Science.gov

Sample records for proton emission tomography

  1. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  2. Determination of elemental tissue composition following proton treatment using positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-06-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1H, 12C, 14N, and 16O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12C and 16O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12C + 16O and calculate the relative elemental composition of 12C and 16O. A Monte Carlo simulation was also used to determine the elemental composition of the 12C + 16O section. The calculated compositions of the 12C + 16O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition (12C and 16O) maps that corresponded to the proton-activated regions. We compared the 12C and 16O compositions of seven ROIs that corresponded to the vitreous humor, adipose/face mask, adipose

  3. Proton computed tomography

    NASA Astrophysics Data System (ADS)

    Bucciantonio, Martina; Sauli, Fabio

    2015-05-01

    Proton computed tomography (pCT) is a diagnostic method capable of in situ imaging the three-dimensional density distribution in a patient before irradiation with charged particle beams. Proposed long time ago, this technology has been developed by several groups, and may become an essential tool for advanced quality assessment in hadrontherapy. We describe the basic principles of the method, its performance and limitations as well as provide a summary of experimental systems and of results achieved.

  4. Clinical Application of In-Room Positron Emission Tomography for In Vivo Treatment Monitoring in Proton Radiation Therapy

    SciTech Connect

    Min, Chul Hee; Zhu, Xuping; Winey, Brian A.; Grogg, Kira; Testa, Mauro; El Fakhri, Georges; Bortfeld, Thomas R.; Paganetti, Harald; Shih, Helen A.

    2013-05-01

    Purpose: The purpose of this study is to evaluate the potential of using in-room positron emission tomography (PET) for treatment verification in proton therapy and for deriving suitable PET scan times. Methods and Materials: Nine patients undergoing passive scattering proton therapy underwent scanning immediately after treatment with an in-room PET scanner. The scanner was positioned next to the treatment head after treatment. The Monte Carlo (MC) method was used to reproduce PET activities for each patient. To assess the proton beam range uncertainty, we designed a novel concept in which the measured PET activity surface distal to the target at the end of range was compared with MC predictions. The repositioning of patients for the PET scan took, on average, approximately 2 minutes. The PET images were reconstructed considering varying scan times to test the scan time dependency of the method. Results: The measured PET images show overall good spatial correlations with MC predictions. Some discrepancies could be attributed to uncertainties in the local elemental composition and biological washout. For 8 patients treated with a single field, the average range differences between PET measurements and computed tomography (CT) image-based MC results were <5 mm (<3 mm for 6 of 8 patients) and root-mean-square deviations were 4 to 11 mm with PET-CT image co-registration errors of approximately 2 mm. Our results also show that a short-length PET scan of 5 minutes can yield results similar to those of a 20-minute PET scan. Conclusions: Our first clinical trials in 9 patients using an in-room PET system demonstrated its potential for in vivo treatment monitoring in proton therapy. For a quantitative range prediction with arbitrary shape of target volume, we suggest using the distal PET activity surface.

  5. Patient Study of In Vivo Verification of Beam Delivery and Range, Using Positron Emission Tomography and Computed Tomography Imaging After Proton Therapy

    SciTech Connect

    Parodi, Katia . E-mail: Katia.Parodi@med.uni-heidelberg.de; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; DeLaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas

    2007-07-01

    Purpose: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results: Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1-2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800-1,150 s. Conclusions: This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application.

  6. Multimodality imaging using proton magnetic resonance spectroscopic imaging and 18F-fluorodeoxyglucose-positron emission tomography in local prostate cancer

    PubMed Central

    Shukla-Dave, Amita; Wassberg, Cecilia; Pucar, Darko; Schöder, Heiko; Goldman, Debra A; Mazaheri, Yousef; Reuter, Victor E; Eastham, James; Scardino, Peter T; Hricak, Hedvig

    2017-01-01

    AIM To assess the relationship using multimodality imaging between intermediary citrate/choline metabolism as seen on proton magnetic resonance spectroscopic imaging (1H-MRSI) and glycolysis as observed on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in prostate cancer (PCa) patients. METHODS The study included 22 patients with local PCa who were referred for endorectal magnetic resonance imaging/1H-MRSI (April 2002 to July 2007) and 18F-FDG-PET/CT and then underwent prostatectomy as primary or salvage treatment. Whole-mount step-section pathology was used as the standard of reference. We assessed the relationships between PET parameters [standardized uptake value (SUVmax and SUVmean)] and MRSI parameters [choline + creatine/citrate (CC/Cmax and CC/Cmean) and total number of suspicious voxels] using spearman’s rank correlation, and the relationships of PET and 1H-MRSI index lesion parameters to surgical Gleason score. RESULTS Abnormal intermediary metabolism on 1H-MRSI was present in 21/22 patients, while abnormal glycolysis on 18F-FDG-PET/CT was detected in only 3/22 patients. Specifically, index tumor localization rates were 0.95 (95%CI: 0.77-1.00) for 1H-MRSI and 0.14 (95%CI: 0.03-0.35) for 18F-FDG-PET/CT. Spearman rank correlations indicated little relationship (ρ = -0.36-0.28) between 1H-MRSI parameters and 18F-FDG-PET/CT parameters. Both the total number of suspicious voxels (ρ = 0.55, P = 0.0099) and the SUVmax (ρ = 0.46, P = 0.0366) correlated weakly with the Gleason score. No significant relationship was found between the CC/Cmax, CC/Cmean or SUVmean and the Gleason score (P = 0.15-0.79). CONCLUSION The concentration of intermediary metabolites detected by 1H MRSI and glycolytic flux measured 18F-FDG PET show little correlation. Furthermore, only few tumors were FDG avid on PET, possibly because increased glycolysis represents a late and rather ominous event in the progression of PCa.

  7. Development of Proton Computed Tomography for Applications in Proton Therapy

    NASA Astrophysics Data System (ADS)

    Bashkirov, Vladimir; Schulte, Reinhard; Coutrakon, George; Erdelyi, Bela; Wong, Kent; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly; McAllister, Scott; Schubert, Keith

    2009-03-01

    Determination of the Bragg peak position in proton therapy requires accurate knowledge of the electron density and ratio of effective atomic number and mass (Z/A) of the body tissues traversed. While the Z/A ratio is fairly constant for human tissues, the density of tissues varies significantly. One possibility to obtain accurate electron density information of tissues is to use protons of sufficient energy to penetrate the patient and measure their energy loss. From these transmission measurements, it is possible to reconstruct a three-dimensional map of electron densities using algebraic techniques. The interest in proton computed tomography (pCT) has considerably increased in recent years due to the more common use of proton accelerators for cancer treatment world-wide and a modern design concept based on current high-energy physics technology has been suggested. This contribution gives a status update on the pCT project carried out by the pCT Collaboration, a group of institutions sharing interest and expertise in the development of pCT. We will present updated imaging data obtained with a small pCT prototype developed in collaboration with the Santa Cruz Institute of Particle Physics and installed on the proton research beam line at Loma Linda University Medical Center. We will discuss hardware decisions regarding the next-generation pCT scanner, which will permit scanning of head-sized objects. Progress has also been made in the formulation of the most likely path of protons through an object and parallelizable iterative reconstruction algorithms that can be implemented on general-purpose commodity graphics processing units. Finally, we will present simulation studies for utilizing pCT technology for on-line proton dose verification and tumor imaging with positron emission tomography (PET).

  8. Diagnosis of Alzheimer-type dementia: a preliminary comparison of positron emission tomography and proton magnetic resonance

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Brant-Zawadzki, M.; Jagust, W.J.

    1984-11-16

    The use of positron emission tomography with (18F)-2-fluoro-2-deoxy-D-glucose (FDG) to study glucose metabolism in dementia is described and compared with the use of magnetic resonance imaging. These studies suggest that physiological imaging with PET may be superior to MR as it is currently used in the diagnosis of dementia-like diseases. Pet is currently limited to a few centers; however, single photon emission CT can provide regional physiological data without the need for a local cyclotron. 15 references, 2 tables.

  9. Proton radiography and tomography with application to proton therapy.

    PubMed

    Poludniowski, G; Allinson, N M; Evans, P M

    2015-09-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues.

  10. Proton radiography and tomography with application to proton therapy

    PubMed Central

    Allinson, N M; Evans, P M

    2015-01-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157

  11. Emission tomography of the kidney

    SciTech Connect

    Teates, C.D.; Croft, B.Y.; Brenbridge, N.A.; Bray, S.T.; Williamson, B.R.

    1983-12-01

    Single photon emission computerized tomography (SPECT) was done on two patients with suspected renal masses. Nuclear scintigraphy was equivocal on two tumors readily identified by SPECT. Single photon tomography is cost effective and increases the reliability of nuclear scintigraphy.

  12. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  13. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  14. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  15. Proton computed tomography images with algebraic reconstruction

    NASA Astrophysics Data System (ADS)

    Bruzzi, M.; Civinini, C.; Scaringella, M.; Bonanno, D.; Brianzi, M.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Presti, D. Lo; Maccioni, G.; Pallotta, S.; Randazzo, N.; Romano, F.; Sipala, V.; Talamonti, C.; Vanzi, E.

    2017-02-01

    A prototype of proton Computed Tomography (pCT) system for hadron-therapy has been manufactured and tested in a 175 MeV proton beam with a non-homogeneous phantom designed to simulate high-contrast material. BI-SART reconstruction algorithms have been implemented with GPU parallelism, taking into account of most likely paths of protons in matter. Reconstructed tomography images with density resolutions r.m.s. down to 1% and spatial resolutions <1 mm, achieved within processing times of 15‧ for a 512×512 pixels image prove that this technique will be beneficial if used instead of X-CT in hadron-therapy.

  16. A Detector for Proton Computed Tomography

    SciTech Connect

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak – the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  17. Sparse-view proton computed tomography using modulated proton beams

    SciTech Connect

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  18. Proton emission - new results and future prospects

    NASA Astrophysics Data System (ADS)

    Page, R. D.

    2016-09-01

    Proton emission is the radioactive decay mode that is expected to determine the limit of observable proton-rich nuclei for most elements. Considerable progress has been made in the study of proton-emitting nuclei since the first observation of direct proton emission nearly 50 years ago. This has led to improvements in our understanding of this decay process and provided invaluable nuclear structure data far from the valley of beta stability. The rapid fall in half-lives with increasing neutron deficiency when proton emission dominates makes it likely that for some elements, the lightest isotopes whose ground states can be observed in conventional experiments have already been reached. The enhanced stability against proton emission of the recently discovered high-lying isomer in 158Ta raises the possibility that proton emission from multiparticle isomers could be observed in nuclei beyond the expected boundaries of the nuclear landscape.

  19. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  20. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  1. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  2. Reduced Calibration Curve for Proton Computed Tomography

    SciTech Connect

    Yevseyeva, Olga; Assis, Joaquim de; Diaz, Katherin

    2010-05-21

    The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range - energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale - by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies.

  3. Development of a proton Computed Tomography detector system

    NASA Astrophysics Data System (ADS)

    Naimuddin, Md.; Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.; Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.

    2016-02-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  4. Proton emission from triaxial nuclei

    SciTech Connect

    Delion, D.S.; Wyss, R.; Karlgren, D.; Liotta, R.J.

    2004-12-01

    Proton decay from triaxially deformed nuclei is investigated. The deformation parameters corresponding to the mother nucleus are determined microscopically and the calculated decay widths are used to probe the mean-field wave function. The proton wave function in the mother nucleus is described as a resonant state in a coupled-channel formalism. The decay width, as well as the angular distribution of the decaying particle, are evaluated and their dependence upon the triaxial deformation parameters is studied in the decay of {sup 161}Re and {sup 185}Bi. It is found that the decay width is very sensitive to the parameters defining the triaxial deformation while the angular distribution is a universal function which does not depend upon details of the nuclear structure.

  5. Emission of neutron-proton and proton-proton pairs in neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in (νμ ,μ-) scattering from 12C in the 2p-2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission (i.e., np in the initial state) is much larger than for neutron-proton emission (i.e., two neutrons in the initial state) by a (ω , q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.

  6. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  7. Advanced instrumentation for Positron Emission Tomography

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underly modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost. 71 refs., 3 figs., 3 tabs.

  8. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  9. Positron emission tomography (PET) for cholangiocarcinoma

    PubMed Central

    Breitenstein, S.; Apestegui, C.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. Therefore, PET-CT is recommended in the preoperative staging of intrahepatic (strength of recommendation: moderate) and extrahepatic (strength of recommendation: low) CCA. PMID:18773069

  10. Improved proton computed tomography by dual modality image reconstruction

    SciTech Connect

    Hansen, David C. Bassler, Niels; Petersen, Jørgen Breede Baltzer; Sørensen, Thomas Sangild

    2014-03-15

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full 360° rotation. In this paper the authors propose a method to overcome the problem using a dual modality reconstruction (DMR) combining the proton data with a cone-beam x-ray prior. Methods: A Catphan 600 phantom was scanned using a cone beam x-ray CT scanner. A digital replica of the phantom was created in the Monte Carlo code Geant4 and a 360° proton CT scan was simulated, storing the entrance and exit position and momentum vector of every proton. Proton CT images were reconstructed using a varying number of angles from the scan. The proton CT images were reconstructed using a constrained nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully sampled case and the 90° interval case, with the MTF = 0.5 (modulation transfer function) ranging from 5.22 to 5.65 linepairs/cm. In the 45° interval case, the MTF = 0.5 dropped to 3.91 linepairs/cm For the fully sampled DMR, the maximal root mean square (RMS) error was 0.006 in units of relative stopping power. For the limited angle cases the maximal RMS error was 0.18, an almost five-fold improvement over the cone beam CT estimate. Conclusions: Dual modality reconstruction yields the high spatial resolution of cone beam x-ray CT while maintaining the improved stopping power estimation of proton CT. In the case of limited angles, the use of prior image proton CT greatly improves the resolution and stopping power estimate, but does not fully achieve the quality of a 360

  11. Role of positron emission tomography/computed tomography in dementia.

    PubMed

    Hinds, Sidney R; Stocker, Derek J; Bradley, Yong C

    2013-09-01

    This article provides a clinically based review of positron emission tomography (PET) imaging for dementia. Significant advances in nuclear medicine and molecular imaging techniques have improved the understanding of the genetic and molecular processes that define neurodegenerative dementia diseases. Metabolic imaging remains constant in its ability to document neuronal loss and lost function. Amyloid-β radiotracers are useful in documenting amyloid deposition, differentiating origins of dementia and possibly predicting disease progression. These radiotracers may be useful in diagnosis-specific treatment. PET radiotracers have increased sensitivity and specificity to complement clinical presentation and other adjunct testing in the evaluation of dementia.

  12. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  13. Positron Emission Tomography Imaging of Hypoxia

    PubMed Central

    Lapi, Suzanne E.; Voller, Thomas F.; Welch, Michael J.

    2009-01-01

    Synopsis Hypoxia imaging has applications in functional recovery in ischemic events such as stroke and myocardial ischemia, but especially in tumors in which hypoxia can be predictive of treatment response and overall prognosis. Recently there has been development of imaging agents utilizing positron emission tomography for non-invasive imaging of hypoxia. Many of these PET agents have come to the forefront of hypoxia imaging. Halogenated PET nitroimidazole imaging agents labeled with 18F (t1/2 = 110 m) and 124I (t1/2 = 110 m) have been under investigation for the last 25 years, with radiometal agents (64Cu-ATSM) being developed more recently. This review focuses on these positron emission tomography imaging agents for hypoxia. PMID:20046923

  14. Imaging Prostate Cancer with Positron Emission Tomography

    DTIC Science & Technology

    2014-07-01

    AD_________________ Award Number: W81XWH-13-1-0125 TITLE: Imaging Prostate Cancer with Positron Emission Tomography...ABOVE ADDRESS. 1. REPORT DATE 2014 2. REPORT TYPE Annual 3. DATES COVERED 01 Sept 2013-31 Aug 2014 4. TITLE AND SUBTITLE Imaging Prostate Cancer ...proposal is to develop peptide based radiopharmaceuticals and evaluate them as PET imaging agents in preclinical animal models of prostate cancer

  15. Development of novel emission tomography system

    NASA Astrophysics Data System (ADS)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  16. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice.

  17. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  18. Proton Computed Tomography: iterative image reconstruction and dose evaluation

    NASA Astrophysics Data System (ADS)

    Civinini, C.; Bonanno, D.; Brianzi, M.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Lo Presti, D.; Maccioni, G.; Pallotta, S.; Randazzo, N.; Scaringella, M.; Romano, F.; Sipala, V.; Talamonti, C.; Vanzi, E.; Bruzzi, M.

    2017-01-01

    Proton Computed Tomography (pCT) is a medical imaging method with a potential for increasing accuracy of treatment planning and patient positioning in hadron therapy. A pCT system based on a Silicon microstrip tracker and a YAG:Ce crystal calorimeter has been developed within the INFN Prima-RDH collaboration. The prototype has been tested with a 175 MeV proton beam at The Svedberg Laboratory (Uppsala, Sweden) with the aim to reconstruct and characterize a tomographic image. Algebraic iterative reconstruction methods (ART), together with the most likely path formalism, have been used to obtain tomographies of an inhomogeneous phantom to eventually extract density and spatial resolutions. These results will be presented and discussed together with an estimation of the average dose delivered to the phantom and the dependence of the image quality on the dose. Due to the heavy computation load required by the algebraic algorithms the reconstruction programs have been implemented to fully exploit the high calculation parallelism of Graphics Processing Units. An extended field of view pCT system is in an advanced construction stage. This apparatus will be able to reconstruct objects of the size of a human head making possible to characterize this pCT approach in a pre-clinical environment.

  19. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  20. Reconstruction for proton computed tomography by tracing proton trajectories: a Monte Carlo study.

    PubMed

    Li, Tianfang; Liang, Zhengrong; Singanallur, Jayalakshmi V; Satogata, Todd J; Williams, David C; Schulte, Reinhard W

    2006-03-01

    Proton computed tomography (pCT) has been explored in the past decades because of its unique imaging characteristics, low radiation dose, and its possible use for treatment planning and on-line target localization in proton therapy. However, reconstruction of pCT images is challenging because the proton path within the object to be imaged is statistically affected by multiple Coulomb scattering. In this paper, we employ GEANT4-based Monte Carlo simulations of the two-dimensional pCT reconstruction of an elliptical phantom to investigate the possible use of the algebraic reconstruction technique (ART) with three different path-estimation methods for pCT reconstruction. The first method assumes a straight-line path (SLP) connecting the proton entry and exit positions, the second method adapts the most-likely path (MLP) theoretically determined for a uniform medium, and the third method employs a cubic spline path (CSP). The ART reconstructions showed progressive improvement of spatial resolution when going from the SLP [2 line pairs (lp) cm(-1)] to the curved CSP and MLP path estimates (5 lp cm(-1)). The MLP-based ART algorithm had the fastest convergence and smallest residual error of all three estimates. This work demonstrates the advantage of tracking curved proton paths in conjunction with the ART algorithm and curved path estimates.

  1. The Effect of Tissue Inhomogeneities on the Accuracy of Proton Path Reconstruction for Proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Wong, Kent; Erdelyi, Bela; Schulte, Reinhard; Bashkirov, Vladimir; Coutrakon, George; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly

    2009-03-01

    Maintaining a high degree of spatial resolution in proton computed tomography (pCT) is a challenge due to the statistical nature of the proton path through the object. Recent work has focused on the formulation of the most likely path (MLP) of protons through a homogeneous water object and the accuracy of this approach has been tested experimentally with a homogeneous PMMA phantom. Inhomogeneities inside the phantom, consisting of, for example, air and bone will lead to unavoidable inaccuracies of this approach. The purpose of this ongoing work is to characterize systematic errors that are introduced by regions of bone and air density and how this affects the accuracy of proton CT in surrounding voxels both in terms of spatial and density reconstruction accuracy. Phantoms containing tissue-equivalent inhomogeneities have been designed and proton transport through them has been simulated with the GEANT 4.9.0 Monte Carlo tool kit. Various iterative reconstruction techniques, including the classical fully sequential algebraic reconstruction technique (ART) and block-iterative techniques, are currently being tested, and we will select the most accurate method for this study.

  2. Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study

    SciTech Connect

    Li Tianfang; Liang Zhengrong; Singanallur, Jayalakshmi V.; Satogata, Todd J.; Williams, David C.; Schulte, Reinhard W.

    2006-03-15

    Proton computed tomography (pCT) has been explored in the past decades because of its unique imaging characteristics, low radiation dose, and its possible use for treatment planning and on-line target localization in proton therapy. However, reconstruction of pCT images is challenging because the proton path within the object to be imaged is statistically affected by multiple Coulomb scattering. In this paper, we employ GEANT4-based Monte Carlo simulations of the two-dimensional pCT reconstruction of an elliptical phantom to investigate the possible use of the algebraic reconstruction technique (ART) with three different path-estimation methods for pCT reconstruction. The first method assumes a straight-line path (SLP) connecting the proton entry and exit positions, the second method adapts the most-likely path (MLP) theoretically determined for a uniform medium, and the third method employs a cubic spline path (CSP). The ART reconstructions showed progressive improvement of spatial resolution when going from the SLP [2 line pairs (lp) cm{sup -1}] to the curved CSP and MLP path estimates (5 lp cm{sup -1}). The MLP-based ART algorithm had the fastest convergence and smallest residual error of all three estimates. This work demonstrates the advantage of tracking curved proton paths in conjunction with the ART algorithm and curved path estimates.

  3. A pencil beam approach to proton computed tomography

    SciTech Connect

    Rescigno, Regina Bopp, Cécile; Rousseau, Marc; Brasse, David

    2015-11-15

    Purpose: A new approach to proton computed tomography (pCT) is presented. In this approach, protons are not tracked one-by-one but a beam of particles is considered instead. The elements of the pCT reconstruction problem (residual energy and path) are redefined on the basis of this new approach. An analytical image reconstruction algorithm applicable to this scenario is also proposed. Methods: The pencil beam (PB) and its propagation in matter were modeled by making use of the generalization of the Fermi–Eyges theory to account for multiple Coulomb scattering (MCS). This model was integrated into the pCT reconstruction problem, allowing the definition of the mean beam path concept similar to the most likely path (MLP) used in the single-particle approach. A numerical validation of the model was performed. The algorithm of filtered backprojection along MLPs was adapted to the beam-by-beam approach. The acquisition of a perfect proton scan was simulated and the data were used to reconstruct images of the relative stopping power of the phantom with the single-proton and beam-by-beam approaches. The resulting images were compared in a qualitative way. Results: The parameters of the modeled PB (mean and spread) were compared to Monte Carlo results in order to validate the model. For a water target, good agreement was found for the mean value of the distributions. As far as the spread is concerned, depth-dependent discrepancies as large as 2%–3% were found. For a heterogeneous phantom, discrepancies in the distribution spread ranged from 6% to 8%. The image reconstructed with the beam-by-beam approach showed a high level of noise compared to the one reconstructed with the classical approach. Conclusions: The PB approach to proton imaging may allow technical challenges imposed by the current proton-by-proton method to be overcome. In this framework, an analytical algorithm is proposed. Further work will involve a detailed study of the performances and limitations of

  4. Fan Beam Emission Tomography for Laminar Fires

    NASA Technical Reports Server (NTRS)

    Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas

    2003-01-01

    Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.

  5. Proton-proton correlations in distinguishing the two-proton emission mechanism of 23Al and 22Mg

    NASA Astrophysics Data System (ADS)

    Fang, D. Q.; Ma, Y. G.; Sun, X. Y.; Zhou, P.; Togano, Y.; Aoi, N.; Baba, H.; Cai, X. Z.; Cao, X. G.; Chen, J. G.; Fu, Y.; Guo, W.; Hara, Y.; Honda, T.; Hu, Z. G.; Ieki, K.; Ishibashi, Y.; Ito, Y.; Iwasa, N.; Kanno, S.; Kawabata, T.; Kimura, H.; Kondo, Y.; Kurita, K.; Kurokawa, M.; Moriguchi, T.; Murakami, H.; Ooishi, H.; Okada, K.; Ota, S.; Ozawa, A.; Sakurai, H.; Shimoura, S.; Shioda, R.; Takeshita, E.; Takeuchi, S.; Tian, W. D.; Wang, H. W.; Wang, J. S.; Wang, M.; Yamada, K.; Yamada, Y.; Yasuda, Y.; Yoneda, K.; Zhang, G. Q.; Motobayashi, T.

    2016-10-01

    The proton-proton momentum correlation functions [Cp p(q ) ] for the kinematically complete decay channels 23Al→p +p +21Na and 22Mg→p +p +20Ne have been measured at the RIKEN RI Beam Factory. From the very different correlation strength of Cp p(q ) for 23Al and 22Mg, the source size and emission time information were extracted from the Cp p(q ) data by assuming a Gaussian source profile in the correlation function calculation code (crab). The results indicated that the mechanism of two-proton emission from 23Al was mainly sequential emission, while that of 22Mg was mainly three-body simultaneous emission. By combining our earlier results of the two-proton relative momentum and the opening angle, it is pointed out that the mechanism of two-proton emission could be distinguished clearly.

  6. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  7. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  8. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  9. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  10. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  11. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  12. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  13. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  14. Positron emission tomography and single-photon emission computed tomography in substance abuse research.

    PubMed

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2003-04-01

    Many advances in the conceptualization of addiction as a disease of the brain have come from the application of imaging technologies directly in the human drug abuser. New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) and single-photon emission computed tomography (SPECT) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology, and medicine. This topic cuts across the medical specialties of neurology, psychiatry, oncology, and cardiology because of the high medical, social, and economic toll that drugs of abuse, including the legal drugs, cigarettes and alcohol, take on society. This article highlights recent advances in the use of PET and SPECT imaging to measure the pharmacokinetic and pharmacodynamic effects of drugs of abuse on the human brain.

  15. Proton emission from 125Pm could be observed

    NASA Astrophysics Data System (ADS)

    Maglione, Enrico; Ferreira, Lidia S.

    2016-10-01

    We perform a feasibility study for the search of proton decay from Pm, the last element without an isotope found, that decays by proton emission in the region of charges between 50 and 83. The behaviors of the half-lives for decay from the ground and possible isomeric states of 125Pm are discussed as a function of deformation, spin of the decaying state, and energy of the emitted proton, indicating the most probable regions of energy where proton radioactivity might be detected. We find that within our predictions, proton decay from 125Pm could be measurable.

  16. A case of eosinophilic esophagitis discovered with positron emission tomography imaging: a case report

    PubMed Central

    2013-01-01

    Introduction Eosinophilic esophagitis was first reported in 1978, and since then it has been increasingly recognized as one of the major etiologies for dysphagia, food impaction, and food regurgitation. To the best of our knowledge, no case of eosinophilic esophagitis (excluding esophageal eosinophilia not responsive to proton pump inhibitor treatment) has previously been demonstrated on the basis of positron emission tomography imaging. Case presentation A 68-year-old Caucasian man presented with dysphagia to solids with recurrent regurgitation and weight loss of 7lb within the preceding 2 months. The patient attributed these symptoms to radiation therapy he had received 1 year earlier for squamous cell cancer of the lung. The patient underwent routine follow-up positron emission tomography imaging, which showed a hypermetabolic lesion in the posterior mediastinum and was increased at the level of the midesophagus. Conclusion To the best of our knowledge, this is the first reported case of eosinophilic esophagitis demonstrated by positron emission tomography imaging and confirmed with endoscopic evaluation and biopsies both after positron emission tomography imaging and a trial of proton pump inhibitor therapy. This could have an impact on the diagnostic evaluation of esophageal eosinophilic inflammation as well as eosinophilic infiltration of other gastrointestinal organs. PMID:23855975

  17. β -delayed proton emission from 26P and 27S

    NASA Astrophysics Data System (ADS)

    Janiak, Ł.; Sokołowska, N.; Bezbakh, A. A.; Ciemny, A. A.; Czyrkowski, H.; Dąbrowski, R.; Dominik, W.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Janas, Z.; Kamiński, G.; Knyazev, A. G.; Krupko, S. A.; Kuich, M.; Mazzocchi, C.; Mentel, M.; Pfützner, M.; Pluciński, P.; Pomorski, M.; Slepniev, R. S.; Zalewski, B.

    2017-03-01

    Delayed emission of protons following β decay of neutron deficient nuclei 26P and 27S was investigated at the ACCULINNA separator in the Flerov Laboratory of Nuclear Reactions at Dubna. Ions of interest, identified in flight, were implanted into the active volume of the gaseous optical time projection chamber, which allowed us to record tracks of charged particles emitted in the decay. Total branching ratios for β -delayed proton emission and for β -delayed two-proton emission were determined. In addition, energy spectra for delayed protons below 2 MeV were established. Our findings for 26P agree with results of previous experiments. In the case of 27S, however, the observed probability of delayed proton emission is an order of magnitude larger than reported in literature. Two new strong proton transitions were identified representing decays of the first two excited states of 27P to the ground state of Si 26 . The probability ratio of γ -to-proton emission from these states is discussed.

  18. Proton radiography and proton computed tomography based on time-resolved dose measurements.

    PubMed

    Testa, Mauro; Verburg, Joost M; Rose, Mark; Min, Chul Hee; Tang, Shikui; Bentefour, El Hassane; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-21

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time–dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (~100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  19. Proton radiography and proton computed tomography based on time-resolved dose measurements

    NASA Astrophysics Data System (ADS)

    Testa, Mauro; Verburg, Joost M.; Rose, Mark; Min, Chul Hee; Tang, Shikui; Hassane Bentefour, El; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-01

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time-dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (˜100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  20. Understanding proton-conducting perovskite interfaces using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3

  1. Positron Emission Tomography: A Basic Analysis

    NASA Astrophysics Data System (ADS)

    Kerbacher, M. E.; Deaton, J. W.; Phinney, L. C.; Mitchell, L. J.; Duggan, J. L.

    2007-10-01

    Positron Emission Tomography is useful in detecting biological abnormalities. The technique involves attaching radiotracers to a material used inside the body, in many cases glucose. Glucose is absorbed most readily in areas of unusual cell growth or uptake of nutrients so through natural processes the treated glucose highlights regions of tumors and other degenerative disorders such as Alzheimer's disease. The higher the concentration of isotopes, the more dynamic the area. Isotopes commonly used as tracers are 11C, 18F, 13N, and 15O due to their easy production and short half-lives. Once the tracers have saturated an area of tissue they are detected using coincidence detectors collinear with individual isotopes. As the isotope decays it emits a positron which, upon annihilating an electron, produces two oppositely directioned gamma rays. The PET machine consists of several pairs of detectors, each 180 degrees from their partner detector. When the oppositely positioned detectors are collinear with the area of the isotope, a computer registers the location of the isotope and can compile an image of the activity of the highlighted area based on the position and strength of the isotopes.

  2. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  3. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  4. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  5. Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    NASA Astrophysics Data System (ADS)

    Simo, I. Ruiz; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in (e ,e') scattering from 12C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate- to high-momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze the effect of the exchange contribution and show that the direct-exchange interference strongly affects the determination of the n p /p p ratio.

  6. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  7. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed...

  8. An online emission spectral tomography system with digital signal processor.

    PubMed

    Wan, Xiong; Xiong, Wenlin; Zhang, Zhimin; Chang, Fangfei

    2009-03-30

    Emission spectral tomography (EST) has been adopted to test the three-dimensional distribution parameters of fluid fields, such as burning gas, flame and plasma etc. In most cases, emission spectral data received by the video cameras are enormous so that the emission spectral tomography calculation is often time-consuming. Hence, accelerating calculation becomes the chief factor that one must consider for the practical application of EST. To solve the problem, a hardware implementation method was proposed in this paper, which adopted a digital signal processor (DSP) DM642 in an emission spectral tomography test system. The EST algorithm was fulfilled in the DSP, then calculation results were transmitted to the main computer via the user datagram protocol. Compared with purely VC++ software implementations, this new approach can decrease the calculation time significantly.

  9. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  10. Beta-delayed proton emission from 20Mg

    NASA Astrophysics Data System (ADS)

    Lund, M. V.; Andreyev, A.; Borge, M. J. G.; Cederkäll, J.; De Witte, H.; Fraile, L. M.; Fynbo, H. O. U.; Greenlees, P. T.; Harkness-Brennan, L. J.; Howard, A. M.; Huyse, M.; Jonson, B.; Judson, D. S.; Kirsebom, O. S.; Konki, J.; Kurcewicz, J.; Lazarus, I.; Lica, R.; Lindberg, S.; Madurga, M.; Marginean, N.; Marginean, R.; Marroquin, I.; Mihai, C.; Munch, M.; Nacher, E.; Negret, A.; Nilsson, T.; Page, R. D.; Pascu, S.; Perea, A.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Riisager, K.; Rotaru, F.; Sotty, C.; Stanoiu, M.; Tengblad, O.; Turturica, A.; Van Duppen, P.; Vedia, V.; Wadsworth, R.; Warr, N.

    2016-10-01

    Beta-delayed proton emission from 20 Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 27 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in 20 Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in 20 Na is observed. This may allow studies of the 4032.9(2.4)keV resonance in 19 Ne through the beta decay of 20 Mg, which is important for the astrophysically relevant reaction 15O( α, γ)19Ne . Beta-delayed protons were used to obtain a more precise value for the half-life of 20 Mg, 91.4(1.0)ms.

  11. Calculations on decay rates of various proton emissions

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-03-01

    Proton radioactivity of neutron-deficient nuclei around the dripline has been systematically studied within the deformed density-dependent model. The crucial proton-nucleus potential is constructed via the single-folding integral of the density distribution of daughter nuclei and the effective M3Y nucleon-nucleon interaction or the proton-proton Coulomb interaction. After the decay width is obtained by the modified two-potential approach, the final decay half-lives can be achieved by involving the spectroscopic factors from the relativistic mean-field (RMF) theory combined with the BCS method. Moreover, a simple formula along with only one adjusted parameter is tentatively proposed to evaluate the half-lives of proton emitters, where the introduction of nuclear deformation is somewhat discussed as well. It is found that the calculated results are in satisfactory agreement with the experimental values and consistent with other theoretical studies, indicating that the present approach can be applied to the case of proton emission. Predictions on half-lives are made for possible proton emitters, which may be useful for future experiments.

  12. Positron emission tomography-computed tomography coregistration for diagnosis and intraoperative localization in recurrent nelson syndrome.

    PubMed

    Hintz, Eric B; Tomlin, Jeffery M; Chengazi, Vaseem; Vates, G Edward

    2013-06-01

    Recurrent pituitary disease presents unique challenges, including in some cases difficulty localizing a tumor radiographically. Here, we present the case of a patient with recurrent Nelson syndrome whose radiographic work-up was complicated by a significant parasellar metallic artifact. Positron emission tomography ultimately localized the lesion, and coregistration with computed tomography allowed for accurate intraoperative navigation. Additionally, we review a range of imaging techniques available in the evaluation of pituitary disease.

  13. Positron emission tomography in the evaluation of subdural hematomas

    SciTech Connect

    Ericson, K.; Bergstroem, M.; Eriksson, L.

    1980-12-01

    Fifteen patients with 21 subdural effusions were investigated both with transmission computer assisted tomography (CAT) and positron emission tomography (PET). The tracer in the emission studies was /sup 68/Ga-EDTA. Twelve lesions were visualized both with CAT and PET. Five lesions that were negative or doubtful on CAT were visualized with PET, whereas four lesions negative or doubtful on PET were demonstrated by CAT. The two methods complement each other due to the fact that they are based on different mechanisms: CAT mainly on attenuation of the fluid collection. PET on isotope accumulation, particularly in the hematoma membranes.

  14. Single Photon Emission Local Tomography (SPELT)

    SciTech Connect

    Zeng, G.L.; Gullberg, G.T.

    1996-12-31

    Local tomography uses truncated projection data to reconstruct a region of interest, and is important in medical imaging and industrial non-destructive evaluation using micro X-ray CT. The popular filtered backprojection (FBP) algorithm does not reconstruct a reliable image, which varies with the degree and location of truncation due to its global convolution kernel. A typical local tomography method uses a second derivative local operator to replace the global convolution kernel in the filtered backprojection algorithm (LFBP). By using a local filter, the reconstructed region depends only on the local projections. The singularities (edges) are preserved, but the exact image value cannot be recovered. This paper, using the data consistency conditions, developed a pre-processing technique that uses the FBP algorithm, which outperforms direct FBP and LFBP.

  15. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  16. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  17. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  18. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  19. Recent developments in positron emission tomography (PET) instrumentation

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  20. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs in submitting investigational new drug applications (INDs). DATES... guidance entitled ``Investigational New Drug Applications for Positron Emission Tomography (PET)...

  1. Thermally excited proton spin-flip laser emission in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser.

  2. Inclusive Proton Emission Spectra from Deuteron Breakup Reactions

    NASA Astrophysics Data System (ADS)

    Carlson, B. V.; Capote, R.; Sin, M.

    2016-05-01

    We present calculations of deuteron elastic and nonelastic breakup cross sections and angular distributions at deuteron energies below 100 MeV obtained using the post-form DWBA approximation. The elastic breakup cross section was extensively studied in the past. Very few calculations of nonelastic breakup have been performed, however. We compare two forms of the elastic DWBA breakup amplitude but conclude that neither provides a correct description of the inclusive proton emission cross section.

  3. Novel scintillation detector design and performance for proton radiography and computed tomography

    PubMed Central

    Schulte, R. W.; Hurley, R. F.; Johnson, R. P.; Sadrozinski, H. F.-W.; Zatserklyaniy, A.; Plautz, T.; Giacometti, V.

    2016-01-01

    Purpose: Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. Methods: A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. Results: The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0–260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. Conclusions: The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs. PMID:26843230

  4. Positron emission tomography and computed tomography assessments of the aging human brain

    SciTech Connect

    de Leon, M.J.; George, A.E.; Ferris, S.H.; Christman, D.R.; Fowler, J.S.; Gentes, C.I.; Brodie, J.; Reisberg, B.; Wolf, A.P.

    1984-02-01

    The relationship between alterations in brain structure and brain function was studied in vivo in both young and elderly human subjects. Computed tomography revealed significant age-related ventricular and cortical sulcal dilatation. The cortical changes were most closely related to age. Positron emission tomography failed to show regional changes in brain glucose metabolic rate. The results suggest that the normal aging brain undergoes structural atrophic changes without incurring regional metabolic changes. Examination of the correlations between the structural and the metabolic measures revealed no significant relationships. These data are discussed with respect to the significant structure-function relationships that have been reported in Alzheimer disease. 27 references, 3 figures, 2 tables.

  5. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  6. Positron emission tomography imaging using radiolabeled inorganic nanomaterials.

    PubMed

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-02-17

    CONSPECTUS: Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  7. Proton emission from the deformed odd-odd nuclei near drip line

    NASA Astrophysics Data System (ADS)

    Patial, M.; Arumugam, P.; Jain, A. K.; Maglione, E.; Ferreira, L. S.

    2016-01-01

    Proton emission from odd-odd nuclei is studied within the two quasiparticle plus rotor model which includes the non-adiabatic effects and the residual interaction between valence proton and neutron. Justification of the formalism is discussed through corroboration of our results with the experimental spectrum of 180Ta. Exact calculations are performed to get the proton emission halflives. Our results for the proton emitter 130Eu leads to the assignment of spin and parity Jπ = 1+ for the ground state. The role of Coriolis and residual neutron-proton interactions on the proton emission halflives and their interplay are also discussed.

  8. Reconstruction of Emission Tomography Data Using Origin Ensembles

    PubMed Central

    Sitek, Arkadiusz

    2011-01-01

    A new statistical reconstruction method based on origin ensembles (OE) for emission tomography (ET) is examined. Using a probability density function (pdf) derived from first principles, an ensemble expectation of numbers of detected event origins per voxel is determined. These numbers divided by sensitivities of voxels and acquisition time provide OE estimates of the voxel activities. The OE expectations are shown to be the same as expectations calculated using the complete–data space. The properties of the OE estimate are examined. It is shown that OE estimate approximates maximum likelihood (ML) estimate for conditions usually achieved in practical applications in emission tomography. Three numerical experiments with increasing complexity are used to validate theoretical findings and demonstrate similarities of ML and OE estimates. Recommendations for achieving improved accuracy and speed of OE reconstructions are provided. PMID:21147594

  9. Technology related parameters affecting quantification in positron emission tomography imaging.

    PubMed

    Visvikis, D; Turzo, A; Bizais, Y; Cheze-Le Rest, C

    2004-07-01

    Some of the issues associated with positron emission tomography (PET) technology which still pose challenges for the recovery of quantitative images are discussed. Through these issues reference to what is today considered as the 'gold standard' in quantitative PET imaging is also presented. A brief comparison of 2-D and 3-D PET is given, together with a short discussion of combined PET/CT imaging devices.

  10. Current and future technological trends in positron emission tomography.

    PubMed

    Karp, J S; Freifelder, R

    1992-04-01

    Current trends in positron emission tomography (PET) instrumentation are examined, with an emphasis on providing information suitable to the prospective PET user. Basic principles underlying PET are explained and information on performance measurements, techniques, and quantitation are given in order to allow the user to compare and contrast different types of PET scanners. These scanner designs are described. Specific examples are given and the combination of PET with other modalities is discussed.

  11. Magnetic resonance imaging and positron emission tomography of band heterotopia.

    PubMed

    Miura, K; Watanabe, K; Maeda, N; Matsumoto, A; Kumagai, T; Ito, K; Kato, T

    1993-01-01

    A case of band heterotopia was reported with findings of positron emission tomography (PET). The patient was an 8-year-old girl who had mild mental retardation and intractable partial epilepsy. Her MRI showed another diffuse layer of gray matter underlying the normal-looking cortex and separated from it by an apparently normal layer of white matter. PET scan with [18F]fluorodeoxyglucose revealed that band heterotopia had the same degree of glucose metabolism as that of the overlying cortex.

  12. Simulation, hardware characterization, analysis, and assembly of the fiber trackers for the proton computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Gearhart, Andrew James

    Proton computed tomography (pCT) is a new method of tomography that will allow for accurate patient imaging and reduced total patient radiation dose when compared to conventional X-ray CT. Proton therapy currently relies on the conversion of attenuation coefficients from X-ray CT scans to material density for use in the proton therapy treatment plan. With a pCT scan, the material density is directly measured, reducing the range errors from attenuation coefficient conversion. Therefore a pCT scan of a patient undergoing proton therapy will also aid in maximizing radiation dose to the target volume, while minimizing radiation dose to surrounding tissue. The pCT scanner is currently under construction, and completed components are being tested with a proton beam. This paper will focus on many of the studies done with the pCT scanner. Specifically, detector simulation, hardware characterization and analysis, and assembly of the fiber trackers used for the pCT scanner will be discussed.

