Science.gov

Sample records for proton lateral broadening

  1. Comparisons between GRNTRN simulations and beam measurements of proton lateral broadening distributions

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John

    Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.

  2. Proton lateral broadening distribution comparisons between GRNTRN, MCNPX, and laboratory beam measurements

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-04-01

    Recent developments in NASA’s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light-ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  3. Proton Lateral Broadening Distribution Comparisons Between GRNTRN, MCNPX, and Laboratory Beam Measurements

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-01-01

    Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  4. On the accuracy of homotopy perturbation and variational iteration methods for lateral broadening of a monoenergetic proton beam

    NASA Astrophysics Data System (ADS)

    Noshad, Houshyar; Bahador, Seyyedeh Samira; Mohammadi, Saeed

    2013-10-01

    In this article, dispersion of a 60 MeV proton pencil beam at various depths in a muscle tissue was numerically investigated via solving a three dimensional Fokker-Planck equation using homotopy perturbation method (HPM) and variational iteration method (VIM). The accuracy of these methods was benchmarked by comparison the radial flux distribution of protons traversing different depths in the tissue with the data of the High Charge and Energy Transport (HZETRN) model and Monte Carlo simulations. Furthermore, the computed depth dose distributions obtained from the HPM and VIM for monoenergetic protons passing through a medium were compared with the results of GEANT4.5.2 code as well as the experimental data reported in the literature. The satisfactory agreement obtained from our computations shows the reliability and applicability of the HPM and VIM in our analysis.

  5. Doppler broadening in the β-proton- γ decay sequence

    NASA Astrophysics Data System (ADS)

    Schwartz, Sarah; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Perez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-10-01

    We report the first observation of Doppler-broadening in β delayed proton- γ decay. The broadening occurs because the daughter nucleus γ decays while recoiling from proton emission. A method to analyze β delayed nucleon emission was applied to two Doppler-broadened 25Al peaks from the 26P(βpγ)25Al decay. The method was first tested on the broad 1613 keV γ-ray peak using known center-of-mass proton energies as constraints. The method was then applied to the 1776 keV γ-ray peak from the 2720 keV excited state of 25Al. The broadening was used to determine a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV. This energy is consistent with proton emission from the known T = 2 isobaric analog state of 26P in 26Si.

  6. Observation of Doppler broadening in β -delayed proton- γ decay

    DOE PAGES

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; ...

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  7. Proton disorder in ice Ih and inhomogeneous broadening in two-dimensional infrared spectroscopy.

    PubMed

    Shi, L; Skinner, J L

    2013-12-12

    It is well-known that in ice Ih the oxygen atoms form a regular hexagonal lattice while the positions of the hydrogen atoms are disordered, called proton disorder in the literature. Various OH (OD) stretch vibrational spectroscopies (e.g., IR, Raman, two-dimensional IR (2DIR), and hole burning) have been used to probe this proton disorder in the past several decades. However, the presence and the magnitude of the inhomogeneous broadening due to this proton disorder in the vibrational spectroscopy is still controversial. In this work, we calculate 2DIR spectroscopy for HOD in D2O ice Ih at 80 K with a mixed quantum/classical approach, and make comparison to a recent 2DIR experiment on the same system. Fair agreement is achieved between theory and experiment, although the calculated 2DIR line shape shows inhomogeneous broadening that was not observed in the experiment. However, the theory reproduces the linear IR for the same system fairly well, and the inhomogeneous broadening from the calculation is consistent with the extrapolation of the experimental IR line-widths in the literature. The effect of this proton disorder on the 2DIR line shape is explored in detail. We also calculate the vibrational three-pulse photon echo peak shift signal, which shows signatures of both low-frequency dynamics and inhomogeneous broadening.

  8. Observation of Doppler broadening in β -delayed proton-γ decay

    NASA Astrophysics Data System (ADS)

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-09-01

    Background: The Doppler broadening of γ -ray peaks due to nuclear recoil from β -delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using β -delayed proton emission or applied to a recoil heavier than A =10 . Purpose: To test and apply this Doppler broadening method using γ -ray peaks from the 26P(β p γ )25Al decay sequence. Methods: A fast beam of 26P was implanted into a planar Ge detector, which was used as a 26P β -decay trigger. The SeGA array of high-purity Ge detectors was used to detect γ rays from the 26P(β p γ )25Al decay sequence. Results: Radiative Doppler broadening in β -delayed proton-γ decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613-keV γ -ray line for which the proton energies were previously known. The 1776-keV γ ray de-exciting the 2720 keV 25Al level was observed in 26P(β p γ )25Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 ±1.0 (stat.) ±0.6 (syst.) MeV, corresponding to a 26Si excitation energy of 13.3 ±1.0 (stat.) ±0.6 (syst.) MeV for the proton-emitting level. Conclusions: The Doppler broadening method has been demonstrated to provide practical measurements of the energies for β -delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A =25 .

  9. Thickness uniformity of beryllium foils derived from energy loss broadening of transmitted MeV protons

    NASA Astrophysics Data System (ADS)

    Hietel, B.; Wittmaack, K.

    2000-03-01

    The thickness uniformity of beryllium foils commonly in use as entrance windows of Si(Li) detectors has been determined by measuring the broadening in energy loss of 1.5-2.5 MeV protons transmitted through such foils. The energy loss spectra were measured after backscattering of the transmitted protons from a thin layer of gold on a polypropylene film. The contribution due to energy loss straggling was assessed in transmission studies on uniform films of polypropylene and polyester (Mylar). The full width at half maximum (FWHM) of the loss peaks for the polymer films increased with the square root of the energy loss Δ E, in accordance with theory. By contrast, the FWHM of the energy loss in Be increased linearly with increasing Δ E, with a maximum FWHM=0.21Δ E at 2.5 MeV. After correcting for the straggling contribution in quadrature, the net excess broadening was found to range from 18% to 20%, for Be foils with a nominal thickness between 12.5 and 37.5 μm. The excess broadening is attributed to a corresponding variation in thickness across the foils, probably due to a significant porosity generated during the fabrication process (sintering). This result supports previous indirect evidence derived from studies on background generation in proton-induced X-ray emission spectrometry (PIXE).

  10. Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala.

    PubMed

    Faber, E S Louise; Sah, Pankaj

    2003-10-15

    In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ currents. Recent findings show that inactivation of a Ca2+-dependent K+ current, mediated by large conductance BK-type channels, also contributes to spike broadening. Here, using whole-cell recordings in acute slices, we examine spike broadening in lateral amygdala projection neurons. Spike broadening is frequency dependent and is reversed by brief hyperpolarisations. This broadening is reduced by blockade of voltage-gated Ca2+ channels and BK channels. In contrast, broadening is not blocked by high concentrations of 4-aminopyridine (4-AP) or alpha-dendrotoxin. We conclude that while inactivation of BK-type Ca2+-activated K+ channels contributes to spike broadening in lateral amygdala neurons, inactivation of another as yet unidentified outward current also plays a role.

  11. Observation of Doppler broadening in β -delayed proton- γ decay

    SciTech Connect

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays from the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.

  12. Object identification leads to a conceptual broadening of object representations in lateral prefrontal cortex.

    PubMed

    Gotts, Stephen J; Milleville, Shawn C; Martin, Alex

    2015-09-01

    Recent experience identifying objects leads to later improvements in both speed and accuracy ("repetition priming"), along with simultaneous reductions of neural activity ("repetition suppression"). A popular interpretation of these joint behavioral and neural phenomena is that object representations become perceptually "sharper" with stimulus repetition, eliminating cells that are poorly stimulus-selective and responsive and reducing support for competing representations downstream. Here, we test this hypothesis in an fMRI-adaptation experiment using pictures of objects. Prior to fMRI, participants repeatedly named a set of object pictures. During fMRI, participants viewed adaptation sequences composed of rapidly repeated objects (3-6 repetitions over several seconds) that were either named previously or that were new for the fMRI session, followed by single "deviant" object pictures used to measure recovery from adaptation and that shared a relationship to the adapted picture (a different exemplar of the same object, a conceptual associate, or an unrelated picture). Effects of adaptation and recovery were found throughout visually responsive brain regions. Occipitotemporal cortical regions displayed repetition suppression to previously named relative to new adapters but failed to exhibit pronounced changes in neural tuning. In contrast, changes in the slope of the recovery curves were found in the left lateral prefrontal cortex: Greater residual adaptation was observed to exemplar stimuli and conceptual associates following previously named adapting stimuli, consistent with greater rather than reduced neural overlap among representations of conceptually related objects. Furthermore, this change in neural tuning was directly related to the proportion of conceptual errors made by participants in the naming sessions pre- and post-fMRI, establishing that the experience-dependent conceptual broadening of object representations seen in fMRI is also manifest in behavior

  13. Object identification leads to a conceptual broadening of object representations in lateral prefrontal cortex

    PubMed Central

    Gotts, Stephen J.; Milleville, Shawn C.; Martin, Alex

    2014-01-01

    Recent experience identifying objects leads to later improvements in both speed and accuracy (“repetition priming”), along with simultaneous reductions of neural activity (“repetition suppression”). A popular interpretation of these joint behavioral and neural phenomena is that object representations become perceptually “sharper” with stimulus repetition, eliminating cells that are poorly stimulus-selective and responsive and reducing support for competing representations downstream. Here, we test this hypothesis in an fMRI-adaptation experiment using pictures of objects. Prior to fMRI, participants repeatedly named a set of object pictures. During fMRI, participants viewed adaptation sequences composed of rapidly repeated objects (3-6 repetitions over several seconds) that were either named previously or that were new for the fMRI session, followed by single “deviant” object pictures used to measure recovery from adaptation and that shared a relationship to the adapted picture (a different exemplar of the same object, a conceptual associate, or an unrelated picture). Effects of adaptation and recovery were found throughout visually responsive brain regions. Occipitotemporal cortical regions displayed repetition suppression to previously named relative to new adaptors but failed to exhibit pronounced changes in neural tuning. In contrast, changes in the slope of the recovery curves were found in the left lateral prefrontal cortex: Greater residual adaptation was observed to exemplar stimuli and conceptual associates following previously named adapting stimuli, consistent with greater rather than reduced neural overlap among representations of conceptually related objects. Furthermore, this change in neural tuning was directly related to the proportion of conceptual errors made by participants in the naming sessions pre- and post-fMRI, establishing that the experience-dependent conceptual broadening of object representations seen in fMRI is also

  14. Lateral proton conduction in monolayers of phospholipids from extreme halophiles.

    PubMed

    Teissié, J; Prats, M; LeMassu, A; Stewart, L C; Kates, M

    1990-01-09

    Studies have been carried out on the lateral proton conductance properties of monolayers of the major and minor phospholipids of extremely halophilic archaebacteria, 2,3-diphytanyl-sn-glycero-1-phospho-3'-sn-glycerol 1'-phosphate (PGP) and 2,3-diphytanyl-sn-glycero-1-phospho-3'-sn-glycerol (PG), respectively, as well as on their respective deoxy analogues: 2,3-diphytanyl-sn-glycero-1-phospho-1'-propanediol 3'-phosphate (dPGP), 2,3-diphytanyl-sn-glycero-1-phospho-1'-1',3'-propanediol (dPG), and 2,3-diphytanyl-sn-glycero-1-phospho-1'-propanol (ddPG). Lateral proton conduction was found to occur with monolayers of all ether phospholipids examined at reduced surface pressure (pi greater than 25 mN/m) on subphases of low (1 mM) and high (4 M) ionic strength. Proton conduction was also detected in highly condensed monolayers (greater than 35 mN/m) of the naturally occurring phospholipids (PGP, PG) but was abruptly terminated in tightly packed monolayers (greater than 35 mN/m) of the corresponding deoxy compounds (dPGP, dPG, ddPG) on subphases with low ionic strength. conduction did occur, however, along monolayers of the deoxy compounds at high surface pressure when spread on a subphase of high ionic strength (4 M). The abrupt termination of conduction with monolayers of the deoxy compounds at low ionic strength cannot be attributed to a lipid phase transition or to changes in the lateral fluidity of the monolayers, nor was the pK of the fluorescent interfacial proton indicator affected at high surface pressures.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. A carbon-13 and proton nuclear magnetic resonance study of some experimental referee broadened-specification /ERBS/ turbine fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Pugmire, R. J.

    1982-01-01

    Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.

  16. Improving resolution in proton solid-state NMR by removing nitrogen-14 residual dipolar broadening

    NASA Astrophysics Data System (ADS)

    Stein, Robin S.; Elena, Bénédicte; Emsley, Lyndon

    2008-06-01

    Residual dipolar coupling between quadrupolar and other nuclei under MAS has not usually been thought to be important in high field NMR spectroscopy. We show that coupling to 14N broadens 1H lineshapes significantly even at 11.7 T, and that we can decouple 14N from 1H during 1H homonuclear decoupling to successfully improve 1H resolution. The method used for decoupling is the application of evenly spaced pulses to the quadrupolar nucleus.

  17. Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate.

    PubMed

    Kafar, A; Stanczyk, S; Sarzynski, M; Grzanka, S; Goss, J; Targowski, G; Nowakowska-Siwinska, A; Suski, T; Perlin, P

    2016-05-02

    We demonstrate InGaN/GaN superluminescent diodes with broadened emission spectra fabricated on surface-shaped bulk GaN (0001) substrates. The patterning changes the local vicinal angle linearly along the device waveguide, which results in an indium incorporation profile in InGaN quantum wells. The structure was investigated by microphotoluminescence mapping, showing a shift of central emission wavelength from 413 nm to 430 nm. Spectral full width at half maximum of processed superluminescent diodes is equal to 6.1 nm, while the reference chips show 3.4 nm. This approach may open the path for using nitride devices in applications requiring broad emission spectrum and high beam quality, such as optical coherence tomography.

  18. Solid-state proton NMR of paramagnetic metal complexes: DANTE spin echoes for selective excitation in inhomogeneously broadened lines

    NASA Astrophysics Data System (ADS)

    Carnevale, Diego; Perez Linde, A. J.; Bauer, Gerald; Bodenhausen, Geoffrey

    2013-08-01

    The paramagnetic complex bis(oxazolinylphenyl)amine-Fe(III)Cl2 is investigated by means of solid-state proton NMR at 18.8 T (800 MHz) using magic-angle spinning at 65 kHz. Spin echoes that are excited and refocused by combs of rotor-synchronized pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) allow one to characterize different chemical environments that severely overlap in conventional MAS spectra. Such sequences combine two apparently contradictory features: an overall bandwidth exceeding several MHz, and very selective irradiation of a few kHz within inhomogeneously broadened sidebands. The experimental hyperfine interactions correlate well with DFT calculations.

  19. Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina.

    PubMed

    Wang, Tzu-Ming; Holzhausen, Lars C; Kramer, Richard H

    2014-02-01

    The reciprocal synapse between photoreceptors and horizontal cells underlies lateral inhibition and establishes the antagonistic center-surround receptive fields of retinal neurons to enhance visual contrast. Despite decades of study, the signal mediating the negative feedback from horizontal cells to cones has remained under debate because the small, invaginated synaptic cleft has precluded measurement. Using zebrafish retinas, we show that light elicits a change in synaptic proton concentration with the correct magnitude, kinetics and spatial dependence to account for lateral inhibition. Light, which hyperpolarizes horizontal cells, causes synaptic alkalinization, whereas activating an exogenously expressed ligand-gated Na(+) channel, which depolarizes horizontal cells, causes synaptic acidification. Whereas acidification was prevented by blocking a proton pump, re-alkalinization was prevented by blocking proton-permeant ion channels, suggesting that distinct mechanisms underlie proton efflux and influx. These findings reveal that protons mediate lateral inhibition in the retina, raising the possibility that protons are unrecognized retrograde messengers elsewhere in the nervous system.

  20. Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina

    PubMed Central

    Wang, Tzu-Ming; Holzhausen, Lars C.; Kramer, Richard H.

    2014-01-01

    The reciprocal synapse between photoreceptors and horizontal cells (HCs) underlies lateral inhibition and establishes the antagonistic center-surround receptive fields of retinal neurons, to enhance visual contrast. Despite decades of study, the signal mediating negative feedback from HCs to cones has remained controversial because the small, invaginated synaptic cleft has precluded measurement. Using zebrafish retinas, we show that light elicits a change in synaptic proton concentration with the correct magnitude, kinetics and spatial dependence to account for lateral inhibition. Light, which hyperpolarizes HCs, causes synaptic alkalinization, whereas activating an exogenously expressed ligand-gated Na+ channel, which depolarizes HCs, causes synaptic acidification. While acidification was prevented by blocking a proton pump, re-alkalinization was prevented by blocking proton-permeant ion channels, suggesting that distinct mechanisms underlie proton efflux and influx. These findings reveal that protons mediate lateral inhibition in the retina, raising the possibility that protons are unrecognized retrograde messengers elsewhere in the nervous system. PMID:24441679

  1. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala.

    PubMed

    Du, Jianyang; Reznikov, Leah R; Price, Margaret P; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O; Wemmie, John A; Welsh, Michael J

    2014-06-17

    Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.

  2. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala

    PubMed Central

    Du, Jianyang; Reznikov, Leah R.; Price, Margaret P.; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O.; Wemmie, John A.; Welsh, Michael J.

    2014-01-01

    Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na+- and Ca2+-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory. PMID:24889629

  3. Lateral proton transfer between the membrane and a membrane protein.

    PubMed

    Ojemyr, Linda; Sandén, Tor; Widengren, Jerker; Brzezinski, Peter

    2009-03-17

    Proton transport across biological membranes is a key step of the energy conservation machinery in living organisms, and it has been proposed that the membrane itself plays an important role in this process. In the present study we have investigated the effect of incorporation of a proton transporter, cytochrome c oxidase, into a membrane on the protonation kinetics of a fluorescent pH-sensitive probe attached at the surface of the protein. The results show that proton transfer to the probe was slightly accelerated upon attachment at the protein surface (approximately 7 x 1010 s(-1) M(-1), compared to the expected value of (1-2) x 10(10) s(-1) M(-1)), which is presumably due to the presence of acidic/His groups in the vicinity. Upon incorporation of the protein into small unilamellar phospholipid vesicles the rate increased by more than a factor of 400 to approximately 3 x 10(13) s(-1) M(-1), which indicates that the protein-attached probe is in rapid protonic contact with the membrane surface. The results indicate that the membrane acts to accelerate proton uptake by the membrane-bound proton transporter.

  4. Transient characteristics for proton gating in laterally coupled indium-zinc-oxide transistors.

    PubMed

    Liu, Ning; Zhu, Li Qiang; Xiao, Hui; Wan, Chang Jin; Liu, Yang Hui; Chao, Jin Yu

    2015-03-25

    The control and detection over processing, transport and delivery of chemical species is of great importance in sensors and biological systems. The transient characteristics of the migration of chemical species reflect the basic properties in the processings of chemical species. Here, we observed the field-configurable proton effects in a laterally coupled transistor gated by phosphorosilicate glass (PSG). The bias on the lateral gate would modulate the interplay between protons and electrons at the PSG/indium-zinc-oxide (IZO) channel interface. Due to the modulation of protons flux within the PSG films, the IZO channel current would be modified correspondingly. The characteristic time for the proton gating is estimated to be on the order of 20 ms. Such laterally coupled oxide based transistors with proton gating are promising for low-cost portable biosensors and neuromorphic system applications.

  5. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  6. Determination of Lateral Diffusivity in Single Pixel X-ray Absorbers with Implications for Position Dependent Excess Broadening

    NASA Technical Reports Server (NTRS)

    Saab, T.; Figueroa-Feliciano, E.; Iyomoto, N.; Bandler, S. R.; Chervenak, J.; Finkbeiner, F.; Kelley, R.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    An ideal microcalorimeter is characterized by a constant energy resolution across the sensor's dynamic range. Any dependence of pulse shape on the position within the absorber where an event occurs leads to a degradation in resolution that is linear with event s energy (excess broadening). In this paper we present a numerical simulation that was developed to model the variation in pulse shape with position based on the thermal conductivity within the absorber and between the absorber, sensor, and heat bath, for arbitrarily shaped absorbers and sensors. All the parameters required for the simulation can be measured from actual devices. We describe how the thermal conductivity of the absorber material is determined by comparing the results of this model with data taken from a position sensitive detector in which any position dependent effect is purposely emphasized by making a long, narrow absorber that is read out by sensors on both end. Finally, we present the implications for excess broadening given the measured parameters of our X-ray microcalorimeters.

  7. SU-E-T-523: On the Radiobiological Impact of Lateral Scatter in Proton Beams

    SciTech Connect

    Heuvel, F Van den; Deruysscher, D

    2014-06-01

    Introduction: In proton therapy, justified concern has been voiced with respect to an increased efficiency in cell kill at the distal end of the Bragg peak. This coupled with range uncertainty is a counter indication to use the Bragg peak to define the border of a treated volume with a critical organ. An alternative is to use the lateral edge of the proton beam, obtaining more robust plans. We investigate the spectral and biological effects of the lateral scatter . Methods: A general purpose Monte Carlo simulation engine (MCNPX 2.7c) installed on a Scientific Linux cluster, calculated the dose deposition spectrum of protons, knock on electrons and generated neutrons for a proton beam with maximal kinetic energy of 200MeV. Around the beam at different positions in the beam direction the spectrum is calculated in concentric rings of thickness 1cm. The deposited dose is converted to a double strand break map using an analytical expression.based on micro dosimetric calculations using a phenomenological Monte Carlo code (MCDS). A strict version of RBE is defined as the ratio of generation of double strand breaks in the different modalities. To generate the reference a Varian linac was modelled in MCNPX and the generated electron dose deposition spectrum was used . Results: On a pristine point source 200MeV beam the RBE before the Bragg peak was of the order of 1.1, increasing to 1.7 right behind the Bragg peak. When using a physically more realistic beam of 10cm diameter the effect was smaller. Both the lateral dose and RBE increased with increasing beam depth, generating a dose deposition with mixed biological effect. Conclusions: The dose deposition in proton beams need to be carefully examined because the biological effect will be different depending on the treatment geometry. Deeply penetrating proton beams generate more biologically effective lateral scatter.

  8. Monte Carlo and Analytical Calculation of Lateral Deflection of Proton Beams in Homogeneous Targets

    NASA Astrophysics Data System (ADS)

    Pazianotto, Maurício T.; Inocente, Guilherme F.; da Silva, Danilo Anacleto A.; Hormaza, Joel M.

    2010-05-01

    Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Molière's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes.

  9. Monte Carlo and Analytical Calculation of Lateral Deflection of Proton Beams in Homogeneous Targets

    SciTech Connect

    Pazianotto, Mauricio T.; Inocente, Guilherme F.; Silva, Danilo Anacleto A. d; Hormaza, Joel M.

    2010-05-21

    Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Moliere's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes.

  10. Measurement of QCD Jet Broadening in Proton-Antiproton Collisions at SQRT.S = 1.8 Tev.

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna Lynn

    A measurement of the QCD Jet Broadening parameter, < Q_ t>, is described for high E_ t jet data in the central CDF calorimeter. Most analyses of p | p jet data compare to QCD predictions by identifying clusters of energy in a detector. As an alternate approach, the method employed here involves the use of a global event parameter which is free from the ambiguities associated with the definition and separation of individual clusters. The parameter, Q_ t, is defined as the scalar sum of the transverse momentum perpendicular to the transverse thrust axis. At the parton level, Q_ t is zero for the 2 Rightarrow 2 QCD process and thus, to first order, comes from the 2 Rightarrow 3 process. Q_ t is defined such that it cancels the divergences in the 2 Rightarrow 3 matrix elements, and thus it can be evaluated without imposing separation and minimum P_ t cuts on the 2 Rightarrow 3 partons. QCD predictions made for < Q_ t> are the result of a 2 Rightarrow 3 calculation divided by a 2 Rightarrow 2 calculation and show some dependence of the strong coupling constant alpha_ s. Comparisons are made to first-order QCD parton level calculations as well as to fully evolved and hadronized leading log predictions. The data is well described by the QCD predictions.

  11. A model for the accurate computation of the lateral scattering of protons in water.

    PubMed

    Bellinzona, E V; Ciocca, M; Embriaco, A; Ferrari, A; Fontana, A; Mairani, A; Parodi, K; Rotondi, A; Sala, P; Tessonnier, T

    2016-02-21

    A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.

  12. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    NASA Astrophysics Data System (ADS)

    Liu, Yang Hui; Qiang Zhu, Li; Shi, Yi; Wan, Qing

    2014-03-01

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ˜5.5 × 10-3 S/cm and a high lateral electric-double-layer (EDL) capacitance of ˜2.0 μF/cm2 at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm2 V-1 s-1, 2.8 × 106, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  13. Light-Induced Proton Pumping with a Semiconductor: Vision for Photoproton Lateral Separation and Robust Manipulation.

    PubMed

    Maltanava, Hanna M; Poznyak, Sergey K; Andreeva, Daria V; Quevedo, Marcela C; Bastos, Alexandre C; Tedim, João; Ferreira, Mário G S; Skorb, Ekaterina V

    2017-07-19

    Energy-transfer reactions are the key for living open systems, biological chemical networking, and the development of life-inspired nanoscale machineries. It is a challenge to find simple reliable synthetic chemical networks providing a localization of the time-dependent flux of matter. In this paper, we look to photocatalytic reaction on TiO2 from different angles, focusing on proton generation and introducing a reliable, minimal-reagent-consuming, stable inorganic light-promoted proton pump. Localized illumination was applied to a TiO2 surface in solution for reversible spatially controlled "inorganic photoproton" isometric cycling, the lateral separation of water-splitting reactions. The proton flux is pumped during the irradiation of the surface of TiO2 and dynamically maintained at the irradiated surface area in the absence of any membrane or predetermined material structure. Moreover, we spatially predetermine a transient acidic pH value on the TiO2 surface in the irradiated area with the feedback-driven generation of a base as deactivator. Importantly we describe how to effectively monitor the spatial localization of the process by the in situ scanning ion-selective electrode technique (SIET) measurements for pH and the scanning vibrating electrode technique (SVET) for local photoelectrochemical studies without additional pH-sensitive dye markers. This work shows the great potential for time- and space-resolved water-splitting reactions for following the investigation of pH-stimulated processes in open systems with their flexible localization on a surface.

  14. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    SciTech Connect

    Liu, Yang Hui; Wan, Qing; Qiang Zhu, Li; Shi, Yi

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ∼5.5 × 10{sup −3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ∼2.0 μF/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup −1} s{sup −1}, 2.8 × 10{sup 6}, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  15. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    PubMed Central

    Gelover, Edgar; Wang, Dongxu; Hill, Patrick M.; Flynn, Ryan T.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark; Hyer, Daniel E.

    2015-01-01

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σx1,σx2,σy1,σy2) together with the spatial location of the maximum dose (μx,μy). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets. PMID:25735287

  16. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    SciTech Connect

    Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.; Hyer, Daniel E.; Hill, Patrick M.; Gao, Mingcheng; Laub, Steve; Pankuch, Mark

    2015-03-15

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.

  17. Determination of the equilibrium micelle-inserting position of the fusion peptide of gp41 of human immunodeficiency virus type 1 at amino acid resolution by exchange broadening of amide proton resonances.

    PubMed

    Chang, D K; Cheng, S F

    1998-11-01

    The exchange broadening of backbone amide proton resonances of a 23-mer fusion peptide of the transmembrane subunit of HIV-1 envelope glycoprotein gp41, gp41-FP, was investigated at pH 5 and 7 at room temperature in perdeuterated sodium dodecyl sulfate (SDS) micellar solution. Comparison of resonance peaks for these pHs revealed an insignificant change in exchange rate between pH 5 and 7 for amide protons of residues 4 through 14, while the exchange rate increase at neutral pH was more prominent for amide protons of the remaining residues, with peaks from some protons becoming undetectable. The relative insensitivity to pH of the exchange for the amide protons of residues 4 through 14 is attributable to the drastic reduction in [OH-] in the micellar interior, leading to a decreased exchange rate. The A15-G16 segment represents a transition between these two regimes. The data are thus consistent with the notion that the peptide inserts into the hydrophobic core of a membrane-like structure and the A15-G16 dipeptide is located at the micellar-aqueous boundary.

  18. SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy

    SciTech Connect

    Hill, P; Wang, D; Flynn, R; Hyer, D

    2014-06-01

    Purpose: To evaluate the lateral beam penumbra in pencil beam scanning proton therapy delivered using a dynamic collimator device capable of trimming a portion of the primary beam in close proximity to the patient. Methods: Monte Carlo simulations of pencil beams were performed using MCNPX. Each simulation transported a 125 MeV proton pencil beam through a range shifter, past acollimator, and into a water phantom. Two parameters were varied among the simulations, the source beam size (sigma in air from 3 to 9 mm), and the position of the edge of the collimator (placed from 0 to 30 mm from the central axis of the beam). Proton flux was tallied at the phantom surface to determine the effective beam sizefor all combinations of source beam size and collimator edge position. Results: Quantifying beam size at the phantom surface provides a useful measure tocompare performance among varying source beam sizes and collimation conditions. For arelatively large source beam size (9 mm) entering the range shifter, sigma at thesurface was found to be 10 mm without collimation versus 4 mm with collimation. Additionally, sigma at the surface achievable with collimation was found to be smallerthan for any uncollimated beam, even for very small source beam sizes. Finally, thelateral penumbra achievable with collimation was determined to be largely independentof the source beam size. Conclusion: Collimation can significantly reduce proton pencil beam lateral penumbra.Given the known dosimetric disadvantages resulting from large beam spot sizes,employing a dynamic collimation system can significantly improve lateral tissuesparing in spot-scanned dose distributions.

  19. Lateralized Caudate Metabolic Abnormalities in Adolescent Major Depressive Disorder: A Proton MR Spectroscopy Study

    PubMed Central

    Gabbay, Vilma; Hess, David A.; Liu, Songtao; Babb, James S.; Klein, Rachel G.; Gonen, Oded

    2009-01-01

    Objective Proton magnetic resonance spectroscopy (1H-MRS) has been increasingly used to examine striatal neurochemistry in adult major depressive disorder. This study extends the use of this modality to pediatric major depression to test the hypothesis that adolescents with major depression have elevated concentrations of striatal choline and creatine and lower concentrations of N-acetylaspartate. Method Fourteen adolescents (ages 12–19 years, eight female) who had major depressive disorder for at least 8 weeks and a severity score of 40 or higher on the Children’s Depression Rating Scale—Revised and 10 healthy comparison adolescents (six female) group-matched for gender, age, and handedness were enrolled. All underwent three-dimensional 3-T 1H-MRS at high spatial resolution (0.75-cm3 voxels). Relative levels of choline, creatine, and N-acetylaspartate in the left and right caudate, putamen, and thalamus were scaled into concentrations using phantom replacement, and levels were compared for the two cohorts. Results Relative to comparison subjects, adolescents with major depressive disorder had significantly elevated concentrations of choline (2.11 mM versus 1.56 mM) and creatine (6.65 mM versus 5.26 mM) in the left caudate. No other neurochemical differences were observed between the groups. Conclusions These findings most likely reflect accelerated membrane turnover and impaired metabolism in the left caudate. The results are consistent with prior imaging reports of focal and lateralized abnormalities in the caudate in adult major depression. PMID:18056244

  20. Lateral Diffusion Length Changes in HgCdTe Detectors in a Proton Environment

    NASA Technical Reports Server (NTRS)

    Hubbs, John E.; Marshall, Paul W.; Marshall, Cheryl J.; Gramer, Mark E.; Maestas, Diana; Garcia, John P.; Dole, Gary A.; Anderson, Amber A.

    2007-01-01

    This paper presents a study of the performance degradation in a proton environment of very long wavelength infrared (VLWIR) HgCdTe detectors. The energy dependence of the Non-Ionizing Energy Loss (NIEL) in HgCdTe provides a framework for estimating the responsivity degradation in VLWIR HgCdTe due to on orbit exposure from protons. Banded detector arrays that have different detector designs were irradiated at proton energies of 7, 12, and 63 MeV. These banded detector arrays allovedin sight into how the fundamental detector parameters degraded in a proton environment at the three different proton energies. Measured data demonstrated that the detector responsivity degradation at 7 MeV is 5 times larger than the degradation at 63 MeV. The comparison of the responsivity degradation at the different proton energies suggests that the atomic Columbic interaction of the protons with the HgCdTe detector is likely the primary mechanism responsible for the degradation in responsivity at proton energies below 30 MeV.

  1. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO{sub 2} nanogranular films

    SciTech Connect

    Zhu, Li Qiang Chao, Jin Yu; Xiao, Hui

    2014-12-15

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO{sub 2} nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ∼8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics.

  2. Monte Carlo-based parametrization of the lateral dose spread for clinical treatment planning of scanned proton and carbon ion beams.

    PubMed

    Parodi, Katia; Mairani, Andrea; Sommerer, Florian

    2013-07-01

    Ion beam therapy using state-of-the-art pencil-beam scanning offers unprecedented tumour-dose conformality with superior sparing of healthy tissue and critical organs compared to conventional radiation modalities for external treatment of deep-seated tumours. For inverse plan optimization, the commonly employed analytical treatment-planning systems (TPSs) have to meet reasonable compromises in the accuracy of the pencil-beam modelling to ensure good performances in clinically tolerable execution times. In particular, the complex lateral spreading of ion beams in air and in the traversed tissue is typically approximated with ideal Gaussian-shaped distributions, enabling straightforward superimposition of several scattering contributions. This work presents the double Gaussian parametrization of scanned proton and carbon ion beams in water that has been introduced in an upgraded version of the worldwide first commercial ion TPS for clinical use at the Heidelberg Ion Beam Therapy Center (HIT). First, the Monte Carlo results obtained from a detailed implementation of the HIT beamline have been validated against available experimental data. Then, for generating the TPS lateral parametrization, radial beam broadening has been calculated in a water target placed at a representative position after scattering in the beamline elements and air for 20 initial beam energies for each ion species. The simulated profiles were finally fitted with an idealized double Gaussian distribution that did not perfectly describe the nature of the data, thus requiring a careful choice of the fitting conditions. The obtained parametrization is in clinical use not only at the HIT center, but also at the Centro Nazionale di Adroterapia Oncologica.

  3. An Integrated Field-Effect Microdevice for Monitoring Membrane Transport in Xenopus laevis Oocytes via Lateral Proton Diffusion

    PubMed Central

    Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie

    2012-01-01

    An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level. PMID:22792166

  4. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  5. Experimental Analysis of Proton-Induced Displacement and Ionization Damage Using Gate-Controlled Lateral PNP Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.

    2006-01-01

    The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.

  6. Development and implementation of a non Gaussian model for the lateral dose prediction in a proton therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Bellinzona, V. E.

    2017-05-01

    Challenging issues in treatment planning system for hadrontherapy are the accurate and fast calculation of dose distribution, the reduction in memory space required to store the dose kernel of individual pencil beams and the shortening of computation time for dose optimization and calculation. In this framework, the prediction of lateral dose distributions is a topic of great interest because currently the double gaussian parametrization is typically used as approximation although other parameterizations are also available. The best accuracy for this kind of calculations can be obtained by Monte Carlo methods, at the expense of a long computing time. This work aims to present a flexible computational model for the calculation of the lateral profile of a pencil proton beam and the results of its implementation in a treatment planning system. The model calculation are compared with the currently used double gaussian approximation and the Monte Carlo calculations, and the tests are performed in water and in presence of inhomogeneities.

  7. SU-E-T-457: Impact of Interfractional Variations On Anterior Vs. Lateral-Field Proton Therapy of Prostate Cancer

    SciTech Connect

    Moteabbed, M; Trofimov, A; Sharp, G C; Wang, Y; Zietman, A L; Efstathiou, J A; Lu, H

    2015-06-15

    Purpose: To investigate the effects of interfractional anatomy and setup variations on plans with anterior-oblique vs. lateral beams for prostate cancer pencil beam scanning (PBS) and passive scattered (PS) proton therapy. Methods: Six patients with low/intermediate risk prostate cancer treated with PS proton therapy at our institution were selected. All patients underwent weekly verification CT scans. Implanted fiducials were used for localization, and endorectal balloons for prostate immobilization. New PBS plans with lateral beams, as well as PBS and PS plans with anterior-oblique beams (±35 deg) were created. PBS plans used two different spot sizes: ∼10mm (large) and ∼5mm (medium) sigma at 25cm range and optimized as single-field-uniform-dose with ∼8% non-uniformity. No range uncertainty margins were applied in PBS plans to maximize rectal sparing. Field-specific apertures were used when planning with large spots to sharpen the penumbrae. The planned dose was recomputed on each weekly CT with fiducials aligned to the simulation CT, scaled and accumulated via deformable image registration. Results: The dose volume analysis showed that although difference between planned and accumulated dose remains negligible for plans with conventional lateral beams using both PS and PBS, this is not the case for plans with anterior beams. The target coverage in anterior plans was largely degraded due to the variations in the beam path length and the absence of range margins. The average prostate D95 was reduced by 7.5/15.9% (using PS/PBS) after accumulation for anterior plans, compared with 0/0.4% for lateral plans. The average mean dose in organs-at-risk decreased by 1% for lateral and 2% for anterior plans, similarly for PS and PBS. Spot size did not affect the dose changes. Conclusion: Prostate plans using anterior beams may undergo clinically relevant interfractional dose degradation. Corrective strategies guided by in-vivo range measurements should be studied

  8. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    SciTech Connect

    Hsi, W; Lee, T; Schultz, T; Arjomandy, B; Park, S; Gao, M; Pankuch, M; Boyer, S; Mah, D; Pillainayagam, M; Schreuder, A

    2014-06-15

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared between this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.

  9. Broadening Transfer Opportunities

    ERIC Educational Resources Information Center

    Dearing, Bruce

    1975-01-01

    Broadened opportunity for transfer offers a potential for bolstering sagging enrollments, and increases capacities for accomodating the educational needs of a broader spectrum of a democratic society. (Author/KE)

  10. Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency

    PubMed Central

    Titt, Uwe; Mirkovic, Dragan; Sawakuchi, Gabriel O; Perles, Luis A; Newhauser, Wayne D; Taddei, Phillip J; Mohan, Radhe

    2010-01-01

    In scanned-beam proton therapy, the beam spot properties, such as the lateral and longitudinal size and the minimum achievable range, are influenced by beam optics, scattering media and drift spaces in the treatment unit. Currently available spot scanning systems offer few options for adjusting these properties. We investigated a method for adjusting the lateral and longitudinal spot size that utilizes downstream plastic pre-absorbers located near a water phantom. The spot size adjustment was characterized using Monte Carlo simulations of a modified commercial scanned-beam treatment head. Our results revealed that the pre-absorbers can be used to reduce the lateral full width at half maximum (FWHM) of dose spots in water by up to 14 mm, and to increase the longitudinal extent from about 1 mm to 5 mm at residual ranges of 4 cm and less. A large factor in manipulating the lateral spot sizes is the drift space between the pre-absorber and the water phantom. Increasing the drift space from 0 cm to 15 cm leads to an increase in the lateral FWHM from 2.15 cm to 2.87 cm, at a water-equivalent depth of 1 cm. These findings suggest that this spot adjustment method may improve the quality of spot-scanned proton treatments. PMID:21076194

  11. Broadening the Recruiting Market.

    ERIC Educational Resources Information Center

    Central All-Volunteer Force Task Force, Washington, DC.

    The purpose of the study is to broaden the enlisted recruiting market, especially for high school graduates and describe measures to complete or expedite actions initiated by ASD (M and RA) (Assistant Secretary of Defense Manpower and Reserve Affairs) and the military services and to take additional actions to enhance recruiting. (Author)

  12. Broadening the Recruiting Market.

    ERIC Educational Resources Information Center

    Central All-Volunteer Force Task Force, Washington, DC.

    The purpose of the study is to broaden the enlisted recruiting market, especially for high school graduates and describe measures to complete or expedite actions initiated by ASD (M and RA) (Assistant Secretary of Defense Manpower and Reserve Affairs) and the military services and to take additional actions to enhance recruiting. (Author)

  13. Broadening, Deepening, and Consolidating

    ERIC Educational Resources Information Center

    Cumming, Alister

    2004-01-01

    I encourage the editors of and contributors to "Language Assessment Quarterly" to continue, and to extend, three directions that are integral to the development of the field of language assessment: (a) to broaden the scope of inquiry and contexts that inform knowledge about language assessment; (b) to deepen the theoretical premises and…

  14. Neutrino Induced Doppler Broadening

    PubMed Central

    Jolie, J.; Stritt, N.

