of seasonal and yearly trends in Early Paleogene temperature and precipitation. It will also allow comparisons with studies of Eocene-aged wood (45 Ma) suggesting Arctic regions were 10 - 12°C warmer than modern-day temperatures, with relative humidity reaching 90 - 100% by the end of the growing season (refs. 5,6). 1. Zachos, J, M Pagani, L Sloan, E Thomas, and K Billups. 2001. Science 292(5517): 686 - 693. 2. Higgins, JA, and DP Schrag. 2006. Earth and Planetary Science Letters 245: 523-537. 3. Creaser, RA, H Grütter, J Carlson, and B Crawford. 2004

  15. In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Yuan; Yang, Yue-Heng; Mitchell, Roger H.; Li, Qiu-Li; Yang, Jin-Hui; Zhang, Yan-Bin

    2010-03-01

    Determination of the emplacement ages and initial isotopic composition of kimberlite by conventional isotopic methods using bulk rock samples is unreliable as these rocks usually contain diverse clasts of crustal- and mantle-derived materials and can be subject to post-intrusion sub-aerial alteration. In this study, 8 samples from 5 kimberlites in southern Africa and twelve samples from 7 kimberlites from Somerset Island, Canada have been selected for in situ perovskite U-Pb isotopic age determination and Nd isotopic analysis by laser ablation using thin sections and mineral separates. These fresh perovskites occur as primary groundmass minerals with grain-sizes of 10-100 μm. They were formed during the early stage of magmatic crystallization, and record data for the least contaminated or contamination-free kimberlitic magma. U-Pb isotopic data indicate that the majority of the southern Africa kimberlites investigated were emplaced during the Cretaceous with ages of 88 ± 3 to 97 ± 6 Ma, although one sample yielded an Early Paleozoic age of 515 ± 6 Ma. Twelve samples from Somerset Island yielded ages ranging from 93 ± 4 Ma to 108 ± 5 Ma and are contemporaneous with other Cretaceous kimberlite magmatism in central Canada (103-94 Ma). Although whole-rock compositions of the kimberlites from southern Africa have a large range of ɛNd( t) values (- 0.5 to + 5.1), the analysed perovskites show a more limited range of + 1.2 to + 3.1. Perovskites from Somerset Island have ɛNd( t) values of - 0.2 to + 1.4. These values are lower than that of depleted asthenospheric mantle, suggesting that kimberlites might be derived from the lower mantle. This study shows that in situ U-Pb and Nd isotopic analysis of perovskite by laser ablation is both rapid and economic, and serves as a powerful tool for the determination of the emplacement age and potential source of kimberlite magmas.

  16. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem

    NASA Astrophysics Data System (ADS)

    Kjarsgaard, B. A.; Pearson, D. G.; Tappe, S.; Nowell, G. M.; Dowall, D. P.

    2009-11-01

    We present 104 whole-rock geochemical analyses of hypabyssal kimberlite from the Lac de Gras field. Screens using Yb versus Al 2O 3 and ln Si/Al versus ln Mg/Yb effectively discriminate crustally contaminated samples. The remaining "non-contaminated" kimberlites samples have variable (5 to 50%) entrainment of cratonic peridotite. It is problematic to effectively screen for small amounts (< 5%) of digested crust in samples with higher (> 20%) contents of peridotite contamination. We utilize the Lac de Gras data suite to calculate, by two different methods, parent magma compositions and identify two (and potentially three) geochemically distinct parent magma types. The Lac de Gras parent magma compositions are compared to those calculated from other localities in Canada, Greenland, South Africa and Russia. Together, these calculated parent magmas define a range, albeit limited, of viable, yet distinct, kimberlite parent magma compositions. Geochemically, kimberlite parent magmas have high volatile contents (H 2O and CO 2), high MgO, and low SiO 2, Al 2O 3 and alkalis, with K > Na and Na + K/Al < 1. It is difficult to reconcile differences between various calculated kimberlite parent magma compositions from different cratonic areas as merely due to the effects of craton specific lithospheric mantle contamination, indicating the intra- and inter-cratonic variation of parent magma compositions reflect differing source region characteristics and/or partial melting regimes.

  17. Proterozoic Stability of the Kaapvaal Craton from Titanite (U-Th)/He Thermochronology and Strong Influence of Radiation Damage on this Underutilized Thermochronometer

    NASA Astrophysics Data System (ADS)

    Baughman, J. S.; Flowers, R. M.; Dhansay, T.

    2014-12-01

    The Kaapvaal craton of southern Africa is an archetypal Archean craton that formed and initially stabilized between 3.7 and 2.7 Ga. Geochronology and isotopic studies have constrained periods of lithospheric growth and stabilization, and low temperature thermochronology has yielded information about the Mesozoic-Cenozoic history of burial and erosion across the craton. However, there is a substantial thermal history gap between these end-member events, because few thermochronometers provide access to temperatures of ~300-120°C. Such data are critical for evaluating Kaapvaal's response to Proterozoic lateral accretion and intracontinental magmatism. Our study assesses cratonic stability by applying a little-utilized but promising mid-temperature thermochronologic technique, titanite (U-Th)/He dating, to decipher cooling through 230-190°C (based on early diffusion studies). We obtained titanite (U-Th)/He data for Archean basement samples across an ~200,000 km2 area of the northern Kaapvaal craton. Multiple samples with titanite eU values < 70 ppm yield He dates as old as 1200-800 Ma. In contrast, titanites with eU of 70-700 ppm yield younger dates (350-20 Ma) that display a dramatic correlation between date and eU. This pattern clearly manifests the influence of radiation damage on titanite He retentivity that has been observed in other He thermochronometers, but never previously documented for titanite. There is strong future potential to exploit this effect to decipher more detailed thermal histories, as has been done for apatite and zircon He thermochronometry. In our dataset, the oldest titanite results postdate extensive ~1.4-1.2 Ga carbonatite and kimberlite magmatism across the Kaapvaal craton, and overlap with ~1.2-1.1 Ga Namaqua-Natal arc accretion and ~1.1 Ga Umkondo intraplate large igneous province activity. The volcanic character of many of the northern Kaapvaal alkaline and carbonatite complexes indicates that the basement was exhumed to the surface

  18. Continent-scale linearity of kimberlite-carbonatite magmatism, mid-continent North America

    NASA Astrophysics Data System (ADS)

    Duke, Genet Ide; Carlson, Richard W.; Frost, Carol D.; Hearn, B. C.; Eby, G. Nelson

    2014-10-01

    Cretaceous-Tertiary kimberlite-carbonatite magmatism in mid-continent North America extends along a N40°W linear trend from Louisiana to Alberta, and occurs in at least four different pulses (∼109-85, 67-64, 55-52, and less than 50 Ma). The lack of spatial age progressions of magmatism consistent with motion of North America over a fixed hot spot, the presence of Sr-Nd-Hf-Pb isotopic and trace-element compositions that show a temporal evolution from lithospheric to asthenospheric melt-sources, and the orientation of the magmatic belt parallel to the western subduction margin of the North American plate, suggest that this linear zone is the surface expression of mantle melting related to the subduction system. We propose that fragmentation of Farallon and Kula plates opened slab windows perpendicular to their convergence direction. In this model, sheet-like mantle upwellings were induced along slab-window margins, and these upwellings underwent low-degree partial melting to produce highly alkalic magmas along the trend parallel to, but ∼2000 km east of, the convergent margin. The N40°W trend may reflect melting associated with penetration of the mantle transition-zone by the downgoing oceanic plate(s).

  19. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Fairchild, I. J.; Swett, K.

    1993-01-01

    Tidal flat and lagoonal dolostones of the Neoproterozoic Draken Formation, Spitsbergen, exhibit excellent preservation of carbonate fabrics, including heavily calcified microfossils. The crust-forming cyanobacterium Polybessurus is preserved locally by carbonate precipitated on and within sheaths in mildly evaporitic upper intertidal to supratidal environments. In contrast, calcified filaments in columnar stromatolites reflect subtidal precipitation. Filament molds in dolomicrites independently document extremely early lithification. The presence of heavily calcified cyanobacteria in Draken and other Proterozoic carbonates constrains potential explanations for the widespread appearance of calcified microorganisms near the Proterozoic-Cambrian boundary. We propose that the rarity of Proterozoic examples principally reflects the abundance and wide distribution of carbonate crystals precipitated on the sea floor or in the water column. Cyanobacterial sheaths would have competed effectively as sites for carbonate nucleation and growth only where calcitic and/or aragonitic nuclei were absent. In this view, the Proterozoic-Cambrian expansion of calcified microfossils primarily reflects the emergence of skeletons as principal agents of carbonate deposition.

  20. Lemhi Arch, a late Proterozoic and early Paleozoic landmass, central Idaho

    SciTech Connect

    Ruppel, E.T.

    1985-05-01

    The northwest-trending Lemhi arch of central Idaho first formed in late middle Proterozoic time, and as much as 4500 m (14,760 ft) of middle Proterozoic clastic rocks were eroded in later proterozoic time. The west flank of the arch was partly covered in late Proterozoic(.) and Early Cambrian time by the Wilbert Formation. On the east flank, westward-thinning marine sedimentation began with deposition of the Middle Cambrian Flathead Formation, and continued through the Late Cambrian. During Ordovician and Silurian times, the east flank of the arch was dry. The west flank was submerged in the Ordovician, and the Summerhouse Formation, Kinnikinnic Quartzite, and Saturday Mountain formation were deposited. The west flank of the arch was briefly exposed after deposition of the Saturday Mountain Formation, but was partly submerged later in the Silurian, when the Laketwon Dolomite was deposited. During the Middle and Late Devonian, deposition was renewed on the west flank of the arch, where the Jefferson formation indicates eastward transgression. The east flank was exposed until the late Devonian, when a thin sequence of the Jefferson and Three Forks Formations was deposited across the top of the arch, and marine sedimentation was continuous from the miogeocline far onto the craton. The Lemhi arch continued to influence marine deposition even after it was submerged, separating shelf deposits in southwest Montana and eastcentral Idaho from miogeoclinal deposits in central Idaho. The arch was overridden by the Medicine Lodge thrust in late Early and Late Cretaceous times.

  1. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition.

    PubMed

    Knoll, A H; Fairchild, I J; Swett, K

    1993-01-01

    Tidal flat and lagoonal dolostones of the Neoproterozoic Draken Formation, Spitsbergen, exhibit excellent preservation of carbonate fabrics, including heavily calcified microfossils. The crust-forming cyanobacterium Polybessurus is preserved locally by carbonate precipitated on and within sheaths in mildly evaporitic upper intertidal to supratidal environments. In contrast, calcified filaments in columnar stromatolites reflect subtidal precipitation. Filament molds in dolomicrites independently document extremely early lithification. The presence of heavily calcified cyanobacteria in Draken and other Proterozoic carbonates constrains potential explanations for the widespread appearance of calcified microorganisms near the Proterozoic-Cambrian boundary. We propose that the rarity of Proterozoic examples principally reflects the abundance and wide distribution of carbonate crystals precipitated on the sea floor or in the water column. Cyanobacterial sheaths would have competed effectively as sites for carbonate nucleation and growth only where calcitic and/or aragonitic nuclei were absent. In this view, the Proterozoic-Cambrian expansion of calcified microfossils primarily reflects the emergence of skeletons as principal agents of carbonate deposition.

  2. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Grotzinger, J. P.; Kaufman, A. J.; Kolosov, P.

    1995-01-01

    In the Olenek Uplift of northeastern Siberia, the Khorbusuonka Group and overlying Kessyusa and Erkeket formations preserve a significant record of terminal Proterozoic and basal Cambrian Earth history. A composite section more than 350 m thick is reconstructed from numerous exposures along the Khorbusuonka River. The Khorbusuonka Group comprises three principal sedimentary sequences: peritidal dolomites of the Mastakh Formation, which are bounded above and below by red beds; the Khatyspyt and most of the overlying Turkut formations, which shallow upward from relatively deep-water carbonaceous micrites to cross-bedded dolomitic grainstones and stromatolites; and a thin upper Turkut sequence bounded by karst surfaces. The overlying Kessyusa Formation is bounded above and below by erosional surfaces and contains additional parasequence boundaries internally. Ediacaran metazoans, simple trace fossils, and vendotaenids occur in the Khatyspyt Formation; small shelly fossils, more complex trace fossils, and acritarchs all appear near the base of the Kessyusa Formation and diversify upward. The carbon-isotopic composition of carbonates varies stratigraphically in a pattern comparable to that determined for other terminal Proterozoic and basal Cambrian successions. In concert, litho-, bio-, and chemostratigraphic data indicate the importance of the Khorbusuonka Group in the global correlation of terminal Proterozoic sedimentary rocks. Stratigraphic data and a recently determined radiometric date on basal Kessyusa volcanic breccias further underscore the significance of the Olenek region in investigations of the Proterozoic-cambrian boundary.

  3. Proterozoic crustal boundary in the southern part of the Illinois Basin

    NASA Astrophysics Data System (ADS)

    Heigold, Paul C.; Kolata, Dennis R.

    1993-01-01

    Recently acquired COCORP and proprietary seismic reflection data in the southern part of the Illinois Basin, combined with other geological and geophysical data, indicate that a WNW-trending Proterozoic terrane boundary (40 km wide) lies within basement. The boundary is characterized by the termination of subhorizontal Proterozoic reflectors and associated diffraction patterns along a line coinciding with the major magnetic lineament in this region (South Central Magnetic Lineament). North of the boundary, where reflectors thought to represent a sequence of layered Proterozoic rocks in the upper crust are widespread and as much as 11 km thick, total magnetic intensity values are relatively high, suggesting layers of rock with high magnetic susceptibility. To the south, the Proterozoic rocks are acoustically transparent on seismic reflection sections and total magnetic intensity values are relatively low. Moreover, relatively high Bouguer gravity anomaly values to the south may be caused by a dense, altered, lower crustal layer similar to that interpreted from deep seismic refraction studies to underlie the northern Mississippi Embayment. The boundary lies along the projected trend of the northern margin of the Early Proterozoic Central Plains orogen and we suggest that it marks the convergent margin of this orogen. Reactivation of the boundary and the associated zone of weakness during late Paleozoic times apparently resulted in structural deformation in the southern part of the Illinois Basin, including movement along the Cottage Grove Fault System and Ste. Genevieve Fault Zone and igneous activity at Hicks Dome. In addition to the role played by this crustal boundary in the evolution of the Illinois Basin, its location between the Wabash Valley Seismic Zone to the northeast and the New Madrid Seismic Zone to the southwest may be a significant factor in present-day seismicity.

  4. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen.

    PubMed

    Knoll, A H; Swett, K

    1990-01-01

    Carbonate sediments reflect the physico-chemical and biological circumstances of their formation; thus, features of limestones and dolomites may provide insights into both environmental and evolutionary change through geological time. The Upper Proterozoic (approx 800-700 Ma) Akademikerbreen Group, Spitsbergen, comprises 2000 m of carbonates, with only minor intercalations of quartz arenite and shale. Although Proterozoic carbonates are often seen as predominantly dolomitic, the Akademikerbreen Group is about 45 percent limestone. Stromatolites are conspicuous in outcrop but constitute only 25 percent of the total section. Micrites and coarser intraclastic carbonates derived mainly from micritric precursors comprise 60 percent of the group, while oolites make up the remaining 15 percent. Distinctive sedimentary features of the group include giant (up to 16 mm) ooids, very early diagenetic calcite nodules and cements, micrites containing subaqueous shrinkage cracks filled with equant microspar cement, and strong 13C enrichment in both carbonates and co-occurring organic matter. The principal features of Akademikerbreen carbonates are widely distributed in coeval successions. However, these rocks appear to differ from older limestones and dolomites in their relative abundance of grainstones and, perhaps, micrites, as well as their paucity of tufa-like laminates and columnar or coniform stromatolites that preserve petrographic evidence of in situ precipitation as a dominant means of carbonate accretion. Upper Proterozoic carbonates also differ from Paleozoic accumulations, but the transition is not abrupt. Most changes accompanying the Proterozoic/Phanerozoic transition can be interpreted in terms of the consequences rather than the causes of metazoan and metaphyte evolution, including the evolution of biomineralization. Carbonate sedimentology reinforces data from other sources which indicate the last 200 to 300 Ma of the Proterozoic Eon was a distinctive interval of

  5. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Swett, K.

    1990-01-01

    Carbonate sediments reflect the physico-chemical and biological circumstances of their formation; thus, features of limestones and dolomites may provide insights into both environmental and evolutionary change through geological time. The Upper Proterozoic (approx 800-700 Ma) Akademikerbreen Group, Spitsbergen, comprises 2000 m of carbonates, with only minor intercalations of quartz arenite and shale. Although Proterozoic carbonates are often seen as predominantly dolomitic, the Akademikerbreen Group is about 45 percent limestone. Stromatolites are conspicuous in outcrop but constitute only 25 percent of the total section. Micrites and coarser intraclastic carbonates derived mainly from micritric precursors comprise 60 percent of the group, while oolites make up the remaining 15 percent. Distinctive sedimentary features of the group include giant (up to 16 mm) ooids, very early diagenetic calcite nodules and cements, micrites containing subaqueous shrinkage cracks filled with equant microspar cement, and strong 13C enrichment in both carbonates and co-occurring organic matter. The principal features of Akademikerbreen carbonates are widely distributed in coeval successions. However, these rocks appear to differ from older limestones and dolomites in their relative abundance of grainstones and, perhaps, micrites, as well as their paucity of tufa-like laminates and columnar or coniform stromatolites that preserve petrographic evidence of in situ precipitation as a dominant means of carbonate accretion. Upper Proterozoic carbonates also differ from Paleozoic accumulations, but the transition is not abrupt. Most changes accompanying the Proterozoic/Phanerozoic transition can be interpreted in terms of the consequences rather than the causes of metazoan and metaphyte evolution, including the evolution of biomineralization. Carbonate sedimentology reinforces data from other sources which indicate the last 200 to 300 Ma of the Proterozoic Eon was a distinctive interval of

  6. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate

    NASA Astrophysics Data System (ADS)

    Hardisty, Dalton S.; Lu, Zunli; Bekker, Andrey; Diamond, Charles W.; Gill, Benjamin C.; Jiang, Ganqing; Kah, Linda C.; Knoll, Andrew H.; Loyd, Sean J.; Osburn, Magdalena R.; Planavsky, Noah J.; Wang, Chunjiang; Zhou, Xiaoli; Lyons, Timothy W.

    2017-04-01

    The Proterozoic Eon hosted the emergence and initial recorded diversification of eukaryotes. Oxygen levels in the shallow marine settings critical to these events were lower than today's, although how much lower is debated. Here, we use concentrations of iodate (the oxidized iodine species) in shallow-marine limestones and dolostones to generate the first comprehensive record of Proterozoic near-surface marine redox conditions. The iodine proxy is sensitive to both local oxygen availability and the relative proximity to anoxic waters. To assess the validity of our approach, Neogene-Quaternary carbonates are used to demonstrate that diagenesis most often decreases and is unlikely to increase carbonate-iodine contents. Despite the potential for diagenetic loss, maximum Proterozoic carbonate iodine levels are elevated relative to those of the Archean, particularly during the Lomagundi and Shuram carbon isotope excursions of the Paleo- and Neoproterozoic, respectively. For the Shuram anomaly, comparisons to Neogene-Quaternary carbonates suggest that diagenesis is not responsible for the observed iodine trends. The baseline low iodine levels in Proterozoic carbonates, relative to the Phanerozoic, are linked to a shallow oxic-anoxic interface. Oxygen concentrations in surface waters would have at least intermittently been above the threshold required to support eukaryotes. However, the diagnostically low iodine data from mid-Proterozoic shallow-water carbonates, relative to those of the bracketing time intervals, are consistent with a dynamic chemocline and anoxic waters that would have episodically mixed upward and laterally into the shallow oceans. This redox instability may have challenged early eukaryotic diversification and expansion, creating an evolutionary landscape unfavorable for the emergence of animals.

  7. Proterozoic crustal boundary in the southern part of the Illinois Basin

    USGS Publications Warehouse

    Heigold, P.C.; Kolata, Dennis R.

    1993-01-01

    Recently acquired COCORP and proprietary seismic reflection data in the southern part of the Illinois Basin, combined with other geological and geophysical data, indicate that a WNW-trending Proterozoic terrane boundary (40 km wide) lies within basement. The boundary is characterized by the termination of subhorizontal Proterozoic reflectors and associated diffraction patterns along a line coinciding with the major magnetic lineament in this region (South Central Magnetic Lineament). North of the boundary, where reflectors thought to represent a sequence of layered Proterozoic rocks in the upper crust are widespread and as much as 11 km thick, total magnetic intensity values are relatively high, suggesting layers of rock with high magnetic susceptibility. To the south, the Proterozoic rocks are acoustically transparent on seismic reflection sections and total magnetic intensity values are relatively low. Moreover, relatively high Bouguer gravity anomaly values to the south may be caused by a dense, altered, lower crustal layer similar to that interpreted from deep seismic refraction studies to underlie the northern Mississippi Embayment. The boundary lies along the projected trend of the northern margin of the Early Proterozoic Central Plains orogen and we suggest that it marks the convergent margin of this orogen. Reactivation of the boundary and the associated zone of weakness during late Paleozoic times apparently resulted in structural deformation in the southern part of the Illinois Basin, including movement along the Cottage Grove Fault System and Ste. Genevieve Fault Zone and igneous activity at Hicks Dome. In addition to the role played by this crustal boundary in the evolution of the Illinois Basin, its location between the Wabash Valley Seismic Zone to the northeast and the New Madrid Seismic Zone to the southwest may be a significant factor in present-day seismicity. ?? 1993.

  8. The Diamondiferous Lithospheric Mantle Underlying the Eastern Superior Craton: Evidence From Mantle Xenoliths From the Renard Kimberlites, Quebec

    NASA Astrophysics Data System (ADS)

    Hunt, L.; Stachel, T.; Armstrong, J. P.; Simonetti, A.

    2009-05-01

    The Renard kimberlite cluster consists of nine pipes located within a 2km2 area in the northern Otish Mountains of Quebec. The pipes are named Renards 1 to 10, with subsequent investigation revealing Renards 5 and 6 to join at depth (now Renard 65). The pipes are located within the eastern portion of the Superior craton, emplaced into Archean granitic and gneissic host rocks of the Opinica Subprovince (Percival, 2007). Amphibolite grade metamorphism, locally passing into the granulite facies (Percival et al., 1994) occurred in late Archean time (Moorhead et al., 2003). Radiometric dating of the hypabyssal Renard 1 kimberlite indicates Neoproterozoic emplacement, with a 206Pb/238U model age of 631.6±3.5 Ma (2σ) (Birkett et al., 2004). A later study on the main phases in Renard 2 and 3 gave a similar emplacement, with a 206Pb/238U model age of 640.5±2.8Ma (Fitzgerald et al., 2008). This makes this kimberlite district one of the oldest in Canada, similar in eruption age to the Wemindji kimberlites (629±29Ma: Letendre et al., 2003). These events are broadly coeval with the conversion from subduction magmatism to rifting in northern Laurentia (Birkett et al., 2004). The bodies are part of a late Neoproterozoic to Cambrian kimberlite field in eastern Canada (Girard, 2001; Moorhead et al, 2002; Letendre et al., 2003) and fit into the north-east of the Eocambrian/Cambrian Labrador Sea Province of Heaman et al. (2004). To better understand the diamondiferous lithospheric mantle beneath the Renard kimberlites, 116 microxenoliths and xenocrysts were analysed. The samples were dominantly peridotitic, composed primarily of purple garnet, emerald green clinopyroxene and olivine, with a few pink and red garnets. A minor eclogitic component comprises predominantly orange garnets and lesser amounts of clinopyroxene. A detailed study on the major, minor and trace element composition of xenolith minerals is currently underway. All but three of the clinopyroxenes analysed to date

  9. Dating Kimberlite Eruption and Erosion Phases Using Perovskite, Zircon, and Apatite (U-Th)/He Geochronology to Link Cratonic Lithosphere Evolution and Surface Processes

    NASA Astrophysics Data System (ADS)

    Stanley, J. R.; Flowers, R. M.

    2015-12-01

    In many cases it is difficult to evaluate the synchronicity and thus potential connections between disparate geologic events, such as the links between processes in the mantle lithosphere and at the surface. Developing new geochronologic tools and strategies for integrating existing chronologic data with other information is essential for addressing these problems. Here we use (U-Th)/He dating of multiple kimberlitic minerals to date kimberlite eruption and cratonic erosion phases. This approach permits us to more directly assess the link between unroofing and thermomodification of the lithosphere by tying our results to information obtained from mantle-derived clasts in the same pipes. Kimberlites are rich sources of information about the composition of the cratonic lithosphere and its evolution over time. Their xenoliths and xenocrysts can preserve a snapshot of the entire lithosphere and its sedimentary cover at the time of eruption. Accurate geochronology of these eruptions is crucial for interpreting spatiotemporal trends, but kimberlites can be difficult to date using standard techniques. Here we show that the mid-temperature thermochonometers of the zircon and perovskite (U-Th)/He (ZHe, PHe) systems can be viable tools for dating kimberlite eruption. When combined with the low temperature sensitivity of (U-Th)/He in apatite (AHe), the (U-Th)/He system can be used to date both the emplacement and the erosional cooling history of kimberlites. The southern African shield is an ideal location to test the utility of this approach because the region was repeatedly intruded by kimberlites in the Cretaceous, with two major pulses at ~200-110 Ma and ~100-80 Ma. These kimberlites contain a well-studied suite of mantle xenoliths and xenocrysts that document lithospheric heating and metasomatism over this interval. Our ZHe and PHe dates overlap with published eruption ages and add new ages for undated pipes. Our AHe dates constrain the spatial patterns of Cretaceous

  10. Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites

    NASA Astrophysics Data System (ADS)

    Schmidberger, S. S.; Francis, D.

    1999-09-01

    The recently discovered Nikos kimberlite on Somerset Island, in the Canadian Arctic, hosts an unusually well preserved suite of mantle xenoliths dominated by garnet-peridotite (lherzolite, harzburgite, dunite) showing coarse and porphyroclastic textures, with minor garnet-pyroxenite. The whole rock and mineral data for 54 Nikos xenoliths indicate a highly refractory underlying mantle with high olivine forsterite contents (ave. Fo=92.3) and moderate to high olivine abundances (ave. 80 wt.%). These characteristics are similar to those reported for peridotites from the Archean Kaapvaal and Siberian cratons (ave. olivine Fo=92.5), but are clearly distinct from the trend defined by oceanic peridotites and mantle xenoliths in alkaline basalts and kimberlites from post-Archean continental terranes (ave. olivine Fo=91.0). The Nikos xenoliths yield pressures and temperatures of last equilibration between 20 and 55 kb and 650 and 1300°C, and a number of the peridotite nodules appear to have equilibrated in the diamond stability field. The pressure and temperature data define a conductive paleogeotherm corresponding to a surface heat flow of 44 mW/m 2. Paleogeotherms based on xenolith data from the central Slave province of the Canadian craton require a lower surface heat flow (˜40 mW/m 2) indicating a cooler geothermal regime than that beneath the Canadian Arctic. A large number of kimberlite-hosted peridotites from the Kaapvaal craton in South Africa and parts of the Siberian craton are characterized by high orthopyroxene contents (ave. Kaapvaal 32 wt.%, Siberia 20 wt.%). The calculated modal mineral assemblages for the Nikos peridotites show moderate to low contents of orthopyroxene (ave. 12 wt.%), indicating that the orthopyroxene-rich mineralogy characteristic of the Kaapvaal and Siberian cratons is not a feature of the cratonic upper mantle beneath Somerset Island.

  11. Archean Lithosphere Beneath Arctic Canada: Lu-Hf Isotope Systematics for Kimberlite-Hosted Garnet-Peridotites From Somerset Island

    NASA Astrophysics Data System (ADS)

    Schmidberger, S. S.; Simonetti, A.; Francis, D.; Gariepy, C.

    2001-05-01

    Knowledge of the age of lithospheric mantle underlying the continents provides valuable constraints for the timing of formation and stabilization of Archean cratons. This study reports Lu-Hf isotopic data for garnet-peridotites, and their constituent garnets, from the Nikos kimberlite (100 Ma) on Somerset Island in the Canadian Arctic obtained using a Micromass IsoProbe multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) at GEOTOP-UQAM. The low temperature peridotites (<1100 C; 80-150 km) exhibit a significant range in 176Lu/177Hf ratios (0.03-0.05) and are characterized by radiogenic 176Hf/177Hf(0.1Ga) isotopic compositions (0.28294-0.28419) corresponding to \\epsilonHf(0.1Ga) values of +8 to +52. In contrast, 176Lu/177Hf ratios (0.004-0.04) are lower for the high temperature peridotites (>1100 C; 160-190 km) and their 176Hf/177Hf(0.1Ga) isotopic compositions (0.28265-0.28333; \\epsilonHf(0.1Ga)=-2 to +22) are less radiogenic than those of the shallow xenoliths. A Lu-Hf isochron for six peridotites yields a mid Archean age of 3.4\\pm0.3 Ga and an initial 176Hf/177Hf ratio of 0.28101\\pm24. The remaining peridotites (n=9), in contrast, are characterized by extremely high (+35) initial \\epsilonHf(3.4Ga) values, which correlate negatively with their 176Lu/177Hf ratios, suggesting addition of Hf as a result of metasomatic interaction with the host kimberlite. The garnets from the low temperature (3.4 Ga old) peridotites are characterized by high 176Lu/177Hf ratios and define an errorchron age of 1.4\\pm0.2 Ga, which may reflect re-equilibration of Hf during kimberlite magmatism.

  12. Stable isotope paleoclimatology of the earliest Eocene using kimberlite-hosted mummified wood from the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Hook, B. A.; Halfar, J.; Gedalof, Z.; Bollmann, J.; Schulze, D. J.

    2015-10-01

    The recent discovery of well-preserved mummified wood buried within a subarctic kimberlite diamond mine prompted a paleoclimatic study of the early Eocene "hothouse" (ca. 53.3 Ma). At the time of kimberlite eruption, the Subarctic was warm and humid producing a temperate rainforest biome well north of the Arctic Circle. Previous studies have estimated that mean annual temperatures in this region were 4-20 °C in the early Eocene, using a variety of proxies including leaf margin analysis and stable isotopes (δ13C and δ18O) of fossil cellulose. Here, we examine stable isotopes of tree-ring cellulose at subannual- to annual-scale resolution, using the oldest viable cellulose found to date. We use mechanistic models and transfer functions to estimate earliest Eocene temperatures using mummified cellulose, which was well preserved in the kimberlite. Multiple samples of Piceoxylon wood within the kimberlite were crossdated by tree-ring width. Multiple proxies are used in combination to tease apart likely environmental factors influencing the tree physiology and growth in the unique extinct ecosystem of the Polar rainforest. Calculations of interannual variation in temperature over a multidecadal time-slice in the early Eocene are presented, with a mean annual temperature (MAT) estimate of 11.4 °C (1 σ = 1.8 °C) based on δ18O, which is 16 °C warmer than the current MAT of the area (-4.6 °C). Early Eocene atmospheric δ13C (δ13Catm) estimates were -5.5 (±0.7) ‰. Isotopic discrimination (Δ) and leaf intercellular pCO2 ratio (ci/ca) were similar to modern values (Δ = 18.7 ± 0.8 ‰; ci/ca = 0.63 ± 0.03 %), but intrinsic water use efficiency (Early Eocene iWUE = 211 ± 20 μmol mol-1) was over twice the level found in modern high-latitude trees. Dual-isotope spectral analysis suggests that multidecadal climate cycles somewhat similar to the modern Pacific Decadal Oscillation likely drove temperature and cloudiness trends on 20-30-year timescales, influencing

  13. The composition of volatile components in olivines from Yakutian kimberlites of various ages: Evidence from gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Bul'bak, T. A.; Khomenko, M. O.; Kuzmin, D. V.; Sobolev, N. V.