  13. Revisiting stopping rules for iterative methods used in emission tomography.

    PubMed

    Guo, Hongbin; Renaut, Rosemary A

    2011-07-01

    The expectation maximization algorithm is commonly used to reconstruct images obtained from positron emission tomography sinograms. For images with acceptable signal to noise ratios, iterations are terminated prior to convergence. A new quantitative and reproducible stopping rule is designed and validated on simulations using a Monte-Carlo generated transition matrix with a Poisson noise distribution on the sinogram data. Iterations are terminated at the solution which yields the most probable estimate of the emission densities while matching the sinogram data. It is more computationally efficient and more accurate than the standard stopping rule based on the Pearson's χ(2) test.

  14. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography

    PubMed Central

    Bénard, François; Turcotte, Éric

    2005-01-01

    Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites. PMID:15987467

  15. Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography

    SciTech Connect

    Fermi Research Alliance; Northern Illinois University

    2015-07-15

    Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second generation proton computed tomography system with a goal of demonstrating the feasibility of three dimensional imaging within clinically realistic imaging times. The second generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. Figure 1 shows the schematic layout of the PCT system. The data acquisition sends the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three dimensional imaging algorithms. The Fermilab Particle Physic Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.

  16. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  17. History and future technical innovation in positron emission tomography.

    PubMed

    Jones, Terry; Townsend, David

    2017-01-01

    Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare.

  18. Single photon emission computed tomography in seizure disorders.

    PubMed Central

    Denays, R; Rubinstein, M; Ham, H; Piepsz, A; Noël, P

    1988-01-01

    Fourteen children with various seizure disorders were studied using a cerebral blood flow tracer, 123I iodoamphetamine (0.05 mCi/kg), and single photon emission computed tomography (SPECT). In the five patients with radiological lesions, SPECT showed congruent or more extensive abnormalities. Five of the nine children with a normal scan on computed tomography had abnormal SPECT studies consisting of focal hypoperfusion, diffuse hemispheric hypoperfusion, multifocal and bilateral hypoperfusion, or focal hyperperfusion. A focal lesion seen on SPECT has been found in children with tonic-clonic seizures suggesting secondarily generalised seizures. Moreover the pattern seen on SPECT seemed to be related to the clinical status. An extensive impairment found on SPECT was associated with a poor evolution in terms of intellectual performance and seizure frequency. Conversely all children with a normal result on SPECT had less than two seizures per year and normal neurological and intellectual development. Images Figure PMID:3264135

  19. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  20. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  1. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  2. Extramedullary Plasmacytoma of the Gallbladder Detected on Fluorine 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Fakhri, Asif Ali; Rodrigue, Paul David; Fakhri, Amena Fatima

    2016-01-01

    Extramedullary plasmacytoma is rare in patients with diagnosed multiple myeloma. Soft tissue plasmacytoma of the gallbladder is particularly uncommon and has been described in only a handful of cases. Diagnosis of gallbladder plasmacytoma with fluorine 18-fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (PET/CT) has not previously been reported. We present a 65-year-old female with a history of multiple myeloma who underwent a restaging F18-FDG-PET/CT which showed a focal area of hypermetabolic activity, corresponding to a nodular lesion within the posterior gallbladder wall. The patient underwent successful cholecystectomy, with surgical pathology revealing gallbladder plasmacytoma. A follow-up scan was negative for active malignancy. This is a novel case of gallbladder plasmacytoma diagnosed on whole-body F18-FDG PET/CT – thus demonstrating the clinical value of this imaging modality in staging, restaging, and surveillance for patients with multiple myeloma. PMID:27761300

  3. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  4. Positron emission tomography: the conceptual idea using a multidisciplinary approach.

    PubMed

    Paans, Anne M J; van Waarde, Aren; Elsinga, Philip H; Willemsen, Antoon T M; Vaalburg, Willem

    2002-07-01

    Positron emission tomography (PET) is a method for quantitatively measuring biochemical and physiological processes in vivo by using radiopharmaceuticals labeled with positron-emitting radionuclides such as 11C, 13N, 15O, and 18F and by measuring the annihilation radiation using a coincidence technique. This technique is also used for measurement of the pharmacokinetics of labeled drugs and measurement of the effects of drugs on metabolism. Deviations from normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained.

  5. Positron emission tomography for use in microdosing studies.

    PubMed

    Wagner, Claudia Christina; Müller, Markus; Lappin, Graham; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET) imaging using microdoses of radiolabeled drug tracers is gaining increasing acceptance in modern clinical drug development. This approach is unique in that it allows for direct quantitative assessment of drug concentrations in the tissues targeted for treatment, thereby bridging the gap between pharmacokinetics and pharmacodynamics. Current applications of PET in anticancer, anti-infective and central nervous system drug research are reviewed herein. Situated at the interface of preclinical and clinical drug testing, PET microdosing is a powerful and highly innovative tool for pharmaceutical development.

  6. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  7. [Positron emission tomography: diagnostic imaging on a molecular level].

    PubMed

    Allemann, K; Wyss, M; Wergin, M; Bley, C Rohrer; Ametamay, S; Bruehlmeier, M; Kaser-Hotz, B

    2004-08-01

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed.

  8. Positron Emission Tomography (PET) for benign and malignant disease

    PubMed Central

    Visioni, Anthony; Kim, Julian

    2011-01-01

    Synopsis Functional imaging using radiolabeled probes which specifically bind and accumulate in target tissues has improved the sensitivity and specificity of conventional imaging. Positron Emission Tomography using modified glucose probes (FDG-PET) has demonstrated improved diagnostic accuracy in differentiating benign from malignant lesions in the setting of solitary pulmonary nodules. In addition, FDG-PET has become a useful modality in pre-operative staging of patients with lung cancer and is being tested with many other malignancies for its ability to change patient management. This article provides an overview of the current status of FDG-PET and presents the challenges of moving towards routine use. PMID:21184913

  9. Development of proton computed tomography detectors for applications in hadron therapy

    PubMed Central

    Bashkirov, Vladimir A.; Johnson, Robert P.; Sadrozinski, Hartmut F.-W.; Schulte, Reinhard W.

    2015-01-01

    Radiation therapy with protons and heavier ions is an attractive form of cancer treatment that could enhance local control and survival of cancers that are currently difficult to cure and lead to less side effects due to sparing of normal tissues. However, particle therapy faces a significant technical challenge because one cannot accurately predict the particle range in the patient using data provided by existing imaging technologies. Proton computed tomography (pCT) is an emerging imaging modality capable of improving the accuracy of range prediction. In this paper, we describe the successive pCT scanners designed and built by our group with the goal to support particle therapy treatment planning and image guidance by reconstructing an accurate 3D map of the stopping power relative to water in patient tissues. The pCT scanners we have built to date consist of silicon telescopes, which track the proton before and after the object to be reconstructed, and an energy or range detector, which measures the residual energy and/or range of the protons used to evaluate the water equivalent path length (WEPL) of each proton in the object. An overview of a decade-long evolution of the conceptual design of pCT scanners and their calibration is given. Results of scanner performance tests are presented, which demonstrate that the latest pCT scanner approaches readiness for clinical applications in hadron therapy. PMID:26957679

  10. Development of proton computed tomography detectors for applications in hadron therapy

    NASA Astrophysics Data System (ADS)

    Bashkirov, Vladimir A.; Johnson, Robert P.; Sadrozinski, Hartmut F.-W.; Schulte, Reinhard W.

    2016-02-01

    Radiation therapy with protons and heavier ions is an attractive form of cancer treatment that could enhance local control and survival of cancers that are currently difficult to cure and lead to less side effects due to sparing of normal tissues. However, particle therapy faces a significant technical challenge because one cannot accurately predict the particle range in the patient using data provided by existing imaging technologies. Proton computed tomography (pCT) is an emerging imaging modality capable of improving the accuracy of range prediction. In this paper, we describe the successive pCT scanners designed and built by our group with the goal to support particle therapy treatment planning and image guidance by reconstructing an accurate 3D map of the stopping power relative to water in patient tissues. The pCT scanners we have built to date consist of silicon telescopes, which track the proton before and after the object to be reconstructed, and an energy or range detector, which measures the residual energy and/or range of the protons used to evaluate the water equivalent path length (WEPL) of each proton in the object. An overview of a decade-long evolution of the conceptual design of pCT scanners and their calibration is given. Results of scanner performance tests are presented, which demonstrate that the latest pCT scanner approaches readiness for clinical applications in hadron therapy.

  11. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in a Patient with HIV (-) Kaposi Sarcoma

    PubMed Central

    Cengiz, Arzu; Şavk, Ekin; Tataroğlu, Canten; Yürekli, Yakup

    2016-01-01

    Kaposi sarcoma (KS) is a vascular neoplasm that often manifests with multiple vascular nodules on the skin and other organs. Various imaging modalities can be used to display disease extent. Herein we present a 65-year-old female patient with human immunodeficiency virus negative KS along with her whole-body positron emission tomography/computed tomography imaging findings. PMID:27751977

  12. Rare case of an ovarian vein tumor thrombosis identified on fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    Fludeoxyglucose positron emission tomography/computed tomography is valuable in the identification of tumor thrombus and differentiating it from bland thrombus which has implications in initiating anticoagulation. We present a rare case of tumor thrombosis in ovarian vein, in a recurrent case of uterine carcinosarcoma. PMID:27833321

  13. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  14. Anti-3-[18F]FACBC Positron Emission Tomography-Computerized Tomography and 111In-Capromab Pendetide Single Photon Emission Computerized Tomography-Computerized Tomography for Recurrent Prostate Carcinoma: Results of a Prospective Clinical Trial

    PubMed Central

    Schuster, David M.; Nieh, Peter T.; Jani, Ashesh B.; Amzat, Rianot; Bowman, F. DuBois; Halkar, Raghuveer K.; Master, Viraj A.; Nye, Jonathon A.; Odewole, Oluwaseun A.; Osunkoya, Adeboye O.; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M.

    2014-01-01

    Purpose We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[18F]FACBC compared to ProstaScint® (111In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. Materials and Methods A total of 93 patients met study inclusion criteria who underwent anti-3-[18F]FACBC positron emission tomography-computerized tomography plus 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. Results In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[18F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to 111In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[18F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to 111In-capromabpendetide with10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[18F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[18F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Conclusions Better diagnostic performance was noted for anti-3-[18F]FACBC positron emission tomography-computerized tomography than for 111In

  15. Pure hemidystonia with basal ganglion abnormalities on positron emission tomography

    SciTech Connect

    Perlmutter, J.S.; Raichle, M.E.

    1984-03-01

    We present a patient with hemidystonia and an abnormality of the contralateral basal ganglion seen only with positron emission tomography. A 50-year-old sinistral man suffered minor trauma to the right side of his head and neck. Within 20 minutes he developed paroxysmal intermittent dystonic posturing of his right face, forearm, hand, and foot, with weaker contractions of the left foot, lasting several seconds and recurring every few minutes. Neurological findings between spells were normal. The following were also normal: electrolyte, calcium, magnesium, and arterial blood gas levels, and findings of drug screen, cerebrospinal fluid examination, electroencephalography with nasopharyngeal leads, computed tomographic scanning (initially and four weeks later), and cerebral angiography. Positron emission tomographic scanning revealed abnormalities in the left basal ganglion region, including decreased oxygen metabolism, decreased oxygen extraction, increased blood volume, and increased blood flow.

  16. Ictal onset zone and seizure propagation delineated on ictal F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Tripathi, Madhavi; Tripathi, Manjari; Garg, Ajay; Damle, Nishikant; Bal, Chandrasekhar

    2016-01-01

    The present case highlights the utility of ictal F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in delineating the seizure onset zone in a child with complex partial seizures. Although F-18 FDG PET has been successfully used to delineate interictal hypometabolism, planned ictal FDG PET, in cases with prolonged seizure activity, can provide better spatial resolution than single-photon emission CT by delineating the seizure onset zone and propagation pathway.

  17. Positron emission tomography: physics, instrumentation, and image analysis.

    PubMed

    Porenta, G

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center.

  18. β-delayed proton emission in the 100Sn region

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Becerril, A.; Amthor, A.; Baumann, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Cyburt, R. H.; Crawford, H. L.; Estrade, A.; Gade, A.; Ginter, T.; Guess, C. J.; Hausmann, M.; Hitt, G. W.; Mantica, P. F.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Perdikakis, G.; Pereira, J.; Portillo, M.; Schatz, H.; Smith, K.; Stoker, J.; Stolz, A.; Zegers, R. G. T.

    2012-07-01

    β-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory (NSCL). The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System in conjunction with the Segmented Germanium Array. The nuclei 96Cd, 98Ing, 98Inm, and 99In were identified as β-delayed proton emitters, with branching ratios bβp=5.5(40)%, 5.5-2+3%, 19(2)%, and 0.9(4)%, respectively. The branching ratios for 89Ru, 91,92Rh, 93Pd, and 95Ag were deduced for the first time with bβp=3-1.7+1.9%, 1.3(5)%, 1.9(1)%, 7.5(5)%, and 2.5(3)%, respectively. The bβp=22(1)% value for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bβp values on the composition of the type I x-ray burst ashes was studied.

  19. Mycosis fungoides staged by 18F-flurodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Xu, Lu; Pang, Hua; Zhu, Jin; Chen, Xi; Guan, Lili; Wang, Jie; Chen, Jing; Liu, Ying

    2016-01-01

    Abstract Introduction: Mycosis fungoides is a kind of malignant lymphoma arising from T cells, but primarily occurs in skin, and it is the most common type of cutaneous lymphoma. Mycosis fungoides (MF) is a rare non-Hodgkin lymphoma but the most common type of primary cutaneous T-cell lymphomas. Because of unknown etiology and mechanism, and lack of typical clinical and histophysiological manifestations, the final diagnosis of MF is currently dependent on pathology and immunohistochemistry. Subsequently, tumor staging is very important. Different approaches would be taken according to varying degrees of cutaneous and extracutaneous lesions. Computed tomography (CT) scan has been chosen to stage tumors customarily. However, CT could only provide morphological information and analyze lymphadenopathy by the size criteria. 18F-flurodeoxyglucose positron emission tomography/computed tomography (PET/CT) could provide morphological information and metabolic conditions simultaneously, which is helpful to locate and stage lesion. Conclusion: 18F-flurodeoxyglucose PET/CT could identify cutaneous and extracutaneous lesions in patients with MF. It could provide the range of lesions and biopsy target. PMID:27828842

  20. First observation of proton emission from 117La

    NASA Astrophysics Data System (ADS)

    Soramel, F.; Guglielmetti, A.; Stroe, L.; Müller, L.; Bonetti, R.; Malerba, F.; Poli, G. L.; Boiano, C.; Andrighetto, A.; Li, Z. C.; Scarlassara, F.; Signorini, C.; Bello, A. Dal; Isocrate, R.; Liu, Z. H.; Ruan, M.; Ivascu, M.; Bednarczyk, P.; Broude, C.

    2000-05-01

    We report the first measurement, at the XTU Tandem+LINAC accelerator of the Laboratori Nazionali di Legnaro, of the decay of the very neutron deficient nucleus 117La using a 310 MeV 58Ni beam on a 64Zn target; the 117La nucleus was populated via the (p, 4n) evaporation channel. The Recoil Mass Spectrometer (RMS) was used to select M/q=117/30 recoils that were implanted in a (40×40) mm2 Double Sided Silicon Strip Detector (DSSD) detector. The analysis has revealed that 117La decays to 116Ba via proton emission with Ep=(783±6)keV and T1/2=(20±5) ms. From this result deformation parameters of β2=0.3 and β4=0.1 have been deduced for the 117La ground state which was assigned to Jπ=3/2+.

  1. Shifted helical computed tomography to optimize cardiac positron emission tomography-computed tomography coregistration: quantitative improvement and limitations.

    PubMed

    Johnson, Nils P; Pan, Tinsu; Gould, K Lance

    2010-10-01

    Positron emission tomography-computed tomography (PET-CT) uses CT attenuation correction but suffers from misregistration artifacts. However, the quantitative accuracy of helical versus cine CT in the same patient after optimized coregistration by shifting both CT data as needed for each patient is unknown. We studied 293 patients undergoing cardiac perfusion PET-CT using helical CT attenuation correction for comparison to cine CT. Objective, quantitative criteria identified perfusion abnormalities that were associated visually with PET-CT misregistration. Custom software shifted CT data to optimize coregistration with quantitative artifact improvement. The majority (58.1%) of cases with both helical and shifted helical CT data (n  = 93) had artifacts that improved or resolved by software shifting helical CT data. Translation of shifted helical CT was greatest in the x-direction (8.8 ± 3.3 mm) and less in the y- and z-directions (approximately 3.5 mm). The magnitude of differences in quantitative end points was greatest for helical (p  =  .0001, n  =  177 studies), less for shifted helical but significant (p  =  .0001, n  =  93 studies), and least for cine (not significant, n  =  161 studies) CT compared to optimal attenuation correction for each patient. Frequent artifacts owing to attenuation-emission misregistration are substantially corrected by software shifting helical CT scans to achieve proper coregistration that, however, remains on average significantly inferior to cine CT attenuation quantitatively.

  2. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    SciTech Connect

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.

  3. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging

    PubMed Central

    Kellnberger, Stephan; Assmann, Walter; Lehrack, Sebastian; Reinhardt, Sabine; Thirolf, Peter; Queirós, Daniel; Sergiadis, George; Dollinger, Günther; Parodi, Katia; Ntziachristos, Vasilis

    2016-01-01

    Ions provide a more advantageous dose distribution than photons for external beam radiotherapy, due to their so-called inverse depth dose deposition and, in particular a characteristic dose maximum at their end-of-range (Bragg peak). The favorable physical interaction properties enable selective treatment of tumors while sparing surrounding healthy tissue, but optimal clinical use requires accurate monitoring of Bragg peak positioning inside tissue. We introduce ionoacoustic tomography based on detection of ion induced ultrasound waves as a technique to provide feedback on the ion beam profile. We demonstrate for 20 MeV protons that ion range imaging is possible with submillimeter accuracy and can be combined with clinical ultrasound and optoacoustic tomography of similar precision. Our results indicate a simple and direct possibility to correlate, in-vivo and in real-time, the conventional ultrasound echo of the tumor region with ionoacoustic tomography. Combined with optoacoustic tomography it offers a well suited pre-clinical imaging system. PMID:27384505

  4. Cesium Iodide Crystal Calorimeter of the Proton Computed Tomography (pCT) Imager

    NASA Astrophysics Data System (ADS)

    Missaghian, Jessica; Sadrozinski, Hartmut; Colby, Brian; Rykalin, Victor; Hurley, Ford

    2009-11-01

    Researchers at SCIPP, LLMU and NIU have collaborated to make a functioning proton imager. Proton Computed Tomography (pCT) is designated to be applied in proton therapy of human cancer systems. It will image head-sized phantom objects and provide excellent space and energy resolution using a silicon microstrip tracker and crystal calorimetry. The residual energy could be measured with precision of a few percent using a Cesium Iodide crystal calorimeter. A single element of the CsI(TI) calorimeter was tested in order to understand the behavior of the future calorimeter system. We present test results on a CsI(TI) calorimeter element with proton beams of 35, 100 and 200MeV. The detector element was designed to comply with the demands of high energy resolution of a few percent and a dynamic range of two orders of magnitude (1-300MeV) under a counting rate of 10 kHz per channel. We also report on cosmic measurement results of each crystal of the future calorimeter matrix. A detailed description of the calorimeter data acquisition system will be given.

  5. Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography.

    PubMed

    Koukourakis, G; Maravelis, G; Koukouraki, S; Padelakos, P; Kouloulias, V

    2009-01-01

    The concept of emission and transmission tomography was introduced by David Kuhl and Roy Edwards in the late 1950s. Their work later led to the design and construction of several tomographic instruments at the University of Pennsylvania. Tomographic imaging techniques were further developed by Michel Ter-Pogossian, Michael E. Phelps and others at the Washington University School of Medicine. Positron emission tomography (PET) is a nuclear medicine imaging technique which produces a 3-dimensional image or map of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in 3-dimensional space within the body are then reconstructed by computer analysis. In modern scanners, this reconstruction is often accomplished with the aid of a CT X-ray scan performed on the patient during the same session, in the same machine. If the biologically active molecule chosen for PET is 18F-fluorodeoxyglucose (FDG), an analogue of glucose, the concentrations of tracer imaged give tissue metabolic activity in terms of regional glucose uptake. Although use of this tracer results in the most common type of PET scan, other tracer molecules are used in PET to image the tissue concentration of many other types of molecules of interest. The main role of this article was to analyse the available types of radiopharmaceuticals used in PET-CT along with the principles of its clinical and technical considerations.

  6. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  7. Single-photon emission computed tomography/computed tomography in brain tumors.

    PubMed

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  8. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    PubMed Central

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  9. Different mechanism of two-proton emission from proton-rich nuclei 23Al and 22Mg

    NASA Astrophysics Data System (ADS)

    Ma, Y. G.; Fang, D. Q.; Sun, X. Y.; Zhou, P.; Togano, Y.; Aoi, N.; Baba, H.; Cai, X. Z.; Cao, X. G.; Chen, J. G.; Fu, Y.; Guo, W.; Hara, Y.; Honda, T.; Hu, Z. G.; Ieki, K.; Ishibashi, Y.; Ito, Y.; Iwasa, N.; Kanno, S.; Kawabata, T.; Kimura, H.; Kondo, Y.; Kurita, K.; Kurokawa, M.; Moriguchi, T.; Murakami, H.; Ooishi, H.; Okada, K.; Ota, S.; Ozawa, A.; Sakurai, H.; Shimoura, S.; Shioda, R.; Takeshita, E.; Takeuchi, S.; Tian, W. D.; Wang, H. W.; Wang, J. S.; Wang, M.; Yamada, K.; Yamada, Y.; Yasuda, Y.; Yoneda, K.; Zhang, G. Q.; Motobayashi, T.

    2015-04-01

    Two-proton relative momentum (qpp) and opening angle (θpp) distributions from the three-body decay of two excited proton-rich nuclei, namely 23Al → p + p +21Na and 22Mg → p + p +20Ne, have been measured with the projectile fragment separator (RIPS) at the RIKEN RI Beam Factory. An evident peak at qpp ∼ 20 MeV / c as well as a peak in θpp around 30° are seen in the two-proton break-up channel from a highly-excited 22Mg. In contrast, such peaks are absent for the 23Al case. It is concluded that the two-proton emission mechanism of excited 22Mg is quite different from the 23Al case, with the former having a favorable diproton emission component at a highly excited state and the latter dominated by the sequential decay process.

  10. Photon shielding for a positron emission tomography suite.

    PubMed

    Courtney, J C; Mendez, P; Hidalgo-Salvatierra, O; Bujenovic, S

    2001-08-01

    This paper provides information on the effects of distance and attenuation in lead sheet and gypsum board of the 0.511 MeV photon produced by positron annihilation. Exposure rates are projected external to an adult injected with 185 MBq (5 mCi) of 18F in a fluorodeoxyglucose solution and for the same activity in a small unshielded container. These data have been applied to estimate the shielding requirements for the Positron Emission Tomography (PET) suite operated by the Nuclear Medicine Department of Our Lady of the Lake Regional Medical Center. To assure that exposures are as low as reasonably achievable, lead was added to the walls of the room where the 18F is stored, handled, and injected into the patients. The PET scanner is installed in a room that formerly contained a Computerized Axial Tomography scanner; the existing 1.6 mm of lead sheet was left in place even though it is not required for personnel protection. During the initial phase of operation, a shield test program was conducted to estimate annual exposures to personnel inside and outside the suite. Projection of measured rates over a year of operation demonstrate that whole body doses are well below regulatory limits.

  11. Role of positron emission tomography in urological oncology.

    PubMed

    Rioja, Jorge; Rodríguez-Fraile, Macarena; Lima-Favaretto, Ricardo; Rincón-Mayans, Anibal; Peñuelas-Sánchez, Iván; Zudaire-Bergera, Juan Javier; Parra, Raul O

    2010-12-01

    • Positron emission tomography (PET) is a diagnostic tool using radiotracers to show changes in metabolic activities in tissues. We analysed the role of PET and PET/computed tomography (CT) in the diagnosis, staging, and follow-up of urological tumours. • A critical, non-structured review of the literature of the role of PET and PET/CT in urological oncology was conducted. • PET and PET/CT can play a role in the management of urological malignancies. For prostate cancer, the advances in radiotracers seems promising, with novel radiotracers yielding better diagnostic and staging results than 18F-fluorodeoxyglucose (18F-FDG). In kidney cancer, PET and PET/CT allow a proper diagnosis before the pathological examination of the surgical specimen. For testis cancer, PET and PET/CT have been shown to be useful in the management of seminoma tumours. In bladder cancer, these scans allow a better initial diagnosis for invasive cancer, while detecting occult metastases. • PET and its combined modality PET/CT have shown their potential in the diagnosis of urological malignancies. However, further studies are needed to establish the role of PET in the management of these diseases. Future applications of PET may involve fusion techniques such as magnetic resonance imaging with PET.

  12. Positron emission tomography in patients with clinically diagnosed Alzheimer's disease.

    PubMed Central

    McGeer, P L; Kamo, H; Harrop, R; Li, D K; Tuokko, H; McGeer, E G; Adam, M J; Ammann, W; Beattie, B L; Calne, D B

    1986-01-01

    Fourteen patients who had clinically diagnosed Alzheimer's disease with mild to severe dementia (mean age 69.1 years) were evaluated by calculation of local cerebral metabolic rate for glucose (LCMR-gl) based on uptake of 18F-2-fluoro-2-deoxyglucose (FDG) detected with positron emission tomography (PET). PET scanning showed that the patients had significantly lower LCMR-gl values than 11 age-matched neurologically normal volunteers (mean age 66.3 years). The differences were most marked in the temporal cortex, followed by the frontal, parietal and occipital cortex. In each case the LCMR-gl value was below the lowest control value in at least one cortical area and usually in several; the reduction in LCMR-gl and the number of regions involved in the patients increased with the severity of the dementia. Deficits noted in neuropsychologic testing generally correlated with those predicted from loss of regional cortical metabolism. The patients with Alzheimer's disease were also examined with magnetic resonance imaging, computed tomography or both; the degree of atrophy found showed only a poor correlation with the neuropsychologic deficit. Significant atrophy was also noted in some of the controls. A detailed analysis of LCMR-gl values in selected cerebral regions of various sizes refuted the hypothesis that the reduction in cortical glucose metabolism in Alzheimer's disease is due to the filling by metabolically inert cerebrospinal fluid of space created by tissue atrophy. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 Fig. 8 Fig. 9 PMID:3512063

  13. Microdosing studies in humans: the role of positron emission tomography.

    PubMed

    Bauer, Martin; Wagner, Claudia Christina; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET)-microdosing comprises the administration of a carbon-11- or fluorine-18-labelled drug candidate to human subjects in order to describe the drug's concentration-time profile in body tissues targeted for treatment. As PET microdosing involves the administration of only microgram amounts of unlabelled drug, the potential toxicological risk to human subjects is very limited. Consequently, regulatory authorities require reduced preclinical safety testing as compared with conventional phase 1 studies. Microdose studies are gaining increasing importance in clinical drug research as they have the potential to shorten time-lines and cut costs along the critical path of drug development. Current applications of PET in anticancer, anti-infective and CNS system drug research are reviewed.

  14. The investigation of Alzheimer's disease with single photon emission tomography.

    PubMed Central

    Burns, A; Philpot, M P; Costa, D C; Ell, P J; Levy, R

    1989-01-01

    Twenty patients satisfying standard clinical criteria for Alzheimer's disease (AD) and six age-matched normal controls were studied using 99mTc hexamethyl-propyleneamine oxime and single photon emission tomography. The AD patients had lower regional cerebral blood flow (rCBF) in the temporal and posterior parietal lobes compared to controls. AD patients with apraxia and aphasia had lower rCBF in the lateral temporal and posterior parietal lobes than AD patients without these features. Within the AD group, correlations were found between neuropsychological tests and rCBF: praxis correlated with posterior parietal activity, memory with left temporal lobe activity and language with activity throughout the left hemisphere. Images PMID:2467967

  15. Studies of the brain cannabinoid system using positron emission tomography

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  16. Positron Emission Tomography: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  17. Respiratory motion correction in emission tomography image reconstruction.

    PubMed

    Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques

    2005-01-01

    In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  18. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  19. Wilson's disease studied with FDG and positron emission tomography

    SciTech Connect

    Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.

    1987-11-01

    Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.

  20. Positron emission tomography in CNS drug discovery and drug monitoring.

    PubMed

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  1. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  2. Translational neuroimaging: positron emission tomography studies of monoamine oxidase.

    PubMed

    Fowler, Joanna S; Logan, Jean; Volkow, Nora D; Wang, Gene-Jack

    2005-01-01

    Positron emission tomography (PET) using radiotracers with high molecular specificity is an important scientific tool in studies of monoamine oxidase (MAO), an important enzyme in the regulation of the neurotransmitters dopamine, norepinephrine, and serotonin as well as the dietary amine, tyramine. MAO occurs in two different subtypes, MAO A and MAO B, which have different substrate and inhibitor specificity and which are different gene products. The highly variable subtype distribution with different species makes human studies of special value. MAO A and B can be imaged in the human brain and certain peripheral organs using PET and carbon-11 (half-life 20.4 minutes) labeled mechanism-based irreversible inhibitors, clorgyline and L -deprenyl, respectively. In this article we introduce MAO and describe the development of these radiotracers and their translation from preclinical studies to the investigation of variables affecting MAO in the human brain and peripheral organs.

  3. Tau Positron Emission Tomography (PET) Imaging: Past, Present, and Future.

    PubMed

    Ariza, Manuela; Kolb, Hartmuth C; Moechars, Dieder; Rombouts, Frederik; Andrés, José Ignacio

    2015-06-11

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia among the elderly population. The good correlation of the density and neocortical spread of neurofibrillary tangles (NFTs) with clinical AD disease progression offers an opportunity for the early diagnosis and staging using a noninvasive imaging technique such as positron emission tomography (PET). Thus, PET imaging of NFTs not only holds promise as a diagnostic tool but also may enable the development of disease modifying therapeutics for AD. In this review, we focus on the structural diversity of tau PET tracers, the challenges related to the identification of high affinity and highly selective NFT ligands, and recent progress in the clinical development of tau PET radioligands.

  4. Differential diagnosis of depression: relevance of positron emission tomography

    SciTech Connect

    Schwartz, J.M.; Baxter, L.R. Jr.; Mazziotta, J.C.; Gerner, R.H.; Phelps, M.E.

    1987-09-11

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders.

  5. FDG positron emission computed tomography in a study of aphasia

    SciTech Connect

    Metter, E.J.; Wasterlain, C.G.; Kuhl, D.E.; Hanson, W.R.; Phelps, M.E.

    1981-08-01

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia.

  6. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    SciTech Connect

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. )

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  7. Positron emission tomography in aging and dementia: effect of cerebral atrophy

    SciTech Connect

    Chawluk, J.B.; Alavi, A.; Dann, R.; Hurtig, H.I.; Bais, S.; Kushner, M.J.; Zimmerman, R.A.; Reivich, M.

    1987-04-01

    The spatial resolution of current positron emission tomography (PET) scanners does not allow a distinction between cerebrospinal fluid (CSF) containing spaces and contiguous brain tissue. Data analysis strategies which therefore purport to quantify cerebral metabolism per unit mass brain tissue are in fact measuring a value which may be artifactually reduced due to contamination by CSF. We studied cerebral glucose metabolism (CMRglc) in 17 healthy elderly individuals and 24 patients with Alzheimer's dementia using (/sup 18/F)fluorodeoxyglucose and PET. All subjects underwent x-ray computed tomography (XCT) scanning at the time of their PET study. The XCT scans were analyzed volumetrically, in order to determine relative areas for ventricles, sulci, and brain tissue. Global CMRglc was calculated before and after correction for contamination by CSF (cerebral atrophy). A greater increase in global CMRglc after atrophy correction was seen in demented individuals compared with elderly controls (16.9% versus 9.0%, p less than 0.0005). Additional preliminary data suggest that volumetric analysis of proton-NMR images may prove superior to analysis of XCT data in quantifying the degree of atrophy. Appropriate corrections for atrophy should be employed if current PET scanners are to accurately measure actual brain tissue metabolism in various pathologic states.

  8. INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy.

    PubMed

    Bisogni, Maria Giuseppina; Attili, Andrea; Battistoni, Giuseppe; Belcari, Nicola; Camarlinghi, Niccolo'; Cerello, Piergiorgio; Coli, Silvia; Del Guerra, Alberto; Ferrari, Alfredo; Ferrero, Veronica; Fiorina, Elisa; Giraudo, Giuseppe; Kostara, Eleftheria; Morrocchi, Matteo; Pennazio, Francesco; Peroni, Cristiana; Piliero, Maria Antonietta; Pirrone, Giovanni; Rivetti, Angelo; Rolo, Manuel D; Rosso, Valeria; Sala, Paola; Sportelli, Giancarlo; Wheadon, Richard

    2017-01-01

    The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging. This paper presents the general architecture of the INSIDE project but focuses on the in-beam PET scanner that has been designed to reconstruct the particles range with millimetric resolution within a fraction of the dose delivered in a treatment of head and neck tumors. The in-beam PET scanner has been recently installed at the Italian National Center of Oncologic Hadrontherapy (CNAO) in Pavia, Italy, and the commissioning phase has just started. The results of the first beam test with clinical proton beams on phantoms clearly show the capability of the in-beam PET to operate during the irradiation delivery and to reconstruct on-line the beam-induced activity map. The accuracy in the activity distal fall-off determination is millimetric for therapeutic doses.

  9. Principles and clinical applications of positron emission tomography.

    PubMed

    Gardner, S F; Green, J A; Bednarczyk, E M; Farnett, L; Miraldi, F

    1992-06-01

    The basics of positron emission tomography (PET) are presented, including the physics, instrumentation, and radiopharmaceuticals involved; the clinical and research applications; and the cost. In PET, organic molecules labeled with positron-emitting radionuclides are injected or inhaled, and the high-energy photons produced by annihilation events are detected by paired, integrated crystal detectors. A computer uses the lines of origin of these photons to reconstruct a three-dimensional map of a functioning organ system. The positron-emitting radionuclides most often used are carbon 11, oxygen 15, nitrogen 13, fluorine 18, and rubidium 82. PET imaging centers usually consist of a cyclotron facility, a radiochemistry facility, a PET scanner, and computers for image reconstruction. Radiopharmaceuticals used in PET may be divided into blood flow-imaging agents, metabolic imaging agents, and drug receptor-imaging agents. Although PET is still primarily a research tool, it has shown diagnostic potential in neurology, cardiology, and oncology. It has also shown promise as a tool for pharmacologic assessment, as in studies of the effects of the fluorinated quinolones on cerebral blood flow and glucose metabolism. PET may become important in drug development because it yields specific information relatively noninvasively. A single study carries an average break-even price tag of $1500-$2000; rigorous cost-benefit analyses should be conducted before society is asked to subsidize such costs. Positron emission tomography is a frontier technology for which valuable clinical applications are being discovered. Pharmacists can contribute enormously to PET applications and at the same time establish a unique subspecialty for the profession.

  10. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  11. Positron emission tomography as a diagnostic tool in oncology.

    PubMed

    Schiepers, C; Hoh, C K

    1998-01-01

    Early diagnosis in oncology is important for treatment by surgical intervention, which generally has the highest curative potential. For higher stages of disease involvement, initiation of rapid treatment is indicated to provide the patient with the optimal therapy regimen. Although this may not improve the prognosis, it will maintain the quality of life. Anatomic imaging modalities, such as CT, MR imaging, and US, are clinically important high-resolution imaging techniques that are well suited to reveal structural abnormalities. However, the differentiation of lesions as being benign or malignant is still problematic. Metabolic imaging modalities in nuclear medicine (NM), i.e., single photon emission computed tomography (SPECT) and positron emission tomography (PET), can reveal biochemical parameters of the lesions such as glucose, oxygen, or amino acid metabolism, or measure the receptor density status. These parameters may allow a completely new clinical perspective in the management and understanding of diseases such as cancer. Although PET has been around since the early 1960s, it has only recently emerged as a powerful diagnostic tool in oncology. Society has great difficulty accepting this clinical imaging modality because of its high cost and complexity. Current applications of PET in oncology have been in characterizing lesions, differentiating recurrent disease from treatment effects, staging tumors, evaluating the extent of disease, and therapy monitoring. Here, the role of PET in diagnosis, staging, and restaging of cancer is reviewed and compared with the other tumor imaging modalities. We cover articles published in the past 3 years. We utilize the typical radiology format, in which the contribution in each body area is reviewed (topographic orientation), instead of the more organ-based approach used in internal medicine.

  12. Clinical applications of positron emission tomography/computed tomography treatment planning.

    PubMed

    Macapinlac, Homer A

    2008-03-01

    Positron emission tomography/computed tomography (PET/CT) has provided an incremental dimension to the management of cancer patients by allowing the incorporation of important molecular images in radiotherapy treatment planning, ie, direct evaluation of tumor metabolism, cell proliferation, apoptosis, hypoxia, and angiogenesis. The CT component allows 4D imaging techniques, allowing improvements in the accuracy of treatment delivery by compensating for tumor/normal organ motion, improving PET quantification, and correcting PET and CT image misregistration. The combination of PET and CT in a single imaging system to obtain a fused anatomical and functional image data is now emerging as a promising tool in radiotherapy departments for improved delineation of tumor volumes and optimization of treatment plans. PET has the potential to improve radiotherapy planning by minimizing unnecessary irradiation of normal tissues and by reducing the risk of geographic miss. PET influences treatment planning in a high proportion of cases and therefore radiotherapy dose escalation without PET may be futile. This article examines the increasing role of hybrid PET/CT imaging techniques in process of improving treatment planning in oncology with emphasis on non small cell lung cancer.

  13. Positron emission tomography / computerized tomography evaluation of primary Hodgkin's disease of liver.

    PubMed

    Gota, V S; Purandare, N C; Gujral, S; Shah, S; Nair, R; Rangarajan, V

    2009-01-01

    Occurrence of primary Hodgkin's lymphoma (PHL) of the liver is extremely rare. We report on a case of a 60-year-old male who presented with liver mass and B-symptomatology. Hepatoma or hepatic metastasis from a gastrointestinal primary was initially suspected. Tumor markers like AFP, CEA, Total PSA, and CA-19.9 were within normal limits. Positron Emission Tomography / Computerized Tomography (PET/CT) revealed a large hepatic lesion and a nodal mass in the porta hepatis. A liver biopsy was consistent with Hodgkin's lymphoma. There was complete regression of the hepatic lesion and evidence of shrinkage of the nodal mass following four cycles of chemotherapy. 18F Fluro -de-oxy Glucose (FDG) PET / CT in this case helped in establishing a primary hepatic lymphoma by demonstrating the absence of pathologically hypermetabolic foci in any other nodes or organs. PET / CT scan is a useful adjunct to conventional imaging and histopathology, not only to establish the initial diagnosis, but also to monitor treatment response in PHL.

  14. Retroperitoneal Endometriosis: A Possible Cause of False Positive Finding at 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Maffione, Anna Margherita; Panzavolta, Riccardo; Lisato, Laura Camilla; Ballotta, Maria; D'Isanto, Mariangela Zanforlini; Rubello, Domenico

    2015-01-01

    Endometriosis is a frequent and clinically relevant problem in young women. Laparoscopy is still the gold standard for the diagnosis of endometriosis, but frequently both morphologic and functional imaging techniques are involved in the diagnostic course before achieving a conclusive diagnosis. We present a case of a patient affected by infiltrating retroperitoneal endometriosis falsely interpreted as a malignant mass by contrast-enhanced magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. PMID:26097425

  15. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  16. Magnetosensory function in rats: localization using positron emission tomography.

    PubMed

    Frilot, Clifton; Carrubba, Simona; Marino, Andrew A

    2009-05-01

    The aim of this study was to show that low-strength electromagnetic fields (EMFs) produced evoked potentials in rats and to localize the activated region in the brain. In response to a 2.5-G, 60-Hz stimulus, onset- and offset-evoked potentials were detected (P < 0.05 in each of the 10 animals studied); the evoked potentials had the same magnitude, latency, and nonlinear relationship to the field seen in previous studies on rabbits and human subjects. The neuroanatomical region of activation associated with the electrophysiological effect was identified by positron emission tomography using fluorodeoxyglucose. Paired emission scans (the same animal with and without field treatment) from 10 additional rats were differenced and averaged to produce a t-statistic image using the pooled variance; the t value of each voxel was compared with a calculated critical t value to identify the activated voxels (P < 0.05). A brain volume of 13 mm(3) (15 voxels) located in the posterior, central cerebellum was found to have been activated by exposure to the field. Taken together, the results indicated that magnetosensory evoked potentials in the rats were associated with increased glucose utilization in the cerebellum, thereby supporting earlier evidence that EMF transduction occurred in the brain.

  17. Attenuation correction in emission tomography using the emission data—A review

    SciTech Connect

    Berker, Yannick Li, Yusheng

    2016-02-15

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  18. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  19. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2014-09-01

    There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-Me

  20. Specific cationic emission of cisplatin following ionization by swift protons

    NASA Astrophysics Data System (ADS)

    Moretto-Capelle, Patrick; Champeaux, Jean-Philippe; Deville, Charlotte; Sence, Martine; Cafarelli, Pierre

    2016-05-01

    We have investigated collision-induced ionization and fragmentation by 100 keV protons of the radio sensitizing molecule cisplatin, which is used in cancer treatments. A large emission of HCl+ and NH2+ is observed, but surprisingly, no cationic fragments containing platinum are detected, in contrast to ionization-dissociation induced by electronic collision. Theoretical investigations show that the ionization processes take place on platinum and on chlorine atoms. We propose new ionization potentials for cisplatin. Dissociation limits corresponding to the measured fragmentation mass spectrum have been evaluated and the theoretical results show that the non-observed cationic fragments containing platinum are mostly associated with low dissociation energies. We have also investigated the reaction path for the hydrogen transfer from the NH3 group to the Cl atom, as well as the corresponding dissociation limits from this tautomeric form. Here again the cations containing platinum correspond to lower dissociation limits. Thus, the experimental results suggest that excited states, probably formed via inner-shell ionization of the platinum atom of the molecule, correlated to higher dissociation limits are favored.