    2000-01-01

    When a nucleus undergoes beta decay via the electron capture reaction, it emits an electron neutrino. The neutrino emission gives a small recoil to the atom, which can be experimentally observed as a Doppler broadening on subsequently emitted gamma rays. Using the two-axis flat-crystal spectrometer GAMS4 and the electron capture reaction in 152Eu, the motion of atoms having an excess kinetic energy of 3 eV in the solid state was studied. It is shown how the motion of the atom during the first hundreds of femtoseconds can be reconstructed. The relevance of this knowledge for a new neutrino helicity experiment is discussed. PMID:27551591

  15. SU-E-T-616: Comparison of Plan Dose Accuracy for Anterior Vs. Lateral Fields in Proton Therapy of Prostate Cancer

    SciTech Connect

    Moteabbed, M; Trofimov, A; Testa, M; Sharp, G; Wang, Y; Paganetti, H; Zietman, A; Efstathiou, J; Lu, H

    2014-06-01

    Purpose: With the anticipated introduction of in vivo range verification methods, the use of anterior fields for proton therapy of prostate cancer may become an attractive treatment option, and improve upon the dose distributions achievable with conventional lateral-opposed fields. This study aimed to evaluate and compare the planned dose accuracy for lateral versus anterior oblique field arrangements. Methods: Four patients with low/intermediate risk prostate cancer, participating in a clinical trial at our institution, were selected for this study. All patients were treated using lateral-opposed fields (LAT). The clinical target volume (CTV) received a total dose of 79.2 Gy in 44 fractions. Anterior oblique research plans (ANT) were created using the clinical planning system, and featured beams with ±35-degree gantry angle, 1.2 cm aperture margins, 3-mm range compensator smearing and no range uncertainty margins. Monte Carlo (MC) simulations were performed for both beam arrangements using TOPAS. Dose volume histograms were analyzed and compared for planned and MC dose distributions. Differences between MC and planned DVH parameters were computed as a percentage of the total prescribed dose. Results: For all patients, CTV dose was systematically lower (∼2–2.5%) for MC than the plan. This discrepancy was slightly larger (∼0.5%) for LAT compared to ANT plans for all cases. Although the dose differences for bladder and anterior rectal wall remained within 0.7% for all LAT cases, they were slightly larger for ANT plans, especially for case 3 due to larger patient size and MC-plan range difference. The EUD difference for femoral heads was within 0.6% for both LAT and ANT cases. Conclusion: The dose calculated by the treatment planning system using pencil beam algorithm agrees with MC to within 2.5% and is comparable for lateral and anterior scenarios. The dose agreement in the anterior rectal wall is range- and hence, patient-dependent for ANT treatments.

  16. On the Stark broadening of Cr VI spectral lines in astrophysical plasma

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Simić, Z.; Sahal-Bréchot, S.

    2017-02-01

    Stark broadening parameters for Cr VI lines have been calculated using semiclassical perturbation method for conditions of interest for stellar plasma. Here are presented, as an example of obtained results, Stark broadening parameters for electron- and proton-impact broadening for Cr VI 4s 2S-4p 2P° λ = 1430 Å and Cr VI 4p 2P°-5s 2S λ = 611.8 Å multiplets. The obtained results are used to demonstrate the importance of Stark broadening of Cr VI in DO white dwarf atmospheres. Also the obtained results will enter in STARK-B database which is included in Virtual Atomic and Molecula Data Center - VAMDC.

  17. Broadening nanotechnology's impact on development

    NASA Astrophysics Data System (ADS)

    Beumer, Koen

    2016-05-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world's poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  18. Stark Broadening Parameters for Neutral Oxygen Spectral Lines

    NASA Astrophysics Data System (ADS)

    Alonizan, N.; Qindeel, R.; Nessib, N. Ben; Sahal-Bréchot, S.; Dimitrijević, Milan S.

    2015-12-01

    Stark broadening parameters for nine neutral oxygen (O I) lines have been determined within the impact approximation and the semiclassical perturbation method. The atomic data have been taken from the TOPbase and NIST atomic databases. The electron and proton Stark widths and shifts and ion broadening parameter values for these O I lines have been calculated for electron density of 10 16 cm -3 and for 4 different electron temperatures in the range of 5000 K to 40000 K. These Stark broadening parameters are compared with our previous results (Ben Nessib, N. et al. 1996, Physica Scripta, 54, 603-613), where we calculated Stark broadening parameters for only four O I spectral lines and where Stark widths and shifts were compared with experimental and theoretical data available in the literature. In the present paper, we have also compared our results with the Griem's book (Griem, H. R. 1974, Spectral line broadening by plasmas) and VALD (Ryabchikova, T. et al. 2015, Physica Scripta, 90, 054005) values.

  19. The broaden-and-build theory of positive emotions.

    PubMed Central

    Fredrickson, Barbara L

    2004-01-01

    The broaden-and-build theory describes the form and function of a subset of positive emotions, including joy, interest, contentment and love. A key proposition is that these positive emotions broaden an individual's momentary thought-action repertoire: joy sparks the urge to play, interest sparks the urge to explore, contentment sparks the urge to savour and integrate, and love sparks a recurring cycle of each of these urges within safe, close relationships. The broadened mindsets arising from these positive emotions are contrasted to the narrowed mindsets sparked by many negative emotions (i.e. specific action tendencies, such as attack or flee). A second key proposition concerns the consequences of these broadened mindsets: by broadening an individual's momentary thought-action repertoire--whether through play, exploration or similar activities--positive emotions promote discovery of novel and creative actions, ideas and social bonds, which in turn build that individual's personal resources; ranging from physical and intellectual resources, to social and psychological resources. Importantly, these resources function as reserves that can be drawn on later to improve the odds of successful coping and survival. This chapter reviews the latest empirical evidence supporting the broaden-and-build theory and draws out implications the theory holds for optimizing health and well-being. PMID:15347528

  20. Medical vest broadens treatment capability

    NASA Technical Reports Server (NTRS)

    Johnson, G. S.

    1970-01-01

    Universal sized vest, with specially tailored pockets designed to hold medical supplies, provides first aid/first care medical teams with broadened on-site capability. Vest is made of nylon, tough fibrous materials, and polyvinyl chloride. Design facilitates rapid donning, doffing, and adjustment.

  1. Fundamental edge broadening effects during focused electron beam induced nanosynthesis.

    PubMed

    Schmied, Roland; Fowlkes, Jason D; Winkler, Robert; Rack, Phillip D; Plank, Harald

    2015-01-01

    The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  2. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    DOE PAGES

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; ...

    2015-01-01

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to evenmore » more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.« less

  3. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    SciTech Connect

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; Rack, Phillip D.; Plank, Harald

    2015-01-01

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  4. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  5. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  6. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-03-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ∼0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  7. Bandwidth broadening for stripline circulator

    NASA Astrophysics Data System (ADS)

    Chao, Hsien-Wen; Wu, Shi-Yao; Chang, Tsun-Hsu

    2017-02-01

    This work provides a detailed analysis and simulation to demonstrate how to broaden the operating bandwidth of a circulator. A double-Y junction circulator is designed, and the shape of the central stripline is optimized with the knowledge of a modified equation. The equation predicts two resonant conditions. The overlapping of the two resonant conditions jointly constitutes the broad bandwidth. The bias magnetic field is simulated and then used in full electromagnetic-wave simulation. The designed circulator was fabricated in the S-band for communication purpose. The measured results agree very well with simulation. The overall operation range is from 1643 to 2027 MHz with the insertion loss less than 0.35 dB, reflection, and isolation better than 20 dB. The mechanism will be discussed.

  8. Excited state of protonated benzene and toluene

    SciTech Connect

    Esteves-López, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2015-08-21

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)].

  9. Stark broadening data for stellar plasma research.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  10. SU-E-T-73: A Robust Proton Beam Therapy Technique for High-Risk Prostate Cancer Whole Pelvis Irradiation: Bilateral Opposed Single Field Uniform Dose (SFUD) Plan with Lateral Penumbra Gradient Matching

    SciTech Connect

    Ding, X; Wu, H; Rosen, L

    2015-06-15

    Purpose: To develop a clinical feasible and robust proton therapy technique to spare bowel, bladder and rectum for high-risk prostate cancer patients Methods: The study includes 3 high-risk prostate cancer cases treated with bilateral opposed SFUD with lateral penumbra gradient matching technique prescribed to 5400cGyE in 30 fx in our institution. To treat whole pelvic lymph node chain, the complicated ‘H’ shape, using SFUD technique, we divided the target into two sub-targets (LLAT beam treating ‘90 degree T-shape’ and RLAT beam treating ‘: shape’) in Plan A and use lateral penumbra gradient matching at patient’s left side. Vice verse in Plan B. Each plan deliver half of the prescription dose. Beam-specific PTVs were created to take range uncertainty and setup error into account. For daily treatment, patient received four fields from both plan A and B per day. Robustness evaluation were performed in the worst case scenario with 3.5% range uncertainty and 1, 2, 3mm overlap or gap between LLAT and RLAT field matching in Raystation 4.0. All of cases also have a Tomotherapy backup plan approved by physician as a dosimetric comparison. Results: The total treatment time take 15–20mins including IGRT and four fields delivery on ProteusONE, a compact size PBS proton system, compared to 25–30min in traditional Tomotherapy. Robustness analysis shows that this plan technique is insensitive to the range uncertainties. With the lateral gradient matching, 1, 2, 3mm overlap renders only 2.5%, 5.5% and 8% hot or cool spot in the junction areas. Dosimetric comparisons with Tomotherapy show a significant dose reduction in bladder D50%(14.7±9.3Gy), D35%(7.3±5.8Gy); small bowel and rectum average dose(19.6±7.5Gy and 14.5±6.3Gy respectively). Conclusion: The bilateral opposed(SFUD) plan with lateral penumbra gradient matching has been approved to be a safe, robust and efficient treatment option for whole pelvis high-risk prostate cancer patient which

  11. Pressure broadening of oxygen by water

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Payne, Vivienne; Oyafuso, Fabiano; Sung, Keeyoon; Mlawer, Eli

    2014-01-01

    A need for precise air-mass retrievals utilizing the near-infrared O2 A-band has motivated measurements of the water-broadening in oxygen. Experimental challenges have resulted in very little water broadened oxygen data. Existing water broadening data for the O2 A-band is of insufficient precision for application to the atmospheric data. Line shape theory suggests that approximate O2 pressure broadening parameters for one spectral region, such as the A-band, may be obtained from comparable spectral regions such as the O2 60 GHz Q-branch, which is also used prominently in remote sensing. We have measured precise O2-H2O broadening for the 60 GHz Q-branch and the pure-rotational transitions at room temperature with a Zeeman-modulated absorption cell using a frequency-multiplier spectrometer. Intercomparisons of these data and other O2 pressure broadening data sets confirm the expectation of only minor band-to-band scaling of pressure broadening. The measurement provides a basis for fundamental parameterization of retrieval codes for the long-wavelength atmospheric measured values. Finally, we demonstrate the use of these measurements for retrievals of air-mass via remote sensing of the oxygen A-band.

  12. Charge Correlations in Plasma Line Broadening

    SciTech Connect

    Wrighton, Jeffrey M.; Dufty, James W.

    2008-10-22

    The traditional theory of plasma line broadening is re-examined to correct for phenom-enological assumptions regarding charge correlations. Conditions for static ions are assumed, and the ion microfield distribution is introduced without neglecting ion-electron correlations, and with a precise definition for the ion field at the radiator. Radiator and plasma subsystems are defined so as to make a second order calculation of electron broadening valid for the case of high Z radiators. The electron broadening operator is identified in terms of the fluctuation of the electron density at the radiator, averaged over the entire plasma constrained by a given value for the ion microfield.

  13. Thermally induced microstrain broadening in hexagonal zinc

    SciTech Connect

    Lawson, Andrew C; Valdez, James A; Roberts, Joyce A; Leineweber, Andreas; Mittemeijer, E J; Kreher, W

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  14. Bioenergetics: Proton fronts on membranes

    NASA Astrophysics Data System (ADS)

    Agmon, Noam; Gutman, Menachem

    2011-11-01

    Proton migration on membranes is a crucial step in the bioenergetics of the cell. It has typically been regarded as slow successive proton transfers between ionizable moieties within the membrane, but recent measurements suggest fast lateral diffusion in the membrane's hydration layer.

  15. Sound pulse broadening in stressed granular media

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent; Jia, Xiaoping

    2015-02-01

    The pulse broadening and decay of coherent sound waves propagating in disordered granular media are investigated. We find that the pulse width of these compressional waves is broadened when the disorder is increased by mixing the beads made of different materials. To identify the responsible mechanism for the pulse broadening, we also perform the acoustic attenuation measurement by spectral analysis and the numerical simulation of pulsed sound wave propagation along one-dimensional disordered elastic chains. The qualitative agreement between experiment and simulation reveals a dominant mechanism by scattering attenuation at the high-frequency range, which is consistent with theoretical models of sound wave scattering in strongly random media via a correlation length.

  16. Does interest broaden or narrow attentional scope?

    PubMed

    Sung, Billy; Yih, Jennifer

    2015-08-10

    Theory proposes that interest is a positive emotion that may either broaden attention to facilitate processing of new information, or narrow attention to preserve engagement with new information. To our knowledge, no research has directly examined the effect of interest on attentional scope. Across four experiments, we show that traits associated with the propensity to experience interest-specifically, trait curiosity and internal boredom proneness-are associated with a narrower scope of attention. We also find that, instead of broadening, interest actually narrows attentional scope in comparison to a neutral state and awe. Challenging the conventional notion that all positive emotions broaden cognition and attention, our findings suggest that specific emotions influence attention in ways that extend beyond a general emotional valence effect.

  17. Proton Therapy

    MedlinePlus

    ... Proton Therapy Alternative & Integrative Medicine Clinical Trials GBM AGILE TTFields – Optune™ Brain Tumor Treatment Locations Treatment Side ... Proton Therapy Alternative & Integrative Medicine Clinical Trials GBM AGILE TTFields – Optune™ Brain Tumor Treatment Locations Treatment Side ...

  18. Non-symmetric broadening of the reflection notch in polymer stabilized cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Natarajan, Lalgudi V.; Voss, Jimmy R.; Tondiglia, Vincent P.; Yang, Deng-Ke; White, Timothy J.; Bunning, Timothy J.

    2010-08-01

    Non-symmetric broadening (to the blue side) of a cholesteric reflection notch was observed when a cell containing diacrylate and monoacrylate nematic LC monomers, a chiral dopant, nematic LC and a photoinitiator was exposed to very low intensity (microwatts) of 335 nm UV light. At very low intensity, the polymerization rate is very slow and takes a long time to complete as observed by real-time monitoring experiments. The polymerized scaffold templates the original liquid crystal helical structure. The 335 nm light is highly absorbed by the system which generates an intensity gradient throughout the thickness of the cell. This gradient produces a free radical density gradient in the later stage of the polymerization when diffusion is slowed by the growing polymer network. Since more monomer is consumed at the front half of the cell, a counter diffusion of chiral dopant towards the cell backside is observed. This leads to a local increase in the HTP causing a local blue shift of the notch wavelength. The net result observed in transmission is a broadening of the reflection bandwidth from 70 nm to 200 nm where the broadening occurs only to the blue side of the original notch. By varying the intensity of the UV source on one side of the substrate, the broadening magnitude could be controlled. Simultaneous UV illumination from both sides of the cell reduced the broadening considerably. The broadened notch was switchable at high electrical field (20V/μm).

  19. Enantioselective Protonation

    PubMed Central

    Mohr, Justin T.; Hong, Allen Y.; Stoltz, Brian M.

    2010-01-01

    Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods to achieve enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proven useful for the preparation of a number of valuable organic compounds. PMID:20428461

  20. Unified classical path theories of pressure broadening.

    NASA Technical Reports Server (NTRS)

    Bottcher, C.

    1971-01-01

    Derivation of a unified classical path theory of pressure broadening, using only elementary concepts. It is shown that the theory of Smith, Cooper and Vidal (1969) is only correct at all frequencies to first order in the number density of perturbers.

  1. Broadening Our View of Linguistic Diversity

    ERIC Educational Resources Information Center

    O'Neal, Debra; Ringler, Marjorie

    2010-01-01

    The definition of English language learners needs to be broadened to include the marginalized dialects of English. Not all native speakers speak Standard English, and even those who do need to learn Academic English to succeed in school. By using strategies developed for ELLs, teachers can help all students become fluent in the language of school.

  2. Broadening Our View of Linguistic Diversity

    ERIC Educational Resources Information Center

    O'Neal, Debra; Ringler, Marjorie

    2010-01-01

    The definition of English language learners needs to be broadened to include the marginalized dialects of English. Not all native speakers speak Standard English, and even those who do need to learn Academic English to succeed in school. By using strategies developed for ELLs, teachers can help all students become fluent in the language of school.

  3. How to resolve the proton radius puzzle?

    NASA Astrophysics Data System (ADS)

    Paz, Gil

    2016-09-01

    In 2010 the first measurement of the proton charge radius from spectroscopy of muonic hydrogen was found to be five standard deviations away from the regular hydrogen value. Six years later, this ``proton radius puzzle'' is still unresolved. One of the most promising avenues to test the muonic hydrogen result is a new muon-proton scattering experiment called MUSE. We describe how effective field theory methods will allow to directly connect muonic hydrogen spectroscopy to muon-proton scattering.

  4. Positive mood broadens visual attention to positive stimuli

    PubMed Central

    Wadlinger, Heather A.; Isaacowitz, Derek M.

    2010-01-01

    In an attempt to investigate the impact of positive emotions on visual attention within the context of Fredrickson's (1998) broaden-and-build model, eye tracking was used in two studies to measure visual attentional preferences of college students (n=58, n=26) to emotional pictures. Half of each sample experienced induced positive mood immediately before viewing slides of three similarly-valenced images, in varying central-peripheral arrays. Attentional breadth was determined by measuring the percentage viewing time to peripheral images as well as by the number of visual saccades participants made per slide. Consistent with Fredrickson's theory, the first study showed that individuals induced into positive mood fixated more on peripheral stimuli than did control participants; however, this only held true for highly-valenced positive stimuli. Participants under induced positive mood also made more frequent saccades for slides of neutral and positive valence. A second study showed that these effects were not simply due to differences in emotional arousal between stimuli. Selective attentional broadening to positive stimuli may act both to facilitate later building of resources as well as to maintain current positive affective states. PMID:20431711

  5. Momentum broadening in unstable quark-gluon plasma

    DOE PAGES

    Carrington, M. E.; Mrówczyński, St.; Schenke, B.

    2017-02-01

    We present that quark-gluon plasma produced at the early stage of ultrarelativistic heavy-ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes much exceeding typical values of the fields in equilibrated plasma. We consider a high-energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parametermore » $$ˆ\\atop{q}$$ which determines the radiative energy loss of the test parton. We develop a formalism which gives $$ˆ\\atop{q}$$ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy-ion collisions. The parameter $$ˆ\\atop{q}$$ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times $$ˆ\\atop{q}$$ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibrium. The momentum broadening is also strongly directionally dependent and is largest when the test parton velocity is transverse to the beam axis. Lastly, consequences of our findings for the phenomenology of jet quenching in relativistic heavy-ion collisions are briefly discussed.« less

  6. Momentum broadening in unstable quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Mrówczyński, St.; Schenke, B.

    2017-02-01

    Quark-gluon plasma produced at the early stage of ultrarelativistic heavy-ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes much exceeding typical values of the fields in equilibrated plasma. We consider a high-energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parameter q ̂ which determines the radiative energy loss of the test parton. We develop a formalism which gives q ̂ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy-ion collisions. The parameter q ̂ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times q ̂ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibrium. The momentum broadening is also strongly directionally dependent and is largest when the test parton velocity is transverse to the beam axis. Consequences of our findings for the phenomenology of jet quenching in relativistic heavy-ion collisions are briefly discussed.

  7. Broadening the imaging phenotype of dysferlinopathy at different disease stages.

    PubMed

    Díaz, Jorge; Woudt, Lisanne; Suazo, Lionel; Garrido, Cristián; Caviedes, Pablo; CÁrdenas, Ana M; Castiglioni, Claudia; Bevilacqua, Jorge A

    2016-08-01

    MRI characterization of dysferlinopathy has been mostly limited to the lower limbs. We aimed to broaden the MRI description of dysferlinopathy and to correlate it with objective measures of motor dysfunction. Sequential whole-body axial MRI was performed in 27 patients with genetically confirmed dysferlinopathy classified according to disease duration. Spearman correlations of fatty infiltration scores versus Motor Function Measure (MFM) were calculated. Significant fatty infiltration was symmetrically present in early stages mainly in the posterior compartments of legs and thighs, thigh adductors, pelvic girdle, and some paravertebral muscles and the subscapularis. Later, fatty infiltration involved leg and thigh anterior compartments, arms and forearms, paravertebral, and trunk muscles. MRI infiltration score correlated positively with disease duration and negatively with MFM scale. We expand MRI characterization of dysferlinopathy and provide evidence for use of MRI scoring combined with motor functional scales to assess the natural course of disease. Muscle Nerve, 2016 Muscle Nerve 54: 203-210, 2016. © 2016 Wiley Periodicals, Inc.

  8. Spectral line broadening in magnetized black holes

    SciTech Connect

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  9. Modulation Broadening of Unsaturated Lorentzian Lines

    DTIC Science & Technology

    1961-11-01

    the JOURNAL OF CHEMICAL PHYSICS , Vol. 35, No. 5, 1708-1710, November, 1961 Printed in U. S. A. Modulation Broadening of Unsaturated Lorentzian Lines* HuGo WAHLQuIST Jet Propulsion Laboratory, California Instilute of Technology, Pasadena, California (Received April 7, 1961) Closed, analytic expressions are obtained for the harmonic amplitudes which arise in the modulation of unsaturated Lorentzian absorption lines. Exact formulas relating characteristics of the observed signals (amplitude, width, slope ratios, etc.) to the

  10. Stark broadening effect and zirconium conflict problem

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Popović, Luka Č.; Milovanović, Nenad

    2001-04-01

    Using the Modified Semiempirical Method we have calculated the electron-impact widths for four singly and doubly ionized zirconium UV lines of astrophysical importance. Using the SYNTH and ATLAS9 codes for stellar atmospheres similar to that of the HgMn star χ Lupi we have synthesized the line profiles and found equivalent widths for these lines. The influence of the Stark broadening effect on abundance determination and its contribution to the so-called ``zirconium conflict'' are discussed. .

  11. Line Broadening and the Solar Opacity Problem

    NASA Astrophysics Data System (ADS)

    Krief, M.; Feigel, A.; Gazit, D.

    2016-06-01

    The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot, dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, calculations of atomic spectra of the Sun indicate a large discrepancy in the K-shell line widths between several atomic codes and the Opacity-Project (OP). In this work, the atomic code STAR is used to study the sensitivity of solar opacities to line broadening. Variations in the solar opacity profile due to an increase of the Stark widths resulting from discrepancies with OP, are compared, in light of the solar opacity problem, with the required opacity variations of the present day Sun, as imposed by helioseismic and neutrino observations. The resulting variation profile is much larger than the discrepancy between different atomic codes, agrees qualitatively with the missing opacity profile, recovers about half of the missing opacity nearby the convection boundary, and has a little effect in the internal regions. Since it is hard to estimate quantitatively the uncertainty in the Stark widths, we show that an increase of all line widths by a factor of about ˜100 recovers quantitatively the missing opacity. These results emphasize the possibility that photoexcitation processes are not modeled properly, and more specifically, highlight the need for a better theoretical characterization of the line broadening phenomena at stellar interior conditions, and of the uncertainty due to the way it is implemented by atomic codes.

  12. Proton therapy in the clinic.

    PubMed

    DeLaney, Thomas F

    2011-01-01

    The clinical advantage for proton radiotherapy over photon approaches is the marked reduction in integral dose to the patient, due to the absence of exit dose beyond the proton Bragg peak. The integral dose with protons is approximately 60% lower than that with any external beam photon technique. Pediatric patients, because of their developing normal tissues and anticipated length of remaining life, are likely to have the maximum clinical gain with the use of protons. Proton therapy may also allow treatment of some adult tumors to much more effective doses, because of normal tissue sparing distal to the tumor. Currently, the most commonly available proton treatment technology uses 3D conformal approaches based on (a) distal range modulation, (b) passive scattering of the proton beam in its x- and y-axes, and (c) lateral beam-shaping. It is anticipated that magnetic pencil beam scanning will become the dominant mode of proton delivery in the future, which will lower neutron scatter associated with passively scattered beam lines, reduce the need for expensive beam-shaping devices, and allow intensity-modulated proton radiotherapy. Proton treatment plans are more sensitive to variations in tumor size and normal tissue changes over the course of treatment than photon plans, and it is expected that adaptive radiation therapy will be increasingly important for proton therapy as well. While impressive treatment results have been reported with protons, their cost is higher than for photon IMRT. Hence, protons should ideally be employed for anatomic sites and tumors not well treated with photons. While protons appear cost-effective for pediatric tumors, their cost-effectiveness for treatment of some adult tumors, such as prostate cancer, is uncertain. Comparative studies have been proposed or are in progress to more rigorously assess their value for a variety of sites. The utility of proton therapy will be enhanced by technological developments that reduce its cost

  13. Signal broadening in the laser Doppler velocimeter.

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Edwards, R. V.; Dunning, J. W., Jr.

    1971-01-01

    Critical review of a recent paper in which Denison, Stevenson, and Fox (1971) discussed the sources of spectral broadening in the laser Doppler velocimeter. It is pointed out that, in their discussion, the above-mentioned authors indicated that the spread in wave vectors of the incident and detected fields and the finite length of time a scattering center stayed in the sample volume each contributed separately and independently to the observed spectral width of the scattered radiation. This statement is termed incorrect, and it is shown that the two effects are one and the same.

  14. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  15. Action potential broadening in a presynaptic channelopathy

    PubMed Central

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-01-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction. PMID:27381274

  16. Action potential broadening in a presynaptic channelopathy.

    PubMed

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E; Kullmann, Dimitri M

    2016-07-06

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca(2+) influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  17. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  18. Commitment to Broadening Participation at NOAO

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine D.; Norman, D.

    2011-01-01

    AURA and NOAO take seriously the importance of Broadening Participation in Astronomy. At the request of the AURA President, each of the AURA centers (NOAO, NSO, STSCI, Gemini) appointed a Diversity Advocates (DA). At NOAO this job is shared by Dara Norman and Katy Garmany, who were appointed by Dave Silva in Jan 2009. The DA's are members of the AURA Committee on Workforce and Diversity (WDC), a designated subcommittee of the AURA Board of Directors. The role of this committee includes reviewing activities and plans on an AURA wide basis aimed at broadening the participation within AURA, and reviewing AURA wide policies on the workforce. At NOAO, the role of the DAs spans a number of departments and activities. They serve on observatory search committees, and offer suggestions on how NOAO job searches can reach the most diverse audience. The DA's job is to insure that NOAO actively pursues every opportunity to increase diversity: to this end they are involved in outreach and educational activities that focus on workplace development and encourage inclusion of woman, minorities and persons with disabilities.

  19. Single-pulse and secondary echoes in systems with a large inhomogeneous broadening of NMR lines

    NASA Astrophysics Data System (ADS)

    Chigvinadze, J. G.; Mamniashvili, G. I.; Sharimanov, Yu. G.

    2004-10-01

    The equations for the nuclear magnetizations which describe the dynamics of nuclear spin-systems with strong Larmor and Rabi inhomogeneous broadenings of the NMR line under conditions of their nonequilibrium are obtained in the framework of the Mims transformation matrix method; these equations have been obtained previously by the statistical tensors method. As an example, the properties of the proton single-pulse echo and its secondary signals in a test material (silicone oil) coated on the surface of high-Tc superconducting-oxide powders and in metallic hydride are presented.

  20. Broadening of length distributions of Au-catalyzed InAs nanowires

    SciTech Connect

    Berdnikov, Yury; Schmidtbauer, Jan; Borg, Mattias; Johansson, Jonas; Dubrovskii, Vladimir

    2016-06-17

    We investigate kinetic broadening effects on the length distributions of gold-catalyzed InAs nanowires having different diameters. It is shown that the length distributions acquire bimodal shape when the longest nanowires exceed the diffusion length of indium adatoms on the nanowire sidewalls. Later on, the length distributions recover unimodal shapes. We develop a theoretical model that is capable of describing the observed behaviors by accounting for the diffusion-induced character of the vapor-liquid-solid growth.

  1. Proton Therapy

    MedlinePlus

    ... effects of the treatment. top of page What equipment is used? Proton beam therapy uses special machines, ... tumor cells. top of page Who operates the equipment? With backgrounds in mechanical, electrical, software, hardware and ...

  2. Broadening Participation in the Coastal Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Christian, A.; Hannigan, R.

    2011-12-01

    Embracing diversity of discipline and perspective is central to broadening participation in the ocean sciences. Research focused on coastal environmental issues seen through the lenses of indigenous knowledge, industry, and public-private partnership perspectives engages younger non-ocean science students from minority serving institutions in unique ways. Demonstrating multiple entry points to students interested in a career in the sciences and engaging them in research across spatial and temporal scales is vitally important to the creation of a learning cohort that will sustain these students past their often short summer research experience. By combining recruitment partnerships with select minority serving institutions, engaging younger students in research, and creating a diverse set of cohort building activities ensures that as we embrace the diversity of coastal environmental disciplines we also embrace the diversity of perspectives that these students bring to our research.

  3. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  4. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  5. Photoinduced broadening of cholesteric liquid crystal reflectors

    NASA Astrophysics Data System (ADS)

    White, Timothy J.; Freer, Alexander S.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2010-04-01

    The selective reflection of cholesteric liquid crystals (CLCs) is well-known and has been utilized in a number of dynamic optical applications. This work presents a novel approach to passively (e.g., all-optically) cue reflection notch broadening in photoresponsive CLC formulations based on high helical twisting power (HTP) bis(azo) chiral dopants. The original reflection bandwidth of approximately 100 nm is increased to as much as 1700 nm, by exposing 36 μm thick cells to UV light. The maximum attainable bandwidth is shown to be a function of cell thickness, light intensity, and strongly related to the HTP of the photoresponsive chiral dopants. An all-optical technique of simultaneous UV and green light exposure is demonstrated to trap the reflection notch at a predetermined position and bandwidth.

  6. Phonon broadening in high entropy alloys

    NASA Astrophysics Data System (ADS)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  7. Collision Broadening Of Line Spectrum In Sonoluminescence

    SciTech Connect

    Li Chaohui; An Yu

    2008-06-24

    The direct measurement of temperature inside a sonoluminescing bubble as it is at its flashing phase is almost impossible due to the smallness of the bubble and the short duration of the flashing. One may estimate the temperature through fitting the continuum spectrum of sonoluminescence by the black body radiation formula, or fitting the shape of atomic or molecular line spectrum (the different temperature, density and pressure result in the different shape of the line spectrum due to the effect of collision broadening). However, the temperature changes in a huge range at short duration as the bubble flashes, therefore, the observed spectra are some kind of average one, so are those fitted results. To evaluate the instantaneous temperature more accurately, we simulate the processes of the bubble motion and the thermodynamics inside the bubble, in which atomic or molecular line spectra with the collision broadening effect and the continuum spectra contributed from the processes of electron-atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation and radiative attachment of electrons to atoms and molecules are taken into account in calculating the light emission. If both the calculated continuum spectra and the shape of line spectra can well represent the experimental data, we may deduce that the calculation of the temperature, density and pressure is reliable and we indirectly evaluate those quantities inside the bubble. In the present calculation, the line spectra of OH radical at about 310 nm mixing the electron transition with the vibration and rotational bands are considered. The calculation qualitatively consists with the observation, and we expect that with the more precise bubble dynamics model instead of the uniform model employed in the present calculation we may improve the quantitative result.

  8. Exact expression of the impact broadening operator for hydrogen Stark broadening

    NASA Astrophysics Data System (ADS)

    Gigosos, M. A.; González, M. Á.; Talin, B.; Calisti, A.

    2007-05-01

    Aims:Recent measurements on the Stark broadening of radio recombination lines show values and trends in disagreement with conventional theories. Different attemps to explain those disagreements have not been successfull for any of the employed theoretical models. In particular, the impact model that describes well the physical conditions at which the studied broadenings occur, shows a functional trend upon the principal quantum number of the studied transitions that does not correspond to the experimental observations. Methods: High values of the principal quantum number require computable formulas for the calculation of transition probabilities. Some of those expressions have been published, leading to approximate formulas on the dependence of the line width versus the principal quantum number of the upper level of the transition. Results: In this work an exact expression for the hydrogen Stark width in the frame of impact approximation is given.

  9. Anomalous broadening in driven dissipative Rydberg systems

    NASA Astrophysics Data System (ADS)

    Boulier, Thomas; Goldschmidt, Elizabeth; Brown, Roger; Koller, Silvio; Young, Jeremy; Gorshkov, Alexey; Rolston, Steven; Porto, James

    2016-05-01

    Due to their strong, long-range, coherently-controllable interactions, Rydberg atoms have been proposed as a basis for quantum information processing and simulation of many-body physics. Using the coherent dynamics of such highly excited atomic states, however, requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. We report the observation of interaction-induced broadening of the two-photon 5s-18s Rydberg transition in ultra-cold 87Rb atoms, trapped in a 3D optical lattice. The measured linewidth increases by nearly two orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with spontaneously created populations of nearby Rydberg p-states. This dephasing mechanism implies that the timescales available for the coherent addressing of such systems are dramatically shortened, hampering many recent proposals to use Rydberg-dressed atoms for quantum simulation. Now at Physikalisch-Technische Bundesanstalt.

  10. Proton therapy - Present and future.

    PubMed

    Mohan, Radhe; Grosshans, David

    2017-01-15

    In principle, proton therapy offers a substantial clinical advantage over conventional photon therapy. This is because of the unique depth-dose characteristics of protons, which can be exploited to achieve significant reductions in normal tissue doses proximal and distal to the target volume. These may, in turn, allow escalation of tumor doses and greater sparing of normal tissues, thus potentially improving local control and survival while at the same time reducing toxicity and improving quality of life. Protons, accelerated to therapeutic energies ranging from 70 to 250MeV, typically with a cyclotron or a synchrotron, are transported to the treatment room where they enter the treatment head mounted on a rotating gantry. The initial thin beams of protons are spread laterally and longitudinally and shaped appropriately to deliver treatments. Spreading and shaping can be achieved by electro-mechanical means to treat the patients with "passively-scattered proton therapy" (PSPT) or using magnetic scanning of thin "beamlets" of protons of a sequence of initial energies. The latter technique can be used to treat patients with optimized intensity modulated proton therapy (IMPT), the most powerful proton modality. Despite the high potential of proton therapy, the clinical evidence supporting the broad use of protons is mixed. It is generally acknowledged that proton therapy is safe, effective and recommended for many types of pediatric cancers, ocular melanomas, chordomas and chondrosarcomas. Although promising results have been and continue to be reported for many other types of cancers, they are based on small studies. Considering the high cost of establishing and operating proton therapy centers, questions have been raised about their cost effectiveness. General consensus is that there is a need to conduct randomized trials and/or collect outcomes data in multi-institutional registries to unequivocally demonstrate the advantage of protons. Treatment planning and plan

  11. Proton Therapy

    MedlinePlus

    ... Liver Breast Esophagus Rectum Skull base sarcomas Pediatric brain tumors Head and neck - see the Head and Neck Cancer page Eye ... Intensity-Modulated Radiation Therapy (IMRT) Brain Tumor Treatment Brain Tumors Prostate Cancer Lung Cancer ... related to Proton Therapy Videos related ...

  12. Proton geriatrics

    NASA Astrophysics Data System (ADS)

    Kephart, Thomas W.; Nakagawa, Norio

    1984-07-01

    An SO(10) model with particle spectrum and low energy gauge group identical to that of minimal SU (5) below MX but with a nonstandard charge assignment is shown to agree with the experimental best value of sin2θw(Mw) and the lower bound on the proton lifetime.

  13. Proton Radiobiology

    PubMed Central

    Tommasino, Francesco; Durante, Marco

    2015-01-01

    In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed. PMID:25686476

  14. Intensity modulated proton therapy

    PubMed Central

    Grassberger, C

    2015-01-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed “pencil beams” of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak—the characteristic peak of dose at the end of range—combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose “painting” within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the

  15. The NO Vibrational Fundamental Band: O2-Broadening Coefficients

    NASA Technical Reports Server (NTRS)

    Freedman, R. S.; Giver, L. P.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Rovibrational spectra of the vibrational fundamental of nitric oxide at 1875 cm-1 have been recorded under O2-broadening conditions at 296 K and 0.0056 cm-1 resolution using the Solar Nemeth FTS at the Kitt Peak National Observatory. The use of a flow system, which maintains the NO2 at trace levels, has enabled the first measurement of these broadening coefficients. The broadening of the trace contaminant, N2O, allowed checks of the measured pressures. The least-squares analysis of the spectra includes the nuclear hyperfine structure in addition to (lambda) doubling. We observed differential broadening between the e and f (lambda) components of 2II 1/2 transitions as well as larger differences in broadening observed between 2II3/2 transitions.

  16. Droplet spectral broadening in marine stratus

    SciTech Connect

    Hudson, J.G.; Yum, Seong Soo

    1997-11-15

    Broadening of the cloud droplet (diameter < 50 {mu}m) spectrum with increased droplet size was found to depend on the vertical profiles of cloud water. Clouds with liquid water profiles resembling adiabatic conditions displayed constant spectral widths. Other clouds displayed broader droplet spectra and increasing broadness with mean droplet sizes. Less than adiabatic cloud liquid water profiles may be accounted for by conversion to drops (diameter > 50 {mu}m, i.e., drizzle). Broad droplet spectra were most closely associated with drizzle drops. Both the concentration, C and slope, k, of the cloud condensation nuclei (CCN) spectra were theoretically found to affect droplet spectral width. For individual cloud parcels a higher C and lower k each contributed to broader droplet spectra. When mixing among cloud parcels with different updrafts was considered, the predictions deviated especially at larger mean droplet diameters. Variations in updraft velocity result in differences in droplet concentrations and mean droplet sizes. The predictions for this internal mixing process showed greater droplet spectral widths for CCN spectra with higher k, especially at the larger mean droplet diameters. Instead of the individual parcel predictions of narrower droplet spectra at larger mean droplet sizes, internal mixing predicted increasing droplet spectral width with increasing mean droplet size. These predictions are consistent with the observations. First, when only cloud parcels with small mean droplet diameters (< 1 {mu}m) were considered, the polluted clouds that formed on CCN with higher C and lower k displayed broader droplet spectra than clean clouds. Cloud parcels with large mean droplet diameters (>12 {mu}m) and large {sigma} were observed only in clean conditions where k was high. Increasing droplet spectral width with mean droplet diameter (especially > 12 {mu}m) is typical of many observations here and elsewhere.

  17. Proton maser

    NASA Astrophysics Data System (ADS)

    Ensley, D. L.

    1988-01-01

    New calculations are reported which confirm the ability of an a priori random, initial-phase proton beam to drive a simple, single-stage microwave cavity maser or transit-time oscillator (TTO) to saturation conversion efficiencies of about 11 percent. The required initial TE(011) mode field can be provided from beam ramp-up bandwidth of excitation to a low level from an external source. A saturation field of 45 tesla and output power of 0.2 TW are calculated using an electron insulation field of 10 tesla and a 3 MeV, 400 Ka/sq cm beam. Results are compared to those for an electron beam of the same energy and geometry, and it is shown that proton beams potentially can provide a three order of magnitude increase in overall microwave power production density over that obtainable from electron beam TTOs.