    2016-06-01

    The composition of volatiles from fluid and melt inclusions in olivine phenocrysts from Yakutian kimberlite pipes of various ages (Olivinovaya, Malokuonapskaya, and Udachnaya-East) were studied for the first time by gas chromatography-mass spectrometry. It was shown that hydrocarbons and their derivatives, as well as nitrogen-, halogen-, and sulfur-bearing compounds, played a significant role in the mineral formation. The proportion of hydrocarbons and their derivatives in the composition of mantle fluids could reach 99%, including up to 4.9% of chlorineand fluorine-bearing compounds.

  14. H2O content of nominally anhydrous mineral inclusions in diamonds from the Udachnaya kimberlite

    NASA Astrophysics Data System (ADS)

    Novella, D.; Bolfan-Casanova, N.; Nestola, F.; Harris, J. W.

    2015-12-01

    Nominally anhydrous minerals (such as olivine, pyroxene and garnet) present in mantle xenoliths have been found to contain up to hundreds of ppm wt H2O, bonded as H to their mineral structure. However, it is not well understood whether these H2O contents are representative for the hydrous state of the deep mantle where they formed, or if they are the result of interactions between the xenoliths and metasomatic fluids or magmas during their travel to the surface. Given the fact that trace amounts of H2O can alter the physical and chemical properties of mantle materials and therefore affect Earth's dynamics, it is important to accurately determine the H2O content of deep mantle minerals. Natural diamonds can contain mineral inclusions that formed at high depths (>5 GPa) and are representative for the deep and inaccessible portions of the mantle where they originated. This is because the strong and inert diamond prevents the inclusions to react with any fluid or melt that get in contact with it. Therefore, valuable information regarding the H2O content of the deep mantle can be obtained by studying these minerals trapped in diamonds. In this study we measured the H2O contents of 10 olivine and garnet inclusions in diamonds from the Udachnaya kimberlite (Siberian craton) by Fourier Transform Infrared spectroscopy. Olivine crystals contain 1-5 ppm wt H2O while garnets do not show absorption bands indicating the presence of detectable H in their structure and are therefore considered dry. The H2O contents of olivine and garnet inclusions in diamonds presented here are considerably lower than those found in xenoliths or xenocrists from the same locality. Based on these new results, we discuss the presence of H2O in the cratonic mantle and its importance in stabilizing these areas during geological time, as well as the volatile signature of diamond forming melts in the Siberian craton.

  15. A Methane-rich Proterozoic Atmosphere: Possible Link to the Neoproterozoic Snowball Earth Glaciations

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Kasting, J. F.; Hurtgen, M.; Arthur, M. A.

    2001-12-01

    An enhanced atmospheric greenhouse effect is required throughout Archean and Proterozoic to offset reduced solar luminosity. In the anoxic Archean atmosphere CH4 could have been an important greenhouse gas because of the decreased levels of the primary oxidants - OH, O and H2O2. However, after the major transition of the atmospheric oxidation state at 2.0-2.3 Gyr, the photochemical lifetimes of reduced atmospheric gases (like methane) should have been much shorter. Therefore, a common view of the Proterozoic climate suggests that CO2 was the major greenhouse gas (along with H2O) and that atmospheric CH4 concentrations were low. Here we argue that substantial methane levels could have been present in the Proterozoic atmosphere if O2 levels were somewhat lower than today. In agreement with earlier calculations, our 1-D photochemical model shows that the atmospheric methane mixing ratio is a highly nonlinear function of the surface methane flux. In our model, a factor of 10 increase in the methane flux results in a 60-fold increase of the surface methane concentration. 1-D climate calculations show that such a high methane abundance would keep the mean global surface temperature at ~296 K under reduced solar luminosity conditions ( ~17 % decreased solar luminosity at 2.3 Gyr ago), even if CO2 was present only at today's level. Here we propose several reasons why the net methane flux could have been indeed substantially higher in the Proterozoic, compared to the present day. In the modern ecosystem, 99.9 % of methane, produced by methanogens, is being consumed by methanotrophic bacteria. These bacteria would presumably consume much less methane if O2 levels were lower. Moreover, in the present day sulfate-rich ocean methanogens living in sediments are outcompeted by sulfate reducers and forced to live in the nutrient-poor environments. Methane is also consumed in marine sediments by anaerobic methanotrophs living in consortium with sulfate reducing bacteria. In an

  16. Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia

    NASA Astrophysics Data System (ADS)

    Alifirova, T. A.; Pokhilenko, L. N.; Korsakov, A. V.

    2015-06-01

    Eclogite mantle xenoliths from the central part of Siberian craton (Udachnaya and Zarnitsa kimberlite pipes) as well as from the northeastern edge of the craton (Obnazhennaya kimberlite) were studied in detail. Garnet and clinopyroxene show evident exsolution textures. Garnet comprises rutile, ilmenite, apatite, and quartz/coesite oriented inclusions. Clinopyroxene contains rutile (± ilmenite) and apatite precipitates. Granular inclusions of quartz in kyanite and garnet usually retain features of their high-pressure origin. According to thermobarometric calculations, the studied eclogitic suite was equilibrated within lithospheric mantle at 3.2-4.9 GPa and 813-1080 °C. The precursor composition of garnets from Udachnaya and Zarnitsa eclogites suggests their stability at depths 210-260 km. Apatite precipitation in clinopyroxenes of Udachnaya and Zarnitsa allows us to declare that original pyroxenes could have been indicative of their high P-T stability. Raman spectroscopic study of quartz and coesite precipitates in garnet porphyroblasts confirms our hypothesis on the origin of the exsolution textures during pressure-temperature decrease. With respect to mineralogical data, we suppose the rocks to be subjected to stepwise decompression and cooling within mantle reservoir.

  17. Late Proterozoic diabase dikes of the New Jersey Highlands; a remnant of Iapetan rifting in the north-central Appalachians

    USGS Publications Warehouse

    Volkert, R.A.; Puffer, J.H.

    1995-01-01

    Diabase dikes of widespread occurrence intrude only middle Proterozoic rocks in the New Jersey Highlands. These dikes are enriched in TiO2, P2O5, Zr, and light rare earth elements, and have compositions that range from tholeiitic to alkalic. Dike descriptions, field relations, petrography, geochemistry, petrogenesis, and tectonic setting are discussed. The data are consistent with emplacement in a rift-related, within-plate environment and suggest a correlation with other occurrences of late Proterozoic Appalachian basaltic magmatism.

  18. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  19. Isotopic evidence for early Proterozoic age of the Idono Complex, west-central Alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradshaw, J.Y.; Kimbrough, D.L.; Stern, T.W.; Bundtzen, T.K.

    1991-01-01

    The Idono Complex is a fault-bounded, ~300 km2 fragment of Early Proterozoic continental crust surrounded by overlap assemblages and younger terranes accreted in Mesozoic time. It is composed of granitic to dioritic orthogneiss, amphibolite, and metasedimentary rocks. Trace element compositions of the granitoids and amphibolite suggest rock formation in a subduction-related volcanic arc terrain. Nine zircon fractions from three samples of granitoid orthogneiss define a U-Pb discordia line intersecting concordia at 2062 ?? 7 Ma and 182 ?? 8 Ma. The upper and lower intercepts are interpreted, respectively, as approximations of the time of granitoid crystallization and major episodic Pb-loss. Rocks of the Idono Complex may provide important insights into both Early Proterozoic evolution along the craton margin, and subsequent displacements. -from Authors

  20. Sensitivity of biomarkers to changes in chemical emissions in the Earth’s Proterozoic atmosphere

    NASA Astrophysics Data System (ADS)

    Grenfell, J. L.; Gebauer, S.; von Paris, P.; Godolt, M.; Hedelt, P.; Patzer, A. B. C.; Stracke, B.; Rauer, H.

    2011-01-01

    The search for life beyond the Solar System is a major activity in exoplanet science. However, even if an Earth-like planet were to be found, it is unlikely to be at a similar stage of evolution as the modern Earth. It is therefore of interest to investigate the sensitivity of biomarker signals for life as we know it for an Earth-like planet but at earlier stages of evolution. Here, we assess biomarkers, i.e. species almost exclusively associated with life, in present-day and in 10% present atmospheric level oxygen atmospheres corresponding to the Earth's Proterozoic period. We investigate the impact of proposed enhanced microbial emissions of the biomarker nitrous oxide, which photolyses to form nitrogen oxides which can destroy the biomarker ozone. A major result of our work is regardless of the microbial activity producing nitrous oxide in the early anoxic ocean, a certain minimum ozone column can be expected to persist in Proterozoic-type atmospheres due to a stabilising feedback loop between ozone, nitrous oxide and the ultraviolet radiation field. Atmospheric nitrous oxide columns were enhanced by a factor of 51 for the Proterozoic "Canfield ocean" scenario with 100 times increased nitrous oxide surface emissions. In such a scenario nitrous oxide displays prominent spectral features, so may be more important as a biomarker than previously considered in such cases. The run with "Canfield ocean" nitrous oxide emissions enhanced by a factor of 100 also featured additional surface warming of 3.5 K. Our results suggest that the Proterozoic ozone layer mostly survives the changes in composition which implies that it is indeed a good atmospheric biomarker.

  1. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    USGS Publications Warehouse

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  2. Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon.

    PubMed

    Roberson, A L; Roadt, J; Halevy, I; Kasting, J F

    2011-07-01

    An anoxic, sulfidic ocean that may have existed during the Proterozoic Eon (0.54-2.4 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The lack of copper, in particular, could have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N(2) O to N(2) . Today, only about 5-6% of denitrification results in release of N(2) O. If all denitrification stopped at N(2) O during the Proterozoic, the N(2) O flux could have been 15-20 times higher than today, producing N(2) O concentrations of several ppmv, but only if O(2) levels were relatively high (>0.1 PAL). At lower O(2) levels, N(2) O is rapidly photodissociated. Methane concentrations may also have been elevated during this time, as has been previously suggested. A lack of dissolved O(2) and sulfate in the deep ocean could have produced a high methane flux from marine sediments, as much as 10-20 times today's methane flux from land. The photochemical lifetime of CH(4) increases as more CH(4) is added to the atmosphere, so CH(4) concentrations of up to 100 ppmv are possible during this time. The combined greenhouse effect of CH(4) and N(2) O could have provided up to 10° of warming, thereby keeping the surface warm during the Proterozoic without necessitating high CO(2) levels. A second oxygenation event near the end of the Proterozoic would have resulted in a reduction in both atmospheric N(2) O and CH(4) , perhaps triggering the Neoproterozoic "Snowball Earth" glaciations.

  3. Was the Coppermine Homocline of northwestern Canada uplifted as part of a Middle Proterozoic forebulge

    SciTech Connect

    Cook, F.A. )

    1991-01-01

    Application of the principles of elastic plate bending to subsurface geometric information and outcrop in northwestern Canada suggests that Proterozoic crust was loaded and deflected during orogenic activity between about 1.6 and 1.1 Ga. Exposed Hudsonian (ca. 1.8-2.0 Ga) basement separating younger but coeval stratigraphic sequences in the Coppermine Homocline on the west and Bathurst Inlet on the east can be explained as a forebulge associated with the loading.

  4. Widespread iron-rich conditions in the mid-Proterozoic ocean.

    PubMed

    Planavsky, Noah J; McGoldrick, Peter; Scott, Clinton T; Li, Chao; Reinhard, Christopher T; Kelly, Amy E; Chu, Xuelei; Bekker, Andrey; Love, Gordon D; Lyons, Timothy W

    2011-09-07

    The chemical composition of the ocean changed markedly with the oxidation of the Earth's surface, and this process has profoundly influenced the evolutionary and ecological history of life. The early Earth was characterized by a reducing ocean-atmosphere system, whereas the Phanerozoic eon (less than 542 million years ago) is known for a stable and oxygenated biosphere conducive to the radiation of animals. The redox characteristics of surface environments during Earth's middle age (1.8-1 billion years ago) are less well known, but it is generally assumed that the mid-Proterozoic was home to a globally sulphidic (euxinic) deep ocean. Here we present iron data from a suite of mid-Proterozoic marine mudstones. Contrary to the popular model, our results indicate that ferruginous (anoxic and Fe(2+)-rich) conditions were both spatially and temporally extensive across diverse palaeogeographic settings in the mid-Proterozoic ocean, inviting new models for the temporal distribution of iron formations and the availability of bioessential trace elements during a critical window for eukaryotic evolution.

  5. Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, Central East Greenland

    NASA Technical Reports Server (NTRS)

    Green, J. W.; Knoll, A. H.; Swett, K.

    1988-01-01

    Silicified oolites and pisolites from Bed 18 of the Upper Proterozoic (about 700-800 Ma) Limestone-Dolomite "Series" of the Eleonore Bay Group, central East Greenland, contain a diverse suite of organically preserved microfossils that is, for the most part. [Of the] assemblages previously described from Proterozoic cherts and shales. Three principal assemblages occur in these rocks: 1) a class bound assemblage found in detrital carbonate grains (now silicified) that served as nuclei for ooid and pisoid growth, as well as in uncoated mud and mat clasts that were carried into the zone of ooid and pisoid deposition; 2) an epilithic and interstitial assemblage consisting of microorganisms that occurred on top of and between grains; and 3) a euendolithic assemblage composed of microbes that actively bored into coated grains. The Upper Proterozoic euendolithic assemblage closely resembles a community of euendolithic cyanobacteria found today in shallow marine ooid sands of the Bahama Banks. Thirteen species are described, of which eight are new, five representing new genera: Eohyella dichotoma n. sp., Eohyella endoatracta n. sp., Eohyella rectoclada n. sp., Thylacocausticus globorum n. gen. and sp., Cunicularius halleri n. gen. and sp., Graviglomus incrustus n. gen. and sp., Perulagranum obovatum n. gen. and sp., and Parenchymodiscus endolithicus n. gen. and sp.

  6. Middle Proterozoic age for the Montpelier Anorthosite, Goochland terrane, eastern Piedmont, Virginia

    USGS Publications Warehouse

    Aleinikoff, J.N.; Horton, J.W.; Walter, M.

    1996-01-01

    Uranium-lead dating of zircons from the Montpelier Anorthosite confirms previous interpretations, based on equivocal evidence, that the Goochland terrane in the eastern Piedmont of Virginia contains Grenvillian basement rocks of Middle Proterozoic age. A very few prismatic, elongate, euhedral zircons, which contain 12-29 ppm uranium, are interpreted to be igneous in origin. The vast majority of zircons are more equant, subangular to anhedral, contain 38-52 ppm uranium, and are interpreted to be metamorphic in origin. One fraction of elongate zircon, and four fragments of a very large zircon (occurring in a nelsonite segregation) yield an upper intercept age of 1045 ?? 10 Ma, interpreted as the time of anorthosite crystallization. Irregularly shaped metamorphic zircons are dated at 1011 ?? 2 Ma (weighted average of the 207Pb/206Pb ages). The U-Pb isotopic systematics of metamorphic titanite were reset during the Alleghanian orogeny at 297 ?? 5 Ma. These data provide a minimum age for gneisses of the Goochland terrane that are intruded by the anorthosite. Middle Proterozoic basement rocks of the Goochland terrane may be correlative with those in the Shenandoah massif of the Blue Ridge tectonic province, as suggested by similarities between the Montpelier Anorthosite and the Roseland anorthosite. Although the areal extent of Middle Proterozoic basement and basement-cover relations in the eastern Piedmont remain unresolved, results of this investigation indicate that the Goochland terrane is an internal massif of Laurentian crust rather than an exotic accreted terrane.

  7. Evidence for two pulses of glaciation during the late Proterozoic in northern Utah and southeastern Idaho.

    USGS Publications Warehouse

    Crittenden, M.D.; Christie-Blick, N.; Link, P.K.

    1983-01-01

    Over much of this area, the glacial deposits and associated rocks thicken westward and form the basal part of a miogeoclinal wedge that accumulated near the late Proterozoic and early Paleozoic continental margin. In the east, such deposits are thin and rest on Archean basement or rocks of Proterozoic Y age; in the west, they are part of thicker sequences in which deposition apparently continued without significant interruption from late Proterozoic into Cambrian time. Recent mapping shows that glacial episodes represented either by diamictite or by dropstones enclosed in fine-grained laminated beds are separated by as much as 1000m of non-glacial deposits, including black slate, alternating graywacke and siltstone, quartzite, and conglomerate. Using reasonable sedimentation rates for such deposits and by comparison with modern analogues, we infer that two episodes of glaciation, each probably consisting of multiple advances and retreats, were separated by a non-glacial interval of a few hundred thousand to a few million years' duration.-from Author

  8. The Wisconsin magmatic terrane: An Early Proterozoic greenstone-granite terrane formed by plate tectonic processes

    NASA Technical Reports Server (NTRS)

    Schulz, K. J.; Laberge, G. L.

    1986-01-01

    The Wisconsin magmatic terrane (WMT) is an east trending belt of dominantly volcanic-plutonic complexes of Early Proterozoic age (approx. 1850 m.y.) that lies to the south of the Archean rocks and Early Proterozoic epicratonic sequence (Marquette Range Supergroup) in Michigan. It is separated from the epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is bounded on the south, in central Wisconsin, by Archean gneisses, is truncated on the west by rocks of the Midcontinent rift system, and is intruded on the east by the post-orogenic Wolf river batholith. The overall lithologic, geochemical, metallogenic, metamorphic, and deformational characteristics of the WMT are similar to those observed in recent volcanic arc terranes formed at sites of plate convergence. It is concluded that the WMT represents an evolved oceanic island-arc terrane accreated to the Superior craton in the Early Proterozoic. This conclusion is strengthened by the apparent absence of Archean basement from most of the WMT, and the recent recognition of the passive margin character of the epicratonic Marquette Range Supergroup.

  9. Stromatolites of the Mescal Limestone (Apache Group, middle Proterozoic, central Arizona): taxonomy, biostratigraphy, and paleoenvironments

    NASA Technical Reports Server (NTRS)

    Bertrand-Sarfati, J.; Awramik, S. M.

    1992-01-01

    The 25- to 30-m-thick Algal Member of the Mescal Limestone (middle Proterozoic Apache Group) contains two distinct stromatolitic units: at the base, a 2- to 3-m-thick unit composed of columnar stromatolites and above, a thicker unit of stratiform and pseudocolumnar stromatolites. Columnar forms from the first unit belong to the Group Tungussia, and two new Forms are described: T. mescalita and T. chrysotila. Among the pseudocolumnar stromatolites of the thicker unit, one distinctive new taxon, Apachina henryi, is described. Because of the low stromatolite diversity, the biostratigraphic value of this assemblage is limited. The presence of Tungussia is consistent with the generally accepted isotopic age for the Apache Group of 1200 to 1100 Ma. The Mescal stromatolites do not closely resemble any other known Proterozoic stromatolites in the southwestern United States or northwestern Mexico. Analyses of sedimentary features and stromatolite growth forms suggest deposition on a stable, flat, shallow, subtidal protected platform during phases of Tungussia growth. Current action probably influenced the development of columns, pseudocolumns, and elongate stromatolitic ridges; these conditions alternated with phases of relatively quiet water characterized by nonoriented stromatolitic domes and stratiform stromatolites. Stable conditions favorable for development of the Mescal stromatolites were short-lived and did not permit the development of thick, stromatolite-bearing units such as those characteristic of many Proterozoic sequences elsewhere.

  10. Paleobiology of distinctive benthic microfossils from the upper Proterozoic Limestone-Dolomite "Series," central East Greenland

    NASA Technical Reports Server (NTRS)

    Green, J. W.; Knoll, A. H.; Golubic, S.; Swett, K.

    1987-01-01

    Populations of Polybessurus bipartitus Fairchild ex Green et al., a large morphologically distinctive microfossil, occur in silicified carbonates of the Upper Proterozoic (700-800 Ma) Limestone-Dolomite "Series," central East Greenland. Large populations of well-preserved individuals permit reconstruction of P. bipartitus as a coccoidal unicell that "jetted" upward from the sediment by the highly unidirectional secretion of extracellular mucopolysaccharide envelopes. Reproduction by baeocyte formation is inferred on the basis of clustered envelope stalks produced by small cells. Sedimentological evidence indicates that P. bipartitus formed surficial crusts locally within a shallow peritidal carbonate platform. Among living microorganisms a close morphological, reproductive, and behavioral counterpart to Polybessurus is provided by populations of an as yet underscribed cyanobacterium found in coastal Bahamian environments similar to those in which the Proterozoic fossils occur. In general morphology and "jetting" behavior, this population resembles species of the genus Cyanostylon, Geitler (1925), but reproduces via baeocyte formation. Polybessurus is but one of the more than two dozen taxa in the richly fossiliferous biota of the Limestone-Dolomite "Series." This distinctive population, along with co-occurring filamentous cyanobacteria and other microfossils, contributes to an increasingly refined picture of ecological heterogeneity in late Proterozoic oceans.

  11. Distribution and diagenesis of microfossils from the lower Proterozoic Duck Creek Dolomite, Western Australia

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Strother, P. K.; Rossi, S.

    1988-01-01

    Two distinct generations of microfossils occur in silicified carbonates from a previously undescribed locality of the Lower Proterozoic Duck Creek Dolomite, Western Australia. The earlier generation occurs in discrete organic-rich clasts and clots characterized by microquartz anhedra; it contains a variety of filamentous and coccoidal fossils in varying states of preservation. Second generation microfossils consist almost exclusively of well-preserved Gunflintia minuta filaments that drape clasts or appear to float in clear chalcedony. These filaments appear to represent an ecologically distinct assemblage that colonized a substrate containing the partially degraded remains of the first generation community. The two assemblages differ significantly in taxonomic frequency distribution from previously described Duck Creek florules. Taken together, Duck Creek microfossils exhibit a range of assemblage variability comparable to that found in other Lower Proterozoic iron formations and ferruginous carbonates. With increasing severity of post-mortem alteration, Duck Creek microfossils appear to converge morphologically on assemblages of simple microstructures described from early Archean cherts. Two new species are described: Oscillatoriopsis majuscula and O. cuboides; the former is among the largest septate filamentous fossils described from any Proterozoic formation.

  12. Polycrystalline diamond aggregates from the Mir kimberlite pipe, Yakutia: Evidence for mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Shatsky, V. S.; Zedgenizov, D. A.; Ragozin, A. L.; Reutsky, V. N.

    2016-11-01

    Polycrystalline diamond aggregates (boart, framesites, diamondites) have been widely studied but their origin is poorly understood. We report the results of a study in situ of two polished fragments of fine-grained (40-400 μm size of individual diamond grains) dense polycrystalline diamond aggregates from the Mir pipe containing visible multiple interstitial garnet inclusions. They were analyzed for major and trace elements of inclusions and one of them - for δ13C and N abundance and isotopic composition of host diamonds. These aggregates are classified as variety IX by Orlov (1977). No cavities were observed in these samples. Sixty two irregular garnet grains and one clinopyroxene inclusion were detected and analyzed in sample Mr 832. Garnets are homogeneous within single grains but variable in Mg# [100Mg/(Mg + Fe)] from 60 up to 87 and CaO contents (3.3-5.3 wt.%) among grains with a trend to negative correlation. Low Cr (550-640 ppm) confirms eclogitic (E-type) paragenesis. High Na2O contents (5.2 wt.%) of a single pyroxene inclusion are additional evidence of eclogitic nature of this sample. Wide variations in trace elements (ppm) are characteristic for garnet grains: Sr (2.7-25.6), Y (9.7-14.1), Zr (15.6-38.7) and positive Eu anomaly is present. The δ13C of diamonds within studied sample is variable (- 6.4 ÷- 9.8 ‰) as well as N abundance (75-1150 ppm) and δ15N - 27, - 38, - 58 ‰. The second peridotitic (U/P-type) sample Mr 838 contains eight inclusions of Mg-rich Cr-pyropes (Mg# 85, Cr2O3 3.2-3.4 wt.%) and magnesite inclusion with 4.35 wt.% FeO and 1.73 wt.% CaO. Trace element content in pyropes is relatively uniform (ppm): Sr (0.4-1.6), Y (13.2-13.4) and Zr (13.0). We conclude that heterogeneous distribution of the trace elements among garnet grains in Mr 832 and magnesite presence in Mr 838 are indicative of the effects of mantle metasomatism and rapid crystallization shortly before the eruption of the kimberlite.

  13. Diamonds from the Juina-5 kimberlite provide evidence for crustal volatile recycling into the deep Earth

    NASA Astrophysics Data System (ADS)

    Thomson, Andrew; Walter, Michael; Kohn, Simon; Burnham, Antony; Bulanova, Galina; Smith, Chris; Araujo, Debora

    2014-05-01

    'Superdeep' diamonds originate from a depth range spanning the asthenospheric upper mantle, transition zone and shallowest parts of the lower mantle [1]. Sporadically they entrap small inclusions of pre-existing or co-precipitating minerals during their crystallisation from volatile-rich melts or fluids. Such samples therefore preserve important petrologic, tectonic and geodynamic information about their growth environment together with evidence of the deep volatile cycling. The Juina-5 kimberlite has previously been recognised as a source of 'superdeep' diamonds [2]. Here we present and discuss data from an extended collection of Juina-5 diamonds. This work has revealed that these diamonds are dominantly composed of isotopically light carbon and contain a mineral inclusion cargo mostly of eclogitic affinity consisting of many former Mg- and Ca-perovskite, NAL-phase, CF-phase, stishovite, majoritic garnet, sodic pyroxene, ferropericlase, Fe or Fe-carbide and sulphide minerals. Together these observations suggest that the diamonds form from material of a subducted crustal origin. The high enrichment of the inclusions' trace element compositions implies that they cannot represent trapped fragments of formerly subsolidus mantle material. Geochemical modelling instead allows the compositions of Ca-perovskite and majorite inclusions to be directly linked to formation from a slab-derived carbonate bearing melt. It is suggested that the formation of 'superdeep' diamonds, and their inclusions, is the result of 'redox-freezing' during the interaction of oxidised slab melts and reducing mantle rocks [3]. It is expected that such melts will be produced during slab foundering and thermal equilibration in the upper/lower mantle boundary region, where tomographic evidence suggests slab subduction often stalls [4]. This hypothesis has been tested with experiments performed at transition zone pressures using the multi-anvil apparatus. At 20 GPa the composition of a low degree melt

  14. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  15. Magnetotelluric survey to locate the Archean/Proterozoic suture zone north of Wells, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2006-01-01

    It is important to know whether major mining districts in the Northern Nevada Gold Province are underlain by rocks of the Archean Wyoming craton, which are known to contain orogenic gold deposits, or by accreted rocks of the Paleoproterozoic Mojave province. It is also important to know the location and orientation of the Archean/Proterozoic suture zone between these provinces as well as major basement structures within these terranes because they may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The Archean was the main gold-mineralization period, and Archean lode-gold deposits were formed at mid-crustal depths along major shear zones. The nature of the crystalline basement below the Northern Nevada Gold Province and the location of major faults within it are relevant to Rodinian reconstructions, crustal development, and ore deposit models (e.g., Hofstra and Cline, 2000; Grauch and others, 2003). According to Whitmeyer and Karlstrom (2004), the Archean cratons of the northwestern United States and Canada had stabilized as continental lithosphere by 2.5 Ga, and were rifted and assembled into a large continental mass by 1.8 Ga, to which the 1.73-1.68 Ga Mohave province was accreted by 1.65 Ga. The Archean/Proterozoic suture zone has a west-southwest strike where it is exposed (Reed, 1993) at the eastern Utah and southwestern Wyoming border (Cheyenne Belt) where it is characterized by an up to 7-km-thick mylonite zone (Smithson and Boyd, 1998). In the Great Basin, the strike of the Archean/Proterozoic suture zone is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and basin fill. East-west and southwest-northeast strikes for the Archean/Proterozoic suture zone have been inferred based on Sr, Nd, and Pb isotopic compositions of granitoid intrusions (Tosdal and others, 2000). To better constrain the location and strike of the Archean/Proterozoic suture zone below cover

  16. Probing Archean lithosphere using the Lu-Hf isotope systematics of peridotite xenoliths from Somerset Island kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, Stefanie S.; Simonetti, Antonio; Francis, Don; Gariépy, Clément

    2002-04-01

    A knowledge of the Hf isotopic composition of the subcontinental lithosphere beneath Archean cratons is essential to constrain the Hf isotope budget of the Earth's mantle. Hf isotopic measurements were obtained by MC-ICP-MS for a suite of refractory peridotite xenoliths and constituent garnets from the Nikos kimberlite (100 Ma) on Somerset Island in order to constrain the isotopic composition and age of the lithosphere beneath the northern Canadian craton. The low-temperature Nikos peridotites (<1100°C), which represent the shallow Somerset lithosphere, are characterized by higher 176Lu/ 177Hf ratios (0.03-0.05) and Hf isotopic values ( 176Hf/ 177Hf (0.1Ga)=0.28296-0.28419) than the deep-seated high-temperature peridotites (>1100°C; 0.004-0.03, 0.28265-0.28333, respectively). These differences in Hf isotope signatures suggest that shallow and deep subcontinental lithosphere beneath Somerset Island represent isotopically distinct domains and do not share a common petrogenetic history. The Lu-Hf isotope systematics of the shallow low-temperature peridotites define a positively sloped line that plot along a 2.8 Ga reference isochron. A number of these peridotites are characterized by highly radiogenic Hf isotopic compositions suggestive of long-term radiogenic ingrowth (billions of years). These findings are consistent with an interpretation that the shallow Somerset lithosphere (to depths of ˜150 km) stabilized in the Archean. The majority of the high-temperature peridotites plot closer to the composition of the host kimberlite. Although the observed isotopic variation may be attributed in part to kimberlite-related Hf addition, it is possible that these deep-seated xenoliths represent younger mantle. The superchondritic 176Lu/ 177Hf ratios observed for a number of the shallow low-temperature peridotites indicate strong fractionation of Lu and Hf, suggesting mantle root formation in the garnet stability field (depths >80 km). The Hf isotope compositions for the

  17. Silicate globules in kyanite from grospydites of the Zagadochnaya kimberlite pipe, Yakutia: The problem of the origin

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Kovyazin, S. V.; Pokhilenko, L. N.; Sobolev, N. V.