  1. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    Executive Summary Objective The objective was to update the 2001 systematic review conducted by the Institute For Clinical Evaluative Sciences (ICES) on the use of positron emission tomography (PET) in assessing myocardial viability. The update consisted of a review and analysis of the research evidence published since the 2001 ICES review to determine the effectiveness and cost-effectiveness of PET in detecting left ventricular (LV) viability and predicting patient outcomes after revascularization in comparison with other noninvasive techniques. Background Left Ventricular Viability Heart failure is a complex syndrome that impairs the contractile ability of the heart to maintain adequate blood circulation, resulting in poor functional capacity and increased risk of morbidity and mortality. It is the leading cause of hospitalization in elderly Canadians. In more than two-thirds of cases, heart failure is secondary to coronary heart disease. It has been shown that dysfunctional myocardium resulting from coronary heart disease (CAD) may recover contractile function (i.e. considered viable). Dysfunctional but viable myocardium may have been stunned by a brief episode of ischemia, followed by restoration of perfusion, and may regain function spontaneously. It is believed that repetitive stunning results in hibernating myocardium that will only regain contractile function upon revascularization. For people with CAD and severe LV dysfunction (left ventricular ejection fraction [LVEF] <35%) refractory to medical therapy, coronary artery bypass and heart transplantation are the only treatment options. The opportunity for a heart transplant is limited by scarcityof donor hearts. Coronary artery bypass in these patients is associated with high perioperative complications; however, there is evidence that revascularization in the presence of dysfunctional but viable myocardium is associated with survival benefits and lower rates of cardiac events. The assessment of left

  2. C-Arm Computed Tomography Compared With Positron Emission Tomography/Computed Tomography for Treatment Planning Before Radioembolization

    SciTech Connect

    Becker, Christoph Waggershauser, Tobias; Tiling, Reinhold; Weckbach, Sabine; Johnson, Thorsten; Meissner, Oliver; Klingenbeck-Regn, Klaus; Reiser, Maximilian; Hoffmann, Ralf Thorsten

    2011-06-15

    The purpose of this study was to determine whether rotational C-arm computed tomography (CT) allows visualization of liver metastases and adds relevant information for radioembolization (RE) treatment planning. Technetium angiography, together with C-arm CT, was performed in 47 patients to determine the feasibility for RE. C-arm CT images were compared with positron emission tomography (PET)/CT images for the detection of liver tumors. The images were also rated according one of the following three categories: (1) images that provide no additional information compared with DSA alone; (2) images that do provide additional information compared with DSA; and (2) images that had an impact on eligibility determination for and planning of the RE procedure. In all patients, 283 FDG-positive liver lesions were detected by PET. In venous contrast-phase CT, 221 (78.1%) and 15 (5.3%) of these lesions were either hypodense or hyperdense, respectively. In C-arm CT, 103 (36.4%) liver lesions were not detectable because they were outside of either the field of view or the contrast-enhanced liver segment. Another 25 (8.8%) and 98 (34.6%) of the liver lesions were either hyperdense or presented primarily as hypodense lesions with a rim enhancement, respectively. With PET/CT as the standard of reference, venous CT and C-arm CT failed to detect 47 (16.6%) and 57 (20.1%) of all liver lesions, respectively. For RE planning, C-arm CT provided no further information, provide some additional information, or had an impact on the procedure in 20 (42.5%), 15 (31.9%) and 12 (25.6%) of patients, respectively. We conclude that C-arm CT may add decisive information in patients scheduled for RE.

  3. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography.

    PubMed

    Palmqvist, Sebastian; Mattsson, Niklas; Hansson, Oskar

    2016-04-01

    Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer's disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer's disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) study. All underwent (18)F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1-4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer's disease dementia. The results were replicated after adjustments of different factors and when using different cut-offs for amyloid-β abnormality

  4. Silicon photomultiplier choice for the scintillating fibre tracker in second generation proton computed tomography scanner

    SciTech Connect

    Gearhart, A.; Johnson, E.; Medvedev, V.; Ronzhin, A.; Rykalin, V.; Rubinov, P.; Sleptcov, V.; /Unlisted, RU

    2012-03-01

    Scintillating fibers are capable of charged particle tracking with high position resolution, as demonstrated by the central fiber tracker of the D0 experiment. The charged particles will deposit less energy in the polystyrene scintillating fibers as opposed to a typical silicon tracker of the same thickness, while SiPM's are highly efficient at detecting photons created by the passage of the charged particle through the fibers. The current prototype of the Proton Computed Tomography (pCT) tracker uses groups of three 0.5 mm green polystyrene based scintillating fibers connected to a single SiPM, while first generation prototype tracker used Silicon strip detectors. The results of R&D for the Scintillating Fiber Tracker (SFT) as part of the pCT detector are outlined, and the premise for the selection of SiPM is discussed.

  5. 18F-fluorodeoxyglucose positron-emission tomography-computed tomography to diagnose recurrent cancer

    PubMed Central

    You, J J; Cline, K J; Gu, C-S; Pritchard, K I; Dayes, I S; Gulenchyn, K Y; Inculet, R I; Dhesy-Thind, S K; Freeman, M A; Chan, A M; Julian, J A; Levine, M N

    2015-01-01

    Background: Sometimes the diagnosis of recurrent cancer in patients with a previous malignancy can be challenging. This prospective cohort study assessed the clinical utility of 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (18F-FDG PET-CT) in the diagnosis of clinically suspected recurrence of cancer. Methods: Patients were eligible if cancer recurrence (non-small-cell lung (NSCL), breast, head and neck, ovarian, oesophageal, Hodgkin's or non-Hodgkin's lymphoma) was suspected clinically, and if conventional imaging was non-diagnostic. Clinicians were asked to indicate their management plan before and after 18F-FDG PET-CT scanning. The primary outcome was change in planned management after 18F-FDG PET-CT. Results: Between April 2009 and June 2011, 101 patients (age, median 65 years; 55% female) were enroled from four cancer centres in Ontario, Canada. Distribution by primary tumour type was: NSCL (55%), breast (19%), ovarian (10%), oesophageal (6%), lymphoma (6%), and head and neck (4%). Of the 99 subjects who underwent 18F-FDG PET-CT, planned management changed after 18F-FDG PET-CT in 52 subjects (53%, 95% confidence interval (CI), 42–63%); a major change in plan from no treatment to treatment was observed in 38 subjects (38%, 95% CI, 29–49%), and was typically associated with 18F-FDG PET-CT findings that were positive for recurrent cancer (37 subjects). After 3 months, the stated post-18F-FDG PET-CT management plan was actually completed in 88 subjects (89%, 95% CI, 81–94%). Conclusion: In patients with suspected cancer recurrence and conventional imaging that is non-diagnostic, 18F-FDG PET-CT often provides new information that leads to important changes in patient management. PMID:25942398

  6. Accuracy of 18F fluorodeoxyglucose positron emission tomography/computed tomography in staging of pediatric sarcomas.

    PubMed

    Tateishi, Ukihide; Hosono, Ako; Makimoto, Atsushi; Sakurada, Aine; Terauchi, Takashi; Arai, Yasuaki; Imai, Yutaka; Kim, Euishin Edmund

    2007-09-01

    The present study was conducted to clarify the diagnostic accuracy of 18F-fluoro-2-deoxy-D-glucose (18FDG) positron emission tomography (PET)/computed tomography (CT) in the staging in pediatric sarcomas. Fifty pediatric patients with histologically proven sarcomas who underwent 18FDG PET/CT before treatment were evaluated retrospectively for the detection of nodal and distant metastases. Diagnostic accuracy of 18FDG PET/CT in detecting nodal and distant metastases was compared with that of 18FDG PET and conventional imaging (CI). The images were reviewed and a diagnostic consensus was reached by 3 observers. REFERENCE standard was histologic examination in 15 patients and confirmation of an obvious progression in size of the lesions on follow-up examinations. Nodal metastasis was correctly assessed in 48 patients (96%) with PET/CT, in contrast to 43 patients (86%) with PET, and 46 patients (92%) with CI. Diagnostic accuracies of nodal metastasis in 3 modalities were similar. Using PET/CT, distant metastasis was correctly assigned in 43 patients (86%), whereas interpretation based on PET alone or CI revealed distant metastasis in 33 patients (66%) and 35 patients (70%), respectively. Diagnostic accuracy of distant metastasis with PET/CT was significantly higher than that of PET (P=0.002) or CI (P=0.008). False negative results regarding distant metastasis by PET/CT in 7 patients (14%) were caused by subcentimetric lesions (n=4), bone marrow lesion (n=2), and soft tissue lesions (n=1). PET/CT is more accurate and probably more cost-effective than PET alone or CI regarding distant metastasis in pediatric sarcomas.

  7. Trends in radiation protection of positron emission tomography/computed tomography imaging.

    PubMed

    Alenezi, A; Soliman, K

    2015-06-01

    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded.

  8. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  9. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  10. Positron emission tomography: a first-hand experience.

    PubMed

    Traylor, J

    2000-01-01

    In July 1999, the University of Kansas Hospital installed a positron emission tomography (PET) scanner and added PET to the imaging technologies it offers patients and physicians. The new service is managed by the nuclear medicine section in the department of radiology. Plans are being implemented now to install a cyclotron in March 2000. Prior to installation of the scanner, a radiation area survey was performed in the space being considered for the PET unit. We also needed to address other critical considerations, including the manufacturer's requirements for construction of the scanner room, special electrical needs, and how the system would connect to our existing information network. It is important to work closely with your chief financial officer and chief operations officer from the beginning of the purchasing process so that these administrators have up-to-date, supportive information about PET and the progress of the installation. We made use of a variety of promotional techniques to market the new service, including broadcast e-mail, an open house for potential referring physicians, postings on the nuclear medicine Web site and communication through the local media. We also worked with the major insurance providers that utilize our hospital to educate them about PET and its benefits. In addition, we trained our own billing staff about procedures that optimize reimbursement for PET. In March 2000, University of Kansas Hospital will install the first cyclotron in the state, enabling us to generate the drugs used for PET scanning and potentially to add targets for research PET radiopharmaceuticals.

  11. Imaging pancreatic islet cells by positron emission tomography

    PubMed Central

    Li, Junfeng; Karunananthan, Johann; Pelham, Bradley; Kandeel, Fouad

    2016-01-01

    It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells. PMID:27721939

  12. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  13. The economics of creating a positron emission tomography center.

    PubMed

    Lissak, R J

    2000-10-01

    Positron emission tomography (PET) scanning has been a powerful research tool since its inception. Changes in the marketplace that have allowed PET to move into the clinical environment include the commercial availability of appropriate radiopharmaceuticals, reimbursement of procedures by insurance companies, and increasing awareness of physicians of the benefits of PET. Facilities that are interested in clinical PET need to develop a process to purchase equipment with an appropriate business plan. This is necessary to assure financial viability and to convince hospital administrators of the viability. The creation of a successful PET program requires an understanding of all aspects relating to a center. The process begins with reviewing the mission statement of the facility. The next step is to prepare the feasibility study, which includes reviewing the existing marketplace and determining the volume, level of referring physicians' interest, and availability of radiopharmaceuticals. Finally, an appropriate pro forma needs to be constructed to facilitate the final decision concerning the potential financial viability of such an endeavor.

  14. Brain single photon emission computed tomography in neonates

    SciTech Connect

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. )

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  15. [Methods and clinical applications of positron emission tomography in endocrinology].

    PubMed

    De Landsheere, C; Lamotte, D

    1990-01-01

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for 150, 13N, 11C and 18F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormone-dependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactin) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptine can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology.

  16. Modularized compact positron emission tomography detector for rapid system development.

    PubMed

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2017-01-01

    We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is [Formula: see text] in extent (excluding I/O connectors) and contains an [Formula: see text] array of [Formula: see text] one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of [Formula: see text].

  17. Positron Emission Tomography Application to Drug Development and Research

    NASA Astrophysics Data System (ADS)

    Salvadori, Piero A.

    The research for the identification and development of new drugs represents a very complex process implying long times and massive investments. This process was not able to parallel the rate of discoveries made in the field of genomic and molecular biology and a gap created between demand of new drugs and the ability of pharmaceutical companies to select good candidates. Positron Emission Tomography, among the different Molecular Imaging modalities, could represent a new tool for the early assessment and screening of new drug candidates and, due to its physical performances and the characteristics of positron-labeled tracers, gain the role of "Biomarker" accepted by the Companies and the Regulatory Bodies of Drug Agencies. To fulfil this task PET has to exploit all of its special features such as data absolute quantification and modelling, high spatial resolution and dynamic imaging. Relevant efforts need to be directed to the careful design and validation of experimental protocols with the main goal of achieving consistency in multi- centric trials.

  18. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    PubMed

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  19. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    PubMed Central

    Sciagrà, Roberto

    2012-01-01

    In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760

  20. Markerless motion tracking of awake animals in positron emission tomography.

    PubMed

    Kyme, Andre; Se, Stephen; Meikle, Steven; Angelis, Georgios; Ryder, Will; Popovic, Kata; Yatigammana, Dylan; Fulton, Roger

    2014-11-01

    Noninvasive functional imaging of awake, unrestrained small animals using motion-compensation removes the need for anesthetics and enables an animal's behavioral response to stimuli or administered drugs to be studied concurrently with imaging. While the feasibility of motion-compensated radiotracer imaging of awake rodents using marker-based optical motion tracking has been shown, markerless motion tracking would avoid the risk of marker detachment, streamline the experimental workflow, and potentially provide more accurate pose estimates over a greater range of motion. We have developed a stereoscopic tracking system which relies on native features on the head to estimate motion. Features are detected and matched across multiple camera views to accumulate a database of head landmarks and pose is estimated based on 3D-2D registration of the landmarks to features in each image. Pose estimates of a taxidermal rat head phantom undergoing realistic rat head motion via robot control had a root mean square error of 0.15 and 1.8 mm using markerless and marker-based motion tracking, respectively. Markerless motion tracking also led to an appreciable reduction in motion artifacts in motion-compensated positron emission tomography imaging of a live, unanesthetized rat. The results suggest that further improvements in live subjects are likely if nonrigid features are discriminated robustly and excluded from the pose estimation process.

  1. Variation in Positron Emission Tomography Use After Colon Cancer Resection

    PubMed Central

    Bailey, Christina E.; Hu, Chung-Yuan; You, Y. Nancy; Kaur, Harmeet; Ernst, Randy D.; Chang, George J.

    2015-01-01

    Purpose: Colon cancer surveillance guidelines do not routinely include positron emission tomography (PET) imaging; however, its use after surgical resection has been increasing. We evaluated the secular patterns of PET use after surgical resection of colon cancer among elderly patients and identified factors associated with its increasing use. Patients and Methods: We used the SEER-linked Medicare database (July 2001 through December 2009) to establish a retrospective cohort of patients age ≥ 66 years who had undergone surgical resection for colon cancer. Postoperative PET use was assessed with the test for trends. Patient, tumor, and treatment characteristics were analyzed using univariable and multivariable logistic regression analyses. Results: Of the 39,221 patients with colon cancer, 6,326 (16.1%) had undergone a PET scan within 2 years after surgery. The use rate steadily increased over time. The majority of PET scans had been performed within 2 months after surgery. Among patients who had undergone a PET scan, 3,644 (57.6%) had also undergone preoperative imaging, and 1,977 (54.3%) of these patients had undergone reimaging with PET within 2 months after surgery. Marriage, year of diagnosis, tumor stage, preoperative imaging, postoperative visit to a medical oncologist, and adjuvant chemotherapy were significantly associated with increased PET use. Conclusion: PET use after colon cancer resection is steadily increasing, and further study is needed to understand the clinical value and effectiveness of PET scans and the reasons for this departure from guideline-concordant care. PMID:25852143

  2. Characterization of nontransmural myocardial infarction by positron-emission tomography

    SciTech Connect

    Geltman, E.M.; Biello, D.; Welch, M.J.; Ter-Pogossian, M.M.; Roberts, R.; Sobel, B.E.

    1982-04-01

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 (+/- SEM SEM)) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction.

  3. Application of silicon photomultipliers to positron emission tomography.

    PubMed

    Roncali, Emilie; Cherry, Simon R

    2011-04-01

    Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems.

  4. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  5. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  6. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  7. Positron Emission Tomography Detector Development for Plant Biology

    SciTech Connect

    Weisenberger, A G; McKisson, J; Stolin, A; Zorn, C; Howell, C R; Crowell, A S; Reid, C D; Majewski, S; Smith, M F

    2010-01-01

    There are opportunities for the development of new tools to advance plant biology research through the use of radionuclides. Thomas Jefferson National Accelerator Facility, Duke University, West Virginia University and the University of Maryland are collaborating on the development of radionuclide imaging technologies to facilitate plant biology research. Biological research into optimizing plant productivity under various environmental constraints, biofuel and carbon sequestration research are areas that could potentially benefit from new imaging technologies. Using 11CO2 tracers, the investigators at Triangle University Nuclear Laboratory / Duke University Phytotron are currently researching the dynamical responses of plants to environmental changes forecasted from increasing greenhouse trace gases involved in global change. The biological research primary focus is to investigate the impact of elevated atmospheric CO2 and nutrients limitation on carbon and nitrogen dynamics in plants. We report here on preliminary results of 11CO2 plant imaging experiments involving barley plants using Jefferson Lab dual planar positron emission tomography detectors to image 11CO2 in live barley plants. New detector designs will be developed based on the preliminary studies reported here and further planned.

  8. Florbetapir positron emission tomography and cerebrospinal fluid biomarkers

    PubMed Central

    Hake, Ann; Trzepacz, Paula T.; Wang, Shufang; Yu, Peng; Case, Michael; Hochstetler, Helen; Witte, Michael M.; Degenhardt, Elisabeth K.; Dean, Robert A.

    2015-01-01

    Background We evaluated the relationship between florbetapir-F18 positron emission tomography (FBP PET) and cerebrospinal fluid (CSF) biomarkers. Methods Alzheimer’s Disease Neuroimaging Initiative (ADNI)-GO/2 healthy control (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia subjects with clinical measures and CSF collected ±90 days of FBP PET data were analyzed using correlation and logistic regression. Results In HC and MCI subjects, FBP PET anterior and posterior cingulate and composite standard uptake value ratios correlated with CSF amyloid beta (Aβ1-42) and tau/Aβ1-42 ratios. Using logistic regression, Aβ1-42, total tau (t-tau), phosphorylated tau181P (p-tau), and FBP PET composite each differentiated HC versus AD. Aβ1-42 and t-tau distinguished MCI versus AD, without additional contribution by FBP PET. Total tau and p-tau added discriminative power to FBP PET when classifying HC versus AD. Conclusion Based on cross-sectional diagnostic groups, both amyloid and tau measures distinguish healthy from demented subjects. Longitudinal analyses are needed. PMID:25916563

  9. Simultaneous laser speckle imaging and positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.

    2013-06-01

    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, p<0.001) when correcting for surface vessel structures taking into account the contribution of static scatterers while keeping the coherence factor constant. However, using the originally published relation, which allows a 900 times faster computation of blood flow maps, still provided a good correlation (R2 = 0.879, p<0.001). Given the good correlation between LSI and PET we used our data to calibrate the speckle ICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  10. Proton emission half-lives within a Gamow-like model

    NASA Astrophysics Data System (ADS)

    Zdeb, A.; Warda, M.; Petrache, C. M.; Pomorski, K.

    2016-10-01

    Proton emission is described using a model which has previously given good results in the description of α and cluster radioactivity. The simple phenomenological formalism, based on the Gamow theory for alpha decay, is now extended by including the centrifugal term. The model contains only one parameter: the effective nuclear radius constant. Its value was once found for alpha and cluster emitters. A good agreement with the experimental half-lives for proton radioactivity is achieved without any additional fitting procedures to the data for proton emission.

  11. Routine positron emission tomography and positron emission tomography/computed tomography in melanoma staging with positive sentinel node biopsy is of limited benefit.

    PubMed

    Constantinidou, Anastasia; Hofman, Michael; O'Doherty, Michael; Acland, Katharine M; Healy, Ciaran; Harries, Mark

    2008-02-01

    Positron emission tomography (PET) is increasingly used for the staging and management of melanoma. The aim of this study was to evaluate the role of PET or PET/ computed tomography (CT) as a routine procedure in patients with positive sentinel node biopsy (SNB). Thirty patients with melanoma of Breslow thickness greater than 1 mm who had PET or PET/CT scans performed within 100 days after a positive SNB were reviewed retrospectively. Two patients (6%) had a positive PET scan, none of which were melanoma related. The first patient had a synchronous neuroendocrine thyroid tumour and the second patient had increased uptake in the chest wall, which proved to be old trauma. Lymph node dissection was positive in five cases (16%). With a median follow-up of 24 months, 21 patients remained disease free. In none of the 30 cases did the early PET scan after a positive SNB alter subsequent melanoma management. The role of PET scanning soon after a positive sentinel node biopsy seems to be of limited benefit. It is questionable whether any imaging is beneficial at this stage. The results of this review suggest that PET scanning might not be indicated for this group of patients.

  12. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome.

    PubMed

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome.

  13. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    SciTech Connect

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  14. Positron emission tomography: a financial and operational analysis.

    PubMed

    Conti, P S; Keppler, J S; Halls, J M

    1994-06-01

    Positron emission tomography (PET) is an emerging clinical imaging technique that is facing the challenges of expansion in a period of imminent health care contraction and reform. Although PET began showing utility in clinical medicine in the mid-1980s [1], its proliferation into mainstream medical practice has not matched that of other new imaging technologies such as MR imaging. Many factors have contributed to this, including the changing health care economy, the high cost of PET, the length of time it takes to develop a PET facility, and its inherent complexity. In part because of the proliferation of the use of other technologies and the general explosion of costs, insurance carriers are now holding diagnostic techniques, including PET, to stricter standards of efficacy. New techniques must show improvement in long-term outcome of patients, a difficult task for diagnostic tools. In addition to these issues, PET is an expensive technology that requires highly trained multidisciplinary personnel. Questions have also been raised about the most appropriate mechanism for regulation of PET isotope preparation, leading to speculation about future regulatory requirements. The current pioneers of PET must meet these challenges in order for it to become a routine imaging technique. Because of its clinical value, PET will probably survive despite the challenges. For many reasons, though, not every hospital should necessarily develop PET services. Conversely, many hospitals without this technology should consider acquiring PET. The purpose of this article is to identify the financial, operational, and clinical challenges facing PET centers today, describe potential organizational configurations that may enable PET to survive in an antitechnology environment, and delineate which institutions should consider this new technology.

  15. Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

    PubMed

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-05-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.

  16. Super-resolution in respiratory synchronized positron emission tomography.

    PubMed

    Wallach, Daphné; Lamare, Frédéric; Kontaxakis, Giorgos; Visvikis, Dimitris

    2012-02-01

    Respiratory motion is a major source of reduced quality in positron emission tomography (PET). In order to minimize its effects, the use of respiratory synchronized acquisitions, leading to gated frames, has been suggested. Such frames, however, are of low signal-to-noise ratio (SNR) as they contain reduced statistics. Super-resolution (SR) techniques make use of the motion in a sequence of images in order to improve their quality. They aim at enhancing a low-resolution image belonging to a sequence of images representing different views of the same scene. In this work, a maximum a posteriori (MAP) super-resolution algorithm has been implemented and applied to respiratory gated PET images for motion compensation. An edge preserving Huber regularization term was used to ensure convergence. Motion fields were recovered using a B-spline based elastic registration algorithm. The performance of the SR algorithm was evaluated through the use of both simulated and clinical datasets by assessing image SNR, as well as the contrast, position and extent of the different lesions. Results were compared to summing the registered synchronized frames on both simulated and clinical datasets. The super-resolution image had higher SNR (by a factor of over 4 on average) and lesion contrast (by a factor of 2) than the single respiratory synchronized frame using the same reconstruction matrix size. In comparison to the motion corrected or the motion free images a similar SNR was obtained, while improvements of up to 20% in the recovered lesion size and contrast were measured. Finally, the recovered lesion locations on the SR images were systematically closer to the true simulated lesion positions. These observations concerning the SNR, lesion contrast and size were confirmed on two clinical datasets included in the study. In conclusion, the use of SR techniques applied to respiratory motion synchronized images lead to motion compensation combined with improved image SNR and contrast

  17. PDE regularization for Bayesian reconstruction of emission tomography

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Zhang, Li; Xing, Yuxiang; Zhao, Ziran

    2008-03-01

    The aim of the present study is to investigate a type of Bayesian reconstruction which utilizes partial differential equations (PDE) image models as regularization. PDE image models are widely used in image restoration and segmentation. In a PDE model, the image can be viewed as the solution of an evolutionary differential equation. The variation of the image can be regard as a descent of an energy function, which entitles us to use PDE models in Bayesian reconstruction. In this paper, two PDE models called anisotropic diffusion are studied. Both of them have the characteristics of edge-preserving and denoising like the popular median root prior (MRP). We use PDE regularization with an Ordered Subsets accelerated Bayesian one step late (OSL) reconstruction algorithm for emission tomography. The OS accelerated OSL algorithm is more practical than a non-accelerated one. The proposed algorithm is called OSEM-PDE. We validated the OSEM-PDE using a Zubal phantom in numerical experiments with attenuation correction and quantum noise considered, and the results are compared with OSEM and an OS version of MRP (OSEM-MRP) reconstruction. OSEM-PDE shows better results both in bias and variance. The reconstruction images are smoother and have sharper edges, thus are more applicable for post processing such as segmentation. We validate this using a k-means segmentation algorithm. The classic OSEM is not convergent especially in noisy condition. However, in our experiment, OSEM-PDE can benefit from OS acceleration and keep stable and convergent while OSEM-MRP failed to converge.

  18. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  19. Simulation of emission tomography using grid middleware for distributed computing.

    PubMed

    Thomason, M G; Longton, R F; Gregor, J; Smith, G T; Hutson, R K

    2004-09-01

    SimSET is Monte Carlo simulation software for emission tomography. This paper describes a simple but effective scheme for parallel execution of SimSET using NetSolve, a client-server system for distributed computation. NetSolve (version 1.4.1) is "grid middleware" which enables a user (the client) to run specific computations remotely and simultaneously on a grid of networked computers (the servers). Since the servers do not have to be identical machines, computation may take place in a heterogeneous environment. To take advantage of diversity in machines and their workloads, a client-side scheduler was implemented for the Monte Carlo simulation. The scheduler partitions the total decay events by taking into account the inherent compute-speeds and recent average workloads, i.e., the scheduler assigns more decay events to processors expected to give faster service and fewer decay events to those expected to give slower service. When compute-speeds and sustained workloads are taken into account, the speed-up is essentially linear in the number of equivalent "maximum-service" processors. One modification in the SimSET code (version 2.6.2.3) was made to ensure that the total number of decay events specified by the user is maintained in the distributed simulation. No other modifications in the standard SimSET code were made. Each processor runs complete SimSET code for its assignment of decay events, independently of others running simultaneously. Empirical results are reported for simulation of a clinical-quality lung perfusion study.

  20. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  1. Budget impact from the incorporation of positron emission tomography – computed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  2. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.

    PubMed

    Sharma, A C; Harrawood, B P; Bender, J E; Tourassi, G D; Kapadia, A J

    2007-10-21

    A Monte Carlo simulation has been developed for neutron stimulated emission computed tomography (NSECT) using the GEANT4 toolkit. NSECT is a new approach to biomedical imaging that allows spectral analysis of the elements present within the sample. In NSECT, a beam of high-energy neutrons interrogates a sample and the nuclei in the sample are stimulated to an excited state by inelastic scattering of the neutrons. The characteristic gammas emitted by the excited nuclei are captured in a spectrometer to form multi-energy spectra. Currently, a tomographic image is formed using a collimated neutron beam to define the line integral paths for the tomographic projections. These projection data are reconstructed to form a representation of the distribution of individual elements in the sample. To facilitate the development of this technique, a Monte Carlo simulation model has been constructed from the GEANT4 toolkit. This simulation includes modeling of the neutron beam source and collimation, the samples, the neutron interactions within the samples, the emission of characteristic gammas, and the detection of these gammas in a Germanium crystal. In addition, the model allows the absorbed radiation dose to be calculated for internal components of the sample. NSECT presents challenges not typically addressed in Monte Carlo modeling of high-energy physics applications. In order to address issues critical to the clinical development of NSECT, this paper will describe the GEANT4 simulation environment and three separate simulations performed to accomplish three specific aims. First, comparison of a simulation to a tomographic experiment will verify the accuracy of both the gamma energy spectra produced and the positioning of the beam relative to the sample. Second, parametric analysis of simulations performed with different user-defined variables will determine the best way to effectively model low energy neutrons in tissue, which is a concern with the high hydrogen content in

  3. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  4. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  5. 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Other Thyroid Cancers: Medullary, Anaplastic, Lymphoma and So Forth

    PubMed Central

    Araz, Mine; Çayır, Derya

    2017-01-01

    Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) is used in staging, restaging, and evaluation of therapy response in many cancers as well as differentiated thyroid carcinomas especially in non-iodine avid variants. Its potential in less frequent thyroid tumors like medullary, anaplastic thyroid cancers, thyroid lymphoma and metastatic tumors of the thyroid however, is not well established yet. The aim of this review is to provide an overview on the recent applications and indications of 18F-FDG PET/CT in these tumors and to focus on the controversies in the clinical setting. PMID:28291004

  6. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan.

    PubMed

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen ((68)Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. (68)Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for (68)Ga-PSMA PET/CT to evaluate the feasibility of (177)Lu-PSMA therapy.

  7. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in a rare case of carcinoma stomach with concomitant silicosis

    PubMed Central

    Sasikumar, Arun; Joy, Ajith; Unni, Madhavan; Madhavan, Jayaprakash

    2016-01-01

    The role of fluorine-18 fluorodeoxyglucose. (18F-FDG) positron emission tomography. (PET)/computed tomography. (CT) in the initial staging of various malignancies is now well established. However, nonspecificity of FDG occasionally results in tracer uptake in benign lung lesions. The authors describe a complicated case of carcinoma stomach with multiple nodules and a cavitary lesion in lungs where 18F-FDG PET CT done for initial staging revealed FDG avid mass in stomach, FDG avid multiple mediastinal lymph nodes and multiple intensely FDG avid bilateral lung lesions. The FDG avid lung lesions turned out to be due to silicosis as confirmed by histopathology. PMID:27833322

  8. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    PubMed Central

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; Freifelder, Richard; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions. PMID:18383664

  9. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography.

    PubMed

    Konecky, Soren D; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M; Saffer, Janet R; Freifelder, Richard; Karp, Joel S; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G

    2008-02-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.

  10. Role of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the management of Askin's tumor.

    PubMed

    Santhosh, Sampath; Kashyap, Raghava; Bhattacharya, Anish; Kumar Jindal, Surinder; Rai Mittal, Bhagwant

    2013-07-01

    A primitive neuroectodermal tumor (PNET) of the thoraco-abdominal region is one of a group of small round cell tumors usually found in children and young adults, originally described by Askin et al. Most cases arise in the soft-tissues of the thorax, but may rarely occur within the lung with the symptoms of chest wall pain, pleural effusion and dyspnea. The authors present two cases demonstrating the utility of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the staging and prognosis of PNET of the chest wall.

  11. The diagnostic possibilities of positron emission tomography (PET): applications in oral and maxillofacial buccal oncology.

    PubMed

    Carranza-Pelegrina, Daniela; Lomeña-Caballero, Francisco; Soler-Peter, Marina; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2005-01-01

    The principles of positron emission tomography (PET), recently introduced as a diagnostic procedure into the health sciences, are described. The principle clinical applications apply to a particular group of specialties: cardiology, neurology, psychiatry, and above all oncology. Positron emission tomography is a non-invasive diagnostic imaging technique with clinical applications. It is an excellent tool for the study of the stage and possible malignancy of tumors of head and neck, the detection of otherwise clinically indeterminate metastases and lymphadenopathies, and likewise for the diagnosis of relapses. The only tracer with any practical clinical application is fluor-desoxyglucosa-F18 (FDG). PET detects the intense accumulation of FDG produced in malignant tumors due to the increased glycolytic rate of the neoplastic cells. With the introduction of hybrid systems that combine computerized tomography or magnetic resonance with positron emission tomography, important advances are being made in the diagnosis and follow-up of oncologic pathology of head and neck.

  12. The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder.

    PubMed

    Dierickx, Daan; Tousseyn, Thomas; Requilé, Annelies; Verscuren, Raf; Sagaert, Xavier; Morscio, Julie; Wlodarska, Iwona; Herreman, An; Kuypers, Dirk; Van Cleemput, Johan; Nevens, Frederik; Dupont, Lieven; Uyttebroeck, Anne; Pirenne, Jacques; De Wolf-Peeters, Christiane; Verhoef, Gregor; Brepoels, Lieselot; Gheysens, Olivier

    2013-05-01

    We investigated sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-fluorodeoxyglucose-positron emission tomography in 170 cases with suspected or biopsy-proven posttransplant lymphoproliferative disorder. All solid organ and hematopoietic stem cell transplant recipients who underwent an 18F-fluorodeoxyglucose-positron emission tomography scan between 2003 and 2010 in our center for the indication posttransplant lymphoproliferative disorder, were retrospectively reviewed and results were compared with tissue biopsy whenever possible. One hundred and seventy positron emission tomography scans in 150 patients were eligible for evaluation. In 45 cases, the patient had a biopsy-confirmed posttransplant lymphoproliferative disorder before positron emission tomography scanning and positron emission tomography was performed for staging purposes. In the remaining 125 cases, positron emission tomography was performed to differentiate between posttransplant lymphoproliferative disorder and other diseases. 18F-fluorodeoxyglucose-uptake was quantitatively expressed by calculation of maximum and mean standardized uptake value in the most intense lesion or, in the absence of attenuation corrected positron emission tomography scans, by comparing uptake in target lesion to liver and mediastinal uptake. We found an overall sensitivity of 89%, specificity of 89%, positive predictive value of 91% and negative predictive value of 87% for posttransplant lymphoproliferative disorder detection by 18F-fluorodeoxyglucose-positron emission tomography. In a subanalysis of the 125 scans performed for differentiating posttransplant lymphoproliferative disorder from other diseases, sensitivity, specificity, positive predictive value and negative predictive value were 90%, 89%, 85% and 93%, respectively. 18F-fluorodeoxyglucose-uptake in posttransplant lymphoproliferative disorder was generally high with a median mean and maximum standardized uptake

  13. The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder

    PubMed Central

    Dierickx, Daan; Tousseyn, Thomas; Requilé, Annelies; Verscuren, Raf; Sagaert, Xavier; Morscio, Julie; Wlodarska, Iwona; Herreman, An; Kuypers, Dirk; Van Cleemput, Johan; Nevens, Frederik; Dupont, Lieven; Uyttebroeck, Anne; Pirenne, Jacques; De Wolf-Peeters, Christiane; Verhoef, Gregor; Brepoels, Lieselot; Gheysens, Olivier

    2013-01-01

    We investigated sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-fluorodeoxyglucose-positron emission tomography in 170 cases with suspected or biopsy-proven posttransplant lymphoproliferative disorder. All solid organ and hematopoietic stem cell transplant recipients who underwent an 18F-fluorodeoxyglucose-positron emission tomography scan between 2003 and 2010 in our center for the indication posttransplant lymphoproliferative disorder, were retrospectively reviewed and results were compared with tissue biopsy whenever possible. One hundred and seventy positron emission tomography scans in 150 patients were eligible for evaluation. In 45 cases, the patient had a biopsy-confirmed posttransplant lymphoproliferative disorder before positron emission tomography scanning and positron emission tomography was performed for staging purposes. In the remaining 125 cases, positron emission tomography was performed to differentiate between posttransplant lymphoproliferative disorder and other diseases. 18F-fluorodeoxyglucose-uptake was quantitatively expressed by calculation of maximum and mean standardized uptake value in the most intense lesion or, in the absence of attenuation corrected positron emission tomography scans, by comparing uptake in target lesion to liver and mediastinal uptake. We found an overall sensitivity of 89%, specificity of 89%, positive predictive value of 91% and negative predictive value of 87% for posttransplant lymphoproliferative disorder detection by 18F-fluorodeoxyglucose-positron emission tomography. In a subanalysis of the 125 scans performed for differentiating posttransplant lymphoproliferative disorder from other diseases, sensitivity, specificity, positive predictive value and negative predictive value were 90%, 89%, 85% and 93%, respectively. 18F-fluorodeoxyglucose-uptake in posttransplant lymphoproliferative disorder was generally high with a median mean and maximum standardized uptake

  14. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Yoskowitz, Josh; Labrake, Scott; Vineyard, Michael

    2013-10-01

    There has been considerable concern in recent years about possible mercury emissions from crematoria. We have performed a particle-induced X-ray emission (PIXE) analysis of atmospheric aerosol samples collected on the roof of the crematorium at Vale Cemetery in Schenectady, NY, to address this concern. The samples were collected with a nine-stage cascade impactor that separates the particulate matter according to particle size. The aerosol samples were bombarded with 2.2-MeV protons from the Union College 1.1-MV Pelletron Accelerator. The emitted X-rays were detected with a silicon drift detector and the X-ray energy spectra were analyzed using GUPIX software to determine the elemental concentrations. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury. The lower limit of detection for mercury in this experiment was approximately 0.2 ng/m3. We will describe the experimental procedure, discuss the PIXE analysis, and present preliminary results.

  15. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy

    NASA Astrophysics Data System (ADS)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; La Rosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed [1-3]. Here, the 11B(p,α)2α nuclear fusion reaction channel, where three alpha particles are produced with an average energy around 4 MeV, is considered [4]. These alphas are able to penetrate the cells nucleus and strongly damage their DNA. In addition, gamma prompts emitted by the proton Boron nuclear reactions can be used for on-line proton beam imaging purposes. In this work an experimental study of the gamma prompt emissions from the proton Boron nuclear reactions has been carried out with the main aim to understand and quantify the most probable emission for future clinical applications.

  16. [Ventricular volumes determined by single-photon emission computed tomography].

    PubMed

    Katohno, E; Ono, K; Owada, K; Fujino, A; Watanabe, N; Sato, M; Konno, I; Yaoita, H; Tsuda, F; Kariyone, S

    1987-06-01

    To determine right (RV) and left ventricular (LV) volumes, a new technique was developed using ECG-gated single-photon emission computed tomography (SPECT). RV volumes of nine patients and LV volumes of 22 patients measured by SPECT and biplane contrast cineangiography were compared. In addition, volume and ejection fraction (EF) of the RV and LV were obtained by SPECT for 10 normal controls, 21 patients with old myocardial infarction (OMI), eight patients with hypertrophic cardiomyopathy (HCM) and 12 patients with dilated cardiomyopathy (DCM), and these results were compared. The intracardiac blood pool was labeled with Tc-99m sodium pertechnetate and 32 images were recorded through 180 degrees by a rotating gamma-camera. End-diastolic and end-systolic counts during 50 msec were recorded during 50 or 60 cardiac cycles. These counting data were reconstructed as tomographic images of vertical long-axial slices with thickness of a pixel without any attenuation correction. The numbers of voxels within the % cut-off level were summed, and the sum was multiplied by the one voxel volume. The cut-off level for ventricular delineation was determined as 45% by phantom studies. 1. The values obtained from SPECT and contrast angiography correlated well. 2. In normal controls, LV end-diastolic and end-systolic volumes were significantly less than those of the RV (p less than 0.05, p less than 0.001) and LVEF was significantly greater than the RVEF (p less than 0.001). 3. In OMI (single vessel disease), both end-diastolic and end-systolic volumes of the LV were significantly greater than those of normals (p less than 0.01, p less than 0.001) and LVEF was significantly less. In HCM end-systolic volumes of the RV were significantly less (p less than 0.05) than those of the normals. 4. LV volume was greater and LVEF was extremely low both in DCM and in OMI (multivessel disease) compared to that of the normals. In DCM, RV end-systolic volumes was greater and RVEF was lower than

  17. Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer

    PubMed Central

    Esfandiari, Nazanene H.; Papaleontiou, Maria; Worden, Francis P.; Haymart, Megan R.

    2015-01-01

    Background: Using the Surveillance, Epidemiology, and End Results—Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), follow-up of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was

  18. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  19. Practical implementation of tetrahedral mesh reconstruction in emission tomography.

    PubMed

    Boutchko, R; Sitek, A; Gullberg, G T

    2013-05-07

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  20. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly.

  1. Space Environment Effects: Model for Emission of Solar Protons (ESP): Cumulative and Worst Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  2. Proton microprobe analysis of zinc in skeletal tissues. [Proton induced x-ray emission analysis

    SciTech Connect

    Doty, S B; Jones, K W; Kraner, H W; Shroy, R E; Hanson, A L

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  3. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGES

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; ...

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  4. Flourodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative.

    PubMed

    McEwan, Louise M; Wong, David; Yaxley, John

    2017-03-28

    Gallium-68 prostate specific membrane antigen ligand (Ga-68 PSMA) positron emission tomography/computed tomography (PET/CT) scanning is emerging as a useful imaging modality for the staging of suspected and known recurrent or metastatic prostate cancer and in staging of newly diagnosed higher grade prostate cancer. However, we have observed at our institution that in some cases of the more aggressive ductal variant, Ga-68 PSMA uptake has sometimes been poor compared with prominent 18-flourodeoxyglucose (F-18 FDG) avidity seen in F-18 FDG PET/CT, which would suggest that FDG PET/CT scans are important in staging of ductal pattern prostate cancer.

  5. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer

    SciTech Connect

    Greven, K.M.; Williams, D.W. III; Keyes, J.W. Jr.; McGuirt, W.F.; Harkness, B.A.; Watson, N.E. Jr.; Raben, M.; Frazier, L.C.; Geisinger, K.R.; Capellari, J.O.