  18. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    SciTech Connect

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-15

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the z-caret direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For CCs composed of CZT detectors, the resolution of gamma energy calculated by the CC ranged from 10% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For HPGe and CZT CCs in which all detector effect were included, the DCA was less than 3 mm for 75% and 68% of the

  19. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    PubMed Central

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-01

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\hat z\\end{equation*} \\end{document}z^ direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 Me

  20. Radial velocity signatures of Zeeman broadening

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Shulyak, D.; Anglada-Escudé, G.; Jeffers, S. V.; Morin, J.; Zechmeister, M.; Kochukhov, O.; Piskunov, N.

    2013-04-01

    Stellar activity signatures such as spots and plages can significantly limit the search for extrasolar planets. Current models of activity-induced radial velocity (RV) signals focus on the impact of temperature contrast in spots according to which they predict the signal to diminish toward longer wavelengths. The Zeeman effect on RV measurements counteracts this: the relative importance of the Zeeman effect on RV measurements should grow with wavelength because the Zeeman displacement itself grows with λ, and because a magnetic and cool spot contributes more to the total flux at longer wavelengths. In this paper, we model the impact of active regions on stellar RV measurements including both temperature contrast in spots and line broadening by the Zeeman effect. We calculate stellar line profiles using polarized radiative transfer models including atomic and molecular Zeeman splitting over large wavelength regions from 0.5 to 2.3 μm. Our results show that the amplitude of the RV signal caused by the Zeeman effect alone can be comparable to that caused by temperature contrast; a spot magnetic field of ~1000 G can produce a similar RV amplitude as a spot temperature contrast of ~1000 K. Furthermore, the RV signal caused by cool and magnetic spots increases with wavelength, in contrast to the expectation from temperature contrast alone. We also calculate the RV signal caused by variations in average magnetic field strength from one observation to the next, for example due to a magnetic cycle, but find it unlikely that this can significantly influence the search for extrasolar planets. As an example, we derive the RV amplitude of the active M dwarf AD Leo as a function of wavelength using data from the HARPS spectrograph. Across this limited wavelength range, the RV signal does not diminish at longer wavelengths but shows evidence for the opposite behavior, consistent with a strong influence of the Zeeman effect. We conclude that the RV signal of active stars does

  1. Lateral Mixing

    DTIC Science & Technology

    2011-09-30

    ocean as it responds to mesoscale forcing. APPROACH Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea . My approach for...therefore requires integrative efforts with other sea -going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal...also participated in the sea -going part of this project, taking my group on the R/V Endeavor in June 2011. Our role was to sample around the center of

  2. Medium induced transverse momentum broadening in hard processes

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng

    2017-02-01

    Using deep inelastic scattering on a large nucleus as an example, we consider the transverse momentum broadening of partons in hard processes in the presence of medium. We find that one can factorize the vacuum radiation contribution and medium related PT broadening effects into the Sudakov factor and medium dependent distributions, respectively. Our derivations can be generalized to other hard processes, such as dijet productions, which can be used as a probe to measure the medium PT broadening effects in heavy ion collisions when Sudakov effects are not overwhelming.

  3. abo-cross: Hydrogen broadening cross-section calculator

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.

    2015-07-01

    Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

  4. NASA broadened-specification fuels combustion technology program

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1980-01-01

    The broadened-Specification Fuels Combustion Technology program's purpose is to evolve and demonstrate the technology required to enable current and next generation high-thrust, high-bypass-ratio turbofan engines to use fuels with broadened properties and to verify the evolved technology in full scale engine tests. The three phases of the program are combustor concept screening, combustor optimization testing, and engine verification testing. Constraints for designing combustion systems are outlined and problems to be expected in the use of broadened properties fuels are listed.

  5. Cortisol broadens memory of a non-stressful social interaction.

    PubMed

    Wiemers, Uta S; Wolf, Oliver T

    2015-05-01

    Stress and its associated hormonal cascade are known to enhance long-term memory consolidation. Recently we have shown that central details of a stressful situation (Trier Social Stress Test; TSST) are remembered better than central details of a similar but non-stressful control condition (friendly Trier Social Stress Test; fTSST). We reasoned that since cortisol concentrations increase during stress (TSST) but remain low during the control condition (fTSST), a pharmacological increase in cortisol during the fTSST might be able to mimic the stress effects observed previously. The objective of the study was to assess the impact of a pharmacologically induced cortisol increase during the non-stressful friendly TSST on long-term memory for details presented during this event. In a double-blind between-group design, participants (final sample: 20 men and 13 women) either received hydrocortisone (20 mg) or a placebo and were then exposed to a non-stressful social interaction (fTSST). Affect, salivary cortisol, and salivary alpha-amylase (sAA) were assessed before and after the fTSST. Recognition memory for objects presented during this situation was assessed 1 day later. Positive affect and sAA increased in response to the friendly TSST in both groups. Hydrocortisone enhanced memory for peripheral objects of the situation in men but not in women. Memory for central objects was not affected by the hormone. The results suggest that in a non-stressful positive social environment, cortisol induces a broadening rather than a narrowing of memory. In addition, the findings provide preliminary evidence that this effect might be more prominent in men.

  6. Ultrafast laser-driven proton sources and dynamic proton imaging

    SciTech Connect

    Nickles, Peter V.; Schnuerer, Matthias; Sokollik, Thomas; Ter-Avetisyan, Sargis; Sandner, Wolfgang; Amin, Munib; Toncian, Toma; Willi, Oswald; Andreev, Alexander

    2008-07-15

    Ion bursts, accelerated by an ultrafast (40 fs) laser-assisted target normal sheath acceleration mechanism, can be adjusted so as to deliver a nearly pure proton beam. Such laser-driven proton bursts have predominantly a low transverse emittance and a broad kinetic spectrum suitable for continuous probing of the temporal evolution of spatially extended electric fields that arise after laser irradiation of thin foils. Fields with a strength of up to 10{sup 10} V/m were measured with a new streaklike proton deflectometry setup. The data show the temporal and spatial evolution of electric fields that are due to target charge-up and ion-front expansion following intense laser-target interaction at intensities of 10{sup 17}-10{sup 18} W/cm{sup 2}. Measurement of the field evolution is important to gain further insight into lateral electron-transport processes and the influence of field dynamics on ion beam properties.

  7. Analysis of pressure-broadened ozone spectra in the 3 micron region

    NASA Technical Reports Server (NTRS)

    Prochaska, Eleanor S.

    1991-01-01

    This work involves the analysis of a series of McMath Fourier Transform Infrared (FTIR) spectra of ozone broadened by mixing with air (four different pressures), nitrogen (three pressures), or oxygen (three pressures). Each spectrum covers the region from 2396 to 4057 cm(-1). This study focused on the 3 sub nu sub 3 band in t 3000 to 3060 cm(-1). The band is analyzed by first dividing its region into small intervals containing a few well isolated absorption lines of reasonable intensity. Each of these small intervals is fit by multiple iterations of the nonlinear least squares program until residuals (the difference between calculated and observed spectrum, as a percent of the strongest intensity in the interval) are minimized to a reasonable value which corresponds to the noise level of the measured spectrum. Position, intensity, and half-width are recorded for later analysis. From the measured half-widths, a pressure broadening coefficient was determined for each absorption line. Pressure shifts were determined by comparing observed line positions in the spectra of the diluted ozone samples to tabulated line positions determined from spectra of pure gas samples. Comparisons to other work on ozone indicate that the broadening and shift coefficients determined in this study are consistent with those determined in other spectral regions.

  8. Proton scaling

    SciTech Connect

    Canavan, Gregory H

    2009-01-01

    This note presents analytic estimates of the performance of proton beams in remote surveillance for nuclear materials. The analysis partitions the analysis into the eight steps used by a companion note: (1) Air scattering, (2) Neutron production in the ship and cargo, (3) Target detection probability, (4) Signal produced by target, (5) Attenuation of signal by ship and cargo, (6) Attenuation of signal by air, (7) Geometric dilution, and (8) Detector Efficiency. The above analyses indicate that the dominant air scattering and loss mechanisms for particle remote sensing are calculable with reliable and accepted tools. They make it clear that the conversion of proton beams into neutron sources rapidly goes to completion in all but thinnest targets, which means that proton interrogation is for all purposes executed by neutrons. Diffusion models and limiting approximations to them are simple and credible - apart from uncertainty over the cross sections to be used in them - and uncertainty over the structure of the vessels investigated. Multiplication is essentially unknown, in part because it depends on the details of the target and its shielding, which are unlikely to be known in advance. Attenuation of neutron fluxes on the way out are more complicated due to geometry, the spectrum of fission neutrons, and the details of their slowing down during egress. The attenuation by air is large but less uncertain. Detectors and technology are better known. The overall convolution of these effects lead to large but arguably tolerable levels of attenuation of input beams and output signals. That is particularly the case for small, mobile sensors, which can more than compensate for size with proximity to operate reliably while remaining below flux limits. Overall, the estimates used here appear to be of adequate accuracy for decisions. That assessment is strengthened by their agreement with companion calculations.

  9. Meta-Research: Broadening the Scope of PLOS Biology.

    PubMed

    Kousta, Stavroula; Ferguson, Christine; Ganley, Emma

    2016-01-01

    In growing recognition of the importance of how scientific research is designed, performed, communicated, and evaluated, PLOS Biology announces a broadening of its scope to cover meta-research articles.

  10. SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES

    SciTech Connect

    Pavan, J.; Gaelzer, R.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F. E-mail: rudi@ufpel.edu.br E-mail: yoonp@umd.edu

    2013-06-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  11. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  12. Solar Wind Strahl Broadening by Self-Generated Plasma Waves

    NASA Technical Reports Server (NTRS)

    Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.

    2013-01-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  13. Pressure broadening of CO and OCS spectral lines

    NASA Astrophysics Data System (ADS)

    Bouanich, J.-P.; Blanquet, G.

    1988-09-01

    This paper reviews the principal features of two semiclassical impact theories of collisional line-broadening, Anderson (1949) and Tsao-Curnutte (1962) theory and the more recent theory of Robert and Bonamy (1979). These models are applied to the calculation of self-, N2-, O2- and CO2-broadened line widths of CO and of self-, O2-, and N2-broadened linewidths of OCS. In addition to the electrostatic interactions, two anisotropic potentials are considered: a simple one governing dispersion interaction and a more elaborate atom-atom interaction potential. Selected experimental values for broadening coefficients of CO and OCS at room temperature and around 200 K are compared with the theoretical values. Conclusions on the two theories and the intermolecular potentials used are drawn from this comparison.

  14. Level broadening and quantum interference effects in insulators

    NASA Astrophysics Data System (ADS)

    Medina, Ernesto; Pastawski, Horacio

    2000-03-01

    We study quantum interference effects in the context of the Nguyen-Spivak-Shklovskii (NSS) model including level broadening due to inelastic events. Improving on a recent mean-field approach, we incorporate path correlations and study both the log-conductance and its fluctuations. In contrast with mean field, we find that all changes in the conductance, due to broadening, imply corrections to the localization length. Furthermore, the change in the magnetoconductance sign, predicted by mean field, is not borne out by direct solution of the NSS model within reasonable broadening parameters. We compute a phase diagram for the magnetoconductance in the broadening parameter space and propose a replica theory for weak inelastic events.

  15. Collision Broadening Using Alkali-Filled, Hollow Core Fibers

    DTIC Science & Technology

    2007-09-01

    spectrum should collisionally broaden due to the presence of fiber walls, as opposed to the more common pressure broadening method. An absorption dip...laser design will include an optical cavity and a gain medium......................... 6 2.4. The more common type of laser...37 3.8. a) The basic mount used at the vacuum side of the setup. b) The cesium mount was more elaborate

  16. Self-phase-modulation induced spectral broadening in silicon waveguides.

    PubMed

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-08

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  17. Coherent and incoherent spectral broadening in a photonic crystal fiber.

    PubMed

    Gross, C; Best, Th; van Oosten, D; Bloch, I

    2007-07-01

    The coherence of the spectral broadening process is the key requisite for the application of supercontinua in frequency combs. We investigate the coherence of two subsequent supercontinuum pulses created in a photonic crystal fiber pumped by a femtosecond laser. We measure Young interference fringes from a Michelson-type interferometer at different wavelengths of the output spectrum and analyze their dependence on pump intensity and polarization. The visibility of these fringes is a direct measure of the coherence of the spectral broadening processes.

  18. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  19. Coincidence Doppler broadening study of Eurofer 97 irradiated in spallation environment

    NASA Astrophysics Data System (ADS)

    Sabelová, V.; Kršjak, V.; Kuriplach, J.; Dai, Y.; Slugeň, V.

    2015-03-01

    The behavior of transmutation helium during isochronal annealing of irradiated Eurofer 97 was investigated using coincidence Doppler broadening spectroscopy (CDBS). The investigated ferritic martensitic steel was irradiated in 2000 and 2001 in the frame of the STIP-II project at the Swiss neutron spallation source (SINQ) (irradiation with neutrons and protons) at the Paul Scherrer Institute (PSI). During isochronal annealing experiment, coarsening of vacancy clusters and/or growth of helium bubbles was observed at T ⩾ 500 °C. This process causes an increase of low-momentum annihilation events and related increase of the S parameter during thermal treatment of material. On the other hand, the maximum concentration of helium in small vacancy clusters (Vn) was observed after annealing at 400 °C, where an excellent correlation with the calculated CDBS profiles of Vn + Hem clusters was found.

  20. Low Arousing Positive Affect Broadens Visual Attention and Alters the Thought-Action Repertoire While Broadened Visual Attention Does Not

    PubMed Central

    Jäger, Daniel T.; Rüsseler, Jascha

    2016-01-01

    The Broaden-and-Build Theory states that positive emotions broaden cognition and therefore build personal resources. However, missing theoretical precision regarding the interaction of the cognitive processes involved offers a variety of possible explanations for the mechanisms of broadening and building. In Experiment 1 we tested the causality assumption which states that positive emotions first broaden visual attention which in turn leads to broadened cognition. We examined the effects of a broadened, narrowed or neutral attentional scope of 72 subjects (30 men) on their momentary thought-action repertoire. Results showed that there were no significant differences between groups regarding the breadth or the content of the thought-action repertoire. In Experiment 2 we studied the non-causality hypothesis which assumes a non-causal relationship between cognitive processes. We did so by investigating the effects of negative, neutral, and positive affect on the visual attentional scope of 85 subjects (41 men) in Experiment 2a, as well as on the thought-action repertoire of 85 participants (42 men) in Experiment 2b. Results revealed an attentional broadening effect in Experiment 2a but no differences between groups concerning the breadth of the thought-action repertoire in Experiment 2b. However, a theory driven content analysis showed that positive affect promoted social actions. Thus, our results favor the non-causality assumption. Moreover, results indicate that positive emotions do not target personal resources in general but rather resources associated with social behavior. In conclusion, we argue that the Broaden-and-Build Theory should be refined. PMID:27826276

  1. Sheep laterality.

    PubMed

    Anderson, Dean M; Murray, Leigh W

    2013-01-01

    Turning preferences among 309 white-faced ewes were individually evaluated in an enclosed, artificially lit T-maze, followed by each ewe choosing either a right or left return alley to return to peers. Data recorded included time in the start box, time in the T-maze, exit arm chosen to leave the T-maze, and return alley. Right and left arms of the T-maze were chosen 65.7% and 34.3% of the time, respectively, while right and left return alleys were chosen 32.4% and 67.6%, respectively. Exit arm and return alley were not independently chosen (p <.0001), with observed counts being higher than expected under independence when ewes made the same choice for exit and alley (RR or LL turn patterns) and being lower than expected for alternating choices (RL or LR). Out of the 309 ewes, 28.2% and 30.1% chose RR and LL turn patterns, respectively, while 37.5% chose the RL turn pattern, but only 13 (4.2%) chose the LR turning pattern. Overall, ewes that initially turned right when presented a second turning opportunity had a slight preference to alternate their turning direction, while ewes that initially turned left tended to continue turning left when given another chance to turn. Exit arm and return alley laterality was not related (α =.05) to time of day the test was administered, ewe's age or genetics, most recent liveweight, or most recent shorn fleece weight. The mean time spent in the start box (21 s) was not related to exit arm (p =.947) or return alley (p =.779). Mean time (15 s) spent in the T-maze was not related to exit arm (p =.086) or return alley (p =.952). More research will be required to understand sheep turning laterality and how it can impact working facilities and research equipment.

  2. SU-E-T-236: Deconvolution of the Total Nuclear Cross-Sections of Therapeutic Protons and the Characterization of the Reaction Channels

    SciTech Connect

    Ulmer, W.

    2015-06-15

    Purpose: The knowledge of the total nuclear cross-section Qtot(E) of therapeutic protons Qtot(E) provides important information in advanced radiotherapy with protons, such as the decrease of fluence of primary protons, the release of secondary particles (neutrons, protons, deuterons, etc.), and the production of nuclear fragments (heavy recoils), which usually undergo β+/− decay by emission of γ-quanta. Therefore determination of Qtot(E) is an important tool for sophisticated calculation algorithms of dose distributions. This cross-section can be determined by a linear combination of shifted Gaussian kernels and an error-function. The resonances resulting from deconvolutions in the energy space can be associated with typical nuclear reactions. Methods: The described method of the determination of Qtot(E) results from an extension of the Breit-Wigner formula and a rather extended version of the nuclear shell theory to include nuclear correlation effects, clusters and highly excited/virtually excited nuclear states. The elastic energy transfer of protons to nucleons (the quantum numbers of the target nucleus remain constant) can be removed by the mentioned deconvolution. Results: The deconvolution of the term related to the error-function of the type cerf*er((E-ETh)/σerf] is the main contribution to obtain various nuclear reactions as resonances, since the elastic part of energy transfer is removed. The nuclear products of various elements of therapeutic interest like oxygen, calcium are classified and calculated. Conclusions: The release of neutrons is completely underrated, in particular, for low-energy protons. The transport of seconary particles, e.g. cluster formation by deuterium, tritium and α-particles, show an essential contribution to secondary particles, and the heavy recoils, which create γ-quanta by decay reactions, lead to broadening of the scatter profiles. These contributions cannot be accounted for by one single Gaussian kernel for the

  3. Experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning

    SciTech Connect

    Ryan, L.M.; Taylor, R.E.; Paff, A.J.; Gerstein, B.C.

    1980-01-01

    High-resolution nuclear magnetic resonance spectra of protons in rigid, randomly oriented solids have been measured using combined homonuclear dipolar decoupling (via multiple pulse techniques) and attenuation of chemical shift anisotropies (via magic-angle sample spinning). Under those conditions, isotropic proton chemical shifts were recorded for a variety of chemical species, with individual linewidths varying from about 55 to 110 Hz (1--2 ppm). Residual line broadening was due predominately to (i) magnetic-field instability and inhomogeneity, (ii) unresolved proton--proton spin couplings, (iii) chemical shift dispersion, (iv) residual dipolar broadening, and (v) lifetime broadening under the multiple pulse sequences used. The magnitudes of those effects and the current limits of resolution for this experiment in our spectrometer have been investigated. The compounds studied included organic solids (4, 4'-dimethylbenzophenone, 2, 6-dimethylbenzoic acid, and aspirin), polymers (polystyrene and polymethylmethacrylate), and the vitrain portion of a bituminous coal.

  4. MO-B-18C-01: Proton Therapy II: Proton Stereotactic Radiotherapy

    SciTech Connect

    Winey, B; Daartz, J

    2014-06-15

    Proton stereotactic radiotherapy shares fundamental principles with general proton therapy physics, specifically range uncertainties and broad beam measurement techniques. Significant differences emerge when treating with smaller field sizes that suffer lateral disequilibrium and when fractions are reduced. This session will explore the history and scope of proton stereotactic radiotherapy in clinical practice. Uncertainties and treatment planning methods specific to stereotactic treatments will be discussed. The session will include an overview of the physical properties of small proton fields and resulting needs for accurate measurements and modeling of dose distributions for radiosurgery treatment planning. Learning Objectives: Understand the clinical rationale for proton radiosurgery. Understand the similarities and differences from general proton therapy. Understand the similarities and differences from photon stereotactic radiosurgery. Understand the basic physics and clinical physics methods for measuring and commissioning a radiosurgery program.

  5. Detector resolution in positron annihilation Doppler broadening experiments

    NASA Astrophysics Data System (ADS)

    Heikinheimo, J.; Ala-Heikkilä, J.; Tuomisto, F.

    2017-09-01

    Positron annihilation Doppler broadening spectroscopy characterizes lattice point defects and is sensitive to very small vacancy densities. High-purity germanium detectors are generally used for recording the Doppler broadening spectrum because they provide good energy resolution and stability. However, the energy resolution of a germanium detector is somewhat dependent on the photon absorption geometry in the detector crystal. This change in the energy resolution changes also the Doppler broadening parameters. To observe the dependency of the resolution function and the Doppler broadening parameters, we performed experiments on Si samples in standard sandwich configuration with a Na-22 source. We changed the radiation geometry of the incident gamma photons via altering the distance of the sample-source package from the detector and by adding steel between the source and the detector. We observed the change of the absorption geometry in the germanium detector crystal by doing Monte Carlo simulations. The aim of this study is to help understand and decide what is the best way to compare the Doppler broadening parameters obtained with different measurement setups and even with the same setup when the geometry in the measurements has changed.

  6. Air-broadened linewidths of nitrous oxide: An improved calculation

    NASA Astrophysics Data System (ADS)

    Lacome, Nelly; Levy, Armand; Boulet, Christian

    1983-01-01

    The semiclassical theory developed by Robert and Bonamy was used to obtain the linewidths of N 2O broadened by itself, by N 2 and by O 2. The main features of the formalism are as follows: (a) The anisotropic potential is expressed by using, besides the quadrupole-quadrupole contribution, an atom-atom interaction model (without any adjustable parameter) which takes both long- and short-range forces into account. (b) The geometry of the collision is described through the so-called "equivalent" straight path, more appropriate than the usual one. (c) The matrix elements of the relaxation operator are computed by means of the linked-cluster theorem, so that the treatment remains nonperturbative and no resort to cutoff precedures is needed. In addition to being more realistic the present formalism has the advantage of making the computation tractable for complex molecular systems such as linear-linear ones. Careful comparison was made with the available experimental results. For self-broadened N 2O very satisfactory agreement is obtained both at 300 and 204 K. This is also the case for nitrogen broadening at room temperature. Regarding oxygen-broadened linewidths, very few experimental data exist. Anyway, the present results reveal substantial improvement as compared to the usual calculations based upon Anderson-Tsao-Curnutte model. From these results a predictive tabulation was obtained for the values of air-broadened N 2O linewidths at 300 and 204 K.

  7. Proton radiography to improve proton therapy treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; van der Graaf, E. R.; Van Goethem, M.-J.; van Beuzekom, M.; Klaver, T.; Visser, J.; Brandenburg, S.; Biegun, A. K.

    2016-01-01

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT) images. This causes systematic uncertainties in the calculated proton range in a patient of typically 3-4%, but can become even 10% in bone regions [1,2,3,4,5,6,7,8]. This may lead to no dose in parts of the tumor and too high dose in healthy tissues [1]. A direct measurement of proton stopping powers with high-energy protons will allow reducing these uncertainties and will improve the quality of the treatment. Several studies have shown that a sufficiently accurate radiograph can be obtained by tracking individual protons traversing a phantom (patient) [4,6,10]. Our studies benefit from the gas-filled time projection chambers based on GridPix technology [2], developed at Nikhef, capable of tracking a single proton. A BaF2 crystal measuring the residual energy of protons was used. Proton radiographs of phantom consisting of different tissue-like materials were measured with a 30×30 mm2 150 MeV proton beam. Measurements were simulated with the Geant4 toolkit.First experimental and simulated energy radiographs are in very good agreement [3]. In this paper we focus on simulation studies of the proton scattering angle as it affects the position resolution of the proton energy loss radiograph. By selecting protons with a small scattering angle, the image quality can be improved significantly.

  8. Broadening and shifting of the Raman Q branch of HD

    SciTech Connect

    Rosasco, G.J.; May, A.D.; Hurst, W.S.; Petway, L.B.; Smyth, K.C.

    1989-02-15

    The line broadening and shifting of the vibrational Q branch in pure HD has was measured for transitions J = 0 to 3 at room temperature over the density range 0.8 to 10.6 amagat. The shifting and broadening coefficients were determined with an uncertainty of + or - .0002/cm/amaget, which now provides a discriminating test for various semiclassical and quantal theoretical calculations. The line broadening coefficients are compared with linewidth data from other spectroscopic branches and with measurements of the rates of state-to-state rotational energy transfer. Use of an exponential gap law for the rates of rotational energy transfer allows estimates to be made of the contributions to the linewidths from rotationally inelastic, elastic vibrational dephasing, and elastic reorientation processes. This analysis suggests that rotational energy transfer occurs approximately 30% faster in v = 1 than in v = 0.

  9. Broadening and shifting of the Raman Q branch of HD

    SciTech Connect

    Rosasco, G.J.; May, A.D.; Hurst, W.S.; Petway, L.B.; Smyth, K.C.

    1989-02-15

    The line broadening and shifting of the vibrational Q branch in pure HD has been measured for transitions J = 0 to 3 at room temperature over the density range 0.8 to 10.6 amagat. The shifting and broadening coefficients have been determined with an uncertainty of +- 0.2 x 10/sup -3/ cm/sup -1/ /amagat, which now provides a discriminating test for various semiclassical and quantal theoretical calculations. The line broadening coefficients are compared with linewidth data from other spectroscopic branches and with measurements of the rates of state-to-state rotational energy transfer. Use of an exponential gap law for the rates of rotational energy transfer allows estimates to be made of the contributions to the linewidths from rotationally inelastic, elastic vibrational dephasing, and elastic reorientation processes. This analysis suggests that rotational energy transfer occurs approximately 30% faster in v = 1 than in v = 0.

  10. Longitudinal broadening of quenched jets in turbulent color fields.

    PubMed

    Majumder, A; Müller, B; Bass, S A

    2007-07-27

    The nearside distribution of particles at intermediate transverse momentum, associated with a high momentum trigger hadron produced in a high energy heavy-ion collision, is broadened in rapidity compared with the jet cone. This broadened distribution is thought to contain the energy lost by the progenitor parton of the trigger hadron. We show that the broadening can be explained as the final-state deflection of the gluons radiated from the hard parton inside the medium by soft, transversely oriented, turbulent color fields that arise in the presence of plasma instabilities. The magnitude of the effect is found to grow with medium size and density and diminish with increasing energy of the associated hadron.

  11. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  12. Trace isotope detection enhanced by coherent elimination of power broadening.

    PubMed

    Conde, Alvaro Peralta; Brandt, Lukas; Halfmann, Thomas

    2006-12-15

    The selectivity and spectral resolution of traditional laser-based trace isotope analysis, i.e., resonance ionization mass spectrometry (RIMS), is limited by power broadening of the radiative transition. We use the fact that power broadening does not occur in coherently driven quantum systems when the probing and excitation processes are temporally separated to demonstrate significant improvement of trace element detection, even under conditions of strong signals. Specifically, we apply a coherent variant of RIMS to the detection of traces of molecular nitric oxide (NO) isobars. For large laser intensities, the detected isotope signal can be increased by almost 1 order of magnitude without any loss in spectral resolution.

  13. Multigroup Free-atom Doppler-broadening Approximation. Experiment

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    The multigroup energy Doppler-broadening approximation agrees with continuous energy Dopplerbroadening generally to within ten percent for the total cross sections of 1H, 56Fe, and 235U at 250 lanl. Although this is probably not good enough for broadening from room temperature through the entire temperature range in production use, it is better than any interpolation scheme between temperatures proposed to date, and may be good enough for extrapolation from high temperatures. The method deserves further study since additional improvements are possible.

  14. Combustion technology overview. [the use of broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1980-01-01

    An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as air distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors.

  15. Trace Isotope Detection Enhanced by Coherent Elimination of Power Broadening

    SciTech Connect

    Conde, Alvaro Peralta; Brandt, Lukas; Halfmann, Thomas

    2006-12-15

    The selectivity and spectral resolution of traditional laser-based trace isotope analysis, i.e., resonance ionization mass spectrometry (RIMS), is limited by power broadening of the radiative transition. We use the fact that power broadening does not occur in coherently driven quantum systems when the probing and excitation processes are temporally separated to demonstrate significant improvement of trace element detection, even under conditions of strong signals. Specifically, we apply a coherent variant of RIMS to the detection of traces of molecular nitric oxide (NO) isobars. For large laser intensities, the detected isotope signal can be increased by almost 1 order of magnitude without any loss in spectral resolution.

  16. Multigroup Free-atom Doppler-broadening Approximation. Theory

    SciTech Connect

    Gray, Mark Girard

    2015-11-06

    Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.

  17. On the Stark Broadening of Single Ionized Argon Lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Truong-Bach

    1986-06-01

    Using a semi-classical formalism which includes Debye shielding, Stark broadening parameters of various components within the 4 s 2P - 4 p ´ 2P0 multiplet and the 4 p - 4 d (2P 0 - 2P, 2D0 - 2 P, 2D0 - 2D) supermutiplet of Ar II are computed. We show that when various components of a multiplet (supermultiplet or transition array) are broadened inequally by an embedded closelying perturbing level, use of a perturber param eter cut-off at the Debye length can restrain the calculated differences between Stark widths within the multiplet.

  18. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  19. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  20. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  1. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  2. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  3. Relational Themes in Counseling Supervision: Broadening and Narrowing Processes

    ERIC Educational Resources Information Center

    Gazzola, Nicola; Theriault, Anne

    2007-01-01

    This study investigated the experiences of broadening (i.e., thinking and acting creatively and being open to exploring new ways of being) and narrowing (i.e., the experience of perceiving one's choices as limited) in the supervisory process with the aim of identifying key relational themes from the perspective of supervisees. We interviewed 10…

  4. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  5. Critical tests of line broadening theories by precision measurements

    SciTech Connect

    Glenzer, S.H.

    1996-02-22

    The spectral line profiles of ionized emitters in plasmas play an important role in the calculation of opacity, for short-wavelength laser studies, and for the diagnostics of inertial confinement fusion plasmas. Sophisticated theoretical methods and modeling have been advanced and applied in recent years to calculate spectral line profiles in the limits where broadening by electron collisions or by ion microfield dominates. Here, the authors describe recent measurements of spectral line profiles of a z-pinch experiment employing precision plasma diagnostic techniques. In particular, the electron-collisional-broadened 2s--2p transitions in B{sub III} have been investigated because their line profiles provide an excellent test for electron-impact line shape theories and electron collision strength calculations. Although they find good agreement with semiclassical calculations, a factor of two discrepancy with the most elaborate quantum-mechanical five-state close coupling calculations is observed. They discuss the experimental error estimates of the various measured quantities and show that the observed discrepancy can not be explained by experimental shortcomings. They further discuss measurements of non-isolated spectral lines of some {Delta}n = 1 transitions in C{sub IV}--O{sub VI}. For these transitions ion broadening dominates. Excellent agreement for the whole line profile with line broadening calculations is obtained for all cases only when including ion dynamic effects. The latter are calculated using the frequency-fluctuation model and account for about 10--25% of the line width of the considered ions.

  6. Quality's Higher Education Dividends: Broadened Custodianship and Global Public Scholarship

    ERIC Educational Resources Information Center

    Jacobs, Gerrie J.

    2010-01-01

    This paper speculates on the possible contribution of the quality movement to higher education and the perceived dividends received from this, in general, over the past two decades but also, more specifically, with reference to the author's institution in South Africa. The first major quality contribution is a gradual broadening of higher…

  7. Broadening the Horizons: Organizational Communication in the Real World.

    ERIC Educational Resources Information Center

    Swanson, Georgia

    Working in the microcosm of an individual class, organizational communication instructors can broaden the student's horizon by starting with what are local types of diversity and then expanding the classroom understanding to include the larger world where that student is going to live and work. Speech communication teachers/scholars have seen…

  8. Community Colleges Broadening Horizons through Service Learning, 2006-2009

    ERIC Educational Resources Information Center

    Robinson, Gail

    2007-01-01

    This brief introduces "Community Colleges Broadening Horizons through Service Learning," the American Association of Community Colleges' (AACC's) fifth national Learn and Serve America grant project and describes its grantee college programs. The goals of this grant project are to build on established foundations to integrate service…

  9. Transboundary natural area protection: Broadening the definition of national security

    Treesearch

    Haven B. Cook

    2007-01-01

    This paper looks at the definition and concept of national security, and examines how the environment is linked with national security. The traditional, state view of national security that guides most foreign policy includes the concepts of military power, sovereignty and geopolitical stability. This paper advocates broadening the definition of security to include...

  10. The STARS Alliance: Viable Strategies for Broadening Participation in Computing

    ERIC Educational Resources Information Center

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey

    2011-01-01

    The Students and Technology in Academia, Research, and Service (STARS) Alliance is a nationally-connected system of regional partnerships among higher education, K-12 schools, industry and the community with a mission to broaden the participation of women, under-represented minorities and persons with disabilities in computing (BPC). Each regional…

  11. The STARS Alliance: Viable Strategies for Broadening Participation in Computing

    ERIC Educational Resources Information Center

    Dahlberg, Teresa; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey

    2011-01-01

    The Students and Technology in Academia, Research, and Service (STARS) Alliance is a nationally-connected system of regional partnerships among higher education, K-12 schools, industry and the community with a mission to broaden the participation of women, under-represented minorities and persons with disabilities in computing (BPC). Each regional…

  12. Coincidence doppler broadening study in electron-irradiated polyurethane

    NASA Astrophysics Data System (ADS)

    Yang, D. J.; Zhang, J. D.; Leung, J. K. C.; Beling, C. D.; Liu, L. B.

    2007-06-01

    Coincidence doppler broadening measurements on electron-irradiated polyurethanes were performed in the presence of air. It is shown that, after a certain electron irradiation, the momentum density distributions of annihilation electrons have obvious changes for the high crosslinking polyurethane, but no significant changes have been observed for the low crosslinking polyurethane. The results were performed to analyse by irradiation crosslinking and degradation principles.

  13. On-The-Fly Neutron Doppler Broadening in MCNP

    NASA Astrophysics Data System (ADS)

    Martin, William R.; Brown, Forrest B.; Wilderman, Scott; Yesilyurt, Gokhan

    2014-06-01

    Multi-physics calculations may involve coupling continuous-energy Monte Carlo neutronics codes to CFD codes that provide many thousands or even millions of region temperatures. The traditional Monte Carlo approach - using precalculated Doppler broadened nuclear cross-sections - is not feasible for these large multiphysics problems. Instead, an On-the-Fly (OTF) Doppler broadening methodology is required, whereby neutron cross-sections are broadened during the Monte Carlo transport. To this end, we have developed a methodology for MCNP to provide OTF broadening based on cell temperatures during neutron tracking. The method enables the use of many thousands or more temperatures in MCNP Monte Carlo calculations for multiphysics applications, significantly advancing the state-of-the-art by permitting the solution of problems that were not previously possible with continuous-energy Monte Carlo codes. A production library with an extended set of isotopes has been developed for use with MCNP6. Calculations of test problems with MCNP6 and the new library demonstrate the accuracy and effectiveness of the OTF approach.

  14. Phase dynamics in a Doppler broadened optically-pumped laser

    NASA Astrophysics Data System (ADS)

    Roldán, E.; de Valcárcel, G. J.; Vilaseca, R.; Silva, F.; Pujol, J.; Corbalán, R.; Laguarta, F.

    1989-11-01

    The dynamic behavior of the phase of the generated field in a Doppler-broadened optically-pumped far-infrared laser is theoretically investigated for the first time. The phase undergoes sudden jumps of approximately π radians, which allow to establish the actual symmetry of the main attractor in the phase space, explaining the heteroclynic character of the chaotic behavior observed in experiments.

  15. Broadening horizons: engaging advanced practice nursing students in faculty research.

    PubMed

    Weiss, Josie A

    2009-01-01

    Inviting advanced practice nursing students to participate in faculty research can be an innovative way to interest students in using current evidence as the basis for their practice. The author discusses strategies for effectively engaging graduate nursing students into research projects in ways that broaden the students' perspectives and strengthen their healthcare decision-making skills.

  16. Phenomenological plasmon broadening and relation to the dispersion

    NASA Astrophysics Data System (ADS)

    Hobbiger, Raphael; Drachta, Jürgen T.; Kreil, Dominik; Böhm, Helga M.

    2017-02-01

    Pragmatic ways of including lifetime broadening of collective modes in the electron liquid are critically compared. Special focus lies on the impact of the damping parameter onto the dispersion. It is quantitatively exemplified for the two-dimensional case, for both, the charge ('sheet'-)plasmon and the spin-density plasmon. The predicted deviations fall within the resolution limits of advanced techniques.

  17. Extending, Broadening and Rethinking Existing Research on Transfer of Training

    ERIC Educational Resources Information Center

    Volet, Simone

    2013-01-01

    The aim of this Special Issue was to generate a new integrated agenda for research on transfer of training. It brought together scholars from diverse perspectives and invited them to strive toward synergy. This article examines how this collection of articles, as well as other bodies of literature, can help extend, broaden and rethink current…

  18. ECRH microwave beam broadening in the edge turbulent plasma

    SciTech Connect

    Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu.; Silva, F. da; Heuraux, S.

    2014-02-12

    The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.

  19. Resist materials for proton micromachining

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.; Sanchez, J. L.; Xu, B.; Osipowicz, T.; Watt, F.

    1999-10-01

    The production of high aspect ratio microstructures is a potential growth area. The combination of deep X-ray lithography with electroforming and micromolding (i.e. LIGA) is one of the main techniques used to produce 3D microstructures. The new technique of proton micromachining employs focused MeV protons in a direct write process which is complementary to LIGA, e.g. micromachining with 2 MeV protons results in microstructures with a height of 63 μm and lateral sub-micrometer resolution in PMMA resist. The aim of this paper is to investigate the capabilities of proton micromachining as a lithographic technique. This involves the study of different types of resists. The dose distribution of high molecular weight PMMA is compared with three other types of resist: First the positive photo resist AZ P4620 will be discussed and then PMGI SF 23, which can be used as a deep UV, e-beam or X-ray resist. Finally SU-8, a new deep UV negative type of chemically amplified resist will be discussed. All these polymers are applied using the spin coating technique at thicknesses of between 1 and 36 μm

  20. GOLD: Building capacity for broadening participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional

  1. Spin-spin correlations in proton-proton collisions at high energy and threshold enhancements

    SciTech Connect

    de Teramond, G.F.

    1988-05-01

    The striking effects in the spin structure observed in elastic proton collisions and the Nuclear Transparency phenomenon recently discovered at BNL are described in terms of heavy quark threshold enhancements. The deviations from scaling laws and the broadening of the angular distributions at resonance are also consistent with the introduction of new degrees of freedom in the pp system. This implies new s-channel physics. Predictions are given for the spin effects in pp collisions near 18.5 GeV/c at large p/sub T//sup 2/ where new measurements are planned. 9 refs., 4 figs.

  2. Memory device using movement of protons

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Fleetwood, D.M.; Devine, R.A.B.

    1998-11-03

    An electrically written memory element is disclosed utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element. 19 figs.

  3. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    2000-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  4. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.

    1998-01-01

    An electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element.

  5. A New Proton Dose Algorithm for Radiotherapy

    NASA Astrophysics Data System (ADS)

    Lee, Chungchi (Chris).

    This algorithm recursively propagates the proton distribution in energy, angle and space at one level in an absorbing medium to another, at slightly greater depth, until all the protons are stopped. The angular transition density describing the proton trajectory is based on Moliere's multiple scattering theory and Vavilov's theory of energy loss along the proton's path increment. These multiple scattering and energy loss distributions are sampled using equal probability spacing to optimize computational speed while maintaining calculational accuracy. Nuclear interactions are accounted for by using a simple exponential expression to describe the loss of protons along a given path increment and the fraction of the original energy retained by the proton is deposited locally. Two levels of testing for the algorithm are provided: (1) Absolute dose comparisons with PTRAN Monte Carlo simulations in homogeneous water media. (2) Modeling of a fixed beam line including the scattering system and range modulator and comparisons with measured data in a homogeneous water phantom. The dose accuracy of this algorithm is shown to be within +/-5% throughout the range of a 200-MeV proton when compared to measurements except in the shoulder region of the lateral profile at the Bragg peak where a dose difference as large as 11% can be found. The numerical algorithm has an adequate spatial accuracy of 3 mm. Measured data as input is not required.