    2011-01-01

    The results of complex study of silicate globules and α-quartz paramorphs after coesite in kyanite from grospydites from the Zagadochnaya kimberlite pipe, Yakutia, using optical and scanning electron spectroscopy, electron and ion microprobes, LA ICP MS and Raman spectroscopy, are presented. The existence of radial fractures diverging from silicate globules into the matrix (kyanite) attests to the fact that the content of the globules is extremely condensed. A zonal structure is usually typical for globules: a coat and a core, which can be explicitly distinguished under the electron microscope, can be differentiated in them. Compositionally, the coat of the globule corresponds to potassium feldspar (wt %: 66.4 SiO2; 16.9 Al2O3; 0.4 FeO; 0.1 CaO; 0.2 Na2O; 14.7 K2O). The globules were also detected in which along with K, a high content of Na and Ca was also ascertained in the silicate coat. The globule coat is considerably enriched with Ba, La, Ce, Nb, and a number of other noncompatible elements as compared with xenolith minerals. The water content in globules is ˜0.6 wt %. As compared with the host mineral (kyanite), the core part of the globules is also enriched with Co, Ni, Zn, and Cu; their content in kyanite is negligibly low. The entire data collection attests to the fact that the formation of silicate globules could have been caused by interaction of the conservated fluid and/or water-silicate melt with the host mineral and crystalline inclusions of clinopyroxene and garnet with decreasing pressure during the transportation of grospydite xenoliths by the kimberlite melt to the Earth's surface.

  18. Water-rich carbonatites at low pressures and kimberlites at high pressures

    NASA Astrophysics Data System (ADS)

    Gudfinnsson, G.; Keshav, S.; Presnall, D.

    2008-12-01

    than for water-free carbonate-bearing garnet lherzolite; (2) at these pressures, there is roughly 17-20 wt percent dissolved water in the melts, suggesting that carbonatitic melts can incorporate large amounts of water; (3) from 2.5 to roughly 3.5 GPa, melts coexisting with fo+opx+cpx+gt+dolomite+fluid are highly calcic and partly overlap calciocarbonatites found in nature; (4) a P-T invariant point occurs at 3.7 GPa/1125 C, at which fo+opx+cpx+gt+dolomite+magnesite+melt+fluid coexist, marking the beginning of the stability of magnesite at the hydrous, carbonated peridotite solidus; (5) with increasing pressure starting at this invariant point, the fluid-saturated solidus becomes considerably closer to the water-free, carbonated solidus in the model system CMAS-CO2. For instance, at 7 GPa, it lies only 125 C lower than that of water-free carbonated peridotite. At 6 and 7 GPa, the melt coexisting with the fo+opx+cpx+gt+magnesite+fluid phase assemblage, contains about 5-7 wt percent water, and is more akin to kimberlite (all in wt percent: 20-25 SiO2, 30-32 MgO, 19-20 CaO, 2-3 Al2O3) than carbonatite. At this stage it is not entirely clear what changes in the phase relations cause melts to attain this character.

  19. New model of the mantle lithosphere beneath Kuoyka kimberlite field Yakutia.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Kostrovitsky, Sergey; Ovchinnikov, Yury; Tychkov, Nikolai; Khmelnikova, Olga; Palessky, Stanislav

    2013-04-01

    New data for the 11 pipes from Kuoyka field show that high Cr2O3 garnets to 10- 12% as well as high Cr chromites (to 64%Cr2O3) are found in several more pipes Zaozernaya, Seraya, Slyudyanka, Vodorasdelnaya, Titan, Lusya in addition to Djanga pipe. All garnets belong o lherzolite field and not less than 1/3 are TiO rich. The TiO2 rich chromites are dominating in the Cr- rich population. Metasomatic Cr2O3- rich (to 6%) ilmenites pre in the MgO and TiO2- part of the variation diagrams. The Cr- diopside variations show high variations of Fe and Na content to 4 % suggesting the hybridic origin similar to the Cr- pyroxeneis from Obnazhennaya pyroxenites (Taylor et al ., 2003). Omphicites (to 7 % Na2O) are rare. Cr-amphiboles (pargasites and hornblendes) are common in the upper part of the SCLM as well as in the Anabar and Kharamai region. Reconstructions of the mantle sections show the deep lithospheric roots beneath the Zosernaya pipe (7.5 GPa) traced by the PT conditions for Opx, Cpx, Gar, Cr and Ilm. SCLM is divided in to 4 sections and Ilm trace tow intervals in lower and upper part form 4 GPa. Th HT branch is sporadically found from 7 GPa to the Moho. In other pipes ilmenite and garnet PT estimates are more common in the lower part o mantle section while the Cpx trace mainly middle part of SCLM similar to the Obnazhennaya pip. It seems that kimberlites captured mainly the walls of feeders traced by Cr- low garnets and ilmenites in the lower part of SCLM while peridotitic mantle column was captured starting from the middle part of SCLM. The NS transsect of the Kuoyka field show more fertile mantle sections in the NNW part of the field. The TRE determined for the minerals from Kuoyka field show rather rounded patterns for REE of garnets with high variations in HREE part and small elevation in LREE . The depleted compositions reval the inflection in Eu TRE spidergrams well as relatively small Sr minima. Many of them show Ta peak, relatively small Pb elevation and Th

  20. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    PubMed

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis

  1. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.

    PubMed

    Sperling, Erik A; Wolock, Charles J; Morgan, Alex S; Gill, Benjamin C; Kunzmann, Marcus; Halverson, Galen P; Macdonald, Francis A; Knoll, Andrew H; Johnston, David T

    2015-07-23

    Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.

  2. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    PubMed Central

    Bryant, Donald A.; Macalady, Jennifer L.

    2016-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic

  3. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation

    NASA Astrophysics Data System (ADS)

    Sperling, Erik A.; Wolock, Charles J.; Morgan, Alex S.; Gill, Benjamin C.; Kunzmann, Marcus; Halverson, Galen P.; MacDonald, Francis A.; Knoll, Andrew H.; Johnston, David T.

    2015-07-01

    Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.

  4. Towards Definition of Early Proterozoic/Archean Paleomagnetic Dipole Moments from Karelia (Russia)

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Tarduno, J. A.

    2001-05-01

    The onset of the geomagnetic dynamo may be related to the formation of the Earth's inner core. The timing of this event during the Precambrian differs in a number of theoretical models and the paleointensity database needs to be significantly extended to test various model predictions. We determine paleointensity from single plagioclase crystals derived from border dikes of the Early Proterozoic/Archean ( ~2.45 Ga) Burakovka layered intrusion (North Karelia, Russia). The use of these single crystals can result in data less affected by alteration. Magnetic hysteresis properties of plagioclases suggest that they contain single-domain to pseudo-single-domain magnetic inclusions. A study of low-temperature magnetic properties of single plagioclase crystals shows a sharp Verwey transition at 120 K, indicating the presence of stoichiometric, non-stressed magnetite. A significant magnetic anisotropy was not observed in the crystals, implying that magnetite exsolution was minor, consistent with fast cooling of the border dikes. We investigated four dikes using a modified Thellier technique. Of the twenty-two samples studied thus far, eight paleointensity determinations meet our reliability criteria (success rate is 36%). Based on these eight determinations, the average paleointensity is 36.5 +/- 1.2 μ T which corresponds to a virtual dipole moment of 6.49 +/- 0.21 x 1022 Am2. The latter value is consistent with the existence of a fully developed geomagnetic dynamo by the Early Proterozoic. Our results suggest that border dikes of the Burakovka layered intrusion can be used to obtain additional Early Proterozoic/Archean paleointensity values. Because of their fast cooling rates relative to the interiors of layered intrusions, border dikes also offer the opportunity to obtain secular variation data which, together with paleointensity values, could be used to define paleomagnetic dipole moments.

  5. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution

    NASA Astrophysics Data System (ADS)

    Gellatly, Anne M.; Lyons, Timothy W.

    2005-08-01

    Concentrations of oceanic and atmospheric oxygen have varied over geologic time as a function of sulfur and carbon cycling at or near the Earth's surface. This balance is expressed in the sulfur isotope composition of seawater sulfate. Given the near absence of gypsum in pre-Phanerozoic sediments, trace amounts of carbonate-associated sulfate (CAS) within limestones or dolostones provide the best available constraints on the isotopic composition of sulfate in Precambrian seawater. Although absolute CAS concentrations, which range from those below detection to ˜120 ppm sulfate in this study, may be compromised by diagenesis, the sulfur isotope compositions can be buffered sufficiently to retain primary values. Stratigraphically controlled δ 34S measurements for CAS from three mid-Proterozoic carbonate successions (˜1.2 Ga Mescal Limestone, Apache Group, Arizona, USA; ˜1.45-1.47 Ga Helena and Newland formations, Belt Supergroup, Montana, USA; and ˜1.65 Ga Paradise Creek Formation, McNamara Group, NW Queensland, Australia) show large isotopic variability (+9.1‰ to +18.9‰, -1.1‰ to +27.3‰, and +14.1‰ to +37.3‰, respectively) over stratigraphic intervals of ˜50 to 450 m. This rapid variability, ranging from scattered to highly systematic, and overall low CAS abundances can be linked to sulfate concentrations in the mid-Proterozoic ocean that were substantially lower than those of the Phanerozoic but higher than values inferred for the Archean. Results from the Belt Supergroup specifically corroborate previous arguments for seawater contributions to the basin. Limited sulfate availability that tracks the oxygenation history of the early atmosphere is also consistent with the possibility of extensive deep-ocean sulfate reduction, the scarcity of bedded gypsum, and the stratigraphic δ 34S trends and 34S enrichments commonly observed for iron sulfides of mid-Proterozoic age.

  6. Evidences for multiple remagnetization of Proterozoic dykes from Iguerda inlier (Anti-Atlas Belt, Southern Morocco)

    NASA Astrophysics Data System (ADS)

    Neres, Marta; Silva, Pedro F.; Ikene, Moha; Martins, Sofia; Hafid, Ahmid; Mata, João; Almeida, Francisco; Youbi, Nasrrddine; Boumehdi, Ahmed

    2016-04-01

    Paleomagnetic data able to constrain the paleoposition of the West African Craton (WAC) during Paleo-Mesoproterozoic are absent, mainly due to gaps on the sedimentary record and intense remagnetizations. Dykes that intrude several Proterozoic inliers of WAC in the Anti-Atlas Belt (southern Morocco) have recently been subjected to geochronological studies, which revealed ages between Paleoproterozoic and early Neoproterozoic. Therefore, these dykes represent a window of opportunity for paleomagnetic studies aiming to infer about the paleoposition of WAC during Proterozoic. On this scope we conducted a paleomagnetic study on seven Proterozoic dykes of the Iguerda inlier. We determined the paleomagnetic directions and evaluated their meaning by rock magnetic and mineral analyses, complemented by petrographic observations. Results revealed that these rocks record the presence of a complex history of remagnetization events, mostly assigned to several Phanerozoic thermal/chemical events. In particular, we found components assigned to the late stages of Pan African orogeny (s.l.), to the Late Carboniferous Variscan orogeny, and to more recent events. The recognized remagnetization processes are related to widespread metamorphic events under greenschist facies followed by low-temperature oxidation, both responsible for the formation of new magnetic phases (magnetite and hematite). The primary (magmatic) thermo-remanent magnetization of the dykes was obliterated during these events through multiple thermal and chemical remagnetizations. For only one dyke the presence of primary magnetization is possible to infer, though not to confirm, and would place WAC at an equatorial position around 1750 Ma. The authors wish to acknowledge FCT (Portugal) - CNRST (Morocco) bilateral agreement for its major contribution without which this work wouldn't be possible. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz.

  7. Occurrence of natural fullerenes in low grade metamorphosed Proterozoic shungite from Karelia, Russia

    NASA Astrophysics Data System (ADS)

    Parthasarathy, G.; Srinivasan, R.; Vairamani, M.; Ravikumar, K.; Kunwar, A. C.

    1998-11-01

    We report on the occurrence of fullerenes in Proterozoic shungite (˜2 Ga) from the shungite mine, Kondopoga, Karelia, Russia (62.12°N 34.17°E). The presence of fullerenes has been confirmed by mass spectrometry, with peaks at 360 and 720 amu (atomic mass unit), powder X-ray diffraction showing ten diffraction peaks corresponding to the fullerite structure with a = 1.4201(5) nm, and 13C nuclear magnetic resonance (NMR) spectroscopic studies, showing a peak at 143.2 ppm. In the Kondopoga shungite mine, fullerenes occur in silty shales that have experienced greenshist facies metamorphism.

  8. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic

    NASA Technical Reports Server (NTRS)

    Grant, S. W.; Knoll, A. H. (Principal Investigator)

    1990-01-01

    Cloudina-bearing biosparites and biomicrites in the lower part of the Nama Group, Namibia, contain a wide morphological diversity of shell fragments that can all be attributed to the two named species C. hartmannae and C. riemkeae. The curved to sinuous tubular shells of Cloudina were multi-layered. Each shell layer was 8 to 50 micrometers thick and in the form of a slightly flaring tube with one end open and the other closed. Growth appears to have been periodic with successive shell layers forming within older layers. Each added layer was slightly elevated from the previous layer at the proximal end and was asymmetrically placed within the older layer so that only a portion of the new shell layer was fused to the previous layer. This type of growth left a relatively large unminerialized area between the shell layers which was often partially or fully occluded by early marine cements. The thin shell layers exhibit both plastic and brittle deformation and were likely formed of a rigid CaCO3-impregnated organic-rich material. Often the shell layers are preferentially dolomitized suggesting an original mineralogy of high-magnesian calcite. Both species in the Nama Group formed thickets, or perhaps bioherms, and this sedentary and gregarious habit suggests that Cloudina was probably a filter-feeding metazoan of at least a cnidarian grade of organization. The unusual shell structure of Cloudina gives rise to a characteristic suite of taphonomic and diagenetic features that can be used to identify Cloudina-bearing deposits within the Nama Group and in other terminal Proterozoic deposits around the world. Species of Cloudina occur in limestones from Brazil, Spain, China, and Oman in sequences consistent with a latest Proterozoic age assignment. In addition, supposed lower Cambrian, pre-trilobitic, shelly fossils from northwest Mexico and the White-Inyo Mountains in California and Nevada, including Sinotubulites, Nevadatubulus, and Wyattia, are all either closely related

  9. Geochemistry and stratigraphic relations of middle Proterozoic rocks of the New Jersey Highlands

    USGS Publications Warehouse

    Volkert, Richard A.; Drake, Avery Ala

    1999-01-01

    Middle Proterozoic rocks of the New Jersey Highlands consist of a basement of dacitic, tonalitic, trondhjemitic, and charnockitic rocks that constitute the Losee metamorphic suite. These rocks are unconformably overlain by a layered supracrustal sequence of quartzo-feldspathic and calcareous rocks. Abundant sheets of hornblende- and biotite-bearing rocks of the Byram intrusive suite and clinopyroxene-bearing rocks of the Lake Hopatcong intrusive suite were synkinematically emplaced at about 1,090 Ma. These intrusive suites constitute the Vernon Supersuite. The postorogenic Mount Eve Granite has been dated at 1,020?4 Ma and is confined to the extreme northern Highlands.

  10. Diagenesis of quartz in the Upper Proterozoic Kaimur Sandstones, Son Valley, central India

    NASA Astrophysics Data System (ADS)

    Morad, S.; Bhattacharyya, Ajit; Al-Aasm, I. S.; Ramseyer, K.

    1991-10-01

    The Upper Proterozoic Kaimur Sandstones in central India are quartz-, sublithic- and lithic-arenites cemented by quartz, illite and hematite. Diagenetic quartz occurs in five modes: syntaxial overgrowths, fracture healings, aggregates of small euhedral crystals, quartz resulting from the alteration of detrital silicates and from the recrystallization of quartz. Intergranular pressure dissolution is suggested as the main source of silica with smaller contribution from other sources, such as silica dissolved in meteoric waters, stylolitization, clay-mineral diagenesis, and the alteration of detrital silicates. Studies on the fluid inclusions and oxygen isotopes of diagenetic quartz suggest that meteoric water modified by diagenetic reactions has mediated the quartz cementation.

  11. Peculiarities of the composition of volatile components in picroilmenites from Yakutian kimberlites of various ages (by gas chromatography—mass spectrometry)

    NASA Astrophysics Data System (ADS)

    Tomilenko, A. A.; Bul'bak, T. A.; Pokhilenko, L. N.; Kuzmin, D. V.; Sobolev, N. V.

    2016-07-01

    The composition of volatile components in picroilmenites from Yakutian kimberlitic pipes of various ages (the Olivinovaya, Malokuonapskaya, and Udachnaya-East pipes) was studied for the first time by means of gas chromatography-mass spectrometry (GC-MS). It was shown that picroilmenites and olivines from same kimberlitic pipes contained volatile components of close composition, whereas these components were quite different in these minerals from different pipes. These features point to a common source and represent the specificity of the magma chamber formed under the pronounced influence of hydrocarbons with their derivates, as well as nitrogen-, chlorine-, and sulfur-containing compounds. The fraction of hydrocarbons and derivates in the composition of volatile matter is as high as 99%, including 9.7% of chlorine- and fluorinecontaining compounds.

  12. Regularities of spatial association of major endogenous uranium deposits and kimberlitic dykes in the uranium ore regions of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Kalashnyk, Anna

    2015-04-01

    During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45

  13. Mantle xenocrysts from the Arkhangelskaya kimberlite (Lomonosov mine, NW Russia): Constraints on the composition and thermal state of the diamondiferous lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Lehtonen, M.; O'Brien, H.; Peltonen, P.; Kukkonen, I.; Ustinov, V.; Verzhak, V.

    2009-11-01

    The Arkhangelskaya kimberlite pipe belongs to the Zolotitsa kimberlite field in the Arkhangelsk region, NW Russia. It is the first pipe of the Lomonosov diamond mine to be put into production, with 2 million tons of ore already extracted. In this study major and trace element compositions of garnet, clinopyroxene (Cpx), Mg-ilmenite and chromite xenocrysts from the Arkhangelskaya pipe have been used to infer information about the compositional variability of the mantle underlying the Zolotitsa field. Single-grain thermobarometry of peridotitic Cpx xenocrysts yields a cool cratonic geotherm that follows a ca. 36 mW/m 2 conductive model. Equilibration temperatures of garnet and chromite grains based on Ni- and Zn-thermometry, respectively, indicate a sampling interval of ca. 70-230 km of the lithospheric mantle when projected onto the Cpx-derived geotherm. The major element chemistry of Mg-ilmenite xenocrysts suggests that almost optimal redox conditions for diamond preservation prevailed in the mantle during the time of emplacement of the host kimberlite magmas. Garnet major and trace element compositions combined with the Cpx-geotherm indicate that the peridotitic diamond window extends from 130 to 210 km under Zolotitsa and that the deeper parts of the lithosphere have been affected by metasomatic events. Arkhangelskaya seems to have sampled the bulk of its diamonds from the deepest portion of the diamond stability field, between 190 and 210 km. In comparison, the neighbouring Lomonosova and Pionerskaya pipes are known to have collected their diamonds from 130-160 km. The comparable grade of the three pipes suggests that diamondiferous material is generously distributed within the diamond stability field. The remarkable difference evidenced by garnet composition and thermobarometry between Arkhangelskaya and the two other Zolotitsa pipes probably derives from differences in rheology and eruption rates of the rising kimberlite magmas.

  14. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites

    NASA Astrophysics Data System (ADS)

    Papineau, Dominic

    2010-03-01

    The distribution of major phosphate deposits in the Precambrian sedimentary rock record is restricted to periods that witnessed global biogeochemical changes, but the cause of this distribution is unclear. The oldest known phosphogenic event occurred around 2.0 Ga and was followed, after more than 1.3 billion years, by an even larger phosphogenic event in the Neoproterozoic. Phosphorites (phosphate-rich sedimentary rocks that contain more than 15% P2O5) preserve a unique record of seawater chemistry, biological activity, and oceanographic changes. In an attempt to emphasize the potentially crucial significance of phosphorites in the evolution of Proterozoic biogeochemical cycles, this contribution provides a review of some important Paleoproterozoic phosphate deposits and of models proposed for their origin. A new model is then presented for the spatial and temporal modes of occurrence of phosphorites along with possible connections to global changes at both ends of the Proterozoic. Central to the new model is that periods of atmospheric oxygenation may have been caused by globally elevated rates of primary productivity stimulated by high fluxes of phosphorus delivery to seawater as a result of increased chemical weathering of continental crust over geological timescales. The striking similarities in biogeochemical evolution between the Paleo- and Neoproterozoic are discussed in light of the two oldest major phosphogenic events and their possible relation to the stepwise rise of atmospheric oxygen that ultimately resulted in significant leaps in biological evolution.

  15. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean

    NASA Astrophysics Data System (ADS)

    Boyle, R. A.; Clark, J. R.; Poulton, S. W.; Shields-Zhou, G.; Canfield, D. E.; Lenton, T. M.

    2013-02-01

    Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic ~0.55 Ma, despite oxygenation of Earth’s atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H2S-rich conditions) along productive continental margins. Today, sustained biotic H2S production requires NO3- depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N2-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO3- with denitrification in lower anoxic waters, and N2-fixation-driven production overlying euxinia. Interchange between these states likely explains the varying H2S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.

  16. Global biogeochemical changes at both ends of the proterozoic: insights from phosphorites.

    PubMed

    Papineau, Dominic

    2010-03-01

    The distribution of major phosphate deposits in the Precambrian sedimentary rock record is restricted to periods that witnessed global biogeochemical changes, but the cause of this distribution is unclear. The oldest known phosphogenic event occurred around 2.0 Ga and was followed, after more than 1.3 billion years, by an even larger phosphogenic event in the Neoproterozoic. Phosphorites (phosphate-rich sedimentary rocks that contain more than 15% P(2)O(5)) preserve a unique record of seawater chemistry, biological activity, and oceanographic changes. In an attempt to emphasize the potentially crucial significance of phosphorites in the evolution of Proterozoic biogeochemical cycles, this contribution provides a review of some important Paleoproterozoic phosphate deposits and of models proposed for their origin. A new model is then presented for the spatial and temporal modes of occurrence of phosphorites along with possible connections to global changes at both ends of the Proterozoic. Central to the new model is that periods of atmospheric oxygenation may have been caused by globally elevated rates of primary productivity stimulated by high fluxes of phosphorus delivery to seawater as a result of increased chemical weathering of continental crust over geological timescales. The striking similarities in biogeochemical evolution between the Paleo- and Neoproterozoic are discussed in light of the two oldest major phosphogenic events and their possible relation to the stepwise rise of atmospheric oxygen that ultimately resulted in significant leaps in biological evolution.

  17. Hydrocarbon source-rock evaluation - Solor Church Formation (middle Proterozoic, Keweenawan Supergroup), southeastern Minnesota

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1984-01-01

    In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solor Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5 percent for 22 of 25 samples); (2) the organic matter is thermally very mature (Tmax = 494°C, sample 19) and is probably near the transition between the wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup).

  18. Late Proterozoic and Silurian alkaline plutons within the southeastern New England Avalon zone

    SciTech Connect

    Hermes, O.D. ); Zartman, R.E. )

    1992-07-01

    Distinct pulses of quartz-bearing, alkaline plutonism and volcanism are known to have occurred in the Avalon zone of southeastern New England during the Late Ordovician, Early Silurian, Devonian, and Carboniferous. Zircon separates from the Franklin and Dartmouth plutons demonstrate that two additional, previously unrecognized periods of alkaline magmatism occurred. The Franklin pluton yields an age of 417 {plus minus} 6 Ma (Late Silurian), whereas the Dartmouth pluton is Late Proterozoic (595 {plus minus} 5 Ma) and markedly older than the other plutons of alkaline affinity. The new ages further emphasize the episodic nature and long-term duration of such alkaline igneous events within the southeastern New England Avalon zone. The Dartmouth pluton may represent a post-collisional alkaline granite emplaced in the Late Proterozoic, almost immediately after a major period of calcalkaline igneous activity that accompanied plate convergence and continental accretion. The abrupt change from orogenic calcalkaline igneous activity to post-collisional alkaline granite, followed by younger episodes of anorogenic emplacement, is remarkably similar to igneous events reported from pan-African mobile belts widespread throughout Africa. In addition, parts of the Dartmouth pluton exhibit features indicative of mixing and commingling of felsic and mafic melts that are associated with coevally formed mylonitic fabrics. Because these fabrics are conformable to those in adjacent gneisses, but discordant with Alleghanian fabrics in the nearby Carboniferous Narragansett basin, they represent some of the best candidates for pre-Alleghanian structures thus far identified in the southeastern New England Avalon zone.

  19. Midcontinent U.S. fault and fold zones: A legacy of Proterozoic intracratonic extensional tectonism?

    NASA Astrophysics Data System (ADS)

    Marshak, Stephen; Paulsen, Timothy

    1996-02-01

    The U.S. continental interior (midcontinent) contains numerous fault and fold zones. Seismic and drilling data indicate that some of these zones first formed as Proterozoic-Eocambrian rift faults, but the origin of most remains enigmatic. We propose that the enigmatic fault and fold zones also began as Proterozoic-Eocambrian normal faults. We base our hypothesis on the following: (1) enigmatic zones parallel known rifts, (2) the structural style of enigmatic zones mirrors the structural style of known rifts, (3) the map pattern of some enigmatic zones (e.g., the La Salle deformation belt of Illinois) resembles the map pattern of contemporary rifts, and (4) it is easier to rupture an intact craton by normal faulting than by reverse or strike-slip faulting. These zones, along with known rifts, represent the legacy of widespread extensional tectonism that brittlely broke up the craton into fault-bounded blocks prior to deposition of Phanerozoic platform cover. Once formed, midcontinent fault and fold zones remained weak, allowing cratonic blocks to jostle relative to one another during the Phanerozoic, thereby inverting faults (and creating transpressional or transtensional structural assemblages), localizing seismicity, and channeling (or releasing) ore-generating fluids.

  20. Laurentia, Australia, and Antarctica as a Late Proterozoic supercontinent. Constraints from isotopic mapping

    SciTech Connect

    Borg, S.G.; DePaolo, D.J. Lawrence Berkeley Lab., CA )

    1994-04-01

    The reconstruction of Laurentia, Australia, and Antarctica into a Proterozoic supercontinent is evaluated by analyzing the fit of Precambrian provinces defined by isotopic and geochronologic mapping. The analysis is complicated by allochthonous segments of the Antarctic and eastern Australian margins. Removal of the allochthonous provinces produces a closer fit of the continents; there is a match of Early Proterozoic basement between southwestern Laurentia and the only exposure of craton known from the paleo-Pacific margin of Antarctica. In addition, western Laurentia is brought closer to the Australian Gawler block, consistent with provenance interpretations of the Belt Supergroup. Removal of the allochthonous provinces by right-lateral translation relative to the Antarctic craton margin places them in a pre-750 Ma position where they could be southwestward extensions of the Yavapai-Mazatzal and Grenville provinces of southern Laurentia. This modified reconstruction leads to a prediction of extensive Archean basement in Antarctica between the South Pole and Victoria Land, a prediction partly borne out by Archean rocks in the Miller Range of the Transantarctic Mountains; it also predicts the presence of 1.4 Ga rapakivi granites in the Transantarctic Mountains basement. This configuration implies assembly of the Australia-Antarctica Gondwana margin by terrane accretion following, or accompanied by, left-lateral translation. 27 refs., 2 figs., 1 tab.

  1. Anorthosites and anorthosites: Contrasting plagioclase-rich rocks in the Archaean and Proterozoic

    SciTech Connect

    Owens, B.E. . Dept. of Earth Planetary Sciences)

    1993-03-01

    Anorthosites -- rocks consisting predominantly of plagioclase feldspar -- have figured prominently in at least two distinct intervals of Earth history: the late-Archaean and mid-Proterozoic. Archaean anorthosites (AA) are a key component of high-grade gneiss terranes, where they typically form laterally extensive deformed sheets or sills up to a km thick. In contrast, Proterozoic anorthosites (PA) form plutons or plutonic complexes, and are most abundant in a quasi-continuous belt across NE N. America. In addition to these temporal and structural contrasts, AA and PA display markedly different mineralogical and geochemical properties, including, respectively: (1) equant plagioclase megacrysts vs. tabular megacrysts; (2) highly calcic compositions vs. intermediate to alkalic compositions; (3) amphibole vs. olivine or orthopyroxene as the dominant mafic mineral; (4) the presence of chromite, locally in ore-grade layers vs. massive, cross-cutting Fe-Ti oxide ores; (5) low levels of Sr and Ba vs. high to extreme levels; (6) high levels of ferromagnesian trace elements vs. low levels; (7) Ga/Al values typical of basaltic plagioclase vs. much lower values; and (8) moderately vs. extremely fractionated REE patterns. Given these contrasts, it appears that the only property AA and PA share is their plag-rich nature, suggesting that there must be more than one process (and probably multiple processes) capable of producing anorthosite.

  2. Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time.

    PubMed

    Robbins, E I; Porter, K G; Haberyan, K A

    1985-09-01

    Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 x 110 mum and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that represent environments analogous to those that preserve fecal pellets today. Rocks containing pellets and algal microfossils range in age from 0.53 to 1.9 gigayears (Gyr) and include Burgess Shale, Greyson and Newland Formations, Rove Formation, and Gunflint Iron-Formation. Similar rock types of Archean age, ranging from 2.68 to 3.8 Gyr, were barren of pellets. If the Proterozoic microfossils are fossilized fecal pellets, they provide evidence of metazoan life and a complex food chain at 1.9 Gyr ago. This occurrence predates macroscopic metazoan body fossils in the Ediacaran System at 0.67 Gyr, animal trace fossils from 0.9 to 1.3 Gyr, and fossils of unicellular eukaryotic plankton at 1.4 Gyr.

  3. A Proterozoic lithospheric source for Karoo magmatism: evidence from the Nuanetsi picrites

    NASA Astrophysics Data System (ADS)

    Ellam, R. M.; Cox, K. G.

    1989-03-01

    Highly magnesian Jurassic picrite basalts from the Nuanetsi area of southeastern Zimbabwe are close to primary mantle melts, not substantially modified by high level fractionation processes. The lavas display a wide variation in isotope ratios and incompatible trace element abundances, which may be attributed to a heterogeneous mantle source. Sm sbnd Nd isotope results, on samples carefully selected to be thoroughly representative of the chemical variation within the whole suite, reveal a late Proterozoic isochron. One possibility is that this represents a mantle isochron corresponding to the last episode of Sm sbnd Nd fractionation within a lithospheric source. Alternatively, binary mixing might explain the apparent isochron, but there are problems identifying a mantle reservoir with sufficiently high Sm/Nd ratios. In either case a significant role for an ancient sub-crustal lithospheric source is implied. Rb sbnd Sr data do not lie on a well-defined isochron, and probably reflect Rb sbnd Sr fractionation at, or close to, the time of eruption. Pb isotope data are broadly consistent with the late Proterozoic age. The apparent age of the mantle isochron is similar to that of a crust-forming event in the Natal-Namaqualand belt, which may indicate coupled evolution of the continental crust and lithospheric mantle.