    1994-07-01

    Distinguishing persistent or recurrent tumor from postradiation edema, or soft tissue/cartilage necrosis in patients treated for carcinoma of the larynx can be difficult. Because recurrent tumor is often submucosal, multiple deep biopsies may be necessary before a diagnosis can be established. Positron emission tomography with 18F-2-fluro-2-deoxglucose (FDG) was studied for its ability to aid in this problem. Positron emission tomography (18FDG) scans were performed on 11 patients who were suspected of having persistent or recurrent tumor after radiation treatment for carcinoma of the larynx. Patients underwent thorough history and physical examinations, scans with computerized tomography, and pathologic evaluation when indicated. Standard uptake values were used to quantitate the FDG uptake in the larynx. The time between completion of radiation treatment and positron emission tomography examination ranged from 2 to 26 months with a median of 6 months. Ten patients underwent computed tomography (CT) of the larynx, which revealed edema of the larynx (six patients), glottic mass (four patients), and cervical nodes (one patient). Positron emission tomography scans revealed increased FDG uptake in the larynx in five patients and laryngectomy confirmed the presence of carcinoma in these patients. Five patients had positron emission tomography results consistent with normal tissue changes in the larynx, and one patient had increased FDG uptake in neck nodes. This patient underwent laryngectomy, and no cancer was found in the primary site, but nodes were pathologically positive. One patient had slightly elevated FDG uptake and negative biopsy results. The remaining patients have been followed for 11 to 14 months since their positron emission studies and their examinations have remained stable. In patients without tumor, average standard uptake values of the larynx ranged from 2.4 to 4.7, and in patients with tumor, the range was 4.9 to 10.7. 18 refs., 3 figs., 1 tab.

  6. Myocardial Blood Flow Quantification for Evaluation of Coronary Artery Disease by Positron Emission Tomography, Cardiac Magnetic Resonance Imaging, and Computed Tomography

    PubMed Central

    Waller, Alfonso H.; Blankstein, Ron; Kwong, Raymond Y.; Di Carli, Marcelo F.

    2014-01-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging and computed tomography, and its emerging clinical applications. PMID:24718671

  7. Beta-delayed proton emission in neutron-deficient lanthanide isotopes

    SciTech Connect

    Wilmarth, P.A.

    1988-09-30

    Forty-two ..beta..-delayed proton precursors with 56less than or equal toZless than or equal to71 and 63less than or equal toNless than or equal to83 were produced in heavy-ion reactions at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decay properties studied at the on-line mass separation facility OASIS. Twenty-five isotopes and eight delayed proton branches were identified for the first time. Delayed proton energy spectra and proton coincident ..gamma..-ray and x-ray spectra were measured for all precursors. In a few cases, proton branching ratios were also determined. The precursor mass numbers were determined by the separator, while the proton coincident x-ray energies provided unambiguous Z identifications. The proton coincident ..gamma..-ray intensities were used to extract final state branching ratios. Proton emission from ground and isomeric states was observed in many cases. The majority of the delayed proton spectra exhibited the smooth bell-shaped distribution expected for heavy mass precursors. The experimental results were compared to statistical model calculations using standard parameter sets. Calculations using Nilsson model/RPA ..beta..-strength functions were found to reproduce the spectral shapes and branching ratios better than calculations using either constant or gross theory ..beta..-strength functions. Precursor half-life predictions from the Nilsson model/RPA ..beta..-strength functions were also in better agreement with the measured half-lives than were gross theory predictions. The ratios of positron coincident proton intensities to total proton intensities were used to determine Q/sub EC/-B/sub p/ values for several precursors near N=82. The statistical model calculations were not able to reproduce the experimental results for N=81 precursors. 154 refs., 82 figs., 19 tabs.

  8. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    NASA Technical Reports Server (NTRS)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  9. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography.

    PubMed

    Marchal, G; Young, A R; Baron, J C

    1999-05-01

    Early postischemic hyperperfusion (EPIH) has long been documented in animal stroke models and is the hallmark of efficient recanalization of the occluded artery with subsequent reperfusion of the tissue (although occasionally it may be seen in areas bordering the hypoperfused area during arterial occlusion). In experimental stroke, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called "reperfusion injury"). In humans, focal hyperperfusion in the subacute stage (i.e., more than 48 hours after onset) has been associated with tissue necrosis in most instances, but regarding the acute stage, its occurrence, its relations with tissue metabolism and viability, and its clinical prognostic value were poorly understood before the advent of positron emission tomography (PET), in part because of methodologic issues. By measuring both CBF and metabolism, PET is an ideal imaging modality to study the pathophysiologic mechanism of EPIH. Although only a few PET studies have been performed in the acute stage that have systematically assessed tissue and clinical outcome in relation to EPIH, they have provided important insights. In one study, about one third of the patients with first-ever middle cerebral artery (MCA) territory stroke studied within 5 to 18 hours after symptom onset exhibited EPIH. In most cases, EPIH affected large parts of the cortical MCA territory in a patchy fashion, together with abnormal vasodilation (increased cerebral blood volume), "luxury perfusion" (decreased oxygen extraction fraction), and mildly increased CMRO2, which was interpreted as postischemic rebound of cellular metabolism in structurally preserved tissue. In that study, the spontaneous outcome of the tissue exhibiting EPIH was good, with late

  10. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  11. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography

    PubMed Central

    Mattsson, Niklas

    2016-01-01

    See Rabinovici (doi:10.1093/brain/aww025) for a scientific commentary on this article. Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer’s disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer’s disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. All underwent 18F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1–4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer’s disease dementia. The results were replicated after

  12. [18F]-Fluoromisonidazole Positron Emission Tomography/Computed Tomography Visualization of Tumor Hypoxia in Patients With Chordoma of the Mobile and Sacrococcygeal Spine

    SciTech Connect

    Cheney, Matthew D.; Chen, Yen-Lin; Lim, Ruth; Winrich, Barbara K.; Grosu, Anca L.; Trofimov, Alexei V.; Depauw, Nicolas; Shih, Helen A.; Schwab, Joseph H.; Hornicek, Francis J.; DeLaney, Thomas F.

    2014-12-01

    Purpose: To investigate [18F]-fluoromisonidazole positron emission tomography/computed tomography (FMISO-PET/CT) detection of targetable hypoxic subvolumes (HSVs) in chordoma of the mobile or sacrococcygeal spine. Methods and Materials: A prospective, pilot study of 20 patients with primary or locally recurrent chordoma of the mobile or sacrococcygeal spine treated with proton or combined proton/photon radiation therapy (RT) with or without surgery was completed. The FMISO-PET/CT was performed before RT and after 19.8-34.2 GyRBE (relative biologic effectiveness). Gross tumor volumes were delineated and HSVs defined including voxels with standardized uptake values ≥1.4 times the muscle mean. Clinical characteristics and treatments received were compared between patients with and without HSVs. Results: The FMISO-PET/CT detected HSVs in 12 of 20 patients (60%). Baseline and interval HSV spatial concordance varied (0%-94%). Eight HSVs were sufficiently large (≥5 cm{sup 3}) to potentially allow an intensity modulated proton therapy boost. Patients with HSVs had significantly larger gross tumor volumes (median 410.0 cm{sup 3} vs 63.4 cm{sup 3}; P=.02) and were significantly more likely to have stage T2 tumors (5 of 12 vs 0 of 8; P=.04). After a median follow-up of 1.8 years (range, 0.2-4.4 years), a local recurrence has yet to be observed. Three patients developed metastatic disease, 2 with HSVs. Conclusions: Detection of targetable HSVs by FMISO-PET/CT within patients undergoing RT with or without surgery for treatment of chordoma of the mobile and sacrococcygeal spine is feasible. The study's inability to attribute interval HSV changes to treatment, rapidly changing hypoxic physiology, or imaging inconsistencies is a limitation. Further study of double-baseline FMISO-PET/CT and hypoxia-directed RT dose escalation, particularly in patients at high risk for local recurrence, is warranted.

  13. An atlas of Doppler emission-line tomography of cataclysmic variable stars

    NASA Technical Reports Server (NTRS)

    Kaitchuck, Ronald H.; Schlegel, Eric M.; Honeycutt, R. Kent; Horne, Keith; Marsh, T. R.; White, J. C., II; Mansperger, Cathy S.

    1994-01-01

    Doppler emission-line tomography is a technique similar to medical tomography. In this atlas the emission-line profiles of cataclysmic variable stars, seen at different orbital phases, are transformed into velocity space images. This transformation makes many of the complex line profile changes easier to interpret. The emission contributions of the disk and the s-wave are clearly separated in these images, and any emission from the stream and the secondary star can often be identified. In this atlas, Doppler tomograms of Hbeta, He I lambda 4471, and He II lambda 4686 emission lines of 18 cataclysmic variable stars are presented. The Doppler images provide insights into the individual systems and a better technique for measuring and radial velocity amplitude of the white dwarf.

  14. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  15. Proton-induced X-ray and gamma ray emission analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Hall, Gene S.; Navon, Eliahu

    1986-04-01

    A 4.1 MeV external proton beam was employed to simultaneously induce X-ray emission (PIXE) and gamma ray emission (PIGE) in biological samples that included human colostrum, spermatozoa, teeth, tree-rings, and follicular fluids. The analytical method was developed to simultaneously determine the elements lithium (Z = 3) through uranium (Z = 92) in the samples. PIXE-PIGE experimental design is described as well as applications in environmental and medical fields.

  16. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Campbell, Janice M. Wong, C. Oliver; Muzik, Otto; Marples, Brian; Joiner, Michael; Burmeister, Jay

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardized uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.

  17. Observation of β-delayed two-proton emission in the decay of 22Si

    NASA Astrophysics Data System (ADS)

    Xu, X. X.; Lin, C. J.; Sun, L. J.; Wang, J. S.; Lam, Y. H.; Lee, J.; Fang, D. Q.; Li, Z. H.; Smirnova, N. A.; Yuan, C. X.; Yang, L.; Wang, Y. T.; Li, J.; Ma, N. R.; Wang, K.; Zang, H. L.; Wang, H. W.; Li, C.; Liu, M. L.; Wang, J. G.; Shi, C. Z.; Nie, M. W.; Li, X. F.; Li, H.; Ma, J. B.; Ma, P.; Jin, S. L.; Huang, M. R.; Bai, Z.; Yang, F.; Jia, H. M.; Liu, Z. H.; Wang, D. X.; Yang, Y. Y.; Zhou, Y. J.; Ma, W. H.; Chen, J.; Hu, Z. G.; Wang, M.; Zhang, Y. H.; Ma, X. W.; Zhou, X. H.; Ma, Y. G.; Xu, H. S.; Xiao, G. Q.; Zhang, H. Q.

    2017-03-01

    The decay of the lightest nucleus with Tz = - 3, 22Si, was studied by a silicon array. A charged-particle group at 5600 (70) keV in the decay-energy spectrum was identified experimentally as β-delayed two-proton emission from the isobaric analog state (IAS) of 22Al. Experimental results of the IAS fed by a superallowed Fermi transition were compared with our large-scale shell-model calculations. The ground-state mass of 22Si was obtained indirectly in the experiment for the first time. Two-proton separation energy for 22Si is deduced to be -108 (125) keV, which indicates that it is a very marginal candidate for two-proton ground-state emission.

  18. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome

    PubMed Central

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome. PMID:26917907

  19. Development of a prototype Open-close positron emission tomography system

    SciTech Connect

    Yamamoto, Seiichi Okumura, Satoshi; Komori, Masataka; Ogata, Yoshimune; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Toshito, Toshiyuki; Hatazawa, Jun

    2015-08-15

    We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of {sup 18}F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.

  20. Development of a prototype Open-close positron emission tomography system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Okumura, Satoshi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Toshito, Toshiyuki; Komori, Masataka; Ogata, Yoshimune; Kato, Katsuhiko; Hatazawa, Jun

    2015-08-01

    We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of 18F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.

  1. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography.

    PubMed

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where (18)F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on (18)F-FDG PET/CT.

  2. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography

    PubMed Central

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where 18F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on 18F-FDG PET/CT. PMID:28242978

  3. Utility of (18)F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma.

    PubMed

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of (18)F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that (18)F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels.

  4. Utility of 18F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma

    PubMed Central

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of 18F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that 18F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels. PMID:27385893

  5. Contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography in solid pseudopapillary neoplasm of the pancreas.

    PubMed

    Santhosh, Sampath; Lakshmanan, Ramesh Kumar; Sonik, Bhavay; Padmavathy, Rajagopalan; Gunaseelan, Rajamani Emmanuel

    2016-01-01

    Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare pancreatic tumor with low malignant potential. It occurs characteristically more often in young women. Radiological and pathological studies have revealed that the tumor is quite different from other pancreatic tumors. Limited information is available in the literature reporting their accumulation of fluorine-(18) fluorodeoxyglucose ((18)F-FDG) in positron emission tomography/computed tomography (PET/CT). Here, we report a case of pancreatic SPN imaged with contrast-enhanced FDG PET/CT. A percutaneous fine needle aspiration from the metabolically active lesion revealed SPN, and it was confirmed with histopathological results. Recurrence or metastasis was not found after 7 months of follow-up.

  6. Contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography in solid pseudopapillary neoplasm of the pancreas

    PubMed Central

    Santhosh, Sampath; Lakshmanan, Ramesh Kumar; Sonik, Bhavay; Padmavathy, Rajagopalan; Gunaseelan, Rajamani Emmanuel

    2016-01-01

    Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare pancreatic tumor with low malignant potential. It occurs characteristically more often in young women. Radiological and pathological studies have revealed that the tumor is quite different from other pancreatic tumors. Limited information is available in the literature reporting their accumulation of fluorine-18 fluorodeoxyglucose (18F-FDG) in positron emission tomography/computed tomography (PET/CT). Here, we report a case of pancreatic SPN imaged with contrast-enhanced FDG PET/CT. A percutaneous fine needle aspiration from the metabolically active lesion revealed SPN, and it was confirmed with histopathological results. Recurrence or metastasis was not found after 7 months of follow-up. PMID:27095862

  7. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    SciTech Connect

    Yeoh, Kheng-Wei; Mikhaeel, N. George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  8. Right parietal stroke with Gerstmann's syndrome. Appearance on computed tomography, magnetic resonance imaging, and single-photon emission computed tomography.

    PubMed

    Moore, M R; Saver, J L; Johnson, K A; Romero, J A

    1991-04-01

    We examined a patient who exhibited Gerstmann's syndrome (left-right disorientation, finger agnosia, dyscalculia, and dysgraphia) in association with a perioperative stroke in the right parietal lobe. This is the first description of the Gerstmann tetrad occurring in the setting of discrete right hemisphere pathologic findings. A well-localized vascular lesion was demonstrated by computed tomography, magnetic resonance imaging, and single-photon emission computed tomographic studies. The patient had clinical evidence of reversed functional cerebral dominance and radiologic evidence of reversed anatomic cerebral asymmetries.

  9. RIT — A new robust iterative technique for image reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Tsupko-Sitnikov, Mikhail V.

    1991-02-01

    Emission tomography is a reliable tool for testing nuclear fuel elements. The conventional algebraic reconstruction methods of computer tomography are non-robust and can be fatally affected by outliers in the input data, i.e. by data having unexpectedly high errors due to some unpredictable effects. In the present paper, a robust iterative technique (RIT) for emission tomography is described. RIT is based on robust M-estimation methods and on a new algorithm for computing the M-estimates. RIT needs no filtering of the input data. It's computational expenses do not exceed those of SIRT method. RIT is included in the TOMODAT program and is being used for testing the fuel elements after irradiation in the reactors. The fuel distributions reconstructed by RIT are practically not affected by outliers in the input data, while the ART, SIRT and MENT give quite unstable results for the same spoiled data.

  10. Two-dimensional directional proton emission in dissociative ionization of H(2).

    PubMed

    Gong, Xiaochun; He, Peilun; Song, Qiying; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; He, Feng; Zeng, Heping; Wu, Jian

    2014-11-14

    An intense phase-controlled orthogonally polarized two-color ultrashort laser pulse is used to singly ionize and dissociate H_{2} into a neutral hydrogen atom and a proton. Emission-direction and kinetic-energy dependent asymmetric dissociation of H_{2} is observed as a function of the relative phase of the orthogonally polarized two-color pulse. Significant asymmetric proton emission is measured in the direction between two polarization axes. Our numerical simulations of the time-dependent Schrödinger equation reproduce many of the observed features. The asymmetry is attributed to the coherent superposition of two-dimensional nuclear wave packets with opposite parities, which have the same energies and overlap in the same emission directions.

  11. 77 FR 71803 - Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... HUMAN SERVICES Food and Drug Administration Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products--Questions and Answers; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing...

  12. 77 FR 11553 - Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... good manufacturing practices (CGMP) for PET drugs. The procedures were finalized and an implementation... HUMAN SERVICES Food and Drug Administration Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products--Questions and Answers; Availability AGENCY: Food and...

  13. 76 FR 6144 - Positron Emission Tomography; Notice of Public Meeting; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... injection, ammonia N 13 injection, and sodium fluoride F 18 injection used in positron emission tomography... be submitted for FDG F 18 injection, ammonia N 13 injection, and sodium fluoride F 18 injection used..., ammonia N 13 injection, and sodium fluoride F 18 injection. FDA will present information designed...

  14. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources Information Center

    Buchsbaum, M. S.; And Others

    1992-01-01

    This evaluation of seven high functioning adults with autism utilized positron emission tomography on a visual vigilance task. Although the subjects, as a group, did as well as normal controls on the task, there was a lack of normal hemispheric asymmetry in glucose metabolic rate. A heterogeneous etiology for autism is suggested to explain…

  15. Brain tumor imaging with synthesized /sup 18/F-fluorophenylalanine and positron emission tomography

    SciTech Connect

    Mineura, K.; Kowada, M.; Shishido, F.

    1989-06-01

    Two patients with cerebral gliomas were studied with 18F-fluorophenylalanine, newly synthesized by the electrophilic substitution reaction, using positron emission tomography. The tracer accumulated markedly in the tumor lesion and delineated the extent of the lesion. This new tracer will be promising in the diagnosis of gliomas.

  16. The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography

    ERIC Educational Resources Information Center

    Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.

    2005-01-01

    Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…

  17. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a draft...

  18. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  19. SU-E-J-149: Secondary Emission Detection for Improved Proton Relative Stopping Power Identification

    SciTech Connect

    Saunders, J; Musall, B; Erickson, A

    2015-06-15

    Purpose: This research investigates application of secondary prompt gamma (PG) emission spectra, resulting from nuclear reactions induced by protons, to characterize tissue composition along the particle path. The objective of utilizing the intensity of discrete high-energy peaks of PG is to improve the accuracy of relative stopping power (RSP) values available for proton therapy treatment planning on a patient specific basis and to reduce uncertainty in dose depth calculations. Methods: In this research, MCNP6 was used to simulate PG emission spectra generated from proton induced nuclear reactions in medium of varying composition of carbon, oxygen, calcium and nitrogen, the predominant elements found in human tissue. The relative peak intensities at discrete energies predicted by MCNP6 were compared to the corresponding atomic composition of the medium. Results: The results have shown a good general agreement with experimentally measured values reported by other investigators. Unexpected divergence from experimental spectra was noted in the peak intensities for some cases depending on the source of the cross-section data when using compiled proton table libraries vs. physics models built into MCNP6. While the use of proton cross-section libraries is generally recommended when available, these libraries lack data for several less abundant isotopes. This limits the range of their applicability and forces the simulations to rely on physics models for reactions with natural atomic compositions. Conclusion: Current end-of-range proton imaging provides an average RSP for the total estimated track length. The accurate identification of tissue composition along the incident particle path using PG detection and characterization allows for improved determination of the tissue RSP on the local level. While this would allow for more accurate depth calculations resulting in tighter treatment margins, precise understanding of proton beam behavior in tissue of various

  20. 90° Neutron emission from high energy protons and lead ions on a thin lead target

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Mitaroff, A.; Silari, M.; Ulrici, L.

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: 208Pb 82+ lead ions at 40 GeV/ c per nucleon and 158 GeV/ c per nucleon, and 40 GeV/ c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90° with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that—for such high energy heavy ion beams—a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0.84.

  1. Search for ground state proton emission from sup 65 As and sup 69 Br

    SciTech Connect

    Robertson, J.D.; Reiff, J.E.; Lang, T.F.; Moltz, D.M.; Cerny, J. Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA )

    1990-11-01

    The ground state proton decays of {sup 65}As and {sup 69}Br have been searched for in {sup 28}Si and {sup 32}S bombardments of a natural calcium target. These studies employed a newly developed rapidly rotating recoil-catcher wheel and a low-energy particle-identification telescope. No proton groups that could be assigned to either of these nuclides were observed. The minimum detectable limits indicate that {sup 65}As and {sup 69}Br either decay predominantly by beta emission or have half-lives less than 100 {mu}s. The overall evidence strongly indicates that {sup 65}As predominantly beta decays.

  2. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.

    PubMed

    Horger, Marius; Bares, Roland

    2006-10-01

    Radiological (plain radiographs, computed tomography [CT], magnetic resonance imaging [MRI]) and nuclear medicine methods (bone scan, leukocyte scan) both provide unique information about the status of the skeleton. Both have typical strengths and weaknesses, which often lead to the sequential use of different procedures in daily routine. This use causes the unnecessary loss of time and sometimes money, if redundant information is obtained without establishing a final diagnosis. Recently, new devices for hybrid imaging (single-photon emission computed tomography/computed tomography [SPECT/CT], positron emission tomography/computed tomography [PET/CT]) were introduced, which allow for direct fusion of morphological (CT) and functional (SPECT, PET) data sets. With regard to skeletal abnormalities, this approach appears to be extremely useful because it combines the advantages of both techniques (high-resolution imaging of bone morphology and high sensitivity imaging of bone metabolism). By the accurate correlation of both, a new quality of bone imaging has now become accessible. Although researchers undertaking the initial studies exclusively used low-dose CT equipment, a new generation of SPECT/CT devices has emerged recently. By integrating high-resolution spiral CT, quality of bone imaging may improve once more. Ongoing prospective studies will have to show whether completely new diagnostic algorithms will come up for classification of bone disease as a consequence of this development. Besides, the role of ultrasonography and MRI for bone and soft-tissue imaging also will have to be re-evaluated. Looking at the final aim of all imaging techniques--to achieve correct diagnosis in a fast, noninvasive, comprehensive, and inexpensive way--we are now on the edge of a new era of multimodality imaging that will probably change the paths and structure of medicine in many ways. Presently, hybrid imaging using SPECT/CT has been proven to increase sensitivity and specificity

  3. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  4. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    PubMed Central

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  5. Ameloblastic carcinoma of the mandible with metastasis to the skull and lung: advanced imaging appearance including computed tomography, magnetic resonance imaging and positron emission tomography computed tomography

    PubMed Central

    Devenney-Cakir, B; Dunfee, B; Subramaniam, R; Sundararajan, D; Mehra, P; Spiegel, J; Sakai, O

    2010-01-01

    Ameloblastic carcinoma is a very rare malignant odontogenic tumour with characteristic histopathological and clinical features, which requires aggressive surgical treatment and surveillance and, therefore, differs from ameloblastoma. Metastasis typically occurs in the lung. Only one patient with metastasis to the skull has previously been described and no prior case reports have presented MRI and positron emission tomography-CT (PET-CT) imaging findings. We describe a case of ameloblastic carcinoma with metastasis to the skull and lung with emphasis on imaging features including MRI and PET-CT. PMID:20841465

  6. {sup 12}O resonant structure evaluated by the two-proton emission process

    SciTech Connect

    Leite, T. N.; Teruya, N.; Dimarco, A.; Duarte, S. B.; Tavares, O. A. P.

    2009-07-15

    The characteristics of the {sup 12}O resonant ground state are investigated through the analysis of the experimental data for the two-proton decay process. The sequential and simultaneous two-proton emission decay modes have been considered in a statistical calculation of the decay energy distribution. The resonant structures of {sup 11}N have been employed as intermediate states for the sequential mode, having their parameters determined by considering the structure of single particle resonance in quantum scattering problem. The width of the {sup 12}O resonant ground state has been extracted from a best fit to the experimental data. The contributions from the different channels to the decay energy distribution have been evaluated, and width and peak location parameters of the {sup 12}O resonant ground state are compared with results of other works for the sequential and simultaneous two-proton decay modes.

  7. [Positron emission tomography in neuroscience. An integrative part of clinical diagnostic methods and experimental research].

    PubMed

    Schaller, B

    2005-02-01

    The role of molecular neuroimaging techniques is increasing in the understanding of pathophysiological mechanism of diseases. To date, positron emission tomography is the most powerful tool for the non-invasive study of biochemical and molecular processes in humans and animals in vivo. With the development in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analyzed by PET. This opens up the exciting and rapidly field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. Besides its usefulness for basic research positron emission tomography has been proven to be superior to conventional diagnostic methods in several clinical indications. This is illustrated by detection of biological or anatomic changes that cannot be demonstrated by computed tomography or magnetic resonance imaging, as well as even before symptoms are expressed. The present review summarizes the clinical use of positron emission tomography in neuroscience that has helped elucidate the pathophysiology of a number of diseases and has suggested strategies in the treatment of these patients. Special reference is given to the neurovascular, neurodegenerative and neurooncological disease.

  8. Treatment modification of yttrium-90 radioembolization based on quantitative positron emission tomography/CT imaging.

    PubMed

    Chang, Ted T; Bourgeois, Austin C; Balius, Anastasia M; Pasciak, Alexander S

    2013-03-01

    Treatment activity for yttrium-90 ((90)Y) radioembolization when calculated by using the manufacturer-recommended technique is only partially patient-specific and may result in a subtumoricidal dose in some patients. The authors describe the use of quantitative (90)Y positron emission tomography/computed tomography as a tool to provide patient-specific optimization of treatment activity and evaluate this new method in a patient who previously received traditional (90)Y radioembolization. The modified treatment resulted in a 40-Gy increase in absorbed dose to tumor and complete resolution of disease in the treated area within 3 months.

  9. Intraprocedural yttrium-90 positron emission tomography/CT for treatment optimization of yttrium-90 radioembolization.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Bradley, Yong C; Acuff, Shelley N; Pasciak, Alexander S

    2014-02-01

    Radioembolization with yttrium-90 ((90)Y) microspheres relies on delivery of appropriate treatment activity to ensure patient safety and optimize treatment efficacy. We report a case in which (90)Y positron emission tomography (PET)/computed tomography (CT) was performed to optimize treatment planning during a same-day, three-part treatment session. This treatment consisted of (i) an initial (90)Y infusion with a dosage determined using an empiric treatment planning model, (ii) quantitative (90)Y PET/CT imaging, and (iii) a secondary infusion with treatment planning based on quantitative imaging data with the goal of delivering a specific total tumor absorbed dose.

  10. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  11. A mass quadrupole spectrometry investigation on proton emission by nanosecond laser ablation

    SciTech Connect

    Caridi, F.

    2015-02-15

    A nanosecond pulsed Nd:YAG laser operating at the fundamental wavelength of 1064 nm and at an intensity of about 10{sup 10} W/cm{sup 2} was employed to irradiate hydrogenated polymers in vacuum. The produced plasma was characterized in terms of thermal and Coulomb interactions evaluating the equivalent temperature and the acceleration voltage developed in the non-equilibrium plasma core. Particles emission along the normal to the target surface was investigated by measuring, with the Hiden EQP 300 mass quadrupole spectrometer, ion energy distributions and fitting experimental data with the “Coulomb-Boltzmann-shifted” function. Time-of-flight technique was employed in order to measure the proton energy and yield. A comparison between experimental results is presented and discussed, with a special regard to the protons emission.

  12. β-particle energy-summing correction for β-delayed proton emission measurements

    NASA Astrophysics Data System (ADS)

    Meisel, Z.; del Santo, M.; Crawford, H. L.; Cyburt, R. H.; Grinyer, G. F.; Langer, C.; Montes, F.; Schatz, H.; Smith, K.

    2017-02-01

    A common approach to studying β-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the β-delayed proton-emitting (βp) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the β-particle emitted from the βp nucleus, an effect referred to here as β-summing. We present an approach to determine an accurate correction for β-summing. Our method relies on the determination of the mean implantation depth of the βp nucleus within the DSSD by analyzing the shape of the total (proton + recoil + β) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.

  13. Electron emission and energy loss in grazing collisions of protons with insulator surfaces

    SciTech Connect

    Gravielle, M. S.; Miraglia, J. E.; Aldazabal, I.; Aumayr, F.; Lederer, S.; Winter, H.

    2007-07-15

    Electron emission from LiF, KCl, and KI crystal surfaces during grazing collisions of swift protons is studied using a first-order distorted-wave formalism. Owing to the localized character of the electronic structure of these surfaces, we propose a model that allows us to describe the process as a sequence of atomic transitions from different target ions. Experimental results are presented for electron emission from LiF and KI and energy loss from KI surfaces. Calculations show reasonable agreement with these experimental data. The role played by the charge of the incident particle is also investigated.

  14. Electronic stopping power calculation for water under the Lindhard formalism for application in proton computed tomography

    NASA Astrophysics Data System (ADS)

    Guerrero, A. F.; Mesa, J.

    2016-07-01

    Because of the behavior that charged particles have when they interact with biological material, proton therapy is shaping the future of radiation therapy in cancer treatment. The planning of radiation therapy is made up of several stages. The first one is the diagnostic image, in which you have an idea of the density, size and type of tumor being treated; to understand this it is important to know how the particles beam interacts with the tissue. In this work, by using de Lindhard formalism and the Y.R. Waghmare model for the charge distribution of the proton, the electronic stopping power (SP) for a proton beam interacting with a liquid water target in the range of proton energies 101 eV - 1010 eV taking into account all the charge states is calculated.

  15. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects

    SciTech Connect

    Brunken, R.; Schwaiger, M.; Grover-McKay, M.; Phelps, M.E.; Tillisch, J.; Schelbert, H.R.

    1987-09-01

    Positron emission tomography with /sup 13/N-ammonia and /sup 18/F-2-deoxyglucose was used to assess myocardial perfusion and glucose utilization in 51 myocardial segments with a stress thallium defect in 12 patients. Myocardial infarction was defined by a concordant reduction in segmental perfusion and glucose utilization, and myocardial ischemia was identified by preservation of glucose utilization in segments with rest hypoperfusion. Of the 51 segments studied, 36 had a fixed thallium defect, 11 had a partially reversible defect and 4 had a completely reversible defect. Only 15 (42%) of the 36 segments with a fixed defect and 4 (36%) of the 11 segments with a partially reversible defect exhibited myocardial infarction on study with positron tomography. In contrast, residual myocardial glucose utilization was identified in the majority of segments with a fixed (58%) or a partially reversible (64%) thallium defect. All of the segments with a completely reversible defect appeared normal on positron tomography. Apparent improvement in the thallium defect on delayed images did not distinguish segments with ischemia from infarction. Thus, positron emission tomography reveals evidence of persistent tissue metabolism in the majority of segments with a fixed or partially resolving stress thallium defect, implying that markers of perfusion alone may underestimate the extent of viable tissue in hypoperfused myocardial segments.

  16. Seeing the unseen--bioturbation in 4D: tracing bioirrigation in marine sediment using positron emission tomography and computed tomography.

    PubMed

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions.

  17. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice

    PubMed Central

    Zhang, Minfang; Jasim, Dhifaf A; Ménard-Moyon, Cécilia; Nunes, Antonio; Iijima, Sumio; Bianco, Alberto; Yudasaka, Masako; Kostarelos, Kostas

    2016-01-01

    In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30–50 nm; S-CNHs) and large-sized CNHs (80–100 nm; L-CNHs) were chemically functionalized and radiolabeled with [111In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver. PMID:27524892

  18. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers.

    PubMed

    Awan, Musaddiq J; Siddiqui, Farzan; Schwartz, David; Yuan, Jiankui; Machtay, Mitchell; Yao, Min

    2015-11-28

    18-fluorodeoxygluocose positron emission tomography/computed tomography ((18)FDG-PET/CT) provides significant information in multiple settings in the management of head and neck cancers (HNC). This article seeks to define the additional benefit of PET/CT as related to radiation treatment planning for squamous cell carcinomas (SCCs) of the head and neck through a review of relevant literature. By helping further define both primary and nodal volumes, radiation treatment planning can be improved using PET/CT. Special attention is paid to the independent benefit of PET/CT in targeting mucosal primaries as well as in detecting nodal metastases. The utility of PET/CT is also explored for treatment planning in the setting of SCC of unknown primary as PET/CT may help define a mucosal target volume by guiding biopsies for examination under anesthesia thus changing the treatment paradigm and limiting the extent of therapy. Implications of the use of PET/CT for proper target delineation in patients with artifact from dental procedures are discussed and the impact of dental artifact on CT-based PET attenuation correction is assessed. Finally, comment is made upon the role of PET/CT in the high-risk post-operative setting, particularly in the context of radiation dose escalation. Real case examples are used in these settings to elucidate the practical benefits of PET/CT as related to radiation treatment planning in HNCs.

  19. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers

    PubMed Central

    Awan, Musaddiq J; Siddiqui, Farzan; Schwartz, David; Yuan, Jiankui; Machtay, Mitchell; Yao, Min

    2015-01-01

    18-fluorodeoxygluocose positron emission tomography/computed tomography (18FDG-PET/CT) provides significant information in multiple settings in the management of head and neck cancers (HNC). This article seeks to define the additional benefit of PET/CT as related to radiation treatment planning for squamous cell carcinomas (SCCs) of the head and neck through a review of relevant literature. By helping further define both primary and nodal volumes, radiation treatment planning can be improved using PET/CT. Special attention is paid to the independent benefit of PET/CT in targeting mucosal primaries as well as in detecting nodal metastases. The utility of PET/CT is also explored for treatment planning in the setting of SCC of unknown primary as PET/CT may help define a mucosal target volume by guiding biopsies for examination under anesthesia thus changing the treatment paradigm and limiting the extent of therapy. Implications of the use of PET/CT for proper target delineation in patients with artifact from dental procedures are discussed and the impact of dental artifact on CT-based PET attenuation correction is assessed. Finally, comment is made upon the role of PET/CT in the high-risk post-operative setting, particularly in the context of radiation dose escalation. Real case examples are used in these settings to elucidate the practical benefits of PET/CT as related to radiation treatment planning in HNCs. PMID:26644824

  20. Seeing the Unseen—Bioturbation in 4D: Tracing Bioirrigation in Marine Sediment Using Positron Emission Tomography and Computed Tomography

    PubMed Central

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions. PMID:25837626

  1. F18-fluorodeoxyglucose-positron emission tomography and computed tomography is not accurate in preoperative staging of gastric cancer

    PubMed Central

    Ha, Tae Kyung; Choi, Yun Young; Song, Soon Young

    2011-01-01

    Purpose To investigate the clinical benefits of F18-fluorodeoxyglucose-positron emission tomography and computed tomography (18F-FDG-PET/CT) over multi-detector row CT (MDCT) in preoperative staging of gastric cancer. Methods FDG-PET/CT and MDCT were performed on 78 patients with gastric cancer pathologically diagnosed by endoscopy. The accuracy of radiologic staging retrospectively was compared to pathologic result after curative resection. Results Primary tumors were detected in 51 (65.4%) patients with 18F-FDG-PET/CT, and 47 (60.3%) patients with MDCT. Regarding detection of lymph node metastasis, the sensitivity of FDG-PET/CT was 51.5% with an accuracy of 71.8%, whereas those of MDCT were 69.7% and 69.2%, respectively. The sensitivity of 18F-FDG-PET/CT for a primary tumor with signet ring cell carcinoma was lower than that of 18F-FDG-PET/CT for a primary tumor with non-signet ring cell carcinoma (35.3% vs. 73.8%, P < 0.01). Conclusion Due to its low sensitivity, 18F-FDG-PET/CT alone shows no definite clinical benefit for prediction of lymph node metastasis in preoperative staging of gastric cancer. PMID:22066108

  2. Positron emission tomography scanning is coming to a hospital near you soon!

    PubMed

    Bashir, Humayun; Shabo, Gregory; Nunan, T O

    2008-04-01

    Positron emission tomography (PET) is still generally not available in the UK; however, there are plans to introduce a national service in England from April 2008. Plans are also at an advanced stage in Scotland and Wales. The main uses of PET are in preoperative staging of lung cancer, detection of recurrent colorectal cancer, and management of patients with lymphoma. Although these provide the bulk of the referral base, PET is also of use in specific situations in patients with less common cancers, such as head and neck cancer, gynaecological cancer, and melanoma. In its more common uses, PET has been shown to be cost effective. Positron emission tomography will play an increasing role in the evaluation of response to treatment to enable early separation of patients who are responding well to chemotherapy from those who are not responding and need to be transferred to another therapy.

  3. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  4. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  5. Brain single photon emission computed tomography: Newer activation and intervention studies

    SciTech Connect

    Tikofsky, R.S.; Hellman, R.S. )

    1991-01-01

    Single-photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) findings using non-xenon 133 tracers in combination with activation and intervention techniques are reviewed. Examination of the currently available data indicates that it is possible to detect the effects of a variety of activations and interventional procedures using SPECT rCBF with non-xenon 133 tracers. There are still many issues to be resolved before SPECT can reach the level of sophistication attained by xenon 133 and positron emission tomography in studying rCBF during activation or intervention. However, research to date indicates that SPECT rCBF studied with tracers other than xenon 133 has an excellent potential for increasing the ability to differentiate normal and pathological states. 97 refs.

  6. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-03-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  7. Pain and Opiate Receptors: Considerations for the Design of Positron Emission Tomography Studies

    PubMed Central

    Sadzot, B.; Frost, J. J.

    1990-01-01

    Opiate receptors in the brain are the target of endogenous opioids and of exogenous synthetic opiates. These receptors play a major role in the modulation of pain perception. Using the appropriate ligands, positron emission tomography now allows investigators to monitor neuroreceptors in vivo. We have used 11C-diprenorphine and the extremely potent mu opiate receptor agonist, 11C-carfentanil, to image the distribution of opiate receptors in the brain and to quantify their density, their affinity, and their occupancy. Several important aspects of the in vivo opiate receptor labeling with positron emission tomography in relation to the study of pain are considered in this paper. Monitoring receptor occupancy by opiate drugs as a function of pain relief has the potential to reveal better ways to treat pain. PMID:1964768

  8. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  9. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation.

    PubMed

    Villeneuve, Sylvia; Rabinovici, Gil D; Cohn-Sheehy, Brendan I; Madison, Cindee; Ayakta, Nagehan; Ghosh, Pia M; La Joie, Renaud; Arthur-Bentil, Samia Kate; Vogel, Jacob W; Marks, Shawn M; Lehmann, Manja; Rosen, Howard J; Reed, Bruce; Olichney, John; Boxer, Adam L; Miller, Bruce L; Borys, Ewa; Jin, Lee-Way; Huang, Eric J; Grinberg, Lea T; DeCarli, Charles; Seeley, William W; Jagust, William

    2015-07-01

    Amyloid-β, a hallmark of Alzheimer's disease, begins accumulating up to two decades before the onset of dementia, and can be detected in vivo applying amyloid-β positron emission tomography tracers such as carbon-11-labelled Pittsburgh compound-B. A variety of thresholds have been applied in the literature to define Pittsburgh compound-B positron emission tomography positivity, but the ability of these thresholds to detect early amyloid-β deposition is unknown, and validation studies comparing Pittsburgh compound-B thresholds to post-mortem amyloid burden are lacking. In this study we first derived thresholds for amyloid positron emission tomography positivity using Pittsburgh compound-B positron emission tomography in 154 cognitively normal older adults with four complementary approaches: (i) reference values from a young control group aged between 20 and 30 years; (ii) a Gaussian mixture model that assigned each subject a probability of being amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B index uptake; (iii) a k-means cluster approach that clustered subjects into amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B uptake in different brain regions (features); and (iv) an iterative voxel-based analysis that further explored the spatial pattern of early amyloid-β positron emission tomography signal. Next, we tested the sensitivity and specificity of the derived thresholds in 50 individuals who underwent Pittsburgh compound-B positron emission tomography during life and brain autopsy (mean time positron emission tomography to autopsy 3.1 ± 1.8 years). Amyloid at autopsy was classified using Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria, unadjusted for age. The analytic approaches yielded low thresholds (standard uptake value ratiolow = 1.21, distribution volume ratiolow = 1.08) that represent the earliest detectable Pittsburgh compound-B signal, as well as high thresholds (standard

  10. Single photon emission computed tomography in Alzheimer's disease. Abnormal iofetamine I 123 uptake reflects dementia severity

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Mueller, S.P.; Rosen, T.J.; English, R.; Nagel, J.S.; Growdon, J.H.

    1988-04-01

    To determine whether abnormalities in regional cerebral functional activity estimated by iofetamine hydrochloride I 123 and single photon emission computed tomography can be detected in mild or moderate as well as severe cases of Alzheimer's disease (AD), we performed iofetamine I 123-single photon emission computed tomography in 37 patients with probable AD (nine patients with mild, 18 patients with moderate, and ten patients with severe dementia) and nine age-matched control subjects. Iofetamine I 123 uptake was measured in right and left frontal, temporal, parietal, and occipital cortices. Mean (right and left) iofetamine I 123 activity was lowest in the parietal region of patients with AD and was significantly reduced in the other three regions compared with control subjects. Only in the parietal region was lower relative iofetamine I 123 activity associated with an impaired level of patient function and with cognitive deficit.