  6. Elastic proton-proton scattering at RHIC

    SciTech Connect

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  7. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  8. What's In a Proton?

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  9. What's In a Proton?

    SciTech Connect

    Brookhaven Lab

    2009-07-08

    Physicist Peter Steinberg explains that fundamental particles like protons are themselves made up of still smaller particles called quarks. He discusses how new particles are produced when quarks are liberated from protons...a process that can be observed

  10. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Heedt, S.; Goerke, S.; Ibrahim, A.; Rupprecht, B.; Heyn, Ch; Hardtdegen, H.; Schäpers, Th; Wilde, M. A.; Grundler, D.

    2016-02-01

    We report on the magnetization of ensembles of etched quantum dots with a lateral diameter of 460 nm, which we prepared from InGaAs/InP heterostructures. The quantum dots exhibit 1/B-periodic de-Haas-van-Alphen-type oscillations in the magnetization M(B) for external magnetic fields B  >  2 T, measured by torque magnetometry at 0.3 K. We compare the experimental data to model calculations assuming different confinement potentials and including ensemble broadening effects. The comparison shows that a hard wall potential with an edge depletion width of 100 nm explains the magnetic behavior. Beating patterns induced by Rashba spin-orbit interaction (SOI) as measured in unpatterned and nanopatterned InGaAs/InP heterostructures are not observed for the quantum dots. From our model we predict that signatures of SOI in the magnetization could be observed in larger dots in tilted magnetic fields.

  11. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  12. Proton: The Particle

    SciTech Connect

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  13. Finite beam-width ray model for geometric spectral broadening.

    PubMed

    Hoskins, P R; Fish, P J; Pye, S D; Anderson, T

    1999-03-01

    The purpose of the study was to compare measured spectral width and maximum frequency with that predicted from ray models of geometric spectral broadening. Zero and finite beam-width models were used. Spectral data were acquired from a string phantom using two commonly-used linear array systems. Beam width and Doppler aperture sizes were measured using a needle hydrophone. The results showed that the experimentally measured data agreed best with the finite beam-width model. The zero beam-width model was in error by up to 50% for calculated spectral width, and up to 10% for maximum frequency. It is concluded that spectral width and maximum frequency are best calculated using the finite beam-width model, and that ultrasound manufacturers could improve the variation in spectral broadening measured at different locations on a single machine by adjusting the aperture size to give a constant subtended angle and beam width.

  14. Collisional broadening of angular correlations in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Edmonds, Terrence; Li, Qingfeng; Wang, Fuqiang

    2017-10-01

    Systematic comparisons of jetlike correlation data to radiative and collisional energy loss model calculations are essential to extract transport properties of the quark-gluon medium created in relativistic heavy ion collisions. This paper presents a transport study of collisional broadening of jetlike correlations, by following parton-parton collision history in a multiphase transport (AMPT) model. The correlation shape is studied as functions of the number of parton-parton collisions suffered by a high transverse momentum probe parton (Ncoll) and the azimuth of the probe relative to the reaction plane (ϕfin.probe). Correlation is found to broaden with increasing Ncoll and ϕfin.probe from in- to out-of-plane direction. This study provides a transport model reference for future jet-medium interaction studies.

  15. Attention and positive affect: temporal switching or spatial broadening?

    PubMed

    Phaf, R Hans

    2015-04-01

    Evolutionary reasoning and computation suggest that positive affect is associated with higher attentional flexibility than negative affect, even when affectively neutral material is processed. The affective modulation of interference in the Eriksen flanker task seems, however, more readily explained by a spatial broadening of attention due to positive affect. It is argued here that these results should also be interpreted in terms of an increased switching over time between flankers and target (i.e., flexibility). The two hypotheses were contrasted with positive and negative mood inductions in a masked-flanker task. The interval (Stimulus Onset Asynchrony; SOA) with which the masked flankers preceded the target letter was parametrically varied. In contrast to what is found with simultaneous non-masked flanker presentation, masking produced larger interference with negative than with positive moods. In addition, a crossover interaction between mood and SOA emerged. These results seem incompatible with a spatial broadening account and support an affective modulation account in terms of flexibility.

  16. Positive emotions and the social broadening effects of Barack Obama.

    PubMed

    Ong, Anthony D; Burrow, Anthony L; Fuller-Rowell, Thomas E

    2012-10-01

    Past experiments have demonstrated that the cognitive broadening produced by positive emotions may extend to social contexts. Building on this evidence, we hypothesized that positive emotions triggered by thinking about Barack Obama may broaden and expand people's sense of self to include others. Results from an expressive-writing study demonstrated that African American college students prompted to write about Obama immediately prior to and after the 2008 presidential election used more plural self-references, fewer other-references, and more social references. Mediation analyses revealed that writing about Obama increased positive emotions, which in turn increased the likelihood that people thought in terms of more-inclusive superordinate categories (we and us rather than they and them). Implications of these findings for the role of positive emotions in perspective-taking and intergroup relations are considered.

  17. Correction for inhomogeneous line broadening in spin labels, II

    NASA Astrophysics Data System (ADS)

    Bales, Barney L.

    Our methods to correct for inhomogeneous line broadening in the EPR of nitroxide spin labels are extended. Previously, knowledge of the hyperfine pattern of the nuclei responsible for the inhomogeneous broadening was necessary in order to carry out the corrections. This normally meant that either a separate NMR experiment or EPR spectral simulation was needed. Here a very simple method is developed, based upon measurement of four points on the experimental EPR spectrum itself, that allows one to carry out the correction procedure with precision rivaling that attained using NMR or spectral simulation. Two associated problems are solved: (1) the EPR signal strength is estimated without the need to carry out double integrations and (2) linewidth ratios, important in calculating rotational correlation times, are corrected. In all cases except one, the corrections are effected from the four measured points using only a hand-held programmable calculator. Experimental examples illustrate the methods and show them to be amazingly accurate.

  18. Inhomogeneous broadening effects in multimode CW chemical lasers

    NASA Astrophysics Data System (ADS)

    Mirels, H.

    1981-01-01

    The performance of a multiple longitudinal mode CW chemical laser is investigated with reference to the effects of inhomogeneous broadening for the case where the longitudinal mode spacing is small compared with the characteristic Doppler and homogeneous widths of the lasing medium. Both a Fabry-Perot resonator and a saturated amplifier are considered, using a two-vibrational-level model. Closed form solutions are obtained which are shown to be in good agreement with the numerical results of Bullock and Lipkis (1979).

  19. Hydrogen Stark broadening by different kinds of model microfields

    NASA Astrophysics Data System (ADS)

    Seidel, J.

    1980-07-01

    A new model microfield is defined (the theta process) which in conjunction with the kangaroo process, is used to demonstrate the effects of different model microfields on hydrogen line profiles. The differences in the statistical features of the models give an estimate of the uncertainties associated with the method of model microfields. Stark broadening of hydrogen Lyman lines by either electrons or ions is investigated specifically.

  20. Tunable Optical Delay in Doppler-Broadened Cesium Vapor

    DTIC Science & Technology

    2010-12-01

    optical buffer system. Alkali - metal elements offer well-documented relatively simple atomic systems with physical properties , such as large vapor...Kramers-Kronig delay model is developed using complete hyperfine structure treatment with Voigt profile lineshapes in a Doppler-broadened alkali - metal ... alkali -laser is a gas-phase three-level laser using the ground state (S1/2) and the first two excited states (P1/2 and P3/2) of the alkali - metal vapor

  1. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-10-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits.

  2. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed Central

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-01-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits. Images FIGURE 3 FIGURE 4 PMID:8889168

  3. The Effects of Career Broadening on Leadership Development

    DTIC Science & Technology

    2007-03-01

    commander 6.6 11FX USAF Air Demonstration Pilot ( Thunderbirds ) 6.1 21XX Logistics Career Broadening Program 5.1 XXXX Re-Trained into another AFSC 3.9 XXXX...boards in 2004 and 2005, as well as, those officers who competed for selection to in-residence PME programs at the intermediate and senior development...development programs in which leaders will have to develop higher level leadership skills, develop new leadership competencies and refine old competencies

  4. Interstellar protonated molecular species

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Arunan, Elangannan

    2017-08-01

    Majority of the known interstellar cations are protonated species believed to be the natural precursors for their corresponding neutral analogues formed via the dissociative recombination process. The protonation of a neutral species can occur in more than one position on the molecular structure thus resulting in more than one proton binding energy value and different protonated species for the same neutral species. In the present work, ab initio quantum calculations are employed to calculate accurate proton binding energies for over 100 neutral interstellar molecules of which majority of the neutral molecules are protonated in more than one position. From the results, protonated species resulting from a high proton binding energy prefers to remain protonated rather than transferring a proton and returning to its neutral form as compared to its analogue that gives rise to a lower proton binding energy (PBE) from the same neutral species. For two protonated species resulting from the same neutral molecule, the one that results in a higher PBE is more stable as compared to its counterpart that is responsible for the lower PBE for the same neutral species. Here, the most stable species are highlighted for all the systems considered.

  5. Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Archer, A.; Benbow, W.; Buchovecky, M.; Bugaev, V.; Cerruti, M.; Connolly, M. P.; Cui, W.; Falcone, A.; Fernández Alonso, M.; Finley, J. P.; Fleischhack, H.; Fortson, L.; Furniss, A.; Griffin, S.; Hütten, M.; Hervet, O.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Nieto, D.; O’Brien, S.; Ong, R. A.; Otte, A. N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Sadeh, I.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Weisgarber, T.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2017-02-01

    We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10‑14 G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.

  6. Temperature Dependence of Stark Broadening Dominated by Strong Collisions

    SciTech Connect

    Gigosos, M. A.; Gonzalez, M. A.; Konjevic, N.

    2006-11-22

    The influence of electron temperature in the broadening of spectral lines dominated by strong collisions has been studied. Computer simulation allows us to study the effects of strong and weak collisions separately. Results shown here are focused on some Sr+ and Ba+ resonance lines as examples of lines broadened dominantly by strong collisions. The exact numerical integration of the perturbation process due to the collision with a single particle permits the evaluation of Weisskopf radius. This parameter is usually defined as rw {approx} 1/v {approx} 1/{radical}T, obtained from Bora approximation that is correct for high temperatures. However, at low temperatures the full integration of the collision process permits to test the relationship rw {approx} 1/T1/6. This calculation has allowed us to study the influence of temperature on the broadening of the lines dominated by strong collisions. This study has been done in two ways : through a plasma simulation and analyzing the calculated Weisskopf radius for an individual collision. The obtained results show that at low temperatures the width of the line increases for increasing temperature as a consequence of an increase of the number of collisions not compensated by the decrease of Weisskopf radius.

  7. Experimental Measurement of ECH Deposition Broadening: Beyond Anomalous Transport

    NASA Astrophysics Data System (ADS)

    Brookman, M. W.; Austin, M. E.; Gentle, K. W.; Petty, C. C.; Ernst, D. E.; Peysson, Y.; Decker, J.; Barada, K.

    2017-07-01

    This work provides a first experimental measurement of broadened ECH deposition on the DIIID tokamak. As seen in theory[1] and simulation[2], refraction by edge density fluctuations shifts the path of RF waves, altering ECH and ECCD deposition. This paper reports on an initial experimental confirmation of broadened ECH deposition on DIII-D tokamak. Te measurements from a 48 channel 2nd Harmonic ECE Radiometer digitized at 500 kHz are used with a set of broadened trial ECH deposition functions to calculate time-dependent, modulation-induced heat fluxes. The fitting of convective and diffusive transport to these fluxes allows different ECH deposition profiles to be compared. The best-fit ECH deposition produces reasonable transport coefficients which compare favorably with simulation. This method is applied to a set of L- and H- mode DIII-D discharges. Accounting for diffusive, convective, and coupled transport, the ECH deposition profile is found to be 2 to 3 times wider than predicted by TORAY-GA ray tracing.

  8. Collisional broadening of CO2 IR lines. II. Calculations

    NASA Astrophysics Data System (ADS)

    Rosenmann, L.; Hartmann, J. M.; Perrin, M. Y.; Taine, J.

    1988-03-01

    The ability of available theoretical models in describing broadening mechanisms is tested for the CO2-O2, CO2-CO2, and CO2-N2 systems. It is shown that the Anderson-Tsao-Curnutte theory is inaccurate since short-range forces can contribute significantly to broadening. We use the approach of Robert and Bonamy, but the usual expansion of the atom-atom potential to the fourth order around the intermolecular distance appears insufficient at short distances for these particular systems. We propose a better representation of the radial dependence of the atom-atom potential, while keeping the previous analytical expression of the cross section. Satisfactory results are obtained for both the rotational quantum number dependence of room-temperature CO2-O2, CO2-CO2, and CO2-N2 half-widths and the evolution of CO2-N2 broadening with temperature. It is shown that the isotropic part of the potential involved in the trajectory calculation must be coherently deduced from the atom-atom interaction potential.

  9. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  10. Function Lateralization via Measuring Coherence Laterality

    PubMed Central

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  11. Study of proton radioactivities

    SciTech Connect

    Davids, C.N.; Back, B.B.; Henderson, D.J.

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  12. Positron annihilation study of proton-irradiated reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Liu, Xiangbing; Wang, Rongshan; Ren, Ai; Huang, Ping; Wu, Yichu; Jiang, Jing; Zhang, Chonghong; Wang, Xitao

    2012-10-01

    The microstructures, irradiation-induced defects and changes of mechanical property of Chinese domestic A508-3 steels after proton irradiation were investigated by TEM, positron lifetime, slow positron beam Doppler broadening spectroscopy and hardness measurements. The defects were induced by 240 keV proton irradiation with fluences of 1.25×1017 ions cm-2 (0.26 dpa), 2.5×1017 ions cm-2 (0.5 dpa), and 5.0×1017 ions cm-2 (1.0 dpa). The TEM observation revealed that the as-received steel had typical bainitic-ferritic microstructures. It was also observed that Doppler broadening S-parameter and average lifetime increased with dose level owing to the formation of defects and voids induced by proton irradiation. The correlation between positron parameters and hardness was found.

  13. Commercial observation satellites: broadening the sources of geospatial data

    NASA Astrophysics Data System (ADS)

    Baker, John C.; O'Connell, Kevin M.; Venzor, Jose A.

    2002-09-01

    Commercial observation satellites promise to broaden substantially the sources of imagery data available to potential users of geospatial data and related information products. We examine the new trend toward private firms acquiring and operating high-resolution imagery satellites. These commercial observation satellites build on the substantial experience in Earth observation operations provided by government-owned imaging satellites for civilian and military purposes. However, commercial satellites will require governments and companies to reconcile public and private interests in allowing broad public access to high-resolution satellite imagery data without creating national security risks or placing the private firms at a disadvantage compared with other providers of geospatial data.

  14. Infrared absorption cross sections of propane broadened by hydrogen

    NASA Astrophysics Data System (ADS)

    Wong, A.; Hargreaves, R. J.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Fourier transform infrared absorption cross-sections of pure propane (C3H8) and propane broadened with H2 have been calculated from transmittance spectra recorded at temperatures from 292 K to 205 K. Transmittance spectra were recorded at the Canadian Light Source (CLS) Far-Infrared beamline, utilizing both the synchrotron source and the internal glowbar source. The absorption cross-sections have been calibrated to Pacific Northwest National Laboratory (PNNL) reference cross-sections of propane and can be used to interpret astronomical observations of giant planets such as Jupiter and Saturn as well as exoplanets.

  15. Theory of Moessbauer line broadening due to diffusion

    SciTech Connect

    Schroeder, K.; Wolf, D.; Dederichs, P.H.

    1981-12-01

    We have calculated the line broadening of the Moessbauer line due to diffusion of Moessbauer atoms via single vacanices. We take into account the perturbation of vacancy jumps in the neighbourhood of an impurity Moessbauer atom (e.g. Fe in Al) using the 5-frequency model. The anisotropy of the line width is given by the Fourier transform of the final distribution of a Moessbauer atom after an encounter with a vacancy. This distribution is calculated by Monte Carlo computer simulation. 3 figures, 1 tables.

  16. Stark broadening of hydrogen lines in magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Stamm, R.

    2017-03-01

    We report on a Stark line shape model for the diagnostic of tokamak edge plasmas. In specific scenarios, plasma discharges are carried out at high density regimes, sufficiently so that the spectral lines emitted by the neutral atoms present in the edge and in the divertor region are affected by the plasma microscopic electric field (Stark broadening). We present new line shape calculations, carried out for diagnostic purposes in the context of the MST1 (Medium Sized Tokamak) European campaign. The role of the magnetic field (Zeeman effect) on line spectra is discussed.

  17. Strategies for broadening public involvement in space developments

    NASA Technical Reports Server (NTRS)

    Harris, Philip R.

    1992-01-01

    There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.

  18. Broadening the potential bandwidth of piezoelectric transducers by partial depolarization

    SciTech Connect

    Hariti, Sid Ahmed; Hole, Stephane; Lewiner, Jacques

    2001-06-18

    Elastic waves are used more and more in a nondestructive way to probe the physical properties of materials. The resolution of the images or the accuracy of the measurements is directly associated with the ultrasonic signal bandwidth and amplitude a system can generate or detect. The authors propose a technique to broaden the potential bandwidth of piezoelectric generators and sensors, which is based on utilizing a nonuniformly-polarized piezoelectric material. Both simulated and experimental responses are shown. They are in good agreement and exhibit a useful bandwidth over several natural harmonics of the piezoelectric transducer. {copyright} 2001 American Institute of Physics.

  19. Anomalous excitation facilitation in inhomogeneously broadened Rydberg gases

    NASA Astrophysics Data System (ADS)

    Letscher, F.; Thomas, O.; Niederprüm, T.; Ott, H.; Fleischhauer, M.

    2017-02-01

    When atomic gases are laser driven to Rydberg states in an off-resonant way, a single Rydberg atom may enhance the excitation rate of surrounding atoms. This leads to a facilitated excitation referred to as Rydberg antiblockade. In the usual facilitation scenario, the detuning of the laser from resonance compensates the interaction shift. Here, we discuss a different excitation mechanism, which we call anomalous facilitation. This occurs on the "wrong side" of the resonance and originates from inhomogeneous broadening. The anomalous facilitation may be seen in experiments of attractively interacting atoms on the blue detuned side, where facilitation is not expected to appear.

  20. Curves of growth for van der Waals broadened spectral lines

    NASA Technical Reports Server (NTRS)

    Park, C.

    1980-01-01

    Curves of growth are evaluated for a spectral line broadened by the van der Waals interactions during collisions. The growth of the equivalent widths of such lines is shown to be dependent on the product of the perturber density and the 6/10 power of the van der Waals potential coefficient. When the parameter is small, the widths grow as the 1/2 power of the optical depth as they do for the Voigt profile: but when the parameter is large, they grow as 2/3 power and, hence, faster than the Voigt profile. An approximate analytical expression for the computed growth characteristics is given.

  1. Broadening sources of Diginity and Affirmation in Work and Relationship

    PubMed Central

    Byars-Winston, Angela

    2012-01-01

    This article builds on assertions in Richardson’s (2012, this issue) Major Contribution on counseling for work and relationship. In this reaction, I expand on the relevance and potential of the counseling for work and relationship perspective to enrich the field of counseling psychology. My comments focus on three considerations to further extend the cultural relevance of Richardson’s work and relationship perspective: (1) broadening sources of dignity, (2) centering knowledge of marginalized communities, and (3) promoting psychologists’ critical consciousness. Richardson’s perspective holds great promise for being a guiding heuristic to inform counseling psychology research, theory, and practice. PMID:22563131

  2. Numerical computation of doppler-broadening in the resonance domain

    SciTech Connect

    Sanchez, R.

    2013-07-01

    We have implemented an accurate and fast calculation of the Doppler-broadened kernel PT(E {yields} E') for neutron elastic scattering based on a gas model. An exponential cutoff which accounts for the asymptotic behavior of the error function helps limit the range of integration while eliminating difference effects. This allows for calculating a kernel library for {sup 238}U over a very fine energy grid covering the resonance range in only a few hours in a laptop. We give an example showing the impact of {sup 238}U elastic up-scattering on the values of self shielded cross sections. (authors)

  3. An analysis of beam parameters on proton-acoustic waves through an analytic approach

    NASA Astrophysics Data System (ADS)

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Burcin Unlu, Mehmet

    2017-06-01

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  4. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet

    2017-03-02

    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  5. Effects of inhomogeneous broadening on the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Cotting, J. E.; Hoskins, L. C.; Levan, M. E.

    1982-08-01

    The resonance Raman excitation profiles for the ν1, ν2, and ν3 vibrations of lycopene in ethyl alcohol, toluene, and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found, thus emphasizing the need to interpret resonance Raman data using a multimode vibrational model. The results indicate that the major broadening mechanism is homogeneous broadening, with about a 25% contribution from inhomogeneous broadening. The excitation profiles in carbon disulfide gave the largest inhomogeneous broadening.

  6. Proton Remains Puzzling

    SciTech Connect

    Gao, Haiyan; Liu, Tianbo; Peng, Chao; Ye, Zhihong; Zhao, Zhiwen

    2015-01-01

    Nucleons are building blocks of visible matter, and are responsible for more than 99% of the visible mass in the universe despite the fact that the discovery of the Higgs boson is almost irrelevant to the origin of the proton mass. While major progress has been made in the last two decades in understanding the proton spin puzzle discovered in the late 1980s by the European Muon Collaboration, a new proton puzzle emerged in the last several years concerning the proton charge radius, which is the charge weighted size of the proton. In this paper we will review the latest situation concerning the proton charge radius, mass and spin, and discuss upcoming new experiments addressing these puzzles, as well as implications for new physics.

  7. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    NASA Astrophysics Data System (ADS)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  8. Stark Broadening Parameters For White Dwarf Atmospheres Research

    NASA Astrophysics Data System (ADS)

    Larbi-Terzi, N.; Sahal-Brechot, S.; Nessib, N. B.; Dimitrijevic, M. S.

    2010-07-01

    Stark broadening parameters of C II lines were determined within 3d-nf series using semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, which were additionally calculated using the method of Bates and Damgaard. The both results were compared and only insignificant differences were found. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e- Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  9. Non-thermal line-broadening in solar prominences

    NASA Astrophysics Data System (ADS)

    Stellmacher, G.; Wiehr, E.

    2015-09-01

    Aims: We show that the line broadening in quiescent solar prominences is mainly due to non-thermal velocities. Methods: We have simultaneously observed a wide range of optically thin lines in quiescent prominences, selected for bright and narrow Mg b emission without line satellites from macro-shifts. Results: We find a ratio of reduced widths, ΔλD/λ0, of Hγ and Hδ of 1.05 ± 0.03, which can hardly be attributed to saturation, since both are optically thin for the prominences observed: τγ ≤ 0.3, τδ ≤ 0.15. We confirm the ratio of reduced widths of He 4772 (triplet) and He 5015 (singlet) of 1.1 ± 0.05 at higher significance and detect a width ratio of Mg b2 and Mg 4571 (both from the triplet system) of 1.3 ± 0.1. Conclusions: The discrepant widths of lines from different atoms, and even from the same atom, cannot be represented by a unique pair [Tkin; Vnth]. Values of Tkin deduced from observed line radiances using models indicate low temperatures down to Tkin ≈ 5000 K. Non-thermal velocities, related to different physical states of the respective emitting prominence region, seem to be the most important line broadening mechanism.

  10. Rotational relaxation contributions to infrared pressure broadening in ozone

    NASA Technical Reports Server (NTRS)

    Flannery, C.; Mizugai, Y.; Steinfeld, J. I.; Spencer, M. N.

    1990-01-01

    The time-resolved IR double-resonance spectroscopy apparatus and procedures described by Millot et al. (1988) are used to measure the relaxation times of rotational levels in the v3 =1 state of O3. Findings reported include (1) total rotational cross sections about 20-70 percent larger than the Lennard-Jones collision cross section, consistent with an interaction dominated by dipole-dipole forces; (2) equal relaxation cross sections in the upper and lower vibrational states; (3) an estimated pressure-broadening cross section of 185 sq A, with less than 10 percent due to dephasing; (4) no strong Ka dependence of rotational relaxation rates at Ka = 4-8 in J of about 16; (5) a rate for J = 8 and Ka = 7 about 40 percent larger than the other values measured, in agreement with the pressure-broadening model of Gamache and Rothman (1985); and (6) a V-V energy-transfer rate between v3 = 1 and v1 = 1 of (2.5 + or - 0.5) x 10 to the 6th/torr sec.

  11. Multi-frequency Scatter Broadening Evolution of Pulsars. I

    NASA Astrophysics Data System (ADS)

    Krishnakumar, M. A.; Joshi, Bhal Chandra; Manoharan, P. K.

    2017-09-01

    We present multi-wavelength scatter broadening observations of 47 pulsars made with the Giant Metre-wave Radio Telescope (GMRT), Ooty Radio Telescope (ORT), and Long Wavelength Array (LWA). The GMRT observations were made in the phased array mode at 148, 234, and 610 MHz and the ORT observations at 327 MHz. The LWA data sets were obtained from the LWA pulsar data archive. The broadening of each pulsar as a function of observing frequency provides the frequency scaling index, α. The estimations of α have been obtained for 39 pulsars and include entirely new estimates for 31 pulsars. This study increases the total sample of pulsars available with α estimates by ∼50%. The overall distribution of α with the dispersion measure (DM) of the pulsar shows interesting variations, which are consistent with earlier studies. However, for a given value of DM, a range of α values are observed, indicating the characteristic turbulence along each line of sight. For each pulsar, the estimated level of turbulence, {C}{n{{e}}}2, has also been compared with α and DM. Additionally, we compare the distribution of α with the theoretically predicted model to infer the general characteristics of the ionized interstellar medium. Nearly 65% of the pulsars show a flatter index (i.e., α < 4.4) than that expected from the Kolmogorov turbulence model. Moreover, the group of pulsars with flatter indices is typically associated with an enhanced value of {C}{n{{e}}}2 compared to those with steeper indices.

  12. Encoding details: positive emotion leads to memory broadening.

    PubMed

    Yegiyan, Narine S; Yonelinas, Andrew P

    2011-11-01

    In the current experiment we tested the hypothesis that unlike negative arousal, which leads to memory narrowing effects whereby an increase in memory for the central details is accompanied by a decrease in memory for the peripheral details, positive arousing events might lead to a memory broadening effect such that positive arousal would increase memory for both central and peripheral details. This was assessed by testing recognition for central and peripheral details of pictures that were selected to vary in a continuous manner across a wide range of arousal for both positive and negative items. The results indicated that increases in both positive and negative stimulus arousal levels led to gradual increases in memory for the central aspects of the photos. In contrast, negative arousal first increased then decreased memory for peripheral detail as arousal levels increased, whereas positive arousal led to a continuous increase in memory for peripheral details. Thus, arousing negative materials lead to memory narrowing, whereas arousing positive materials can lead to memory broadening.

  13. Improving Program Design and Assessment with Broadening Participation Resources

    NASA Astrophysics Data System (ADS)

    Siegfried, D.; Johnson, A.; Thomas, S. H.; Fauver, A.; Detrick, L.

    2012-12-01

    Many theoretical and research-based approaches suggest how to best use mentoring to enhance an undergraduate research program. The Institute for Broadening Participation's Pathways to Engineering and Pathways to Ocean Sciences projects synthesized a set of mentoring studies, theoretical sources, and other texts pertinent to undergraduate research program design into a suite of practical tools that includes an online mentoring manual, an online reference library of mentoring and diversity literature, and practical guides such as Using Social Media to Build Diversity in Your REU. The overall goal is to provide easy-to-access resources that can assist faculty and program directors in implementing or honing the mentoring elements in their research programs for undergraduates. IBP's Online Mentoring Manual addresses common themes, such as modeling, student self-efficacy, career development, retention and evaluation. The Online Diversity Reference Library provides a comprehensive, annotated selection of key policy documents, research studies, intervention studies, and other texts on broadening participation in science, technology, engineering and mathematics. IBP's suite of tools provides the theoretical underpinnings and research findings that can help leaders in education integrate site-appropriate mentoring elements into their educational programs. Program directors and faculty from a variety of program types and disciplines have benefitted from using the Manual and other resources. IBP continues the work of translating and synthesizing theory to practice and welcomes your participation and partnership in that effort.

  14. Rotational relaxation contributions to infrared pressure broadening in ozone

    NASA Technical Reports Server (NTRS)

    Flannery, C.; Mizugai, Y.; Steinfeld, J. I.; Spencer, M. N.

    1990-01-01

    The time-resolved IR double-resonance spectroscopy apparatus and procedures described by Millot et al. (1988) are used to measure the relaxation times of rotational levels in the v3 =1 state of O3. Findings reported include (1) total rotational cross sections about 20-70 percent larger than the Lennard-Jones collision cross section, consistent with an interaction dominated by dipole-dipole forces; (2) equal relaxation cross sections in the upper and lower vibrational states; (3) an estimated pressure-broadening cross section of 185 sq A, with less than 10 percent due to dephasing; (4) no strong Ka dependence of rotational relaxation rates at Ka = 4-8 in J of about 16; (5) a rate for J = 8 and Ka = 7 about 40 percent larger than the other values measured, in agreement with the pressure-broadening model of Gamache and Rothman (1985); and (6) a V-V energy-transfer rate between v3 = 1 and v1 = 1 of (2.5 + or - 0.5) x 10 to the 6th/torr sec.

  15. Broadening the diagnosis of bipolar disorder: benefits vs. risks

    PubMed Central

    STRAKOWSKI, STEPHEN M.; FLECK, DAVID E.; MAJ, MARIO

    2011-01-01

    There is considerable debate over whether bipolar and related disorders that share common signs and symptoms, but are currently defined as distinct clinical entities in DSM-IV and ICD-10, may be better characterized as falling within a more broadly defined “bipolar spectrum”. With a spectrum view in mind, the possibility of broadening the diagnosis of bipolar disorder has been proposed. This paper discusses some of the rationale for an expanded diagnostic scheme from both clinical and research perspectives in light of potential drawbacks. The ultimate goal of broadening the diagnosis of bipolar disorder is to help identify a common etiopathogenesis for these conditions to better guide treatment. To help achieve this goal, bipolar researchers have increasingly expanded their patient populations to identify objective biological or endophenotypic markers that transcend phenomenological observation. Although this approach has and will likely continue to produce beneficial results, the upcoming DSM-IV and ICD-10 revisions will place increasing scrutiny on psychiatry’s diagnostic classification systems and pressure to re-evaluate our conceptions of bipolar disorder. However, until research findings can provide consistent and converging evidence as to the validity of a broader diagnostic conception, clinical expansion to a dimensional bipolar spectrum should be considered with caution. PMID:21991268

  16. Technical note: improved implementation of Doppler broadening in MCNP5.

    PubMed

    Bartol, Laura J; DeWerd, Larry A

    2012-09-01

    Incoherent scattering has a substantial effect on spectroscopic measurements and simulations. Many general-purpose Monte Carlo codes include models that account for the effects of bound electrons on incoherent scattering, including Doppler broadening (DB). This work investigates the DB model used in the Monte Carlo N-particle transport code (MCNP5). Simulations were run with three versions of MCNP5: v1.51, v1.60, and a modified form of v1.60 (v1.60m). All simulations used the MCPLIB04 photon data library, which presents the electron subshell data for incoherent scattering in the form of a probability density function. In v1.60m, the source code was altered to sample the electron subshell from a cumulative density function instead. Each version of the code was tested using an identical set of simulations that investigated DB in a slab of silicon at scattering angles of 15°, 30°, and 45°. For each angle, simulations were run for multiple energies between 200 keV and 800 keV. The spectrum of singly-scattered photons at the exit of the slab was scored. Spectra were analytically calculated for comparison. In v1.51, DB was modeled for incident photon energies below 760 keV, 384 keV, and 260 keV at scattering angles of 15°, 30°, and 45°, respectively. Above these energy thresholds, v1.51 did not model DB. The spectra calculated using v1.60 and v1.60m exhibited DB for all energy-angle combinations; however, v1.60m, exhibited more energy broadening than did v1.60. The spectra calculated with v1.60m agreed with the analytical calculations. MCNP5 v1.51 and v1.60 model partial broadening when used with the MCPLIB04 data library. MCNP5 v1.60m models DB more accurately due to the form of the electron subshell data. In response to these results, Los Alamos National Laboratory has released a new photon data library, MCPLIB84, that presents the electron subshell data in cumulative distribution form. MCNP5 v1.60 should be used with this library when incoherent scattering has a

  17. Dosimetric impact of reduced nozzle-to-isocenter distance in intensity-modulated proton therapy of intracranial tumors in combined proton-carbon fixed-nozzle treatment facilities.

    PubMed

    Jelen, Urszula; Bubula, Marta E; Ammazzalorso, Filippo; Engenhart-Cabillic, Rita; Weber, Uli; Wittig, Andrea

    2013-09-18

    In combined proton-carbon fixed-nozzle treatment facilities with raster scanning delivery, the scattering of proton pencil beams caused by nozzle elements and the relatively large nozzle-to-isocenter distance cause a beam broadening. This may pose limitations to the achievable dose conformity. One way to counteract this effect is by delivering the treatment in a position closer to the nozzle than the room isocenter. Purpose of this study was to assess the potential dosimetric benefit of such solution, in terms of dose conformity and normal tissue sparing, in intensity-modulated proton therapy (IMPT) of intracranial tumors. For 12 patients with intracranial lesions, IMPT-plans were created at two treatment positions: nozzle-to-treatment-isocenter distance: 100 cm (room isocenter) and nozzle-to-treatment-isocenter distance: 60 cm. The resulting plans were compared in terms of dose distributions, dose-volume histograms and selected dosimetric indexes. With comparable target coverage, statistically significant normal tissue sparing was achieved through the reduction of the distance between nozzle and treatment isocenter. The decrease in mean dose (Dmean) was 12.5% to the whole brain, 16.2% to the brainstem, 9.7% and 15.4% to the temporal lobes, 10.0% and 12.9% to the hippocampi, 11.8% and 12.5% to the optic nerves and 0.2% to the chiasm. The volume receiving at least 10% of the prescribed dose (V10%) was reduced by more than 10% for most organs at risk (OARs). The maximum dose (Dnear-max) values to most OARs remained without significant difference. A reduced distance between nozzle and treatment isocenter leads to steeper lateral dose gradients and significantly reduces the volume of OARs adjacent to the target, which receives low to intermediate doses. Technical solutions shifting the treatment isocenter closer to the nozzle should be considered in clinical situations, where critical OARs are adjacent to the beam channel and where the integral dose should be minimized.

  18. Dosimetric impact of reduced nozzle-to-isocenter distance in intensity-modulated proton therapy of intracranial tumors in combined proton-carbon fixed-nozzle treatment facilities

    PubMed Central

    2013-01-01

    Background In combined proton-carbon fixed-nozzle treatment facilities with raster scanning delivery, the scattering of proton pencil beams caused by nozzle elements and the relatively large nozzle-to-isocenter distance cause a beam broadening. This may pose limitations to the achievable dose conformity. One way to counteract this effect is by delivering the treatment in a position closer to the nozzle than the room isocenter. Purpose of this study was to assess the potential dosimetric benefit of such solution, in terms of dose conformity and normal tissue sparing, in intensity-modulated proton therapy (IMPT) of intracranial tumors. Material and methods For 12 patients with intracranial lesions, IMPT-plans were created at two treatment positions: nozzle-to-treatment-isocenter distance: 100 cm (room isocenter) and nozzle-to-treatment-isocenter distance: 60 cm. The resulting plans were compared in terms of dose distributions, dose-volume histograms and selected dosimetric indexes. Results With comparable target coverage, statistically significant normal tissue sparing was achieved through the reduction of the distance between nozzle and treatment isocenter. The decrease in mean dose (Dmean) was 12.5% to the whole brain, 16.2% to the brainstem, 9.7% and 15.4% to the temporal lobes, 10.0% and 12.9% to the hippocampi, 11.8% and 12.5% to the optic nerves and 0.2% to the chiasm. The volume receiving at least 10% of the prescribed dose (V10%) was reduced by more than 10% for most organs at risk (OARs). The maximum dose (Dnear-max) values to most OARs remained without significant difference. Conclusion A reduced distance between nozzle and treatment isocenter leads to steeper lateral dose gradients and significantly reduces the volume of OARs adjacent to the target, which receives low to intermediate doses. Technical solutions shifting the treatment isocenter closer to the nozzle should be considered in clinical situations, where critical OARs are adjacent to the beam

  19. Line-narrowing in proton-detected nitrogen-14 NMR

    NASA Astrophysics Data System (ADS)

    Cavadini, Simone; Vitzthum, Veronika; Ulzega, Simone; Abraham, Anuji; Bodenhausen, Geoffrey

    2010-01-01

    In solids spinning at the magic angle, the indirect detection of single-quantum (SQ) and double-quantum (DQ) 14N spectra ( I = 1) via spy nuclei S = 1/2 such as protons can be achieved in the manner of heteronuclear single- or multiple-quantum correlation (HSQC or HMQC) spectroscopy. The HMQC method relies on the excitation of two-spin coherences of the type T11IT11S and T21IT11S at the beginning of the evolution interval t1. The spectra obtained by Fourier transformation from t1 to ω1 may be broadened by the homogenous decay of the transverse terms of the spy nuclei S. This broadening is mostly due to homonuclear dipolar S- S' interactions between the proton spy nuclei. In this work we have investigated the possibility of inserting rotor-synchronized symmetry-based C or R sequences and decoupling schemes such as Phase-Modulated Lee-Goldburg (PMLG) sequences in the evolution period. These schemes reduce the homonuclear proton-proton interactions and lead to an enhancement of the resolution of both SQ and DQ proton-detected 14N HMQC spectra. In addition, we have investigated the combination of HSQC with symmetry-based sequences and PMLG and shown that the highest resolution in the 14N dimension is achieved by using HSQC in combination with symmetry-based sequences of the R-type. We show improvements in resolution in samples of L-alanine and the tripeptide ala-ala-gly (AAG). In particular, for L-alanine the width of the 14N SQ peak is reduced from 2 to 1.2 kHz, in agreement with simulations. We report accurate measurements of quadrupolar coupling constants and asymmetry parameters for amide 14N in AAG peptide bonds.

  20. Line-narrowing in proton-detected nitrogen-14 NMR.

    PubMed

    Cavadini, Simone; Vitzthum, Veronika; Ulzega, Simone; Abraham, Anuji; Bodenhausen, Geoffrey

    2010-01-01

    In solids spinning at the magic angle, the indirect detection of single-quantum (SQ) and double-quantum (DQ) (14)N spectra (I=1) via spy nuclei S=1/2 such as protons can be achieved in the manner of heteronuclear single- or multiple-quantum correlation (HSQC or HMQC) spectroscopy. The HMQC method relies on the excitation of two-spin coherences of the type T(11)(I)T(11)(S) and T(21)(I)T(11)(S) at the beginning of the evolution interval t(1). The spectra obtained by Fourier transformation from t(1) to omega(1) may be broadened by the homogenous decay of the transverse terms of the spy nuclei S. This broadening is mostly due to homonuclear dipolar S-S' interactions between the proton spy nuclei. In this work we have investigated the possibility of inserting rotor-synchronized symmetry-based C or R sequences and decoupling schemes such as Phase-Modulated Lee-Goldburg (PMLG) sequences in the evolution period. These schemes reduce the homonuclear proton-proton interactions and lead to an enhancement of the resolution of both SQ and DQ proton-detected (14)N HMQC spectra. In addition, we have investigated the combination of HSQC with symmetry-based sequences and PMLG and shown that the highest resolution in the (14)N dimension is achieved by using HSQC in combination with symmetry-based sequences of the R-type. We show improvements in resolution in samples of l-alanine and the tripeptide ala-ala-gly (AAG). In particular, for l-alanine the width of the (14)N SQ peak is reduced from 2 to 1.2 kHz, in agreement with simulations. We report accurate measurements of quadrupolar coupling constants and asymmetry parameters for amide (14)N in AAG peptide bonds.