  4. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen.

    PubMed

    Swett, K; Knoll, A H

    1989-01-01

    Upper Proterozoic carbonate successions from central East Greenland (the Limestone-Dolomite 'Series' of the Eleonore Bay Group) and Svalbard (the Backlundtoppen Formation of the Akademikerbreen) Group, Spitsbergen, and the Upper Russo Formation of the Raoldtoppen Group, Nordaustlandet) contain thick sequences dominated by pisolites. These rocks were generated in shallow marine environments, and the pisoids are essentially oversized ooids. A marine environment is supported by the thickness and lateral extent of the carbonates; by a sedimentary association of pisolites with stromatolites, flake-conglomerates, calcarenites, calcilutites, microphytolites, and ooids similar to that found in numerous other Proterozoic carbonate successions; by sedimentary structures, including cross-beds and megaripples that characterize the pisolitic beds; and by microorganisms that inhabit modern marine ooids of the Bahama Banks. Petrographic features and strontium abundances suggest that the pisoids were originally aragonitic, but neomorphism, silicification, calcitization, and dolomitization have extensively modified original mineralogies and fabrics. The East Greenland and Svalbard pisolitic carbonates reflect similar depositional environments and diagenetic histories, reinforcing previous bio-, litho-, and chemostratigraphic interpretations that the two sequences accumulated contiguously in a coastal zone of pisoid genesis which extended for at least 600, and probably 1000 or more, kilometres.

  5. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen

    NASA Technical Reports Server (NTRS)

    Swett, K.; Knoll, A. H.

    1989-01-01

    Upper Proterozoic carbonate successions from central East Greenland (the Limestone-Dolomite 'Series' of the Eleonore Bay Group) and Svalbard (the Backlundtoppen Formation of the Akademikerbreen) Group, Spitsbergen, and the Upper Russo Formation of the Raoldtoppen Group, Nordaustlandet) contain thick sequences dominated by pisolites. These rocks were generated in shallow marine environments, and the pisoids are essentially oversized ooids. A marine environment is supported by the thickness and lateral extent of the carbonates; by a sedimentary association of pisolites with stromatolites, flake-conglomerates, calcarenites, calcilutites, microphytolites, and ooids similar to that found in numerous other Proterozoic carbonate successions; by sedimentary structures, including cross-beds and megaripples that characterize the pisolitic beds; and by microorganisms that inhabit modern marine ooids of the Bahama Banks. Petrographic features and strontium abundances suggest that the pisoids were originally aragonitic, but neomorphism, silicification, calcitization, and dolomitization have extensively modified original mineralogies and fabrics. The East Greenland and Svalbard pisolitic carbonates reflect similar depositional environments and diagenetic histories, reinforcing previous bio-, litho-, and chemostratigraphic interpretations that the two sequences accumulated contiguously in a coastal zone of pisoid genesis which extended for at least 600, and probably 1000 or more, kilometres.

  6. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering

    PubMed Central

    Mills, Benjamin; Lenton, Timothy M.; Watson, Andrew J.

    2014-01-01

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered—contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500–500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  7. Preliminary digital geologic map of the Penokean (early Proterozoic) continental margin in northern Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, W.F.; Ottke, Doug

    1999-01-01

    The data on this CD consist of geographic information system (GIS) coverages and tabular data on the geology of Early Proterozoic and Archean rocks in part of the Early Proterozoic Penokean orogeny. The map emphasizes metasedimentary and metavolcanic rocks that were deposited along the southern margin of the Superior craton and were later deformed during continental collision at about 1850 Ma. The area includes the famous iron ranges of the south shore region of the Lake Superior district. Base maps, both as digital raster graphics (DRG) and digital line graphs (DLG) are also provided for the convenience of users. The map has been compiled from many individual studies, mostly by USGS researchers, completed during the past 50 years, including many detailed (1:24,000 scale) geologic maps. Data was compiled at 1:100,000 scale and preserves most of the details of source materials. This product is a preliminary release of the geologic map data bases during ongoing studies of the geology and metallogeny of the Penokean continental margin. Files are provided in three formats: Federal Spatial Data Transfer format (SDTS), Arc export format (.e00) files, and Arc coverages. All files can be accessed directly from the CD-ROM using either ARC/INFO 7.1.2 or later or Arc View 3.0 or later software. ESRI's Arc Explorer, a free GIS data viewer available at the web site: http://www.esri.com/software/arcexplorer/index.html also provides display and querying capability for these files.

  8. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.

    PubMed

    Mills, Benjamin; Lenton, Timothy M; Watson, Andrew J

    2014-06-24

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered--contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500-500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time.

  9. Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran

    SciTech Connect

    Behnia, Pouran

    2007-06-15

    The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 'nondeposits' were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input data showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area.

  10. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean.

    PubMed

    Boyle, R A; Clark, J R; Poulton, S W; Shields-Zhou, G; Canfield, D E; Lenton, T M

    2013-01-01

    Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic ~0.55 Ma, despite oxygenation of Earth's atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H(2)S-rich conditions) along productive continental margins. Today, sustained biotic H(2)S production requires NO(3)(-) depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N(2)-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO(3)(-) with denitrification in lower anoxic waters, and N(2)-fixation-driven production overlying euxinia. Interchange between these states likely explains the varying H(2)S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.

  11. Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestone-Dolomite 'Series', central East Greenland

    NASA Technical Reports Server (NTRS)

    Green, J. W.; Knoll, A. H.; Swett, K.

    1989-01-01

    Silicified flake conglomerates and in situ stratiform stromatolites of the Upper Proterozoic (c. 700-800 Ma) Limestone-Dolomite 'Series', central East Greenland, contain well preserved microfossils. Five stratigraphic horizons within the 1200 m succession contain microbial mat assemblages, providing a broad palaeontological representation of late Proterozoic peritidal mat communities. Comparison of assemblages demonstrates that the taxonomy and diversity of mat builder, dweller, and allochthonous populations all vary considerably within and among horizons. The primary mat builder in most assemblages is Siphonophycus inornatum, a sheath-forming prokaryote of probable but not unequivocally established cyanobacterial affinities. An unusual low diversity unit in Bed 17 is dominated by a different builder, Tenuofilum septatum, while a thin cryptalgal horizon in Bed 18 is built almost exclusively by Siphonophycus kestron. Although variable taphonomic histories contribute to observed assemblage variation, most differences within and among horizons appear to reflect the differential success or failure of individual microbial populations in colonizing different tidal flat microenvironments. Twenty-two taxa are recognized, of which two are described as new: Myxococcoides stragulescens n.sp. and Scissilisphaera gradata n. sp.

  12. Diamond collecting in northern Colorado.

    USGS Publications Warehouse

    Collins, D.S.

    1982-01-01

    The discovery of numerous diamond-bearing kimberlite diatremes in the N Front Range of Colorado and Wyoming is of both scientific and economic interest. Species recovered from heavy-mineral concentrates include Cr-diopside, spinel, Mg-ilmenite, pyrope and diamond. A nodule tentatively identified as a graphite-diamond eclogite was also found. -G.W.R.

  13. The roles of primary kimberlitic and secondary Dwyka glacial sources in the development of alluvial and marine diamond deposits in Southern Africa [review article

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Moore, A. E.

    2004-01-01

    The source area of Dwyka Group glacial sedimentary rocks in southern Africa contains a province of pre-Karoo diamondiferous kimberlites. Ice-flow vectors and facies variations indicate that diamonds and kimberlitic indicator minerals, acquired in this source region during the Dwyka glaciation, were transported to and deposited in areas adjacent to the modern Atlantic coast of southern Africa. Diamonds and kimberlite garnets, recovered from the Koa River gravel deposits on the Bushmanland Plateau, were probably derived by weathering of these Dwyka Group rocks. Along the west coast of South Africa and Namibia, marine and fluvial diamond concentrations of Cretaceous, Miocene and Plio-Pleistocene ages were also partly derived from Dwyka sources in both the Karoo and Kalahari Basins, as well as from other secondary sources such as glacial and fluvial sedimentary rocks of the Gariep Complex, Nama Group and Table Mountain Group. On the coastal plain, Cretaceous fluvial deposits formed during scarp retreat under podzolic weathering conditions. Miocene and younger fluvial and marine deposits formed by weathering processes that involved stripping of back-escarpment Karoo cover. Due to the presence of oversized diamictite-clast trapsites, concentrations of diamonds accumulated on exposed pre-Karoo surfaces during extended periods of crustal stability. Brief episodes of increased precipitation and uplift during the Miocene and Pliocene caused the flushing of these concentrations, in discrete events, via a few major drainages, into marine and near-coastal fluvial and aeolian settings. The majority of inland alluvial diamond deposits are located in a broad belt to the north and west of the Cretaceous diamondiferous kimberlite clusters in central South Africa. This distribution is probably the result of north-westward-flowing fluvial systems, inland of the Great Escarpment, which eroded significant thicknesses (up to 1.5 km) of Karoo cover rocks and drained into the palaeo

  14. Geochronological and lead-isotope evidences for rapid crust formation in middle-proterozoic time: The Labrador example

    NASA Technical Reports Server (NTRS)

    Schaerer, Urs

    1988-01-01

    Extensive U-Pb geochronological studies in the Grenville and Makkovik provinces have shown that eastern Labrador is underlain by two distinct crustal blocks. In order to substantiate the juvenile character of the middle-Proterozoic crustal block, the isotopic compositon of lead in leached k-feldspars from the same rocks were analyzed. The results of the analysis are briefly discussed.

  15. Lead isotopic evidence for mixed sources of Proterozoic granites and pegmatites, Black Hills, South Dakota, USA

    NASA Astrophysics Data System (ADS)

    Krogstad, Eirik J.; Walker, Richard J.; Nabelek, Peter I.; Russ-Nabelek, Carol

    1993-10-01

    The lead isotopic compositions of K-feldspars separated from the ca. 1700 Ma Harney Peak Granite complex and spatially associated granitic pegmatites indicate that these rocks were derived from at least two sources. It has been reported previously that the core of the Harney Peak Granite complex is dominated by relatively lower/ gd18O (avg. 11.5 %.) granites, whereas higher / gd18O (avg. 13.2%.) granites occur around the periphery of the complex. The higher δ 18O granites and one simple pegmatite have low values of 207Pb /204Pb for their 206Pb /204Pb Thus, they likely were derived from a source with a short crustal residence time. This source may have been the pelitic schists into which the Harney Peak Granite complex and pegmatites were intruded. Feldspars from granites with lower / gd18O values have significantly higher 207Pb /204Pb for their 206Pb /204Pb . The data define a linear array with a slope equivalent to an age of ca. 2.6 Ga with t 2 defined to be 1.7 Ga. Such a slope could represent a mixing array or a secondary isochron for the source. These low δ18O granites could have been derived from a source with a high U/ Pb and with a crustal residence beginning before the Proterozoic. The source (s) of these granites may have been a sediment derived from late Archean continental crust. The highly evolved Tin Mountain pegmatite has lead isotopic systematics intermediate between those of the two granite groups, suggesting either a mixed source or contamination. Two late Archean granites, the Little Elk Granite and the Bear Mountain Granite, had precursors with high U/Pb and low Th/U histories. The Th/U history of the Bear Mountain Granite is too low for this rock to have been an important component of the source of the Proterozoic granites. However, crustal rocks with lead isotopic compositions similar to those of the Little Elk Granite were an important source of lead for some of the Proterozoic granitic rocks.

  16. Arsenic-induced phosphate limitation under experimental Early Proterozoic oceanic conditions

    NASA Astrophysics Data System (ADS)

    Chi Fru, Ernest; Hemmingsson, Christoffer; Holm, Mikaela; Chiu, Beverly; Iñiguez, Enrique

    2016-01-01

    Comparison of phosphorus concentrations associated with modern hydrothermal Fe(III)(oxyhydr)oxides and ancient Fe(III) oxide-rich iron formations, is used to estimate bioavailable Precambrian marine phosphorus (P) concentrations. This led to the proposition of a low dissolved P budget of ∼10-25% of present-day levels, before ∼1.9 billion years ago. Estimates incorporating ancient marine Si levels ≥ 0.67 mM instead suggested global dissolved P levels greater than today. Here we unite current experimental models that have considered NaCl solutions containing elevated dissolved Fe(II), Si, Ca2+ and Mg2+ ions in the incorporation of P in Precambrian marine Fe(III)(oxyhydr)oxides, in addition to arsenic as a hydrothermal proxy. We show that the coprecipitation of dissolved P and Fe(III)(oxyhydr)oxides from arsenic-rich marine waters produces an average P distribution coefficient of ∼0.072 (± 0.01) μM-1. This is comparable to the ∼ 0.07 μM-1 predicted for Fe(III)(oxyhydr)oxides in modern arsenic-rich, submarine hydrothermal settings, from which the lower Early Proterozoic dissolved marine P concentrations were predicted. As/P molar ratios below modern seawater ratios removed the negative feedback effect high Si impose on P scavenging by Fe(III)(oxyhydr)oxides. The binding of As(III) to Fe(III)(oxyhydr)oxides exhibits a lower competitive influence on P fixation. As(V) that likely became prominent in the surficially oxidized Early Proterozoic oceans induced dissolved P limitation because of preferential P sequestration at the expense of dissolved As(V) enrichment. The control of As on P scavenging by the precipitating Fe(III)(oxyhydr)oxides is strong regardless of common seawater cations (Mg2+ and Ca2+). The data suggest that the application of Si and Fe(III)(oxyhydr)oxides as an ancient seawater P proxy should consider chemical variability between depositional basins, taking into account the rather strong role hydrothermal arsenic has on the distribution of P

  17. Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan

    PubMed Central

    Hoyal Cuthill, Jennifer F.; Conway Morris, Simon

    2014-01-01

    The branching morphology of Ediacaran rangeomorph fronds has no exact counterpart in other complex macroorganisms. As such, these fossils pose major questions as to growth patterns, functional morphology, modes of feeding, and adaptive optimality. Here, using parametric Lindenmayer systems, a formal model of rangeomorph morphologies reveals a fractal body plan characterized by self-similar, axial, apical, alternate branching. Consequent morphological reconstruction for 11 taxa demonstrates an adaptive radiation based on 3D space-filling strategies. The fractal body plan of rangeomorphs is shown to maximize surface area, consistent with diffusive nutrient uptake from the water column (osmotrophy). The enigmas of rangeomorph morphology, evolution, and extinction are resolved by the realization that they were adaptively optimized for unique ecological and geochemical conditions in the late Proterozoic. Changes in ocean conditions associated with the Cambrian explosion sealed their fate. PMID:25114255

  18. Isotopic disequilibrium and lower crustal contamination in slowly ascending magmas: Insights from Proterozoic anorthosites

    NASA Astrophysics Data System (ADS)

    Bybee, G. M.; Ashwal, L. D.

    2015-10-01

    Many Proterozoic anorthosite massifs show crustal isotopic signatures that have, for decades, fuelled debate regarding the source of these temporally-restricted magmas. Are these signatures indicative of lower crustal melting or of significant assimilation of crustal material into mantle-derived magmas? Traditional whole rock isotopic tracers (Sr, Nd, Pb and Os), like other geochemical, petrological and experimental tools, have failed to identify unambiguously the origins of the crust-like signature and resolve the source controversies for these feldspathic, cumulate intrusives. We make use of high precision Sr, Nd and Pb isotopic compositions of mineral phases (plag, opx, mag) and comagmatic, high-pressure orthopyroxene megacrysts as well as whole rock anorthosites/leuconorites from the Mealy Mountains Intrusive Suite (MMIS) and the Nain Plutonic Suite (NPS) to probe the origin of the crustal isotopic signatures and assess the importance of differentiation at lower crustal depths. This selection of samples represents fragments from various stages of the polybaric ascent of the magmas, while the study of the Mealy Mountains Intrusive Suite and the Nain Plutonic Suite is instructive as each is intruded into crust of significantly different age and isotopic composition. We observe marked differences in the whole-rock isotopic composition of Proterozoic anorthosites and high-pressure megacrysts (e.g. εNd;T = +2 to -10) intruded into crustal terranes of different ages and isotopic compositions. Evidence for varying degrees of internal isotopic disequilibrium (ΔNd, ΔSr, ΔPb) in anorthosites from these different terranes reinforces the notion that crustal contamination, and more importantly, the nature of the crustal assimilant, has a profound influence on the chemical signature of Proterozoic anorthosites. While most samples from the MMIS and NPS show significant and measurable ΔNd and ΔPb disequilibrium, ΔSr compositions cluster around zero. This decoupling in

  19. Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology

    USGS Publications Warehouse

    Fanning, C.M.; Flint, R.B.; Parker, A.J.; Ludwig, K. R.; Blissett, A.H.

    1988-01-01

    Through the application of both conventional U-Pb zircon analyses and small-sample U-Pb isotopic analyses, the nature and timing of tectonic events leading to the formation of the Gawler Craton have been defined more precisely. Constraints on deposition of Early Proterozoic iron formation-bearing sediments have been narrowed down to the period 1960-1847 Ma. Deformed acid volcanics, including the economically important Moonta Porphyry, have zircon ages of ??? 1790 and 1740 Ma. The voluminous acid Gawler Range Volcanics and correlatives to the east were erupted over a short interval at 1592 ?? 2 Ma, and were intruded by anorogenic granites at ??? 1575 Ma. Small-sample zircon analyses proved to be an extremely valuable adjunct to conventional analyses, generally yielding more-concordant data which forced a curved discordia through an upper intercept slightly younger than from a conventional straight-line discordia. ?? 1988.

  20. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  1. Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth

    USGS Publications Warehouse

    Sonett, C.P.; Kvale, E.P.; Zakharian, A.; Chan, M.A.; Demko, T.M.

    1996-01-01

    The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield Formation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is d??/dt k2 sin(2??) (where ?? is the Earth-moon radius vector, k2 is the tidal Love number, and ?? is the tidal lag angle) and that this rate has been approximately constant since the late Precambrian. When the contribution to tidal friction from the sun is taken into account, these data imply that the length of the terrestrial day 900 million years ago was -18 hours.

  2. Growth, stabilization, and reactivation of Proterozoic lithosphere in the southwestern United States

    SciTech Connect

    Bowring, S.A. ); Karlstrom, K.E. )

    1990-12-01

    Growth of Proterozoic continental lithosphere in the southwestern United States involved assembly of tectonostratigraphic terranes during several pulses of convergent tectonism ca. 1.74, 1.70, and 1.65-1.60 Ga. Prograde metamorphism accompanied orogenic assembly, and peak metamorphic conditions outlasted deformation. Regions now characterized by the highest metamorphic grades underwent slow isobaric cooling and were not uplifted until more than 200 m.y. after assembly. Regions of low metamorphic grade were not uplifted substantially after assembly. The authors suggest that (1) relatively thin lithospheric fragments were assembled into isostatically stable, normal thickness continental lithosphere; (2) assembly did not erase lithospheric-scale heterogeneities; (3) the present juxtaposition of different crustal levels reflects differential uplift related to 1.4-1.1 Ga tectonomagmatic activity; and (4) the boundaries between different lithospheric blocks were repeatedly reactivated from Precambrian through Tertiary time.

  3. Chromium Isotopes in Carbonate Rocks: New Insights into Proterozoic Atmospheric Oxygenation

    NASA Astrophysics Data System (ADS)

    Kah, L. C.; Gilleaudeau, G. J.; Frei, R.; Kaufman, A. J.; Azmy, K.; Bartley, J. K.; Chernyavskiy, P.; Knoll, A. H.

    2015-12-01

    There has been a long-standing debate in geobiology about the role that Earth's oxygenation played in the evolution of complex life. Temporal linkages exist between the Great Oxidation Event (GOE) and the evolution of eukaryotes, as well as Neoproterozoic rise in oxygen and the diversification of metazoans. Further advances have been hampered, however, by the lack of direct proxies that mark specific levels of atmospheric pO2 in the geologic past. Chromium (Cr) isotopes show promise in this regard because the oxidation of Cr during terrestrial weathering—which results in isotopic fractionation—is dependent on a specific threshold of atmospheric pO2 (0.1-1% of the present atmospheric level [PAL]). This threshold value broadly coincides with recent estimates of the oxygen requirements of early animals. Here we report new Cr-isotope data from four late Mesoproterozoic carbonate-dominated successions. Samples were collected from the Turukhansk Uplift (Siberia), the El Mreiti Group (Mauritania), the Vazante Group (Brazil), and the Angmaat Formation (Canada). We emphasize the application of Cr-isotopes to carbonate rocks because the broad temporal range of this lithology in the geologic record provides an opportunity to significantly expand our understanding of Proterozoic oxygenation on shorter time scales. Our data indicate that pO2 levels required to support early animals were attained long before Neoproterozoic metazoan diversification, although the large degree of isotopic heterogeneity in our dataset may indicate that pO2 > 0.1-1% PAL was only a transient phenomenon in the Mesoproterozoic. This study demonstrates the utility of Cr-isotopes as an atmospheric redox proxy in carbonate rocks and helps inform future avenues of research on Proterozoic pO2 thresholds.

  4. Empirical Records of Environmental Change across the Archean-Proterozoic Transition

    NASA Astrophysics Data System (ADS)

    Kaufman, A. J.

    2011-12-01

    Time-series geochemical analyses of scientific drill cores intersecting the Archean-Proterozoic transition suggest a coupling of environmental and biological change that culminated in the pervasive oxygenation of Earth's atmosphere and oceans. Elemental and multiple isotope measurements of sedimentary archives, including carbonate, shale, and banded iron-formation from Western Australia, South Africa, Brazil, and southern Canada, indicate important changes in the carbon, sulfur, and nitrogen cycles that monitor the redox state of the oceans and the cyanobacterial buildup of atmospheric oxygen and ozone. In response, continental weathering would have increased, resulting in the enhanced delivery of sulfate and nutrients to seawater, further stimulating photoautotrophic fluxes of oxygen to surface environments. The positive feedback may additionally be responsible for the decline of atmospheric methane and surface refrigeration, represented by a series of discrete ice ages beginning around 2.4 billion years ago, due to the loss of greenhouse capacity during a time of lower solar luminosity. While speculative, the linkage of surface oxidation with enhanced nutrient supply and development of stratospheric sunscreen soon after the Archean-Proterozoic boundary suggests that the earliest perturbation in the carbon cycle may be associated with the rapid expansion of single-celled eukaryotes. Both sterol synthesis in eukaryotes and aerobic respiration require significant levels of oxygen in the ambient environment. Hence, Earth's earliest ice age(s) and onset of a modern and far more energetic carbon cycle may have been directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  5. Preliminary basin analysis of late Proterozoic-Cambrian post-rift strata, southeast Idaho thrust belt

    SciTech Connect

    Link, P.K.; Jansen, S.T.; Halimdihardja, P.; Lande, A.C.; Zahn, P.D.

    1987-08-01

    Strata of the Brigham Group in the Paris-Putnam plate of the southeastern Idaho thrust belt span the late Proterozoic-Cambrian boundary and consist of quartzose sandstone with subordinate pebble conglomerate and siltstone. The Brigham Group is overlain by fossiliferous Cambrian carbonate units that represent the transition from siliciclastic to carbonate deposition in the Cordilleran miogeocline. The Brigham Group contains four stratigraphic sequences bounded by regional disconformities. The lower sequence includes strata below the Brigham group (upper member, Pocatello Formation), plus the Papoose Creek Formation and most of the overlying Caddy Canyon Quartzite. This sequence is dominantly marine with shoreface and braided fluvial strata at the top. The first sequence is overlain disconformably by offshore sub-wave base marine strata of the upper Caddy Canyon Quartzite and Inkom Formation. This second sequence is entirely marine and is composed dominantly of siltstone with sandstone-filled channels. The third sequence comprises the Mutual Formation, an entirely braided fluvial and lacustrine unit. The fourth sequence (Sauk sequence) locally overlies the Mutual Formation with an erosional unconformity and consists of dominantly marine strata of the Camelback Mountain Quartzite, Gibson Jack Formation, Windy Pass Argillite, Twin Knobs Formation, and Sedgwick peak Quartzite. Correlations of these sequences to the McCoy Creek Group of eastern Nevada suggests uniform conditions of sea level and subsidence across the late Proterozoic-Cambrian Cordilleran miogeocline. This preliminary synthesis suggests the Brigham and McCoy Creek Groups are post-rift deposits, as indicated by regional persistence of facies, paleocurrents, and quartzose petrology.

  6. Evidence for a lower crustal origin of high-Al orthopyroxene megacrysts in Proterozoic anorthosites

    SciTech Connect

    Wiebe, R.A.

    1985-01-01

    Nodules and xenocrysts dominated by high-Al orthopyroxene (HAO) occur in strongly chilled Proterozoic basaltic dikes which cut the Nain anorthosite complex, Labrador. HAO (En 73-68, Al/sub 2/O/sub 3/ = 6.5-4.5) lacks exsolution; it occurs both as anhedral xenocrysts up to 10 cm in diameter and with euhedral plagioclase (An55) in ophitic nodules. Rarely, olivine occurs with HAO and Al-spinel with plagioclase. Scarce Fe-rich nodules contain: (1) opx + pig, (2) aug + pig, and (3) coarsely exsolved ulvospinel. Pyroxene pairs yield T's of 1250 to 1170/degree/C, whereas coexisting lamellae in exsolved ulvospinel yield T's between 1145 and 1120/degree/C, with fO/sub 2/ near the WM buffer. If all nodules came from a similar depth, the rare occurrence of olivine with plagioclase suggests a maximum pressure of about 11 kb. The high subsolidus T's of the nodules contrasts with the low T of the host anorthosites at the time of dike emplacement and hence indicates a deep source for the nodules. HAO is nearly identical in composition to the high-Al orthopyroxene megacrysts with exsolved plagioclase (HAOM) found in most Proterozoic anorthosites. Many nodules of plagioclase and HAO also have textures comparable to ophitic occurrences of HAOM in anorthosite. Rafting of cotectic nodules from the lower crust could explain occurrences of HAOM in shallow-level anorthosites. The nodules and xenocrysts are samples of lower crustal cumulates. Their compositions suggest that they were produced by magmas similar to those that were parental to the anorthosites. They lend support to models which derive anorthosites by fractional crystallization of basaltic magma.

  7. Mudrock geochemistry of the proterozoic pretoria group, transvaal sequence (South Africa): geological implications

    NASA Astrophysics Data System (ADS)

    Schreiber, U. M.; Eriksson, P. G.; Snyman, C. P.

    1992-04-01

    Mudrocks of the 2300-2100 Ma Pretoria Group, Transvaal Sequence, differ from published data on Proterozoic mudrocks from other parts of the world. Most SiO 2/Al 2O 3 and K 2O/Na 2O ratios lie outside the field of Proterozoic-Phanerozoic shales, with K 2O/Na 2O ratios becoming more widely spread with increasing stratigraphic height. Stratigraphic trends occur in the major element distribution within the Pretoria Group: Al 2O 3 and FeO (total) contents decrease upward, with a major change between the Silverton and Vermont Formations, whereas the opposite is true of MgO and CaO. The increase of the latter elements with stratigraphic height is possibly related to penecontemporaneous andesitic volcanism in the depository during the later stages of sedimentation. Higher Al 2O 3 and total iron contents towards the base of the group probably indicate more deeply weathered source materials, as is borne out by the Chemical Index of Alteration (Nesbitt and Young, 1982) of these older mudrocks. Mixed granitic to basaltic source rock composition is inferred from low Cr/Zr and intermediate TiO 2/Al 2O 3 ratios. Variable Th/Sc ratios suggest that sedimentary recycling did not play a major part during deposition of the Pretoria Group. A decrease in the determined loss on ignition for stratigraphically younger mudrock samples can be related to a reduced carbonaceous mudrock component. Low boron contents point to a freshwater palaeoenvironment rather than a marine depository.

  8. Stratigraphy of the Proterozoic Revett Formation, Coeur d'Alene District, Idaho

    USGS Publications Warehouse

    Mauk, Jeffrey L.

    2002-01-01

    The Proterozoic Revett Formation of the Belt Supergroup contains three informal members that can be identified throughout the Coeur d'Alene mining district of northern Idaho. The lower Revett Formation is dominated by quartzite, but also contains intervals of siltite. The middle Revett consists predominantly of siltite, though quartzite and argillite locally form significant intervals. The upper Revett consists of intervals of quartzite that alternate with intervals of siltite and/or thin-bedded argillite. These units show dramatic changes in thickness and sedimentary facies within the Coeur d'Alene mining district; changes that are more abrupt and extreme than seen elsewhere in the Belt basin. The regionally significant Osburn fault bisects the district, with 20 to 30 km of post-mineralization right-lateral strike-slip offset. South of this fault, the upper Revett is 640 m thick at the Bunker Hill mine in the west, 450 to 500 m thick in the centrally located Silver Belt, and over 550 m thick at the Reindeer Queen deposit to the east. North of the Osburn fault, the upper Revett is approximately 120 m thick in the vicinity of the Lucky Friday mine, but abruptly thins to 45 to 90 m to the north and northeast, in the southern end of the western Montana copper sulfide belt. The middle Revett Formation south of the Osburn fault appears to be 400 to 450 m thick. North of the Osburn Fault, the middle Revett thins to approximately 120 m in the Lucky Friday area, and to approximately 60 m at Military Gulch. The lower Revett Formation is approximately 1650 m thick south of the Osburn fault, but thins to 400 to 450 m thick to the north of the Osburn fault. Observed thickness changes support previous hypotheses that the current Osburn fault coincides with a Proterozoic synsedimentary fault that controlled sedimentation in this region.

  9. Proterozoic metamorphism and uplift history of the north-central Laramie Mountains, Wyoming, USA

    USGS Publications Warehouse

    Patel, S.C.; Frost, B.R.; Chamberlain, K.R.; Snyder, G.L.

    1999-01-01

    The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U-Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U-Pb apatite ages are 2.4-2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz-biotite-plagioclase-garnet-staurolite-kyanite in the pelitic schists; (b) quartz-biotite-plagioclase-low-Ca amphiboles-kyanite in Mg-Al-rich schists, and locally (c) hornblende-plagioclase-garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg-Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from > 7 kbar to < 3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78-1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.

  10. Asymmetric extension of the Middle Proterozoic lithosphere, Mount Isa terrane, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Betts, P. G.; Lister, G. S.; O'Dea, M. G.