  11. Influence of Lipiodol Agent on Proton Beam Range in Radiotherapy Planning Using Computed Tomography for Hepatocellular Carcinoma

    SciTech Connect

    Shin, Dongho; Kim, Tae Hyun; Park, Sung Yong Kwak, Jungwon; Moon, Sung Ho; Yoon, Myonggeun; Lee, Se Byeong; Park, Soah; Shin, Kyung Hwan; Kim, Dae Yong; Cho, Kwan Ho; Park, Joong-Won; Kim, Chang-Min

    2008-11-01

    Purpose: To evaluate the influence of lipiodol on the proton beam range, which has not yet been determined. Methods and Materials: Two computed tomography (CT) data sets were obtained with a T25-flask containing lipiodol and water that was placed above a water phantom. The plan with the lipiodol CT images was performed, and then a verification plan was applied to the water CT images. The actual proton beam ranges in the lipiodol and water were measured under same conditions, and we compared the calculated proton beam range in the treatment planning system with measured values. Results: The calculated distal range in the treatment planning system was 12 cm in water, which was 3.87 cm longer than that in lipiodol (8.13 cm). In contrast, the measured distal range was 12 {+-} 0.01 cm in water, which was 0.21 {+-} 0.01 cm longer than that of lipiodol (11.78 {+-} 0.01 cm). A 3.65 {+-} 0.01-cm range shift was found in the calculated range compared with the measured range. For 10 hepatocellular carcinoma patients, the distal range in the verification plan with the corrected CT images in which the Hounsfield unit (HU) value of lipiodolized lesion was replaced with the average HU value of the surrounding tissue was 0.61 {+-} 0.26 cm (range, 0.26-0.99) longer than that in the plan with uncorrected CT images. Conclusions: It could be relevant for the purposes of range calculation of proton beams in the treatment planning system that the HU value of a lipiodolized lesion is replaced by the average HU value of the surrounding normal tiss0008.

  12. Pancreatic tuberculosis: Evaluation of therapeutic response using F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography.

    PubMed

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Srinivasan, Radhika; Mittal, Bhagwant Rai

    2014-10-01

    F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG PET/CT) is a functional imaging technique that monitors glucose metabolism in tissues. Pulmonary tuberculosis (TB) has been reported to show intense uptake of FDG, with a decrease in metabolism of the tuberculous lesions after successful anti-tubercular treatment (ATT). The authors present a patient with pancreatic TB and demonstrate the usefulness of FDG PET/CT in monitoring the response to ATT.

  13. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging.

    PubMed

    AlJaroudi, Wael A; Hage, Fadi G

    2015-06-01

    The year 2014 has been an exciting year for the cardiovascular imaging community with significant advances in the realm of nuclear and multimodality cardiac imaging. In this new feature of the Journal of Nuclear Cardiology, we will summarize some of the breakthroughs that were published in the Journal in 2014 in 2 sister articles. This first article will concentrate on publications dealing with cardiac positron emission tomography (PET), computed tomography (CT), and neuronal imaging.

  14. The utility of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography for detecting lung and esophagus multiple primary cancers involved in the larynx: Two case reports.

    PubMed

    Wang, Qinying; Chai, Liang; Zhou, Shuihong

    2015-01-01

    Multiple primary cancers involved in the larynx of differentiating synchronous multiple primary cancers from metastasis can often be very difficult, especially when they have the same histology. However, it is very important because the therapeutic approach is completely different. Clinical situations like this appear to be increasing as a result of the recent popular use of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography. Herein, we report two cases of multiple primary cancers involved in the larynx.

  15. Noninvasive evaluation of active pan-ulcerative colitis with multiple strictures using Fluorine-18-Fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Gupta, Rajesh; Mittal, Bhagwant Rai

    2016-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease characterized by waxing and waning inflammation that changes in severity and extent and may progress to neoplasia, especially in the presence of strictures. When patients have nonnegotiable strictures or severe inflammation with ulcers, colonoscopy is difficult and carries the risk of perforation. The authors present a patient with pan-UC with multiple strictures, in whom fluorodeoxyglucose positron emission tomography/computed tomography was used to noninvasively evaluate the extent and severity of the disease.

  16. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography improves the diagnostic accuracy of osteoid osteoma

    PubMed Central

    Squier, Samuel Brian; Lewis, Jacob Ian; Accurso, Joseph Matthew; Jain, Manoj Kumar

    2016-01-01

    We present a case of a 17-year-old football player who had previously received multiple facet joint injections for presumed secondary osteoarthritis. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography imaging of the cervical spine demonstrated focal increased radiopharmaceutical activity in the right C2 lamina, which was associated with an osteolytic lesion with a central irregular sclerotic nidus. Surgical pathology confirmed an osteoid osteoma. PMID:27833319

  17. Reconstruction algorithm realization with FPGA based on the emission spectral tomography

    NASA Astrophysics Data System (ADS)

    Leng, Biyan; Wan, Xiong; Zhang, Zhimin; Deng, Xiaoming; Luo, Ningning

    2010-10-01

    Reconstruction for Emission Spectral Tomography(EST) is based on thick and fast digital signal processing all along, and the computation quantity is astronomical. With the acknowledgement of SIRT, the parallel computing of FPGA and the flexibility of NIOS II high-speed computing power are well used. Through the hardware description language VERILOG HDL and costuming macros module as well as the embedded system NIOS II, then achieved the purpose of the reconstruction for EST.

  18. Progressive degeneration of the right temporal lobe studied with positron emission tomography.

    PubMed Central

    Tyrrell, P J; Warrington, E K; Frackowiak, R S; Rossor, M N

    1990-01-01

    A 79 year old man with a twelve year progressive history of prosopagnosia and recent naming difficulty, in whom other intellectual skills were preserved, is described. Positron emission tomography (PET) revealed an area of right temporal lobe hypometabolism, with an additional area of less severe hypometabolism at the left temporal pole. This may represent an example of progressive focal cortical degeneration similar to that associated with primary progressive dysphasia, but affecting the right temporal lobe. Images PMID:2292695

  19. Cancer Localization in the Prostate with F-18 Fluorocholine Position Emission Tomography

    DTIC Science & Technology

    2008-01-01

    prostate cancer sextant localization on the basis of measured fluorocholine uptake. The data acquired thus far with conventional PET in 15 subjects...emission tomography (PET) detection of malignancy in anatomical sextants of the prostate gland. The rationale for evaluating fluorocholine as an...correlation with step-section prostate histopathology to assess the accuracy of sextant detection of prostate malignancy based on this technique. With

  20. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  1. Bimedial rectus hypermetabolism in convergence spasm as observed on positron emission tomography.

    PubMed

    Jeong, Seong-Hae; Oh, Young-Mi; Kim, Chae-Yong; Kim, Ji Soo

    2008-09-01

    A 52-year-old man developed vertical gaze palsy, convergence spasm, and convergence-retraction nystagmus due to glioblastoma of the right thalamus. 18F-fluorodeoxyglucose positron emission tomography (PET) inadvertently demonstrated markedly increased metabolism in the medial rectus muscles. The hypermetabolism indicates active contraction of these extraocular muscles due to excessive convergence drive attributed to inappropriate activation or disrupted inhibition of convergence neurons by the diencephalic lesion.

  2. Advances in Single-Photon Emission Computed Tomography Hardware and Software.

    PubMed

    Piccinelli, Marina; Garcia, Ernest V

    2016-02-01

    Nuclear imaging techniques remain today's most reliable modality for the assessment and quantification of myocardial perfusion. In recent years, the field has experienced tremendous progress both in terms of dedicated cameras for cardiac applications and software techniques for image reconstruction. The most recent advances in single-photon emission computed tomography hardware and software are reviewed, focusing on how these improvements have resulted in an even more powerful diagnostic tool with reduced injected radiation dose and acquisition time.

  3. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in Patients With Carcinoma of the Nasopharynx: Diagnostic Accuracy and Impact on Clinical Management

    SciTech Connect

    Gordin, Arie . E-mail: ariegor@hotmail.com; Golz, Avishay; Daitzchman, Marcello; Keidar, Zohar; Bar-Shalom, Rachel; Kuten, Abraham; Israel, Ora

    2007-06-01

    Purpose: To assess the value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma as compared with PET and conventional imaging (CI) alone, and to assess the impact of PET/CT on further clinical management. Methods and Materials: Thirty-three patients with nasopharyngeal carcinoma had 45 PET/CT examinations. The study was a retrospective analysis. Changes in patient care resulting from the PET/CT studies were recorded. Results: Positron emission tomography/computed tomography had sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 92%, 90%, 90%, 90%, and 91%, respectively, as compared with 92%, 65%, 76%, 86%, and 80% for PET and 92%, 15%, 60%, 60%, and 60% for CI. Imaging with PET/CT altered further management of 19 patients (57%). Imaging with PET/CT eliminated the need for previously planned diagnostic procedures in 11 patients, induced a change in the planned therapeutic approach in 5 patients, and guided biopsy to a specific metabolically active area inside an edematous region in 3 patients, thus decreasing the chances for tissue sampling errors and avoiding damage to nonmalignant tissue. Conclusions: In cancer of the nasopharynx, the diagnostic performance of PET/CT is better than that of stand-alone PET or CI. Positron emission tomography/computed tomography had a major impact on further clinical management in 57% of patients.

  4. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    PubMed

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche.

  5. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  6. Iofetamine I 123 single photon emission computed tomography is accurate in the diagnosis of Alzheimer's disease

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Rosen, T.J.; Nagel, J.S.; English, R.J.; Growdon, J.H. )

    1990-04-01

    To determine the diagnostic accuracy of iofetamine hydrochloride I 123 (IMP) with single photon emission computed tomography in Alzheimer's disease, we studied 58 patients with AD and 15 age-matched healthy control subjects. We used a qualitative method to assess regional IMP uptake in the entire brain and to rate image data sets as normal or abnormal without knowledge of subjects'clinical classification. The sensitivity and specificity of IMP with single photon emission computed tomography in AD were 88% and 87%, respectively. In 15 patients with mild cognitive deficits (Blessed Dementia Scale score, less than or equal to 10), sensitivity was 80%. With the use of a semiquantitative measure of regional cortical IMP uptake, the parietal lobes were the most functionally impaired in AD and the most strongly associated with the patients' Blessed Dementia Scale scores. These results indicated that IMP with single photon emission computed tomography may be a useful adjunct in the clinical diagnosis of AD in early, mild disease.

  7. Assessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy Monitoring

    PubMed Central

    Pinto, Marco; Dauvergne, Denis; Freud, Nicolas; Krimmer, Jochen; Létang, Jean M.; Testa, Etienne

    2016-01-01

    Monte Carlo tools have been long used to assist the research and development of solutions for proton therapy monitoring. The present work focuses on the prompt-gamma emission yields by comparing experimental data with the outcomes of the current version of Geant4 using all applicable proton inelastic models. For the case in study and using the binary cascade model, it was found that Geant4 overestimates the prompt-gamma emission yields by 40.2 ± 0.3%, even though it predicts the prompt-gamma profile length of the experimental profile accurately. In addition, the default implementations of all proton inelastic models show an overestimation in the number of prompt gammas emitted. Finally, a set of built-in options and physically sound Geant4 source code changes have been tested in order to try to improve the discrepancy observed. A satisfactory agreement was found when using the QMD model with a wave packet width equal to 1.3 fm2. PMID:26858937

  8. Assessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy Monitoring.

    PubMed

    Pinto, Marco; Dauvergne, Denis; Freud, Nicolas; Krimmer, Jochen; Létang, Jean M; Testa, Etienne

    2016-01-01

    Monte Carlo tools have been long used to assist the research and development of solutions for proton therapy monitoring. The present work focuses on the prompt-gamma emission yields by comparing experimental data with the outcomes of the current version of Geant4 using all applicable proton inelastic models. For the case in study and using the binary cascade model, it was found that Geant4 overestimates the prompt-gamma emission yields by 40.2 ± 0.3%, even though it predicts the prompt-gamma profile length of the experimental profile accurately. In addition, the default implementations of all proton inelastic models show an overestimation in the number of prompt gammas emitted. Finally, a set of built-in options and physically sound Geant4 source code changes have been tested in order to try to improve the discrepancy observed. A satisfactory agreement was found when using the QMD model with a wave packet width equal to 1.3 fm(2).

  9. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation.

    PubMed

    Schumann, A; Petzoldt, J; Dendooven, P; Enghardt, W; Golnik, C; Hueso-González, F; Kormoll, T; Pausch, G; Roemer, K; Fiedler, F

    2015-05-21

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.

  10. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation

    NASA Astrophysics Data System (ADS)

    Schumann, A.; Petzoldt, J.; Dendooven, P.; Enghardt, W.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Pausch, G.; Roemer, K.; Fiedler, F.

    2015-05-01

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.

  11. Quantitative reconstruction of PIXE-tomography data for thin samples using GUPIX X-ray emission yields

    NASA Astrophysics Data System (ADS)

    Michelet, C.; Barberet, Ph.; Devès, G.; Bouguelmouna, B.; Bourret, S.; Delville, M.-H.; Le Trequesser, Q.; Gordillo, N.; Beasley, D. G.; Marques, A. C.; Farau, R.; Toko, B. R.; Campbell, J.; Maxwell, J.; Moretto, Ph.; Seznec, H.

    2015-04-01

    We present here a new development of the TomoRebuild software package, to perform quantitative Particle Induced X-ray Emission Tomography (PIXET) reconstruction. X-ray yields are obtained from the GUPIX code. The GUPIX data base is available for protons up to 5 MeV and also in the 20-100 MeV energy range, deuterons up to 6 MeV, 3He and alphas up to 12 MeV. In this version, X-ray yields are calculated for thin samples, i.e. without simulating X-ray attenuation. PIXET data reconstruction is kept as long as possible independent from Scanning Transmission Ion Microscopy Tomography (STIMT). In this way, the local mass distribution (in g/cm3) of each X-ray emitting element is reconstructed in all voxels of the analyzed volume, only from PIXET data, without the need of associated STIMT data. Only the very last step of data analysis requires STIMT data, in order to normalize PIXET data to obtain concentration distributions, in terms of normalized mass fractions (in μg/g). For this, a noise correction procedure has been designed in ImageJ. Moreover sinogram or image misalignment can be corrected, as well as the difference in beam size between the two experiments. The main features of the TomoRebuild code, user friendly design and modular C++ implementation, were kept. The software package is portable and can run on Windows and Linux operating systems. An optional user-friendly graphic interface was designed in Java, as a plugin for the ImageJ graphic software package. Reconstruction examples are presented from biological specimens of Caenorhabditis elegans - a small nematode constituting a reference model for biology studies. The reconstruction results are compared between the different codes TomoRebuild, DISRA and JPIXET, and different reconstruction methods: Filtered BackProjection (FBP) and Maximum Likelihood Expectation Maximization (MLEM).

  12. Characterization of pulmonary lesions in patients with suspected lung cancer: computed tomography versus [¹⁸F] fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Harders, Stefan Walbom; Madsen, Hans Henrik; Hjorthaug, Karin; Arveschoug, Anne Kirstine; Rasmussen, Torben Riis; Meldgaard, Peter; Andersen, Johanne Bach; Pilegaard, Hans Kristian; Hager, Henrik; Rehling, Michael; Rasmussen, Finn

    2012-10-16

    Pulmonary nodules are of high clinical importance, given they may prove to be an early manifestation of lung cancer. Pulmonary nodules are small, focal, radiographic opacities that may be solitary or multiple. A solitary pulmonary nodule is a single, small (<-30 mm in diameter) opacity. Larger opacities are called masses and are often malignant. As imaging techniques improve and more nodules are detected, the optimal management of pulmonary nodules remains unclear. However, the question of malignancy of any given nodule remains the same. A standard contrast-enhanced computed tomography (CT) scan is often the first examination, followed by a number of other examinations. The purpose of this study was to examine the clinical feasibility of CT versus integrated [18F]fluorodeoxyglucose-positron emission tomography (PET)/low-dose CT scan in patients with suspected lung cancer and pulmonary lesions on CT. All results were controlled for reproducibility. We found that when used early in the work-up of the lesions, CT raised the prevalence of lung cancer in the population to the point where further diagnostic imaging examination could be considered futile. We also found that the overall diagnostic accuracy, as well as the classification probabilities and predictive values of the two modalities were not significantly different; the reproducibility of these results was substantial.

  13. What measurements of proton self emission tell us about hohlraum fields and yield anomalies

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Li, C.; Seguin, F.; Frenje, J.; Rosenberg, M.; Rinderknecht, H.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Bourgade, J.-L.; Amendt, P.; Izumi, N.; Koch, J.; Landen, O.; Milovich, J.; Park, H.; Robey, H.; Robey, R.; Town, R.; Nikroo, A.; Kilkenny, J.

    2009-11-01

    Measurements have been made of 14.7-MeV self-emission protons, from reactions of D-3He fuel, for a variety of hohlraums - scale 1 and scale .5ex3 -.1em/ -.15em.25ex3 , gold and cocktail hohlraums, vacuum and gas-filled hohlraums, cylindrical and rugby geometries, drive with and without phase plates, drive with different numbers of beams, and implosions with different capsule parameters. The picture that emerges is quite consistent: large anisotropies in the proton fluence pattern are generally observed out the LEH but little if any variations through the hohlraum equator. In addition, we examine whether the scaling of yields from pure D2 to D-3He mixtures is found to deviate from the expected density scaling (i.e. the Rygg Effect), as reported recently for directly driven capsules (1). (1) H. Herrmann et al., PoP 16, 056312(2009)

  14. Standardization of proton-induced x-ray emission technique for analysis of thick samples

    NASA Astrophysics Data System (ADS)

    Ali, Shad; Zeb, Johar; Ahad, Abdul; Ahmad, Ishfaq; Haneef, M.; Akbar, Jehan

    2015-09-01

    This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.

  15. Magnetic Resonance Spectroscopy and Single-Photon Emission Computed Tomography in the Evaluation of Cerebral Tumors: A Case Report

    PubMed Central

    Siasios, Ioannis; Valotassiou, Varvara; Kapsalaki, Eftychia; Tsougos, Ioannis; Georgoulias, Panagiotis; Fotiadou, Aggeliki; Ioannou, Maria; Koukoulis, Georgios; Dimopoulos, Vassilios; Fountas, Kostas

    2017-01-01

    In their daily clinical practice, physicians have to confront diagnostic dilemmas which cannot be resolved by the application of only one imaging technique. In this case report, we present a 66-year-old woman who was admitted to our institution for the surgical resection of a recently diagnosed brain tumor. The patient had a history of epileptic seizures and was hospitalized in the past for anti-phospholipid syndrome related to a non-Hodgkin lymphoma in remission. Magnetic resonance imaging (MRI) examination revealed an enhancing right parasagittal lesion with significant edema suggestive of a high grade glioma. Advanced MRI techniques including proton magnetic resonance spectroscopy (1H-MRS) showed findings compatible of glioma. An additional examination was performed as part of a protocol that we are routinely performing in our institution for all brain tumors including not only the gold standard advanced MRI techniques but also single-photon emission computed tomography (SPECT) with technetium-99m (Tc99m). Brain SPECT indicated the presence of a meningioma which was verified by the histopathology of the resected specimen. In conclusion, a multimodality approach for the pre-surgical assessment of brain tumors has significant advantages not only for the diagnosis but also for the evaluation of intracranial tumors histology. PMID:27924180

  16. Quantification of the activity of tritium produced during the routine synthesis of (18)F fluorodeoxyglucose for positron emission tomography.

    PubMed

    Marshall, C; Talboys, M A; Bukhari, S; Evans, W D

    2014-06-01

    Gamma emitting radioactive by-products generated during the cyclotron irradiation of (18)O labelled water by protons to produce (18)FDG (fluorodeoxyglucose) for positron emission tomography are well characterised. However, the production of tritium ((3)H) through the (18)O(p,t)(16)O nuclear reaction has not been investigated in detail. The aim of this study was to measure tritium activity produced during a large number of (18)FDG production runs in order to obtain a better perspective on its impact on radioactive waste management, particularly as regards storage and disposal. Tritium was assayed by liquid scintillation counting in recovered (18)O water from 24 separate production runs. The mean (SD) values of activity and activity concentration were 170 (20) kBq and 81 (8) kBq ml(-1) respectively. Both quantities were positively correlated with the activity of (18)F. Tritium was detected in much lower concentration in water used to rinse the target vessel. The activity of tritium is such that it is exempt from regulatory control and may be combined with bulk non-active waste for disposal as Very Low Level Waste. However, variations in the irradiation conditions or the procedures for the collection of recovered water might result in its classification as Low Level Waste, necessitating a more complex disposal regime.

  17. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    SciTech Connect

    Kramar, M.; Lin, H.; Tomczyk, S. E-mail: lin@ifa.hawaii.edu

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  18. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma.

    PubMed

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley Pl; Sagebiel, Richard W; Iii, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan.

  19. Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer

    SciTech Connect

    Chang Guoping; Chang Tingting; Pan Tinsu; Clark, John W.; Mawlawi, Osama R.

    2012-05-01

    Purpose: The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials: The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results: The average ITVs of the proposed technique were 97.2% {+-} 0.3% and 81.0% {+-} 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 {+-} 0.05 and 0.73 {+-} 0.16, respectively, for the two studies. Conclusion: Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.

  20. Improving 18F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies

    PubMed Central

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-18F-fluoro-D-glucose (18F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering. PMID:26420987

  1. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma

    PubMed Central

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley PL; Sagebiel, Richard W; III, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan. PMID:27766186

  2. Advantages and disadvantages of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary.

    PubMed

    Yu, Xiaozhou; Li, Xiaofeng; Song, Xiuyu; Dai, Dong; Zhu, Lei; Zhu, Yanjia; Wang, Jian; Zhao, Huiqin; Xu, Wengui

    2016-11-01

    Carcinoma of unknown primary is a type of malignant disease where the primary carcinoma cannot be identified by conventional examination, which presents challenges in diagnosis and therapy. This study aims to evaluate the detailed clinical value and indications of using fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in a large sample. A total of 449 patients who were selected under strict standards were retrospectively included in this study. F-18 FDG PET/CT accurately detected the primary carcinoma in 115 of 449 patients whose primaries could not be detected by conventional examination (25.6%), with additional 27 false-positive patients. The most common primary site was the lung (34.8%). In addition, except for in metastatic melanoma (1/19, 5.3%) and axillary metastasis patients (2/49, 4.1%), F-18 FDG PET/CT had a comparative performance in detecting primary carcinoma in other pathological types and anatomical locations. The scan is able to guide treatment strategy modifications to some extent (130/449, 29.0%). We strongly recommend the use of F-18 FDG PET/CT in the early phase of examination. It is also recommended as a supplementary radiological method, and certain patients may benefit from its application in cases where regular examination is inconclusive. However, in metastatic melanoma or axillary metastasis patients where the primary site cannot be identified by routine examination, regular application of F-18 FDG PET/CT for the sole purpose of detecting the primary carcinoma should not be encouraged.

  3. The value of combining single photon emission computerised tomography and computerised tomography in the investigation of spondylolysis.

    PubMed

    Gregory, P L; Batt, M E; Kerslake, R W; Scammell, B E; Webb, J F

    2004-10-01

    The aim of this study was to assess the diagnostic value of combining single photon emission computerised tomography (SPECT) with reverse gantry computerised tomography (rg-CT) in the investigation of spondylolysis. Patient characteristics and imaging results in 118 patients, aged 8-44 years, with low back pain (LBP) were analysed. SPECT showed increased scintigraphic uptake in 80 patients, and spondylolysis was identified on rg-CT in 53. The Cohen Kappa ratio of 0.362 (95% CI: 0.198-0.526) suggests only fair agreement for the result of increased scintigraphic activity with the finding of spondylolysis on rg-CT. We conclude that these investigations give mutually exclusive information, which leads to four diagnostic categories. When there was increased scintigraphic activity on SPECT, 58.8% (95% CI: 48.0-69.5%) of patients had spondylolysis on rg-CT. With rest from provoking activities, these lesions may heal. We interpret the findings of increased scintigraphic activity, but no spondylolysis demonstrated on rg-CT as indicating a bone stress response. These also require rest from provoking activity to prevent a stress fracture developing. In this study, 84.2% (95% CI: 72.67-95.8%) of those patients without increased activity on SPECT had no spondylolysis identified on rg-CT. These patients may need further investigations such as magnetic resonance imaging (MRI) to diagnose pathology, which typically does not involve the posterior elements--but rest from sport may not be so important. There were five patients in our study, without increased scintigraphic activity, but in whom bilateral chronic-appearing (wide separation, smooth sclerotic bone margins) spondylolyses were identified at L5. These all were anticipated from previous plain radiographs or MRI. This group will almost certainly not heal, and if the spondylolyses are the cause of pain these vertebrae will need stabilisation by surgery if physiotherapy fails.

  4. Advantages and disadvantages of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary

    PubMed Central

    Yu, Xiaozhou; Li, Xiaofeng; Song, Xiuyu; Dai, Dong; Zhu, Lei; Zhu, Yanjia; Wang, Jian; Zhao, Huiqin; Xu, Wengui

    2016-01-01

    Carcinoma of unknown primary is a type of malignant disease where the primary carcinoma cannot be identified by conventional examination, which presents challenges in diagnosis and therapy. This study aims to evaluate the detailed clinical value and indications of using fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in a large sample. A total of 449 patients who were selected under strict standards were retrospectively included in this study. F-18 FDG PET/CT accurately detected the primary carcinoma in 115 of 449 patients whose primaries could not be detected by conventional examination (25.6%), with additional 27 false-positive patients. The most common primary site was the lung (34.8%). In addition, except for in metastatic melanoma (1/19, 5.3%) and axillary metastasis patients (2/49, 4.1%), F-18 FDG PET/CT had a comparative performance in detecting primary carcinoma in other pathological types and anatomical locations. The scan is able to guide treatment strategy modifications to some extent (130/449, 29.0%). We strongly recommend the use of F-18 FDG PET/CT in the early phase of examination. It is also recommended as a supplementary radiological method, and certain patients may benefit from its application in cases where regular examination is inconclusive. However, in metastatic melanoma or axillary metastasis patients where the primary site cannot be identified by routine examination, regular application of F-18 FDG PET/CT for the sole purpose of detecting the primary carcinoma should not be encouraged. PMID:27895731

  5. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea

    PubMed Central

    2016-01-01

    The purpose of this study was to estimate average radiation exposure from 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examinations and to analyze possible factors affecting the radiation dose. A nation-wide questionnaire survey was conducted involving all institutions that operate PET/CT scanners in Korea. From the response, radiation doses from injected FDG and CT examination were calculated. A total of 105 PET/CT scanners in 73 institutions were included in the analysis (response rate of 62.4%). The average FDG injected activity was 310 ± 77 MBq and 5.11 ± 1.19 MBq/kg. The average effective dose from FDG was estimated to be 5.89 ± 1.46 mSv. The average CT dose index and dose-length product were 4.60 ± 2.47 mGy and 429.2 ± 227.6 mGy∙cm, which corresponded to 6.26 ± 3.06 mSv. The radiation doses from FDG and CT were significantly lower in case of newer scanners than older ones (P < 0.001). Advanced PET technologies such as time-of-flight acquisition and point-spread function recovery were also related to low radiation dose (P < 0.001). In conclusion, the average radiation dose from FDG PET/CT is estimated to be 12.2 mSv. The radiation dose from FDG PET/CT is reduced with more recent scanners equipped with image-enhancing algorithms. PMID:26908992

  6. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants?

    NASA Astrophysics Data System (ADS)

    Newhauser, Wayne D.; Giebeler, Annelise; Langen, Katja M.; Mirkovic, Dragan; Mohan, Radhe

    2008-05-01

    Treatment planning calculations for proton therapy require an accurate knowledge of radiological path length, or range, to the distal edge of the target volume. In most cases, the range may be calculated with sufficient accuracy using kilovoltage (kV) computed tomography (CT) images. However, metal implants such as hip prostheses can cause severe streak artifacts that lead to large uncertainties in proton range. The purposes of this study were to quantify streak-related range errors and to determine if they could be avoided by using artifact-free megavoltage (MV) CT images in treatment planning. Proton treatment plans were prepared for a rigid, heterogeneous phantom and for a prostate cancer patient with a metal hip prosthesis using corrected and uncorrected kVCT images alone, uncorrected MVCT images and a combination of registered MVCT and kVCT images (the hybrid approach). Streak-induced range errors of 5-12 mm were present in the uncorrected kVCT-based patient plan. Correcting the streaks by manually assigning estimated true Hounsfield units improved the range accuracy. In a rigid heterogeneous phantom, the implant-related range uncertainty was estimated at <3 mm for both the corrected kVCT-based plan and the uncorrected MVCT-based plan. The hybrid planning approach yielded the best overall result. In this approach, the kVCT images provided good delineation of soft tissues due to high-contrast resolution, and the streak-free MVCT images provided smaller range uncertainties because they did not require artifact correction.

  7. Return current and proton emission from wire targets interacting with an intense short pulse laser

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2004-05-01

    One of the important characteristics of short pulse high intensity laser-solid interactions is the generation of energetic charged particles, which result from the very efficient conversion of laser energy into hot electrons. Since the electrons in the electric field of the laser have relativistic quiver motions, the temperature of the hot electron distribution of the plasma produced at such extreme intensities can become very high. A large number of hot electrons (1013-1014) having an average energy of the order of 1-2 MeV can be generated as intensities exceed 1019 Wcm-2. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. In addition escaping electrons establish the large electrostatic fields, accelerating a large number of protons from the target with energies of 10's of MeV. The experiments reported here were performed at the Rutherford Appleton Laboratory with the VULCAN laser facility at intensity greater than 5 x1019 Wcm-2 on wire targets. In some shots an additional wire or foil was placed nearby. The laser was blocked by the main wire target so that no laser light reached the additional wire or foil. Three main observations were made: (i) a Z-pinch was driven in the wire due to the return current, (ii) optical transition radiation (OTR) at 2w was generated and (iii) energetic proton emission was observed. The wire targets were observed to be ohmically heated and were m=0 unstable. The OTR emission is likely due to electron bunches accelerated by the ponderomotive force of the laser. The proton emission was in a form of thin disk perpendicular to the wire and centered on the wire at the laser focus. Proton

  8. Positron emission tomography demonstrated localized luxury perfusion in subacute sclerosing panencephalitis.

    PubMed

    Yoshikawa, H; Fueki, N; Yoneyama, H; Ogawa, M; Sakuragawa, N

    1990-10-01

    Positron emission tomography (PET) was performed on two patients in different stages of subacute sclerosing panencephalitis (SSPE) and compared with the concurrent computed tomography (CT) findings and clinical status. Case 1, which was in stage II, showed luxury perfusion in the anterior half of the cerebrum and decreases of cerebral blood flow and oxygen metabolism in the right frontal watershed zone, where CT showed low density. Case 2, which was in stage III, showed marked decreases of cerebral blood flow and cerebral metabolic rate of oxygen in all regions except the occipital region. The present PET study demonstrated that SSPE showed inflammatory-destructive progression and rostral-caudal progression. Further, it was suspected that low density on CT scan, especially in the watershed zone, resulted partly from disturbances in cerebral circulation.

  9. Positron emission tomography in minor ischemic stroke using oxygen-15 steady-state technique

    SciTech Connect

    Pozzilli, C.; Itoh, M.; Matsuzawa, T.; Fukuda, H.; Abe, Y.; Sato, T.; Takeda, S.; Ido, T.

    1987-04-01

    A study with positron emission tomography (PET) was performed on 10 patients with ischemic stroke and mild disability. The patients underwent cerebral angiography, x-ray computed tomography (CT) scan and regional cerebral measurements of CBF, CMRO2, oxygen extraction ratio (OER), and cerebral blood volume (CBV). Only minor arterial involvement was detected by angiography. In all patients, PET images of functional defects were more extensive than the corresponding CT hypodensity, and there were statistically significant reductions in CBF, CMRO2, and CBF/CBV ratio as compared with control subjects. Half of the regions analyzed in the affected hemisphere demonstrated a disruption of the normal coupling between CBF and CMRO2 as reflected by OER values significantly higher or lower than those of the corresponding region of the contralateral hemisphere. The pathophysiological pattern of high OER combined with a reduction in CBF proportionally greater than the reduction in CMRO2 was particularly indicative of regional chronic hemodynamic compromise in these patients.

  10. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases.

  11. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-09-09

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  12. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography.

    PubMed

    Leenders, K L; Frackowiak, R S; Quinn, N; Marsden, C D

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilisation, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilisation paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-[18F]-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  13. Hemiballismus: Study of a case using positron emission tomography with 18fluoro-2-deoxyglucose

    SciTech Connect

    Dubinsky, R.M.; Greenberg, M.; Di Chiro, G.; Baker, M.; Hallett, M. )

    1989-01-01

    A 64-year-old man had right-sided persistent hemiballismus. Cerebral computed tomography (CT) and 0.5-T magnetic resonance imaging (MRI) showed no abnormalities, but 1.5-T MRI showed decreased signal intensity of the putamina, greater on the left than on the right. The subthalamic area was normal on CT and MRI. Positron emission tomography with 18fluoro2-deoxyglucose showed marked hypometabolism of the left putamen (60% of the right) and hypermetabolism of the left parietal lobe (138% of the right). The decreased metabolism of the left putamen may indicate a reduction in neuronal firing. The pathophysiology of the hemiballismus in this case may be loss of tonic inhibition of the lateral globus pallidus from the putamen, leading in turn to greater inhibition of the subthalamic nucleus, less excitation of the medial globus pallidus, and less inhibition of the thalamus and motor cortex, and thus allowing expression of the ballistic movements.

  14. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography

    SciTech Connect

    Leenders, K.L.; Frackowiak, R.S.; Quinn, N.; Marsden, C.D.

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilization, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilization paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-( YF)-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  15. Nuclear interaction cross sections for proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Jones, D. T. L.; Arendse, G. J.; Cowley, A. A.; Richter, W. A.; Lawrie, J. J.; Newman, R. T.; Pilcher, J. V.; Smit, F. D.; Steyn, G. F.; Koen, JW; Stander, JA

    Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.

  16. Proton emission from resonant laser absorption and self-focusing effects from hydrogenated structures

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Torrisi, L.; Margarone, D.; Picciotto, A.

    2013-05-01

    Effects of resonant absorption and self-focusing are investigated by using fast and intense laser pulses. The ion emission and acceleration in the non-equilibrium laser-generated plasma are investigated at low and high intensities, from 1010 up to about 1016 W/cm2. The properties of plasma are strongly dependent on the time and space, laser intensity and wavelength. A special interest concerns the energetic and intense proton generation for the multiplicity use that proton beams have in different scientific fields (Nuclear Physics, Astrophysics, Bio-Medicine, Microelecronics, etc.). Investigations have been performed at INFN-LNS of Catania and at PALS Laboratory of Prague, by using thick and thin targets and different technique of ion analysis. The mechanisms of resonant absorption of the laser light, produced in special targets containing nanostructures with dimensions comparable with the laser wavelength, enhances the proton energy. The mechanisms of self-focusing, obtained by changing the laser focal distance from the target surface, increase the local intensity and consequently the high directional ion acceleration. Real-time ion detections were performed through Thomson parabola spectrometer (TPS), ion collectors (IC), SiC detectors and ion energy analyzer (IEA) employed in time-of-flight configuration (TOF). The energy and the amount of ions increase significantly when the two non-linear phenomena occurs, as will be described.

  17. SU-E-T-637: Proton Aperture Quality Assurance Using Computed Tomography

    SciTech Connect

    Reyhan, M; Yue, N; Zou, J

    2015-06-15

    Purpose: To develop an automated algorithm for aperture quality assurance for double scattering proton radiotherapy. Methods: Anterior-Posterior scout images were acquired on a CT scanner for five brass apertures (2 large, 3 small) with 120 kVp and 10mA. A semi-automated algorithm was developed for the QA process. The input includes a user selecting the scout image and the associated patient plan, field and aperture size. The program automatically thresholds the scout image. Next, a connectivity algorithm is used to determine the points associated with the central shape to obtain the contour. To compare with the plan contour, the program converts the detected and plan contours into polar coordinates, interpolates the data to a 1 degree spaced grid, and determines the differences in radial distance at each grid point. Results: The mean and maximum difference and the percentage of points with distance differences less than 1.25 mm (due to the divergent cut of the aperture) between the detected and plan field aperture contours were obtained. A repeatability coefficient was derived based on repeated scanning and processing of three of the apertures. The mean difference for five apertures was 0.44 +/−0.08 mm. The maximum difference in distance was 1.2 +/−0.23 mm for all apertures. The Repeatability Coefficient was +/−0.038 mm, indicating the technique is highly repeatable. The mean percent of points with distance less than 1.25 mm was 97.41 +/−0.35%. Conclusion: Automated CT scout image based proton aperture QA is feasible, saves time, and provides a quantitative metric for proton patient specific aperture QA.

  18. Quantitative and Qualitative Imaging in Single Photon Emission Tomography for Nuclear Medicine Applications.

    NASA Astrophysics Data System (ADS)

    Masoomi, Mojtaba (Arash).

    Available from UMI in association with The British Library. An important goal of single photon emission tomography (SPECT) is the determination of absolute regional radionuclide concentration as a function of time. Quantitative and qualitative studies of SPECT with regard to clinical application is the object of this work. Three basic approaches for image reconstruction and factors which affect the choice of a reconstruction algorithm have been reviewed, discussed and the reconstruction techniques, GRADY and CBP evaluated, based on computer modelling. A sophisticated package of computational subroutines, RECLBL, for image reconstruction and for generation of phantoms, which was fully implemented on PRIME was used throughout this study. Two different systems, a rotating gamma-camera and a prototype scanning-rig have been used to carry out tomography experiments with different phantoms in emission and transmission mode. Performance assessment and reproducibility of the gamma-camera was tested prior to the experimental work. SPECT studies are generally hampered for a number of reasons, the most severe being attenuation and scattering. The effect of scattered photons on image quality was discussed, three distinct techniques were utilised to correct the images and results were compared. Determination of the depth of the source, Am-241 and Tc-99m in the attenuating media, water and TEMEX by analysing the spectroscopic data base on the SPR and spatial resolution was studied, results revealed that both techniques had the same range of depth sensitivity. A method of simultaneous emission and transmission tomography was developed to correct the images for attenuation. The reproducibility of the technique was examined. Results showed that the technique is able to present a promising and a practical approach to more accurate quantitative SPECT imaging. A procedure to evaluate images, under certain conditions has been defined, its properties were evaluated using computer

  19. Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions (invited)

    SciTech Connect

    Perez, R. V. Boeglin, W. U.; Angulo, A.; Avila, P.; Leon, O.; Lopez, C.; Darrow, D. S.; Cecconello, M.; Klimek, I.; Allan, S. Y.; Akers, R. J.; Keeling, D. L.; McClements, K. G.; Scannell, R.; Conway, N. J.; Turnyanskiy, M.; Jones, O. M.; Michael, C. A.

    2014-11-15

    The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD’s compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

  20. Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions (invited).

    PubMed

    Perez, R V; Boeglin, W U; Darrow, D S; Cecconello, M; Klimek, I; Allan, S Y; Akers, R J; Keeling, D L; McClements, K G; Scannell, R; Turnyanskiy, M; Angulo, A; Avila, P; Leon, O; Lopez, C; Jones, O M; Conway, N J; Michael, C A

    2014-11-01

    The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD's compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

  1. Space Environment Effects: Model for Emission of Solar Protons (ESP)--Cumulative and Worst-Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, Edward A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  2. Fluorodeoxyglucose positron emission tomography (FDG-PET) for monitoring lymphadenopathy in the autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Rao, V Koneti; Carrasquillo, Jorge A; Dale, Janet K; Bacharach, Stephen L; Whatley, Millie; Dugan, Faith; Tretler, Jean; Fleisher, Thomas; Puck, Jennifer M; Wilson, Wyndham; Jaffe, Elaine S; Avila, Nilo; Chen, Clara C; Straus, Stephen E

    2006-02-01

    Autoimmune lymphoproliferative syndrome (ALPS) is associated with mutations that impair the activity of lymphocyte apoptosis proteins, leading to chronic lymphadenopathy, hepatosplenomegaly, autoimmunity, and an increased risk of lymphoma. We investigated the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) in discriminating benign from malignant lymphadenopathy in ALPS. We report that FDG avidity of benign lymph nodes in ALPS can be high and, hence, by itself does not imply presence of lymphoma; but FDG-PET can help guide the decision for selecting which of many enlarged nodes in ALPS patients to biopsy when lymphoma is suspected.

  3. [Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography].

    PubMed

    Franck, G; Salmon, E; Poirrier, R; Sadzot, B; Franco, G

    1987-03-01

    Measurements of regional cerebral glucose uptake by the 18F-fluorodeoxyglucose technique (18FDG) and positron emission tomography (PET) along with polygraph recordings were made serially during relaxed wakefulness and different stages of nocturnal sleep in two right-handed normal volunteers. During stage III-IV sleep, values declined diffusely in both hemispheric regions (-31%), thalamus (-33%), cerebellum (-33%) and brain stem (-25%). During paradoxical sleep regional values increased diffusely compared with slow wave sleep. Compared to wakefulness, regional metabolic values seemed to increase but the results were more variable from one volunteer to the other. These preliminary data indicate important regional alterations in cerebral metabolism between sleep states.

  4. [Principles and applications of positron emission tomography (PET) in cardiology. PET in Mexico: a reality].

    PubMed

    Alexanderson Rosas, Erick; Kerik, Nora E; Unzek Freiman, Samuel; Fermon Schwaycer, Salomón

    2002-01-01

    Positron emission tomography (PET) offers the unique capability of measuring non-invasive by the regional myocardial substrate flow and the biochemical reaction index in millimol per minute per gram of myocardial tissue. PET also allows for the assessment or quantification of regional myocardial blood flow, cardiac metabolism, ventricular function, myocardial viability, as well as autonomous nervous system, research and evaluating of dilated myocardiopathy and of ventricular hypertrophy. PET's success is based on the radioisotopes properties, their very short half-life allows for the administration of large doses.

  5. Revocation of regulation on positron emission tomography drug products--FDA. Final rule; revocation.

    PubMed

    1997-12-19

    The Food and Drug Administration (FDA) is revoking a regulation on positron emission tomography (PET) radiopharmaceutical drug products. The regulation permits FDA to approve requests from manufacturers of PET drugs for exceptions or alternatives to provisions of the current good manufacturing practice (CGMP) regulations. FDA is taking this action in accordance with provisions of the Food and Drug Administration Modernization Act of 1997 (Modernization Act). Elsewhere in this issue of the Federal Register, FDA is publishing a notice revoking two notices concerning certain guidance documents on PET drugs and the guidance documents to which the notices relate.

  6. Current status and future needs for standards of radionuclides used in positron emission tomography.

    PubMed

    Zimmerman, B E

    2013-06-01

    Positron Emission Tomography (PET) is being increasingly used as a quantitative technique for detecting disease and monitoring patient progress during treatment. To ensure the validity of the quantitative information derived from the imaging data, it is imperative that all radioactivity measurements that are part of the imaging procedure be traceable to national or international standards. This paper reviews the current status of standards for positron emitting radionuclides (e.g., (18)F, (68)Ge/(68)Ga, and (124)I) and suggests needs for future work.