  1. The Schwarzschild Proton

    SciTech Connect

    Haramein, Nassim

    2010-11-24

    We review our model of a proton that obeys the Schwarzschild condition. We find that only a very small percentage ({approx}10{sup -39}%) of the vacuum fluctuations available within a proton volume need be cohered and converted to mass-energy in order for the proton to meet the Schwarzschild condition. This proportion is equivalent to that between gravitation and the strong force where gravitation is thought to be {approx}10{sup -38} to 10{sup -40} weaker than the strong force. Gravitational attraction between two contiguous Schwarzschild protons can accommodate both nucleon and quark confinement. We calculate that two contiguous Schwarzschild protons would rotate at c and have a period of 10{sup -23} s and a frequency of 10{sup 22} Hz which is characteristic of the strong force interaction time and a close approximation of the gamma emission typically associated with nuclear decay. We include a scaling law and find that the Schwarzschild proton data point lies near the least squares trend line for organized matter. Using a semi-classical model, we find that a proton charge orbiting at a proton radius at c generates a good approximation to the measured anomalous magnetic moment.

  2. COMPARISON OF PARTICLE-TRACKING FEATURES IN GEANT4 AND MCNPX CODES FOR APPLICATIONS IN MAPPING OF PROTON RANGE UNCERTAINTY

    PubMed Central

    BEDNARZ, BRYAN; CHEN, GTY; PAGANETTI, HARALD; HAN, BIN; DING, AIPING; XU, X. GEORGE

    2012-01-01

    The accuracy of proton therapy is partially limited by uncertainties that result from changing pathological conditions in the patient such as tumor motion and shrinkage. These uncertainties can be minimized with the help of a time-resolved range telescope. Monte Carlo methods can help improve the performance of range telescopes by tracking proton interactions on a particle-by-particle basis thus broadening our understanding on the behavior of protons within the patient and the detector. This paper compared the proton multiple coulomb scattering algorithms in the Monte Carlo codes MCNPX and Geant4 to well-established scattering theories. We focus only on beam energies associated with proton imaging. Despite slight discrepancies between scattering algorithms, both codes appear to be capable of providing useful particle-tracking information for applications such as the proton range telescope. PMID:22389531

  3. [Lateral retinacular release].

    PubMed

    Verdonk, P; Bonte, F; Verdonk, R

    2008-09-01

    This overview of numerous studies discusses, based on short-term and long-term results, which diagnoses are indications for lateral retinacular release. No significant differences in outcome between arthroscopic and open lateral release could be documented. Isolated lateral release offers a good success rate for treating a stable patella with excessive lateral pressure. In patellar instability, the results are less favorable in long-term follow-up evaluation. Hyperlaxity with hypermobility of the patella is an absolute contraindication. Lateral release provides only temporary benefit for patellofemoral osteoarthritis. Proximal and/or distal realignment of the extensor mechanism gives better results than isolated lateral release.

  4. Surface Protonics Promotes Catalysis

    NASA Astrophysics Data System (ADS)

    Manabe, R.; Okada, S.; Inagaki, R.; Oshima, K.; Ogo, S.; Sekine, Y.

    2016-12-01

    Catalytic steam reforming of methane for hydrogen production proceeds even at 473 K over 1 wt% Pd/CeO2 catalyst in an electric field, thanks to the surface protonics. Kinetic analyses demonstrated the synergetic effect between catalytic reaction and electric field, revealing strengthened water pressure dependence of the reaction rate when applying an electric field, with one-third the apparent activation energy at the lower reaction temperature range. Operando–IR measurements revealed that proton conduction via adsorbed water on the catalyst surface occurred during electric field application. Methane was activated by proton collision at the Pd–CeO2 interface, based on the inverse kinetic isotope effect. Proton conduction on the catalyst surface plays an important role in methane activation at low temperature. This report is the first describing promotion of the catalytic reaction by surface protonics.

  5. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  6. Surface Protonics Promotes Catalysis

    PubMed Central

    Manabe, R.; Okada, S.; Inagaki, R.; Oshima, K.; Ogo, S.; Sekine, Y.

    2016-01-01

    Catalytic steam reforming of methane for hydrogen production proceeds even at 473 K over 1 wt% Pd/CeO2 catalyst in an electric field, thanks to the surface protonics. Kinetic analyses demonstrated the synergetic effect between catalytic reaction and electric field, revealing strengthened water pressure dependence of the reaction rate when applying an electric field, with one-third the apparent activation energy at the lower reaction temperature range. Operando–IR measurements revealed that proton conduction via adsorbed water on the catalyst surface occurred during electric field application. Methane was activated by proton collision at the Pd–CeO2 interface, based on the inverse kinetic isotope effect. Proton conduction on the catalyst surface plays an important role in methane activation at low temperature. This report is the first describing promotion of the catalytic reaction by surface protonics. PMID:27905505

  7. Angular and Energy Dependence of Proton Upset in Optocouplers

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Miyahira, T.; Swift, G. M.; Guertin, S.; Edmonds, L. D.

    2000-01-01

    Proton upset effects in optocouplers were reported by LaBel, et al. that showed an unexpected increase in cross section for incident angles above 80 degrees. Although it appeared that the angular dependence was related to direct ionization from protons, the angular dependence was weaker than expected from basic geometrical arguments using a shallow charge collection depth. Later work showed that the angular dependence of proton upset observed in the earlier studies at a single energy could be explained by considering the distribution of proton recoil energies along with the assumption of a deeper charge collection depth, which was consistent with upset tests from heavy ions. However, an experimental test of the underlying assumptions in the latter work has yet to be done. Protons in space not only arrive over a wide range of incident angles, but also involve a distribution of proton energies. It is necessary to understand both the angular dependence and the dependence of proton upset on energy in order to determine how optocouplers will respond in space. If the angular dependence only occurs for extreme angles of incidence, it will have little impact on the overall cross section because of the narrow acceptance angle. The present work examines mechanisms for proton upset in optocouplers in more detail, investigating the energy dependence and the effects of different load conditions. A model for proton upset is developed, along with a laboratory screening method to determine whether direct ionization is significant for specific device types.

  8. Calculation of pressure-broadened linewidths for CO in Ar

    NASA Technical Reports Server (NTRS)

    Green, S.

    1985-01-01

    Calculations of the pressure-broadening cross sections of CO in Ar have been made within the infinite-order sudden (IOS) and coupled states (CS) quantum scattering approximations. Two intermolecular potentials were used, a pairwise additive atom-atom potential which has been employed previously in semiclassical (modified Anderson theory) studies of this system and one calculated ab initio within an electron gas formalism. Predictions from the two potentials generally agree within about 25 percent and bracket experimental values (except for some recent high temperature data obtained in shock tube experiments). The CS approximation appears to be quite accurate although computationally expensive. The much cheaper IOS approximation is accurate for the J = 0-1 line but does not properly predict the dependence on line number. The quantum results are also compared with earlier semiclassical values.

  9. Scatter Broadening Measurements of 124 Pulsars At 327 Mhz

    NASA Astrophysics Data System (ADS)

    Krishnakumar, M. A.; Mitra, D.; Naidu, A.; Joshi, B. C.; Manoharan, P. K.

    2015-05-01

    We present the measurements of scatter broadening timescales ({{τ }sc}) for 124 pulsars at 327 MHz using the upgraded Ooty Radio Telescope. These pulsars lie in the dispersion measure range of 37-503 pc cm-3 and declination (δ) range of -57°\\lt δ \\lt 60{}^\\circ . New {{τ }sc} estimates for 58 pulsars are presented, increasing the sample of all such measurements by about 40% at 327 MHz. Using all available {{τ }sc} measurements in the literature, we investigate the dependence of {{τ }sc} on dispersion measure. Our measurements, together with previously reported values for {{τ }sc}, affirm that the ionized interstellar medium up to 3 kpc is consistent with the Kolmogorov spectrum, while it deviates significantly beyond this distance.

  10. Workshops Without Walls: broadening access to science around the world.

    PubMed

    Arslan, Betül K; Boyd, Eric S; Dolci, Wendy W; Dodson, K Estelle; Boldt, Marco S; Pilcher, Carl B

    2011-08-01

    The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two "Workshops Without Walls" during 2010 that enabled global scientific exchange--with no travel required. The second of these was on the topic "Molecular Paleontology and Resurrection: Rewinding the Tape of Life." Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel.

  11. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  12. America's economic future: environmentalists broaden the industrial policy debate

    SciTech Connect

    Not Available

    1984-01-01

    America's future economic health depends on the condition of our natural resources, our human resources, and our agricultural, energy, service, and high-technology industries, as well as on the traditional manufacturing industries. Industrial structure and output will do much to determine future levels of pollutants and resource use, and the shape of our economy will influence the character of American society and the quality of American life. The debate over proposals for government intervention in the growth and decline of specific industries changes the focus to microeconomic issues and broadens the discussion of economic goals. Environmentalists offer five goals for (1) a sustainable global economy, (2) a higher quality of life, (3) a sustainable environment and resource base, (4) total employment, and (5) widespread participation in decisions. They offer specific courses of action to meet these goals.

  13. Standard line broadening impact theory for hydrogen including penetrating collisions

    NASA Astrophysics Data System (ADS)

    Alexiou, S.; Poquérusse, A.

    2005-10-01

    In recent years there has been significant interest in the emission spectra from high-density plasmas, as manifested by a number of experiments. At these high densities short range (small impact parameter) interactions become important and these cannot be adequately handled by the standard theory, whose predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation, and to ensure the validity of a semiclassical picture. Very recently, as a result of a debate concerning the broadening of isolated ion lines, the importance of penetration of bound electron wave functions by plasma electrons has been realized. By softening the interaction, penetration makes perturbative treatments more valid. The penetration effect has now been included analytically into the standard theory. It turns out that the integrations may be done in closed form in terms of the modified Bessel functions K0 and K1 . This work develops the new theory and applies it to experimental measurements.

  14. Comparing the line broadened quasilinear model to Vlasov code

    SciTech Connect

    Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.

    2014-03-15

    The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.

  15. Photosynthetic innovation broadens the niche within a single species.

    PubMed

    Lundgren, Marjorie R; Besnard, Guillaume; Ripley, Brad S; Lehmann, Caroline E R; Chatelet, David S; Kynast, Ralf G; Namaganda, Mary; Vorontsova, Maria S; Hall, Russell C; Elia, John; Osborne, Colin P; Christin, Pascal-Antoine

    2015-10-01

    Adaptation to changing environments often requires novel traits, but how such traits directly affect the ecological niche remains poorly understood. Multiple plant lineages have evolved C4 photosynthesis, a combination of anatomical and biochemical novelties predicted to increase productivity in warm and arid conditions. Here, we infer the dispersal history across geographical and environmental space in the only known species with both C4 and non-C4 genotypes, the grass Alloteropsis semialata. While non-C4 individuals remained confined to a limited geographic area and restricted ecological conditions, C4 individuals dispersed across three continents and into an expanded range of environments, encompassing the ancestral one. This first intraspecific investigation of C4 evolutionary ecology shows that, in otherwise similar plants, C4 photosynthesis does not shift the ecological niche, but broadens it, allowing dispersal into diverse conditions and over long distances. Over macroevolutionary timescales, this immediate effect can be blurred by subsequent specialisation towards more extreme niches.

  16. Investigation of the Stark broadening of Balmer beta

    NASA Astrophysics Data System (ADS)

    Helbig, V.; Nick, K.-P.

    1981-10-01

    The Stark broadening of the Balmer line Hβ was studied in a high-current wall-stabilized arc at electron densities between 1.75 and 14.4 × 1016 cm-3. The electron density was obtained by means of a two-wavelength Michelson interferometer. The reduced half-widths of Hβ were compared with the theories of Griem et al, Vidal et al and Seidel. A slight increase in the reduced half-widths with increasing electron density was observed, just as predicted by theory. The absolute values, however, were smaller than the theoretical ones. There was good agreement with the experimental data of Bässler and Kock. The results of Wiese, Kelleher and Paquette differ from our data by 5-10% depending on the electron density.

  17. E-cigarettes: a need to broaden the debate.

    PubMed

    Latif, E; Nair, M

    2016-11-01

    The unregulated market for e-cigarettes continues to grow, with debates on their efficacy and impact on global public health. E-cigarettes, or electronic nicotine delivery systems (ENDs), are marketed as a 'safe' alternative to tobacco products and a tool for 'harm reduction'. Some public health experts are calling it a 'game changer' and favour the 'harm reduction' strategy, while others dispute this claim. In our opinion, the debate needs to be broadened to encompass other related concerns and effects on non-users and affected stakeholders. As with tobacco control, a holistic approach is needed to build a raft of policies that effectively address the issue from all angles and look beyond the direct health implications of e-cigarette use to explore the social, economic, political and environmental aspects of this debate, putting 'harm reduction' in context.

  18. Spectral broadening and its effect in Stark spectra of carotenoids

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław; Olszówka, Dorota

    2001-04-01

    Electrooptical parameters of eight carotenoids with different molecular structures were determined from the absorption and electroabsorption (Stark) spectra in glassy solvents and in poly(methyl methacrylate) films at temperatures 108-115 K. The results point to a limited significance of solvent-induced dipole moments in carotenoids resulting from local electric fields generated by solvent molecules, and indicate that the features in Stark spectra related to apparent dipole moments display a correlation with the bandwidth of individual vibronic transitions in absorption spectra. Model calculations show that it is possible to describe the Stark spectra by assuming a close link between the molecular polarizability and the inhomogeneous spectral shift. It is postulated that the dipole-related features in Stark spectra and the inhomogeneous broadening have a common origin in the distortions of molecular geometry in the form of torsional deformations about the single C-C bonds.

  19. Comparing the line broadened quasilinear model to Vlasov code

    NASA Astrophysics Data System (ADS)

    Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.

    2014-03-01

    The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.

  20. Implementation of on-the-fly doppler broadening in MCNP

    SciTech Connect

    Martin, W. R.; Wilderman, S.; Brown, F. B.; Yesilyurt, G.

    2013-07-01

    A new method to obtain Doppler broadened cross sections has been implemented into MCNP, removing the need to generate cross sections for isotopes at problem temperatures. When a neutron of energy E enters a material region that is at some temperature T, the cross sections for that material at temperature T are immediately obtained 'on-the-fly' (OTF) by interpolation using a high order functional expansion for the temperature dependence of the Doppler-broadened cross section for that isotope at the neutron energy E. The OTF cross sections agree with the NJOY-based cross sections for all neutron energies and all temperatures in the range specified by the user, e.g., 250 K - 3200 K. The OTF methodology has been successfully implemented into the MCNP Monte Carlo code and has been tested on several test problems by comparing MCNP with conventional ACE cross sections versus MCNP with OTF cross sections. The test problems include the Doppler defect reactivity benchmark suite and two full-core VHTR configurations, including one with multiphysics coupling using RELAP5-3D/ATHENA for the thermal-hydraulic analysis. The comparison has been excellent, verifying that the OTF libraries can be used in place of the conventional ACE libraries generated at problem temperatures. In addition, it has been found that the OTF methodology greatly reduces the complexity of the input for MCNP, resulting in an order of magnitude decrease in the number of input lines for full-core configurations. Finally, for full-core problems with multiphysics feedback, the memory required to store the cross section data is considerably reduced with OTF cross sections and the additional computational effort with OTF is modest, on the order of 10-15%. (authors)

  1. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  2. Tennis Elbow (Lateral Epicondylitis)

    MedlinePlus

    .org Tennis Elbow (Lateral Epicondylitis) Page ( 1 ) Tennis elbow, or lateral epicondyliti s, is a painful condition of the elbow caused by overuse. Not surprisingly, playing tennis or other racquet sports can cause ...

  3. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis Overview By Mayo Clinic Staff Amyotrophic lateral sclerosis (a-my-o-TROE-fik LAT-ur-ul skluh-ROE-sis), or ALS, is a progressive nervous system (neurological) disease that ...

  4. 2JHH-resolved HSQC: Exclusive determination of geminal proton-proton coupling constants

    NASA Astrophysics Data System (ADS)

    Marcó, Núria; Nolis, Pau; Gil, Roberto R.; Parella, Teodor

    2017-09-01

    The measurement of two-bond proton-proton coupling constants (2JHH) in prochiral CH2 groups from the F2 dimension of 2D spectra is not easy due to the usual presence of complex multiplet J patterns, line broadening effects and strong coupling artifacts. These drawbacks are particularly pronounced and frequent in AB spin systems, as those normally exhibited by the pair of diastereotopic CH2 protons. Here, a novel 2JHH-resolved HSQC experiment for the exclusive and accurate determination of the magnitude of 2JHH from the doublet displayed along the highly-resolved indirect F1 dimension is described. A pragmatic 2JHH NMR profile affords a fast overview of the full range of existing 2JHH values. In addition, a 2JHH/δ(13C)-scaled version proves to be an efficient solution when severe signal overlapping complicate a rigorous analysis. The performance of the method is compared with other current techniques and illustrated by the determination of challenging residual dipolar 2DHH coupling constants of small molecules dissolved in weakly orienting media.

  5. Minibeam therapy with protons and light ions: physical feasibility and potential to reduce radiation side effects and to facilitate hypofractionation.

    PubMed

    Dilmanian, F Avraham; Eley, John G; Krishnan, Sunil

    2015-06-01

    Despite several advantages of proton therapy over megavoltage x-ray therapy, its lack of proximal tissue sparing is a concern. The method presented here adds proximal tissue sparing to protons and light ions by turning their uniform incident beams into arrays of parallel, small, or thin (0.3-mm) pencil or planar minibeams, which are known to spare tissues. As these minibeams penetrate the tissues, they gradually broaden and merge with each other to produce a solid beam. Broadening of 0.3-mm-diameter, 109-MeV proton pencil minibeams was measured using a stack of radiochromic films with plastic spacers. Monte Carlo simulations were used to evaluate the broadening in water of minibeams of protons and several light ions and the dose from neutron generated by collimator. A central parameter was tissue depth, where the beam full width at half maximum (FWHM) reached 0.7 mm, beyond which tissue sparing decreases. This depth was 22 mm for 109-MeV protons in a film stack. It was also found by simulations in water to be 23.5 mm for 109 MeV proton pencil minibeams and 26 mm for 116 MeV proton planar minibeams. For light ions, all with 10 cm range in water, that depth increased with particle size; specifically it was 51 mm for Li-7 ions. The ∼2.7% photon equivalent neutron skin dose from the collimator was reduced 7-fold by introducing a gap between the collimator and the skin. Proton minibeams can be implemented at existing particle therapy centers. Because they spare the shallow tissues, they could augment the efficacy of proton therapy and light particle therapy, particularly in treating tumors that benefit from sparing of proximal tissues such as pediatric brain tumors. They should also allow hypofractionated treatment of all tumors by allowing the use of higher incident doses with less concern about proximal tissue damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Adaptive broadening to improve spectral resolution in the numerical renormalization group

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; Weichselbaum, Andreas

    2016-12-01

    We propose an adaptive scheme of broadening the discrete spectral data from numerical renormalization group (NRG) calculations to improve the resolution of dynamical properties at finite energies. While the conventional scheme overbroadens narrow features at large frequency by broadening discrete weights with constant width in log-frequency, our scheme broadens each discrete contribution individually based on its sensitivity to a z -shift in the logarithmic discretization intervals. We demonstrate that the adaptive broadening better resolves various features in noninteracting and interacting models at comparable computational cost. The resolution enhancement is more significant for coarser discretization as typically required in multiband calculations. At low frequency below the energy scale of temperature, the discrete NRG data necessarily needs to be broadened on a linear scale. Here we provide a method that minimizes transition artifacts in between these broadening kernels.

  7. Wall-collision line broadening of molecular oxygen within nanoporous materials

    SciTech Connect

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune; Adolfsson, Erik

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  8. Artificial synapse network on inorganic proton conductor for neuromorphic systems

    NASA Astrophysics Data System (ADS)

    Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing

    2014-01-01

    The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are self-assembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.

  9. Artificial synapse network on inorganic proton conductor for neuromorphic systems.

    PubMed

    Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing

    2014-01-01

    The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are self-assembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.

  10. Proton therapy in Japan

    SciTech Connect

    Tsunemoto, H.; Morita, S.; Ishikawa, T.; Furukawa, S.; Kawachi, K.; Kanai, T.; Ohara, H.; Kitagawa, T.; Inada, T.

    1985-01-01

    There are two facilities for clinical trials with protons in Japan: the National Institute of Radiological Sciences (NIRS), Chiba, and the Particle Radiation Medical Science Center (PARMS), University of Tsukuba. At the National Institute of Radiological Sciences, patient treatment with the 70 MeV proton beam began in November 1979, and 29 patients were treated through December 1984. Of 11 patients who received protons only, 9 have had local control of the tumor. Two of the 9 patients, suffering from recurrent tumor after radical photon beam irradiation, developed complications after proton treatment. In the patients treated with photons or neutrons followed by proton boost, tumors were controlled in 12 of 18 patients (66.6%), and no complications were observed in this series. Malignant melanoma could not be controlled with the proton beam. A spot-beam-scanning system for protons has been effectively used in the clinical trials to minimize the dose to the normal tissues and to concentrate the dose in the target volume. At the Particle Radiation Medical Science Center, University of Tsukuba, treatment with a vertical 250 MeV proton beam was begun in April 1983, and 22 patients were treated through February 1984. Local control of the tumor was observed in 14 of 22 patients (63.6%), whereas there was no local control in the treatment of glioblastoma multiforme. There have been no severe complications in patients treated at PARMS. The results suggest that local control of tumors will be better with proton beams than with photon beams, whereas additional modalities are required to manage radioresistant tumors.

  11. The Proton launcher

    NASA Astrophysics Data System (ADS)

    Bond, A.; Parfitt, J.

    1985-08-01

    The capabilities, design features and missions for the Soviet Proton booster are described. The Proton, outfitted with six strap-on boosters, launched the Vega 1 and 2 Venus/Halley dual mission spacecraft. RD-253 engines burn N2O4 and UDMH fuels, possibly through a preburner before the combustion chamber. A vacuum thrust of 450,000 lb is projected for the engine. Analyses are presented to set the launch weight at 1,600,000 lb, implying that the vehicle is based on an ICBM design. It is suggested that the Proton has sufficiently high noise and vibration levels to prohibit it from being man-rated.

  12. Are protons nonidentical fermions?

    SciTech Connect

    Mart, T.

    2014-09-25

    We briefly review the progress of our investigation on the electric (charge) radius of the proton. In order to explain the recently measured proton radius, which is significantly smaller than the standard CODATA value, we assume that the real protons radii are not identical, they are randomly distributed in a certain range. To obtain the measured radius we average the radii and fit both the mean radius and the range. By using an averaged dipole form factor we obtain the charge radius r{sub E} = 0.8333 fm, in accordance with the recent measurement of the Lamb shift in muonic hydrogen.

  13. Lateral flow strip assay

    DOEpatents

    Miles, Robin R [Danville, CA; Benett, William J [Livermore, CA; Coleman, Matthew A [Oakland, CA; Pearson, Francesca S [Livermore, CA; Nasarabadi, Shanavaz L [Livermore, CA

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  14. The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers.

    PubMed

    Soh, Daniel B S; Koplow, Jeffrey P; Moore, Sean W; Schroder, Kevin L; Hsu, Wen L

    2010-10-11

    In addition to fiber nonlinearity, fiber dispersion plays a significant role in spectral broadening of incoherent continuous-wave light. In this paper we have performed a numerical analysis of spectral broadening of incoherent light based on a fully stochastic model. Under a wide range of operating conditions, these numerical simulations exhibit striking features such as damped oscillatory spectral broadening (during the initial stages of propagation), and eventual convergence to a stationary, steady state spectral distribution at sufficiently long propagation distances. In this study we analyze the important role of fiber dispersion in such phenomena. We also demonstrate an analytical rate equation expression for spectral broadening.

  15. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  16. Perceived workplace harassment experiences and problem drinking among physicians: broadening the stress/alienation paradigm.

    PubMed

    Richman, J A; Flaherty, J A; Rospenda, K M

    1996-03-01

    Sociologists who embrace the stress or alienation paradigms generally focus on explaining problem drinking in low status occupations. By contrast, this paper argues that a broadened conceptualization of stress and alienation which incorporates abusive work relationships has utility for explaining male and female drinking outcomes in both high and low status occupations. We provide empirical data on the relationship between perceived abusive experiences and drinking outcomes in a cohort of male and female physicians in their internship year of training. The data show that perceived sexual harassment, discriminatory treatment and psychological humiliation relate to various drinking outcomes in men and women, controlling for drinking prior to the internship year. While females were more likely to report experiencing abuse, these perceived experiences had deleterious effects on drinking outcomes for both genders. Personal vulnerability (narcissism) brought into the training environment somewhat influenced the later reporting of abusive experiences by males but not by females. Regression analyses showed that, for both males and females, work-place abusive experiences in interaction with personality vulnerability best explained drinking outcomes. The implications of these results for the design of future alcohol-related work-place studies are discussed.

  17. Electrically-driven spectrally-broadened random lasing based on disordered photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Guo, X. J.; Wang, Y. F.; Jia, Y. F.; Zheng, W. H.

    2017-07-01

    We present the effect of radius randomness on the resonant spectrum and modal characteristics of a photonic crystal. With the introduction of randomness, different localizations were analyzed. The random pattern was then fabricated onto our lateral cavity surface emitting laser. Electrically driven random lasing was obtained with the localization and broadened spectrum, and the decrease of threshold and the increase of output power were also observed. The decreased threshold was due to the appearance of additional modes and the degree of localization. The output power reached a maximum with a random variance of 20 nm. It meant that there was a transition case in a regime ranging from Anderson localization to the local band edge resonance, and a balance between the Fabry-Perot-like effect and the random modulation effect. When the random variance reached 50 nm, the transition case in a regime ranging from localized to diffusive became remarkable. The experimental results are consistent with our theoretical analysis. One of the properties that make a random laser special with respect to regular lasers is its complex features in emission spectra, which means low spectral coherence. Our investigation on this kind of laser has referential and instructional significances for full-field imaging at visible wavelengths and other wavelengths.

  18. Apparatus for proton radiography

    DOEpatents

    Martin, Ronald L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors.

  19. THEORY OF PROTON EMITTERS

    SciTech Connect

    P. TALOU

    2000-08-01

    Modern theoretical methods used to interpret recent experimental data on ground-state proton emission near the proton drip line are reviewed. Most of them are stationary and are aimed to compute proton decay widths {Gamma}{sub p} only. Comparison is made between these approaches before being compared to experimental data. Our time-dependent approach based on the numerical solution of the time-dependent Schroedinger equation (TDSE) for initial quasi-stationary single-proton states is then introduced. It is shown that much deeper insights into the physics of this clean multidimensional quantum tunneling effect can be accessed, and that in addition to {Gamma}{sub p}, other physical quantities could be tested experimentally, offering new stringent tests on nuclear physics models away from the valley of {beta}-stability. Finally, the necessity of using the TDSE approach in more complex, dynamical, problems is demonstrated.

  20. The Proton Radius Puzzle

    NASA Astrophysics Data System (ADS)

    Downie, E. J.

    2016-03-01

    The proton radius puzzle is the difference between the proton radius as measured with electron scattering and in the excitation spectrum of atomic hydrogen, and that measured with muonic hydrogen spectroscopy. Since the inception of the proton radius puzzle in 2010 by the measurement of Pohl et al.[1], many possible resolutions to the puzzle have been postulated, but, to date, none has been generally accepted. New data are therefore necessary to resolve the issue. We briefly review the puzzle, the proposed solutions, and the new electron scattering and spectroscopy experiments planned and underway. We then introduce the MUSE experiment, which seeks to resolve the puzzle by simultaneously measuring elastic electron and muon scattering on the proton, in both charge states, thereby providing new information to the puzzle. MUSE addresses issues of two-photon effects, lepton universality and, possibly, new physics, while providing simultaneous form factor, and therefore radius, measurements with both muons and electrons.

  1. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  2. Lorentz contracted proton

    NASA Astrophysics Data System (ADS)

    Bedoya Fierro, D.; Kelkar, N. G.; Nowakowski, M.

    2015-09-01

    The proton charge and magnetization density distributions can be related to the well known Sachs electromagnetic form factors G E, M ( q 2) through Fourier transforms, only in the Breit frame. The Breit frame however moves with relativistic velocities in the Lab and a Lorentz boost must be applied before extracting the static properties of the proton from the corresponding densities. Apart from this, the Fourier transform relating the densities and form factors is inherently a non-relativistic expression. We show that the relativistic corrections to it can be obtained by extending the standard Breit equation to higher orders in its 1 /c 2 expansion. We find that the inclusion of the above corrections reduces the size of the proton as determined from electron proton scattering data by about 4%.

  3. Uncertainty estimates for proton-proton fusion

    NASA Astrophysics Data System (ADS)

    Acharya, Bijaya

    2017-01-01

    We calculate the proton-proton fusion cross section using chiral effective field theory (χEFT) and perform a rigorous analysis of the associated uncertainties. The statistical errors in the low-energy constants, which are fitted too scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, are propagated to the calculated cross section. We also investigate the sensitivity of the fusion cross section to the high-momentum cutoff of the χEFT. We extract a value for the zero-energy S-factor using a polynomial extrapolant and analyze the errors associated with this procedure. Our result is compared to that of another χEFT calculation in which the wave functions were represented in a truncated Hilbert space with discrete basis states. Supported by the NSF under Grant Nos. PHY-1516077 and PHY- 1555030.

  4. Conductivity and structure of DBSA-protonated polyaniline

    NASA Astrophysics Data System (ADS)

    Taka, T.; Laakso, J.; Levon, K.

    1994-11-01

    The discovery of a processable and conducting polyaniline complexes including functionalized sulphonic acids is an important discovery in the field of conjugated polymers. The conductivity, electronic and crystalline structure properties of polyaniline protonated with dodecylbenzenesulphonic acid are proportional to the molar concentration of the acid. The protonation leads to a layer structure evident in X-ray diffraction patterns and the crystallinity follows a growth as a function of the acid concentration similar to the conductivity increase. The electronic structure measured by UV-VIS spectroscopy shows an increase in the polaron concentration up to an acid concentration of 0.35 after which a broadening of the peak indicates the formation of a polaron band.

  5. Proton irradiation on materials

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken

    1993-01-01

    A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference.

  6. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  7. Proton irradiation on materials

    NASA Astrophysics Data System (ADS)

    Chang, C. Ken

    1993-12-01

    A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference.

  8. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Helgerson, S. L.; Stoeckenius, W.

    1985-01-01

    The roles of bacteriorhodopsin (bR), halorhodopsin (hR), and the H(+)-ATPase in the proton uptake in intact cells are examined. The Halobacterium halobium strains and solutions utilized in the experiment, and the techniques for measuring extracellular pH changes and intracellular K(+) concentrations are described. It is observed that in Halobacterium halobium strain R1, containing bR and hR, the light-driven proton uptake is divided into three transient inflows superimposed on the larger proton outflow. Under anaerobic conditions early proton uptake consists of an inflow which can be blocked with Dio-9 and a second inflow that can be eliminated by low concentrations (less than 125 nm) of triphenyltin chloride (TPT). The effects of Dio-9 and TPT on the passive proton-hydroxyl permeability of the cell membrane are investigated. A third transient light-driven proton flow observed at later times of illumination is studied. The data reveal that the first proton inflow correlates with proton dependent ATP synthesis; the second inflow is a passive uptake through an unidentified channel in response to electrogenic chloride pumping by bR and/or hR; and the third inflow correlates with the Na(+)/H(+) antiporter function.

  9. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Helgerson, S. L.; Stoeckenius, W.

    1985-01-01

    The roles of bacteriorhodopsin (bR), halorhodopsin (hR), and the H(+)-ATPase in the proton uptake in intact cells are examined. The Halobacterium halobium strains and solutions utilized in the experiment, and the techniques for measuring extracellular pH changes and intracellular K(+) concentrations are described. It is observed that in Halobacterium halobium strain R1, containing bR and hR, the light-driven proton uptake is divided into three transient inflows superimposed on the larger proton outflow. Under anaerobic conditions early proton uptake consists of an inflow which can be blocked with Dio-9 and a second inflow that can be eliminated by low concentrations (less than 125 nm) of triphenyltin chloride (TPT). The effects of Dio-9 and TPT on the passive proton-hydroxyl permeability of the cell membrane are investigated. A third transient light-driven proton flow observed at later times of illumination is studied. The data reveal that the first proton inflow correlates with proton dependent ATP synthesis; the second inflow is a passive uptake through an unidentified channel in response to electrogenic chloride pumping by bR and/or hR; and the third inflow correlates with the Na(+)/H(+) antiporter function.

  10. Proton transport by halorhodopsin

    SciTech Connect

    Varo, G.; Brown, L.S.; Needleman, R.

    1996-05-28

    In halorhodopsin from Natronobacterium pharaonis, a light-driven chloride pump, the chloride binding site also binds azide. When azide is bound at this location the retinal Schiff base transiently deprotonates after photoexcitation with light >530 nm, like in the light-driven proton pump bacteriorhodopsin. As in the photocycle of bacteriorhodopsin, pyranine detects the release of protons to the bulk. The subsequent reprotonation of the Schiff base is also dependent on azide, but with different kinetics that suggest a shuttling of protons from the surface as described earlier for halorhodopsin from Halobacterium salinarium. The azide-dependent, bacteriorhodopsin-like photocycle results in active electrogenic proton transport in the cytoplasmic to extracellular direction, detected in cell envelope vesicle suspensions both with a potential-sensitive electrode and by measuring light-dependent pH change. We conclude that in halorhodopsin an azide bound to the extracellular side of the Schiff base, and another azide shuttling between the Schiff base and the cytoplasmic surface, fulfill the functions of Asp-85 and Asp-96, respectively, in bacteriorhodopsin. Thus, although halorhodopsin is normally a chloride ion pump, it evidently contains all structural requirements, except an internal proton acceptor and a donor, of a proton pump. This observation complements our earlier finding that when a chloride binding site was created in bacteriorhodopsin through replacement of Asp-85 with a threonine, that protein became a chloride ion pump. 52 refs., 9 figs.

  11. PROTON MICROSCOPY AT FAIR

    SciTech Connect

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-12-28

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  12. Broadening Participation: Mentoring Community College Students in a Geoscience REU

    NASA Astrophysics Data System (ADS)

    Smith, M.; Osborn, J.

    2015-12-01

    Increasingly, REUs are recruiting from community colleges as a means of broadening participation of underrepresented minorities, women, and low-income students in STEM. As inclusion of community college students becomes normalized, defining the role of science faculty and preparing them to serve as mentors to community college students is a key component of well-designed programs. This session will present empirical research regarding faculty mentoring in the first two years of an NSF-REU grant to support community college students in a university's earth and environmental science labs. Given the documented benefits of undergraduate research on students' integration into the scientific community and their career trajectory in STEM, the focus of the investigation has been on the processes and impact of mentoring community college STEM researchers at a university serving a more traditionally privileged population; the degree to which the mentoring relationships have addressed community college students needs including their emotional, cultural and resource needs; and gaps in mentor training and the mentoring relationship identified by mentors and students.

  13. Workshops without Walls: Broadening Access to Science around the World

    PubMed Central

    Arslan, Betül K.; Boyd, Eric S.; Dolci, Wendy W.; Dodson, K. Estelle; Boldt, Marco S.; Pilcher, Carl B.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two “Workshops Without Walls” during 2010 that enabled global scientific exchange—with no travel required. The second of these was on the topic “Molecular Paleontology and Resurrection: Rewinding the Tape of Life.” Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel. PMID:21829326

  14. Non-radiative processes in protonated diazines, pyrimidine bases and an aromatic azine.

    PubMed

    Pino, Gustavo A; Feraud, Géraldine; Broquier, Michel; Grégoire, Gilles; Soorkia, Satchin; Dedonder, Claude; Jouvet, Christophe

    2016-07-27

    The excited state lifetimes of DNA bases are often very short due to very efficient non-radiative processes assigned to the ππ*-nπ* coupling. A set of protonated aromatic diazine molecules (pyridazine, pyrimidine and pyrazine C4H5N2(+)) and protonated pyrimidine DNA bases (cytosine, uracil and thymine), as well as the protonated pyridine (C5H6N(+)), have been investigated. For all these molecules except one tautomer of protonated uracil (enol-keto), electronic spectroscopy exhibits vibrational line broadening. Excited state geometry optimization at the CC2 level has been conducted to find out whether the excited state lifetimes measured from line broadening can be correlated to the calculated ordering of the ππ* and nπ* states and the ππ*-nπ* energy gap. The short lifetimes, observed when one nitrogen atom of the ring is not protonated, can be rationalized by relaxation of the ππ* state to the nπ* state or directly to the electronic ground state through ring puckering.

  15. New theoretical and experimental methods for pressure broadened linewidths and their interpretation

    NASA Technical Reports Server (NTRS)

    Gelfand, J. J.

    1982-01-01

    A review of recent progress in the theory of collisional line broadening, particularly the impact of recent advances in collision dynamics calculations is presented. Some new approaches to the interpretation of experimentally measured linewidths and their impact on planetary atmosphere research are discussed. Experimental techniques which may have some advantage in providing pressure broadening data at very low temperatures are also mentioned.

  16. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  17. Optoelectronic Workshops. Dynamical Instabilities in Homogeneously Broadened Lasers (9th) (23 August 1988)

    DTIC Science & Technology

    1988-08-23

    Broadened Lasers: Dye Lasers Karl Koch Modulation Techniques: Alexandrite Lasers Stephen Chakmakjian Summary Carlos R. Stroud B. CECOM Center for Night... alexandrite , another phonon assisted homogeneously broadened laser. He described in some detail modulation spectroscopic techniques developed in Rochester that...measurement determines the population cycling rate slow decay from level 1 may cause instabilities Single Laser AM Experiments ruby alexandrite modulator

  18. New theoretical and experimental methods for pressure broadened linewidths and their interpretation

    NASA Technical Reports Server (NTRS)

    Gelfand, J. J.

    1982-01-01

    A review of recent progress in the theory of collisional line broadening, particularly the impact of recent advances in collision dynamics calculations is presented. Some new approaches to the interpretation of experimentally measured linewidths and their impact on planetary atmosphere research are discussed. Experimental techniques which may have some advantage in providing pressure broadening data at very low temperatures are also mentioned.

  19. The apparent spectral broadening of VLF transmitter signals during transionospheric propagation

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Inan, U. S.; Katsufrakis, J. P.; James, H. G.

    1983-01-01

    ISIS 1 and 2 and ISEE 1 VLF/ELF electric field wave data indicate the existence of a novel phenomenon, in which initially narrow band upgoing signals from ground-based VLF transmitters undergo a significant spectral broadening as they propagate through the ionosphere and protonosphere, up to altitudes in the 600-3800 km range. For transmitter signals in the 10-20 kHz range, the spectral broadening can be as high as 10 percent of the input signal's nominal frequency. In many cases, the bandwidth of the spectrally broadened signals is a strong function of the electric dipole antenna orientation with respect to the local direction of the earth's magnetic field. The unusual dispersion in the components of the spectrally broadened pulses suggests that the spectral broadening may be due to a Doppler shift effect in which the initial signals scatter from irregularities in the F region and couple into quasi-electrostatic modes of short wave length.

  20. Correction of Doppler-broadened Rayleigh backscattering effects in H2O dial measurements

    NASA Technical Reports Server (NTRS)

    Ansmann, A.; Bosenberg, J.

    1986-01-01

    A general method of solutions for treating effects of Doppler-broadened Rayleigh backscattering in H2O Differential Absorption Lidar (DIAL) measurements are described and discussed. Errors in vertical DIAL measuremtns caused by this laser line broadening effect can be very large and, therfore, this effect has to be accounted for accurately. To analyze and correct effects of Doppler-broadened Rayleigh backscattering in DIAL experiments, a generalized DIAL approximation was derived starting from a lidar equation, which includes Doppler broadening. To evaluate the accuracy of H2O DIAL measurements, computer simulations were performed. It was concluded that correction of Doppler broadened Rayleigh backscattering is possible with good accuracy in most cases of tropospheric H2O DIAL measurements, but great care has to be taken when layers with steep gradients of Mie backscattering like clouds or inversion layers are present.

  1. Analysis of broadened Mössbauer spectra using simple mathematical functions. Analysis of broadened Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Cabral-Prieto, A.