    1998-11-01

    The Middle Proterozoic Mount Isa Basin, of the Mount Isa terrane, hosts several large Pb-Zn-Ag deposits and is arguably one of the richest mineral provinces in the world. The deformed remnants of this basin extend from the eastern margin of the Leichhardt River Fault Trough through to the Murphy Tectonic Ridge in the far north of the terrane. The Mount Isa Basin initially evolved in response to NW-SE-directed extension during the Mount Isa Rift Event. This event began before ˜1708 Ma and had ceased by ˜1653 Ma. A sag basin continued to evolve thereafter until ˜1595 Ma. Regional analysis of the highest level cover rocks of the Mount Isa Basin reveals a notable difference in the locus of syn-rift sedimentation, syn-rift magmatism, and post-rift subsidence. Although crustal extension was widespread across the Mount Isa Basin, tectonic subsidence was focussed along the ˜N-S-oriented Mount Isa Rift. Approximately 3-5 km of fluvial to shallow marine clastic sediments were deposited into isolated rift basins. Bimodal volcanism and emplacement of shallow level plutons occurred along the western and northwestern margins of the Mount Isa Rift. Magmatic provinces mark the locus of significant subcrustal lithospheric thinning, asthenospheric upwelling, and mafic underplating. Within these magmatic provinces the syn-rift sequences are fewer and thinner (750-2000 m) and were dominantly deposited in subaerial environments, suggesting a relatively stable uplift and subsidence history. The position of maximum subcrustal lithospheric extension is determined by the position of greatest post-rift subsidence. This occurred beneath the northern Mount Isa terrane where the thickest post-rift sequences are preserved and the depositional history is more protracted. We propose that the evolution of the Mount Isa Basin is a consequence of asymmetric extension of the Middle Proterozoic lithosphere.

  11. Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans

    NASA Astrophysics Data System (ADS)

    Michiels, Céline C.; Darchambeau, François; Roland, Fleur A. E.; Morana, Cédric; Llirós, Marc; García-Armisen, Tamara; Thamdrup, Bo; Borges, Alberto V.; Canfield, Donald E.; Servais, Pierre; Descy, Jean-Pierre; Crowe, Sean A.

    2017-01-01

    Nitrogen limitation during the Proterozoic has been inferred from the great expanse of ocean anoxia under low-O2 atmospheres, which could have promoted NO3- reduction to N2 and fixed N loss from the ocean. The deep oceans were Fe rich (ferruginous) during much of this time, yet the dynamics of N cycling under such conditions remain entirely conceptual, as analogue environments are rare today. Here we use incubation experiments to show that a modern ferruginous basin, Kabuno Bay in East Africa, supports high rates of NO3- reduction. Although 60% of this NO3- is reduced to N2 through canonical denitrification, a large fraction (40%) is reduced to NH4+, leading to N retention rather than loss. We also find that NO3- reduction is Fe dependent, demonstrating that such reactions occur in natural ferruginous water columns. Numerical modelling of ferruginous upwelling systems, informed by our results from Kabuno Bay, demonstrates that NO3- reduction to NH4+ could have enhanced biological production, fuelling sulfate reduction and the development of mid-water euxinia overlying ferruginous deep oceans. This NO3- reduction to NH4+ could also have partly offset a negative feedback on biological production that accompanies oxygenation of the surface ocean. Our results indicate that N loss in ferruginous upwelling systems may not have kept pace with global N fixation at marine phosphorous concentrations (0.04-0.13 μM) indicated by the rock record. We therefore suggest that global marine biological production under ferruginous ocean conditions in the Proterozoic eon may thus have been P not N limited.

  12. Stable isotope, chemical, and mineral compositions of the Middle Proterozoic Lijiaying Mn deposit, Shaanxi Province, China

    USGS Publications Warehouse

    Yeh, Hsueh-Wen; Hein, James R.; Ye, Jie; Fan, Delian

    1999-01-01

    The Lijiaying Mn deposit, located about 250 km southwest of Xian, is a high-quality ore characterized by low P and Fe contents and a mean Mn content of about 23%. The ore deposit occurs in shallow-water marine sedimentary rocks of probable Middle Proterozoic age. Carbonate minerals in the ore deposit include kutnahorite, calcite, Mn calcite, and Mg calcite. Carbon (−0.4 to −4.0‰) and oxygen (−3.7 to −12.9‰) isotopes show that, with a few exceptions, those carbonate minerals are not pristine low-temperature marine precipitates. All samples are depleted in rare earth elements (REEs) relative to shale and have negative Eu and positive Ce anomalies on chondrite-normalized plots. The Fe/Mn ratios of representative ore samples range from about 0.034 to <0.008 and P/Mn from 0.0023 to <0.001. Based on mineralogical data, the low ends of those ranges of ratios are probably close to ratios for the pure Mn minerals. Manganese contents have a strong positive correlation with Ce anomaly values and a moderate correlation with total REE contents. Compositional data indicate that kutnahorite is a metamorphic mineral and that most calcites formed as low-temperature marine carbonates that were subsequently metamorphosed. The braunite ore precursor mineral was probably a Mn oxyhydroxide, similar to those that formed on the deep ocean-floor during the Cenozoic. Because the Lijiaying precursor mineral formed in a shallow-water marine environment, the atmospheric oxygen content during the Middle Proterozoic may have been lower than it has been during the Cenozoic.

  13. Contraints On Lithospheric Extension From Break-Up Of The Proterozoic Siberia-Laurentia Connection

    NASA Astrophysics Data System (ADS)

    Sears, J. W.

    2009-12-01

    A robust Proterozoic plate reconstruction that joins the NE Siberian and SW North American cratons provides constraints on tectonic, sedimentary, and thermal evolution of lithospheric extension leading to continental break-up. The reconstruction blends clues from Siberia and North America to show that the lithospheric extension occurred in temporally isolated episodes spanning more than one billion years. The first episode culminated in opening of the intracratonic Mesoproterozoic Belt basin at about 1.5 Ga, with widespread anorogenic magmatism, dike swarms, and rifting. It may have responded to drift stagnation of the parent supercontinent with attendant entrapment of heat and thermal expansion of the sub-lithospheric mantle. The rifting and magmatism followed a continent-wide icosahedral pattern but did not open into sea-floor spreading. The second episode took place at about 780 Ma, much along the lines of the first rifts, culminating in the Gunbarrel magmatic event and Windermere rift sedimentation, as drift stagnation and thermal expansion re-opened the older icosahedral lithospheric fractures. The third episode began in latest Proterozoic to earliest Cambrian, and proceeded to sea-floor spreading and thermal subsidence of conjugate margins, with transform movement along some earlier rift lines. Transform segments of the rift system evolved into steep continental margins, as along the Rocky Mountain trench of Canada, whereas linking segments formed low-angle detachment surfaces with broad continental shelves on upper and lower plates, as in the Verkhoyansk Mountains of Siberia and and conjugate Great Basin of North America. The relative pole of rotation between the cratons appears to have shifted in Late Devonian leading to renewed extension and mafic magmatism in some areas and convergence in other areas of the developing conjugate margins. The overall history implies that initial rifting of sluggish supercontinents may be driven by thermal expansion of

  14. Melting experiments on the Udachnaya kimberlite at 6.3-7.5 GPa: Implications for the role of H2O in magma generation and formation of hydrous olivine

    NASA Astrophysics Data System (ADS)

    Sokol, Alexander G.; Kupriyanov, Igor N.; Palyanov, Yury N.; Kruk, Alexey N.; Sobolev, Nikolay V.

    2013-01-01

    Melting experiments on kimberlite from the Udachnaya pipe have been performed at 6.3-7.5 GPa and 1300-1600 °C using a split-sphere multianvil apparatus. The water content in kimberlite varied from 2.5 to 11.6 wt.% and the CO2/(CO2 + H2O) molar ratio was from 0.61 to 0.23. The samples were placed in a graphite container inside a Pt capsule. The oxygen fugacity (fO2) during the experiment was controlled by the equilibrium between graphite and water-bearing carbonate-silicate melt. At relatively low temperatures, fO2 was close to the EMOG/D equilibrium, at higher temperatures, it shifted for approximately 1 log unit to more reduced conditions. An olivine + garnet + clinopyroxene assemblage was present at ⩽100 °C below the liquidus of the Udachnaya kimberlite, with 6-8 wt.% H2O at the pressure 6.3 GPa and 6-10 wt.% H2O at 7.5 GPa. At 2.5 wt.% H2O the same assemblage appeared at ⩾150 °C below liquidus, both at 6.3 and 7.5 GPa. Orthopyroxene did not form at any temperature and pressure of the experiments. The presence of clinopyroxene near the liquidus was due to the calcic nature and a high degree of silica undersaturation in the Udachnaya kimberlite. At the supra-solidus conditions, garnet and clinopyroxene compositionally distinct from minerals of the megacryst/macrocryst suite crystallized in equilibrium with low-H2O carbonated melt. Near the liquidus of high-H2O kimberlite, the stable olivine composition was from Fo91 to Fo98. The garnet composition (CaO ˜8 wt.%, TiO2 <1 wt.% and Cr2O3 up to 2.2 wt.%) approached that of Ti-bearing garnet typical of Cr-poor garnet megacrysts while the clinopyroxene was an analog of clinopyroxene megacrysts in kimberlite. Infrared absorption measurements showed that crystallized olivines contained water in the form of Ti-clinohumite-like and OH-clinohumite-like defects. The H2O content of olivine was found to depend mainly on water content in kimberlite melt and pressure. Olivine with 120-170 ppm H2O crystallized at 6 GPa in

  15. Geochemical and oxygen isotope signatures of mantle corundum megacrysts from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China

    NASA Astrophysics Data System (ADS)

    Giuliani, Gaston; Pivin, Marjorie; Fallick, Anthony E.; Ohnenstetter, Daniel; Song, Yucai; Demaiffe, Daniel

    2015-01-01

    Oxygen isotope signatures of ruby and sapphire megacrysts, combined with trace-element analysis, from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China, provide clues to specify their origin in the deep Earth. At Mbuji-Mayi, pink sapphires have δ18O values in the range 4.3 to 5.4‰ (N = 10) with a mean of 4.9 ± 0.4‰, and rubies from 5.5 to 5.6‰ (N = 3). The Ga/Mg ratio of pink sapphires is between 1.9 and 3.9, and in rubies, between 0.6 and 2.6. The blue or yellow sapphires from Changle have δ18O values from 4.6 to 5.2 ‰, with a mean of 4.9 ± 0.2‰ (N = 9). The Ga/Mg ratio is between 5.7 and 11.3. The homogenous isotopic composition of ruby suggests a derivation from upper mantle xenoliths (garnet lherzolite, pyroxenite) or metagabbros and/or lower crustal garnet clinopyroxenite eclogite-type xenoliths included in kimberlites. Data from the pink sapphires from Mbuji-Mayi suggest a mantle origin, but different probable protoliths: either subducted oceanic protolith transformed into eclogite with δ18O values buffered to the mantle value, or clinopyroxenite protoliths in peridotite. The Changle sapphires have a mantle O-isotope signature. They probably formed in syenitic magmas produced by low degree partial melting of a spinel lherzolite source. The kimberlite and the alkali basalt acted as gem conveyors from the upper mantle up to the surface.

  16. The molecular structure of melts along the carbonatite-kimberlite-basalt compositional joint: CO2 and polymerisation

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Florian, Pierre; Corradini, Dario; Morizet, Yann; Sator, Nicolas; Vuilleumier, Rodolphe; Guillot, Bertrand; Iacono-Marziano, Giada; Schmidt, Burkhard C.; Gaillard, Fabrice

    2016-01-01

    Transitional melts, intermediate in composition between silicate and carbonate melts, form by low degree partial melting of mantle peridotite and might be the most abundant type of melt in the asthenosphere. Their role in the transport of volatile elements and in metasomatic processes at the planetary scale might be significant yet they have remained largely unstudied. Their molecular structure has remained elusive in part because these melts are difficult to quench to glass. Here we use FTIR, Raman, 13C and 29Si NMR spectroscopy together with First Principle Molecular Dynamic (FPMD) simulations to investigate the molecular structure of transitional melts and in particular to assess the effect of CO2 on their structure. We found that carbon in these glasses forms free ionic carbonate groups attracting cations away from their usual 'depolymerising' role in breaking up the covalent silicate network. Solution of CO2 in these melts strongly modifies their structure resulting in a significant polymerisation of the aluminosilicate network with a decrease in NBO/Si of about 0.2 for every 5 mol% CO2 dissolved. This polymerisation effect is expected to influence the physical and transport properties of transitional melts. An increase in viscosity is expected with increasing CO2 content, potentially leading to melt ponding at certain levels in the mantle such as at the lithosphere-asthenosphere boundary. Conversely an ascending and degassing transitional melt such as a kimberlite would become increasingly fluid during ascent hence potentially accelerate. Carbon-rich transitional melts are effectively composed of two sub-networks: a carbonate and a silicate one leading to peculiar physical and transport properties.

  17. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle

    NASA Astrophysics Data System (ADS)

    Burgess, Ray; Cartigny, Pierre; Harrison, Darrell; Hobson, Emily; Harris, Jeff

    2009-03-01

    In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios ( 3He/ 4He = 4-6 Ra, 40Ar/ 36Ar = 20,000-30,000, δ 13C = -4.5‰ to -6.9‰ and δ 15N = -1.2‰ to -8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10 -9 cm 3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ˜0.6 × 10 -12 cm 3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.

  18. Isotopic Disequilibrium and High-Crystallinity Magma Ascent: Clues to the Temporal Restriction of Proterozoic Anorthosites

    NASA Astrophysics Data System (ADS)

    Bybee, G. M.

    2014-12-01

    Many Proterozoic anorthosite massifs show crustal isotopic signatures that have fuelled debate regarding the source (mantle vs. lower crust) of these temporally restricted magmas. The models advocating a mantle derivation for these rocks suggest that lower crustal assimilation plays an important role in developing the isotopic signature of the massifs, but no evidence exists to support this. We make use of Sr, Nd and Pb isotopic compositions of anorthosites from the Mealy Mountains Intrusive Suite (MMIS), the Nain Plutonic Suite (NPS) and the Rogaland Anorthosite Province (RAP), their internal mineral phases and comagmatic, high-pressure pyroxene megacrysts, which represent samples from various stages of the polybaric ascent of the magmas, to probe the origin of the crustal isotopic signatures and assess the importance of differentiation at lower crustal depths. Study of the MMIS and NPS is instructive as each is intruded into crust of significantly different age and isotopic composition. We observe varying degrees of internal isotopic disequilibrium, enforcing the notion that the nature of the crustal assimilant has a profound influence on the chemical signature of the magmas (Fig. 1). We also find unexpected patterns of internal isotopic disequilibrium, such as isotopically depleted orthopyroxene relative to plagioclase (Fig. 1), which suggests that anorthosite petrogenesis is not a "simple" case of progressive crustal contamination during polybaric magma ascent, but is more likely to involve significant differentiation and solidification at lower crust depths. The 100 m.y. magmatic timescales observed in these anorthosite systems may be caused by significant magmatic differentiation at Moho/lower crustal levels, as well as formation in long-lived arc environments. These long-lived magmatic timescales contrast with recent observations suggesting that the duration of magma ascent from the Moho to surface in arc environments is on the order of months to years. Such

  19. How Strong is the Case for Proterozoic Low-Latitude Glaciation?

    NASA Astrophysics Data System (ADS)

    Evans, D. A.

    2004-05-01

    The most recent global compilations of paleomagnetic depositional latitudes for Proterozoic glaciogenic formations indicate a dominant mode near the paleo-equator (Evans 2000 AJS; Evans 2003 Tectonophysics). This result would therefore support either the snowball Earth or the large-obliquity hypotheses for Precambrian ice ages, but would reject the uniformitarian comparison to polar-temperate-restricted Phanerozoic glaciogenic deposits. The most reliable low-latitude results come from the Australian Marinoan succession, but a recent summary of these units has suggested that a glaciogenic origin is not yet demonstrated (Eyles and Januszczak 2004 Earth-Sci Reviews). It becomes useful, then, to review the global evidence for Proterozoic low-latitude glaciation. Eyles and Januszczak (ibid.) identified 13 Neoproterozoic deposits with "demonstrated" glacial influence. Among these, poor age constraints and lack of paleomagnetic data prohibit estimation of depositional paleolatitudes for the Fiq, Sturtian, Vreeland, Taoudeni, East Greenland, Port Askaig, and Zhengmuguan units. Moderate paleolatitudes are reasonably well supported for the South China, Gaskiers, Smalfjord, and Moelv units. Among the three remaining units, the Rapitan Group can be assigned a near-equatorial paleolatitude indirectly through use of the Galeros and Franklin-Natkusiak paleomagnetic results, as long as the Rapitan age lies within 750-720 Ma as generally expected. The Moonlight Valley Formation in northern Australia may be assigned a tropical paleolatitude according to high-quality paleomagnetic results from compellingly correlated Marinoan strata in southern Australia. Those strata, including the famous Elatina Formation, have yielded a robust paleomagnetic signature that is commonly interpreted to imply frigid climate (manifest in part by frost-wedge polygons) at near-equatorial latitudes. Concerns that the Neoproterozoic geomagnetic field was either nonaxial or nondipolar are valid in principle

  20. P wave velocity of Proterozoic upper mantle beneath central and southern Asia

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.

    1996-05-01

    P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not

  1. Geologic and Geochronologic Studies of the Early Proterozoic Kanektok Metamorphic Complex of Southwestern Alaska

    USGS Publications Warehouse

    Turner, Donald L.; Forbes, Robert B.; Aleinikoff, John N.; McDougall, Ian; Hedge, Carl E.; Wilson, Frederic H.; Layer, Paul W.; Hults, Chad P.

    2009-01-01

    The Kanektok complex of southwestern Alaska appears to be a rootless terrane of early Proterozoic sedimentary, volcanic, and intrusive rocks which were metamorphosed to amphibolite and granulite facies and later underwent a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism of overlying sediments. The terrane is structurally complex and exhibits characteristics generally attributed to mantled gneiss domes. U-Th-Pb analyses of zircon and sphene from a core zone granitic orthogneiss indicate that the orthogneiss protolith crystallized about 2.05 b.y. ago and that the protolithic sedimentary, volcanic and granitic intrusive rocks of the core zone were metamorphosed to granulite and amphibolite facies about 1.77 b.y. ago. A Rb-Sr study of 13 whole-rock samples also suggests metamorphism of an early Proterozoic [Paleoproterozoic] protolith at 1.77 Ga, although the data are scattered and difficult to interpret. Seventy-seven conventional 40K/40Ar mineral ages were determined for 58 rocks distributed throughout the outcrop area of the complex. Analysis of the K-Ar data indicate that nearly all of these ages have been totally or partially reset by a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism. Several biotites gave apparent K-Ar ages over 2 Ga. These ages appear to be controlled by excess radiogenic 40Ar produced by the degassing protolith during the 1.77 Ga metamorphism and incorporated by the biotites when they were at temperatures at which Ar could diffuse through the lattice. Five amphibolites yielded apparent Precambrian 40K/40Ar hornblende ages. There is no evidence that these hornblende ages have been increased by excess argon. The oldest 40K/40Ar hornblende age of 1.77 Ga is identical to the sphene 207Pb/206Pb orthogneiss age and to the Rb-Sr 'isochron' age for six of the 13 whole-rock samples. The younger hornblende ages are interpreted as

  2. Sequence stratigraphy and depositional controls in late Proterozoic-early Cambrian sediments of Amadeus basin, central Australia

    SciTech Connect

    Lindsay, J.F.

    1987-11-01

    The Amadeus basin is an isolated intracratonic basin at the center of the Australian continent which, because of its location and geometry, provides an ideal opportunity to investigate depositional controls. To this end, more than 6000 km of seismic data, in conjunction with a field and well-log program, have been used in a study of the late Proterozoic-Early Cambrian Arumbera Sandstone. 17 figures.

  3. SIMS and NanoSIMS analyses of Mesoproterozoic individual microfossils indicating continuous oxygen-producing photosynthesis in Proterozoic Ocean

    NASA Astrophysics Data System (ADS)

    Peng, X.; Guo, Z.; House, C. H.; Chen, S.; Ta, K.

    2015-12-01

    Well-preserved microfossils in the stromatolites from the Gaoyuzhuang Formation (~1500Ma), which is younger than the Gunflint Formation (~1880Ma) and older than the Bitter Springs Formation (~850Ma), may play key roles in systematizing information about the evolution of early life and environmental changes in the Proterozoic Ocean. Here, a combination of light microscopy (LM), scanning electron microscopy (SEM), focused ion beam (FIB), nano-scale secondary ion mass spectrometry (NanoSIMS) and secondary ion mass spectrometry (SIMS) were employed to characterize the morphology, elemental distributions and carbon isotope values of individual microfossils in the stromatolites from the Gaoyuahzuang Formation. Light microscopy analyses show that abundant filamentous and coccoid microfossils are exceptionally well preserved in chert. NanoSIMS analyses show that metabolically important elements such as 12C-, 13C-, 12C14N-, 32S-, and 34S- are concentrated in these microfossils and that the variations in the concentrations of these elements are similar, establishing the elemental distributions in incontestably biogenic microstructures. Carbon isotope (δ13C) values of individual microfossils range from -32.2‰ ± 0.9‰ to -23.3‰ ± 1.0‰ (weighted mean= -28.9‰ ± 0.1‰), consistent with carbon fixation via the Calvin cycle. The elevated δ13C values of the microfossils from Early-, Meso- to Late Proterozoic Era, possibly indicate decreasing CO2 and increasing O2 concentrations in the Proterozoic atmosphere. Our results, for the first time, provided the element distributions and cell specific carbon isotope values on convincing Mesoproterozoic cyanobacterial fossils, supporting continuous oxygen-producing photosynthesis in the Proterozoic Ocean.

  4. Constraints on the development of Proterozoic basins in central India from 40Ar/39Ar analysis of authigenic glauconitic minerals

    USGS Publications Warehouse

    Conrad, J.E.; Hein, J.R.; Chaudhuri, A.K.; Patranabis-Deb, S.; Mukhopadhyay, J.; Deb, G.K.; Beukes, N.J.

    2011-01-01

    Ages of some key stratigraphic sequences in central Indian Proterozoic basins are based predominantly on lithostratigraphic relationships that have been constrained by only a few radioisotopic dates. To help improve age constraints, single grains of glauconitic minerals taken from sandstone and limestone in two Proterozoic sequences in the Pranhita-Godavari Valley and the Chattisgarh basin were analyzed by the 40Ar/39Ar incremental heating method. Analysis of the age spectra distinguishes between ages that are interpreted to reflect the time of glauconite formation, and anomalous ages that result from inherited argon or postcrystallization heating. The analyses indicate an age of 1686 ± 6 Ma for the Pandikunta Limestone and 1566 ± 6 Ma for the Ramgundam Sandstone, two units in the western belt of Proterozoic sequences in Pranhita-Godavari Valley. Glauconite from the Chanda Limestone, in the upper part of this sequence, contains inherited 40Ar but is interpreted to reflect an age of ca. 1200 Ma. Glauconite from the Somanpalli Group in the eastern belt of the Pranhita-Godavari Valley gives an age of 1620 ± 6 Ma. In the Chattisgarh basin, glauconite from two units gives disturbed ages that suggest a period of regional heating in the Chattisgarh basin at ca. 960–1000 Ma. These new ages indicate that these sequences are 200–400 m.y. older than previously recognized, which has important implications for geochemical studies of Mesoproterozoic ocean redox conditions in addition to providing important constraints on regional tectonics and lithostratigraphy.

  5. Proterozoic tectonostratigraphy and paleogeography of central Madagascar derived from detrital zircon U-Pb age populations

    USGS Publications Warehouse

    Cox, R.; Coleman, D.S.; Chokel, C.B.; DeOreo, S.B.; Wooden, J.L.; Collins, A.S.; De Waele, B.; Kroner, A.

    2004-01-01

    Detrital zircon U-Pb ages determined by SHRIMP distinguish two clastic sequences among Proterozoic metasedimentary rocks from central Madagascar. The Itremo Group is older: zircon data, stromatolite characteristics, and carbon isotope data all point to a depositional age around 1500-1700 Ma. The Molo Group is younger, deposited between ???620 Ma (the age of the youngest zircon) and ???560 Ma (the age of metamorphic overgrowths on detrital cores). Geochronologic provenance analysis of the Itremo Group points to sources in East Africa as well as local sources in central and southern Madagascar but provides no evidence for a detrital contribution from northern and eastern Madagascar nor from southern India. Detrital zircon and sedimentologic similarities between rocks of the Itremo Group and the Zambian Muva Supergroup suggest a lithostratigraphic correlation between the two. The Molo Group has a strong 1000-1100 Ma detrital signature that also indicates an east African provenance and suggests a Neoproterozoic geographic connection with Sri Lanka but shows no indication of input from the Dharwar craton and eastern Madagascar. Central Madagascar was probably juxtaposed with the Tanzanian craton in the Paleo- and Mesoproterozoic, whereas northern and eastern Madagascar were connected to India. Internal assembly of Madagascar postdates Neoproterozoic Molo Group sedimentation and is likely to have occurred at about 560 Ma. ?? 2004 by The University of Chicago. All rights reserved.

  6. Organically preserved microbial endoliths from the late Proterozoic of East Greenland

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Golubic, S.; Green, J.; Swett, K.

    1986-01-01

    Diverse microorganisms ranging from cyanobacteria to eukaryotic algae and fungi live endolithically within ooids, hardgrounds and invertebrate shells on the present-day sea floor. These organisms are involved in the mechanical destruction of carbonates, and are useful ecological indicators of water depth and pollution. The Phanerozoic history of microbial endoliths has been elucidated through the study of microborings (the trace fossils of endolithic microorganisms) and rare cellularly preserved individuals, but nothing was known of the possible Precambrian evolution of comparable microorganisms until Campbell documented the occurrence of microborings in late Proterozoic ooids from central East Greenland. We now report the discovery of large populations of organically preserved endolithic microorganisms in silicified pisolites from 700-800-Myr-old Limestone-Dolomite Series of East Greenland. This fossil assemblage is significant for three reasons: (1) It confirms the prediction that oolites, pisolites and hardgrounds--the substrates for pre-Phanerozoic endoliths--provide a hitherto poorly explored but rewarding set of environments into which the search for early microfossils must be broadened; (2) the assemblage is diverse, containing about 12 taxa of morphologically distinct and previously unknown endolithic cyanobacteria, plus associated epilithic and interstitial populations; and (3) at least six of the fossil populations are indistinguishable in morphology, pattern of development, reproductive biology and inferred ecology from distinctive cyanobacterial species that bore ooids today in the Bahama Banks.

  7. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    NASA Technical Reports Server (NTRS)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.

    1988-01-01

    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  8. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record

    NASA Technical Reports Server (NTRS)

    Peterson, Kevin J.; Butterfield, Nicholas J.

    2005-01-01

    Molecular clocks have the potential to shed light on the timing of early metazoan divergences, but differing algorithms and calibration points yield conspicuously discordant results. We argue here that competing molecular clock hypotheses should be testable in the fossil record, on the principle that fundamentally new grades of animal organization will have ecosystem-wide impacts. Using a set of seven nuclear-encoded protein sequences, we demonstrate the paraphyly of Porifera and calculate sponge/eumetazoan and cnidarian/bilaterian divergence times by using both distance [minimum evolution (ME)] and maximum likelihood (ML) molecular clocks; ME brackets the appearance of Eumetazoa between 634 and 604 Ma, whereas ML suggests it was between 867 and 748 Ma. Significantly, the ME, but not the ML, estimate is coincident with a major regime change in the Proterozoic acritarch record, including: (i) disappearance of low-diversity, evolutionarily static, pre-Ediacaran acanthomorphs; (ii) radiation of the high-diversity, short-lived Doushantuo-Pertatataka microbiota; and (iii) an order-of-magnitude increase in evolutionary turnover rate. We interpret this turnover as a consequence of the novel ecological challenges accompanying the evolution of the eumetazoan nervous system and gut. Thus, the more readily preserved microfossil record provides positive evidence for the absence of pre-Ediacaran eumetazoans and strongly supports the veracity, and therefore more general application, of the ME molecular clock.

  9. Preliminary basin analysis of Late Proterozoic and Early Cambrian Brigham Group, southeastern Idaho

    SciTech Connect

    Link, P.K.; Jansen, S.T.

    1986-08-01

    The Brigham Group in southeastern Idaho comprises over 3000 m (9843 ft) of dominantly quartzose sandy strata above the late Proterozoic Blackrock Canyon Limestone of the Pocatello Formation and below fossiliferous Cambrian carbonate. The Brigham was formerly thought of as a conformable sequence of quartzites deposited in the shallow marine Cordilleran miogeocline. Detailed study shows, however, that it contains braided fluvial, lacustrine, beach, intertidal and subtidal deposits; local and regional disconformities; and major influxes of coarse, angular feldspar. Braided-stream facies characterized by channels, discontinuous beds, gravel-size lag deposits, and poor sorting occur in the upper Caddy Canyon Quartzite, Mutual Formation, and lower Camelback Mountain Quartzite. Lacustrine facies of the Mutual Formation contain maroon and green laminated argillite with flaser-bedded sand. Both the Camelback Mountain and Caddy Canyon Quartzite contain low-angle wedge cross-beds of shoreface facies, tabular deposits of planar foreset beds belonging to the offshore sand-wave facies, and storm-produced hummocky cross-stratification. These two formations and the fine grained marine Inkom Formation contain submarine channels filled with coarse conglomerate. Tidal facies of the Papoose Creek Formation contain flaser beds, bimodal planar cross-beds, and synaeresis cracks. Feldspar is locally abundant (up to 40%). Its percentage varies both vertically within stratigraphic units and laterally in the same unit over tens of kilometers. It is absent only in the uppermost Camelback Mountain Quartzite at the top of the Brigham Group. Synsedimentary uplift of nearby basement source areas is suggested.

  10. Metamorphism of Proterozoic agpaitic nepheline syenite gneiss from North Singhbhum Mobile Belt, eastern India

    NASA Astrophysics Data System (ADS)

    Goswami, Bapi; Basu, Swades Kumar

    2013-08-01

    Sushina nepheline syenite gneisses of Early Proterozoic North Singhbhum Mobile Belt (NSMB), eastern India suffered regional metamorphism under greenschist-amphibolite transitional facies condition. The Agpaitic Sushina nepheline syenite gneisses consist of albite, K-feldspar, nepheline (close to Morozewicz-Buerger composition), aegirine, biotite, epidote, piemontite, sodalite, cancrinite, natrolite and local alkali amphibole. Accessory phases include zircon, hematite, magnetite, rare pyrochlore and occasional eudialyte and manganoan calcic zirconosilicates. Mineral chemistry of albite, K-feldspar, nepheline, aegirine, alkali amphibole, natrolite and zirconium silicate minerals are described. The detailed textural features together with chemical data of some minerals indicate metamorphic overprint of these rocks. A new reaction is given for the genesis of metamorphic epidote. Metamorphic piemontite suggests greenschist facies metamorphism under high fO2 (Hematite-Magnetite buffer). Up to 15.34 mol% of jadeite component in aegirine suggests that the metamorphic grade of the nepheline syenite gneiss reached at least to greenschist-amphibolite transitional facies or higher. Nepheline geothermometry suggests temperature of metamorphism <500 °C, which is consistent with greenschist facies metamorphism of surrounding chlorite-biotite-garnet phyllite country rock.