  7. Florbetapir (18F) for brain amyloid positron emission tomography: highlights on the European marketing approval.

    PubMed

    Cortes-Blanco, Anabel; Prieto-Yerro, Concha; Martinez-Lazaro, Raul; Zamora, Javier; Jiménez-Huete, Adolfo; Haberkamp, Marion; Pohly, Johannes; Enzmann, Harald; Zinserling, Jörg; Strassmann, Valerie; Broich, Karl

    2014-10-01

    Florbetapir (18F) for brain amyloid positron emission tomography (PET) imaging has been recently approved in Europe to estimate β-amyloid neuritic plaque density in the brain when the subject is still alive. Such density is one of the key issues for the definitive diagnosis of Alzheimer's disease (AD) at autopsy. This capability of florbetapir (18F) is regarded as a significant improvement in the diagnostic procedures for adult patients with cognitive impairment who are being evaluated for AD and other causes of cognitive impairment. The current paper highlights the specific characteristics of the European marketing authorization of florbetapir (18F).

  8. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    SciTech Connect

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.; Dowling-Zimmerman, S.; Pickar, D.; Boronow, J.; Morihisa, J.M.; van Kammen, D.P.; Carpenter, W.; Kessler, R.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern.

  9. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    SciTech Connect

    J. Michael Doster

    2008-12-19

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18.

  10. Neuro-imaging and positron emission tomography of congenital homonymous hemianopsia.

    PubMed

    Bosley, T M; Kiyosawa, M; Moster, M; Harbour, R; Zimmerman, R; Savino, P J; Sergott, R C; Alavi, A; Reivich, M

    1991-04-15

    Congenital homonymous hemianopsia is an uncommon asymptomatic visual field defect discovered typically in young adult life that is caused by a diverse group of insults to the retrochiasmal afferent visual system occurring prenatally, at birth, or during early childhood. We treated eight patients with congenital homonymous hemianopsia; seven with damage involving the optic radiations and one with an abnormality of the optic tract. We performed positron emission tomography using 18F-fluoro-2-deoxyglucose on two patients with dense homonymous hemianopsias, lesions of the contralateral optic radiations, and largely intact occipital cortex. These studies showed minimal abnormalities in resting visual cortex glucose metabolism of the affected visual cortex.

  11. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  12. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility.

    PubMed

    da Silva, Teógenes A; Guimarães, Margarete C; Meireles, Leonardo S; Teles, Luciana L D; Lacerda, Marco Aurélio S

    2016-11-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent Hp(3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility.

  13. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography

    SciTech Connect

    Collier, B.D.; Johnson, R.P.; Carrera, G.F.; Meyer, G.A.; Schwab, J.P.; Flatley, T.J.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.; Knobel, J.

    1985-01-01

    Planar bone scintigraphy (PBS) and single-photon emission computed tomography (SPECT) were compared in 19 adults with radiographic evidence of spondylolysis and/or spondylolisthesis. SPECT was more sensitive than PBS when used to identify symptomatic patients and sites of painful defects in the pars interarticularis. In addition, SPECT allowed more accurate localization than PBS. In 6 patients, spondylolysis or spondylolisthesis was unrealted to low back pain, and SPECT images of the posterior neural arch were normal. The authors conclude that when spondylolysis or spondylolisthesis is the cause of low back pain, pars defects are frequently heralded by increased scintigraphic activity which is best detected and localized by SPECT.

  14. Positron Emission Tomography-Scanner at Children`s Hospital of Michigan at Detroit, Michigan

    SciTech Connect

    Not Available

    1992-12-31

    The Department of Energy has prepared an environmental assessment (EA), DOE/EA-0795, to support the DOE decision to provide a grant of $7,953,600 to be used in support of a proposed Positron Emission Tomography Scanner at Children`s Hospital of Michigan at Detroit, Michigan. Based upon the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affected the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  15. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs

    SciTech Connect

    Walker, Gary V.; Niikura, Naoki; Yang Wei; Rohren, Eric; Valero, Vicente; Woodward, Wendy A.; Alvarez, Ricardo H.; Lucci, Anthony; Ueno, Naoto T.; Buchholz, Thomas A.

    2012-08-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly being utilized for staging of inflammatory breast cancer (IBC). The purpose of this study was to define how pretreatment PET/CT studies affected postmastectomy radiation treatment (PMRT) planning decisions for IBC. Methods and Materials: We performed a retrospective analysis of 62 patients diagnosed with IBC between 2004 and 2009, who were treated with PMRT in our institution and who had a staging PET/CT within 3 months of diagnosis. Patients received a baseline physical examination, staging mammography, ultrasonographic examination of breast and draining lymphatics, and chest radiography; most patients also had a bone scan (55 patients), liver imaging (52 patients), breast MRI (46 patients), and chest CT (25 patients). We compared how PET/CT findings affected PMRT, assuming that standard PMRT would target the chest wall, level III axilla, supraclavicular fossa, and internal mammary chain (IMC). Any modification of target volumes, field borders, or dose prescriptions was considered a change. Results: PET/CT detected new areas of disease in 27 of the 62 patients (44%). The areas of additional disease included the breast (1 patient), ipsilateral axilla (1 patient), ipsilateral supraclavicular (4 patients), ipsilateral infraclavicular (1 patient), ipsilateral IMC (5 patients), ipsilateral subpectoral (3 patients), mediastinal (8 patients), other distant/contralateral lymph nodes (15 patients), or bone (6 patients). One patient was found to have a non-breast second primary tumor. The findings of the PET/CT led to changes in PMRT in 11 of 62 patients (17.7%). These changes included additional fields in 5 patients, adjustment of fields in 2 patients, and higher doses to the supraclavicular fossa (2 patients) and IMC (5 patients). Conclusions: For patients with newly diagnosed IBC, pretreatment PET/CT provides important information concerning involvement of locoregional lymph nodes

  16. Incidental abnormal FDG uptake in the prostate on 18-fluoro-2-deoxyglucose positron emission tomography-computed tomography scans.

    PubMed

    Kang, Pil Moon; Seo, Won Ik; Lee, Sun Seong; Bae, Sang Kyun; Kwak, Ho Sup; Min, Kweonsik; Kim, Wansuk; Kang, Dong Il

    2014-01-01

    18-fluoro-2-deoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) scans are commonly used for the staging and restaging of various malignancies, such as head and neck, breast, colorectal and gynecological cancers. However, the value of FDG PET/CT for detecting prostate cancer is unknown. The aim of this study was to evaluate the clinical value of incidental prostate 18F-FDG uptake on PET/CT scans. We reviewed 18F-FDG PET/CT scan reports from September 2009 to September 2013, and selected cases that reported focal/diffuse FDG uptake in the prostate. We analyzed the correlation between 18F-FDG PET/CT scan findings and data collected during evaluations such as serum prostate-specific antigen (PSA) levels, digital rectal examination (DRE), transrectal ultrasound (TRUS), and/or biopsy to confirm prostate cancer. Of a total of 18,393 cases, 106 (0.6%) exhibited abnormal hypermetabolism in the prostate. Additional evaluations were performed in 66 patients. Serum PSA levels were not significantly correlated with maximum standardized uptake values (SUVmax) in all patients (rho 0.483, p=0.132). Prostate biopsies were performed in 15 patients, and prostate cancer was confirmed in 11. The median serum PSA level was 4.8 (0.55-7.06) ng/mL and 127.4 (1.06-495) ng/mL in the benign and prostate cancer groups, respectively. The median SUVmax was higher in the prostate cancer group (mean 10.1, range 3.8-24.5) than in the benign group (mean 4.3, range 3.1-8.8), but the difference was not statistically significant (p=0.078). There was no significant correlation between SUVmax and serum PSA, prostatic volume, or Gleason score. 18F-FDG PET/CT scans did not reliably differentiate malignant or benign from abnormal uptake lesions in the prostate, and routine prostate biopsy was not usually recommended in patients with abnormal FDG uptake. Nevertheless, patients with incidental prostate uptake on 18F-FDG PET/ CT scans should not be ignored and should be undergo

  17. Dementias appear to have individual profiles in single photon emission computed tomography

    SciTech Connect

    Not Available

    1989-02-17

    A number of researchers are seeking clinical applications for single photon emission computed tomographic (SPECT) images of demented patients. They have found that dementias have somewhat individual SPECT profiles. The challenge now, they say, is to determine if the SPECT information is meaningful to the clinician and to develop more specific radiotracers, such as tracers for individual neuroreceptors. The initial work was done with positron emission tomography (PET), a sometimes more sensitive, but much more expensive technique. Recently, a number of centers began trying to duplicate the PET findings using SPECT. Developing SPECT could actually make dementia scanning fairly available, they say. Radiologists estimate that three fourths of the nation's nuclear medicine departments have SPECT scanning machines-either rotating or multiaperature gamma cameras.

  18. Endobronchial ultrasound-guided transbronchial needle aspiration of hilar and mediastinal lymph nodes detected on 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Minami, Daisuke; Takigawa, Nagio; Oda, Naohiro; Ninomiya, Takashi; Kubo, Toshio; Ohashi, Kadoaki; Sato, Akiko; Hotta, Katsuyuki; Tabata, Masahiro; Kaji, Mitsumasa; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-01-01

    Objective Endobronchial ultrasound-guided transbronchial needle aspiration is of diagnostic value in hilar/mediastinal (N1/N2) lymph node staging. We assessed the utility of endobronchial ultrasound-guided transbronchial needle aspiration in lung cancer patients with N1/N2 lymph nodes detected on 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Methods Fifty lung cancer patients with N1/N2 disease on 18F-fluorodeoxyglucose positron emission tomography/computed tomography underwent endobronchial ultrasound-guided transbronchial needle aspiration for pathological lymph nodes between November 2012 and April 2015. The diagnostic performance of endobronchial ultrasound-guided transbronchial needle aspiration, lymph node site and size, number of needle passes and complications were evaluated retrospectively from patients' medical records. Malignancy was defined as a maximum standardized uptake value (SUVmax) >2.5. Results The median longest diameter of the 61 lymph nodes (29 subcarinal, 21 right lower paratracheal, 6 left lower paratracheal, 4 right hilar and 1 upper paratracheal) was 23.4 mm (range: 10.4–45.7); the median number of needle passes was 2 (range: 1–5). There were no severe complications. A definitive diagnosis was made by endobronchial ultrasound-guided transbronchial needle aspiration in 39 patients (31 adenocarcinomas, 3 small-cell carcinomas, 2 squamous-cell carcinomas, 3 large-cell neuroendocrine carcinomas). In the remaining 11 patients, the diagnosis was indefinite: insufficient endobronchial ultrasound-guided transbronchial needle aspiration material was collected in two patients and non-specific lymphadenopathy was confirmed by endobronchial ultrasound-guided transbronchial needle aspiration or thoracotomy in the other nine patients. The mean lymph node SUVmax was 7.09 (range: 2.90–26.9) and was significantly higher in true-positive than in false-positive nodes (P < 0.05, t-test). Non-specific lymphadenopathy was

  19. Review of Cardiovascular Imaging in the Journal of Nuclear Cardiology in 2016. Part 1 of 2: Positron Emission Tomography, Computed Tomography and Magnetic Resonance.

    PubMed

    AlJaroudi, Wael; Hage, Fadi G

    2017-02-13

    Several original articles and editorials have been published in the Journal of Nuclear Cardiology last year. It has become a tradition at the beginning of each year to summarize some of these key articles (AlJaroudi and Hage in J Nucl Cardiol 22:507-512, 2015, 23:122-130, 2016; Hage and AlJaroudi in J Nucl Cardiol 22:714-719, 2015; 23:493-498, 2016). In this part one, we will discuss some of the progress made in patients with infiltrative disease, cardiomyopathies (non-ischemic, ischemic, and diabetic), hybrid and molecular imaging, using advancement in positron emission tomography, computed tomography, and magnetic resonance imaging.

  20. Focal thyroid incidentaloma on whole body fluorodeoxyglucose positron emission tomography/computed tomography in known cancer patients: A case-based discussion with a series of three examples.

    PubMed

    Targe, Mangala; Basu, Sandip

    2015-01-01

    The importance, imaging characteristics and outcome of focal thyroid incidentaloma on fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) have been illustrated in this report. This is drawn from a series of three case examples of proven malignancy at different locations, with three different thyroid cytopathological diagnoses. Subsequently, a case-based discussion on present consensus of the management of this entity has been undertaken including certain specific aspects of PET-CT interpretation and its role in this setting.

  1. Calcified peritoneal metastasis identified on 18F-fluoride positron emission tomography/computed tomography: Importance of extraosseous uptake of F-18 fluoride.

    PubMed

    Verma, Priyanka; Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    F-18 NaF positron emission tomography/computed tomography (PET/CT) is used for the evaluation of malignant and nonmalignant osseous disease. Extraosseous uptake of 18 fluoride-NaF has been observed in the arterial vasculature, gastrointestinal tract, and genitourinary tract. We describe a case of a woman with carcinoma of unknown primary in whom F-18 NaF PET/CT showed tracer uptake in the calcified peritoneal metastasis. Extraosseous findings on F-18 NaF PET/CT, though rare, may be visualized and may result in important management changes.

  2. Skeletal muscle metastases as the initial manifestation of an unknown primary lung cancer detected on F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Singh, Navneet; Harisankar, Chidambaram Natarajan Balasubramanian; Mittal, Bhagwant Rai

    2013-01-01

    Skeletal muscle metastasis as the initial presentation of the unknown primary lung cancer is unusual. A 65-year-old male patient presented with pain and swelling of the right forearm. Fine needle aspiration of the swelling revealed metastatic squamous cell carcinoma. The patient underwent whole body F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to identify the site of the primary malignancy. The authors present PET/CT images showing FDG-avid metastases to the skeletal muscles along with a previously unknown primary tumor in the right lung, in a patient presenting with initial muscular symptoms without any pulmonary manifestations.

  3. Tc-99m Sulfur Colloid Lymphoscintigraphy with Single-photon Emission Computed Tomography/Computed Tomography in a Case of Acquired Vulval Lymphangiomas

    PubMed Central

    Tulsyan, Shruti; Tripathi, Madhavi; Das, Kalpa; Yadav, Divya; Shamim, Shamim Ahmed; Damle, Nishikant; Bal, Chandrasekhar

    2017-01-01

    We describe the lymphoscintigraphy findings of a 25-year-old female patient who was undergoing presurgical workup for lymphangiomas of the vulva. She had a history of treatment for disseminated tuberculosis 6 years back and presented with herpetiform oozing vesicles in the external genitalia. Single-photon emission computed tomography/computed tomography (SPECT/CT) confirmed cutaneous tracer accumulation in the vulval lesions and demonstrated the presence of densely calcified inguinal nodes secondary to healed tuberculosis as the etiology of secondary lymphangioma. PMID:28242996

  4. Prostate-specific Membrane Antigen-targeted Ligand Positron Emission Tomography/Computed Tomography and Immunohistochemical Findings in a Patient With Synchronous Metastatic Penile and Prostate Cancer.

    PubMed

    Froehner, Michael; Kuithan, Friederike; Zöphel, Klaus; Heberling, Ulrike; Laniado, Michael; Wirth, Manfred P

    2017-03-01

    A 68-year-old man presented with synchronous metastatic penile and prostate cancer. 68Ga-labeled prostate-specific membrane antigen-targeted ligand positron emission tomography/computed tomography (PSMA-PET/CT) revealed tracer uptake in inguinal, pelvic, and retroperitoneal metastases. Lymph node biopsies and immunohistochemical staining revealed that both cancers involved the lymph nodes and expressed PSMA. In the deposits of penile squamous cell carcinoma, PSMA expression was seen in tumor vessels and may explain the PSMA-PET/CT positivity of inguinal nodes involved in squamous cell carcinoma. The interpretation of imaging in synchronous tumors should take this fact into consideration.

  5. An Incidental Solitary Plasmacytoma of Bone Mimicking Neuroendocrine Tumor Metastasis on 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography

    PubMed Central

    Şimşek, Duygu Has; Kuyumcu, Serkan; Bilgiç, Bilge; Işık, Emine Göknur; Türkmen, Cüneyt; Adalet, Işık

    2016-01-01

    A 54-year-old woman with suspicion of neuroendocrine tumor (NET) was referred for 68Ga-DOTATATE positron emission tomography/computed tomography (CT) imaging due to clinical findings. A well-defined osteolytic lesion on the corpus of the third lumbar vertebra was evident on CT images with mild uptake of 68Ga-DOTATATE, which led to suspicion of NET metastasis. Histopathologic examination revealed solitary plasmacytoma of the bone. The patient received local external radiotherapy for plasmacytoma. This case indicatesthat other diseases expressing somatostatin receptors may be inaccurately reported as tumor recurrence and highlights the importance of meticulous evaluation of positive findings. PMID:27751979

  6. “Drop” Metastases from an Operated Case of Intracranial Anaplastic Ependymoma Identified on Fluoro-2-deoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Chandra, Piyush; Purandare, Nilendu; Shah, Sneha; Agrawal, Archi; Rangarajan, Venkatesh

    2017-01-01

    The seeding of tumor through cerebrospinal fluid (CSF) from primary intracranial tumors is very rare, often goes undetected, and is usually identified only on autopsy. CSF cytology along with magnetic resonance imaging constitutes the standard approach of diagnosing this grave condition. Use of fluoro-2-deoxyglucose positron emission tomography/computed tomography (PET/CT) in indentifying spinal metastases from primary intracranial malignancies is very limited and has been reported in patients with metastatic glioblastoma multiforme and medulloblastomas. We present a rare case of metastatic anaplastic ependymoma to show the potentially clinically utility of PET/CT in diagnosing leptomeningeal or the so-called “drop” metastases. PMID:28242994

  7. Potassium Chloride Infusion as the Cause of Altered Bio Distribution of 18F-Fluorodeoxyglucose on Whole-Body Positron Emission Tomography-Computed Tomography Scan

    PubMed Central

    Mahajan, Shimpi Madhuri; Natasha, Singh; Sudeshna, Maitra; Pereira, Melvika

    2017-01-01

    18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography is a standard diagnostic imaging tool in many types of cancer. Its physiological in vivo distribution includes the brain, liver, heart, kidneys, and urinary tract at 1 h after tracer injection. Skeletal muscle is known to show variable amounts of 18F-FDG uptake because it has a relatively high-glucose metabolism. We report a case of a 20-year-old patient with gross 18F-FDG uptake involving multiple muscle groups and its likely correlation to potassium chloride infusion before 18F-FDG injection. PMID:28217028

  8. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  9. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  10. Noninvasive evaluation of active pan-ulcerative colitis with multiple strictures using Fluorine-18-Fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Gupta, Rajesh; Mittal, Bhagwant Rai

    2016-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease characterized by waxing and waning inflammation that changes in severity and extent and may progress to neoplasia, especially in the presence of strictures. When patients have nonnegotiable strictures or severe inflammation with ulcers, colonoscopy is difficult and carries the risk of perforation. The authors present a patient with pan-UC with multiple strictures, in whom fluorodeoxyglucose positron emission tomography/computed tomography was used to noninvasively evaluate the extent and severity of the disease. PMID:26917901

  11. Ocular Granulocytic Sarcoma as an Initial Clinical Presentation of Acute Myeloid Leukemia Identified on Flurodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Chandra, Piyush; Purandare, Nilendu; Shah, Sneha; Agrawal, Archi; Rangarajan, Venkatesh

    2017-01-01

    Granulocytic sarcoma (GS) or chloroma, rare extramedullary manifestation of acute myeloid leukemia and not infrequently, can be presenting clinical feature. Multiple studies have demonstrated the clinical utility of fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in early detection and follow-up assessment of GS after chemotherapy. Commonly involved areas include bones, lymph nodes, breasts, and skin and not uncommonly, the disease can be multifocal. We present a rare case of ocular GS, where FDG-PET/CT in addition to the identifying the ocular mass, revealed multiple clinically occult extramedullary lesions. PMID:28242990

  12. Pneumococcal aortitis, report of a case with emphasis on the contribution to diagnosis of positron emission tomography using fluorinated deoxyglucose.

    PubMed

    Hoogendoorn, E H; Oyen, W J G; van Dijk, A P J; van der Meer, J W M

    2003-01-01

    We describe an 82-year-old male with pneumococcal aortitis of the descending aorta, visualized by echocardiography and positron emission tomography using fluorinated deoxyglucose (FDG-PET). Computed tomography is considered to be the best diagnostic imaging modality in infected aortic lesions; in this case, the use of FDG-PET, which gives the opportunity to distinguish between inflammatory and non-inflammatory aortic aneurysms, made an important contribution to the diagnosis.

  13. Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom

    SciTech Connect

    Moyers, M. F.

    2014-06-15

    Purpose: Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. Methods: A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. Results: For tissues within ±300 XCTN of water, all facility functions produced converted RLSP values within ±6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as ±8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. Conclusions: The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote

  14. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.

    PubMed

    Passamonti, Luca; Vázquez Rodríguez, Patricia; Hong, Young T; Allinson, Kieren S J; Williamson, David; Borchert, Robin J; Sami, Saber; Cope, Thomas E; Bevan-Jones, W Richard; Jones, P Simon; Arnold, Robert; Surendranathan, Ajenthan; Mak, Elijah; Su, Li; Fryer, Tim D; Aigbirhio, Franklin I; O'Brien, John T; Rowe, James B

    2017-03-01

    The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P < 0.0001; region of interest × group interaction, F(2,68) = 7.5, P < 0.00001]. More specifically, 18F-AV-1451 binding was significantly increased in patients with Alzheimer's disease, relative to patients with progressive supranuclear palsy and with control subjects, in the hippocampus and in occipital, parietal, temporal, and frontal cortices (t's > 2.2, P's < 0.04). Conversely, in patients with progressive supranuclear palsy, relative to patients with Alzheimer's disease, 18F-AV-1451 binding was elevated in the midbrain (t = 2.1, P < 0.04); while patients with progressive supranuclear palsy showed, relative to controls, increased 18F-AV-1451 uptake in the putamen, pallidum

  15. Four-Dimensional Computed Tomography-Based Treatment Planning for Intensity-Modulated Radiation Therapy and Proton Therapy for Distal Esophageal Cancer

    SciTech Connect

    Zhang Xiaodong; Zhao Kuaile; Guerrero, Thomas M.; Mcguire, Sean E.; Yaremko, Brian; Komaki, Ritsuko; Cox, James D.; Hui Zhouguang; Li Yupeng; Newhauser, Wayne D.; Mohan, Radhe; Liao Zhongxing

    2008-09-01

    Purpose: To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. Methods and Materials: The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Results: Compared with IMRT, median lung volumes exposed to 5, 10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. Conclusions: Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.

  16. Application of proton magnetic resonance spectroscopy and computerized tomography in the diagnosis and treatment of nonalcoholic fatty liver disease.

    PubMed

    Wang, Nan; Dong, Hui; Wei, Shichao; Lu, Fuer

    2008-06-01

    In order to investigate the application of proton magnetic resonance spectroscopy ((1)H-MRS) and computerized tomography (CT) in the quantitative diagnosis of nonalcoholic fatty liver disease (NAFLD) and evaluation of therapeutic effects, 22 patients with NAFLD were selected according to the Chinese Medical Association's (CMA) standard of the NAFLD in comparison with 20 healthy volunteers (as control group). Blood samples for biochemistry were collected. The severity of hepatosteatosis was evaluated by (1)H-MRS scan and CT scan of liver. The intrahepatic content of lipid (IHCL) and CT value ratio of liver to spleen were calculated. The patients in NAFLD group were treated with Ganzhixiao Capsule for 8 weeks. The changes in IHCL and CT value ratio of liver to spleen were observed before and after treatment. In NAFLD group serum ALT, TG, IHCL calculated by (1)HMRS were increased and CT value ratio of liver to spleen decreased significantly as compared with control group. After treatment for 8 weeks serum ALT, TG, IHCL were decreased significantly, while CT value ratio of liver to spleen increased significantly in NAFLD group. It was suggested that IHCL could be measured precisely by (1)HMRS. NAFLD was treated effectively by Ganzhixiao capsule.

  17. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma.

    PubMed

    Torrisi, L; Cavallaro, S; Cutroneo, M; Giuffrida, L; Krasa, J; Margarone, D; Velyhan, A; Kravarik, J; Ullschmied, J; Wolowski, J; Szydlowski, A; Rosinski, M

    2012-02-01

    A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  18. Evaluation of external beam hardening filters on image quality of computed tomography and single photon emission computed tomography/computed tomography.

    PubMed

    Rana, Nivedita; Rawat, Dinesh; Parmar, Madan; Dhawan, Devinder Kumar; Bhati, Ashok Kumar; Mittal, Bhagwant Rai

    2015-01-01

    This study was undertaken to evaluate the effect of external metal filters on the image quality of computed tomography (CT) and single photon emission computed tomography (SPECT)/CT images. Images of Jaszack phantom filled with water and containing iodine contrast filled syringes were acquired using CT (120 kV, 2.5 mA) component of SPECT/CT system, ensuring fixation of filter on X-ray collimator. Different thickness of filters of Al and Cu (1 mm, 2 mm, 3 mm, and 4 mm) and filter combinations Cu 1 mm, Cu 2 mm, Cu 3 mm each in combination with Al (1 mm, 2 mm, 3 mm, and 4 mm), respectively, were used. All image sets were visually analyzed for streak artifacts and contrast to noise ratio (CNR) was derived. Similar acquisition was done using Philips CT quality control (QC) phantom and CNR were calculated for its lexan, perspex, and teflon inserts. Attenuation corrected SPECT/CT images of Jaszack phantom filled with 444-555 MBq (12-15 mCi) of (99m)Tc were obtained by applying attenuation correction map generated by hardened X-ray beam for different filter combination, on SPECT data. Uniformity, root mean square (rms) and contrast were calculated in all image sets. Less streak artifacts at iodine water interface were observed in images acquired using external filters as compared to those without a filter. CNR for syringes, spheres, and inserts of Philips CT QC phantom was almost similar to Al 2 mm, Al 3 mm, and without the use of filters. CNR decreased with increasing copper thickness and other filter combinations. Uniformity and rms were lower, and value of contrast was higher for SPECT/CT images when CT was acquired with Al 2 mm and 3 mm filter than for images acquired without a filter. The study suggests that for Infinia Hawkeye 4, SPECT/CT system, Al 2 mm, and 3 mm are the optimum filters for improving image quality of SPECT/CT images of Jaszack or Philips CT QC phantom keeping other parameters of CT constant.

  19. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    SciTech Connect

    Janssen, Marco H.M.; Aerts, Hugo J.W.L.; Buijsen, Jeroen; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) and transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG

  20. Proton-transfer laser: gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone

    SciTech Connect

    Chou, P.; McMorrow, D.; Aartsma, T.J.; Kasha, M.

    1984-09-27

    The efficient generations of amplified spontaneous emission (ASE) in 3-hydroxyflavone in methylcyclohexane and p-dioxane solutions at 293 K is reported. This application of excited-state proton-transfer tautomerization approaches an ideal four-level laser system involving four different molecular electronic species in separate electronic states and constitutes a photoinduced chemical laser. The gain coefficient for the ASE (530 nm) of 3-hydroxyflavone in methylcyclohexane (293 K) is calculated to be 10-15. Under similar conditions in our apparatus, the gain coefficient is observed to be in the range 7-9 for a proprietary coumarin laser dye (Molectron 70371-4 C485) and for rhodamine-6G. The tunable range for 3-hydroxyflavone is observed to be 518-545 nm. The peak laser power is comparable with that observed for the coumarin dye.

  1. Studies of blood lead levels in children by proton-induced X-ray emission (PIXE).

    PubMed

    Lal, M; Joseph, D; Choudhury, R K; Bajpai, H N; Gauba, I; Lokeshwar, M R; Wagle, C S

    1991-04-15

    Blood lead levels of children admitted to Sion Hospital, Bombay (India), from the adjoining Dharavi slum areas have been determined by proton-induced X-ray emission (PIXE). Blood samples were collected from 36 children with suspected lead poisoning and from 20 control children. The analysis showed that the lead concentration of the patients varied from 0.1 to 6.0 micrograms ml-1. In addition to lead, K, Ca, Fe, Cu, Zn, Se, Br and Rb were also detected simultaneously, of which the concentrations of Fe, Cu, Zn, Se, Rb and Pb were determined. The high blood lead levels of the children from this area may be ascribed to environmental pollution due to heavy vehicular traffic and industrial sources.

  2. Application of proton-induced X-ray emission technique to gunshot residue analyses

    SciTech Connect

    Sen, P.; Panigrahi, N.; Rao, M.S.; Varier, K.M.; Sen, S.; Mehta, G.K.

    1982-04-01

    The proton-induced X-ray emission (PIXE) technique was applied to the identification and analysis of gunshot residues. Studies were made of the type of bullet and bullet hole identification, firearm discharge element profiles, the effect of various target backings, and hand swabbings. The discussion of the results reviews the sensitivity of the PIXE technique, its nondestructive nature, and its role in determining the distance from the gun to the victim and identifying the type of bullet used and whether a wound was made by a bullet or not. The high sensitivity of the PIXE technique, which is able to analyze samples as small as 0.1 to 1 ng, and its usefulness for detecting a variety of elements should make it particularly useful in firearms residue investigations.

  3. Prediction of Central Nervous System Relapse of Diffuse Large B-Cell Lymphoma Using Pretherapeutic [18F]2-Fluoro-2-Deoxyglucose (FDG) Positron Emission Tomography/Computed Tomography

    PubMed Central

    Song, Yoo Sung; Lee, Won Woo; Lee, Jong Seok; Kim, Sang Eun

    2015-01-01

    Abstract Central nervous system (CNS) relapse of diffuse large B-cell lymphoma (DLBCL) is a rare complication, but has a poor prognosis with unknown pathophysiology. Recent trials of CNS prophylaxis have shown to be ineffective, despite patient's selection using several known clinical risk factors. In this study, the authors evaluated the value of pretreatment [18F]2-Fluoro-2-deoxyglucose positron emission tomography in predicting CNS relapse in DLBCL patients. The authors analyzed 180 pathologically confirmed DLBCL patients, retrospectively. Patients underwent [18F]2-Fluoro-2-deoxyglucose positron emission tomography/computed tomography before first line rituximab to cyclophosphamide, doxorubicin, vincristine, and prednisone therapy. Clinical characteristics were evaluated and total lesion glycolysis (TLG) with a threshold margin of 50% was calculated. Among age, sex, Ann Arbor stage, International Prognostic Index, revised International Prognostic Index, high serum lactate dehydrogenase level, presence of B symptoms, bulky disease (≥10 cm), extranodal lesion involvement, bone marrow involvement, high metabolic tumor volume ( >450 mL), and high TLG50 (>2000), the high TLG50 was the only significant prognostic factor for predicting CNS relapse in a multivariate analysis (P = 0.04). Kaplan–Meir survival analysis between high TLG50 (>2000) and low TLG50 (≤2000) groups revealed significantly different mean progression free survival (PFS) of 1317.2 ± 134.3 days and 1968.6 ± 18.3 days, respectively (P < 0.001). High TLG50 on [18F]2-Fluoro-2-deoxyglucose positron emission tomography/computed tomography is the most significant predictor of CNS relapse in un-treated DLBCL patients. PMID:26554808

  4. Energy- and angle-differential yields of electron emission from thin carbon foils after fast proton impact

    SciTech Connect

    Drexler, C.G. |; DuBois, R.D.

    1996-03-01

    Proton-induced electron emission from sputter-cleaned thin carbon targets was investigated under ultrahigh vacuum conditions using time-of-flight energy analysis. These data emphasized the low-energy portion, e.g., {ital E}{sub {ital e}}{lt}20 eV, of the spectrum. Energy distributions of the emitted electrons were measured as a function of the emission angle, impact energy, and foil thickness. {copyright} {ital 1996 The American Physical Society.}

  5. Fluorodeoxyglucose-positron emission tomography in carcinoma nasopharynx: Can we predict outcomes and tailor therapy based on postradiotherapy fluorodeoxyglucose-positron emission tomography?

    PubMed Central

    Laskar, Sarbani Ghosh; Baijal, Gunjan; Rangarajan, Venkatesh; Purandare, Nilendu; Sengar, Manju; Shah, Sneha; Gupta, Tejpal; Budrukkar, Ashwini; Murthy, Vedang; Pai, Prathamesh S.; D’Cruz, A. K.; Agarwal, J. P.

    2016-01-01

    Background: Positron emission tomography-computed tomography (PET-CT) is an emerging modality for staging and response evaluation in carcinoma nasopharynx. This study was conducted to evaluate the impact of PET-CT in assessing response and outcomes in carcinoma nasopharynx. Materials and Methods: Forty-five patients of nonmetastatic carcinoma nasopharynx who underwent PET-CT for response evaluation at 10-12 weeks posttherapy between 2004 and 2009 were evaluated. Patients were classified as responders (Group A) if there was a complete response on PET-CT or as nonresponders (Group B) if there was any uptake above the background activity. Data regarding demographics, treatment, and outcomes were collected from their records and compared across the Groups A and B. Results: The median age was 41 years. 42 out of 45 (93.3%) patients had WHO Grade 2B disease (undifferentiated squamous carcinoma). 24.4%, 31.1%, 15.6, and 28.8% patients were in American Joint Committee on Cancer Stage IIb, III, Iva, and IVb. All patients were treated with neoadjuvant chemotherapy followed by concomitant chemoradiotherapy. Forty-five patients, 28 (62.2%) were classified as responders, whereas 17 (37.8%) were classified as nonresponders. There was no significant difference in the age, sex, WHO grade, and stage distribution between the groups. Compliance to treatment was comparable across both groups. The median follow-up was 25.3 months (759 days). The disease-free survival (DFS) of the group was 57.3% at 3 years. The DFS at 3 years was 87.3% and 19.7% for Group A and B, respectively (log-rank test, P < 0.001). Univariate and multivariate analysis revealed Groups to be the only significant factor predicting DFS (P value 0.002 and < 0.001, respectively). In Group B, the most common site of disease failure was distant (9, 53%). Conclusion: PET-CT can be used to evaluate response and as a tool to identify patients at higher risk of distant failure. Further, this could be exploited to identify

  6. Hepatocellular carcinoma with intra-atrial tumor extension identified on 99mTc-labeled macroaggregated albumin single photon emission computed tomography/computed tomography

    PubMed Central

    Chandra, Piyush; Shah, Sneha; Purandare, Nilendu; Agrawal, Archi; Rangarajan, Venkatesh

    2016-01-01

    99mTc macroaggregated albumin (MAA) scintigraphy is always performed before administration of 90Y--microspheres for the treatment of liver tumors for hepatopulmonary shunt calculation. Tumor thrombus visualization in the hepatic vasculature is an infrequent finding on the 99m Tc--MAA single photon emission computed tomography. We present a rare case of a hepatocellular carcinoma extending as a tumor thrombus through hepatic vein, inferior vena cava into the right atrium. PMID:27833324

  7. Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.

    2000-01-01

    The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.

  8. Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    NASA Astrophysics Data System (ADS)

    Gillam, John E.; Rafecas, Magdalena

    2016-02-01

    Emission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios.

  9. Randomized Trial of Neuroprotective Effects of Erythropoietin in Patients Receiving Adjuvant Chemotherapy for Breast Cancer: Positron Emission Tomography and Neuropsychological Study

    DTIC Science & Technology

    2008-09-01

    Effects of Erythropoietin in Patients Receiving Adjuvant Chemotherapy for Breast Cancer : Positron Emission Tomography and Neuropsychological Study...Neuroprotective Effects of Erythropoietin in Patients 5a. CONTRACT NUMBER Receiving Adjuvant Chemotherapy for Breast Cancer : Positron Emission Tomography...11 Introduction In the United States approximately 60-80% of patients diagnosed with breast cancer will receive

  10. Thoracic [18F]fluorodeoxyglucose uptake measured by positron emission tomography/computed tomography in pulmonary hypertension.

    PubMed

    Frille, Armin; Steinhoff, Karen Geva; Hesse, Swen; Grachtrup, Sabine; Wald, Alexandra; Wirtz, Hubert; Sabri, Osama; Seyfarth, Hans-Juergen

    2016-06-01

    Positron emission tomography (PET) visualizes increased cellular [F]fluorodeoxyglucose ([F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH.Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated.The [F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≥25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≥480 dyn·s/cm (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r = 0.55, r = 0.42, respectively).Pulmonary and cardiac [F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to

  11. Thoracic [18F]fluorodeoxyglucose uptake measured by positron emission tomography/computed tomography in pulmonary hypertension

    PubMed Central

    Frille, Armin; Steinhoff, Karen Geva; Hesse, Swen; Grachtrup, Sabine; Wald, Alexandra; Wirtz, Hubert; Sabri, Osama; Seyfarth, Hans-Juergen

    2016-01-01

    Abstract Positron emission tomography (PET) visualizes increased cellular [18F]fluorodeoxyglucose ([18F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [18F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [18F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH. Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated. The [18F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≥25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≥480 dyn·s/cm5 (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [18F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r = 0.55, r = 0.42, respectively). Pulmonary and cardiac [18F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism

  12. Detecting prompt gamma emission during proton therapy: the effects of detector size and distance from the patient

    NASA Astrophysics Data System (ADS)

    Polf, Jerimy C.; Mackin, Dennis; Lee, Eunsin; Avery, Stephen; Beddar, Sam

    2014-05-01

    Recent studies have suggested that the characteristics of prompt gammas (PGs) emitted from excited nuclei during proton therapy are advantageous for determining beam range during treatment delivery. Since PGs are only emitted while the beam is on, the feasibility of using PGs for online treatment verification depends greatly on the design of highly efficient detectors. The purpose of this work is to characterize how PG detection changes as a function of distance from the patient as a means of guiding the design and usage of clinical PG imaging detectors. Using a Monte Carlo model (GEANT4.9.4) we studied the detection rate (PGs per incident proton) of a high purity germanium detector for both the total PG emission and the characteristic 6.13 MeV PG emission from 16O emitted during proton irradiation. The PG detection rate was calculated as a function of distance from the isocenter of the proton treatment nozzle for: (1) a water phantom irradiated with a proton pencil beam and (2) a prostate patient irradiated with a scanning beam proton therapy treatment field (lateral field size: ˜6 cm × 6 cm, beam range: 23.5 cm). An analytical expression of the PG detection rate as a function of distance from isocenter, detector size, and proton beam energy was then developed. The detection rates were found to be 1.3 × 10-6 for oxygen and 3.9 × 10-4 for the total PG emission, respectively, with the detector placed 11 cm from isocenter for a 40 MeV pencil beam irradiating a water phantom. The total PG detection rate increased by ˜85 ± 3% for beam energies greater than 150 MeV. The detection rate was found to be approximately 2.1 × 10-6 and 1.7 × 10-3 for oxygen and total PG emission, respectively, during delivery of a single pencil beam during a scanning beam treatment for prostate cancer. The PG detection rate as a function of distance from isocenter during irradiation of a water phantom with a single proton pencil beam was described well by the model of a point source

  13. Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography

    PubMed Central

    Irkle, Agnese; Vesey, Alex T.; Lewis, David Y.; Skepper, Jeremy N.; Bird, Joseph L. E.; Dweck, Marc R.; Joshi, Francis R.; Gallagher, Ferdia A.; Warburton, Elizabeth A.; Bennett, Martin R.; Brindle, Kevin M.; Newby, David E.; Rudd, James H.; Davenport, Anthony P.

    2015-01-01

    Vascular calcification is a complex biological process that is a hallmark of atherosclerosis. While macrocalcification confers plaque stability, microcalcification is a key feature of high-risk atheroma and is associated with increased morbidity and mortality. Positron emission tomography and X-ray computed tomography (PET/CT) imaging of atherosclerosis using 18F-sodium fluoride (18F-NaF) has the potential to identify pathologically high-risk nascent microcalcification. However, the precise molecular mechanism of 18F-NaF vascular uptake is still unknown. Here we use electron microscopy, autoradiography, histology and preclinical and clinical PET/CT to analyse 18F-NaF binding. We show that 18F-NaF adsorbs to calcified deposits within plaque with high affinity and is selective and specific. 18F-NaF PET/CT imaging can distinguish between areas of macro- and microcalcification. This is the only currently available clinical imaging platform that can non-invasively detect microcalcification in active unstable atherosclerosis. The use of 18F-NaF may foster new approaches to developing treatments for vascular calcification. PMID:26151378

  14. Positron emission tomography in the diagnostic work-up of screening-detected lung nodules.

    PubMed

    Veronesi, Giulia; Travaini, Laura L; Maisonneuve, Patrick; Rampinelli, Cristiano; Bertolotti, Raffaella; Spaggiari, Lorenzo; Bellomi, Massimo; Paganelli, Giovanni

    2015-02-01

    Low-dose computed tomography (CT) screening for lung cancer can reduce lung cancer mortality, but overdiagnosis, false positives and invasive procedures for benign nodules are worrying. We evaluated the utility of positron emission tomography (PET)-CT in characterising indeterminate screening-detected lung nodules. 383 nodules, examined by PET-CT over the first 6 years of the COSMOS (Continuous Observation of Smoking Subjects) study to diagnose primary lung cancer, were reviewed and compared with pathological findings (surgically-treated patients) or follow-up (negative CT for ⩾2 years, considered negative); 196 nodules were malignant. The sensitivity, specificity and accuracy of PET-CT for differentially diagnosing malignant nodules were, respectively, 64%, 89% and 76% overall, and 82%, 92% and 88% for baseline-detected nodules. Performance was lower for nodules found at repeat annual scans, with sensitivity ranging from 22% for nonsolid to 79% for solid nodules (p=0.0001). Sensitivity (87%) and specificity (73%) were high for nodules ⩾15 mm, better (sensitivity 98%) for solid nodules ⩾15 mm. PET-CT was highly sensitive for the differential diagnosis of indeterminate nodules detected at baseline, nodules ⩾15 mm and solid nodules. Sensitivity was low for sub-solid nodules and nodules discovered after baseline for which other methods, e.g. volume doubling time, should be used.