    2014-01-01

    Simulated and experimental broadened Mössbauer spectra are analyzed using several distribution functions. The resolution Hesse and Rübartsch data are reproduced in order to analyze the origin of the oscillations appearing in the recovered distribution function. The lined triangular distribution is used and some of its properties are described. The no implicit nth-nomial distribution function is introduced, complementing the Window and Hesse and Rübartasch no implicit distribution functions. This new no implicit distribution function gives similar results of those of Window's method. In addition, the Window method has also been modified by inserting a smoothing factor λ C . For 0 < λ C < 1 a hyperfine distribution with low resolution may be obtained; for λ C > 1, the opposite is obtained. The Levenberg-Marquardt algorithm is used to solve the involved Fredholm integral equation rather than the typical second order regularized algorithm. From the extracted hyperfine field distribution functions of the Mössbauer spectra of the amorphous and crystallized Fe70Cr2Si5B16 magnetic alloy the short range atomic order for the amorphous state of this alloy can be inferred.

  2. Proton-detected heteronuclear single quantum correlation NMR spectroscopy in rigid solids with ultra-fast MAS.

    PubMed

    Holland, Gregory P; Cherry, Brian R; Jenkins, Janelle E; Yarger, Jeffery L

    2010-01-01

    In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3- to 4-fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8- to 13-fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling.

  3. Proton-detected heteronuclear single quantum correlation NMR spectroscopy in rigid solids with ultra-fast MAS

    PubMed Central

    Holland, Gregory P.; Cherry, Brian R.; Jenkins, Janelle E.; Yarger, Jeffery L.

    2009-01-01

    In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3 - 4 fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8 - 13 fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling. PMID:19857977

  4. Reading Disability and Laterality.

    ERIC Educational Resources Information Center

    Sparrow, Sara S.

    The purpose of this study was to determine how retarded readers differed from normal readers in the various ways laterality is manifested. An additional purpose was to investigate the development of laterality as seen across several age levels. Subjects were 80 white male 9-, 10-, 11-, and 12-year-olds from regular classrooms in suburban…

  5. Theory of Self-Phase Modulation and Spectral Broadening

    NASA Astrophysics Data System (ADS)

    Shen, Y. R.; Yang, Guo-Zhen

    Self-phase modulation refers to the phenomenon in which a laser beam propagating in a medium interacts with the medium and imposes a phase modulation on itself. It is one of those very fascinating effects discovered in the early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies in the fact that the strong field of a laser beam is capable of inducing an appreciable intensity-dependent refractive index change in the medium. The medium then reacts back and inflicts a phase change on the incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a finite cross section, and hence a transverse intensity profile, SPM on the beam should have a transverse spatial dependence, equivalent to a distortion of the wave front. Consequently, the beam will appear to have self-diffracted. Such a self-diffraction action, resulting from SPM in space, is responsible for the well-known nonlinear optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981; Santamato and Shen, 1984). In the case of a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in time. Since the time derivative of the phase of a wave is simply the angular frequency of the wave, SPM also appears as a frequency modulation. Thus, the output beam appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967).

  6. Doppler Broadening Thermometry Based on Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sun, Yu Robert; Cheng, Cunfeng; Tao, Lei-Gang; Tan, Yan; Kang, Peng; Liu, An-Wen; Hu, Shui-Ming

    2016-06-01

    A Doppler broadening thermometry (DBT) instrument is implemented based on a laser-locked cavity ring-down spectrometer. [1,2] It can be used to determine the Boltzmann constant by measuring the Doppler width of a molecular ro-vibrational transition in the near infrared. Compared with conventional direct absorption methods, the high-sensitivity of CRDS allows to reach satisfied precision at lower sample pressures, which reduces the influence due to collisions. By measuring the ro-vibrational transition of C_2H_2 at 787 nm, we demonstrate a statistical uncertainty of 6 ppm (part per million) in the determined linewidth by several hours' measurement at a sample pressure of 1.5 Pa. [3] However, the complicity in the spectrum of a polyatomic molecule induces potential systematic influence on the line profile due to nearby ``hidden'' lines from weak bands or minor isotopologues. Recently, the instrument has been upgraded in both sensitivity and frequency accuracy. A narrow-band fiber laser frequency-locked to a frequency comb is applied, and overtone transitions at 1.56 μm of the 12C16O molecule are used in the CRDS-DBT measurements. The simplicity of the spectrum of the diatomic CO molecule eliminates the potential influence from ``hidden'' lines. Our preliminary measurements and analysis show that it is feasible to pursue a DBT measurement toward the 1 ppm precision. H. Pan, et al., Rev. Sci. Instrum. 82, 103110 (2011) Y. R. Sun, et al., Opt. Expr., 19, 19993 (2011) C.-F. Cheng, et al., Metrologia, 52, S385 (2015)

  7. Some Strategies From SOARS for Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Haacker-Santos, R.; Pandya, R.; Calhoun, A.

    2006-12-01

    The mission of SOARS® is to broaden participation in the geosciences by increasing the number of Black or African-American, American Indian or Alaska Native, Hispanic or Latino, female, and first-generation college students who enroll and succeed in graduate school in the atmospheric and related sciences. This mission contributes to national goals of developing a diverse, internationally competitive, and globally engaged workforce of scientists and engineers. SOARS is a multiyear undergraduate-to-graduate bridge program that uses three strategies: a strong learning community, a multidimensional mentoring program, and experience in research. Our presentation will describe SOARS' strategies in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw upon recent research that documents how these strategies can be successfully implemented, including: - A survey of over 124 higher-education based STEM programs - A workshop report from the American Chemical Society emphasizing cooperation between industry and academia - An independent ethnographic study of the Significant Opportunities in Atmospheric and Related Science (SOARS®) program, administered by the University Corporation for Atmospheric Research (UCAR) In the 11 years since SOARS' founding, 104 students have participated in the program. Of those participants, 16 are still enrolled as undergraduates, and 60 have gone on to purse graduate school in STEM. Overall, this represents a success rate 91%. Of the 35 SOARS participants who have entered the workforce, 26 are in STEM related disciplines. Four SOARS participants have already earned their PhD, and additional 17 are in PhD programs. Seventeen protégés have earned Master's and entered the workforce, and 17 more protégés are enrolled in Master's programs.

  8. Cardiovascular RNA interference therapy: the broadening tool and target spectrum.

    PubMed

    Poller, Wolfgang; Tank, Juliane; Skurk, Carsten; Gast, Martina

    2013-08-16

    Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.

  9. Doppler broadening induced spectral shift effects on reactor safety

    SciTech Connect

    Alapour, A.

    1980-01-01

    It is commonly accepted that the resonance reaction rate of any material increases when the temperature is raised. However, in a nuclear reactor the increase in resonance reaction rates with temperature at relatively high energy shifts the neutron spectrum in such a way that a net decrease in the neutron flux results at lower energies. This finding suggested that the spectral shift could significantly affect the Doppler reactivity change, warranting further investigations. The objective was to study the physical characteristics of this new phenomenon and its effects on reactor safety. The desirability of studying this effect was strengthened by the presence of discrepancies between the calculated and measured integral experiments. An exact Doppler broadening kernel, based on the Maxwellian distribution of nuclear velocities, and an accurate integral transport method NDCRAB, capable of including resonance overlap of all materials present in the reactor cell, were used in this study. The ZPR-6 Assembly 7 benchmark, a typical LMFBR reactor, was used to quantify the Doppler reactivity change for an increase in fuel temperature and to analyze the natural UO/sub 3/ sample Doppler worth in this assembly. The quantification of the various components of the Doppler reactivity change shows that the fissile material, /sup 239/Pu, has a large negative Doppler effect and contributes a large fraction to the total negative effect. The calculated Doppler effect of the natural UO/sub 3/ sample in this assembly was in good agreement with the measured value. The calculated and measured values for an increase in sample temperature from 293-0K to 1100/sup 0/K wre -0.887 Ih/kgU and -0.868 Ih/kgU.

  10. Doppler Broadening Thermometry Based on Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Shui-Ming; Cheng, Cunfeng; Wang, Jin; Tan, Yan; Sun, Yu Robert; Liu, An-Wen; Zhang, Jin-Tao

    2014-06-01

    A Doppler broadening thermometry is implemented using a laser-locked cavity ring-down spectrometer [1,2] combined with a temperature-stabilized sample cell. The temperature fluctuation of the gas sample cell is kept below 1 mK for hours. The probing laser is frequency locked at a longitudinal mode of a Fabry-Pérot interferometer made of ultra-low-expansion glass, and the spectral scan is implemented by scanning the sideband produced by an electro-optic modulator. As a result, a kHz precision has been maintained during the measurement of the spectrum of 10 GHz wide. A ro-vibrational line of C_2H_2 is measured at sample pressures of a few Pa. Using a pair of mirrors with a reflectivity of 0.99997 at 787 nm, we are able to detect absorption line profiles with a signal-to-noise ratio of 10^5. Fitting of the recorded spectra allows us to determine the Doppler width with a statistical uncertainty of 10 ppm. Further improvements on the experimental reproducibility and investigations on the collision effects will probably lead to an optical determination of the Boltzmann constant with an uncertainty of a few ppm. H. Pan, C.-F. Cheng, Y. R. Sun, B. Gao, A.-W. Liu, S.-M. Hu, ``Laser-locked, continuously tunable high resolution cavity ring-down spectrometer," Rev. Sci. Instrum. 82, 103110 (2011) Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, S.-M. Hu, ``Application of cavity ring-down spectroscopy to the Boltzmann constant determination," Opt. Express, 19, 19993 (2011)

  11. Broadening Undergraduate Research Skills With A New Astrophysics Laboratory Class

    NASA Astrophysics Data System (ADS)

    Smecker-Hane, Tammy A.; Barth, A. J.

    2009-05-01

    To broaden the research skills of undergraduate students at the University of California, Irvine, we created a new required laboratory class called Observational Astrophysics, designed to be taken by junior and senior physics majors specializing in astrophysics. Students spend the first two weeks learning the basics of observational astronomy (coordinate systems, telescopes, CCDs, etc.) and completing homework assignments. Students spend the next eight weeks performing three lab experiments that involve: 1) CCD imaging of Jupiter with an 8-inch Meade telescope, doing astrometry of the their four brightest moons, and fitting the moons' distance versus time to derive the moons' orbital period, semimajor axis and inclination and Jupiter's mass, 2) CCD imaging of star cluster with a 24-inch telescope, doing profile-fitting photometry with DAOPHOT and doing main-sequence fitting of their observed color-magnitude diagram with stellar evolutionary models to derive the cluster's distance, reddening, and age, and 3) reducing longslit spectra of an x-ray binary previously taken with the Keck 10-meter telescope, deriving the radial velocity curve from cross-correlating the spectra with stellar templates, and deriving a lower limit on the mass of the black hole. In this paper, we discuss the course, report on the student reactions, and summarize some of the important things we learned in creating the class. Students enjoy the class. Although they find it difficult, they highly value the experience because they realize they are learning crucial research skills that will greatly help them when go on to do summer research, attend graduate school or work to industry. We are open to sharing our lab manual and data with others who wish to augment their university's curriculum.

  12. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  13. Proton dynamics in cancer

    PubMed Central

    2010-01-01

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology. PMID:20550689

  14. Proton charge extensions

    NASA Astrophysics Data System (ADS)

    Stryker, Jesse R.; Miller, Gerald A.

    2016-01-01

    We examine how corrections to S -state energy levels En S in hydrogenic atoms due to the finite proton size are affected by moments of the proton charge distribution. The corrections to En S are computed moment by moment. The results demonstrate that the next-to-leading order term in the expansion is of order rp/aB times the size of the leading order term. Our analysis thus dispels any concern that the larger relative size of this term for muonic hydrogen versus electronic hydrogen might account for the current discrepancy of proton radius measurements extracted from the two systems. Furthermore, the next-to-leading order term in powers of rp/aB that we derive from a dipole proton form factor is proportional to , rather than , as would be expected from the scalar nature of the form factor. The dependence of the finite-size correction on and higher odd-power moments is shown to be a general result for any spherically symmetric proton charge distribution. A method for computing the moment expansion of the finite-size correction to arbitrary order is introduced and the results are tabulated for principal quantum numbers up to n =7 .

  15. Lateral subtalar dislocation.

    PubMed

    Sharda, Praveen; DuFosse, Julian

    2008-07-01

    Subtalar dislocations are rare in routine orthopedic practice. While many of these dislocations are a result of high-energy injuries such as fall from a height or traffic accidents, it is not uncommon for patients to present after slipping down a few stairs. Two types of dislocation have been described, medial and lateral. The type of dislocation is described according to the position of the foot. In lateral subtalar dislocation the head of talus is found medially and the calcaneus is dislocated laterally. The navicular may lie dorsolateral to the talus. The reverse is true of lateral dislocation. Medial dislocation has been referred to as "basketball foot" due to its preponderance in basketball players.4 The deciding factor is the inverted or everted position of the foot when the force is dissipated through the weak talonavicular and talocalcaneal ligaments. This article presents a case of an adult with lateral subtalar dislocation following a fall.

  16. Persistent changes in action potential broadening and the slow afterhyperpolarization in rat CA1 pyramidal cells after febrile seizures.

    PubMed

    Kamal, Amer; Notenboom, Robbert G E; de Graan, Pierre N E; Ramakers, Geert M J

    2006-04-01

    Febrile (fever-induced) seizures (FS) are the most common form of seizures during childhood and have been associated with an increased risk of epilepsy later in life. The relationship of FS to subsequent epilepsy is, however, still controversial. Insights from animal models do indicate that especially complex FS are harmful to the developing brain and contribute to a hyperexcitable state that may persist for life. Here, we determined long-lasting changes in neuronal excitability of rat hippocampal CA1 pyramidal cells after prolonged (complex) FS induced by hyperthermia on postnatal day 10. We show that hyperthermia-induced seizures at postnatal day 10 induce a long-lasting increase in the hyperpolarization-activated current I(h). Furthermore, we show that a reduction in the amount of spike broadening and in the amplitude of the slow afterhyperpolarization following FS are also likely to contribute to the hyperexcitability of the hippocampus long term.

  17. Protons and how they are transported by proton pumps.

    PubMed

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  18. The physics of proton therapy.

    PubMed

    Newhauser, Wayne D; Zhang, Rui

    2015-04-21

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

  19. The physics of proton therapy

    PubMed Central

    Newhauser, Wayne D; Zhang, Rui

    2015-01-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097

  20. Detailed characterization of the LLNL imaging proton spectrometer

    SciTech Connect

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; Kuranz, C. C.; Klein, S. R.; Belancourt, P. X.; Fein, J. R.; MacDonald, M. J.; Drake, R. P.; Pollock, B. B.; Park, J.; Williams, G. J.; Chen, H.

    2016-09-01

    Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter the diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.

  1. Detailed characterization of the LLNL imaging proton spectrometer

    DOE PAGES

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; ...

    2016-09-01

    Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter themore » diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less

  2. Detailed characterization of the LLNL imaging proton spectrometer

    SciTech Connect

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; Kuranz, C. C.; Klein, S. R.; Belancourt, P. X.; Fein, J. R.; MacDonald, M. J.; Drake, R. P.; Pollock, B. B.; Park, J.; Williams, G. J.; Chen, H.

    2016-09-01

    Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter the diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.

  3. Dosimetric uncertainty in prostate cancer proton radiotherapy

    SciTech Connect

    Lin Liyong; Vargas, Carlos; Hsi Wen; Indelicato, Daniel; Slopsema, Roelf; Li Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder

    2008-11-15

    Purpose: The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Methods and Materials: Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. Results: For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V{sub 70}) was 37.9% (5.0% absolute change in 13.2% of a mean V{sub 70}). The relative change in the BW volume receiving 70 CGE dose (V{sub 70}) was 20.9% (4.3% absolute change in 20.6% of a mean V{sub 70}) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V{sub 70} of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option

  4. Characterization of uniform scanning proton beams with analytical models

    NASA Astrophysics Data System (ADS)

    Demez, Nebi

    Tissue equivalent phantoms have an important place in radiation therapy planning and delivery. They have been manufactured for use in conventional radiotherapy. Their tissue equivalency for proton beams is currently in active investigation. The Bragg-Kleeman rule was used to calculate water equivalent thickness (WET) for available tissue equivalent phantoms from CIRS (Norfolk, VA, USA). WET's of those phantoms were also measured using proton beams at Hampton University Proton Therapy Institute (HUPTI). WET measurements and calculations are in good agreement within ˜1% accuracy except for high Z phantoms. Proton beams were also characterized with an analytical proton dose calculation model, Proton Loss Model (PLM) [26], to investigate protons interactions in water and those phantoms. Depth-dose and lateral dose profiles of protons in water and in those phantoms were calculated, measured, and compared. Water Equivalent Spreadness (WES) was also investigated for those phantoms using the formula for scattering power ratio. Because WES is independent of incident energy of protons, it is possible to estimate spreadness of protons in different media by just knowing WES. Measurements are usually taken for configuration of the treatment planning system (TPS). This study attempted to achieve commissioning data for uniform scanning proton planning with analytical methods, PLM, which have been verified with published measurements and Monte Carlo calculations. Depth doses and lateral profiles calculated by PLM were compared with measurements via the gamma analysis method. While gamma analysis shows that depth doses are in >90% agreement with measured depth doses, the agreement falls to <80% for some lateral profiles. PLM data were imported into the TPS (PLM-TPS). PLM-TPS was tested with different patient cases. The PLM-TPS treatment plans for 5 prostate cases show acceptable agreement. The Planning Treatment Volume (PTV) coverage was 100 % with PLM-TPS except for one case in

  5. Proton irradiation and endometriosis

    SciTech Connect

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-08-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references.

  6. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  7. A Global Fitting Approach For Doppler Broadening Thermometry

    NASA Astrophysics Data System (ADS)

    Amodio, Pasquale; Moretti, Luigi; De Vizia, Maria Domenica; Gianfrani, Livio

    2014-06-01

    Very recently, a spectroscopic determination of the Boltzmann constant, kB, has been performed at the Second University of Naples by means of a rather sophisticated implementation of Doppler Broadening Thermometry (DBT)1. Performed on a 18O-enriched water sample, at a wavelength of 1.39 µm, the experiment has provided a value for kB with a combined uncertainty of 24 parts over 106, which is the best result obtained so far, by using an optical method. In the spectral analysis procedure, the partially correlated speed-dependent hard-collision (pC-SDHC) model was adopted. The uncertainty budget has clearly revealed that the major contributions come from the statistical uncertainty (type A) and from the uncertainty associated to the line-shape model (type B)2. In the present work, we present the first results of a theoretical and numerical work aimed at reducing these uncertainty components. It is well known that molecular line shapes exhibit clear deviations from the time honoured Voigt profile. Even in the case of a well isolated spectral line, under the influence of binary collisions, in the Doppler regime, the shape can be quite complicated by the joint occurrence of velocity-change collisions and speed-dependent effects. The partially correlated speed-dependent Keilson-Storer profile (pC-SDKS) has been recently proposed as a very realistic model, capable of reproducing very accurately the absorption spectra for self-colliding water molecules, in the near infrared3. Unfortunately, the model is so complex that it cannot be implemented into a fitting routine for the analysis of experimental spectra. Therefore, we have developed a MATLAB code to simulate a variety of H218O spectra in thermodynamic conditions identical to the one of our DBT experiment, using the pC-SDKS model. The numerical calculations to determine such a profile have a very large computational cost, resulting from a very sophisticated iterative procedure. Hence, the numerically simulated spectra

  8. Isotopic Differences in CO Air Broadening and Shift Parameters

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-10-01

    Line shape parameters were measured in the 2-0 bands at 2.3 µm for the three most abundant isotopologues of carbon monoxide at temperatures between 150 K and 298 K and total pressures up to 0.9 atm. These parameters include the Lorentz half-width coefficients with their temperature dependence exponents; pressure-induced line shift coefficients with their temperature dependences, speed dependence parameters, and off-diagonal relaxation matrix elements. For this, we recorded more than 50 high resolution (0.005 cm-1) spectra of CO and two of its isotopologues (13CO and C18O) using a coolable absorption cell [1] in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Line parameters were retrieved by broad-band constrained multispectrum least-squares fitting [2] of 16 or more spectra simultaneously. The individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients, as has been done for CO2 previously [3]. Differences between the air-broadening results for the 12C16O band [4] and the 13C16O and 12C18O 2-0 bands [5] are examined. This research is supported by NASA’s Earth Science Atmospheric Composition Laboratory Research Program. Part of the research at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, and Connecticut College was performed under contracts and grants with the National Aeronautics and Space Administration. 1. K. Sung et al., J. Mol. pectrosc. 262 (2010) 122. 2. D. C. Benner et al., J. Quant. Spectrosc. Radiat. Transfer 53 (1995) 705. 3. V. Malathy Devi et al., J. Mol. Spectrosc. 242 (2007) 90. 4. V. Malathy Devi et al., J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1013. 5. V. Malathy Devi et al., J. Mol. Spectrosc. 276-277 (2012) 33.

  9. Consequences and mechanisms of spike broadening of R20 cells in Aplysia californica.

    PubMed

    Ma, M; Koester, J

    1995-10-01

    We studied frequency-dependent spike broadening in the two electrically coupled R20 neurons in the abdominal ganglion of Aplysia. The peptidergic R20 cells excite the R25/L25 interneurons (which trigger respiratory pumping) and inhibit the RB cells. When fired at 1-10 Hz, the duration of the falling phase of the action potential in R20 neurons increases 2-10 fold during a spike train. Spike broadening recorded from the somata of the R20 cells affected synaptic transmission to nearby follower cells. Chemically mediated synaptic output was reduced by approximately 50% when recorded trains of nonbroadened action potentials were used as command signals for a voltage-clamped R20 cell. Electrotonic EPSPs between the R20 cells, which normally facilitated by two- to fourfold during a high frequency spike train, showed no facilitation when spike broadening was prevented under voltage-clamp control. To examine the mechanism of frequency-dependent spike broadening, we applied two-electrode voltage-clamp and pharmacological techniques to the somata of R20 cells. Several voltage-gated ionic currents were isolated, including INa, a multicomponent ICa, and three K+ currents--a high threshold, fast transient A-type K+ current (IAdepol), a delayed rectifier K+ current (IK-V), and a Ca(2+)-sensitive K+ current (IK-Ca), made up of two components. The influences of different currents on spike broadening were determined by using the recorded train of gradually broadening action potentials as the command for the voltage clamp. We found the following. (1) IAdepol is the major outward current that contributes to repolarization of nonbroadened spikes. It undergoes pronounced cumulative inactivation that is a critical determinant of spike broadening. (2) Activity-dependent changes in IK-V, IK-Ca, and ICa have complex effects on the kinetics and extent of broadening. (3) The time integral of ICa during individual action potentials increases approximately threefold during spike broadening.

  10. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    NASA Technical Reports Server (NTRS)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  11. Amyotrophic Lateral Sclerosis

    MedlinePlus

    Amyotrophic lateral sclerosis (ALS) is a nervous system disease that attacks nerve cells called neurons in your ... people with ALS die from respiratory failure. The disease usually strikes between age 40 and 60. More ...

  12. Arthroscopic Patellar Lateral Facetectomy.

    PubMed

    Ferrari, Marcio B; Sanchez, George; Chahla, Jorge; Moatshe, Gilbert; LaPrade, Robert F

    2017-04-01

    Isolated patellofemoral osteoarthritis is relatively prevalent, with the lateral facet of the patella being the most commonly affected portion. This pathology can be a result of a patellar maltracking syndrome, patella instability, or idiopathic degenerative changes. A thorough diagnostic work-up with a physical examination and imaging studies are mandatory for a proper diagnosis and to rule out other causes of patellofemoral knee pain. These patients are often treated nonoperatively with exercises for patella mobility, intra-articular injections, braces, patellar tracking, quadriceps balance and strength, and activity modification. Patients with lateral patellar pain that is refractory to nonoperative management, and who have a clear bony deformity on the patella overriding the lateral aspect of the trochlea, can benefit from surgical intervention. We recommend an arthroscopic lateral patellar facetectomy because the joint can be dynamically assessed, treated, and re-evaluated intraoperatively to ensure that normal bony contact has been restored.

  13. [Amyotrophic lateral sclerosis].

    PubMed

    Veldink, J H; Weikamp, J; Schelhaas, H J; van den Berg, L H

    2010-01-01

    Amyotrophic lateral sclerosis is one of the most severe and disabling diseases of the nervous system. Amyotrophic lateral sclerosis leads to the progressive weakening of the muscles in the arms, legs, face, mouth and trunk. The onset of the disease is insidious, starting with weakness in the hands or feet or with slurred speech. The weakness worsens and patients pass away as a result of weakness of the respiratory muscles on average within 3 years of the onset of the disease. In the Netherlands, approximately 400 patients are diagnosed with amyotrophic lateral sclerosis every year. There is no diagnostic test for this neuro-muscular disease; the diagnosis is established by excluding other disorders that resemble amyotrophic lateral sclerosis. Only one drug is able to inhibit the progression of the disease to any extent: riluzole. Treatment, therefore, is mainly focused on supportive measures and those which enhance the quality of life optimally.

  14. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  15. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  16. Three new defined proton affinities for polybasic molecules in the gas-phase: Proton microaffinity, proton macroaffinity and proton overallaffinity

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Sadegh; Bayat, Mehdi

    2006-08-01

    A theoretical study on complete protonation of a series of tetrabasic molecules with general formula N[(CH 2) nNH 2][(CH 2) mNH 2][(CH 2) pNH 2] (tren, pee, ppe, tpt, epb and ppb) is reported. For first time, three kinds of gas-phase proton affinities for each polybasic molecule are defined as: 'proton microaffinity (PA n, i)', 'proton macroaffinity (PA)' and 'proton overall affinity ( PA)'. The variations of calculated logPA in the series of these molecules is very similar to that of their measured log Kn. There is also a good correlation between the calculated gas-phase proton macroaffinities and proton overallaffinities with corresponding equilibrium macroconstants and overall protonation constants in solution.

  17. Proton therapy in clinical practice

    PubMed Central

    Liu, Hui; Chang, Joe Y.

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy. PMID:21527064

  18. Progresses in proton radioactivity studies

    SciTech Connect

    Ferreira, L. S.; Maglione, E.

    2016-07-07

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  19. Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers

    SciTech Connect

    Matyas, Alpar; Lugli, Paolo; Jirauschek, Christian

    2013-01-07

    Using a generalized version of Fermi's golden rule, collisional broadening is self-consistently implemented into ensemble Monte Carlo carrier transport simulations, and its effect on the transport and optical properties of terahertz quantum cascade lasers is investigated. The inclusion of broadening yields improved agreement with the experiment, without a significant increase of the numerical load. Specifically, this effect is crucial for a correct modeling at low biases. In the lasing regime, broadening can lead to significantly reduced optical gain and output power, affecting the obtained current-voltage characteristics.

  20. Method for separation of homogeneous and inhomogeneous components of spectral broadening of rigid systems

    SciTech Connect

    Litvinyuk, I.V.

    1997-01-30

    A method is suggested that allows separation of the contributions from homogeneous and inhomogeneous broadening (IB) to a total spectral contour of rigid systems. Based upon a simple convolution model of inhomogeneous broadening, the method allows calculation of homogeneously broadened spectra and an inhomogeneous distribution function (IDF) from the measured excitation-wavelength-dependent fluorescence spectra of the system. The method is applied successfully to the solid solution of coumarin 334 (C334) in poly(methyl methacrylate) (PMMA) glass at 293 K. 16 refs., 5 figs.

  1. Determination of Van der Waals broadening at temperatures of astrophysical interest.

    NASA Technical Reports Server (NTRS)

    Evans, J. M., Jr.; Cooper, J.

    1972-01-01

    Discussion of the results of experiments analyzing the widths of shock-excited emission lines at temperatures of about 5000 K. The width of two neutral silicon lines (4102 and 5948 A) were measured as broadened by argon, and the shift of one of these lines (4102 A) was determined. Likewise, the width one of the lines of cesium (4593 A) was measured as broadened by argon and neon. These data are compared with other experimental data to determine the temperature dependence of the broadening. Significant disagreements with simple theory are found, the experimental values of the widths being larger than the theoretical values by factors of 1.5-2.

  2. Saturation effects and inhomogeneous broadening in Doppler-free degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Steel, D. G.; Lam, J. F.

    1981-12-01

    We have performed experiments to study the saturation properties of degenerate four-wave mixing (DFWM) in inhomogeneously broadened material. The experiments were performed on line-center in SF 6 using a CW CO 2 laser on the P16 line at 10.6 μm. Measured peak reflectivities of 1.7 x 10 -4 are in reasonable agreement with a simple two-level model. This model also appears to correctly account for the observed saturation effects. While the material is clearly inhomogeneously broadened, both the experimental and theoretical reflectivity scale as though the material was homogeneously broadened.

  3. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas.

    PubMed

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-10-07

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve.

  4. Computing the inhomogeneous broadening of electronic transitions in solution: a first-principle quantum mechanical approach.

    PubMed

    Avila Ferrer, Francisco José; Improta, Roberto; Santoro, Fabrizio; Barone, Vincenzo

    2011-10-14

    Starting from Marcus's relationship connecting the inhomogeneous broadening with the solvent reorganization energy and exploiting recent state-specific developments in PCM/TD-DFT calculations, we propose a procedure to estimate the polar broadening of optical transitions. When applied to two representative molecular probes, coumarin C153 and 4-aminophthalimide, in different solvents, our approach provides for the polar broadening values fully consistent with the experimental ones. Thanks to these achievements, for the first time fully ab initio vibrationally resolved absorption spectra in solution are computed, obtaining spectra for coumarin C153 in remarkable agreement with experiments.

  5. Si 6142 and 6155 Å lines in stellar atmospheres: Stark broadening effect

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Popović, L. Č.; Ryabchikova, T.

    2002-07-01

    We study the influence of Stark broadening effect on Si I lines in the roAp 10 Aql star, where the lines are asymmetrical and shifted. First we have calculated Stark broadening parameters using by the semi-classical method for two Si I lines: 6142.48 Å and 6155.13 Å. We have adopted SYNTH code to include into account both Stark width and shift for these lines. From comparison of our calculation data with observations we found that Stark broadening plus stratification effect can explain the width and the asymmetry of the Si I lines in the atmosphere of roAp 10 Aql star.

  6. Pressure broadening calculations for OH in collisions with argon: Rotational, vibrational, and electronic transitions

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2017-03-01

    Collisional parameters describing both the pressure-induced broadening and shifting of isolated lines in the spectrum of the hydroxyl radical in collisions with argon have been determined through quantum scattering calculations using accurate potential energy surfaces describing the OH(X2 Π , A2Σ+)-Ar interactions. These calculations have been carried for pure rotational, vibrational, and electronic transitions. The calculated pressure broadening coefficients are in good agreement with the available measurements in the microwave, infrared, and ultraviolet spectral regions. Computed pressure broadening coefficients as a function of temperature are reported for these three types of transitions.

  7. [Lateral epicondylitis: conservative - operative].

    PubMed

    Altintas, Burak; Greiner, Stefan

    2016-10-01

    Lateral epicondylitis is a common disease of the common extensor origin at the lateral humerus. Despite its common self-limitation it can lead to chronic therapy-resistant pain with remarkable functional disability of the affected arm. Different conservative and operative treatment options of lateral epicondylitis are described and compared regarding benefits and risks. Additionally, recent surgical techniques and their complications are mentioned. Based on the current literature, it is shown which treatment option can be recommended. This review was based on the literature analysis in PubMed regarding "conservative and operative therapy of lateral epicondylitis" as well as the clinical experience of the authors. Conservative treatment is the primary choice for the treatment of lateral epicondylitis if concomitant pathologies such as instability among others can be excluded. It should include strengthening against resistance with eccentric stretching of the extensor group. In persistent cases, operative treatment is warranted. Resection of the pathologic tissue at the extensor origin with debridement and refixation of the healthy tendinous tissue yields good results. Most patients with lateral epicondylitis can be treated conservatively with success. Radiological evaluation should be performed in therapy-resistant cases. In the case of partial or complete rupture of the extensor origin, operative therapy is indicated.

  8. Proton bunch compression strategies

    SciTech Connect

    Lebedev, Valeri; /Fermilab

    2009-10-01

    The paper discusses main limitations on the beam power and other machine parameters for a 4 MW proton driver for muon collider. The strongest limitation comes from a longitudinal microwave instability limiting the beam power to about 1 MW for an 8 GeV compressor ring.

  9. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  10. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism.

  11. Proton radiography for clinical applications

    NASA Astrophysics Data System (ADS)

    Talamonti, C.; Reggioli, V.; Bruzzi, M.; Bucciolini, M.; Civinini, C.; Marrazzo, L.; Menichelli, D.; Pallotta, S.; Randazzo, N.; Sipala, V.; Cirrone, G. A. P.; Petterson, M.; Blumenkrantz, N.; Feldt, J.; Heimann, J.; Lucia, D.; Seiden, A.; Williams, D. C.; Sadrozinski, H. F.-W.; Bashkirov, V.; Schulte, R.

    2010-01-01

    Proton imaging is not yet applied as a clinical routine, although its advantages have been demonstrated. In the context of quality assurance in proton therapy, proton images can be used to verify the correct positioning of the patient and to control the range of protons. Proton computed tomography (pCT) is a 3D imaging method appropriate for planning and verification of proton radiation treatments, because it allows evaluating the distributions of proton stopping power within the tissues and can be directly utilized when the patient is in the actual treatment position. The aim of the PRoton IMAging experiment, supported by INFN, and the PRIN 2006 project, supported by MIUR, is to realize a proton computed radiography (pCR) prototype for reconstruction of proton images from a single projection in order to validate the technique with pre-clinical studies and, eventually, to conceive the configuration of a complete pCT system. A preliminary experiment performed at the 250 MeV proton synchrotron of Loma Linda University Medical Center (LLUMC) allowed acquisition of experimental data before the completion of PRIMA project's prototype. In this paper, the results of the LLUMC experiment are reported and the reconstruction of proton images of two phantoms is discussed.

  12. Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates

    NASA Astrophysics Data System (ADS)

    Balobaid, Laila; Craig Carville, N.; Manzo, Michele; Gallo, Katia; Rodriguez, Brian J.

    2013-01-01

    Photoreduction on a periodically proton exchanged ferroelectric crystal leads to the formation of periodic metallic nanostructures on the surface. By varying the depth of the proton exchange (PE) from 0.59 to 3.10 μm in congruent lithium niobate crystals, the width of the lateral diffusion region formed by protons diffusing under the mask layer can be controlled. The resulting deposition occurs in the PE region with the shallowest PE depth and preferentially in the lateral diffusion region for greater PE depths. PE depth-control provides a route for the fabrication of complex metallic nanostructures with controlled dimensions on chemically patterned ferroelectric templates.

  13. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    . Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems.Conclusions: Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.

  14. Fan-beam intensity modulated proton therapy

    PubMed Central

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    . Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems. Conclusions: Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries. PMID:24320412

  15. Neutron Production in Black Hole Coronae and Proton Loading of Jets

    NASA Astrophysics Data System (ADS)

    Vila, Gabriela S.; Vieyro, Florencia L.; Romero, Gustavo E.

    2014-03-01

    We study the production of neutrons in the corona of an accreting black hole through the interaction of locally accelerated protons with matter and radiation. A fraction of these neutrons may escape and penetrate into the base of the jet, later decaying into protons. This is a possible mechanism for loading Poynting-dominated outflows with baryons. We characterize the spatial and energy distribution of neutrons in the corona and that of the protons injected in the jet by neutron decay. We assess the contribution of these protons to the radiative spectrum of the jet. We also investigate the fate of the neutrons that escape the corona into the external medium.

  16. Proton radiography and tomography with application to proton therapy

    PubMed Central

    Allinson, N M; Evans, P M

    2015-01-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues. PMID:26043157

  17. Proton radiography and tomography with application to proton therapy.

    PubMed

    Poludniowski, G; Allinson, N M; Evans, P M

    2015-09-01

    Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues.

  18. Progress with On-The-Fly Neutron Doppler Broadening in MCNP

    SciTech Connect

    Brown, Forrest B.; Martin, William R.; Yesilyurt, Gokhan; Wilderman, Scott

    2012-06-18

    The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University Programs project 'Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors.' This talk describes the project and provides results from the initial implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing. The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits are then used within MCNP during the neutron transport, for OTF broadening based on cell temperatures. It is straightforward to extend this capability to cover any temperature range of interest, allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges throughout the problem geometry.

  19. Spectral broadening of VLF transmitter signals observed on DE 1 - A quasi-electrostatic phenomenon?

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Bell, T. F.

    1985-01-01

    Spectrally broadened VLF transmitter signals are observed on the DE 1 satellite using alternatively both electric and magnetic field sensors. It is found that at times when the electric field component undergoes significant bandwidth expansion (up to about 110 Hz) the magnetic field component has a bandwidth of less than 10 Hz. The results support the theory that the off-carrier components are quasi-electrostatic in nature. Measurement of the absolute E and B field magnitudes of the broadened signals are used to determine the wave Poynting vector. It is found that the observed power levels can be understood without invoking any strong amplification process that operates in conjunction with the spectral broadening. The implications of this finding in distinguishing among the various possible mechanisms for spectral broadening are discussed.

  20. OBSERVATIONAL EVIDENCE FOR A CORRELATION BETWEEN MACROTURBULENT BROADENING AND LINE-PROFILE VARIATIONS IN OB SUPERGIANTS

    SciTech Connect

    Simon-Diaz, S.; Herrero, A.; Castro, N.; Uytterhoeven, K.; Puls, J.

    2010-09-10

    The spectra of O and B supergiants (Sgs) are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high-resolution spectra have shown that the interpretation of this line broadening as a consequence of large-scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long-term observational project, we are investigating the macroturbulent broadening in O and B Sgs and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this Letter, we present the first encouraging results of our project, namely, firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 Sgs with spectral types ranging from O9.5 to B8.

  1. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  2. Measurements of H2O-broadening coefficients of O2 A-band lines

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Landsheere, X.; Pangui, E.; Huet, F.; Hartmann, J.-M.; Tran, H.

    2016-11-01

    We report laboratory measurements of H2O-broadening coefficients of O2 absorption lines in the A-band near 13,000 cm-1. For this, four spectra of oxygen gas mixed with water vapor were recorded with a high resolution Fourier transform spectrometer for total pressures ranging from 125 to 175 Torr at 323 K, and a fifth at 175 Torr and 365 K. Broadening coefficients of 39 transitions (up to J″ = 21) were retrieved from the measured spectra through fits using Galatry line profiles. Values at room temperature (296 K) were then extrapolated and compared with previous determinations in the A-band and millimeter waves region. This enables to resolve some controversial issues related to the inconsistencies between these studies. Finally, comparing our results with the line broadening coefficients by dry air confirms that H2O-broadenings of oxygen lines are, on average, 10% larger than those by dry air.

  3. Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.

  4. A study of Stark broadening for the diagnostic of runaway electrons in ITER

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Pandya, S. P.; Logeais, Ch.; Meireni, M.; Hannachi, I.; Reichle, R.; Barnsley, R.; Marandet, Y.; Stamm, R.

    2017-03-01

    We investigate the Stark broadening of hydrogen lines in tokamak edge plasma conditions in the presence of a beam of relativistic "runaway" electrons. The possibility for a diagnostic involving passive spectroscopy is discussed.

  5. The influence of Stark broadening on Cr II spectral line shapes in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Ryabchikova, T.; Simić, Z.; Popović, L. Č.; Dačić, M.

    2007-07-01

    Aims:We consider the effect of Stark broadening on the shapes of Cr ii spectral lines observed in stellar atmospheres of the middle part of the main sequence. Methods: Stark broadening parameters were calculated by the semiclassical perturbation approach. For stellar spectra synthesis, the improved version synth3 of the code synth for synthetic spectrum calculations was used. Results: Stark broadening parameters for Cr ii spectral lines of seven multiplets belonging to 4s-4p transitions were calculated. New calculated Stark parameters were applied to the analysis of Cr ii line profiles observed in the spectrum of Cr-rich star HD 133792. Conclusions: We found that Stark broadening mechanism is very important and should be taken into account, especially in the study of Cr abundance stratification.

  6. High resolution diode laser spectroscopy of H2O spectra broadened by nitrogen and noble gases

    NASA Astrophysics Data System (ADS)

    Kapitanov, Venedikt A.; Osipov, Konstantin Yu.; Protasevich, Alexander E.; Ponurovskiy, Yakov Ya.