  11. Juvenile Middle Proterozoic crust in the Adirondack Highlands, Grenville province, northeastern North America

    SciTech Connect

    Daly, J.S. ); McLelland, J.M. )

    1991-02-01

    Nd isotope data indicate that minimal amounts of significantly older crust have contributed to the genesis of the oldest (ca. 1.3-13.5 Ga) plutons in the Adirondack Highlands. These are magmatic arc tonalites with positive initial {epsilon}{sub Nd} values and Sm-Nd depleted mantle model ages (t{sub DM}) that are within 70 m.y. of the time of their crystallization. Granitoids of the anorthosite-mangerite-charnockite-granite suite, dated at 1,156-1,134 Ma, as well as the 1,100-1,050 Ma plutons, associated with the Ottawan phase of the Grenvillian orogenic cycle, also have positive initial {epsilon}{sub Nd} values and t{sub DM} ages similar to the tonalites. Derivation of both groups of granitoids by crustal melting of the magmatic arc is consistent with the available isotopic and geochemical data. Juvenile late Middle Proterozoic crust that formed during or just prior to the Grenville cycle appears to dominate the southwestern Grenville province as well as the Grenville inliers to the south. In contrast, most of the contiguous Grenville province in Canada comprises largely reworked older crust.

  12. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the proterozoic mantle

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1983-01-01

    Most workers agree that Proterozoic anorthosite massifs represent the crystallization products of mantle-derived magmas1,2, although the composition of the parental melts is a major unsolved petrological problem 3. As mantle-derived rocks, the massifs can be used as geochemical probes of their late Precambrian upper mantle sources. We report here Nd and Sr isotopic compositions of anorthosites and related rocks from the Grenville and Nain Provinces of the eastern Canadian shield. Here 75% of the Earth's known anorthosite is found in a 1,600-km belt from the Adirondack Mountains of northern New York State to the eastern coast of Labrador4 (Fig. 1). The results indicate that the massifs were derived from at least two distinct mantle source regions which were established before 1,650 Myr ago, and were episodically involved in magmatism over ???500 Myr. One reservoir, below the Grenville Province, and probably below much of the eastern Superior Province, was isotopically similar to the depleted, modern-day mid-ocean ridge basalt (MORB) source. The other reservoir was chondritic to moderately enriched, and is most easily identified in the Nain Province, but may have occurred scattered throughout the Superior Province. ?? 1983 Nature Publishing Group.

  13. Geochemistry and petrogenesis of Proterozoic granitic rocks from northern margin of the Chotanagpur Gneissic Complex (CGC)

    NASA Astrophysics Data System (ADS)

    Yadav, Bhupendra S.; Wanjari, Nishchal; Ahmad, Talat; Chaturvedi, Rajesh

    2016-07-01

    This study presents the geochemical characteristics of granitic rocks located on the northern margin of Chotanagpur Gneissic Complex (CGC), exposed in parts of Gaya district, Bihar and discusses the possible petrogenetic process and source characteristics. These granites are associated with Barabar Anorthosite Complex and Neo-proterozoic Munger-Rajgir group of rocks. The granitic litho-units identified in the field are grey, pink and porphyritic granites. On the basis of geochemical and petrographic characteristics, the grey and pink granites were grouped together as GPG while the porphyritic granites were named as PG. Both GPG and PG are enriched in SiO2, K2O, Na2O, REE (except Eu), Rb, Ba, HFSE (Nb, Y, Zr), depleted in MgO, CaO, Sr and are characterised by high Fe* values, Ga/Al ratios and high Zr saturation temperatures (GPGavg˜ 861 ∘C and PGavg˜ 835 ∘C). The REE patterns for GPG are moderately fractionated with an average (La/Yb)N˜ 4.55 and Eu/Eu* ˜ 0.58, than PG which are strongly fractionated with an average (La/Yb)N˜ 31.86 and Eu/Eu* ˜ 0.75. These features indicate that the granites have an A-type character. On the basis of geochemical data, we conclude that the granites are probably derived from a predominant crustal source with variable mantle involvement in a post-collisional setting.

  14. Petroleum system in the southeastern Siberia: From Proterozoic sources to Cambrian traps

    SciTech Connect

    Resnick, V.S. )

    1991-03-01

    Southeastern Siberia is the most explored part of the vast Lena-Tunguska petroleum province. It consists of three basic structures: PredPatom trough, Nepa-Botuobin anteclise, and Angara-Lene terrace. Main potential source rocks are largely upper Proterozoic within the PredPatom trough. Other Lower Cambrian source rocks are scattered to make up only 7-9% of the regional petroleum potential. Over 90% of oil and gas discovered to date is reservoired in the Riphean-Cambrian subsalt section on the Nepa-Botuobin and Angara-Lena regional highs. A thick Cambrian salt-bearing section provides a good seal. The main stage of hydrocarbon migration occurs in Vendian - Cambrian time out of the PredPatom trough. Traps are combining stratigraphic wedging out with structural features and reefs. Many of those were affected by late Paleozoic-early Mesozoic volcanic traps, sills, and/or overthrust tectonics. There are over 25 discoveries (mostly gas and condensate) in the region. About two of these are considered giant fields. Math modeling of hydrocarbon generation processes shows that significant petroleum potential is yet to be discovered, particularly in the PredPatom trough.

  15. Lithology, age and structure of early proterozoic greenstone belts, West African shield

    NASA Technical Reports Server (NTRS)

    Attoh, K.

    1986-01-01

    Lithologic and chemical data have been compiled for belts in the Proterozoic terrane. Available stratigraphic information from geologic maps of these areas indicate that a typical sequence is comprised of predominately mafic lava flows (basalt-andesite) at the base, which are overlain by felsic volcanic rocks including pyroclastic rocks and lavas. Lithostratigraphic data indicate the volcanic succession is 6-8 km thick. This is followed by 3-4 km of basaltic lava flows which are locally pillowed, the top of the unit is marked by a distinctive manganese formation (MF) consisting of Mn-Fe rich cherts up to 200 m thick. The youngest volcanic unit consists of mafic tuffs and breccia with a distinctive fragmental texture. Of about 100 chemical analyses reported calc-alkaline rocks constitute 55% and tholeiites 45%. Quartz-normative basalt constitutes 99% of the rock type in the tholeiitic suite. In the calc-alkaline suite, 9% of the analyses is basalt, 45% andesite and the rest is dacite and rhyodacite. The available data lead to the conclusion that the minimum age for the volcanic activity must be between 2200 and 2100 million years. It is significant that Archean ages have not been reported from any of the volcanic belts (1-10).

  16. Sporulation and ultrastructure in a late Proterozoic cyanophyte - Some implications for taxonomy and plant phylogeny

    NASA Technical Reports Server (NTRS)

    Cloud, P.; Moorman, M.; Pierce, D.

    1975-01-01

    Electron microscopical studies of a morphologically diverse, coccoid, presumably late Proterozoic blue-green alga are here reported. They show, together with light microscopy, that the form studied is widespread in the Cordilleran geosyncline, extend the record of well-defined endosporangia perhaps 700 million years into the past, and reveal previously unrecorded ultrastructural details. Coming from northeastern Utah, southwestern Alberta, and east central Alaska, these minute fossils belong to the recently described, morphologically diverse taxon Sphaerocongregus variabilis Moorman, are related to living entophysalidaceans, and have affinities with both the chroococcalean and chamaesiphonalean cyanophytes. Included in the morphological modes displayed by this alga are individual unicells, coenobial clusters of unicells, and a range of endosporangia comparable to those described for living entophysalidaceans. Scanning and transmission electron microscopy reveal that the endospores are commonly embedded in a vesicular matrix, that some of them show what appears to be a bilaminate or perhaps locally multilaminate wall structure, and that some remain together to mature as coenobial clones or 'colonies'. Taxonomic classification and phylogeny are discussed.

  17. Internal structures of sandwaves in a tide-storm interactive system: Proterozoic Lower Quartzite Formation, India

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandan; Bose, Pradip K.

    1990-04-01

    A Proterozoic sandstone sequence belonging to the Lower Quartzite Formation of Vindhyan Supergroup, India, reveals the internal structures of near-symmetrical subtidal sandwaves formed in an area of strong tidal currents, occasionally interfered by wind-induced currents of varying magnitude. Internally, the sandwaves show decimetre-scale, herring-bone cross-laminated sets with inclined and horizontal set boundaries representing accretion on the gently inclined (around 5°) lee and stoss surfaces of the sandwaves respectively. The internal structures suggest oblique upbuilding of the sandwaves with almost equal contributions from the two reversing current modes of the tidal flow. Evidently, the sandwaves were maintained by bedload transport through migration of megaripples superimposed on the sandwaves. Occasional superimposition of short-lived, wind-induced currents on the tidal flow caused appreciable suspension transport of sand-sized sediments and led to the development of successive low-angle, unidirectional, mud-draped, cross-laminated bundles interwoven with the tide-generated structures. However, the dominant sediment type introduced during the period of wind-induced currents was in the size range of mud as reflected in the presence of exceptionally thick exotic mud layers in juxtaposition with the cross-laminated bundles. During the periods of vigorous storm currents, significant volumes of sand-sized sediments were introduced in the form of density flows, deposition from which led to the burial of tidal sandwaves. Renewal of the fair-weather tidal regime caused the development of new sandwaves.

  18. Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis, and implications

    NASA Technical Reports Server (NTRS)

    Grant, S. W.; Knoll, A. H.; Germs, G. J.

    1991-01-01

    Samples from the Huns Limestone Member, Urusis Formation, Nama Group, at two adjacent localities in southern Namibia contain thin foliose to arched, sheet-like carbonate crusts that are 100-500 micrometers thick and up to 5 cm in lateral dimension. Morphologic, petrographic, and geochemical evidence supports the interpretation of these delicate crusts as biogenic, most likely the remains of calcified encrusting metaphytes. The original sediments of the fossiliferous samples contained aragonitic encrusting algae, botryoidal aragonite cements, and an aragonite mud groundmass. Spherulites within the precursor mud could represent bacterially induced mineral growths or the concretions of marine rivularian cyanobacteria. Original textures were severely disrupted during the diagenetic transition of aragonite to low-magnesian calcite, but some primary structures remain discernible as ghosts in the neomorphic mosaic. Gross morphology, original aragonite mineralogy, and hypobasal calcification indicate that the crusts are similar to late Paleozoic phylloid algae and extant peyssonnelid red algae. Structures interpreted as possible conceptacles also suggest possible affinities with the Corallinaceae. Two species of Cloudina, interpreted as the remains of a shelly metazoan, are also known from limestones in the Nama Group. It is possible, therefore, that skeletalization in metaphytes and animals arose nearly simultaneously near the end of the Proterozoic Eon.

  19. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    SciTech Connect

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  20. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    NASA Astrophysics Data System (ADS)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  1. The influence of volcanological and sedimentological processes on diamond grade distribution in kimberlites: examples from the EKATI Diamond Mine, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Porritt, Lucy A.; Cas, R. A. F.; Ailleres, L.; Oshust, P.

    2011-10-01

    The distribution of diamonds within individual kimberlite pipes is poorly documented in the public domain due to the proprietary nature of the data. The study of the diamond distribution within two pipes, Fox and Koala, from the EKATI Diamond Mine, NWT, Canada, in conjunction with detailed facies models has shown several distinct relationships of deposit type and grade distribution. In both pipes, the lithological facies represent grade units which can be distinguished from each other in terms of relative size and abundance of diamonds. A positive relationship between olivine grain size and abundance with diamond size and abundance is observed, indicating that sorting of fragmental kimberlites influences diamond distribution. Though surface geological processes do not control the diamond potential of the erupting magma, they can be responsible for concentrating diamonds into economically significant proportions. A good understanding of the eruption, transport and depositional processes responsible for the individual lithological units and the diamond distribution within them is important for successful resource estimation. This may lead to recognition of areas suitable for selective mining, making a marginal deposit economic.

  2. Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400 °C: Implications for kimberlite formation

    NASA Astrophysics Data System (ADS)

    Sokol, Alexander G.; Kupriyanov, Igor N.; Palyanov, Yuri N.

    2013-12-01

    Partitioning of H2O between olivine and carbonate-silicate melts has been studied at 6.3 GPa and 1400 °C using a split-sphere multianvil apparatus. Olivine was synthesized in equilibrium with hydrous silicate and hydrous carbonate-silicate±chloride melts saturated with respect to one of Opx, Grt, Ms or a harzburgitic (Ol+Opx+Grt) residue and had CO2/(CO2+SiO2) molar ratios from 0 to 0.8. The concentration of H2O in olivine was determined using FTIR spectroscopy. We found that depending on the melt carbonation and saturation in equilibrium silicate phases the H2O content in olivine varied from 100 to 1500 ppm. The obtained results and data reported in Sokol et al. (2013) indicate that H2O content in olivine becomes approximately two times lower as CO2/(CO2+SiO2) molar ratios in the equilibrium melt increases from 0 to 0.4-0.8 and the crystallization media transform from hydrous silicate to hydrous carbonate-silicate (kimberlite like) melt. The estimated water partitioning between carbonate-silicate melt and nominally anhydrous mantle minerals indicates that carbonatitic melt can effectively extract water once it invades H2O-poore the peridotite. We suggest that extraction of H2O owing to the freezing point depression may provide the necessary melting degree of metasomatized peridotite source and formation of kimberlitic magma.

  3. The Presence of a Stable Block bounded by Active Zones (Mobile Belts) in the southwestern North American Proterozoic craton

    NASA Astrophysics Data System (ADS)

    Goodell, P.; Martinez P, C.; Mahar, M. A.

    2014-12-01

    Bouguer gravity data, initial Sr isotope values, zircon U-Pb, and multiple occurrences of felsic Proterozoic rocks, have revealed an elevated, less deformed, felsic cratonic block in the northern Mexico. The block is situated in western Chihuahua and is bounded by active zones or mobile belts on three sides, and is here referred to as the Western Chihuahua Cratonic Block (WCCB). Bouguer gravity data clearly indicate a region of a highly negative anomaly (< -200 mgal) in contrast to adjoining areas. The region is large and the anomaly is relatively smooth over broad areas; the WCCB appears as a smaller version of the Colorado Plateau. The block is characterized by high initial Sr isotope ratios (<0.706). Several occurrences of Proterozoic rocks are located within or next to the WCCB, and they reveal the character of the Bouguer anomaly. On the east, at Los Filtros, Proterozoic rocks crop out in a basement cored uplift interpreted to having been derived from the WCCB during the Ouachita orogeny. At Sierra La Mojina boulders of 1.1 Ga granites are found in Permian conglomerates. And at Basasiachic, xenoliths of 1.1 Ga granites are present in ash flow tuffs. Establishment of the Precambrian character of the WCCB is of importance, and these multiple occurrences are evidence. Prior studies of the Sierra Madre Occidental suggest that the region was uplifted because of a vast Cenozoic batholith presumed to lie under the SLIP (Silicic Large Igneous Province), the Upper Volcanic Series. The present study challenges that conclusion and maintains the SMO is underlain by Proterozoic silicic crust. The geology of age dated samples supports this. The WCCB is surrounded on three sides by Active Zones or Mobile Belts, which have been active extensional and translational zones periodically over a long period of time. On the east are the Paleozoic Pedrogosa Basin, Mesozoic Chihuahua Trough and Cenozoic Rio Grande Rift, the first two of which also continue around the northern border

  4. Evolution of diamond resorption in a silicic aqueous fluid at 1-3 GPa: Application to kimberlite emplacement and mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihai; Fedortchouk, Yana; Hanley, Jacob J.

    2015-06-01

    Natural diamonds grow and partially dissolve during mantle metasomatism and undergo further resorption during the ascent to the Earth's surface in kimberlite magmas. This study uses atomic force microscopy (AFM) for quantitative characterization of diamond resorption morphology in order to provide robust constraints of the composition of kimberlitic and mantle metasomatic fluids. We performed experiments in a piston-cylinder apparatus at pressures (P) of 1-3 GPa and temperatures (T) of 1150-1400 °C to examine the impact of P, T, and silica content of an aqueous fluid on diamond dissolution. Petrographic observation and microthermometry of synthetic fluid inclusions trapped in olivine at the run conditions provide constraints on the composition and density of the fluid reacting with the diamond. Our results confirm an inverse relationship between P and T on diamond dissolution kinetics. A P increase of 1 GPa suppresses diamond oxidation rates by the same value as a T decrease by 50 °C, while the transformation rate of diamond crystal morphology from octahedron to tetrahexahedron increases with both P and T. All dissolved diamonds develop glossy surfaces, ditrigonal {111} faces, sheaf striations, and negative trigons, while circular pits only occur in aqueous fluids with low silica content (≤ 4.2 mol/kg) at 1 GPa. We identify five distinct morphological groups of trigons: two types of point-bottomed (p/b) (trumpet- and V-shaped) and three types of flat-bottomed (f/b) (trumpet-shaped, trapezoid-shaped and rounded). AFM measurements of trigons from two successive runs showed three stages of their evolution. Etch pits nucleate at defects as trumpet p/b trigons with the vertical dissolution rate (Vd) faster than the dissolution rates at the surface free of defects; they further develop by growth of the bottoms in (111) plane to create trumpet-shaped f/b trigons accompanied by decrease in Vd; and finally form trapezoid-shaped f/b trigon with constant wall angles. The

  5. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions

    NASA Astrophysics Data System (ADS)

    Thomson, A. R.; Kohn, S. C.; Bulanova, G. P.; Smith, C. B.; Araujo, D.; Walter, M. J.

    2014-12-01

    Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ -25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (-5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth's deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are

  6. Infrared spectral and carbon isotopic characteristics of micro- and macro-diamonds from the Panda kimberlite (Central Slave Craton, Canada)

    NASA Astrophysics Data System (ADS)

    Melton, G. L.; Stachel, T.; Stern, R. A.; Carlson, J.; Harris, J. W.

    2013-09-01

    One hundred and twenty-one micro-diamonds (< 1 mm) and 90 macro-diamonds (2.5 mm to 3.4 mm) from the Panda kimberlite (Ekati mine, Central Slave Craton, Canada) were analyzed for nitrogen content, nitrogen aggregation state (%B) and platelet and hydrogen peak areas (cm- 2). Micro-diamond nitrogen concentrations range from < 10 at. ppm to 1696 at. ppm (median = 805 at. ppm) and the median aggregation state is 23%B. Macro-diamonds range from < 10 at. ppm to 1260 at. ppm (median = 187 at. ppm) nitrogen and have a median nitrogen aggregation of 26%B. Platelet and hydrogen peaks were observed in 37% and 79% of the micro-diamonds and 79% and 56% of the macro-diamonds, respectively. Nitrogen based time averaged residence temperatures indicate that micro- and macro-diamonds experienced similar thermal mantle residence histories, both populations displaying bimodal residence temperature distributions with a gap between 1130 °C and 1160 °C (at 3.5 Ga residence). In addition, SIMS carbon isotopic analyses for the micro-diamonds were obtained: δ13C compositions range from - 6.9‰ to + 1.8‰ (median = - 4.3‰). CL imaging reveals distinct growth layers that in some samples differ by > 2‰, but mostly vary by < 0.5‰. Comparison of only the “gem-quality” samples (n = 49 micro- and 90 macro-diamonds) between the two diamond sets, indicates a statistically significant shift of + 1.3‰ in average δ13C from macro- to micro-diamonds and this shift documents distinct diamond forming fluids, fractionation process or growth histories. A broad transition to heavier isotopic values is also observed in connection to decreasing mantle residence temperatures. The bimodal mantle residence temperature distribution may coincide with the transition from highly depleted shallow to more fertile deep lithospheric mantle observed beneath the Central Slave Craton. The increase in δ13C with decreasing residence temperature (proxy for decreasing depth) is interpreted to reflect diamond

  7. Identification of /sup 13/C depleted mantle carbon in diamonds from the Roberts Victor Kimberlite, South Africa

    SciTech Connect

    Deines, P.

    1985-01-01

    The Roberts Victor Kimberlite is known for the abundance of eclogite xenoliths, some of which show an unusual depletion in /sup 18/O. The question whether the observed oxygen isotope variations can be related to carbon isotopic composition variations has been investigated. Peridotite-suite diamons (X = -5.4 per thousand vs. PDB, s = +/-0.9 per thousand, n = 65) and sulfide containing diamonds (X = -4.9, s = +/-0.9, n = 20) do not differ in their /sup 13/C content. For these samples, delta/sup 13/C is not related to diamond shape, color, minerals occluded, or the inclusion chemistry. Eclogite suite diamonds (11) can be subdivided into two groups, GI and GII, based on delta/sup 13/C : GI = (X = -15.4, s = +/-0.4, n = 8); GII = (X = -5.9, s = +/-0.4, n = 3). The composition of the gt and cpx inclusions of the two groups is distinct; e.g. cpx of GI is significantly depleted in SiO/sub 2/, MgO, and CaO, and significantly enriched in Al/sub 2/O/sub 3/, FeO and MnO, compared to cpx of GII. Comparison of the chemical composition of the inclusions in E-type diamonds with those of eclogite xenoliths showing /sup 18/O depletion suggests that /sup 13/C and /sup 18/O depletion are not likely to be related. Evaluation of compositional trends of gt and cpx in eclogite xenoliths indicates that GI and GII are not related by a single fractionation event, but represent products from different reservoirs. Equilibration conditions deduced from coexisting gt and cpx demonstrate that GI diamonds come from larger depths than eclogite xenoliths and by inference GII diamonds. The high FeO and MnO content of a gt inclusion in cpx of an eclogite xenolith is used to argue for the existence of two separate events responsible for the formation of GI and GII diamonds.

  8. Molybdenum Isotopes and the Oxygenation of the Mid-Proterozoic Ocean

    NASA Astrophysics Data System (ADS)

    Arnold, G. L.; Anbar, A. D.; Barling, J.

    2002-12-01

    Recently debate has arisen over the redox state of the mid-Proterozoic oceans. The occurrence of banded iron formations (BIF) in the Archean and Paleoproterozoic strongly suggests oceans with little dissolved O2 or H2S until ca. 1.8 Ga. The disappearance of BIF after this time is commonly taken to indicate ocean oxygenation. Alternatively, the extent of sulfidic conditions in the oceans may have increased after 1.8 Ga (Canfield, 1998). According to this view, ocean oxygenation did not occur until PO{2} approached modern levels after ~1 Ga. These different scenarios have important evolutionary implications (Anbar and Knoll, 2002). The molybdenum (Mo) stable isotope system may provide insight to this debate We previously observed systematic Mo isotope fractionation (δ97/95Mo) between recent oxic and sulfidic sediments (Barling et al., 2001; Arnold et al., 2001). The δ97/95Mo of seawater and sulfidic sediments are essentially the same, suggesting that the Mo isotope composition of the oceans is largely controlled by fractionation during removal to oxic sediments. The extent of fractionation between adsorbed and dissolved Mo in laboratory experiments is comparable to the extent of fractionation observed between Mn oxides and seawater (~1.7 ‰ ), supporting this suggestion (Barling and Anbar, 2002; Siebert et al., 2001). The laboratory experiments indicate that adsorption of Mo onto Mn oxide particles is an equilibrium process with a characteristic αsolution-MnO{2} of 1.0017. Therefore, δ97/95Moseawater may reflect the global balance between Mo removal to oxic and sulfidic sediments and changes in this balance could be recorded as changes in δ97/95Mo in ancient black shales deposited under sulfidic condtions. If the proportion of seafloor under oxic waters were smaller in the past, δ97/95Mo in black shales should shift toward lighter values. An investigation of Mo-rich black shales from the Wollogorang Fm. (~1.73 Ga) and Velkerri Fm. (~1.4 Ga) from the Mc

  9. Paleomagnetism of Proterozoic mafic dikes from the Tobacco Root Mountains, southwest Montana

    USGS Publications Warehouse

    Harlan, S.S.; Geissman, J. Wm; Snee, L.W.

    2008-01-01

    Paleomagnetic data from Proterozoic mafic dikes in southwestern Montana provides evidence for two distinct episodes of subparallel dike emplacement at ca. 1450 and 780 Ma. Published geochemical data from dikes in the southern Tobacco Root Mountains has identified three distinct compositional groups, termed groups A, B, and C. Geochronological data from the group A dikes yielded a Sm-Nd age of 1448 ?? 49 Ma. Emplacement of these dikes is thought to reflect mafic magmatism associated with extension accompanying development of the adjacent Mesoproterozoic Belt Basin. Paleomagnetic results from these dikes and a group C dike yield antipodal magnetizations with a group-mean direction of D = 225.0??, I = 61.8?? (k = 27.9, ??95 = 7.7??, N = 14 independent means/24 sites). The average paleomagnetic pole (8.7??N, 216.1??E, A95 = 10.3??) is considered to be primary on the basis of positive baked contact tests and similarity to poles of ca. 1.45-1.4 Ga from intrusions elsewhere in North America, but is discordant with respect to poles from age equivalent sedimentary rocks of the Meosoproterozoic Belt Supergroup. 40Ar/39Ar dates from geochemical group B dikes are consistent with published U-Pb dates that demonstrate dike emplacement at 780 Ma as part of the regional Gunbarrel magmatic event. Hornblende concentrates from the group B dikes yield 40Ar/39Ar apparent ages of 778-772 Ma, whereas biotite from a baked contact zone yielded a plateau date of 788 Ma. Paleomagnetic results from the group B dikes yield a mean direction of D = 301.5??, I = -17.1?? (k = 65.7, ??95 = 4.0??, N = 12 independent means/23 sites) with a paleomagnetic pole at 14.6??N, 127.0??E (A95 = 3.2??). The combination of geochronologic data, results of a baked contact test, and spatial agreement of the paleomagnetic poles with poles of similar age elsewhere in North America indicates that this is also a primary magnetization associated with dike emplacement. Paleomagnetic data from some of the Tobacco Root

  10. Late Proterozoic reconstructions of North-West Scotland and Central Canada: Magnetic fabrics, paleomagnetism and tectonics

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Geneviciene, Ieva

    2008-12-01

    Red-beds dominate the Stoer Group and the unconformably overlying Torridon Group, having accumulated between ˜1400 and ˜1000 Ma, in a rift of the Hebridean foreland. The sequences were weakly strained and shortened E-W, and each underwent successive diagenetic changes which altered their magnetic properties and caused their different characteristic post-depositional magnetizations. Anisotropy of magnetic susceptibility (AMS) reveals an N-S vertical tectonic foliation superimposed on the bedding-planar AMS sub-fabric. The tectonic AMS sub-fabric was isolated by comparing normalized and non-normalized mean tensors of multiple specimens. The N-S vertical AMS tectonic foliation postdates warps of bedding; thus the high-susceptibility minerals, including those carrying palaeomagnetic signals re-oriented or recrystallized after deposition and diagenesis. Thus characteristic remanence vectors (ChRM) were acquired long after deposition, first in the Stoer Group, then in the Torridon. ChRMs were isolated for 143 Stoer specimens and 94 Torridon specimens using two cycles of low-temperature demagnetization followed by at least 12 steps of thermal demagnetization. For the Stoer Group, two structurally integral groups of sites yield mean magnetizations of 317.0/+43.1 α95 = 11.3 ( n = 49) and 309.9/52.1 α95 = 10.6 ( n = 23). Some Stoer specimens bear a Torridon age overprint 133.3/+525 α95 = 9.6 ( n = 19). The younger Torridon Group yields 138.4/+52.2 α95 = 7.4 ( n = 42); 134.9/+45.5 α95 = 16.0 ( n = 15) and 134.4/+55.1 α95 = 11.3 ( n = 19) from three structurally integral clusters of sites. These late chemical magnetizations postdate bedding warps, faults and tectonic AMS fabrics; they do not warrant local "rigid-body" tilt corrections. However, we restored the ChRM directions for the regional post-Cambrian eastwards tilt which affected the entire foreland from the Lewisian basement to the overlying Proterozoic strata. Paleopoles calculated from the strata's restored

  11. Polyphase Proterozoic metamorphism and deformation at Four Peaks, southern Mazatzal Mountains, Arizona

    SciTech Connect

    Powicki, D.A.; Williams, M.L. . Dept. of Geology and Geography)

    1993-02-01

    Proterozoic rocks at Four Peaks may have been deformed in the 1.65 Ga. Mazatzal Orogeny and again at ca. 1.4 Ga. Metamorphic and ductile deformation events occurred before and after emplacement of the ca. 1.4 Ga. Four Peaks granite. The granite cuts a metamorphosed supracrustal package tentatively correlated with the rocks of the Alder and Mazatzal Groups. Exposed rocks include (from oldest to youngest): rhyolite, massive quartzite (30m), a thinly-bedded sequence of schist and immature micaceous quartzite (300m), vitreous orthoquartzite (300m), and a green-black slate of unknown thickness. In addition to the K-feldspar megacrystic ca. 1.4 Ga. Granite, plutonic rocks include a large body of coarse-grained hornblende granodiorite, and several smaller, fine grained granitoids. The syncline folds an early foliation (S1) and is cut by a heterogeneous axial plane cleavage (S2). South of the syncline is a major NE-striking shear zone, more than 500 meters wide. North, west, and east of the syncline the 1.4 Ga. granite cuts the syncline and has no deformational fabric, indicating that folding and thrusting are older. Adjacent to the shear zone, the generally unfoliated. Four Peaks granite has an anastomosing steeply SE-dipping foliation, parallel to, but apparently less intense than that in the shear zone, suggesting a reactivation of the shear zone after emplacement. The two phase history is supported by microfabric evidence and phase relationship. Regionally, porphyroblasts that preserve S1 are present in rocks dominated by a younger foliation (S2). Rocks proximal to the 1.4 Ga. granite contain pseudomorphs after earlier porphyroblasts and new porphyroblasts that overgrow both foliations. The authors interpret the older deformation and metamorphism to be related to the ca 1.6 Ga.

  12. Geochemistry and zircon geochronology of Late Proterozoic leucogranites north of Boston, eastern Massachusetts

    SciTech Connect

    Markus, R.; Hon, R. . Geology and Geophysics); Dunning, G. . Dept. of Earth Sciences)

    1993-03-01

    An igneous sequence that includes Late Precambrian volcanics (Lynn Volcanics) and granites, granodiorites, tonalites, plus diorites of the Dedham North suite, is located in a tectonic block bounded by the Walden Pond and Northern Boundary Faults north of the Boston Basin. Within the block between the rhyolites and granodiorites is a several hundred foot wide zone of leucogranites that contains frequent roof pendants in various stages of partial melting. The migmatitic nature of the pendants suggests that the leucogranites were locally derived by melt extraction from the partially melted pendant xenoliths. U-Pb zircon ages were obtained from samples of the leucogranite, granodiorite and diorite. Their crystallization ages are: leucogranite 609 [+-] 4 Ma, granodiorite 607 [+-] 4 Ma, and diorite 606 [+-] 3 Ma. All three samples yield ages that are identical within their statistical error limits and all three samples contain inherited component with average mid-Proterozoic ages. Major and trace element geochemistry of 43 samples of all representative types show that the predominantly pelitic'' layers underwent extensive partial melting and that the leucogranites represent a minimum granite melt at 0.5 to 2.0 kb of P(H2O). Geochemical modeling also supports the origin by partial melting of the pendant inclusions. Once formed, the leucogranite melts were then mixed with mafic magmas which must have also been the provider of the necessary heat to sustain the partial melting process. The data indicate that the Dedham North plutonic suite was formed at shallow crustal levels and that its compositional range is a result of magma mixing of varying proportions between the leucogranite and mafic melts.