  15. TOPICAL REVIEW: Biological imaging in radiation therapy: role of positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-01

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  16. Scintigraphic appearance of focal fatty infiltration of the liver using single-photon emission computed tomography

    SciTech Connect

    Kudo, M.; Hirasa, M.; Ibuki, Y.; Takakuwa, H.; Fujimi, K.; Veda, S.; Tomita, S.; Komori, H.; Todo, A.; Kitaura, Y.

    1984-01-01

    Fatty infiltration of the liver had been considered to assume a uniform distribution until quite recently. However, the development of X-ray computed tomography (XCT) and the ultrasound (US) has proven that fatty infiltration of the liver may sometimes assume a nonuniform distribution (focal fatty infiltration (FFI)). This investigation was undertaken to evaluate the scintigraphic appearance of FFI using single-photon emission computed tomography (SPECT) with a GE Maxicamera 400T. Radionuclide images including SPECT were evaluated in 12 cases with FFI which were diagnosed by XCT and US. Most of them were histrogically confirmed to be positive fatty infiltration in the liver. The results were as follows. The fatty infiltrated area was visualized as a hot spot in one case, a defect in 2 cases, a low uptake in one case and a normal uptake in 8 cases. Radionuclide imaging of FFI shows a large variety of findings and it suggests that Kupffer cell function varies with the causes or stage of fatty infiltration. And one can understand the pathological state of FFI from a viewpoint of Kupffer cell function only by radionuclide imaging including SPECT, which is very useful to compare the images with XCT images.

  17. Measurement of human cerebral blood flow with (15O)butanol and positron emission tomography

    SciTech Connect

    Berridge, M.S.; Adler, L.P.; Nelson, A.D.; Cassidy, E.H.; Muzic, R.F.; Bednarczyk, E.M.; Miraldi, F. )

    1991-09-01

    Although H2(15)O is widely used for CBF measurement by positron tomography, it underestimates CBF, especially at elevated flow rates. Several tracers, including butanol, overcome this problem, but the short half-life of 15O provides advantages that cause water to remain the tracer of choice. The authors report the first use and evaluation of 15O-labeled butanol for CBF measurement. Flow measurements made in a similar fashion with water and butanol at 10-min intervals were compared in normal volunteers under resting and hypercapnic conditions. Regional analysis showed good agreement between the tracers at low flows, and significant underestimation of flow by water relative to butanol in regions of elevated flow. The observed relationship between the tracers and the curve-fitted permeability-surface area product for water (133 ml.100 g-1.min-1) follow the known relationship between water and true flow. These observations indicate that (15O)-butanol provided accurate measurements of human regional CBF under conditions of elevated perfusion. They conclude that butanol is a convenient and accurate method for routine CBF determination by positron emission tomography.

  18. The role of positron emission tomography in the detection of pancreatic disease

    SciTech Connect

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of /sup 11/C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D.) of injected /sup 11/C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic /sup 11/C concentration was identical in the four groups of patients. Pancreatic uptake of /sup 11/C-L-methionine was significantly lower in patients with chronic pancreatitis (n = 13) and pancreatic carcinoma (n = 10) (p <0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  19. The role of positron emission tomography in the detection of pancreatic disease

    SciTech Connect

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of 11C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D). of injected 11C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic 11C concentration was identical in the four groups of patients. Pancreatic uptake of 11C-L-methionine was significantly lower in patients with chronic pancreatitis (n . 13) and pancreatic carcinoma (n . 10) (p less than 0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  20. In vivo measurement of dopamine receptors in pituitary adenomas using positron emission tomography.

    PubMed

    Muhr, C; Bergström, M; Lundberg, P O; Bergström, K; Långström, B

    1986-01-01

    Patients with pituitary adenomas were examined with positron emission tomography (PET) with the administration of the 11C-labelled dopamine-D2 antagonists N-methylspiperone and raclopride. The studies were repeated after protection of the D2-receptors with Haloperidol to enable a separation of specific and unspecific receptor binding. The receptor binding was evaluated by visual inspection and with the application of a kinetic model. The results showed marked specific dopamine-D2 receptor binding in the prolactinomas and minimal or no such binding in the hormonally inactive adenomas. The two tracers 11C-raclopride and 11C-N-methylspiperone showed qualitatively the same result although raclopride resulted in a higher tumor to normal brain ratio. In conclusion, PET is a valuable complement to other radiologic techniques like computed tomography and magnetic resonance imaging in the evaluation of pituitary adenomas. An assessment of the dopamine-D2 receptors in the adenomas has a direct influence on the choice of treatment because adenomas with high amounts of receptors are in most cases effectively treated with dopamine agonists like bromocriptine.

  1. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers

    PubMed Central

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106

  2. Tumour response evaluation with fluorodeoxyglucose positron emission tomography: research technique or clinical tool?

    PubMed

    Anderson, H; Singh, N; Miles, K

    2010-10-04

    The evaluation of treatment response is an established role for imaging in oncologic research and clinical practice. In early phase trials, imaging response criteria are used to determine the presence and magnitude of the drug effect on tumour to aid decisions concerning progress to late phase trials, and to inform dose selection and scheduling. In late phase trials and clinical practice, the imaging response is used as a surrogate for clinical outcome. Due to the limitations of current anatomic response criteria, there is growing interest in the use of [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess treatment response. The technique is beginning to be adopted within mainstream approaches for evaluation of response in solid tumours and lymphoma. Difficulties with standardisation across PET centres and tumour types combined with uncertainty concerning the timing of assessment relative to treatment, have limited the use of quantitative measurements of FDG uptake to research applications. However, with a growing body of evidence that qualitative criteria such as the development of new PET lesions or complete metabolic response following treatment can provide surrogates marker for clinical outcome, [(18)F]FDG-PET is becoming established as a clinical technique for assessing tumour response, especially for FDG-avid lymphoma subtypes. Multimodality imaging using perfusion computed tomography/PET is an exciting novel technique with the potential to define treatment response in a new way.

  3. Single photon emission computerized tomography (SPECT) in detecting neurodegeneration in Huntington's disease.

    PubMed

    Reynolds, N C; Hellman, R S; Tikofsky, R S; Prost, R W; Mark, L P; Elejalde, B R; Lebel, R; Hamsher, K S; Swanson, S; Benezra, E E

    2002-01-01

    Single photon emission computerized tomography (SPECT) studies were performed on 34 manifest Huntington's disease (HD) patients at various stages of clinical pathology ranging from early chorea to late dystonia with or without signs of dementia and 12 pre-symptomatic patients with abnormal terminal CAG expansions. Thirty HD patients with obvious clinical signs and seven pre-symptomatic patients without signs or symptoms of HD displayed selective caudate hypoperfusion by direct visual inspection. Such qualitative, selective striatal hypoperfusion patterns can be indicative of early and persistent metabolic changes in striatal neuropathology. SPECT studies can be useful in documenting early pre-clinical changes in patients with abnormal terminal CAG expansions and in confirming the presence of caudate pathology in patients with clinical signs of HD.

  4. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    NASA Astrophysics Data System (ADS)

    Sato, K.; Kobayashi, Y.

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  5. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons.

    PubMed

    Sato, K; Kobayashi, Y

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  6. An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners

    PubMed Central

    Shih, Y. C.; Sun, F. W.; MacDonald, L. R.; Otis, B. P.; Miyaoka, R. S.; McDougald, W.; Lewellen, T. K.

    2010-01-01

    This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anode, which allows the use of a single fast-sampling analog to digital converter (ADC) for the timing channel and slower, lower power ADCs for the 64 spatial channels. Preliminary results of one row summation of the 8×8 readout electronics exhibited FWHM energy resolution of 17.8% and 18.3% with and without multiplexing, respectively. The measured timing resolution is 2.9ns FWHM. PMID:20729983

  7. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  8. Myelin imaging with C-11 labeled diphenylmethanol and positron emission tomography

    SciTech Connect

    Herscovitch, P.; Dischino, D.D.; Kilbourn, M.R.; Welch, M.J.; Raichle, M.E.

    1985-05-01

    The authors have recently studied several C-11-labeled radiopharmaceuticals for their suitability as myelin imaging agents with positron emission tomography (PET). C-11 diphenylmethanol (DPM) was selected on the basis of its in vivo metabolic stability and high extraction and lipophilicity. PET studies were performed in three normal subjects and in one patient with multiple sclerosis (MS). Myelin distribution was imaged following the bolus intravenous administration of 25-30 mCi of C-11 DPM. Sequential scans were obtained after radiotracer administration to measure the DPM distribution as a function of time. In addition, regional cerebral blood flow was measured after the bolus intravenous injection of 0-15 water. A tomographic slice through the centrum semiovale was used to obtain regional data for gray matter (GM) and white matter (WM).

  9. The Use and Misuse of Positron Emission Tomography in Lung Cancer Evaluation

    PubMed Central

    Chang, Ching-Fei; Rashtian, Afshin; Gould, Michael K.

    2011-01-01

    Synopsis Positron emission tomography (PET) has been studied for a variety of indications in patients with known or suspected non-small cell lung cancer (NSCLC). In this review, we discuss the potential benefits and limitations of PET for characterizing lung nodules, staging the mediastinum, identifying occult distant metastasis, determining prognosis and treatment response, guiding plans for radiation therapy, restaging during and after treatment, and selecting targets for tissue sampling. (Table 1) Evidence from randomized, controlled trials supports the use of PET for initial staging in NSCLC, while lower quality evidence from studies of diagnostic accuracy and modeling studies supports the use of PET for characterizing lung nodules. For most other indications in NSCLC, additional studies are required to clarify the role of PET and determine who is most likely to benefit. PMID:22054883

  10. Synthesis and characterisation of zirconium complexes for cell tracking with Zr-89 by positron emission tomography.

    PubMed

    Ferris, Trevor J; Charoenphun, Putthiporn; Meszaros, Levente K; Mullen, Gregory E D; Blower, Philip J; Went, Michael J

    2014-10-21

    The increasing availability of the long half-life positron emitter Zr-89 (half life 78.4 h) suggests that it is a strong candidate for cell labelling and hence cell tracking using positron emission tomography. The aim was to produce a range of neutral ZrL4 lipophilic complexes for cell labelling which could be prepared under radiopharmaceutical conditions. This was achieved when the ligand was oxine, tropolone or ethyl maltol. The complexes can be prepared in high yield from zirconium(iv) precursors in hydrochloric or oxalic acid solution. The oxinate and tropolonate complexes were the most amenable to chromatographic characterisation, and HPLC and ITLC protocols have been established to monitor their radiochemical purity. The radiochemical synthesis and quality control of (89)Zr(oxinate)4 is reported as well as preliminary cell labelling data for the oxinate, tropolonate and ethyl maltolate complexes which indicates that (89)Zr(oxinate)4 is the most promising candidate for further evaluation.

  11. Detection of avascular necrosis in adults by single photon emission computed tomography

    SciTech Connect

    Collier, B.D.; Johnston, R.P.; Carrera, G.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.

    1984-01-01

    Twenty-one adult patients with the clinical diagnosis of avascular necrosis (AVN) of the femoral head were examined with planar bone scintigraphy (high resolution collimator) and single photon emission computed tomography (SPECT). The duration of hip pain ranged from 1 day to 18 months. Risk factors (including steroids, renal transplantation, alcoholism, and trauma) were present in 17 cases. A final diagnosis of AVN (20 hips), osteochondral facture, or stress fracture, was established for 17 patients. The 4 remaining patients, who were radiographically normal and did not complain of pain 3 months later, were thought to have no significant bone pathology. SPECT and planar bone scintigraphy were reported as positive for AVN only if a photopenic bony defect could be identified. In particular, uniformly increased activity throughout the femoral head was not considered to be diagnostic of AVN. The authors conclude that by identifying a photopenic defect which is not evident on planar bone scintigraphy, SPECT can contribute to accurate diagnosis of AVN.

  12. Magnetic field calculation for a 10 MeV positron emission tomography cyclotron.

    PubMed

    Chen, Dezhi; Chen, Zihao; Liu, Kaifeng; Yang, Jun; Li, Dong; Qin, Bin; Xiong, Yongqian

    2013-05-01

    The magnetic field calculation and correction for a 10 MeV positron emission tomography cyclotron is presented. 3D TOSCA analysis results are compared with the measured data, and the calculation error is used to calibrate the B-H curve to obtain a very precise finite element method estimator, which is used to predict the correction of the magnet pole for achieving the isochronous field. The isochronous field error is approximated with the effects of a set of standard patches. On the assumption that the effect of each small patch is proportional to its surface, the correction of the magnet pole is found by solving a system of equations using the least square scheme. The magnet shimming is performed and the measured magnetic field is found in good agreement with the prediction, with an error less than 2 G.

  13. Model-based respiratory motion compensation for emission tomography image reconstruction.

    PubMed

    Reyes, M; Malandain, G; Koulibaly, P M; González-Ballester, M A; Darcourt, J

    2007-06-21

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  14. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    PubMed

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects.

  15. Positron emission tomography suggests that the rate of progression of idiopathic parkinsonism is slow

    SciTech Connect

    Bhatt, M.H.; Snow, B.J.; Martin, W.R.; Pate, B.D.; Ruth, T.J.; Calne, D.B. )

    1991-06-01

    The authors performed sequential positron emission tomography scans with 6-(18F)fluoro-L-dopa in 9 patients with idiopathic parkinsonism and 7 age-matched normal control subjects to compare changes in the nigrostriatal dopaminergic pathway over time. The mean interval between the scans was 3.3 years for the group with idiopathic parkinsonism and 3.9 years for the control subjects. The scans were analyzed by calculating the ratio of striatal to background radioactivity. Both groups showed statistically significant reductions of striatal uptake over the interval. The rate of decrease was almost identical in each group (p = 0.6). They infer that the usual rate of loss of integrity of the dopaminergic nigrostriatal pathway in patients with idiopathic parkinsonism is slow and the rate of change between the two groups was comparable.

  16. Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging

    NASA Astrophysics Data System (ADS)

    Kapadia, A. J.

    Neutron stimulated emission computed tomography (NSECT) is being developed as a new medical-imaging technique to quantify spatial distributions of elements in a sample through inelastic scattering of fast neutrons and detection of the resulting gamma rays. It has the potential to diagnose several disorders in the human body that are characterized by changes in element concentration in the diseased tissue. NSECT is sensitive to several naturally occurring elements in the human body that demonstrate concentration changes in the presence of diseases. NSECT, therefore, has the potential to noninvasively diagnose such disorders with radiation dose that is comparable to other ionizing imaging modalities. This chapter discusses the development and progress of NSECT and presents an overview of the current status of the imaging technique.

  17. Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

    PubMed Central

    Santra, Amburanjan; Kumar, Rakesh

    2014-01-01

    Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient's pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses. PMID:25400359

  18. Imaging amyloid in Parkinson's disease dementia and dementia with Lewy bodies with positron emission tomography.

    PubMed

    Brooks, David J

    2009-01-01

    Although Parkinson's disease with later dementia (PDD) and dementia with Lewy bodies (DLB) are pathologically characterized by the presence of intraneuronal Lewy inclusion bodies, amyloid deposition is also associated to varying degrees with both these disorders. Fibrillar amyloid load can now be quantitated in vivo with positron emission tomography (PET) using imaging biomarkers. Here the reported findings of 11C-PIB PET studies concerning the amyloid load associated with PD and its influence on dementia are reviewed. It is concluded that the presence of amyloid acts to accelerate the dementia process in Lewy body disorders, though has little influence on its nature. Anti-amyloid strategies could be a relevant approach for slowing dementia in a number of DLB and PDD cases.

  19. The impact of positron emission tomography imaging on the clinical management of patients with epilepsy.

    PubMed

    Juhász, Csaba

    2012-06-01

    Clinical positron emission tomography (PET) imaging of human epilepsy has a 30-year history, but it is still searching for its exact role among rapidly advancing neuroimaging techniques. The vast majority of epilepsy PET studies used this technique to improve detection of epileptic foci for surgical resection. Here, we review the main trends emerging from three decades of PET research in epilepsy, with a particular emphasis on how PET imaging has impacted on the clinical management of patients with intractable epilepsy. While reviewing the latest studies, we also present an argument for a changing role of PET and molecular imaging in the future, with an increasing focus on epileptogenesis and newly discovered molecular mechanisms of epilepsy. These new applications will be facilitated by technological advances, such as the use of integrated PET/MRI systems and utilization of novel radiotracers, which may also enhance phenotype-genotype correlations and assist rational, individualized treatment strategies.

  20. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    SciTech Connect

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. )

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  1. Receptor-specific positron emission tomography radiopharmaceuticals: /sup 75/Br-labeled butyrophenone neuroleptics

    SciTech Connect

    Moerlein, S.M.; Stoecklin, G.; Weinhard, K.; Pawlik, G.; Heiss, W.D.

    1985-11-01

    Cerebral dopaminergic D/sub 2/ receptors are involved in several common disease states, such as schizophrenia, Parkinson's disease, and Huntington's chorea. The use of radiolabeled D/sub 2/ receptor-binding ligands with positron emission tomography (PET) to noninvasively quantitate D/sub 2/ receptor densities thus has potential application in medicine. Butyrophenone neuroleptics have a high in vitro and in vivo binding affinity for cerebral D/sub 2/ receptors, and due to the useful chemical and nuclear decay properties of /sup 74/Br (76% ..beta../sup +/, half-life = 1.6 h), the authors have evaluated radiobrominated bromospiperone (BSP), brombenperidol (BBP), and bromperidol (BP) as radiopharmaceuticals for use with PET.

  2. Caffeine and human cerebral blood flow: A positron emission tomography study

    SciTech Connect

    Cameron, O.G.; Modell, J.G.; Hariharan, M. )

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  3. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    SciTech Connect

    Biegon, A.; Biegon, A.; Kim, S.-W.; Logan, J.; Hooker, J.M.; Muench, L.; Fowler, J.S.

    2010-01-12

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [{sup 11}C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in [{sup 11}C]vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.

  4. In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications.

    PubMed

    Del Sole, Angelo; Gambini, Anna; Falini, Andrea; Lecchi, Michela; Lucignani, Giovanni

    2002-10-01

    The assessment of neurochemical processes in vivo has received much attention in the past decade as techniques such as positron or single photon emission tomography (PET and SPET), and magnetic resonance spectroscopy (MRS) have become more available. With PET and SPET, basic processes, such as blood flow and oxygen or glucose metabolism, can be regionally assessed, along with more specific functions such as the production, release, and reuptake of neurotransmitters and their occupancy of specific receptors. At the same time, MRS can reveal changes in concentration of several hydrogenate compounds in the brain. All these methods have been extensively applied for research in neurology, and some applications have reached the clinical level, namely for the study of degenerative diseases, motor-neuron diseases, movement disorders, cerebrovascular diseases, and epilepsy. This article focuses on the most relevant information that can be obtained with these complementary techniques to help clinicians in the assessment of neurological diseases.

  5. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    SciTech Connect

    Sato, K.; Kobayashi, Y.

    2015-05-15

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  6. Parametric imaging via kinetics-induced filter for dynamic positron emission tomography.

    PubMed

    Bian, Zhaoying; Huang, Jing; Lu, Lijun; Ma, Jianhua; Zeng, Dong; Feng, Qianjin; Chen, Wufan

    2013-01-01

    Due to the noisy measurement of the voxel-wise time activity curve (TAC), parametric imaging for dynamic positron emission tomography (PET) is a challenging task. To address this problem, some spatial filters, such as Gaussian filter, bilateral filter, wavelet-based filter, and so on, are often performed to reduce the noise of each frame. However, these filters usually just consider local properties of each frame without exploring the kinetic information. In this paper, aiming to improve the quantitative accuracy of parametric imaging, we present a kinetics-induced filter to lower the noise of dynamic PET images by incorporating the kinetic information. The present kinetics-induced filter is designed via the similarity between voxel-wise TACs under the framework of bilateral filter. Experimental results with a simulation study demonstrate that the present kinetics-induced filter can achieve noticeable gains than other existing methods for parametric images in terms of quantitative accuracy measures.

  7. [Fluorodeoxyglucose and bronchopulmonary cancer. Initial French results with positron emission tomography].

    PubMed

    Vaylet, F; Foehrenbach, H; De Dreuille, O; Maszelin, P; Merlet, P; Bendriem, B; L'Her, P; Syrota, A; Gaillard, J F

    1998-09-01

    Despite recent advances, the contribution of medical imaging techniques is limited, particularly in terms of tissue characterization, in the diagnosis of pulmonary nodules and search for extension of bronchogenic cancer. The metabolic properties of the glucose analog deoxyglucose labeled with 18F1 would allow metabolic imaging. Positron emission tomography (PET) provides clinicians with quality images with an interesting sensitivity. We report the results of a feasibility study conducted in our first 17 patients. We observed 14 true positives, 1 true negative and 1 false positive and 1 false negative in patients with a malignant primary lesion. We analyzed the causes of error. Ten disseminated localizations were identified. Possible developments in terms of therapeutic strategy are discussed. The agreement between our findings and data reported in the literature prompted us to develop a study protocol using 18-fluorodeoxyglucose PET in patients with bronchogenic cancer.

  8. Current status of positron emission tomography radiotracers for serotonin receptors in humans.

    PubMed

    Zimmer, Luc; Le Bars, Didier

    2013-01-01

    Serotonin (5-HT) neurotransmission plays a key modulatory role in the brain. This system is critical for pathophysiological processes and many drug treatments for brain disorders interact with its 14 subtypes of receptors. Positron emission tomography (PET) is a unique tool for the study of the living brain in translational studies from animal models to patients in neurology or psychiatry. This short review is intended to cover the current status of PET radioligands used for imaging human brain 5-HT receptors. Here, we describe the available PET radioligands for the 5-HT1A , 5-HT1B , 5-HT2A , 5-HT4 and 5-HT6 receptors. Finally, we highlight the future challenges for a functional PET imaging of serotonin receptors, including the research towards specific PET radiotracers for yet unexplored serotonin receptors, the need of radiotracers for endogenous serotonin level measurement and the contribution of agonist radiotracers for functional imaging of 5-HT neurotransmission.

  9. Diagnosis of partial and total physeal arrest by bone single-photon emission computed tomography.

    PubMed

    Wioland, M; Bonnerot, V

    1993-09-01

    Bone single-photon emission computed tomography (SPECT), capable of creating maps of the distribution of osteoblastic activity in every spatial plane of a physis, should provide images of diagnostic value in the case of patients suffering from growth arrests (epiphysiodeses). Seventy-five bone SPECT scans were obtained in 64 children suspected to have developed physeal arrests. The transaxial slices of the physis, in the case of partial epiphysiodeses: (a) indicated the percentage of the remaining normal physis, (b) located the bony bridge within the physis and (c) showed the slowdown of the growth of the remaining normal physis induced by the bony bridge in some children. Misdiagnosis occurred in six patients. For total epiphysiodeses, the radionuclide diagnosis was confirmed in 20 of 21 patients. Radionuclide, x-ray and MRI examinations in the study of growth disturbances were found to be complementary.

  10. Hypoxia imaging using Positron Emission Tomography in non-small cell lung cancer: implications for radiotherapy.

    PubMed

    Bollineni, Vikram Rao; Wiegman, Erwin M; Pruim, Jan; Groen, Harry J M; Langendijk, Johannes A

    2012-12-01

    Tumour hypoxia is an important contributor to radioresistance. Thus, increasing the radiation dose to hypoxic areas may result in improved locoregional tumour control. However, this strategy requires accurate detection of the hypoxic sub-volume using PET imaging. Secondly, hypoxia imaging may also provide prognostic information and may be of help to monitor treatment response. Therefore, a systematic review of the scientific literature was carried out on the use of Positron Emission Tomography (PET) to image Tumour hypoxia in non-small cell lung cancer (NSCLC). More specifically, the purpose of this review was (1) to summarize the different hypoxia tracers used, (2) to investigate whether Tumour hypoxia can be detected in NSCLC and finally (3) whether the presence of hypoxia can be used to predict outcome.

  11. Optical imaging of reporter gene expression using a positron-emission-tomography probe

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen

    2010-11-01

    Reporter gene/reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene/reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene/nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine ([18F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene/reporter probe techniques in medical research.

  12. Analysis of photon emission from 50--350-keV proton impact on H2O

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.; Timpone, Stephanie A.; Monce, Michael N.; Mitchell, Laurel; Griffin, Brian

    2011-04-01

    We have measured photon emission cross sections from neutral fragments produced by collisions of 50-350 keV protons with H2O molecules. Balmer α-δ emissions from both the target and projectile were recorded. We also analyzed A2Σ+-X2Π (0,0) and (1,0) emission from the excited OH fragment produced during target dissociation. Trends in the cross sections revealed two key properties of the collision process: (1) The Bethe theory accurately describes target emission from both H and OH fragments and (2) the ratio of any two Balmer emission cross sections for both the target and projectile can be approximated by simple functions of the respective optical oscillator strengths. Finally, we provide the Bethe fit parameters necessary to calculate the target emission cross sections at all nonrelativistic impact energies.

  13. Predicting Outcome in Patients with Rhabdomyosarcoma: Role of [{sup 18}F]Fluorodeoxyglucose Positron Emission Tomography

    SciTech Connect

    Casey, Dana L.; Wexler, Leonard H.; Fox, Josef J.; Dharmarajan, Kavita V.; Schoder, Heiko; Price, Alison N.; Wolden, Suzanne L.

    2014-12-01

    Purpose: To evaluate whether [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) response of the primary tumor after induction chemotherapy predicts outcomes in rhabdomyosarcoma (RMS). Methods and Materials: After excluding those with initial tumor resection, 107 patients who underwent FDG-PET after induction chemotherapy at Memorial Sloan Kettering Cancer Center from 2002 to 2013 were reviewed. Local control (LC), progression-free survival (PFS), and overall survival (OS) were calculated according to FDG-PET response and maximum standardized uptake value (SUV) at baseline (PET1/SUV1), after induction chemotherapy (PET2/SUV2), and after local therapy (PET3/SUV3). Receiver operator characteristic curves were used to determine the optimal cutoff for dichotomization of SUV1 and SUV2 values. Results: The SUV1 (<9.5 vs ≥9.5) was predictive of PFS (P=.02) and OS (P=.02), but not LC. After 12 weeks (median) of induction chemotherapy, 45 patients had negative PET2 scans and 62 had positive scans: 3-year PFS was 72% versus 44%, respectively (P=.01). The SUV2 (<1.5 vs ≥1.5) was similarly predictive of PFS (P=.005) and was associated with LC (P=.02) and OS (P=.03). A positive PET3 scan was predictive of worse PFS (P=.0009), LC (P=.05), and OS (P=.03). Conclusions: [{sup 18}F]fluorodeoxyglucose positron emission tomography is an early indicator of outcomes in patients with RMS. Future prospective trials may incorporate FDG-PET response data for risk-adapted therapy and early assessment of new treatment regimens.

  14. Quantitative evaluation of benzodiazepine receptors in live Papio papio baboons using positron emission tomography

    SciTech Connect

    Brouillet, E.; Chavoix, C.; Khalili-Varasteh, M.; Bottlaender, M.; Hantraye, P.; Yorke, J.C.; Maziere, M. )

    1990-10-01

    The binding of the 11C-labeled benzodiazepine antagonist Ro 15-1788 (flumazenil) was measured in the neocortex of live Papio papio baboons by positron emission tomography. This allowed us to calculate in vivo (i.e., at physiological temperature, neurotransmitters concentrations, and ionic environment) the apparent density of available benzodiazepine receptors (B'max) and the dissociation constant of Ro 15-1788 (Kd). By coadministering increasing doses of unlabeled Ro 15-1788 with (11C)Ro 15-1788 and assuming that nonsaturable radioactivity indicated the free ligand concentration, we were able to obtain saturation isotherms. We showed that a state of quasiequilibrium was reached 50 min after the administration of the radioligand. Linear Scatchard plots allowed us to calculate B'max at 78 and 50 pmol/ml of cerebral tissue in the occipital and frontal cortices, respectively. In both these areas, Kd is on the order of 6 nM, with a Hill number very close to unity. This indicates that Ro 15-1788 binds in vivo with high affinity to an homogeneous population of saturable sites. A similar measurement was carried out on a naturally photosensitive P. papio baboon. Absolute values of B'max, Kd, and Hill number were similar to those of the control baboons. Although results concerning this baboon can only be considered as a case report, this similarity may suggest that its epileptic syndrome is not related to a large change in B'max or Kd, at least in occipital and frontal cortices. Our results showed that quantitative estimation by positron emission tomography of some characteristics of benzodiazepine receptors is possible in live baboons and may represent a supplementary tool for investigating further the molecular mechanisms of benzodiazepine receptor function in physiological and physiopathological conditions.

  15. Microwave accelerated labeling methods in the synthesis of radioligands for positron emission tomography imaging.

    PubMed

    Kallmerten, Amy E; Alexander, Abigail; Wager, Krista M; Jones, Graham B

    2011-10-01

    Nuclear imaging using positron emission tomography [PET] is a powerful technique with clinical applications which include oncology, cardiovascular disease and CNS disorders. Conventional chemical syntheses of the short half-life radionuclides used in the process however imposes numerous limitations on scope of available ligands. By utilizing microwave assisted synthesis methods many of these limitations can be overcome, paving the way for the design of diverse families of agents with defined cellular targets. This review will survey recent developments in the field with emphasis on the period 2006-2011. Positron emission tomography [PET] has become one of the most powerful in vivo imaging modalities, capable of delivering mm3 resolution of radiotracer distribution and metabolism [1]. When combined with anatomic imaging methods (MRI, CT) co-registered multimode images offer the potential to track metabolic and physiologic events in diseased states and guide and accelerate clinical trials of investigational new drugs. Also, this same methodology can be used to evaluate first pass pharmacokinetics/pharmacodynamics in early stage drug discovery. Though powerful as a technique only a limited number of drugs have seen clinical use and to date only one drug 2-fluoro-deoxy-D-glucose (FDG) has received FDA approval [2]. One of the drawbacks of PET imaging is the need for tracers labeled with an appropriate nuclide and the half-lives of these agents places special constraints on the chemical synthesis. Among the most popular are 11C (t½ =20.4 min) and 18F (t ½ =109.8 min) labeled compounds and this has resulted in a resurgence of interest in practical application of their chemistries [3,4]. This review will focus on microwave mediated methods of acceleration of organic reactions used for the production of labeled PET image contrast agents, with emphasis on the five year period 2006 to 2011.

  16. Dose-Volume Differences for Computed Tomography and Magnetic Resonance Imaging Segmentation and Planning for Proton Prostate Cancer Therapy

    SciTech Connect

    Yeung, Anamaria R.; Vargas, Carlos E. Falchook, Aaron; Louis, Debbie C.; Olivier, Kenneth; Keole, Sameer; Yeung, Daniel; Mendenhall, Nancy P.; Li Zuofeng

    2008-12-01

    Purpose: To determine the influence of magnetic-resonance-imaging (MRI)-vs. computed-tomography (CT)-based prostate and normal structure delineation on the dose to the target and organs at risk during proton therapy. Methods and Materials: Fourteen patients were simulated in the supine position using both CT and T2 MRI. The prostate, rectum, and bladder were delineated on both imaging modalities. The planning target volume (PTV) was generated from the delineated prostates with a 5-mm axial and 8-mm superior and inferior margin. Two plans were generated and analyzed for each patient: an MRI plan based on the MRI-delineated PTV, and a CT plan based on the CT-delineated PTV. Doses of 78 Gy equivalents (GE) were prescribed to the PTV. Results: Doses to normal structures were lower when MRI was used to delineate the rectum and bladder compared with CT: bladder V50 was 15.3% lower (p = 0.04), and rectum V50 was 23.9% lower (p = 0.003). Poor agreement on the definition of the prostate apex was seen between CT and MRI (p = 0.007). The CT-defined prostate apex was within 2 mm of the apex on MRI only 35.7% of the time. Coverage of the MRI-delineated PTV was significantly decreased with the CT-based plan: the minimum dose to the PTV was reduced by 43% (p < 0.001), and the PTV V99% was reduced by 11% (p < 0.001). Conclusions: Using MRI to delineate the prostate results in more accurate target definition and a smaller target volume compared with CT, allowing for improved target coverage and decreased doses to critical normal structures.

  17. Heavy ion and proton beams in high resolution imaging of a fungi spore specimen using STIM tomography

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Breese, M. B. H.; Connell, S. H.; Doyle, B. P.; Drummond, M. L.; Machi, I. Z.; Maclear, R. D.; Schaaff, P.; Sellschop, J. P. F.; Bench, G.; Sideras-Haddad, E.; Antolak, A.; Morse, D.

    1997-07-01

    Scanning transmission ion microscopy (STIM) tomography as a 3-D imaging technique has been shown to have a range of applications. The energy of the transmitted ion is detected with nearly 100% efficiency as a function of position in the transverse plane. The parameters relating to transmitted ion energy loss in the sample are imaged with statistics given by the energy loss process rather than Poisson counting statistics. This enables very fast collection of a set of relatively noise-free 2-D images. Each image is collected after a small rotation of the sample, and a complete 3-D representation of the sample may be tomographically reconstructed. The small beam currents necessary mean that the technique is non-destructive. One of the fields where these non-destructive 3-D density structure maps are particularly useful is in the analysis of biological tissue. The variation of energy loss with projectile atomic number may be exploited to tune the energy loss contrast to the size and density of the sample (heavy ion STIM). This work develops this point, and applies it to the imaging of the microscopic structure of a 90 μm diameter mycorrhiza fungi spore. This specimen has been imaged non-destructively in 3-D using both a 36 MeV 12C beam and a 2.2 MeV proton beam, both with a spatial resolution of about 1 μm. The gain in contrast in the carbon median energy loss maps was dramatic as expected. The corresponding improvement in the tomogram was found to be visible but less dramatic. The tomographic sections as well as the median energy loss maps of the vesicular-arbuscular mycorrhiza fungi spore clearly show the internal structure. Wall morphology data has relevance to germination behaviour of the spores.

  18. Investigation of Abnormal Left Temporal Functioning in Dyslexia through rCBF, Auditory Evoked Potentials, and Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Wood, Frank; And Others

    1991-01-01

    Investigates the proposed left hemisphere dysfunction in dyslexia by reviewing four studies using regional cerebral blood flow (RCBF) and combined auditory evoked responses with positron emission tomography. Emphasizes methodological issues. Finds that dyslexics showed a positive correlation between Heschl's gyrus activation and phonemic…

  19. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted.

  20. Serotonin transporter in attention-deficit hyperactivity disorder--preliminary results from a positron emission tomography study.

    PubMed

    Karlsson, Linnea; Tuominen, Lauri; Huotarinen, Antti; Leppämäki, Sami; Sihvola, Elina; Helin, Semi; Sipilä, Maria; Tani, Pekka; Hirvonen, Jussi; Hietala, Jarmo; Karlsson, Hasse

    2013-05-30

    The serotonin transporter (SERT) in attention-deficit hyperactivity disorder (ADHD) patients has not been explored by earlier positron emission tomography (PET) studies. We measured SERT availability in female ADHD patients (n=8) and healthy controls (n=14) with PET and [11C]MADAM as a tracer. No significant group differences in [11C]MADAM binding potential were noted.

  1. 76 FR 54473 - Guidance on Positron Emission Tomography Drug Applications-Content and Format for New Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ..., 2011 (76 FR 6143), and Docket No. FDA- 2000-D-1542 was open for comments until April 4, 2011. The... Emission Tomography Drug Products,'' issued on March 10, 2000 (65 FR 13010). The February 3, 2011, revised...-- Content and Format for New Drug Applications and Abbreviated New Drug Applications; Availability...

  2. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    SciTech Connect

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  3. Analytical computation of prompt gamma ray emission and detection for proton range verification

    NASA Astrophysics Data System (ADS)

    Sterpin, E.; Janssens, G.; Smeets, J.; Vander Stappen, François; Prieels, D.; Priegnitz, Marlen; Perali, Irene; Vynckier, S.

    2015-06-01

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either 12C, 14N, 16O, 31P or 40Ca, with 10% of 1H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the profiles

  4. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    SciTech Connect

    Herraiz, J. L.; Sitek, A.

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  5. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    PubMed Central

    Herraiz, J. L.; Sitek, A.

    2015-01-01

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data. PMID:26520759

  6. Graphics processing unit (GPU)-accelerated particle filter framework for positron emission tomography image reconstruction.

    PubMed

    Yu, Fengchao; Liu, Huafeng; Hu, Zhenghui; Shi, Pengcheng

    2012-04-01

    As a consequence of the random nature of photon emissions and detections, the data collected by a positron emission tomography (PET) imaging system can be shown to be Poisson distributed. Meanwhile, there have been considerable efforts within the tracer kinetic modeling communities aimed at establishing the relationship between the PET data and physiological parameters that affect the uptake and metabolism of the tracer. Both statistical and physiological models are important to PET reconstruction. The majority of previous efforts are based on simplified, nonphysical mathematical expression, such as Poisson modeling of the measured data, which is, on the whole, completed without consideration of the underlying physiology. In this paper, we proposed a graphics processing unit (GPU)-accelerated reconstruction strategy that can take both statistical model and physiological model into consideration with the aid of state-space evolution equations. The proposed strategy formulates the organ activity distribution through tracer kinetics models and the photon-counting measurements through observation equations, thus making it possible to unify these two constraints into a general framework. In order to accelerate reconstruction, GPU-based parallel computing is introduced. Experiments of Zubal-thorax-phantom data, Monte Carlo simulated phantom data, and real phantom data show the power of the method. Furthermore, thanks to the computing power of the GPU, the reconstruction time is practical for clinical application.

  7. Clinical evaluation of a high-resolution (2. 6-mm) positron emission tomography

    SciTech Connect

    Valk, P.E.; Jagust, W.J.; Derenzo, S.E.; Huesman, R.H.; Geyer, A.B.; Budinger, T.F. )

    1990-09-01

    The intrinsic resolution of the Donner 600-crystal positron emission tomograph (PET 600) is 2.6 mm full width at half maximum (FWHM) in-plane and 6 mm FWHM axially. More than 100 patients with glioma, radiation necrosis, Alzheimer disease, or epilepsy have been studied with this system. Approximately 1 million events are acquired in 15 minutes, starting 1 hour after injection of 10 mCi (370 MBq) of fluorine-18-fluorodeoxyglucose. Normal structures as small as the superior colliculi and the external capsule have been resolved. Improved separation of the cortical ribbon from adjacent white matter has allowed more accurate determination of cortical metabolic rate. In two of 15 patients undergoing evaluation for recurrent glioma, the PET 600 images showed tumor uptake that was not apparent on a lower-resolution study. A high-activity orbiting transmission source with electronic collimation allows accurate, short-duration transmission measurements to be made after radiopharmaceutical administration. The anatomic detail seen on the transmission images can be used for reproducible patient positioning with an accuracy of 1-2 mm perpendicular to the image plane. These findings demonstrate the practicality and clinical effectiveness of high-resolution positron emission tomography.

  8. Clustering-initiated factor analysis application for tissue classification in dynamic brain positron emission tomography.

    PubMed

    Boutchko, Rostyslav; Mitra, Debasis; Baker, Suzanne L; Jagust, William J; Gullberg, Grant T

    2015-07-01

    The goal is to quantify the fraction of tissues that exhibit specific tracer binding in dynamic brain positron emission tomography (PET). It is achieved using a new method of dynamic image processing: clustering-initiated factor analysis (CIFA). Standard processing of such data relies on region of interest analysis and approximate models of the tracer kinetics and of tissue properties, which can degrade accuracy and reproducibility of the analysis. Clustering-initiated factor analysis allows accurate determination of the time-activity curves and spatial distributions for tissues that exhibit significant radiotracer concentration at any stage of the emission scan, including the arterial input function. We used this approach in the analysis of PET images obtained using (11)C-Pittsburgh Compound B in which specific binding reflects the presence of β-amyloid. The fraction of the specific binding tissues determined using our approach correlated with that computed using the Logan graphical analysis. We believe that CIFA can be an accurate and convenient tool for measuring specific binding tissue concentration and for analyzing tracer kinetics from dynamic images for a variety of PET tracers. As an illustration, we show that four-factor CIFA allows extraction of two blood curves and the corresponding distributions of arterial and venous blood from PET images even with a coarse temporal resolution.

  9. Optimized tomography methods for plasma emissivity reconstruction at the ASDEX Upgrade tokamak.

    PubMed

    Odstrčil, T; Pütterich, T; Odstrčil, M; Gude, A; Igochine, V; Stroth, U

    2016-12-01

    The soft X-ray (SXR) emission provides valuable insight into processes happening inside of high-temperature plasmas. A standard method for deriving the local emissivity profiles of the plasma from the line-of-sight integrals measured by pinhole cameras is the tomographic inversion. Such an inversion is challenging due to its ill-conditioned nature and because the reconstructed profiles depend not only on the quality of the measurements but also on the inversion algorithm used. This paper provides a detailed description of several tomography algorithms, which solve the inversion problem of Tikhonov regularization with linear computational complexity in the number of basis functions. The feasibility of combining these methods with the minimum Fisher information regularization is demonstrated, and various statistical methods for the optimal choice of the regularization parameter are investigated with emphasis on their reliability and robustness. Finally, the accuracy and the capability of the methods are demonstrated by reconstructions of experimental SXR profiles, featuring poloidal asymmetric impurity distributions as measured at the ASDEX Upgrade tokamak.

  10. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Scan in an Unusual Case of Lymphoma with Secondary Involvement of Uterine Cervix Presenting as a Pathological Fracture

    PubMed Central

    Sasikumar, Arun; Joy, Ajith; Pillai, M. R. A.; Thomas, Boben

    2017-01-01

    A 48-year-old female presented with a pathological fracture of the right femur. 99mTc methylene diphosphonate bone scan revealed multiple areas of increased osteoblastic activity consistent with metastatic disease. Serum electrophoresis revealed monoclonal gammopathy. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scan revealed metabolically active lesions in bulky uterine cervix and osteolytic skeletal lesions. Unusual pattern of FDG uptake in uterine cervix and osteolytic skeletal lesions warranted a biopsy of the uterine cervix which revealed diffuse large B-cell lymphoma. 18F-FDG PET/CT scan helped in guiding the site of biopsy to reach a final diagnosis in this unusual case of lymphoma with a secondary involvement of uterine cervix presenting as a pathological fracture. PMID:28242988

  11. Isolated thymic Langerhans cell histiocytosis discovered on F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT).