    2014-11-01

    The absorption spectra of pure H2O with mixtures of broadening gases N2, Ar, Xe, He, Ar and air have been measured in 1.39 mμ spectral region by high resolution spectrometer based on diode laser (DFB NEL, Japan). For the processing of pure water spectra and it's mixtures with a different broadening gases in a wide pressure range we used a multispectrum fitting procedure developed at IAO. The program is based on a relatively simple Rautian-Sobel'man line profile and linear pressure dependence of the line profile parameters. H2O measured spectra bulk processing results in the retrieving of such line parameters: zero-pressure line center positions, intensities, self-broadening and self-shift coefficients of pure water, broadening and shift coefficients for other gases which are describes the experiment with the minimum residuals in a wide pressure range.

  7. Pathways of proton release in the bacteriorhodopsin photocycle

    NASA Technical Reports Server (NTRS)

    Zimanyi, L.; Varo, G.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The pH dependencies of the rate constants in the photocycles of recombinant D96N and D115N/D96N bacteriorhodopsins were determined from time-resolved difference spectra between 70 ns and 420 ms after photoexcitation. The results were consistent with the model suggested earlier for proteins containing D96N substitution: BR hv----K----L----M1----M2----BR. Only the M2----M1 back-reaction was pH-dependent: its rate increased with increasing [H+] between pH 5 and 8. We conclude from quantitative analysis of this pH dependency that its reverse, the M1----M2 reaction, is linked to the release of a proton from a group with a pKa = 5.8. This suggests a model for wild-type bacteriorhodopsin in which at pH greater than 5.8 the transported proton is released on the extracellular side from this as yet unknown group and on the 100-microseconds time scale, but at pH less than 5.8, the proton release occurs from another residue and later in the photocycle most likely directly from D85 during the O----BR reaction. We postulate, on the other hand, that proton uptake on the cytoplasmic side will be by D96 and during the N----O reaction regardless of pH. The proton kinetics as measured with indicator dyes confirmed the unique prediction of this model: at pH greater than 6, proton release preceded proton uptake, but at pH less than 6, the release was delayed until after the uptake. The results indicated further that the overall M1----M2 reaction includes a second kinetic step in addition to proton release; this is probably the earlier postulated extracellular-to-cytoplasmic reorientation switch in the proton pump.

  8. Pathways of proton release in the bacteriorhodopsin photocycle

    NASA Technical Reports Server (NTRS)

    Zimanyi, L.; Varo, G.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The pH dependencies of the rate constants in the photocycles of recombinant D96N and D115N/D96N bacteriorhodopsins were determined from time-resolved difference spectra between 70 ns and 420 ms after photoexcitation. The results were consistent with the model suggested earlier for proteins containing D96N substitution: BR hv----K----L----M1----M2----BR. Only the M2----M1 back-reaction was pH-dependent: its rate increased with increasing [H+] between pH 5 and 8. We conclude from quantitative analysis of this pH dependency that its reverse, the M1----M2 reaction, is linked to the release of a proton from a group with a pKa = 5.8. This suggests a model for wild-type bacteriorhodopsin in which at pH greater than 5.8 the transported proton is released on the extracellular side from this as yet unknown group and on the 100-microseconds time scale, but at pH less than 5.8, the proton release occurs from another residue and later in the photocycle most likely directly from D85 during the O----BR reaction. We postulate, on the other hand, that proton uptake on the cytoplasmic side will be by D96 and during the N----O reaction regardless of pH. The proton kinetics as measured with indicator dyes confirmed the unique prediction of this model: at pH greater than 6, proton release preceded proton uptake, but at pH less than 6, the release was delayed until after the uptake. The results indicated further that the overall M1----M2 reaction includes a second kinetic step in addition to proton release; this is probably the earlier postulated extracellular-to-cytoplasmic reorientation switch in the proton pump.

  9. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  10. Laterally bendable belt conveyor

    SciTech Connect

    Peterson, W.J.

    1982-09-24

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  11. VizieR Online Data Catalog: Stark broadening of Cd I spectral lines (Simic+, 2005)

    NASA Astrophysics Data System (ADS)

    Simic, Z.; Dimitrijevic, M. S.; Milovanovic, N.; Sahal-Brechot, S.

    2005-09-01

    Stark broadening parameters, widths, and shifts for 33 CdI singlets and 37 triplets were calculated using the semiclassical perturbation method. The results were compared with available experimental and theoretical data. Also, regularity in the spectral series 5s2 1S-np 1Po was investigated. The influence of Stark broadening was analyzed in A-type stellar atmospheres. (2 data files).

  12. A method for measuring magnetic fields in sunspots using Zeeman-broadened absorption lines

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2017-04-01

    We present measurements of magnetic fields in several sunspots using high-resolution spectra obtained with the ESPARTACO spectrograph at the Universidad de los Andes, with the aim to explore experimental possibilities for students. Because the Zeeman line splitting is smaller than the line width, our work only observes broadened absorption lines. This broadening, however, can be measured and suitably modeled, giving realistic quantitative results.

  13. Extensional-wave stopband broadening across the joint of pipes of different thickness.

    PubMed

    Su, Yuanda; Tang, Xiaoming; Liu, Yukai; Xu, Song; Zhuang, Chunxi

    2015-11-01

    The stopband of pipe extensional waves is an interesting natural phenomenon. This study demonstrates an important extension of this phenomenon. That is, the stopband can be effectively broadened by transmitting the waves across the joint of pipes of different thickness. The theoretical and experimental results reveal the detailed process of stopband forming along the pipe and the band broadening across the pipe joint. The result can be utilized to provide a method for logging while drilling acoustic isolation design.

  14. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    ERIC Educational Resources Information Center

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these…

  15. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    ERIC Educational Resources Information Center

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these…

  16. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  17. Three-wave vibrational mode broadening for Fibonacci one-dimensional quasicrystals

    NASA Astrophysics Data System (ADS)

    Kats, E. I.; Muratov, A. R.

    2005-11-01

    A one-dimensional Fibonacci chain is used to model vibrational mode broadening in icosahedral quasicrystals (i-QCs). All calculations are performed self-consistently for various finite size approximants at temperatures higher than the Debye temperature, TD. This approach is extended to three-dimensional systems as well. It is shown that vibrational spectra depend crucially on the Fibonacci chain mass ratio m. For m = 3, which roughly mimics AlPdMn i-QC, there are three almost dispersionless optic modes separated from the acoustic mode by three large gaps, and for m = 1/3, which mimics ZnMgY i-QC, there is one dispersionless optic mode and one acoustic mode. For the first time we provide a qualitative model which predicts experimentally observed phonon spectrum broadening of i-QC. It is shown that three wave broadening for both one-dimensional and three-dimensional Fibonacci i-QCs is the leading mechanism of spectrum broadening. For the intermediate range of mode coupling constants, it scales with the mode frequency ω as c1ω+c2ω2 (where c1 and c2 are some numerical constants). For smaller values of the coupling constant, phonon broadening is proportional to ω3. We conclude that for a system with a non-simple elementary cell, vibrational spectrum broadening is always larger than for a system with a primitive cell (provided all other characteristics are the same).

  18. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported.

  19. An In-situ method for the study of strain broadening usingsynchrotronx-ray diffraction

    SciTech Connect

    Tang, Chiu C.; Lynch, Peter A.; Cheary, Robert W.; Clark, Simon M.

    2006-12-15

    A tensonometer for stretching metal foils has beenconstructed for the study of strain broadening in x-ray diffraction lineprofiles. This device, which is designed for use on the powderdiffractometer in Station 2.3 at Daresbury Laboratory, allows in-situmeasurements to be performed on samples under stress. It can be used fordata collection in either transmission or reflection modes using eithersymmetric or asymmetric diffraction geometries. As a test case,measurements were carried out on a 18mum thick copper foil experiencingstrain levels of up to 5 percent using both symmetric reflection andsymmetric transmission diffraction. All the diffraction profilesdisplayed peak broadening and asymmetry which increased with strain. Themeasured profiles were analysed by the fundamental parameters approachusing the TOPAS peak fitting software. All the observed broadenedprofiles were modelled by convoluting a refineable diffraction profile,representing the dislocation and crystallite size broadening, with afixed instrumental profile pre-determined usinghigh quality LaB6reference powder. The de-convolution process yielded "pure" sampleintegral breadths and asymmetry results which displayed a strongdependence on applied strain and increased almost linearly with appliedstrain. Assuming crystallite size broadening in combination withdislocation broadening arising from fcc a/2<110>111 dislocations,we have extracted the variation of mechanic al property with strain. Theobservation of both peak asymmetry and broadening has been interpreted asa manifestation of a cellular structure with cell walls and cellinteriors possessing high and low dislocation densities.

  20. Lateral Skull Base Surgery

    PubMed Central

    Manolidis, Spiros; Jackson, C. Gary; Von Doersten, Peter G.; Pappas, Dennis; Glasscock, Michael E.

    1997-01-01

    Lateral skull base surgery has remained the surgical frontier of new developments in the treatment of lesions heretofore difficult to access. Examination of surgical results stimulates technical innovation and provides an intervention risk-benefit ratio assessment for particular lesions useful in management planning. With this in mind, we report the updated collective experience with lateral skull base surgery at the Otology Group over the past 20 years. Two hundred ninety-eight patients underwent surgical intervention for lateral skull base lesions. In 81 patients these lesions were malignant; in 217, benign. Of the benign lesions, 165 were glomus tumors: 139 glomus jugulare, 19 glomus vagale, and 7 glomus tympanicum. The remainder comprised 21 menigniomas, 14 neuromas, two neurofibromas, and a small group of much rarer entities. The philosophy of surgical approach, results, and follow-up are discussed. PMID:17171022

  1. Bilateral lateral periodontal cyst.

    PubMed

    Govil, Somya; Gupta, Vishesh; Misra, Neeta; Misra, Pradyumna

    2013-05-10

    The bilateral lateral periodontal cyst is a rare nasological entity, which despite clinical and radiological presentation is being diagnosed by histological characteristics. It is asymptomatic in nature and is observed in routine radiography. The aim and objective of this article is to present a rare case of bilateral lateral periodontal cyst in a 14-year-old child. The clinical and radiographical findings, along with its management have been discussed. Enucleation of bilateral cyst without extraction of the adjacent tooth was performed. Lesion samples were sent for histopathological analysis. The histopathological analysis revealed a thin, non keratinised stratified squamous epithelium resembling reduced enamel epithelium. Epithelial plaques were also seen. A clinicopathological correlation incorporating the surgical, radiographical and gold standard histopathological findings was obtained to suggest the final diagnosis of the bilateral lateral periodontal cyst.

  2. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  3. QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

    NASA Astrophysics Data System (ADS)

    Berrod, Quentin; Lyonnard, Sandrine; Guillermo, Armel; Ollivier, Jacques; Frick, Bernhard; Gébel, Gérard

    2015-01-01

    We report on QuasiElastic Neutron Scattering (QENS) investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA) materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS) surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.

  4. The "heartbeat of the proton"

    NASA Astrophysics Data System (ADS)

    Weisskopf, Victor F.

    Once Nino came to my office to tell me about his ideas of studying lepton pair production at PS. I was still not Director General, but Research Director at CERN. In addition to (e+e-) and (μ+μ-) pairs, he wanted to search for (e±μ∓) pairs as a signature of a new lepton carrying its own lepton number. He told me that if such a lepton existed with one GeV mass, it would have escaped detection in hadron accelerator experiments for two reasons: i) it would decay with a lifetime of order 10-11 sec and ii) because there is no π → μ mechanism for such a heavy new lepton: for its production a time-like photon would be needed. Time-like photons could be produced in hadronic interactions: for example in (bar{p}p) annihilation. This was before Lederman-Schwartz and Steinberger had discovered the two neutrinos. To think of a "sequential" Heavy Lepton and to work out the possible ways to get it in a hadron machine was for me extremely interesting Nino had just finished his first high precision work on the muon (g-2). It was some time after the Rochester Conference in 1960. I gave Nino the following suggestion: if you want to search for something so revolutionary as a Heavy Lepton carrying its own lepton number you should work out a proposal for a series of experiments where the study of lepton pairs (e+e-) and (μ+μ-) could be justified in terms of physics accepted by the community. In addition a high intensity antiproton beam was needed. He came later to tell me that he had two very good friends, both excellent engineers: Mario Morpurgo and Guido Petrucci. A very high intensity antiproton beam could be built to study the electromagnetic form factor of the proton in the time-like region. If the proton was "point-like" in the time-like region, the rate of time-like photons yielding (e+e-) and (μ+μ-) pairs could be accessible to experimental observation, thus allowing to establish some limits on the new Heavy Lepton mass, or to see it, via the (e±μ∓) channel. The

  5. Lateral Thinking of Prospective Teachers

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Xavier, S. Amaladoss

    2013-01-01

    Edward de Bono who invented the term "lateral thinking" in 1967 is the pioneer of lateral thinking. Lateral thinking is concerned with the generation of new ideas. Liberation from old ideas and the stimulation of new ones are twin aspects of lateral thinking. Lateral thinking is a creative skills from which all people can benefit…

  6. The HERA Proton

    NASA Astrophysics Data System (ADS)

    Habib, Shiraz

    2014-04-01

    The almost 1 fb-1 of ep data collected by the H1 and ZEUS collider experiments at HERA allows for a precise determination of the proton's parton distribution functions (PDFs). Measurements used to constrain the PDFs—inclusive and jet cross sections, charm contribution to the F2 proton structure function, F_2cbar c — are presented herein. The measurement process itself includes cataloguing the sensitivity of the cross sections to the various sources of correlated systematic uncertainties. In the jet measurement, correlations of a statistical nature are also quantified and catalogued. These correlations provide a basis to combine measurements of the same physical observable across different time periods, experiments and measurement methodology. The subsequent PDF fitting procedure also takes into account such correlations. The resulting HERAPDF1.5 set based on inclusive data as well as PDF sets derived from inclusive plus charm data are presented togeteher with their predictions for pp cross sections at the LHC.

  7. Measurement of the Proton + Proton Going to Proton + Proton + Neutral Pion Cross-Section Near Threshold

    NASA Astrophysics Data System (ADS)

    Ross, M. Alan

    1991-02-01

    The first nuclear physics experiment at the IUCF Cooler is a measurement of the p+ptop+p+ pi^0 cross section near threshold. The Cooler, together with a thin internal H_2 gas jet target, allows for a precise cross section measurement by providing well-defined interaction energies and by eliminating background from p-nucleus pion production which has a much lower threshold. A cylindrically symmetric detector system has been installed in one of the straight sections of the ring and is used to detect the coincident protons in the exit channel with good energy and angular resolution. The mass of the unobserved is then deduced. Elastically scattered protons were detected at the same time and by the same detector as pion production events. Elastic scattering was used for normalization to obtain an absolute p+p top+p+pi^0 cross section.

  8. [Proton therapy for head and neck cancers].

    PubMed

    Blanchard, P; Frank, S J

    2017-10-01

    The absence of exit dose and the sharp lateral penumbra are key assets for proton therapy, which are responsible for its dosimetric superiority over advanced photon radiotherapy. Dosimetric comparisons have consistently shown a reduction of the integral dose and the dose to organs at risk favouring intensity-modulated proton therapy (IMPT) over intensity-modulated radiotherapy (IMRT). The structures that benefit the most of these dosimetric improvements in head and neck cancers are the anterior oral cavity, the posterior fossa, the visual apparatus and swallowing structures. A number of publications have concluded that these dosimetric differences actually translate into reduced toxicities with IMPT, for example with regards to reduced weight loss or need for feeding tube. Patient survival is usually similar to IMRT series, except in base of skull or sinonasal malignancies, where a survival advantage of IMPT could exist. The goals of the present review is to describe the major characteristics of proton therapy, to analyse the clinical data with regards to head and neck cancer patients, and to highlight the issue of patient selection and physical and biological uncertainties. Published by Elsevier SAS.

  9. Proton precession magnetometer

    SciTech Connect

    Stager, R.

    1986-03-01

    The downhole proton precession magnetometer (DPPM) is designed to make total intensity magnetic field measurements in small bore exploratory wells. This manual describes the measurement procedure and discusses maintenance issues. The step-by-step description of the measurement procedure is suitable for use by an operator of the system, while the section on maintenance procedures and theory of operation is intended for use by someone with some experience in electronics. 7 figs.

  10. Proton conducting cerate ceramics

    SciTech Connect

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J.

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  11. Proton computed tomography

    NASA Astrophysics Data System (ADS)

    Bucciantonio, Martina; Sauli, Fabio

    2015-05-01

    Proton computed tomography (pCT) is a diagnostic method capable of in situ imaging the three-dimensional density distribution in a patient before irradiation with charged particle beams. Proposed long time ago, this technology has been developed by several groups, and may become an essential tool for advanced quality assessment in hadrontherapy. We describe the basic principles of the method, its performance and limitations as well as provide a summary of experimental systems and of results achieved.

  12. Smashing Protons to Smithereens

    ScienceCinema

    Marc-André Pleier

    2016-07-12

    Pleier discusses the extraordinary research taking place at the Large Hadron Collider (LHC) — the world’s newest, biggest, and highest energy particle accelerator located at CERN. Pleier is one of hundreds of researchers from around the world working on ATLAS, a seven-story particle detector positioned at a point where the LHC’s oppositely circulating beams of protons slam into one another head-on.

  13. Pion, Kaon, Proton and Antiproton Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Inclusive pion, kaon, proton, and antiproton production from proton-proton collisions is studied at a variety of proton energies. Various available parameterizations of Lorentz-invariant differential cross sections as a function of transverse momentum and rapidity are compared with experimental data. The Badhwar and Alper parameterizations are moderately satisfactory for charged pion production. The Badhwar parameterization provides the best fit for charged kaon production. For proton production, the Alper parameterization is best, and for antiproton production the Carey parameterization works best. However, no parameterization is able to fully account for all the data.

  14. Beam-broadening effects in STEM/EDS measurement of radiation-induced segregation in high-purity 304L stainless steel

    SciTech Connect

    Busby, J.T.; Was, G.S.; Allen, T.R. |; Kenik, E.A.; Zaluzec, N.J.

    1997-10-01

    Radiation-induced segregation (RIS) is the spatial redistribution of elements at defect sinks such as grain boundaries and free surfaces during irradiation. This phenomenon has been studied in a wide variety of alloys and has been linked to irradiation-assisted stress corrosion cracking (IASCC) of nuclear reactor core components. Therefore, accurate determination of the grain boundary composition is important in understanding its effects on environmental cracking. Radiation-induced segregation profiles are routinely measured by scanning-transmission electron microscopy using energy-dispersive X-ray spectroscopy (STEM-EDS) and Auger electron spectroscopy (AES). Because of the narrow width of the segregation profile (typically less than 10-nm full width at half-maximum), the accuracy of grain boundary concentration measurements using STEM/EDS depends on the characteristics of the analyzing instrument, specifically, the excited volume in which x-rays are generated. This excited volume is determined by both electron beam diameter and the primary electron beam energy. Increasing the primary beam energy in STEM/EDS produces greater measured grain boundary segregation, as the reduced electron beam broadening a smaller excited volume. In this work, the effect of beam broadening is assessed on segregation measurements in a 304L stainless steel sample irradiated with 3.2 MeV protons at 400 C to doses of 3.0 and 0.1 dpa. The STEM/EDS measurements are also compared to measurements made using AES.

  15. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-01-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  16. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-10-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  17. Ionospherically reflected proton whistlers

    NASA Astrophysics Data System (ADS)

    Vavilov, D. I.; Shklyar, D. R.

    2014-12-01

    We present experimental observations and detailed investigation of the variety of proton whistlers that includes transequatorial and ionospherically reflected proton whistlers. The latter have previously been indicated from numerical modeling of spectrograms. The study is based on six-component ELF wave data from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite which permits to obtain not only spectrograms displaying the power spectral density but also such wave properties as the polarization, wave normal angle, wave refractive index, and normalized parallel component of the Poynting vector. The explanation of various types of proton whistlers is based on the properties of ion cyclotron wave propagation in a multicomponent magnetoplasma, with special consideration of the effect of ion hybrid resonance reflection. Analysis of experimental data is supplemented by numerical modeling of spectrograms that reproduces the main features of experimental ones. As a self-contained result, we provide conclusive experimental evidences that the region illuminated by a lightning stroke in the Earth-ionosphere waveguide may spread over a distance of 4000 km in both hemispheres.

  18. Laterality and reproductive indices.

    PubMed

    Kalichman, Leonid; Kobyliansky, Eugene

    2008-01-01

    Several previous studies support the association between manual dominance and age at menarche or age at menopause. The aim of the present study was to estimate the association between indices of laterality and reproductive indices. The studied sample comprised 650 Chuvashian women aged 18 to 80 years (mean, 46.9; SD = 16.2). The independent-sample t test was used to compare the age at menarche or age at menopause between individuals with right or left dominance of handedness, dominant eye, hand clasping, and arm folding. No significant differences in age at menarche or age at menopause between women with right and left dominance in any of the studied laterality indices were found. This is the first study that simultaneously evaluates the association between dominance in four laterality indices (handedness, dominant eye, hand clasping, and arm folding) and two reproductive indices (age at menarche and age at menopause). Result of our study do not support the hypothesis of a possible association between handedness (and other indices of laterality) and an early age at menarche or age at natural menopause.

  19. Laterally bendable belt conveyor

    SciTech Connect

    Peterson, W.J.

    1985-07-02

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making laterial turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rolles which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  20. Laterality and prematurity.

    PubMed Central

    Marlow, N; Roberts, B L; Cooke, R W

    1989-01-01

    Lateral preferences were determined by postal questionnaire for 240 children, without major neurological impairment, who were born at less than 31 weeks' gestation to examine the association between neonatal brain injuries and later lateral preference. Left hand preference was reported in 64 (26.7%) children at a median age of 52 months (range: 24-104 months). Left foot preference was shown by 70 (29.2%) and left eye preference by 86 (35.8%). Significantly more preterm children were left handed compared with parents or siblings in whom expected frequencies of left handedness were found. All index children had serial neonatal cerebral ultrasound examinations, of which 95 were abnormal. Left preference occurred at similar frequencies in those with normal neonatal scans (26.9%), bilateral lesions (28.3%), left sided lesions (23.8%), and right lesions (23.8%). Lateral preference appears to be unaffected by the side or extent of neonatal brain injury in children without major impairments. PMID:2696435

  1. The development of laterality.

    PubMed

    Perelle, I B; Ehrman, L

    1983-10-01

    Experimental data, primarily from experiments with Drosophila, and observational data, primarily from human beings, are presented to show if their is a genetic basis for laterality. The evidence was found to be inconclusive. It is proposed that there for three etiologies of lefthandedness in human beings: pathological, natural, and learned.

  2. Onset dominance in lateralization.

    PubMed

    Freyman, R L; Zurek, P M; Balakrishnan, U; Chiang, Y C

    1997-03-01

    Saberi and Perrott [Acustica 81, 272-275 (1995)] found that the in-head lateralization of a relatively long-duration pulse train could be controlled by the interaural delay of the single pulse pair that occurs at onset. The present study examined this further, using an acoustic pointer measure of lateralization, with stimulus manipulations designed to determine conditions under which lateralization was consistent with the interaural onset delay. The present stimuli were wideband pulse trains, noise-burst trains, and inharmonic complexes, 250 ms in duration, chosen for the ease with which interaural delays and correlations of select temporal segments of the stimulus could be manipulated. The stimulus factors studied were the periodicity of the ongoing part of the signal as well as the multiplicity and ambiguity of interaural delays. The results, in general, showed that the interaural onset delay controlled lateralization when the steady state binaural cues were relatively weak, either because the spectral components were only sparsely distributed across frequency or because the interaural time delays were ambiguous. Onset dominance can be disrupted by sudden stimulus changes within the train, and several examples of such changes are described. Individual subjects showed strong left-right asymmetries in onset effectiveness. The results have implications for understanding how onset and ongoing interaural delay cues contribute to the location estimates formed by the binaural auditory system.

  3. Proton-proton correlations observed in two-proton radioactivity of 94Ag.

    PubMed

    Mukha, Ivan; Roeckl, Ernst; Batist, Leonid; Blazhev, Andrey; Döring, Joachim; Grawe, Hubert; Grigorenko, Leonid; Huyse, Mark; Janas, Zenon; Kirchner, Reinhard; La Commara, Marco; Mazzocchi, Chiara; Tabor, Sam L; Van Duppen, Piet

    2006-01-19

    The stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref. 5). Here we report proton-proton correlations observed during the radioactive decay of a spinning long-lived state of the lightest known isotope of silver, 94Ag, which is known to undergo one-proton decay. We infer from these correlations that the long-lived state must also decay through simultaneous two-proton emission, making 94Ag the first nucleus to exhibit one- as well as two-proton radioactivity. We attribute the two-proton emission behaviour and the unexpectedly large probability for this decay mechanism to a very large deformation of the parent nucleus into a prolate (cigar-like) shape, which facilitates emission of protons either from the same or from opposite ends of the 'cigar'.

  4. "Ictal" lateralized periodic discharges.

    PubMed

    Sen-Gupta, Indranil; Schuele, Stephan U; Macken, Micheal P; Kwasny, Mary J; Gerard, Elizabeth E

    2014-07-01

    Whether lateralized periodic discharges (LPDs) represent ictal or interictal phenomena, and even the circumstances in which they may represent one or the other, remains highly controversial. Lateralized periodic discharges are, however, widely accepted as being ictal when they are time-locked to clinically apparent symptoms. We sought to investigate the characteristics of "ictal" lateralized periodic discharges (ILPDs) defined by time-locked clinical symptoms in order to explore the utility of using this definition to dichotomize LPDs into "ictal" and "nonictal" categories. Our archive of all continuous EEG (cEEG) reports of adult inpatients undergoing prolonged EEG monitoring for nonelective indications between 2007 and 2011 was searched to identify all reports describing LPDs. Lateralized periodic discharges were considered ILPDs when they were reported as being consistently time-locked to clinical symptoms; LPDs lacking a clear time-locked correlate were considered to be "nonictal" lateralized periodic discharges (NILPDs). Patient charts and available neuroimaging studies were also reviewed. Neurophysiologic localization of LPDs, imaging findings, presence of seizures, discharge outcomes, and other demographic factors were compared between patients with ILPDs and those with NILPDs. p-Values were adjusted for false discovery rate (FDR). One thousand four hundred fifty-two patients underwent cEEG monitoring at our institution between 2007 and 2011. Lateralized periodic discharges were reported in 90 patients, 10 of whom met criteria for ILPDs. Nine of the patients with ILPDs demonstrated motor symptoms, and the remaining patient experienced stereotyped sensory symptoms. Ictal lateralized periodic discharges had significantly increased odds for involving central head regions (odds ratio [OR]=11; 95% confidence interval [CI]=2.16-62.6; p=0.018, FDR adjusted), with a trend towards higher proportion of lesions involving the primary sensorimotor cortex (p=0.09, FDR

  5. Protons, the thylakoid membrane, and the chloroplast ATP synthase.

    PubMed

    Junge, W

    1989-01-01

    According to the chemiosmotic theory, proton pumps and ATP synthases are coupled by lateral proton flow through aqueous phases. Three long-standing challenges to this concept, all of which have been loosely subsumed under 'localized coupling' in the literature, were examined in the light of experiments carried out with thylakoids: (1) Nearest neighbor interaction between pumps and ATP synthases. Considering the large distances between photosystem II and CFoCF1, in stacked thylakoids this is a priori absent. (2) Enhanced proton diffusion along the surface of the membrane. This could not be substantiated for the outer side of the thylakoid membrane. Even for the interface between pure lipid and water, two laboratories have reported the absence of enhanced diffusion. (3) Localized proton ducts in the membrane. Intramembrane domains that can transiently trap protons do exist in thylakoid membranes, but because of their limited storage capacity for protons, they probably do not matter for photophosphorylation under continuous light. Seemingly in favor of localized proton ducts is the failure of a supposedly permeant buffer to enhance the onset lag of photophosphorylation. However, it was found that failure of some buffers and the ability of others in this respect were correlated with their failure/ability to quench pH transients in the thylakoid lumen, as predicted by the chemiosmotic theory. It was shown that the chemiosmotic concept is a fair approximation, even for narrow aqueous phases, as in stacked thylakoids. These are approximately isopotential, and protons are taken in by the ATP synthase straight from the lumen. The molecular mechanism by which F0F1 ATPases couple proton flow to ATP synthesis is still unknown. The threefold structural symmetry of the headpiece that, probably, finds a corollary in the channel portion of these enzymes appeals to the common wisdom that structural symmetry causes functional symmetry. "Rotation catalysis" has been proposed. It is

  6. SU-E-J-201: Investigation of MRI Guided Proton Therapy

    SciTech Connect

    Li, JS

    2015-06-15

    Purpose: Image-guided radiation therapy has been employed for cancer treatment to improve the tumor localization accuracy. Radiation therapy with proton beams requires more on this accuracy because the proton beam has larger uncertainty and dramatic dose variation along the beam direction. Among all the image modalities, magnetic-resonance image (MRI) is the best for soft tissue delineation and real time motion monitoring. In this work, we investigated the behavior of the proton beam in magnetic field with Monte Carlo simulations. Methods: A proton Monte Carlo platform, TOPAS, was used for this investigation. Dose calculations were performed with this platform in a 30cmx30cmx30cm water phantom for both pencil and broad proton beams with different energies (120, 150 and 180MeV) in different magnetic fields (0.5T, 1T and 3T). The isodose distributions, dose profiles in lateral and beam direction were evaluated. The shifts of the Bragg peak in different magnetic fields for different proton energies were compared and the magnetic field effects on the characters of the dose distribution were analyzed. Results: Significant effects of magnetic field have been observed on the proton beam dose distributions, especially for magnetic field of 1T and up. The effects are more significant for higher energy proton beam because higher energy protons travel longer distance in the magnetic field. The Bragg peak shift in the lateral direction is about 38mm for 180MeV and 11mm for 120MeV proton beams in 3T magnetic field. The peak positions are retracted back for 6mm and 2mm, respectively. The effect on the beam penumbra and dose falloff at the distal edge of the Bragg peak is negligible. Conclusion: Though significant magnetic effects on dose distribution have been observed for proton beams, MRI guided proton therapy is feasible because the magnetic effects on dose is predictable and can be considered in patient dose calculation.

  7. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  8. Influence of resonant collisions on the self-broadening of acetylene

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2017-03-01

    Iwakuni et al. [Phys. Rev. Lett. 117, 143902 (2016)] have reported an ortho-para alternation of ˜10% in the self pressure broadening coefficients for ro-vibrational lines of the C2H2 transitions in the ν1+ν3 C-H (local mode) overtone band near 197 THz (1.52 μm). These authors attributed this effect to the contribution of resonant collisions, where the rotational energy change of one molecule is exactly compensated by the rotational energy change of its collision partner. Resonant collisions are known to be important in the case of self pressure broadening of highly polar molecules, such as HCN, but have not previously been invoked in the case of nonpolar molecules, such as acetylene, where the long range potential is dominated by the quadrupole-quadrupole electrostatic interaction. In the present work, the simple semiclassical Anderson-theory approach is used to estimate the rates of C2H2-C2H2 rotationally inelastic collisions and these used to predict pressure broadening rates, ignoring other contributions to the broadening, which should not have resonant enhancements. It is found that exactly resonant collisions do not make a major contribution to the broadening and these calculations predict an ortho-para alternation of the pressure broadening coefficients far below what was inferred by Iwakuni et al. The present results are consistent with a large body of published work that reported self-broadening coefficients of C2H2 ro-vibrational transitions that found negligible dependence on the vibrational transition and no even-odd alternation, even for Q and S branch transitions where any such effect is predicted to be much larger than for the P and R branch transitions studied by Iwakuni et al.

  9. PROTON AND ANTI-PROTON DISTRIBUTIONS AT RHIC.

    SciTech Connect

    VIDEBAEK,F.FOR THE BRAHMS COLLABORATION

    2003-02-08

    Properties of transverse momentum spectra and rapidity dependence of protons and anti-protons in Au-Au collisions at {radical}(s{sub NN}) = 200 GeV are discussed. The net-proton yields are approximately constant at |y| < 1 and increases towards y {approx} 3. The mean rapidity loss is estimated to be in the range of 1.9 < {delta}y < 2.4.

  10. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  11. Lateral Programmable Metallization Cell Devices And Applications

    NASA Astrophysics Data System (ADS)

    Ren, Minghan

    2011-12-01

    Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in situ, via the application of a bias on laterally placed electrodes, creates a large number of promising applications. A novel PMC-based lateral microwave switch was fabricated and characterized for use in microwave systems. It has demonstrated low insertion loss, high isolation, low voltage operation, low power and low energy consumption, and excellent linearity. Due to its non-volatile nature the switch operates with fewer biases and its simple planar geometry makes possible innovative device structures which can be potentially integrated into microwave power distribution circuits. PMC technology is also used to develop lateral dendritic metal electrodes. A lateral metallic dendritic network can be grown in a solid electrolyte (GeSe) or electrodeposited on SiO2 or Si using a water-mediated method. These dendritic electrodes grown in a solid electrolyte (GeSe) can be used to lower resistances for applications like self-healing interconnects despite its relatively low light transparency; while the dendritic electrodes grown using water-mediated method can be potentially integrated into solar cell applications, like replacing conventional Ag screen-printed top electrodes as they not only reduce resistances but also are highly transparent. This research effort also laid a solid foundation for developing dendritic plasmonic structures. A PMC-based lateral dendritic plasmonic structure is a device that has metallic dendritic networks grown electrochemically on SiO2 with a thin layer of surface metal nanoparticles in liquid electrolyte. These structures increase the distribution of particle sizes by connecting pre-deposited Ag

  12. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  13. Lateral Attitude Change.

    PubMed

    Glaser, Tina; Dickel, Nina; Liersch, Benjamin; Rees, Jonas; Süssenbach, Philipp; Bohner, Gerd

    2015-08-01

    The authors propose a framework distinguishing two types of lateral attitude change (LAC): (a) generalization effects, where attitude change toward a focal object transfers to related objects, and (b) displacement effects, where only related attitudes change but the focal attitude does not change. They bring together examples of LAC from various domains of research, outline the conditions and underlying processes of each type of LAC, and develop a theoretical framework that enables researchers to study LAC more systematically in the future. Compared with established theories of attitude change, the LAC framework focuses on lateral instead of focal attitude change and encompasses both generalization and displacement. Novel predictions and designs for studying LAC are presented. © 2014 by the Society for Personality and Social Psychology, Inc.

  14. Physics controversies in proton therapy.

    PubMed

    Engelsman, Martijn; Schwarz, Marco; Dong, Lei

    2013-04-01

    The physical characteristics of proton beams are appealing for cancer therapy. The rapid increase in operational and planned proton therapy facilities may suggest that this technology is a "plug-and-play" valuable addition to the arsenal of the radiation oncologist and medical physicist. In reality, the technology is still evolving, so planning and delivery of proton therapy in patients face many practical challenges. This review article discusses the current status of proton therapy treatment planning and delivery techniques, indicates current limitations in dealing with range uncertainties, and proposes possible developments for proton therapy and supplementary technology to try to realize the actual potential of proton therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Lateral View of Occator

    NASA Image and Video Library

    2015-12-09

    A group of scientists from NASA's Dawn mission suggests that when sunlight reaches Ceres' Occator Crater, a kind of thin haze of dust and evaporating water forms there. This haze only becomes dense enough to be seen by looking at it laterally, as in this image, the scientists wrote in the journal Nature in December 2015. Occator measures about 60 miles (90 kilometers) wide, and contains the brightest material seen on Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA20181

  16. Conjugal amyotrophic lateral sclerosis

    PubMed Central

    Dewitt, John D.; Kwon, Julia; Burton, Rebecca

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a disease characterized by progressive degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. The incidence of sporadic ALS is 1.5 to 2.7 in 100,000, and the prevalence is 5.2 to 6.0 in 100,000. Conjugal ALS is even rarer than sporadic ALS. We report a case of conjugal ALS encountered in our outpatient neurology clinic. PMID:22275781

  17. Amyotrophic lateral sclerosis.

    PubMed

    Malik, Rabia; Lui, Andrew; Lomen-Hoerth, Catherine

    2014-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting 20,000 to 30,000 people in the United States. The mainstay of care of patients affected by this disease is supportive and given the multifaceted nature of their needs is provided most efficiently through multidisciplinary clinics that have shown to prolong survival and improve quality of life. The authors discuss in detail evidence-based management of individuals affected by this condition.

  18. Self-Consistent Simulation of Transport and Energy Deposition of Intense Laser-Accelerated Proton Beams in Solid-Density Matter.

    PubMed

    Kim, J; Qiao, B; McGuffey, C; Wei, M S; Grabowski, P E; Beg, F N

    2015-07-31

    The first self-consistent hybrid particle-in-cell (PIC) simulation of intense proton beam transport and energy deposition in solid-density matter is presented. Both the individual proton slowing-down and the collective beam-plasma interaction effects are taken into account with a new dynamic proton stopping power module that has been added to a hybrid PIC code. In this module, the target local stopping power can be updated at each time step based on its thermodynamic state. For intense proton beams, the reduction of target stopping power from the cold condition due to continuous proton heating eventually leads to broadening of the particle range and energy deposition far beyond the Bragg peak. For tightly focused beams, large magnetic field growth in collective interactions results in self-focusing of the beam and much stronger localized heating of the target.

  19. Hemispheric lateralization in reasoning.

    PubMed

    Turner, Benjamin O; Marinsek, Nicole; Ryhal, Emily; Miller, Michael B

    2015-11-01

    A growing body of evidence suggests that reasoning in humans relies on a number of related processes whose neural loci are largely lateralized to one hemisphere or the other. A recent review of this evidence concluded that the patterns of lateralization observed are organized according to two complementary tendencies. The left hemisphere attempts to reduce uncertainty by drawing inferences or creating explanations, even at the cost of ignoring conflicting evidence or generating implausible explanations. Conversely, the right hemisphere aims to reduce conflict by rejecting or refining explanations that are no longer tenable in the face of new evidence. In healthy adults, the hemispheres work together to achieve a balance between certainty and consistency, and a wealth of neuropsychological research supports the notion that upsetting this balance results in various failures in reasoning, including delusions. However, support for this model from the neuroimaging literature is mixed. Here, we examine the evidence for this framework from multiple research domains, including an activation likelihood estimation analysis of functional magnetic resonance imaging studies of reasoning. Our results suggest a need to either revise this model as it applies to healthy adults or to develop better tools for assessing lateralization in these individuals.

  20. Lateral Elbow Tendinopathy

    PubMed Central

    Bhabra, Gev; Wang, Allan; Ebert, Jay R.; Edwards, Peter; Zheng, Monica; Zheng, Ming H.

    2016-01-01

    Lateral elbow tendinopathy, commonly known as tennis elbow, is a condition that can cause significant functional impairment in working-age patients. The term tendinopathy is used to describe chronic overuse tendon disorders encompassing a group of pathologies, a spectrum of disease. This review details the pathophysiology of tendinopathy and tendon healing as an introduction for a system grading the severity of tendinopathy, with each of the 4 grades displaying distinct histopathological features. Currently, there are a large number of nonoperative treatments available for lateral elbow tendinopathy, with little guidance as to when and how to use them. In fact, an appraisal of the clinical trials, systematic reviews, and meta-analyses studying these treatment modalities reveals that no single treatment reliably achieves outstanding results. This may be due in part to the majority of clinical studies to date including all patients with chronic tendinopathy rather than attempting to categorize patients according to the severity of disease. We relate the pathophysiology of the different grades of tendinopathy to the basic science principles that underpin the mechanisms of action of the nonoperative treatments available to propose a treatment algorithm guiding the management of lateral elbow tendinopathy depending on severity. We believe that this system will be useful both in clinical practice and for the future investigation of the efficacy of treatments. PMID:27833925

  1. Absorption Spectra of Broadened Sodium Resonance Lines in Presence of Rare Gases

    SciTech Connect

    Chung, H-K; Shurgalin, M; Babb, J F

    2002-09-11

    The pressure broadening of alkali-metal lines is a fundamental problem with numerous applications. For example, the sodium resonance lines broadened by xenon are important in the production of broad spectra emitted in the HPS (High-Pressure Sodium) lamp and they potentially can be used for gas condition diagnostics. Broadened absorption lines of alkali-metal atoms are prominent in the optical spectra of brown dwarfs and understanding the broadening mechanism will help elucidate the chemical composition and atmospheric properties of those stars. The far-line wing spectra of sodium resonance lines broadened by rare gases are found to exhibit molecular characteristics such as satellites and hence the total absorption coefficients for vapors of Na atoms and perturbing rare gas atoms can be modeled as Na-RG (rare gas) molecular absorption spectra. In this work, using carefully chosen interatomic potentials for Na-RG molecules we carry out quantum-mechanical calculations for reduced absorption coefficients for vapors composed of Na-He, Na-Ar, and Na-Xe. Calculated spectra are compared to available experimental results and the agreement is good in the measured satellite positions and shapes.