  13. Timing of Proterozoic regional deformation in the southern Manzano Mountains, central New Mexico

    SciTech Connect

    Bauer, P.W. ); Bowring, S.A. . Dept. of Earth, Atmospheric, and Planetary Sciences); Karlstrom, K.E. . Dept. of Geology)

    1992-01-01

    Early Proterozoic supracrustal and plutonic rocks of the Manzano Mtns have sustained a remarkably complex history of ductile deformation, metamorphism, and plutonism. A comparison of field relations and deformational features between the two southernmost plutons suggests that they differ greatly in timing of intrusion with respect to regional deformation. The Monte Largo pluton consists of medium-grained granodiorite and quartz monzonite that is bounded on three sides by strongly deformed quartzite and phyllite. An S1 foliation is folded by upright, N-trending folds (F2). S2, axial planar to F2, is mylonitic along the E pluton margin. The degree of deformation in the pluton is comparable to that in the country rock. The Monte Largo pluton has a U-Pb zircon age of ca. 1.66 Ga. The Priest pluton is a 10-km-long, N-S elongate, megacrystic quartz monzonite that is intrusive into quartzite sand schists. Large microcline crystals define a magmatic foliation. The body contains a weakly to moderately well-developed NE-striking tectonic foliation defined by flattened quartz grains, best developed along the W margin. On the N end of the pluton, map-scale folds in quartzite and schist have been cross-cut, and a contact metamorphic aureole cross-cuts country rock structures. The degree of deformation in the pluton is significantly less than that of country rock quartzites, some of which are mylonitic. The Priest Pluton has a U-Pb zircon age of ca. 1.45 Ga. These data suggest that the ca. 1.66 Ga Monte Largo pluton is syntectonic with respect to regional deformation, whereas the ca. 1.45 Ga priest pluton is post-tectonic with respect to the regional deformation.

  14. Paleomagnetism of the Middle Proterozoic Electra Lake Gabbro, Needle Mountains, southwestern Colorado

    USGS Publications Warehouse

    Harlan, S.S.; Geissman, J.W.

    1998-01-01

    The Electra Lake Gabbro is a small 1.435 Ga pluton that intrudes 1.7 to 1.6 Ga gneisses and schists of the Needle Mountains in southwestern Colorado. Paleomagnetic samples were collected from the main phases of the gabbro, diabase dikes, granite, and alaskite dikes that cut the gabbro and from a partially melted zone in gneiss along the southern margin of the pluton. Gabbro, diabase, and some melt zone samples have a single-polarity characteristic magnetization of northeast declination (D) and moderate negative inclination (I). Demagnetization behavior and rock magnetic characteristics indicate that the remanence is carried by nearly pure magnetite. After correction for the minor west dip of overlying Paleozoic strata, we obtain a mean direction of D = 32.1??, I = -41.9?? (k = 94, ??95 = 3.3??, N = 21 sites) and a paleomagnetic pole at 21.1?? S, 221.1 ??E, (K= 89, A95 = 3.4??). This pole is similar to poles from the Middle Proterozoic Belt Supergroup but is located at a higher southerly latitude than poles from other 1.47-1.44 Ga plutons from North America, most of which plot at equatorial latitudes. The reason for this discrepancy is not clear but may result from a combination of factors, including unrecognized tilting of the gabbro, the failure of this relatively small pluton to fully average paleosecular variation, and uncertainties in the overall reliability of other 1.5-1.4 Ga poles of the North American apparent polar wander path.

  15. Timing of Proterozoic deformation, plutonism, and metamorphism in the Los Pinos Mountains, Central New Mexico

    SciTech Connect

    Shastri, L.L. . Dept. of Geology); Bowring, S.A. )

    1992-01-01

    Geochronologic, structural, and metamorphic studies within the Los Pinos Mountains (LPM), central NM provide new insights into the Proterozoic geologic history of this area. The LPM consist of a NE-trending, NW-dipping sequence of complexly deformed amphibolites and felsic schists. These have been intruded by a pervasively deformed granitic pluton. Two predominant deformational fabrics exist in the LPM. S1 is an early northwest-trending foliation, commonly parallel to compositional layering, which is folded about S2. S2 is axial planar foliation to tight to isoclinal folds and is the regional NE-trending fabric. Other fabrics and complex fold interference patterns may be related to localized strain partitioning around granitic bodies. A network of granitic dikes associated with the pluton crosscuts S2 but contains a weak foliation parallel to S2, suggesting synkinematic intrusion of the dikes. Regional metamorphism in the LPM took place at upper greenschist to lower amphibolite facies. Electron microprobe traverses of garnets show compositional variation indicative of growth zoning. No abrupt changes in composition representative of multiple metamorphic events are observed. Garnet-biotite geothermometry yields average rim temperatures of 454 [+-] 50 C. U-Pb geochronology of zircons from amphibolite, granite, and a granite dike indicates essentially the same age for all three units (1.66 Ga). The amphibolite contains abundant zircons which have complex morphologies typical of metamorphic growth; however, an igneous origin cannot yet be precluded. Spheres from the same amphibolite yield a near concordant age of 1.62 Ga. Thus, deformation, plutonism, and possibly the peak of metamorphism, were coeval at ca. 1.66 Ga, with metamorphism cooling through the blocking temperature of sphene at 1.62 Ga. The LPM are similar to other mountain ranges in south-central New Mexico where 1.66 Ga ages have been reported.

  16. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia

    NASA Technical Reports Server (NTRS)

    Kaufman, A. J.; Knoll, A. H.; Semikhatov, M. A.; Grotzinger, J. P.; Jacobsen, S. B.; Adams, W.

    1996-01-01

    Carbonate-rich sedimentary rocks of the western Anabar region, northern Siberia, preserve an exceptional record of evolutionary and biogeochemical events near the Proterozoic/Cambrian boundary. Sedimentologically, the boundary succession can be divided into three sequences representing successive episodes of late transgressive to early highstand deposition; four parasequences are recognized in the sequence corresponding lithostratigraphically to the Manykal Formation. Small shelly fossils are abundant and include many taxa that also occur in standard sections of southeastern Siberia. Despite this coincidence of faunal elements, biostratigraphic correlations between the two regions have been controversial because numerous species that first appear at or immediately above the basal Tommotian boundary in southeastern sections have first appearances scattered through more than thirty metres of section in the western Anabar. Carbon- and Sr-isotopic data on petrographically and geochemically screened samples collected at one- to two-metre intervals in a section along the Kotuikan River, favour correlation of the Staraya Reckha Formation and most of the overlying Manykai Formation with sub-Tommotian carbonates in southeastern Siberia. In contrast, isotopic data suggest that the uppermost Manykai Formation and the basal 26 m of the unconformably overlying Medvezhya Formation may have no equivalent in the southeast; they appear to provide a sedimentary and palaeontological record of an evolutionarily significant time interval represented in southeastern Siberia only by the sub-Tommotian unconformity. Correlations with radiometrically dated horizons in the Olenek and Kharaulakh regions of northern Siberia suggest that this interval lasted approximately three to six million years, during which essentially all 'basal Tommotian' small shelly fossils evolved.

  17. The Early Proterozoic structural and tectonic history of the south central Lake Superior Region

    NASA Astrophysics Data System (ADS)

    Ueng, Wen-Long C.; Larue, Dave K.

    1988-06-01

    The early Proterozoic tectonic evolution of the south central Lake Superior region is complex, owing to the presence of four tectonostratigraphic terranes, which were affected by six phases of deformation. The four terranes are the passive margin of the Superior craton, two paraautochthonous passive margin terranes (Crystal Falls and Florence-Niagara terranes), and a southern magmatic arc complex which is probably allochthonous with respect to the other terranes. Four of the six deformational episodes accompanied subhorizontal shortening, while two were caused by subvertical shortening. The first and the most penetrative phase of deformation is marked by subhorizontal shortening in a NNE-SSW direction. The second and fourth deformations were characterized by subvertical shortening and did not significantly modify the structural orientations from previous events in the study area. The third, fifth, and sixth deformations mostly caused open folding, and shortening directions were NW, NE, and W, respectively. Because all the terranes in the south central Lake Superior region share parallel deformational histories, it is suggested that the accretion of these terranes occurred during the first deformational episode. After removal of younger deformational effects, including open folding of the suture zone, the tectonostratigraphic assemblages in this region show the following sequence from NNE to SSW: a platformal assemblage overlying sialic basement, a basinal assemblage of tholeiitic volcanic rocks overlain by deep-water turbidites, an assemblage of basin floor deposits (Crystal Falls terrane) with apparently no demonstratably underlying crystalline basement, a fault-bounded terrane with highly strained passive margin strata (Florence-Niagara terrane), and a calc-alkaline magmatic arc assemblage. Such an arrangement of tectonostratigraphic assemblages is comparable with cross sections through Phanerozoic accretionary continental margins and therefore supports an arc

  18. The structure and chemical layering of Proterozoic stromatolites in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Douglas, Susanne; Perry, Meredith E.; Abbey, William J.; Tanaka, Zuki; Chen, Bin; McKay, Christopher P.

    2015-07-01

    The Proterozoic carbonate stromatolites of the Pahrump Group from the Crystal Spring formation exhibit interesting layering patterns. In continuous vertical formations, there are sections of chevron-shaped stromatolites alternating with sections of simple horizontal layering. This apparent cycle of stromatolite formation and lack of formation repeats several times over a vertical distance of at least 30 m at the locality investigated. Small representative samples from each layer were taken and analysed using X-ray diffraction (XRD), X-ray fluorescence (XRF), environmental scanning electron microscopy - energy dispersive X-ray spectrometry, and were optically analysed in thin section. Optical and spectroscopic analyses of stromatolite and of non-stromatolite samples were undertaken with the objective of determining the differences between them. Elemental analysis of samples from within each of the four stromatolite layers and the four intervening layers shows that the two types of layers are chemically and mineralogically distinct. In the layers that contain stromatolites the Ca/Si ratio is high; in layers without stromatolites the Ca/Si ratio is low. In the high Si layers, both K and Al are positively correlated with the presence and levels of Si. This, together with XRD analysis, suggested a high K-feldspar (microcline) content in the non-stromatolitic layers. This variation between these two types of rocks could be due to changes in biological growth rates in an otherwise uniform environment or variations in detrital influx and the resultant impact on biology. The current analysis does not allow us to choose between these two alternatives. A Mars rover would have adequate resolution to image these structures and instrumentation capable of conducting a similar elemental analysis.

  19. Nd, Sr, Pb, Ar, and O isotopic systematics of Sturgeon Lake kimberlite, Saskatchewan, Canada: constraints on emplacement age, alteration, and source composition

    NASA Astrophysics Data System (ADS)

    Hegner, E.; Roddick, J. C.; Fortier, S. M.; Hulbert, L.

    1995-06-01

    Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 σ, MSWD=1.2; 87Sr/86Sr( t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of ˜410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of δ 18O as high as +20‰ (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive low-temperature alteration. The δ 13C of matrix carbonate is -11.3‰ (PDB), slightly lighter than typical values from the literature. The δ 18O values of about +5‰ (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2‰ heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample ( ɛ Nd=+0.8; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial ɛ Nd values of +1.7 and +0.5 (87Sr/86Sr( t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high ɛ Nd(98. Ma) of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.

  20. Proterozoic structure, cambrian rifting, and younger faulting as revealed by a regional seismic reflection network in the Southern Illinois Basin

    USGS Publications Warehouse

    Potter, C.J.; Drahovzal, J.A.; Sargent, M.L.; McBride, J.H.

    1997-01-01

    Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some

  1. Late Cretaceous remagnetization of Proterozoic mafic dikes, southern Highland Mountains, southwestern Montana: A paleomagnetic and 40Ar/39Ar study

    USGS Publications Warehouse

    Harlan, S.S.; Geissman, J.W.; Snee, L.W.; Reynolds, R.L.

    1996-01-01

    Paleomagnetic results from Early Proterozoic metabasite sills and Middle Proterozoic diabase dikes from the southern Highland Mountains of southwestern Montana give well-defined, dual-polarity magnetizations that are statistically identical to those from a small Late Cretaceous pluton that cuts the dikes. The concordance of paleomagnetic directions from rocks of three widely separated ages indicates that the Proterozoic rocks were remagnetized, probably during Late Cretaceous time. Paleomagnetic, rock magnetic, and petrographic observations from the metabasite and diabase samples indicate that remanence is carried primarily by low-Ti magnetite. Combining virtual geomagnetic poles from metabasite sills, diabase dikes, and the Late Cretaceous pluton, we obtain a paleomagnetic pole at 85.5??N, 310.7??E (K = 19.9, A95 = 9.1??, N = 14 sites) that is similar to a reference pole from the 74 Ma Adel Mountain Volcanics of western Montana. Biotite and hornblende 40Ar/39Ar isotopic dates from host basement geneiss and a hornblende from a remagnetized metabasite sill yield ages of ca. 1800 Ma; these dates probably record cooling of the southern Highland Mountains following high-grade metamorphism at 1.9-1.8 Ga. The gneiss and metabasite age spectra show virtually no evidence of disturbance, indicating that the basement rocks were never heated to temperatures sufficient to cause even partial resetting of their argon systems. Thus, the overprint magnetization of the Highland Mountains rocks is not a thermoremanent magnetization acquired during conductive cooling of nearby Late Cretaceous plutons. Remagnetization of the metabasite sills and diabase dikes was probably caused by localized thermochemical and thermoviscous effects during circulation of Late Cretaceous hydrothermal fluids related to epithermal mineralization. The absence of significant disturbance to the 40Ar/39Ar age spectrum from the remagnetized metabasite hornblende indicates that some secondary magnetizations may

  2. Evolution of the Proterozoic Earth System: Insights from the ∆17O Record of Sedimentary Sulfate Minerals

    NASA Astrophysics Data System (ADS)

    Crockford, P. W.; Hayles, J. A.; Halverson, G. P.; Bekker, A.; Rainbird, R.; Wing, B. A.

    2014-12-01

    Triple oxygen isotope ratios (18O/16O and 17O/16O) are a powerful tool to tease out interconnections within the Surface Earth System, both today and throughout Earth's history. This ability comes from the fact that stratospheric photochemistry imparts a negative ∆17O anomaly (∆17O = δ17O - 0.52×δ18O) to atmospheric oxygen whose magnitude is proportional to pCO2 levels and photosynthetic oxygen production. Atmospheric oxygen readily weathers continental sulfides and, as a result, the secular variations in atmospheric ∆17O values may be recorded in marine sulfate minerals (barite, gypsum and anhydrite). The largest ∆17O anomalies found in the rock record are from peculiar barite layers that immediately post-date the 635 Ma Marinoan Snowball Event. While these anomalies have been interpreted to result from a weak post-glacial photosynthetic O2 flux, the balance of other evidence (e.g., Zn isotope records of near-modern post-glacial productivity) suggests that they instead reflect the elevated CO2 levels thought to be required to exit a snowball state. As this situation illustrates, the ∆17O record by itself does not provide a unique solution between production of the anomaly by stratospheric reactions and its destruction by global biospheric productivity. In the context of additional geological and geochemical constraints, however, a marine sulfate ∆17O record has the potential to provide new insights into paleoatmospheres, paleoclimates, and paleoproductivity. We have produced new data (n ≈ 200) for Proterozoic evaporites that extend the sulfate ∆17O record from the Neoproterozoic to ~2.3 Ga. This data will be interpreted within our current understanding of Proterozoic Earth System Evolution on basinal to global scales and will address key questions that include: Were Paleoproterozoic glacial episodes terminated by elevated pCO2? Was the Great Oxidation Event accompanied by enhanced productivity? Does the lack of C isotope variability throughout

  3. Carbonate- and silicate-rich globules in the kimberlitic rocks of northwestern Tarim large igneous province, NW China: Evidence for carbonated mantle source

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Santosh, M.; Hou, Tong; Zhang, Dongyang

    2014-12-01

    We report carbonate- and silicate-rich globules and andradite from the Wajilitage kimberlitic rocks in the northwestern Tarim large igneous province, NW China. The carbonate-rich globules vary in size from 1 to 3 mm, and most have ellipsoidal or round shape, and are composed of nearly pure calcite. The silicate-rich globules are elliptical to round in shape and are typically larger than the carbonate-rich globules ranging from 2 to several centimeters in diameter. They are characterized by clear reaction rims and contain several silicate minerals such as garnet, diopside and phlogopite. The silicate-rich globules, reported here for the first time, are suggested to be related to the origin of andradite within the kimberlitic rocks. Our results show that calcite in the carbonate-rich globules has a high XCa (>0.97) and is characterized by extremely high concentrations of the total rare earth elements (up to 1500 ppm), enrichment in Sr (8521-10,645 ppm) and LREE, and remarkable depletion in Nd, Ta, Zr, Hf and Ti. The calcite in the silicate-rich globules is geochemically similar to those in the carbonate-rich globules except the lower trace element contents. Garnet is dominantly andradite (And59.56-92.32Grs5.67-36.03Pyr0.36-4.61Spe0-0.33) and is enriched in light rare earth elements (LREEs) and relatively depleted in Rb, Ba, Th, Pb, Sr, Zr and Hf. Phlogopite in the silicate-rich globules has a high Mg# ranging from 0.93 to 0.97. The composition of the diopside is Wo45.82-51.39En39.81-49.09Fs0.88-0.95 with a high Mg# ranging from 0.88 to 0.95. Diopside in the silicate-rich globules has low total rare earth element (REE) contents (14-31 ppm) and shows middle REE- (Eu to Gd), slight light REE- and heavy REE-enrichment with elevated Zr, Hf and Sr contents and a negative Nb anomaly in the normalized diagram. The matrix of the kimberlitic rocks are silica undersaturated (27.92-29.31 wt.% SiO2) with low Al2O3 (4.51-5.15 wt.%) and high CaO (17.29-17.77 wt.%) contents. The

  4. Ti-rich Silicate Perovskite: A New Lower Mantle Phase and the Possible Source of Unradiogenic Hf in Kimberlites and Carbonatites

    NASA Astrophysics Data System (ADS)

    Collerson, K. D.; Terasaki, H.; Ohtani, E.; Suzuki, A.; Kondo, T.

    2005-12-01

    In an attempt to synthesize the pre-exsolution homogeneous phase proposed by [1] as the protolith of exsolution-textured cpx-ilm xenoliths in kimberlite, we conducted a subsolidus MA experiment at 25 GPa and 1800°C using a natural cpx-ilm xenolith from Monastery kimberlite containing 17% TiO2 as the starting composition. Phases identified (EPMA, Raman &XRD) were Ti-rich MgSi perovskite, Ti-rich CaSi perovskite and stishovite. TiO2 contents ranged from 16-18% in the CaTiSiPv to between 12.5 and 25% in the MgTiSiPv. This indicates that an extensive field of solid solution exists in the system MgSiPv - CaSiPv - CaTiPv at pressures greater than 24 GPa [cf. 2,3]. Furthermore, a multi-phase system was observed using XRD in a DAC experiment at 30 GPa and 1800°C. By contrast, the maximum TiO2 in majorite garnet in this composition is only 5-6% at 18 GPa [4]. Raman spectra for CaTiSiPv vary systematically with Ti content. This observation could have application for interpretation of spectra obtained in subsequent DA experiments on the stability of CaTiSiPv. The protolith of the cpx-ilm xenoliths does not exist as a single homogeneous Ti-rich silicate phase in the upper mantle. However, presence of a Ti-bearing phase in the lower mantle (LM) is inferred from crystals of CaSiPv and CaTiPv that occur in contact with each other in LM diamonds [5]. These were interpreted as reversion products, formed from CaSiPv and CaTiPv solid solution during ascent in kimberlite magma of at P < 9 GPa [2]. However, following [2] these phases must have existed as a single phase at higher pressure. Using the mean composition of CaTiSiPv produced in our experiments, we calculated that this solid solution is likely to involve 0.7 CaSiPv and 0.3 CaTiPv. Ti-rich SiPv in the LM phase may explain the "hidden" low Lu/Hf reservoir required by unradiogenic Hf isotopic compositions in kimberlites and carbonatites [6,7]. [1] Ringwood & Lovering (1970) EPSL,7, 371. [2] Kubo et al., (1997) PCM 24: 488

  5. Subduction-related origin of eclogite xenoliths from the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology and geochemistry

    NASA Astrophysics Data System (ADS)

    Dongre, A. N.; Jacob, D. E.; Stern, R. A.

    2015-10-01

    Major and trace elements as well as the first oxygen isotopes are reported on eclogite xenoliths from the Mesoproterozoic KL2 and P3 kimberlite pipes of the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India. Garnets in kyanite-bearing samples are rich in grossular, whereas they are predominantly pyrope-almandines in the bimineralic (kyanite-free) samples. The kyanite eclogite from the P3 pipe is more Mg-rich than those from KL2 pipe. Equilibration temperatures indicate derivation from 4.5 to 5.3 GPa and 1060 to 1220 °C for the KL2 samples and 3.6 GPa, 918 °C for the P3 sample. Garnet rare earth element patterns show two characteristic types, one with relatively low and flat heavy rare earth element patterns: Wajrakarur Group 1 and a second with lower light to heavy rare earth element ratios: Wajrakarur Group 2. Most samples in Wajrakarur Group 1 show pronounced positive Eu anomalies in garnet and positive Eu and Sr anomalies in the reconstructed whole rock trace element patterns; these are among the strongest anomalies in eclogite xenoliths worldwide. In contrast, Wajrakarur Group 2 samples show only subtle positive Eu anomalies. Oxygen isotopic ratios of garnets range between +5.3‰ and +7.8‰ δ18O. This range extends significantly beyond the range for unchanged mantle. Similar to many other eclogite suites worldwide, the Wajrakarur Group 1 and Group 2 eclogite suites shows evidence for an origin as crustal gabbroic material, likely once part of the oceanic crust, which was subducted and imbricated under the Eastern Dharwar craton. Their surface origin therefore lends support to geodynamic models that favor amalgamation of the Dharwar craton by subduction.

  6. Eclogite xenoliths from the Lace kimberlite, Kaapvaal craton: From convecting mantle source to palaeo-ocean floor and back

    NASA Astrophysics Data System (ADS)

    Aulbach, S.; Viljoen, K. S.

    2015-12-01

    Major- and trace-element compositions of eclogite and pyroxenite xenoliths of ≥2.5 Ga age (in situ Pb-Pb data on clinopyroxene) from the Lace kimberlite on the Kaapvaal craton were investigated in order to constrain: (1) the nature and evolution of their protoliths; (2) the extent to which they preserve information on the state of the asthenospheric mantle source that gave rise to their low-pressure protoliths; and (3) the effect of their deep recycling on the radiogenic isotope evolution of the convecting mantle. Their elemental relationships are consistent with low-pressure fractionation of olivine ± plagioclase and clinopyroxene during oceanic crust formation, whereby the residual melt was enriched in rare-earth elements (REE), high field-strength elements and Y, producing inverse correlations of ΣREE with the size of Eu- and Sr-anomalies. LREE-depletion may indicate loss of on average 20% of a partial melt upon subduction and metamorphism (eclogitisation) of oceanic crust, which did not, however, contribute to juvenile growth of continental crust. The eclogites have median Sm/Nd (0.40) and Lu/Hf (0.27) similar to Depleted Mantle, and lower U/Pb (0.02) and Th/Pb (0.02). If deeply subducted, these rocks cannot explain unradiogenic Nd and Hf, and radiogenic Pb isotope compositions in the sources of some modern ocean island basalts. Low incompatible trace-element contents similar to picrites, and Yb concentrations at a given TiO2 content similar to modern MORB, indicate derivation of the protoliths by average melt fractions of ∼ 0.20- 0.25 that left a spinel peridotite residue at pressures ≤2.5 to 3.0 GPa. This shallow intersection of the peridotite solidus suggests moderate Archaean ambient mantle potential temperatures of ≤1420 to 1470 °C. Samples filtered for clinopyroxene fractionation and metasomatism have V/Sc (4.7 ± 1.2; n = 11) indicating lower fO2 (-1.9 relative to the fayalite-magnetite-quartz buffer = ΔFMQ) than modern MORB. This is in part

  7. New Paleomagnetic Constraints on the Proterozoic Supercontinent Evolution: A view from the South

    NASA Astrophysics Data System (ADS)

    Trindade, R. I.

    2013-05-01

    The assembly and disruption of supercontinents is thought to have impacted the long-term evolution of different envelopes of the Earth throughout Precambrian times, from mantle convection dynamics to feedback mechanisms leading to the stepwise change in atmospheric oxygenation. But the timing, duration, the size and the paleogeographic configuration of Precambrian supercontinents is still a matter of discussion. Large South American cratonic units (>30,000 km2) such as the Amazon, Rio de la Plata and São Francisco are usually represented as key pieces of different supercontinental assemblies but their paleomagnetic database is still scarce. The most important advances in the Precambrian paleomagnetic database concerns the Amazon Craton. Recent paleomagnetic studies allows one to track the participation of the Amazon Craton in several supercontinent assemblies from 2.0 Ga up to the end of the Proterozoic era. Amazonia was definitely part of the Columbia Supercontinent as attested by 1.78-1.79 Ga key poles. This supercontinent also comprised Laurentia, Baltica, North China, and Amazonia, forming a long and continuous landmass, linked by Paleo- to Mesoproterozoic mobile belts. Paleomagnetic data for Amazonia support a long-lived connection between Laurentia and Baltica at least until 1.26 Ga ago. However, new paleomagnetic poles from the same craton suggest that Columbia was in fact ephemerous, indicating a changing configuration between Amazonia and Baltica between 1.78 and 1.44 Ma. At the end of the Mesoproterozoic, the Amazon craton is part of Rodinia based on its record of Grenvillian events with overlapping ages with similar orogenic belts in eastern Laurentia. But its relative position in that supercontinent is still intensively debated. Presently only four poles for the Amazonian craton are available for the 1,200-900 Ma interval. Based on these results a dynamic model for the Amazonian craton was envisaged, which considers its oblique collision with southern

  8. Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction

    NASA Astrophysics Data System (ADS)

    Smith, Chris B.; Walter, Michael J.; Bulanova, Galina P.; Mikhail, Sami; Burnham, Antony D.; Gobbo, Luiz; Kohn, Simon C.

    2016-11-01

    Diamonds from Dachine, French Guiana, are unique among worldwide diamond populations. The diamonds were transported to the surface in an unusual ultramafic extrusive magma with an affinity to boninite or komatiite, which was emplaced within an arc geological setting at 2.2 Ga. Dachine diamonds have internal and external morphologies indicative of relatively rapid growth from carbon oversaturated fluids or melts, and exhibit internal features consistent with residence in a high-strain environment. On the basis of nitrogen (N) defects the diamonds are categorized as Type Ib-IaA. The unusually low aggregation state of N places severe constraints on the thermal history of the diamonds, effectively ruling out derivation in convecting mantle. The carbon and N isotopic compositions of Dachine diamonds are consistent with a sedimentary source of carbon, with the majority of diamonds having δ13C values < - 25‰ and δ15N values > + 4‰. The primary carbon was presumably deposited on an early Proterozoic seafloor. Sulphide inclusions have low Ni and Cr and are comparable to lithospheric eclogitic-type sulphide inclusions. Three garnet and one clinopyroxene inclusion are also eclogitic in composition, and one garnet inclusion has a majorite component indicating an origin around 250 km depth. The silicate inclusions are highly depleted in many incompatible trace elements (e.g. LREE, Nb, Hf, Zr), and modelling indicates an eclogitic source lithology that contained a LREE-enriched trace phase such as epidote or allanite, and an HFSE-rich phase such as rutile. Four of the five inclusions are unusually enriched in Mn, as well as Ni and Co, and modelling suggests a protolith with a bulk composition of subducted normal MORB plus about 10% ferromanganese crust component. We suggest a model wherein Dachine diamonds precipitated from remobilized sedimentary carbon at the slab-mantle interface from liquids derived ultimately by deserpentinization of slab peridotite at depths of 200

  9. Root zone of the Late Proterozoic Salma Caldera, northeastern Arabian Shield, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kellogg, Karl S.

    1985-11-01

    The eroded root of the late Proterozoic Salma caldera crops out in a striking, roughly elliptical feature, about 27 km long and 22 km wide, near the northeastern edge of the Arabian Shield. The caldera is genetically part of an elongate alkalic granitic massif (Jabal Salma) that extends 35 km from the caldera to the southwest. Comenditic ash flow tuff and lava(?) of the caldera fill, probably more than 1 km thick, are the oldest recognized rocks of the caldera complex. These rocks were erupted during caldera collapse associated with the rapid evacuation of the upper, mildly peralkalic part of a zoned magma reservoir. Within the caldera fill, a massive, lithic-rich intracaldera rhyolite, probably a lava in excess of 1 km thick, is overlain by a layered ash flow sequence. Numerous megabreccia blocks, probably derived from the caldera wall, occur in the massive rhyolite. Open folds in the layered volcanic rocks may be due to high-temperature slumping of the rocks toward the center of the caldera following collapse. Later peralkalic granite that intruded the caldera ring fracture zone occurs in an arcuate pattern outside the area of exposed caldera fill. After caldera collapse, metaluminous to peraluminous magma rose beneath the caldera at approximately 580 Ma and solidified as biotite alkali granite, rim syenogranite, and late, high-level granophyre. Rare earth element abundances indicate that the layered rhyolite tuff, peralkalic granite, and granophyre are chemically more evolved than the biotite alkali granite and rim syenogranite. The granophyre intruded the caldera fill as a dome-shaped body composed of numerous sheetlike masses. Granophyric texture resulted from rapid pressure release and quenching accompanying the intrusion of each sheet. Maximum penetration of the granophyre into overlying rocks occurred in the central region and along the west side of the caldera, where the caldera fill volcanic rocks have been removed by erosion. No apparent structural

  10. Middle Proterozoic uplift events in the Dunbar dome of northeastern Wisconsin, USA

    USGS Publications Warehouse

    Peterman, Z.E.; Sims, P.K.; Zartman, R.E.; Schulz, K.J.