    PubMed

    Turpin, Sophie; Carret, Anne-Sophie; Dubois, Josée; Buteau, Chantal; Patey, Natalie

    2015-11-01

    The thymic infiltration in young patients with multisystemic Langerhans cell histiocytosis and its radiologic features are well known. However, isolated thymic disease has seldom been reported in the literature. We report the case of a 10-month-old child admitted for fever of unknown origin. Whole-body F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) was performed to identify a focus of infection. It demonstrated an unusual aspect of the thymus, which led to further investigation and revealed isolated infiltration of the thymus by Langerhans cell histiocytosis. The patient was treated accordingly and is now disease free. As evaluation of Langerhans cell histiocytosis patients with F-18 FDG PET/CT is becoming more frequent, it is important to be aware of the scintigraphical characteristics of thymic Langerhans cell histiocytosis.

  12. Hypermetabolic Calcified Lymph Nodes on 18Fludeoxyglucose-Positron Emission Tomography/Computed Tomography in a Case of Treated Ovarian Cancer Recurrence: Residual Disease or Benign Formation?

    PubMed Central

    Nikaki, Alexandra; Alexopoulos, Athanasios; Vlachou, Fani; Filippi, Vasiliki; Andreou, Ioannis; Rapti, Vasiliki; Gogos, Konstantinos; Dalianis, Konstantinos; Efthymiadou, Roxani; Prassopoulos, Vassilios

    2016-01-01

    The contribution of positron emission tomography/computed tomography (PET/CT) with 18F-fludeoxyglucose (FDG) in evaluating ovarian cancer recurrence even after a prolonged disease-free interval, and in therapy response is well-described. Calcifications observed in CT, although usually attributed to benign conditions, may actually represent active disease. Such an example of calcified formations is psammoma bodies. We present a case of 56-y. o. patient with ovarian cancer relapse at the supraclavicular area 18 years after complete response and disease-free interval. The patient received chemotherapy and underwent 18F-FDG-PET/CT for the evaluation of treatment response. Both CT corrected and uncorrected PET images showed hypermetabolism in the massively calcified lymph nodes in the neck, mediastinum, axilla and abdomen, indicative of active residual disease. PMID:27277326

  13. Subcutaneous fatty tissue metastasis from renal cell carcinoma detected with fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging

    PubMed Central

    Tatoğlu, Mehmet Tarιk; Özülker, Tamer; Değirmenci, Hülya; Sayιlgan, Ayşe Tülay

    2011-01-01

    A patient who had undergone left radical nephrectomy 11 years ago for renal cell carcinoma (RCC) was referred to our clinic for restaging. Fluorine-18 fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (F18-FDG PET/CT) showed hypometabolic area in left frontal region of the brain and increased FDG uptake in the subcutaneous fatty tissues of the right thigh. Histopathological examination of the biopsy material from the left frontal region and right gluteal region revealed metastasis of clear cell type RCC. Seven months later, a magnetic resonance ımaging (MRI) of right cruris showed a contrast-enhancing lesion with a diameter of 3.5 cm, located at the subcutaneous area of posterior part of right cruris. A concomitant F18-FDG PET/CT detected an increased FDG uptake focus in the proximal third of right cruris adjacent to the muscle planes and this finding was consistent with metastasis of RCC. PMID:21969776

  14. Spindle cell sarcoma of pulmonary artery mimicking thromboembolism with lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Pattabiraman, Vr; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-10-01

    Pulmonary artery sarcoma (PAS), although rare, must be considered in the differential diagnosis of pulmonary thromboembolism (PTE). This tumor is highly malignant and the prognosis is very poor. As much as the standardized uptake values (SUVs) at fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) have helped in differentiating between benign and malignant tumors, visualization of a low-attenuation filling defect within a pulmonary artery on contrast-enhanced chest computed tomography (CT) can be suggestive of a malignancy, such as PAS, if the lesion shows high FDG uptake at PET. We present a case of PAS that showed high FDG uptake on integrated FDG PET/CT and with lung metastasis. Patient underwent endoscopic bronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA), which confirmed spindle cell sarcoma.

  15. Spindle cell sarcoma of pulmonary artery mimicking thromboembolism with lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Pattabiraman, VR; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-01-01

    Pulmonary artery sarcoma (PAS), although rare, must be considered in the differential diagnosis of pulmonary thromboembolism (PTE). This tumor is highly malignant and the prognosis is very poor. As much as the standardized uptake values (SUVs) at fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) have helped in differentiating between benign and malignant tumors, visualization of a low-attenuation filling defect within a pulmonary artery on contrast-enhanced chest computed tomography (CT) can be suggestive of a malignancy, such as PAS, if the lesion shows high FDG uptake at PET. We present a case of PAS that showed high FDG uptake on integrated FDG PET/CT and with lung metastasis. Patient underwent endoscopic bronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA), which confirmed spindle cell sarcoma. PMID:25400365

  16. Paraneoplastic syndrome turned out to be non-Hodgkin's lymphoma on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Sahoo, Manas Kumar; Arunraj, S T; Srivastava, Achal Kumar; Sahoo, Ranjit Kumar; Kumar, Rakesh; Bal, Chandrasekhar

    2016-01-01

    Paraneoplastic neurological syndromes (PNSs) are commonly encountered with underlying malignant pathology. Though anti--neuronal antibodies play a major role in the diagnosis of the underlying malignant pathology but at many times it becomes inconclusive. As early detection of the primary cause and its treatment gives the best result in such situations, there arises an early and accurate diagnostic need. We present a 65--year--old patient presenting with rapidly progressive quadriparesis with both distal and proximal involvement. With all routine work--up tests within normal limits, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) was done which revealed multiple findings that suggested a diagnosis of lymphoma. In our case, PET/CT proved to be an important modality for finding the underlying malignant pathology in a suspected case of PNS.

  17. Extrapulmonary Small Cell Carcinoma of the Seminal Vesicles and Prostate Demonstrated on 18F-FDG Positron Emission Tomography/Computed Tomography.

    PubMed

    Tabrizipour, Amir Iravani; Shen, Lily; Mansberg, Robert; Chuong, Bui

    2016-02-05

    Extrapulmonary primary small cell carcinomas arising from the urogenital tract is infrequent. It can rarely arise from the prostate and even more rarely from the seminal vesicles. We present a 79-year-old male who was admitted due to acute renal failure with a history of radical radiotherapy for prostate adenocarcinoma 13 years ago. The prostate specific antigen level was not elevated. An abdominopelvic computed tomography (CT) scan showed markedly enlarged seminal vesicles causing bilateral ureteral obstruction and a mildly enlarged prostate. Further evaluation with fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/CT demonstrated extensive 18F-FDG uptake in the pelvis with diffuse involvement of both seminal vesicles and the prostate without pathologic uptake in the lungs or elsewhere in the body. Core biopsies of the prostate and both seminal vesicles revealed diffuse involvement by small cell carcinoma. Therapy could not be instituted due to a rapid deterioration in the patient's clinical condition.

  18. Paraneoplastic syndrome turned out to be non-Hodgkin's lymphoma on 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sahoo, Manas Kumar; Arunraj, S. T.; Srivastava, Achal Kumar; Sahoo, Ranjit Kumar; Kumar, Rakesh; Bal, Chandrasekhar

    2016-01-01

    Paraneoplastic neurological syndromes (PNSs) are commonly encountered with underlying malignant pathology. Though anti--neuronal antibodies play a major role in the diagnosis of the underlying malignant pathology but at many times it becomes inconclusive. As early detection of the primary cause and its treatment gives the best result in such situations, there arises an early and accurate diagnostic need. We present a 65--year--old patient presenting with rapidly progressive quadriparesis with both distal and proximal involvement. With all routine work--up tests within normal limits, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) was done which revealed multiple findings that suggested a diagnosis of lymphoma. In our case, PET/CT proved to be an important modality for finding the underlying malignant pathology in a suspected case of PNS. PMID:27833317

  19. Determination of total fluorine in five coal reference materials by proton-induced gamma-ray emission spectrometry.

    PubMed

    Roelandts, I; Robaye, G; Delbrouck-Habaru, J M; Weber, G

    1996-03-01

    The direct non-destructive proton-induced gamma-ray emission (PIGE) technique with a germanium detector was applied to the determination of total fluorine concentration in five coal reference materials (BCR 40, NIST 1632b, NIST 1635, SARM 20 and USGS CLB-1). Duplicate analyses were made from five randomly selected bottles of each coal. Individual data are presented and some problems (calibration, proton stopping power, effects of sample heating by the proton beam, background estimation) which were encountered during this study are discussed. Sensitivity and reproducibility of the determinations, and homogeneity of the coal samples with respect to fluorine contents by analysis of variance were investigated. The present data are also compared with the few published values for these reference samples, including other PIGE data. The use of synthetic standards and spiked samples in the present study suggested that the PIGE method was more accurate than other techniques.

  20. 18F-fluorodeoxyglucose positron emission tomography as a noninvasive method for the diagnosis of primary pulmonary artery sarcoma.

    PubMed

    Dias, Olívia Meira; Lombardi, Elisa Maria Siqueira; Canzian, Mauro; Soares Júnior, José; Vieira, Lucas de Oliveira; Terra Filho, Mário

    2011-01-01

    Pulmonary artery sarcomas are rare, difficult-to-diagnose tumors that frequently mimic chronic pulmonary thromboembolism. We report the cases of two female patients with clinical signs of dyspnea and lung masses associated with pulmonary artery filling defects on chest CT angiography. We performed 18F-fluorodeoxyglucose positron emission tomography, which revealed increased radiotracer uptake in those lesions. Pulmonary artery sarcoma was subsequently confirmed by anatomopathological examination. We emphasize the importance of this type of tomography as a noninvasive method for the diagnosis of these tumors.

  1. Two Cases of Legionella pneumophila Pneumonia with Prolonged Neurologic Symptoms and Brain Hypoperfusion on Single-Photon Emission Computed Tomography

    PubMed Central

    Miura, You; Seto, Akira; Kanazawa, Minoru; Nagata, Makoto

    2016-01-01

    Cerebral and cerebellar symptoms are frequently associated with Legionnaires' disease. However, corresponding brain lesions are difficult to demonstrate using either computed tomography (CT) or magnetic resonance imaging (MRI). We report here two patients with Legionella pneumophila pneumonia accompanied by prolonged neurologic symptoms. In contrast to brain CT and MRI, which failed to detect any abnormalities, single-photon emission computed tomography (SPECT) showed multiple sites of hypoperfusion within the brains of both patients. These cases suggest that vasculopathy, which is detectable by SPECT, might be one of the causes of neurologic symptoms in patients with Legionnaires' disease. PMID:27478660

  2. Prognostic value of single-photon emission tomography in acute ischaemic stroke.

    PubMed

    Weir, C J; Bolster, A A; Tytler, S; Murray, G D; Corrigall, R S; Adams, F G; Lees, K R

    1997-01-01

    Single-photon emission tomography (SPET) is widely used in the investigation of acute stroke. We investigated the relationship between SPET data and functional outcome in a large group of acute stroke patients. One hundred and eight patients underwent cerebral computed tomography (CT) and technetium-99m hexamethylpropylene amine oxime SPET after acute ischaemic stroke. We categorised the clinical presentation according to the Oxford classification of acute stroke. Outcome was measured 1 year after stroke using mortality and the Barthel Index for survivors. SPET scans were interpreted without reference to the clinical data using a semi-automatic technique. Three experienced observers determined the presence of luxury perfusion using suitably scaled SPET images in conjunction with the CT scan. Both SPET volume and severity of deficit were significantly negatively correlated with Barthel Index at 1 year (rs=-0.310, P<0.0001, and rs=-0.316, P<0.0001 respectively). In patients scanned with SPET within 16 h of stroke onset, the correlations were more strongly negative (rs=-0.606, P<0. 001, and rs=-0.492, P<0.005 respectively). Luxury perfusion was not associated (chi2=0.073, df=1, P=0.79) with good functional outcome (Barthel score >/=60). Stepwise logistic regression identified Oxford classification, total deficit volume and patient's age as significant predictors of functional outcome. Overall predictive accuracy was 72%. Predictive accuracy was better in patients who received SPET within 16 h of stroke onset. SPET provides useful information about the functional outcome of acute stroke at 1 year. However, the accuracy of prediction decreases the longer SPET is delayed. Prognostication using SPET in combination with clinical assessment and other investigations may also be considered.

  3. The Usefulness of Positron-Emission Tomography Findings in the Management of Anterior Mediastinal Tumors

    PubMed Central

    Sano, Fumitoshi; Ohashi, Shinichi; Suzuki, Kosuke; Uematsu, Shugo; Suzuki, Takashi; Kadokura, Mitsutaka

    2017-01-01

    Purpose: We performed a retrospective analysis to evaluate the usefulness of positron-emission tomography/computed tomography (PET/CT) findings in the classification and management of anterior mediastinal tumors. Methods: Between 2006 and 2015, 105 patients with anterior mediastinal tumor received PET/CT. 18F-fluorodeoxyglucose (18F-FDG)-PET images were obtained 60 minutes after the injection of 18F-FDG. Results: The histological classifications were as follows: thymoma (n = 49), thymic carcinoma (TC) (n = 19), malignant lymphoma (ML) (n = 8), teratoma (n = 7), thymic cyst (n = 14), and others (n = 8). Upon visual inspection (SUV max: >2.0), all of the malignant tumors showed 18F-FDG accumulation (with the exception of one type A thymoma). Two of the 14 thymic cysts and three of the seven teratomas showed slight 18F-FDG accumulation. The SUV max values of the low-grade thymomas, high-grade thymomas, TCs and MLs were 3.14 ± 0.73, 4.34 ± 1.49, 8.59 ± 3.05, and 10.08 ± 2.53, respectively, with significant differences between the low- and high-grade thymomas, and between TCs and MLs. The sensitivity, specificity and accuracy of 18F-FDG in the detection of low-grade thymomas and thymomas with a maximum diameter of ≤50 mm and an SUV max of ≤3.4 were 85%, 48%, and 60%, respectively. Conclusion: FDG-PET/CT is an objective and useful modality in the differential diagnosis and management of anterior mediastinal tumors. PMID:28123154

  4. Evaluation of response to immune checkpoint inhibitors: Is there a role for positron emission tomography?

    PubMed Central

    Bauckneht, Matteo; Piva, Roberta; Sambuceti, Gianmario; Grossi, Francesco; Morbelli, Silvia

    2017-01-01

    Strategies targeting intracellular negative regulators such as immune checkpoint inhibitors (ICPIs) have demonstrated significant antitumor activity across a wide range of solid tumors. In the clinical practice, the radiological effect of immunotherapeutic agents has raised several more relevant and complex challenges for the determination of their imaging-based response at single patient level. Accordingly, it has been suggested that the conventional Response Evaluation Criteria in Solid Tumors assessment alone, based on dimensional evaluation provided by computed tomography (CT), tends to underestimate the benefit of ICPIs at least in a subset of patients, supporting the need of immune-related response criteria. Different from CT, very few data are available for the evaluation of immunotherapy by means of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Moreover, since the antineoplastic activity of ICPIs is highly related to the activation of T cells against cancer cells, FDG accumulation might cause false-positive findings. Yet, discrimination between benign and malignant processes represents a huge challenge for FDG-PET in this clinical setting. Consequently, it might be of high interest to test the complex and variegated response to ICPIs by means of PET and thus it is worthwhile to ask if a similar introduction of immune-related PET-based criteria could be proposed in the future. Finally, PET might offer a new insight into the biology and pathophysiology of ICPIs thanks to a growing number of non-invasive immune-diagnostic approaches based on non-FDG tracers. PMID:28298962

  5. Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions

    SciTech Connect

    Aristophanous, Michalis; Killoran, Joseph H.; Chen, Aileen B.; Berbeco, Ross I.

    2011-07-01

    Purpose: To investigate the behavior of tumor subvolumes of high [18F]-fluorodeoxyglucose (FDG) uptake as seen on clinical four-dimensional (4D) FDG-positron emission tomography (PET) scans. Methods and Materials: Four-dimensional FDG-PET/computed tomography scans from 13 patients taken before radiotherapy were available. The analysis was focused on regions of high uptake that are potential dose-painting targets. A total of 17 lesions (primary tumors and lymph nodes) were analyzed. On each one of the five phases of the 4D scan a classification algorithm was applied to obtain the region of highest uptake and segment the tumor volume. We looked at the behavior of both the high-uptake subvolume, called 'Boost,' and the segmented tumor volume, called 'Target.' We measured several quantities that characterize the Target and Boost volumes and quantified correlations between them. Results: The behavior of the Target could not always predict the behavior of the Boost. The shape deformation of the Boost regions was on average 133% higher than that of the Target. The gross to internal target volume expansion was on average 27.4% for the Target and 64% for the Boost, a statistically significant difference (p < 0.05). Finally, the inhale-to-exhale phase (20%) had the highest shape deformation for the Boost regions. Conclusions: A complex relationship between the measured quantities for the Boost and Target volumes is revealed. The results suggest that in cases in which advanced therapy techniques such as dose painting are being used, a close examination of the 4D PET scan should be performed.

  6. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    Purpose: The role of 18fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. Materials and Methods: A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. Results: The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. Conclusion: The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted. PMID:26917889

  7. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions.

    PubMed

    Klein, Felix; Platt, Stephen M; Farren, Naomi J; Detournay, Anais; Bruns, Emily A; Bozzetti, Carlo; Daellenbach, Kaspar R; Kilic, Dogushan; Kumar, Nivedita K; Pieber, Simone M; Slowik, Jay G; Temime-Roussel, Brice; Marchand, Nicolas; Hamilton, Jacqueline F; Baltensperger, Urs; Prévôt, André S H; El Haddad, Imad

    2016-02-02

    Cooking processes produce gaseous and particle emissions that are potentially deleterious to human health. Using a highly controlled experimental setup involving a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we investigate the emission factors and the detailed chemical composition of gas phase emissions from a broad variety of cooking styles and techniques. A total of 95 experiments were conducted to characterize nonmethane organic gas (NMOG) emissions from boiling, charbroiling, shallow frying, and deep frying of various vegetables and meats, as well as emissions from vegetable oils heated to different temperatures. Emissions from boiling vegetables are dominated by methanol. Significant amounts of dimethyl sulfide are emitted from cruciferous vegetables. Emissions from shallow frying, deep frying and charbroiling are dominated by aldehydes of differing relative composition depending on the oil used. We show that the emission factors of some aldehydes are particularly large which may result in considerable negative impacts on human health in indoor environments. The suitability of some of the aldehydes as tracers for the identification of cooking emissions in ambient air is discussed.

  8. High-speed digitization readout of silicon photomultipliers for time of flight positron emission tomography

    SciTech Connect

    Ronzhin, A.; Los, S.; Martens, M.; Ramberg, E.; Kim, H.; Chen, C.; Kao, C.; Niessen, K.; Zatserklyaniy, A.; Mazzillo, M.; Carbone, B.; /SGS Thomson, Catania

    2011-02-01

    We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomography (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage

  9. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    NASA Astrophysics Data System (ADS)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  10. 18F-flouro-2-deoxyglucose positron emission tomography/computed tomography imaging of solitary prostatic and pulmonary tuberculosis mimicking metastatic prostate cancer.

    PubMed

    Kadihasanoglu, Mustafa; Yildiz, Tekin; Atahan, Safak; Ausmus, Andrew; Atahan, Ozcan

    2015-01-01

    Genitourinary tuberculosis (TB) is a common type of extrathoracic TB and can be found in isolation or associated with pulmonary TB. It contributes to 10-14% of extrapulmonary TB. Prostate TB is rare and usually found incidentally following transurethral resection of the prostate for treatment of benign prostatic obstruction as an isolated lesion in immunocompetant patient. The authors report a case of prostatic and pulmonary TB in animmunocompetant patient investigating for the positive positron emission tomography in lung and prostate. To our knowledge, this is the first case reported in the literature presenting with simultaneous hypermetabolic lesions in the prostate and lung.

  11. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines.

    PubMed

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H(α) (656 nm) and H(β) (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  12. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    NASA Astrophysics Data System (ADS)

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission Hα (656 nm) and Hβ (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  13. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    PubMed Central

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  14. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    PubMed

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν<1) or under-dispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy.

  15. High-performance computing and networking as tools for accurate emission computed tomography reconstruction.

    PubMed

    Passeri, A; Formiconi, A R; De Cristofaro, M T; Pupi, A; Meldolesi, U

    1997-04-01

    It is well known that the quantitative potential of emission computed tomography (ECT) relies on the ability to compensate for resolution, attenuation and scatter effects. Reconstruction algorithms which are able to take these effects into account are highly demanding in terms of computing resources. The reported work aimed to investigate the use of a parallel high-performance computing platform for ECT reconstruction taking into account an accurate model of the acquisition of single-photon emission tomographic (SPET) data. An iterative algorithm with an accurate model of the variable system response was ported on the MIMD (Multiple Instruction Multiple Data) parallel architecture of a 64-node Cray T3D massively parallel computer. The system was organized to make it easily accessible even from low-cost PC-based workstations through standard TCP/IP networking. A complete brain study of 30 (64x64) slices could be reconstructed from a set of 90 (64x64) projections with ten iterations of the conjugate gradients algorithm in 9 s, corresponding to an actual speed-up factor of 135. This work demonstrated the possibility of exploiting remote high-performance computing and networking resources from hospital sites by means of low-cost workstations using standard communication protocols without particular problems for routine use. The achievable speed-up factors allow the assessment of the clinical benefit of advanced reconstruction techniques which require a heavy computational burden for the compensation effects such as variable spatial resolution, scatter and attenuation. The possibility of using the same software on the same hardware platform with data acquired in different laboratories with various kinds of SPET instrumentation is appealing for software quality control and for the evaluation of the clinical impact of the reconstruction methods.

  16. Emission Computed Tomography: A New Technique for the Quantitative Physiologic Study of Brain and Heart in Vivo

    DOE R&D Accomplishments Database

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Schelbert, H. R.; Kuhl, D. E.

    1978-01-01

    Emission computed tomography can provide a quantitative in vivo measurement of regional tissue radionuclide tracer concentrations. This facility when combined with physiologic models and radioactively labeled physiologic tracers that behave in a predictable manner allow measurement of a wide variety of physiologic variables. This integrated technique has been referred to as Physiologic Tomography (PT). PT requires labeled compounds which trace physiologic processes in a known and predictable manner, and physiologic models which are appropriately formulated and validated to derive physiologic variables from ECT data. In order to effectively achieve this goal, PT requires an ECT system that is capable of performing truly quantitative or analytical measurements of tissue tracer concentrations and which has been well characterized in terms of spatial resolution, sensitivity and signal to noise ratios in the tomographic image. This paper illustrates the capabilities of emission computed tomography and provides examples of physiologic tomography for the regional measurement of cerebral and myocardial metabolic rate for glucose, regional measurement of cerebral blood volume, gated cardiac blood pools and capillary perfusion in brain and heart. Studies on patients with stroke and myocardial ischemia are also presented.

  17. Amyloid deposition after cerebral hypoperfusion: evidenced on [(18)F]AV-45 positron emission tomography.

    PubMed

    Huang, Kuo-Lun; Lin, Kun-Ju; Ho, Meng-Yang; Chang, Yeu-Jhy; Chang, Chien-Hung; Wey, Shiaw-Pyng; Hsieh, Chia-Ju; Yen, Tzu-Chen; Hsiao, Ing-Tsung; Lee, Tsong-Hai

    2012-08-15

    Animal studies have shown that cerebral hypoperfusion may be associated with amyloid plaque accumulation. Amyloid plaque is known to be associated with dementia and [(18)F]AV-45 is a positron emission tomography (PET) ligand that binds to extracelluar plaques. We hypothesized that demented patients with cerebral hypoperfusion may have increased [(18)F]AV-45 uptake. Five demented patients with cerebral hypoperfusion due to unilateral carotid artery stenosis (CAS) were examined with [(18)F]AV-45 PET, and the results were compared with six elderly controls. The standard uptake value ratio (SUVR) of each region of interest (ROI) was created using whole cerebellum as the reference region. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. Patients with dementia and unilateral CAS had a higher global [(18)F]AV-45 SUVR (1.34 ± 0.06) as compared with controls (1.10 ± 0.04, p=0.0043), especially over the frontal, temporal, precuneus, anterior cingulate and occipital regions. The statistical distribution maps revealed a significantly increased [(18)F]AV-45 SUVR in the medial frontal, caudate, thalamus, posterior cingulate, occipital and middle and superior temporal regions ipsilateral to the side of CAS (p<0.01). The present study found that cerebral [(18)F]AV-45 binding is increased in demented patients with CAS, and its distribution is lateralized to the CAS side, suggesting that amyloid-related dementia may occur under cerebral hypoperfusion.

  18. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature

    PubMed Central

    Chakravarty, Rubel; Hong, Hao; Cai, Weibo

    2014-01-01

    Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called `image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for treatment of cancer but might also find utility in management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field. PMID:25182469

  19. Positron Emission Tomography to Elucidate Pharmacokinetic Differences of Regioisomeric Retinoid X Receptor Agonists

    PubMed Central

    2015-01-01

    RXR partial agonist NEt-4IB (2a, 6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: EC50 = 169 nM, Emax = 55%) showed a blood concentration higher than its Emax after single oral administration at 30 mg/kg to mice, and repeated oral administration at 10 mg/kg/day to KK-Ay mice afforded antitype 2 diabetes activity without the side effects caused by RXR full agonists. However, RXR full agonist NEt-3IB (1a), in which the isobutoxy and isopropyl groups of 2a are interchanged, gave a much lower blood concentration than 2a. Here we used positron emission tomography (PET) with tracers [11C]1a, [11C]2a and fluorinated derivatives [18F]1b, [18F]2b, which have longer half-lives, to examine the reason why 1a and 2a exhibited significantly different blood concentrations. As a result, the reason for the high blood concentration of 2a after oral administration was found to be linked to higher intestinal absorbability together with lower biliary excretion, compared with 1a. PMID:25815156

  20. Positron emission tomography molecular imaging of dopaminergic system in drug addiction.

    PubMed

    Hou, Haifeng; Tian, Mei; Zhang, Hong

    2012-05-01

    Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction.

  1. Regional changes in extravascular lung water detected by positron emission tomography

    SciTech Connect

    Schuster, D.P.; Marklin, G.F.; Mintun, M.A.

    1986-04-01

    Regional measurements of extravascular lung water (rEVLW) were made with positron emission tomography (PET) and 15O-labeled radionuclides. The label used to measure the total lung water (TLW) content fully equilibrated with TLW prior to scanning in both dogs with normal and low cardiac outputs, and nearly so in areas of lung made edematous by oleic acid injury (the TLW values used were 97% of maximum values). Regional EVLW measurements made by PET (EVLW-PET) and gravimetric techniques in both normal and edematous lung were closely correlated (r = 0.93), and EVLW-PET increased from an average of 0.20 to 0.37 mlH/sub 2/O/ml lung (P less than 0.05) after regional lung injury. PET measurements of regional blood volume always decreased (from an average of 0.12 to 0.09 ml blood/ml lung (P less than 0.05)) after cardiac output was lowered by hemorrhage in a separate set of animals. Total EVLW (by thermodye indicator dilution) did not change. Likewise, regional EVLW remained constant in areas below the left atrium but decreased in areas above the left atrium. We conclude that PET measurements are accurate, noninvasive, and reproducible and that regional changes may be detected even when measurements of total EVLW by other methods may fail to change significantly.

  2. Modelling Random Coincidences in Positron Emission Tomography by Using Singles and Prompts: A Comparison Study

    PubMed Central

    2016-01-01

    Random coincidences degrade the image in Positron Emission Tomography, PET. To compensate for their degradation effects, the rate of random coincidences should be estimated. Under certain circumstances, current estimation methods fail to provide accurate results. We propose a novel method, “Singles–Prompts” (SP), that includes the information conveyed by prompt coincidences and models the pile–up. The SP method has the same structure than the well-known “Singles Rate” (SR) approach. Hence, SP can straightforwardly replace SR. In this work, the SP method has been extensively assessed and compared to two conventional methods, SR and the delayed window (DW) method, in a preclinical PET scenario using Monte–Carlo simulations. SP offers accurate estimates for the randoms rates, while SR and DW tend to overestimate the rates (∼10%, and 5%, respectively). With pile-up, the SP method is more robust than SR (but less than DW). At the image level, the contrast is overestimated in SR-corrected images, +16%, while SP produces the correct value. Spill–over is slightly reduced using SP instead of SR. The DW images values are similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms were not compensated for. In particular, the contrast is reduced, −16%. In general, the better estimations of SP translate into better image quality. PMID:27603143

  3. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography.

    PubMed

    Drever, Laura A; Roa, Wilson; McEwan, Alexander; Robinson, Don

    2007-03-09

    Incorporation of positron emission tomography (PET) data into radiotherapy planning is currently under investigation for numerous sites including lung, brain, head and neck, breast, and prostate. Accurate tumor-volume quantification is essential to the proper utilization of the unique information provided by PET. Unfortunately,target delineation within PET currently remains a largely unaddressed problem. We therefore examined the ability of three segmentation methods-thresholding, Sobel edge detection, and the watershed approach-to yield accurate delineation of PET target cross-sections. A phantom study employing well-defined cylindrical and spherical volumes and activity distributions provided an opportunity to assess the relative efficacy with which the three approaches could yield accurate target delineation in PET. Results revealed that threshold segmentation can accurately delineate target cross-sections, but that the Sobel and watershed techniques both consistently fail to correctly identify the size of experimental volumes. The usefulness of threshold-based segmentation is limited, however, by the dependence of the correct threshold (that which returns the correct area at each image slice) on target size.

  4. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  5. Quantitative experimental monitoring of molecular diffusion in clay with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna

    2016-08-01

    Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.

  6. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    NASA Astrophysics Data System (ADS)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  7. Positron emission tomography within a magnetic field using photomultiplier tubes and lightguides.

    PubMed

    Christensen, N L; Hammer, B E; Heil, B G; Fetterly, K

    1995-04-01

    The spatial resolution of positron emission tomography (PET) improves when positron annihilation takes place in a strong magnetic field. In a magnetic field, the Lorentz force restricts positron range perpendicular to the field. Since positron annihilation occurs closer to its point of origin, the positron annihilation point spread function decreases. This was verified experimentally by measuring the spread function of positron annihilation from a 500 mm 68Ge bead imbedded in tissue-equivalent wax. At 5 T the spread function full width at half maximum (FWHM) and the full width at tenth maximum (FWTM) decrease by a factor of 1.42 and 2.09, respectively. Two NaI(Tl) scintillation crystals that interface to a pair of photomultiplier tubes (PMTS) through long lightguides detect positron annihilation at zero field and 5.0 T. Photomultiplier tubes, inoperable in strong magnetic fields, are functional if lightguides bring the photons produced by scintillators within the field to a minimal magnetic field. These tests also demonstrate techniques necessary for combining magnetic resonance imaging (MRI) and PET into one scanner.

  8. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences.

    PubMed

    Hoffman, E J; Huang, S C; Phelps, M E; Kuhl, D E

    1981-06-01

    Accidental coincidences (ACs) and methods of compensation for ACs were investigated in terms of their effect on quantitation in positron emission computed tomography (ECT). Formulations of basic expressions describing the physical factors, which cause true coincidences or ACs, are presented to provide a framework of contrasting the two phenomena. Correction of image data for attenuation of the annihilation radiation or nonuniformities in detector efficiency is shown to amplify errors caused by the presence of ACs in the data. It was shown that failure to compensate for ACs caused overestimates in measurements of isotope concentrations from image data and that in many cases the overestimate was significant for relatively modest percentages of ACs in the data. Three methods of compensation for ACs were evaluated as to their accuracy and effect on statistical noise in images. It was found that nonuniform detector efficiencies could cause prominent image artifacts if an inadequate method was employed in the determination and subtraction of ACs from image data. The additional statistical noise produced in images by subtraction of ACs from total coincidence data demonstrates the advisability of minimizing AC rates in spite of an ability to adequately measure and compensate for their presence in the data.

  9. Design of a super fast three-dimensional projection system for positron emission tomography

    SciTech Connect

    Jones, W.F.; Byars, L.G.; Casey, M.E. )

    1990-04-01

    A hardware architecture for rapid three-dimensional (3D) reconstruction is considered for positron emission tomography (PET). For possibly improved PET performance, obliquely oriented lines of response (LOR) are to be collected and properly utilized by one of several experimental 3D reconstruction algorithms. Image signal-to-noise may improve. Septa removal increases the signal by allowing extra LOR collection but also increases the noise due to reduced shielding against out-of-plane events. Primary utility for all LOR collection and 3D reconstruction algorithms may lie with count starved applications. A major obstacle is the time required to compute the 3D reconstruction. Several hours are required even for general purpose computers capable of several million instructions power second. The bulk of the computations for the various reconstruction algorithms are typically in support of forward and back projection. This paper describes a VLSI based architecture which will support forward and back projection for a 3D image and 4096 2D views totaling over 25 million lines of response projected into 0.5 million voxels.

  10. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  11. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    SciTech Connect

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P. )

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with (18F)N-methylspiroperidol (( 18F)NMSP) (to probe D2 receptor availability) and (N-11C-methyl)benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of (18F)NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of (N-11C-methyl)benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either (18F)NMSP or (N-11C-methyl)benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration.

  12. Positron emission tomography (PET): expanding the horizons of oncology drug development.

    PubMed

    Hammond, Lisa A; Denis, Louis; Salman, Umber; Jerabek, Paul; Thomas, Charles R; Kuhn, John G

    2003-08-01

    Positron emission tomography (PET) allows three-dimensional quantitative determination of the distribution of radioactivity permitting measurement of physiological, biochemical, and pharmacological functions at the molecular level. Until recently, no method existed to directly and noninvasively assess transport and metabolism of neoplastic agents as a function of time in various organs as well as in the tumor. Standard preclinical evaluation of potential anticancer agents entails radiolabeling the agent, usually with tritium or 14C, sacrifice experiments, and high-performance liquid chromatography (HPLC) analysis to determine the biodistribution and metabolism in animals. Radiolabeling agents with positron-emitting radionuclides allows the same information to be obtained as well as in vivo pharmacokinetic (PK) data by animal tissue and plasma sampling in combination with PET scanning. In phase I/II human studies, classic PK measurements can be coupled with imaging measurements to define an optimal dosing schedule and help formulate the design of phase III studies that are essential for drug licensure [1]. Many of the novel agents currently in development are cytostatic rather than cytotoxic and therefore, the traditional standard endpoints in phase I and II studies may no longer be relevant. The use of a specialized imaging modality that allows PK and pharmacodynamic (PD) evaluation of a drug of interest has been proposed to permit rapid and sensitive assessment of the biological effects of novel anticancer agents. The progress to date and the challenges of incorporating PET technology into oncology drug development from the preclinical to clinical setting are reviewed in this article.

  13. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls

    PubMed Central

    Paterson, Louise M; Tyacke, Robin J; Nutt, David J; Knudsen, Gitte M

    2010-01-01

    Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT1A, 5-HT2A, and 5-HT4 receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future. PMID:20664611

  14. Brain uptake of iomazenil in cirrhotic patients: a single photon emission tomography study.

    PubMed

    Kapczinski, F; Quevedo, J; Curran, H V; Fleminger, S; Toone, B; Cluckie, A; Lader, M

    1999-01-01

    Brain uptake of 123I-iomazenil was studied in seven cirrhotic patients and eight normal controls using single photon emission computerized tomography. The highest concentration of the ligand was found in the occipital cortex, which corresponds to the brain region with the highest concentration of benzodiazepine receptors. The peak uptake was delayed in patients across all brain regions. The uptake in occipital cortex was higher in low albumin cirrhotics. Patients with low albumin also presented a more delayed peak uptake in occipital cortex and a higher volume of distribution of iomazenil in plasma, compared to patients with normal albumin levels and controls. The changes in brain uptake (delayed peak uptake and increased maximal uptake in occipital cortex) appears to reflect changes in the pharmacokinetics of the ligand, particularly in cirrhotics with low levels of plasma albumin. The curve of brain uptake of the tracer was modelled into a two compartments equation, which seems to provide a practical and reliable method to calculate the slopes of acquisition and decay, time to peak and maximal acquisition.

  15. Detection of neuronal damage in degenerative brain disease with cobalt-55 and positron emission tomography

    SciTech Connect

    Jansen, H.M.L.; Pruim, J.; Paans, A.M.J.

    1994-05-01

    We suggest Cobalt-55 (Co) as a Calcium (Ca)-marker to visualize Ca transport across the neuronal membrane. Elevation of intracellular Ca is closely linked with the process of neuronal cell-decay. Co-uptake is correlated with Ca-accumulation through divalent cation-permeable kainate (KA)-activated receptor-operated channels in the neuronal membrane. This hypothesis was studied with position emission tomography (PET) both in patients with a ischemic cerebro-vascular accident (CVA) and in patients with relapsing progressive multiple sclerosis (MS). Co-PET studies were performed in a dynamic mode (6 frames of 10 minutes) 20-25 hours after iv.-administration of 1-2 mCi Co. Regional specific accumulation irrespective of blood brain barrier (BBB) integrity in the (clinically appropriate) affected cerebral region could be demonstrated in CVA-patients, thus suggesting neuronal decay in (the early phase of) infarction. In MS, inhomogeneous cerebral distribution of Co was detected, in contrast to healthy volunteers. This suggests focal accumulation of Co in multiple spots of neuronal decay, possibly related to MS-lesions on MRI. In conclusion, Co-PET may prove to be a valuable tool for the early detection of neuronal decay not only in CVA and MS, but in other brain-pathology as well. The usefulness of Co-PET in imaging brain-tumors and myocardial ischemia has already been established.

  16. Test-Retest Repeatability of Myocardial Blood Flow Measurements using Rubidium-82 Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Efseaff, Matthew

    Rubidium-82 positron emission tomography (PET) imaging has been proposed for routine myocardial blood flow (MBF) quantification. Few studies have investigated the test-retest repeatability of this method. Same-day repeatability of rest MBF imaging was optimized with a highly automated analysis program using image-derived input functions and a dual spillover correction (SOC). The effects of heterogeneous tracer infusion profiles and subject hemodynamics on test-retest repeatability were investigated at rest and during hyperemic stress. Factors affecting rest MBF repeatability included gender, suspected coronary artery disease, and dual SOC (p < 0.001). The best repeatability coefficient for same-day rest MBF was 0.20 mL/min/g using a six-minute scan-time, iterative reconstruction, dual SOC, resting rate-pressure-product (RPP) adjustment, and a left atrium image-derived input function. The serial study repeatabilities of the optimized protocol in subjects with homogeneous RPPs and tracer infusion profiles was 0.19 and 0.53 mL/min/g at rest and stress, and 0.95 for stress / rest myocardial flow reserve (MFR). Subjects with heterogeneous tracer infusion profiles and hemodynamic conditions had significantly less repeatable MBF measurements at rest, stress, and stress/rest flow reserve (p < 0.05).

  17. A behavioral and micro positron emission tomography imaging study in a rat model of hypothyroidism.

    PubMed

    Yu, Jing; Tang, Yi-Yuang; Feng, Hong-Bo; Cheng, Xiao-Xin

    2014-09-01

    Hypothyroidism leads to somatic, neuropsychological, and psychiatric changes that are similar to depression. The mechanisms underlying the behavioral abnormalities in adult onset hypothyroidism remain ambiguous. Hypothyroidism was induced in adult male Wistar rats by the maintenance of 0.05% propylthiouracil (PTU) in drinking water for 5 weeks (hypothyroid group; HP group); control rats (CON group) received an equivalent amount of water. The open field and sucrose preference tests were employed, and the link between behavioral changes and brain glucose metabolism was evaluated using micro positron emission tomography imaging. The open field test revealed slightly decreased locomotor activity and significantly reduced rearing and defecation in the hypothyroid group. Hypothyroid rats were also characterized by decreased body weight, sucrose preference, and relative sucrose intake compared to control rats. Hypothyroidism induced reduced brain glucose metabolism in the bilateral motor cortex, the caudate putamen, the cortex cingulate, the nucleus accumbens, and the frontal association cortex. A decreased sucrose preference was positively correlated with metabolic glucose changes in the caudate putamen and the nucleus accumbens. The results indicate that the activity pattern in adult onset hypothyroidism is different from the activity pattern when hypothyroidism is induced in the developmental period of the central nervous system. Decreased sucrose preference in hypothyroid rats may be attributed to anhedonia. Furthermore, these findings suggest there may be a common mechanism underlying adult onset hypothyroidism and depression.

  18. Cardiac single-photon emission-computed tomography using combinedcone-beam/fan-beam collimation

    SciTech Connect

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-12-03

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images.

  19. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography.

    PubMed Central

    Eidelberg, D; Dhawan, V; Moeller, J R; Sidtis, J J; Ginos, J Z; Strother, S C; Cederbaum, J; Greene, P; Fahn, S; Powers, J M

    1991-01-01

    Regional metabolic rate for glucose (rCMRGlc) was estimated using [18F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) in five patients (four men, one woman; mean age 68; mean disease duration 2.4 years) with clinical findings consistent with the syndrome of cortico-basal ganglionic degeneration (CBGD). Left-right rCMRGlc asymmetry, (L-R)/(L + R) x 100, was calculated for 13 grey matter regions and compared with regional metabolic data from 18 normal volunteers and nine patients with asymmetrical Parkinson's disease (PD). In the CBGD group mean metabolic asymmetry values in the thalamus, inferior parietal lobule and hippocampus were greater than those measured in normal control subjects and patients with asymmetrical PD (p less than 0.02). Parietal lobe asymmetry of 5% or more was evident in all CBGD patients, whereas in PD patients and normal controls, all regional asymmetry measures were less than 5% in absolute value. Measures of frontal, parietal and hemispheric metabolic asymmetry were found to be positively correlated with asymmetries in thalamic rCMRGlc (p less than 0.05). The presence of cortico-thalamic metabolic asymmetry is consistent with the focal neuropathological changes reported in CBGD brains. Our findings suggest that metabolic asymmetries detected with FDG/PET may support a diagnosis of CBGD in life. Images PMID:1744638

  20. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    NASA Astrophysics Data System (ADS)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.