    1985-01-01

    Isotopic ages of granitic and metamorphic rocks exposed in the Dunbar structural dome of northeastern Wisconsin identify a protracted series of tectonic and "hydrothermal" events that culminated in major regional uplift during Middle Proterozoic (Keweenawan; ca 1,100 Ma) continental rifting and volcanism. The major rock-forming events and the structural development of the dome occurred during the interval 1,862+/-4 Ma to 1,836+/-6 Ma. Whole-rock Rb-Sr ages are partly reset in response to a widely recognized but cryptic event in Wisconsin and Michigan at about 1,630 Ma. The scale and systematic character of the whole-rock resetting strongly suggests the presence of a fluid phase derived in situ from water dissolved in the silicates or externally from a subthrust plate of low-grade metamorphic rocks. The regional nature of the 1,630-Ma disturbance possibly indicates that it is related to a major tectonic event such as an active plate margin far to the south. Rb-Sr biotite ages for the Dunbar dome (this study), the southern complex of the Marquette district (Van Schmus and Woolsey 1975) and the Felch trough area (Aldrich and others 1965) provide a remarkably coherent pattern that reflects multiple episodes of differential uplift. Younger events superimposed on a regional 1,630-Ma imprint are recorded at 1,330 Ma and 1,140 Ma. The 1,330 Ma disturbance could reflect stabilization following intrusion of the Wolf River batholith at 1,485 Ma. The 1,140-Ma uplift event occurred during Keweenawan rifting and volcanism as a result of stresses imposed on a mosaic of fault-bounded blocks with possible subcrustal influence. The remarkably small variance in the 1,140-Ma biotite age peak argues for rapid uplift and cooling, and hence rapid erosion. Detritus from the uplift probably was being shed into nearby tectonic basins most of which did not survive subsequent uplift and erosion. ?? 1985 Springer-Verlag.

  11. No coincidence? Exploring the connection between the Great Oxidation Event and craton stabilization during the Archean-Proterozoic transition

    NASA Astrophysics Data System (ADS)

    Kump, L. R.

    2014-12-01

    As geochronological constraints on the timing of the Great Oxidation Event (here defined as the passage of atmospheric oxygen levels through the proposed upper limit of 10-5 of present) have improved, it has become increasingly clear that this event is somehow tied to the tectonic factors that have defined the Archean-Proterozoic boundary for decades, namely the stabilization of continental cratons allowing for the growth of large continents. We have proposed two connections in the past: 1) elevated late Archean mantle plume activity brought oxidized material from the lithospheric graveyard to the upper mantle, reducing the oxygen fugacity of post-Archean volcanism, and 2) that the stabilization of the cratons allowed for a proportional increase in less-reducing, subaerial volcanism at the expense of more reducing, submarine volcanism. Critiques of these two proposals will be addressed in the context of subsequent work by the geosciences community on the geodynamics and geochemistry of the Archean-Proterozoic transition, and a synthetic hypothesis for a tectonic driver for atmospheric oxygenation will be presented.

  12. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  13. The West African Mauritanid metamorphic suite of Proterozoic age in the subsurface of peninsular Florida and environs

    SciTech Connect

    Winston, G.O.

    1993-03-01

    A high and low-grade Gondwanan metamorphic terrane is revealed by 14 wells in Florida and environs. Two high-grade metamorphics (gneiss and schist) are located in central Florida and are probably Early Proterozoic in age. The 12 other wells contain low-grade metamorphic suites, principally composed of inter-bedded argillites, acid volcanics and quartzites belonging to the Mauritanid sequence of West Africa. These suites are present in south Georgia, north Florida and offshore; a 3,975-foot section was penetrated in one well. These widespread metamorphic rocks are probably the terrane into which the Cambrian Osceola granite of central Florida was intruded. The two grades of metamorphics represent Early and Late Proterozoic episodes of sedimentation, each followed by metamorphism and erosion. Lower Ordovician to Devonian sediments were deposited on this terrane in southern Georgia and northern Florida. In the Early Jurassic, volcanics completely covered southern Florida, concealing the nature of the old underlying surface. Younger Mesozoic sediments eventually buried the entire Pre-Cambrian-Lower Jurassic terrane.

  14. UPb, Sr and Nd evidence for grenvillian and latest proterozoic tectonothermal activity in the spitsbergen caledonides, arctic ocean

    NASA Astrophysics Data System (ADS)

    Peucat, J. J.; Ohta, Y.; Gee, D. G.; Bernard-Griffiths, J.

    1989-04-01

    Within the Caledonian complexes of northwestern Spitsbergen, high PT formations provide UPb zircon ages of 965±1 Ma of a metagranite and 955±1 Ma of a corona gabbro, indicating the influence of Grenvillian activity in the area. Various isotopic systems suggest that these rocks were partially derived by reworking of ancient crust (as old as Archaean). Eclogites and felsic agmatite indicate latest Proterozoic magmatic or metamorphic events (625 -5+2 and 661±2 Ma, respectively) by UPb zircon dating. The eclogitic metamorphism age is not fully constrained and ranges between 540 and 620 Ma; this occurred prior to the superimposed Caledonian metamorphism, indicated by a part of the KAr and RbSr mineral cooling ages. The new data and other evidence of Precambrian tectonothermal activity on Svalbard suggest that the Early Palaeozoic and Late Proterozoic successions exposed elsewhere on Svalbard may also be underlain by Grenvillian or older basement rocks. Relationships to other Grenvillian and older terrains in the Arctic are reviewed.

  15. Diamonds, Eclogites, and the Oxidation State of the Earth's Mantle.

    PubMed

    Luth, R W

    1993-07-02

    The reaction dolomite + 2 coesite --><-- diopside + 2 diamond + 2O(2) defines the coexistence of diamond and carbonate in mantle eclogites. The oxygen fugacity of this reaction is approximately 1 log unit higher at a given temperature and pressure than the oxygen fugacities of the analogous reactions that govern the stability of diamond in peridotite. This difference allows diamond-bearing eclogite to coexist with peridotite containing carbonate or carbonate + diamond. This potential coexistence of diamond-bearing eclogite and carbonate-bearing peridotite can explain the presence of carbon-free peridotite interlayered with garnet pyroxenites that contain graphitized diamond in the Moroccan Beni Bousera massif at the Earth's surface and the preferential preservation of diamond-bearing eclogitic relative to peridotitic xenoliths in the Roberts Victor kimberlite.

  16. Geology and structure of diamond-bearing rocks of the Kokchetav massif (Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, Larissa F.; Braun, Tatjana V.; Sheshkel, Georgy G.; Podkuiko, Yuri A.

    1994-05-01

    Two crustal settings for microdiamond formation have been described from eclogite-bearing metamorphic areas: (1) the economic concentration of microdiamonds in metasedimentary gneisses and calc-silicate rocks (northern Kazakhstan); and (2) microdiamonds recently found in eclogite, garnet-pyroxenite and jadeitite from Dabie Shan Mountain, eastern China. The latter occurrence is interpreted to be the product of ultra-high-pressure metamorphism in a Mesozoic collision zone. There are, however, a number of discrepancies between the geological, structural and geochemical data for Kazakhstan microdiamond deposits and an interpretation in terms of a deep subduction zone model. The geodynamic setting of the Kokchetav massif can be defined as a continental rise prism environment related to a passive continental margin where rifting predominated during early Palaeozoic orogeny. The Kumdikol microdiamond province is closely associated with a tectonic melange zone involved in ductile to semi-ductile shearing abundant in graphite. Microdiamonds of the Kumdikol area have a dual setting in the rocks. They appear to be included not only in refractory garnet and zircon but also in almost all rock-forming minerals as biotite, phlogopite, diopside, quartz and secondary sericite-chlorite and sericite-chlorite-calcite aggregates after garnet, pyroxene and plagioclase (?), and in spite of "softness" of the host phases microdiamonds are well preserved. On the other hand, the ore body extends along the shear zone and high concentrations of the microdiamonds within it are distributed without any lithological control along the local S-C surfaces of the main Kumdikol strike-slip shear zone. This duality of microdiamond settings in absence of practically all ultra-high-pressure minerals except diamond itself, weakens the interpretation of this occurrence in terms of very deep subduction and very fast uplift and exhumation during 15-10 Ma according to recent geochronological data. These microdiamonds could have been formed metastably under anisotropic stress conditions. In fact, the available data from the Kumdikol province provides certain support for either (metastable and stable) hypothesis.

  17. Geochemistry and petrogenesis of Paleo-Proterozoic granitoids from Mahakoshal Supracrustal Belt (MSB), CITZ

    NASA Astrophysics Data System (ADS)

    Yadav, Bhupendra; Ahmad, Talat; Kaulina, Tatiana; Bayanova, Tamara

    2015-04-01

    Voluminous granitic magmatism of Proterozoic age occupies a vast expanse at the southern margin of Mahakoshal Supracrustal Belt (MSB), CITZ. The present study focuses on eastern part of this belt and discusses possible crustal evolution processes based on the geochemical, geochronological and Sm-Nd isotopic constraints on these rocks. The rocks present are predominantly granites and gneisses viz. grey to pink granite gneiss and leuco- to mesocratic granites. In general these rocks are medium to coarse grained and microscopically show typical granitic assemblages with apatite, titanite, zircon and allanite as accessories. Mineralogically these rocks are grouped into three categories viz. Hbl-Bt granite gneiss, Bt- granite gneiss and Bt-granite. Major oxide characteristics show that the Hbl-Bt granite Gneiss are metaluminous (ASI~0.98), whereas Bt- granite gneiss (ASI=1.05-1.22) and Bt- granite (ASI=1.03-1.21) are weakly peraluminous to strongly peraluminous. In terms of Fe* number and alkali-lime index these rocks belong to magnesian and calc-alkalic series respectively. Overall these rocks range from 59.43 to 72.01 wt.% SiO2 and have low Na2O content (average ~2.60 wt.%) with average ~4.02 wt.% K2O and high K2O/Na2O ratio. On Harker variation diagrams, all rock types show negative correlation for TiO2, P2O5, CaO, MnO, MgO, Fe2O3T and Al2O3 against SiO2 suggesting fractionation of Pl-Hbl-Ttn-Mag-Ap during evolution of these rocks. On chondrite-normalized Rare Earth Element (REE) plot, the Bt-granite is enriched in LREE ((La/Sm)N ~10.21) and show negative Eu anomaly (Eu/Eu*=0.39) with depleted HREE ((Gd/Yb)N ~4.38). The Hbl-Bt granite gneiss shows LREE ((La/Sm)N ~6.68) depletion and enriched HREE ((Gd/Yb)N ~2.05) patterns compared to Bt-granite, with negative Eu anomaly (Eu/Eu*=0.44). Whereas Bt-gneiss is moderate in comparison with LREE enrichment ((La/Sm)N ~9.17) and HREE depletion ((Gd/Yb)N ~3.02) with weak negative Eu anomaly (Eu/Eu*=0.60). Multi-elemental plot

  18. Lithospheric reworking at the Proterozoic-Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Robertson, Kate; Heinson, Graham; Thiel, Stephan

    2016-10-01

    Seventy-four stations from the long-period Australia-wide AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) dataset were used to image the electrical resistivity beneath the Neoproterozoic Ikara-Flinders Ranges and adjacent Palaeo-Mesoproterozoic Curnamona Province. Results from 3D inversions using ModEM software show a relatively resistive Ikara-Flinders Ranges, with two parallel arcuate conductors at 20 to 80 km depth in the Nackara Arc. There is a good correlation of diamondiferous kimberlites occurring over conductors, which we interpret as evidence for these conductors to be residing on large lithospheric structures that have been conduits for partial melt and volatile movement in the Jurassic. The Curnamona Province is remarkably conductive for a region that is thought to have a cratonic core, with Delamerian reworking only at its edges. The conductor covers most of the province at depths of 10-40 km, and its presence at lower crustal depths suggests that conductive sediments can not entirely explain it. Fluids associated with subduction may have pervasively modified the crust in the past, resulting in an enrichment of carbon, enhancing the conductivity. Additionally, we conclude that the notion of a single continuous arcuate Flinders Conductivity Anomaly is unlikely and that the anomalous response observed is instead a result of the combined response of three separate anomalies; the Curnamona Province Conductor and the two Nackara Arc Conductors.

  19. Hydrogeologic and water-quality characteristics of the crystalline-rock aquifers of Archean and Proterozoic age, Minnesota

    USGS Publications Warehouse

    Anderson, H.W.

    1986-01-01

    Five aquifers in crystalline rocks of Archean and Proterozoic age in Minnesota include in descending order the North Shore Volcanic, Sioux Quartzite, Proterozoic metasedimentary, Biwabik Iron formation and undifferentiated Precambrian aquifers. The North Shore Volcanic aquifer generally yields < 15 gal/min to wells from interflow sediments and fractures in the basaltic lava flows along the northern shore of Lake Superior and along the upper St. Croix River. Dissolved solids concentrations range from 91 to 74,300 mg/L, and the water is of several chemical types. The Sioux Quartzite aquifer yields from 1 to 450 gal/min to wells open to joints and fractures and loose sand zones in the predominantly pink orthoquartzite in southwestern Minnesota. Dissolved solids concentrations range from 237 mg/L in water from wells in outcrop areas to 2,300 mg/L from wells where the Sioux Quartzite aquifer underlies Cretaceous rocks or thick Des Moines drift. The water generally is a calcium sulfate type. The Proterozoic metasedimentary aquifer generally yields < 20 gal/min to wells in weathered regolith and fractures in thin-bedded gray to black argillite in north-central Minnesota. Dissolved solids concentrations generally range from 126 to 340 mg/L, and the water is a calcium magnesium bicarbonate type. The Biwabik Iron formation aquifer yields 1,000 gal/min to wells in leached zones in the ferruginous chert and interbedded hematite and magnitite iron ore in north-central Minnesota. Dissolved solids range from 157 to 388 mg/L in water that is a calcium magnesium bicarbonate type. The undifferentiated Precambrian aquifer generally yields < 25 gal/min to wells from fractures and the weathered regolith developed on a variety of crystalline-rock types. Wells have been developed in parts of the aquifer throughout the State except in the southeast where it is too deeply buried. Dissolved solids concentrations average < 400 mg/L in central and northeastern Minnesota, but average about 700

  20. Seismic evidence for a mantle source for mid-Proterozoic anorthosites and implications for models of crustal growth

    USGS Publications Warehouse

    Musacchio, G.; Mooney, W.D.

    2002-01-01

    Voluminous anorthosite intrusions are common in mid-Proterozoic crust. Historically, two end-member models have been proposed for the origin of these anorthosites. In the first model anorthosites derive from fractionation of a mantle source leaving a residue of metagabbro in the lower crust; in the second model anorthosites are the product of partial melting of the lower crust with residual pyroxene and high-grade minerals (i.e. a pyroxenitic and/or metapelitic lower crust). Although a general consensus has developed that the first model provides the best fit to petrological and geochemical constraints, the sparse evidence for mafic and ultramafic counterparts to the anorthosites leaves the issue still unresolved. We use the absolute P-wave velocity and the ratio between P- and S-wave velocities (VP/VS) to infer the composition of the lower crust beneath the Marcy Anorthosite (New York State, USA). Seismic refraction data reveal a lower crust 20 km thick, where VP and VP/VS range from top to bottom between 7.0 km s-1 and 7.2 ?? 0.1 and 1.84 km s-1 and 1.81 ?? 0.02, respectively. Laboratory measurements on rock samples indicate that these seismic properties are typical of plagioclase-rich rocks. Magmatic underplating of basaltic melts is a mechanism to form plagioclase-rich bulk composition for the Grenville crust. At the bottom of the lower crust, increase of P-wave velocity, slight decrease of VP/VS ratios and the presence of a low-reflective seismic Moho are additional observations supporting crust-mantle interactions related to magmatic underplating. High P-wave velocity (8.6 km s-1) in the upper mantle may indicate that the ultramafic portion (e.g. pyroxenites) of the underplated magma has become eclogite. High average P-wave velocity (6.7 km s-1) and VP/VS (1.81), and the exceptional abundance of anorthosites-norites-troctolites among the rocks exposed at the surface, indicate that the Grenville Proterozoic crust may have a unique plagioclase-rich bulk

  1. Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance, and metallogenic significance

    USGS Publications Warehouse

    Slack, J.F.; Stevens, B.P.J.

    1994-01-01

    Whole-rock analyses of samples of pelite, psammite, and psammopelite from the Early Proterozoic Broken Hill Group (Willyama Supergroup) in the Broken Hill Block, New South Wales, Australia, reveal distinctive geochemical signatures. Major-element data show high Al2O3 and K2O, low MgO and Na2O, and relatively high Fe2O3T MgO ratios, compared to average Early Proterozoic clastic metasediments. High field strength elements (HFSE) are especially abundant, including Nb (most 15-27 ppm), Ta (most 1.0-2.2 ppm), Th (17-36 ppm), Hf (4-15 ppm), and Zr (most 170-400 ppm); Y (33-74 ppm) is also high. Concentrations of ferromagnesian elements are generally low (Sc = < 20 ppm, Ni = ??? 62 ppm, Co = <26 ppm; Cr = most < 100 ppm). Data for rare earth elements (REEs) show high abundances of light REEs (LaCN = 116-250 ?? chondrite; LaCN = 437 in one sample), high LaCN YbCN ratios (5.6-13.9), and large negative Eu anomalies ( Eu Eu* = 0.32-0.57). The geochemical data indicate derivation of the metasedimentary rocks of the Broken Hill Group by the erosion mainly of felsic igneous (or meta-igneous) rocks. High concentrations of HFSE, Y, and REEs in the metasediments suggest a provenance dominanted by anorogenic granites and(or) rhyolites, including those with A-type chemistry. Likely sources of the metasediments were the rhyolitic to rhyodacitic protoliths of local quartz + feldspar ?? biotite ?? garnet gneisses (e.g., Potosi-type gneiss) that occur within the lower part of the Willyama Supergroup, or chemically similar basement rocks in the region; alternative sources may have included Early Proterozoic anorogenic granites and(or) rhyolites in the Mount Isa and(or) Pine Creek Blocks of northern Australia, or in the Gawler craton of South Australia. Metallogenic considerations suggest that the metasediments of the Broken Hill Block formed enriched source rocks during the generation of pegmatite-hosted deposits and concentrations of La, Ce, Nb, Ta, Th, and Sn in the region. Li, Be, B, W

  2. Crustal reflectivity near the Archaean-Proterozoic boundary in northern Sweden and implications for the tectonic evolution of the area

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Elming, S.-Å.; Mellqvist, C.; Öhlander, B.; Weihed, P.; Wikström, A.

    2002-07-01

    Sm-Nd isotope ratios of 1.9-1.8 Ga granitoids delineate the Archaean-Proterozoic boundary in northern Sweden, an important feature in the Fennoscandian Shield. The boundary strikes approximately WNW-ESE and is defined as a c. 20 km wide zone with juvenile Palaeoproterozoic rocks to the SSW and Archaean and Proterozoic rocks, derived to a large extent from Archaean sources, to the NNE. It therefore constitutes the strongly reworked margin of the old Archaean craton. Extrapolation of the boundary offshore into the Bothnian Bay and correlation with the marine reflection seismic BABEL Lines 2 and 3/4 indicates that the boundary dips to the south-southwest, consistent with interpretation of the Sm-Nd data. In order to tie the BABEL results with onshore surface geology and obtain detailed images of the uppermost crust a short (30 km of subsurface coverage) pilot profile was acquired in the Luleå area of northern Sweden during August 1999. The profile consisted of a high-resolution shallow component (1 kg shots) and a lower-resolution deep component (12 kg shots). Both components image most of the reflective crust, with the deep component providing a better image below 10 s. Comparison of signal penetration curves with data acquired over the Trans-Scandinavian Igneous Belt (a large batholith) indicate the transparent nature of the crust there to be caused by geological factors, not acquisition parameters. Lower crustal reflectivity patterns on the Luleå test profile are similar to those observed on the BABEL lines, suggesting the same lower crust onshore as offshore. Interpreted Archaean reflective upper crust in the NE extends below more transparent Proterozoic crust in the SW. This transparent crust contains a number of high-amplitude reflectors that may represent shear zones and/or mafic rock within granite intrusions. A marked boundary in the magnetic field in the SW has been interpreted as being the result of a gently west-dipping contact zone between meta

  3. HYDROCARBON SOURCE ROCK EVALUATION OF MIDDLE PROTEROZOIC SOLOR CHURCH FORMATION, NORTH AMERICAN MID-CONTINENT RIFT SYSTEM, RICE COUNTY, MINNESOTA.

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1985-01-01

    Hydrocarbon source rock evaluation of the Middle Proterozoic Solor Church Formation (Keweenawan Supergroup) as sampled in the Lonsdale 65-1 well, Rice County, shows that: the rocks are organic matter lean; the organic matter is thermally post-mature, probably near the transition between the wet gas phase of catagenesis and metagenesis; and the rocks have minimal potential for producing additional hydrocarbons. The observed thermal maturity of the organic matter requires significantly greater burial depths, a higher geothermal gradient, or both. It is likely, that thermal maturation of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early phase were probably lost prior to deposition of the overlying formation.

  4. Paleomagnetism and geochronology of an Early Proterozoic quartz diorite in the southern Wind River Range, Wyoming, USA

    USGS Publications Warehouse

    Harlan, S.S.; Geisman, J.W.; Premo, W.R.

    2003-01-01

    We present geochronologic and paleomagnetic data from a north-trending quartz diorite intrusion that cuts Archean metasedimentary and metaigneous rocks of the South Pass Greenstone Belt of the Wyoming craton. The quartz diorite was previously thought to be either Archean or Early Proterozoic (?) in age and is cut by north and northeast-trending Proterozoic diabase dikes of uncertain age, for which we also report paleomagnetic data. New U-Pb analyses of baddeleyite and zircon from the quartz diorite yield a concordia upper intercept age of 2170 ?? 8 Ma (95% confidence). An 40Ar/39Ar amphibole date from the same sample yields a similar apparent age of about 2124 ?? 30 Ma (2??), thus confirming that the intrusion is Early Proterozoic in age and that it has probably not been thermally disturbed since emplacement. A magmatic event at ca. 2.17 Ga has not previously been documented in the Wyoming craton. The quartz diorite and one of the crosscutting diabase dikes yield essentially identical, well-defined characteristic remanent magnetizations. Results from eight sites in the quartz diorite yield an in situ mean direction of north declination and moderate to steep positive inclination (Dec.=355??, Inc.=65??, k=145, ??95=5??) with a paleomagnetic pole at 84??N, 215??E (??m=6??, ??p=7??). Data from other diabase dike sites are inconsistent with the quartz diorite results, but the importance of these results is uncertain because the age of the dikes is not well known. Interpretation of the quartz diorite remanent magnetization is problematic. The in situ direction is similar to expected directions for magnetizations of Late Cretaceous/early Tertiary age. However, there is no compelling evidence to suggest that these rocks were remagnetized during the late Mesozoic or Cenozoic. Assuming this magnetization to be primary, then the in situ paleomagnetic pole is strongly discordant with poles of 2167, 2214, and 2217 Ma from the Canadian Shield, and is consistent with proposed

  5. Overview of the Proterozoic evolution of the Lewisian Gneiss Complex, Scotland - constraints from the SE corner of Laurentia

    NASA Astrophysics Data System (ADS)

    Goodenough, Kathryn; Krabbendam, Maarten; Crowley, Quentin

    2013-04-01

    Prior to the opening of the Atlantic, the Lewisian Gneiss Complex in the NW Highlands of Scotland formed part of the Archaean-Proterozoic Laurentian craton. Over the last decades a large number of geochronological studies have elucidated its evolution, as summarised by Kinny et al. 2005. The Lewisian thus provides an important link between Laurentia and Baltica during the Proterozoic Most of the Lewisian Gneiss Complex was formed during the Meso- to Neoarchaean, as a series of crustal terranes that were largely amalgamated at the end of the Archaean to form part of the North Atlantic Craton. During the Proterozoic, numerous igneous, tectonic and metamorphic events have affected and reworked the complex; these can be linked to similar events in mainland Laurentia and/or Baltica. Here, we provide an overview of the Proterozoic history, based on information from the literature and new geochronological data (Goodenough et al. in press). Juvenile magmas were emplaced into many parts of the Lewisian Gneiss Complex in the period c. 1900-1870 Ma, followed locally by high-grade metamorphism. Magmatism at this time has now been recognised along most terrane boundaries in the Lewisian. Some distinct terranes with arc-like characteristics are recognised (Loch Maree Group, South Harris Complex) whereas elsewhere granitoids intruded into Archaean crust (Laxford Shear Zone). This magmatic activity was related to the development of continental arcs during the accretion of the Columbia supercontinent, and may be correlated with the Ketilidian or Nagssugtoqidian events in Greenland and the Svecofennian and Lapland-Kola belts in Scandinavia. Subsequently, the Lewisian Gneiss Complex was affected by a crustal thickening and heating event (or events) during the period 1770-1650 Ma. This period is characterised by amphibolite-facies metamorphism, shearing (typically sinistral strike slip or transpression) and intrusion of largely crustal-derived granite and pegmatite sheets. Again

  6. Yardea Dacite -large-volume, high-temperature felsic volcanism from the Middle Proterozoic of South Australia

    SciTech Connect

    Creaser, R.A.; White, A.J.R. )

    1991-01-01

    The Yardea Dacite is a large-volume felsic volcanic unit from the Middle Proterozoic Gawler Range Volcanics of South Australia; it has been previously described as an ignimbrite. However, some samples contain no petrographic evidence for a pyroclastic origin, but have characteristics compatible with final crystallization from a nonfragmented magma. These samples may have erupted as lavas, but others are likely to be extremely densely welded ignimbrites, suggesting a compound nature for the unit. Geothermometry and phase equilibria indicate that the Yardea Dacite originated from a high-temperature ({approximately}1,000{degree}C) felsic magma with a low water content ({le}2%). The Yardea Dacite is not associated with a known caldera of the Valles type, and shares many characteristics of recently described Cenozoic felsic volcanic rocks from the western United States, interpreted as rheoignimbrites or as unusually extensive lavas.

  7. High-resolution magnetotelluric studies of the Archaean-Proterozoic border zone in the Fennoscandian Shield, Finland

    NASA Astrophysics Data System (ADS)

    Vaittinen, K.; Korja, T.; Kaikkonen, P.; Lahti, I.; Smirnov, M. Yu.

    2012-03-01

    The Archaean-Proterozoic collisional zone is a complex mixture of the Archaean complexes [e.g. Iisalmi Complex (IC)], Proterozoic supracrustal belts [e.g. Kainuu Belt (KB) and Savo Belt (SB)] and oceanic arc lithologies in the central Fennoscandian Shield. The zone was formed in the Savo orogeny when the Keitele microcontinent collided with the Archaean Karelian craton in the Palaeoproterozoic time. The crustal architecture of this palaeosuture is studied using new broad-band magnetotelluric data from 104 sites. 2-D conductivity models across the border zone between the Palaeoproterozoic Svecofennian Domain and the Archaean Karelian province are constrained using the recent, partly collocated reflection seismic data from the Finnish Reflection Experiment (FIRE). Dimensionality analyses, in particular the Q-function analysis, show that magnetotelluric data represent reasonably well regional 2-D structure at periods <100 s, which is the longest period used in this study. Strike determinations gave a stable strike of N15W. For the inversions, the data are projected into three parallel profiles with an azimuth of N75E. The determinant inversion is selected as the most suitable method for the data set. Especially the phase data are useable only from the determinant since one of the polarizations have the out-of-quadrant phase at several sites. The interpreted final, geological more appropriate models, where smoother thick conductive areas are replaced by thinner layers, are constructed from the results of the unconstrained smooth inversions with the help of forward modelling, synthetic and prior model inversions and reflection seismic models. The two major sets of crustal conductors are identified. They have an opposite dip and together they form a bowl-shaped conductor. In the west, the eastward dipping SB conductors are located at the bottom of the formation underlain by the Keitele microcontinent. The SB conductors extend to the east possibly cutting the westward

  8. Paleomagnetism and geochronology of an Early Proterozoic quartz diorite in the southern Rind River Range, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Harlan, Stephen S.; Geissman, John W.; Premo, Wayne R.

    2003-02-01

    We present geochronologic and paleomagnetic data from a north-trending quartz diorite intrusion that cuts Archean metasedimentary and metaigneous rocks of the South Pass Greenstone Belt of the Wyoming craton. The quartz diorite was previously thought to be either Archean or Early Proterozoic (?) in age and is cut by north and northeast-trending Proterozoic diabase dikes of uncertain age, for which we also report paleomagnetic data. New U-Pb analyses of baddeleyite and zircon from the quartz diorite yield a concordia upper intercept age of 2170±8 Ma (95% confidence). An 40Ar/ 39Ar amphibole date from the same sample yields a similar apparent age of about 2124±30 Ma (2 σ), thus confirming that the intrusion is Early Proterozoic in age and that it has probably not been thermally disturbed since emplacement. A magmatic event at ca. 2.17 Ga has not previously been documented in the Wyoming craton. The quartz diorite and one of the crosscutting diabase dikes yield essentially identical, well-defined characteristic remanent magnetizations. Results from eight sites in the quartz diorite yield an in situ mean direction of north declination and moderate to steep positive inclination (Dec.=355°, Inc.=65°, k=145, α95=5°) with a paleomagnetic pole at 84°N, 215°E ( δm=6°, δp=7°). Data from other diabase dike sites are inconsistent with the quartz diorite results, but the importance of these results is uncertain because the age of the dikes is not well known. Interpretation of the quartz diorite remanent magnetization is problematic. The in situ direction is similar to expected directions for magnetizations of Late Cretaceous/early Tertiary age. However, there is no compelling evidence to suggest that these rocks were remagnetized during the late Mesozoic or Cenozoic. Assuming this magnetization to be primary, then the in situ paleomagnetic pole is strongly discordant with poles of 2167, 2214, and 2217 Ma from the Canadian Shield, and is consistent with proposed

  9. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Doucet, Luc S.; Carlson, Richard W.; Golovin, Alexander V.; Korsakov, Andrey V.

    2015-09-01

    The formation age of the Siberian cratonic mantle is not well established. Re-Os data on various mantle-derived materials brought up by kimberlite magmas have shown that it contains Archean components, but the reported ages range broadly (3.4 to <1 Ga). We report Re-Os isotope and PGE concentration data for a suite of 29 fresh, well-characterized xenoliths from the Udachnaya-East kimberlite representing all major peridotite rock types and a large part of the cratonic mantle profile. Several xenoliths with very low Os contents (<0.3 ppb) and/or high Re/Os ratios are not suitable for age estimates. The Os (and Ir) depletions are common in cpx-bearing spinel harzburgites and coarse garnet harzburgites, but are not found in deformed, high-T peridotites. Twenty refractory (Al2O3 0.1-1.6%) peridotites yield TRD ages from 0.9 to 2.2 Ga. TRD for a subset of six high-Mg# (0.92-0.93), low-T (⩽930 °C) spinel harzburgites and a single garnet harzburgite yield a narrow range from 2.0 to 2.2 Ga with an average of 2.1 ± 0.1 Ga, which we consider the best estimate for the age of the melting event that initially formed the lithospheric mantle beneath Udachnaya. The TRD estimates for less refractory (Mg# 0.907-0.919) deformed garnet peridotites show a greater range and are generally lower (0.9-2.0 Ga; average 1.54 ± 0.28 Ga) apparently due to the effects of melt metasomatism on the initial melting residues. The predominant part of the mantle in the central Siberian craton formed in the Paleoproterozoic and not in the Archean, unlike cratons in southern Africa and North America. Minor ol