  2. Electron momentum densities near Dirac cones: Anisotropic Umklapp scattering and momentum broadening.

    PubMed

    Hiraoka, N; Nomura, T

    2017-04-03

    The relationship between electron momentum densities (EMDs) and a band gap is clarified in momentum space. The interference between wavefunctions via reciprocal lattice vectors, making a band gap in momentum space, causes the scattering of electrons from the first Brillouin zone to the other zones, so-called Umklapp scattering. This leads to the broadening of EMDs. A sharp drop of the EMD in the limit of a zero gap becomes broadened as the gap opens. The broadening is given by a simple quantity, E g /v F , where E g is the gap magnitude and v F the Fermi velocity. As the ideal case to see such an effect, we investigate the EMDs in graphene and graphite. They are basically semimetals, and their EMDs have a hexagonal shape enclosed in the first Brillouin zone. Since the gap is zero at Dirac points, a sharp drop exists at the corners (K/K' points) while the broadening becomes significant away from K/K's, showing the smoothest fall at the centers of the edges (M's). In fact, this unique topology mimics a general variation of the EMDs across the metal-insulator transition in condensed matters. Such an anisotropic broadening effect is indeed observed by momentum-density-based experiments e.g. x-ray Compton scattering.

  3. A comparison of homogeneous and inhomogeneous absorption broadening in Nd doped Gadolinium Gallium Garnet

    NASA Astrophysics Data System (ADS)

    Ferri, Christopher; Ghosh, Sayantani

    2015-03-01

    We perform a temperature dependent optical absorption study of the 4I9 / 2-->4F3 / 2 (Zn -->Rn)transition of the Neodymium dopant in Neodymium(III) doped Gadolinium Gallium Garnet. Absorption spectra are acquired for these transitions as a function of temperature from 12K to 300K. The absorption peaks are subsequently fit with Voigt profiles to measure the homogeneous and inhomogeneous broadening for each transition. We find that for the Z1 -->R2 transition the homogeneous and inhomogeneous broadening are of the same order. Below 80K, for the Z1 -->R1 transition, the homogeneous broadening is below the resolution of our spectrometer (1.85 cm-1) resulting in a lower bound of ~ 18 ps for the excited state lifetime which is likely much slower. Furthermore, because of the resolution limit, the ratio of inhomogeneous broadening to homogeneous broadening for this transition has a lower bound of ~ 6 . This work was funded by NSF Grant DMR-1056860.

  4. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes.

    PubMed

    Aldrich, R W; Getting, P A; Thompson, S H

    1979-06-01

    1. Action potentials recorded from isolated dorid neurone somata increase in duration, i.e. broaden, during low frequency repetitive firing. Spike broadening is substantially reduced by external Co ions and implicates an inward Ca current. 2. During repetitive voltage clamp steps at frequencies slower than 1 Hz, in 100 mM-tetraethyl ammonium ions (TEA) inward Ca currents do not increase in amplitude. 3. Repetitive action potentials result in inactivation of delayed outward current. Likewise, repetitive voltage clamp steps which cause inactivation of delayed outward current also result in longer duration action potentials. 4. The frequency dependence of spike broadening and inactivation of the voltage dependent component (IK) of delayed outward current are similar. 5. Inactivation of IK is observed in all cells, however, only cells with relative large inward Ca currents show significant spike broadening. Spike broadening apparently results from the frequency dependent inactivation of IK which increases the expression of inward Ca current as a prominent shoulder on the repolarizing phase of the action potential. In addition, the presence of a prolonged Ca current increases the duration of the first action potential thereby allowing sufficient time for inactivation of IK.

  5. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    PubMed

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  6. The PIREX proton irradiation facility

    SciTech Connect

    Victoria, M.

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  7. Proton structure functions at HERA

    NASA Astrophysics Data System (ADS)

    Abt, Iris

    2014-05-01

    The "proton structure" is a wide field. Discussed are predominantly the precision measurements of the proton structure functions at HERA and some of their implications for the LHC measurements. In addition, a discussion of what a proton structure function represents is provided. Finally, a connection to nuclear physics is attempted. This contribution is an updated reprint of a contribution to "Deep Inelastic Scattering 2012".1

  8. Proton Size Anomaly

    SciTech Connect

    Barger, Vernon; Chiang, Cheng-Wei; Keung, Wai-Yee; Marfatia, Danny

    2011-04-15

    A measurement of the Lamb shift in muonic hydrogen yields a charge radius of the proton that is smaller than the CODATA value by about 5 standard deviations. We explore the possibility that new scalar, pseudoscalar, vector, and tensor flavor-conserving nonuniversal interactions may be responsible for the discrepancy. We consider exotic particles that, among leptons, couple preferentially to muons and mediate an attractive nucleon-muon interaction. We find that the many constraints from low energy data disfavor new spin-0, spin-1, and spin-2 particles as an explanation.

  9. Spin of the proton

    SciTech Connect

    Nathan Isgur

    1996-12-01

    The author argues that their response to the spin crisis should not be to abandon the naive quark model baby, but rather to allow it to mature. In particular, he advocates dressing the baby in qq pairs, first showing that this can be done without compromising the naive quark model's success with either spectroscopy or the OZI rule. Finally, he shows that despite their near invisibility elsewhere, pairs do play an important role in the proton's spin structure by creating an antipolarized qq sea. In the context of an explicit calculation he demonstrates that it is plausible that the entire ''spin crisis'' arises from this effect.

  10. Proton irradiation and endometriosis

    SciTech Connect

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-08-01

    Female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was 7 years after exposure. The doses and energies of the radiation received were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event, leading to the conclusion that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crewmembers.

  11. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  12. A prognosis for the proton.

    PubMed

    Ne'man, Y

    1982-01-01

    Two different hypotheses in modern physics according to which protons might disappear are discussed: Gravitational collapse of matter into black holes, and proton decay according to Unified Gauge Theories. The latter might soon be observed in experiments in which sensitive detectors are placed in a mass of 1000 tons of matter (10(33) protons) in a deep tunnel or mine. One hundred observed decays per year would correspond to an "expected lifetime" of 10(31) years for an individual proton, as predicted by these theories.

  13. SU-E-T-540: MCNPX Simulation of Proton Dose Distributions in a Water Phantom

    SciTech Connect

    Lee, C; Chen, S; Chiang, B; Tung, C; Chao, T

    2015-06-15

    Purpose: In this study, fluence and energy deposition of proton and proton by-products and dose distributions were simulated. Lateral dose distributions were also been discussed to understand the difference between Monte Carlo simulations and pencil beam algorithm. Methods: MCNPX codes were used to build a water phantom by using “repeated structures” technique and the doses and fluences in each cell was recorded by mesh tally. This study includes, proton equilibrium and proton disequilibrium case. For the proton equilibrium case, the doses difference between proton and proton by-products were studied. A 160 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 50 cm{sup 3} water phantom and the scoring volume was 20 × 20 × 0.2 cm{sup 3}. Energy deposition and fluence were calculated from MCNPX with (1) proton only; and (2) proton and secondary particles. For the proton disequilibrium case, the dose distribution variation using different multiple Coulomb scattering were studied. A 70 MeV proton pencil beam was perpendicularly incident into a 40 × 40 × 10 cm{sup 3} water phantom and two scoring voxel sizes of 0.1 × 0.1 × 0.05 cm{sup 3} and 0.01 × 0.01 × 0.05 cm{sup 3} were used for the depth dose distribution, and 0.01 × 0.01 × 0.05 cm{sup 3} for the lateral profile distribution simulations. Results: In the water phantom, proton fluence and dose in depths beyond the Bragg peak were slightly perturbed by the choice of the simulated particle types. The dose from secondary particles was about three orders smaller, but its simulation consumed significant computing time. The depth dose distributions and lateral dose distributions of 70 MeV proton pencil beam obtained from MCNPX, GEANT4, and the pencil beam algorithm showed the significant deviations, probably caused by multiple Coulomb scattering. Conclusion: Multiple Coulomb scattering is critical when there is in proton disequilibrium.

  14. Medical Implication of Quasi-monoenergetic Proton Generated from Laser Acceleration of Ultra-thin Multi-Ion Foil

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Chang; Shao, Xi; Su, Jao-Jang; Liu, Chuan-Sheng; He, Minqing; Eliasson, Bengt; Sagdeev, Roald

    2011-10-01

    Recent work by Liu et al. [2011] (presented in this conference) shows that high quality quasi-monoenergetic proton beams can be generated in laser acceleration of an ultra-thin multi-ion, i.e. carbon-proton, foil. The proton acceleration is due to the combination of radiation pressure and heavy-ion Coulomb repulsion. Using a normalized peak laser amplitude of a0 = 5 and a carbon-proton target with 10% protons, our PIC simulation shows that the resulting quasi-monoenergetic (energy spread < 10%) proton energy is ~ 70 MeV. To assess the feasibility of laser-proton cancer therapy with such a proton accelerator, simulations are carried out to model the interaction of protons with water and determine the radiation dosage deposition for particle beams produced from the PIC simulation of laser acceleration of multi-ion target. We used the SRIM code to calculate the depth and lateral dose distribution of protons energized by laser radiation pressure. The overall dosage deposition map from the proton beam is derived by superposing the radiation dosage contributed from each particle fed from the PIC simulation. Comparison between the dosage map produced from quasi-monoenergetic protons generated from laser acceleration of single ion and multi-ion targets is also presented.

  15. Proton-air and proton-proton cross sections from air shower data

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    Data on the fluctuations in depth of maximum development of cosmic ray air showers, corrected for the effects of mixed primary composition and shower development fluctuations, yield values of the inelastic proton-air cross section for laboratory energies in the range 10 to the 8th power to 10 to the 10th power GeV. From these values of proton-air cross section, corresponding values of the proton-proton total cross section are derived by means of Glauber theory and geometrical scaling. The resulting values of proton-proton cross section are inconsistent with a well known 1n(2)s extrapolation of ISR data which is consistent with SPS data; they indicate a less rapid rate of increase in the interval 540 sq root of s 100000 GeV.

  16. [Proton imaging applications for proton therapy: state of the art].

    PubMed

    Amblard, R; Floquet, V; Angellier, G; Hannoun-Lévi, J M; Hérault, J

    2015-04-01

    Proton therapy allows a highly precise tumour volume irradiation with a low dose delivered to the healthy tissues. The steep dose gradients observed and the high treatment conformity require a precise knowledge of the proton range in matter and the target volume position relative to the beam. Thus, proton imaging allows an improvement of the treatment accuracy, and thereby, in treatment quality. Initially suggested in 1963, radiographic imaging with proton is still not used in clinical routine. The principal difficulty is the lack of spatial resolution, induced by the multiple Coulomb scattering of protons with nuclei. Moreover, its realization for all clinical locations requires relatively high energies that are previously not considered for clinical routine. Abandoned for some time in favor of X-ray technologies, research into new imaging methods using protons is back in the news because of the increase of proton radiation therapy centers in the world. This article exhibits a non-exhaustive state of the art in proton imaging.

  17. Proton-proton bremsstrahlung towards the elastic limit

    NASA Astrophysics Data System (ADS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  18. Proton-proton bremsstrahlung towards the elastic limit

    SciTech Connect

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-05-06

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  19. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    SciTech Connect

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from a comparison of measured and calculated gain versus current relations.

  20. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  1. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  2. Predict the pipeline buckling using the broadening factor of Brillouin spectrum width

    NASA Astrophysics Data System (ADS)

    Zhang, Chunshu; Bao, Xiaoyi; Ozkan, Istemi F.; Mohareb, Magdi; Ravet, Fabien; Zou, Lufan

    2007-06-01

    We monitored the distributed strain during the pipeline buckling process using distributed Brillouin sensor, which allows us to predict the buckling or crack location according to the sequence and location of the deformation for the first time using the broadening factor of Brillouin spectrum width. Two pipelines were designed and instrumented with polymer and carbon/polyimide coated fibers, and then the pipelines were subjected to internal pressure, axial tensile force and bending moment. We show that 1) the localized buckling occurred at the top, median and bottom of the pipeline, where the maximum broaden factors were obtained; 2) the deformation sequence can be measured using the nonlinearity of the broadening factor, 3) a high strength carbon/polyimide-coated fiber can detect higher stress accurately than standard telecom fibers. Our results strengthen the distributed Brillouin fiber sensor position as a nervous system to identify the potential problem in early stage for structural health monitoring.

  3. Positive emotions broaden the scope of attention and thought-action repertoires

    PubMed Central

    Fredrickson, Barbara L.; Branigan, Christine

    2011-01-01

    The broaden-and-build theory (Fredrickson, 1998, 2001) hypothesises that positive emotions broaden the scope of attention and thought-action repertoires. Two experiments with 104 college students tested these hypotheses. In each, participants viewed a film that elicited (a) amusement, (b) contentment, (c) neutrality, (d) anger, or (e) anxiety. Scope of attention was assessed using a global-local visual processing task (Experiment 1) and thought-action repertoires were assessed using a Twenty Statements Test (Experiment 2). Compared to a neutral state, positive emotions broadened the scope of attention in Experiment 1 and thought-action repertoires in Experiment 2. In Experiment 2, negative emotions, relative to a neutral state, narrowed thought-action repertoires. Implications for promoting emotional well-being and physical health are discussed. PMID:21852891

  4. He-broadening and shift coefficients of water vapor lines in infrared spectral region

    NASA Astrophysics Data System (ADS)

    Petrova, T. M.; Solodov, A. M.; Solodov, A. A.; Deichuli, V. M.; Starikov, V. I.

    2015-11-01

    The water vapor line broadening and shift coefficients in the ν1+ν2, ν2+ν3, ν1+ν3, 2ν3, 2ν1, 2ν2+ν3, and ν1+2ν2 vibrational bands induced by helium pressure were measured using a Bruker IFS 125HR spectrometer. The vibrational bands 2ν3 and ν1+2ν2 were investigated for the first time. The interaction potential used in the calculations of broadening and shift coefficients was chosen as the sum of pair potentials, which were modeled by the Lennard-Jones (6-12) potentials. The vibrational and rotational contributions to this potential were obtained by use of the intermolecular potential parameters and intramolecular parameters of H2O molecule. The calculated values of the broadening and shift coefficients were compared with the experimental data.

  5. Near and Far Wing Pressure Broadening Theory for Application to Atmospheric Absorption.

    DTIC Science & Technology

    1980-02-01

    WING CALCULATIONS OF 1120 PRESSURE BROADENING 23 3.1 Pressure Broadening of 1120 Transitions by P112 and Air 23 3.2 H20 Self-Broadening 25 4.0...terms of the two-body16/ T-matrix,--6 according to (CI-z) - I = (H0 -z) - (it 0 -z) T(z) (H0 -z)- , ( 25 ) where T(z) satisfies T :z) V - V(h0-z) -I T...z), (2) and 1* * T(z) T(z ). (27) Now from Eqs. (23), ( 25 ) we obtain 6(H-L) 6(H 0 -E) 1 +)-i - {(1 0-E-io T(E+io+) (H -E-io + ) - - (H0-E+io +- I T(E

  6. A holographic method to measure the source size broadening in STEM.

    PubMed

    Verbeeck, Jo; Béché, Armand; Van den Broek, Wouter

    2012-09-01

    Source size broadening is an important resolution limiting effect in modern STEM experiments. Here, we propose an alternative method to measure the source size broadening making use of a holographic biprism to create interference patterns in an 'empty' Ronchigram. This allows us to measure the exact shape of the source size broadening with a much better sampling than previously possible. We find that the shape of the demagnified source deviates considerably from a Gaussian profile that is often assumed. We fit the profile with a linear combination of a Gaussian and a bivariate Cauchy distribution showing that even though the full width at half maximum is similar to previously reported measurements, the tails of the profile are considerable wider. This is of fundamental importance for quantitative comparison of STEM simulations with experiments as these tails make the image contrast dependent on the interatomic distance, an effect that cannot be reproduced by a single Gaussian profile of fixed width alone.

  7. Collisional broadening of rotational lines in the stimulated Raman pentad Q-branch of CD4

    NASA Technical Reports Server (NTRS)

    Millot, G.; Lavorel, B.; Steinfeld, J. I.

    1992-01-01

    Self- and argon-broadening coefficients are reported for a number of Raman Q-branch transitions in the nu(1) and nu(2) + nu(4) bands of (C-12)D4 at room temperature (296 K). The coefficients display a variation with j and with C exp n (symmetry species A, E, F) that is essentially independent of collision partner and which is similar to the j- and C exp n-dependence found in previous measurements of the IR line-broadening coefficients. The rotationally inelastic collision rates previously measured by Foy et al. (1988) for (C-13)D4 (V4 = 0, 1) in collision with (C-13)D4 or Ar account for only a part of the Raman broadening rate, suggesting possibly significant contributions to the linewidths from efficient V-V transfer or elastic dephasing collisions.

  8. The broadened-specification fuels combustion technology program at Pratt and Whitney Aircraft

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.

    1980-01-01

    The impact of the use of broadened specification fuels on combustor design was investigated. Particular emphasis was placed on establishing the viability of various combustor modifications to permit the use of broadened specification fuels while meeting exhaust emissions and performance specifications and maintaining acceptable combustor operational and durability characteristics. Three different combustor concepts will be evaluated. Various design modifications on the operating capability of each of the combustor concepts with experimental referee broadened specification Fuel. The modifications that were evaluated included perturbations of the combustor airflow schedules to alter local stoichiometry and residence time histories revisions to the fuel injectors, and variations in liner cooling including the use of thermal barrier coatings and/or advanced cooling concepts.

  9. Spectral broadening in lithium niobate in a self-diffraction geometry using ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Jayashree A.; Dota, Krithika; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-05-01

    We report on broadband light generation in the impulsive regime in an un-doped lithium niobate (LiNbO3) crystal by two femtosecond laser pulses (36 fs) from a Ti-sapphire laser amplifier. We systematically investigate the role of incident intensity on spectral broadening. At relatively low incident intensity (0.7 TW cm-2), spectral broadening in the transmitted beam occurs due to the combined effect of self-phase modulation and cross-phase modulation. At higher incident intensity (10.2 TW cm-2), we observe generation of as many as 21 anti-Stokes orders due to coherent anti-Stokes Raman scattering in self-diffraction geometry. Moreover, we observe order-dependent spectral broadening of anti-Stokes lines that may be attributed to the competition with other nonlinear optical effects like cross-phase modulation.

  10. Influence of Rayleigh-Doppler broadening on the selection of H2O dial system parameters

    NASA Technical Reports Server (NTRS)

    Ismail, S.; Browell, E. V.

    1986-01-01

    Computer simulations have enabled the performance of a H2O Differential Absorption Lidar (DIAL) system to be studied by spectrally analyzing the forward propagating and backscattered laser energy. The simulations were done for a high altitude (21 km) DIAL system operating in a nadir-viewing mode. The influence of Rayleigh Doppler broadening on DIAL measurement accuracies were evaluated and show that the Rayleigh broadening influence, which can be corrected to first order in regions free of large aerosol gradients, reduces the sensitivity of DIAL H2O measurement errors in the upper tropospheric region. The ability to correct the Rayleigh broadening and the selection of H2O DIAL parameters when all the systematic effects are combined, were discussed.

  11. Proton in SRF Niobium

    SciTech Connect

    Wallace, John Paul

    2011-03-31

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  12. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  13. Proton in SRF Niobium

    NASA Astrophysics Data System (ADS)

    Wallace, John Paul

    2011-03-01

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  14. Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Holladay, Christopher; Heung, Henry; Bouanich, Jean-Pierre; Mellau, Georg Ch.; Keller, Reimund; Hurtmans, Daniel R.

    2008-09-01

    We report measurements for N 2-broadening, pressure-shift and line mixing coefficients for 55 oxygen transitions in the A-band retrieved using a multispectrum fitting technique. Nineteen laboratory absorption spectra were recorded at 0.02 cm -1 resolution using a multi-pass absorption cell with path length of 1636.9 cm and the IFS 120 Fourier transform spectrometer located at Justus-Liebig-University in Giessen, Germany. The total sample pressures ranged from 8.8 to 3004.5 Torr with oxygen volume mixing ratios in nitrogen ranging between 0.057 and 0.62. An Exponential Power Gap (EPG) scaling law was used to calculate the N 2-broadening and N 2-line mixing coefficients. The line broadening and shift coefficients for the A-band of oxygen self-perturbed and perturbed by N 2 are modeled using semiclassical calculations based on the Robert-Bonamy formalism and two intermolecular potentials. These potentials involve electrostatic contributions including the hexadecapole moment of the molecules and (a) a simple dispersion contribution with one adjustable parameter to fit the broadening coefficients or (b) the atom-atom Lennard-Jones model without such adjustable parameters. The first potential leads to very weak broadening coefficients for high J transitions whereas the second potential gives much more improved results at medium and large J values, in reasonable agreement with the experimental data. For the line shifts which mainly arise in our calculation from the electronic state dependence of the isotropic potential, their general trends with increasing J values can be well predicted, especially from the first potential. From the theoretical results, we have derived air-broadening and air-induced shift coefficients with an agreement comparable to that obtained for O 2-O 2 and O 2-N 2.

  15. Experimental air-broadened line parameters in the nu(2) band of CH3D

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-02-01

    In this study, we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu(2) fundamental band of CH3D. These results were obtained from analysis of 17 room-temperature laboratory absorption spectra recorded at 0.0056 cm(-1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Ariz. Three absorption cells with path lengths of 10.2, 25, and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129 x 10(-2) to 52.855 x 10(-2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum nonlinear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J'' D 20 and K D 15, where K'' D K' equivalent to K (for a parallel band). The measured air-broadening coefficients range from 0.0205 to 0.0835 cm(-1)atm(-1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(-1) atm(-1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J'', and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m D -J'', J'', and J'' + 1 in the P-Q-, (Q)Q-, and R-Q-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  16. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  17. Why Is Non-thermal Line Broadening of Lower Transition Region Lines Independent of Spatial Resolution?

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Mcintosh, S. W.; Martínez-Sykora, J.; Peter, H.; Pereira, T. M. D.

    2014-12-01

    Spectral observations of the solar transition region (TR) and corona typically show broadening of the spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (10-30 km/s), correlated with the intensity, and has been attributed to waves, macro and micro turbulence, nanoflares, etc... Here we study spectra of the low TR Si IV 1403 Angstrom line obtained at high spatial and spectral resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.33 arcsec) of IRIS compared to previous spectrographs (2 arcsec) does not resolve the non-thermal line broadening which remains at pre-IRIS levels of 20 km/s. This surprising invariance to spatial resolution indicates that the physical processes behind the non-thermal line broadening either occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the low TR leading to strong non-thermal line broadening from line-of-sight integration across the shock at the time of impact. This scenario is confirmed by advanced MHD simulations. In regions where the LOS is perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and the correlation with intensity.

  18. Experimental Air-Broadened Line Parameters in the nu2 Band of CH3D

    NASA Technical Reports Server (NTRS)

    Cross, Adriana Predoi; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-01-01

    In this study we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu2 fundamental band of CH3D. These results were obtained from analysis of 17 room temperature laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. Three absorption cells with path lengths of 10.2, 25 and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129x10(exp -2) to 52.855x10(exp -2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum non-linear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J" = 20 and K = 15, where K" = K' equivalent to K (for a parallel band). The measured air broadening coefficients range from 0.0205 to 0.0835 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(exp -1) atm(exp -1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J" and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J" and J" + 1 in the (sup Q)P- (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  19. In Vivo Proton Beam Range Verification Using Spine MRI Changes

    SciTech Connect

    Gensheimer, Michael F.; Yock, Torunn I.; Liebsch, Norbert J.; Sharp, Gregory C.; Paganetti, Harald; Madan, Neel; Grant, P. Ellen; Bortfeld, Thomas

    2010-09-01

    Purpose: In proton therapy, uncertainty in the location of the distal dose edge can lead to cautious treatment plans that reduce the dosimetric advantage of protons. After radiation exposure, vertebral bone marrow undergoes fatty replacement that is visible on magnetic resonance imaging (MRI). This presents an exciting opportunity to observe radiation dose distribution in vivo. We used quantitative spine MRI changes to precisely detect the distal dose edge in proton radiation patients. Methods and Materials: We registered follow-up T1-weighted MRI images to planning computed tomography scans from 10 patients who received proton spine irradiation. A radiation dose-MRI signal intensity curve was created using the lateral beam penumbra in the sacrum. This curve was then used to measure range errors in the lumbar spine. Results: In the lateral penumbra, there was an increase in signal intensity with higher dose throughout the full range of 0-37.5 Gy (RBE). In the distal fall-off region, the beam sometimes appeared to penetrate farther than planned. The mean overshoot in 10 patients was 1.9 mm (95% confidence interval, 0.8-3.1 mm), on the order of the uncertainties inherent to our range verification method. Conclusions: We have demonstrated in vivo proton range verification using posttreatment spine MRI changes. Our analysis suggests the presence of a systematic overshoot of a few millimeters in some proton spine treatments, but the range error does not exceed the uncertainty incorporated into the treatment planning margin. It may be possible to extend our technique to MRI sequences that show early bone marrow changes, enabling adaptive treatment modification.

  20. Emission of neutron-proton and proton-proton pairs in neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in (νμ ,μ-) scattering from 12C in the 2p-2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission (i.e., np in the initial state) is much larger than for neutron-proton emission (i.e., two neutrons in the initial state) by a (ω , q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.

  1. Parameterizations of Inclusive Cross Sections for Kaon, Proton, and Antiproton Production in Proton-Proton Collisions

    NASA Astrophysics Data System (ADS)

    Norbury, John W.

    2009-05-01

    Inclusive kaon, proton, and antiproton production from high-energy proton-proton collisions is studied. Various available parameterizations of Lorentz-invariant, differential cross sections, as a function of transverse momentum and rapidity, are compared with experimental data. This paper shows that the Badhwar parameterization provides the best fit for charged kaon production. For proton production, the Alper parameterization is best and for antiproton production the Carey parameterization works best. The formulae for these cross sections are suitable for use in high-energy cosmic ray transport codes.

  2. Diamond heteroepitaxial lateral overgrowth

    SciTech Connect

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  3. Diamond heteroepitaxial lateral overgrowth

    DOE PAGES

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  4. Origin of asymmetric broadening of Raman peak profiles in Si nanocrystals

    PubMed Central

    Gao, Yukun; Yin, Penggang

    2017-01-01

    The asymmetric peak broadening towards the low-frequency side of the Raman-active mode of Si nanocrystals with the decreasing size has been extensively reported in the literatures. In this study, an atomic coordination model is developed to study the origin of the ubiquitous asymmetric peak on the optical phonon fundamental in the Raman spectra of Si nanocrystals. Our calculation results accurately replicate the line shape of the experimentally measured optical Raman curves. More importantly, it is revealed that the observed asymmetric broadening is mainly caused by the surface bond contraction and the quantum confinement. PMID:28240325

  5. X-Ray Diffraction Line Broadening: Modeling and Applications to High-Tc Superconductors

    PubMed Central

    Balzar, Davor

    1993-01-01

    A method to analyze powder-diffraction line broadening is proposed and applied to some novel high-Tc superconductors. Assuming that both size-broadened and strain-broadened profiles of the pure-specimen profile are described with a Voigt function, it is shown that the analysis of Fourier coefficients leads to the Warren-Averbach method of separation of size and strain contributions. The analysis of size coefficients shows that the “hook” effect occurs when the Cauchy content of the size-broadened profile is underestimated. The ratio of volume-weighted and surface-weighted domain sizes can change from ~1.31 for the minimum allowed Cauchy content to 2 when the size-broadened profile is given solely by a Cauchy function. If the distortion co-efficient is approximated by a harmonic term, mean-square strains decrease linearly with the increase of the averaging distance. The local strain is finite only in the case of pure-Gauss strain broadening because strains are then independent of averaging distance. Errors of root-mean-square strains as well as domain sizes were evaluated. The method was applied to two cubic structures with average volume-weighted domain sizes up to 3600 Å, as well as to tetragonal and orthorhombic (La-Sr)2CuO4, which exhibit weak line broadenings and highly overlapping reflections. Comparison with the integral-breadth methods is given. Reliability of the method is discussed in the case of a cluster of the overlapping peaks. The analysis of La2CuO4 and La1.85M0.15CuO4(M = Ca, Ba, Sr) high-Tc superconductors showed that microstrains and incoherently diffracting domain sizes are highly anisotropic. In the superconductors, stacking-fault probability increases with increasing Tc; microstrain decreases. In La2CuO4, different broadening of (h00) and (0k0) reflections is not caused by stacking faults; it might arise from lower crystallographic symmetiy. The analysis of Bi-Cu-O superconductors showed much higher strains in the [001] direction than in

  6. On spectral line Stark broadening parameters needed for stellar and laboratory plasma investigations.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    1995-03-01

    This paper presents a review of semiclassical calculations of Stark broadening parameters and a comparison of different semiclassical procedures is discussed, as well as the agreement with critically selected experimental data and more sophisticated, close coupling calculations. Approximate methods for the calculation of Stark broadening parameters, useful especially in such astrophysical problems where large scale calculations and analyses must be performed and where a good average accuracy is expected, have also been discussed. The beginning and development of line shapes investigations in Yugoslavia has been described as well.

  7. Surface anchoring effects on spectral broadening of cholesteric liquid crystal films

    SciTech Connect

    Fan, B.; Vartak, S.; Eakin, J. N.; Faris, S. M.

    2008-07-15

    This paper describes the spectral broadening of cholesteric liquid crystal film prepared from a blend comprising a cross-linkable liquid crystal polymer and a non-cross-linkable low-molecular-weight liquid crystal. The spectral broadening arises from the formation of gradient pitch across the film thickness. It is shown that both phase-separation and in situ swelling during photopolymerization are important mechanisms for the resulting film structure. The surface anchoring is important to achieve high wavelength- and polarization-selective reflectance.

  8. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  9. Broadening of the spectral lines of a buffer gas and target substance in laser ablation

    SciTech Connect

    Kask, Nikolai E; Michurin, Sergei V

    2012-11-30

    The broadening of discrete spectral lines from the plasma produced in the laser ablation of metal targets in a broad pressure range (10{sup 2} - 10{sup 7} Pa) of the ambient gas (Ar, He, H{sub 2}) was studied experimentally. The behaviour of spectral line broadening for the buffer gases was found to be significantly different from that for the atoms and ions of the target material. In comparison with target atoms, the atoms of buffer gases radiate from denser plasma layers, and their spectral line profiles are complex in shape. (interaction of laser radiation with matter. laser plasma)

  10. Measurement of self-broadening of the ozone nu(3) transitions

    NASA Technical Reports Server (NTRS)

    Flannery, C.; Klaassen, J. J.; Gojer, M.; Steinfeld, J. I.; Spencer, M.; Chackerian, C., Jr.

    1991-01-01

    Self-broadening coefficients have been measured for a number of rovibrational lines in the nu(3) band of ozone, in the frequency range 1015-1058/cm, with J values between 0 and 27, and over a range of K(a) values. A multiparameter nonlinear least-squares fitting procedure is used to reduce the data, and the sensitivity of the procedure to instrument line width, weak satellite features, and absolute intensity has been examined. The retrieved coefficients are compared with millimeter-wave broadening coefficients, direclty measured rotational relaxation times, and recently suggested empirical representations.

  11. Broadening and shift of the spectral lines of hydrogen atoms and silicon ions in laser plasma

    SciTech Connect

    Kask, N E; Leksina, E G; Michurin, S V; Fedorov, G M; Chopornyak, D B

    2015-06-30

    We report an experimental investigation of the broadening and shift of discrete lines in the plasma spectrum produced in the laser ablation of silicon in a broad pressure range (10{sup 2} – 10{sup 7} Pa) of the ambient gas (Ar, He, H{sub 2}). The broadening and line shifts are measured in relation to the distance from the target and initial gas pressure. The threshold nature of the resulting dependences is found to be related to the formation of virtual percolation clusters proceeding in the hot dense plasma. (laser plasma)

  12. Covariance Matrix of a Double-Differential Doppler-broadened Elastic Scattering Cross Section

    SciTech Connect

    Arbanas, Goran; Becker, B.; Dagan, R; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on {sup 238}U are computed near the 6.67 eV resonance at temperature T = 10{sup 3} K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments.

  13. Helium broadened propane absorption cross sections in the far-IR

    NASA Astrophysics Data System (ADS)

    Wong, A.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Infrared absorption spectra for pure and He broadened propane have been recorded in the far-IR region (650-1300 cm-1) at the Canadian Light Source (CLS) facility using either the synchrotron or internal glowbar source depending on the required resolution. The measurements were made for 4 temperatures in the range 202-292 K and for 3 pressures of He broadening gas up to 100 Torr. Infrared absorption cross sections are derived from the spectra and the integrated cross sections are within 10 % of the corresponding values from the Pacific Northwest National Laboratory (PNNL) for all temperatures and pressures.

  14. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods.

    PubMed

    Peled, Itay; Kaminsky, Ron; Kotler, Zvi

    2015-06-01

    In this work, we present the advantages of driving a multichannel acousto-optical deflector (AOD) with a digitally synthesized multifrequency RF signal. We demonstrate a significant bandwidth broadening of ∼40% by providing well-tuned phase control of the array transducers. Moreover, using a multifrequency, complex signal, we manage to suppress the harmonic deflections and return most of the spurious energy to the main beam. This method allows us to operate the AOD with more than an octave of bandwidth with negligible spurious energy going to the harmonic beams and a total bandwidth broadening of over 70%.

  15. Dynamic broadening of the crystal-fluid interface of colloidal hard spheres.

    PubMed

    Dullens, Roel P A; Aarts, Dirk G A L; Kegel, Willem K

    2006-12-01

    We investigate the structure and dynamics of the crystal-fluid interface of colloidal hard spheres in real space by confocal microscopy. Tuning the buoyancy of the particles allows us to study the interface close to and away from equilibrium. We find that the interface broadens from 8-9 particle diameters close to equilibrium to 15 particle diameters away from equilibrium. Furthermore, the interfacial velocity, i.e., the velocity by which the interface moves upwards, increases significantly. The increasing gravitational drive leads to supersaturation of the fluid above the crystal surface. This dramatically affects crystal nucleation and growth, resulting in the observed dynamic broadening of the crystal-fluid interface.

  16. Stark broadening experiments on a vacuum arc discharge in tin vapor.

    PubMed

    Kieft, E R; van der Mullen, J J A M; Kroesen, G M W; Banine, V; Koshelev, K N

    2004-12-01

    Pinched discharge plasmas in tin vapor are candidates for application in future semiconductor lithography tools. This paper presents time-resolved measurements of Stark broadened linewidths in a pulsed tin discharge. Stark broadening parameters have been determined for four lines of the Sn III spectrum in the range from 522 to 538 nm, based on a cross-calibration to a Sn II line with a previously known Stark width. The influence of the electron temperature on the Stark widths is discussed. Results for the electron densities in the discharge are presented and compared to Thomson scattering results.

  17. Measurement of self-broadening of the ozone nu(3) transitions

    NASA Technical Reports Server (NTRS)

    Flannery, C.; Klaassen, J. J.; Gojer, M.; Steinfeld, J. I.; Spencer, M.; Chackerian, C., Jr.

    1991-01-01

    Self-broadening coefficients have been measured for a number of rovibrational lines in the nu(3) band of ozone, in the frequency range 1015-1058/cm, with J values between 0 and 27, and over a range of K(a) values. A multiparameter nonlinear least-squares fitting procedure is used to reduce the data, and the sensitivity of the procedure to instrument line width, weak satellite features, and absolute intensity has been examined. The retrieved coefficients are compared with millimeter-wave broadening coefficients, direclty measured rotational relaxation times, and recently suggested empirical representations.

  18. Pressure broadening of vibrational Raman lines in N2 at temperatures below 300 K

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; South, B. W.

    1994-01-01

    Using quasi-cw stimulated Raman gain spectroscopy, the pressure broadening coefficients for the N2 vibrational Q-branch transitions have been measured over the temperature range 113-297 K for the rotational components J = 4, 6, 8, 10, and 12. The experimental results are fit to a simple power law to give an empirical formula for the temperature dependence of the pressure broadening over the 100-300 K range. These results are also compared to previously published scaling laws that are based on collision induced rotational transition rates.

  19. Initial characterization of an Experimental Referee Broadened-Specification (ERBS) aviation turbine fuel

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Seng, G. T.

    1980-01-01

    Characterization data and a hydrocarbon compositional analysis are presented for a research test fuel designated as an experimental referee broadened-specification aviation turbine fuel. This research fuel, which is a special blend of kerosene and hydrotreated catalytic gas oil, is a hypothetical representation of a future fuel should it become necessary to broaden current kerojet specifications. It is used as a reference fuel in research investigations into the effects of fuel property variations on the performance and durability of jet aircraft components, including combustors and fuel systems.

  20. Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; McDaniel, J. C.

    1995-01-01

    The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.

  1. Argon-broadened line parameters in the ν3 band of 12CH4.

    NASA Astrophysics Data System (ADS)

    Gabard, T.

    1997-02-01

    Prompted by improved measurements of collisional line shapes in the ν3 band P, Q and R branches of 12CH4, The author has performed semi-classical line broadening calculations for methane perturbed by argon. He has used the theoretical approach developed by Robert and Bonamy (1979) as an extension of the well-known Anderson-Tsao-Curnutte theory. The semi-classical theory as reformulated here is shown to fully account for the tetrahedral symmetry of methane type molecules. The variation of argon-broadened linewidth coefficients in the ν3 band of 12CH4 with the branch, J, symmetry and energy level fine structure is discussed.

  2. Origin of asymmetric broadening of Raman peak profiles in Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Gao, Yukun; Yin, Penggang

    2017-02-01

    The asymmetric peak broadening towards the low-frequency side of the Raman-active mode of Si nanocrystals with the decreasing size has been extensively reported in the literatures. In this study, an atomic coordination model is developed to study the origin of the ubiquitous asymmetric peak on the optical phonon fundamental in the Raman spectra of Si nanocrystals. Our calculation results accurately replicate the line shape of the experimentally measured optical Raman curves. More importantly, it is revealed that the observed asymmetric broadening is mainly caused by the surface bond contraction and the quantum confinement.

  3. IR spectral assignments for the hydrated excess proton in liquid water.

    PubMed

    Biswas, Rajib; Carpenter, William; Fournier, Joseph A; Voth, Gregory A; Tokmakoff, Andrei

    2017-04-21

    The local environmental sensitivity of infrared (IR) spectroscopy to a hydrogen-bonding structure makes it a powerful tool for investigating the structure and dynamics of excess protons in water. Although of significant interest, the line broadening that results from the ultrafast evolution of different solvated proton-water structures makes the assignment of liquid-phase IR spectra a challenging task. In this work, we apply a normal mode analysis using density functional theory of thousands of proton-water clusters taken from reactive molecular dynamics trajectories of the latest generation multistate empirical valence bond proton model (MS-EVB 3.2). These calculations are used to obtain a vibrational density of states and IR spectral density, which are decomposed on the basis of solvated proton structure and the frequency dependent mode character. Decompositions are presented on the basis of the proton sharing parameter δ, often used to distinguish Eigen and Zundel species, the stretch and bend character of the modes, the mode delocalization, and the vibrational mode symmetry. We find there is a wide distribution of vibrational frequencies spanning 1200-3000 cm(-1) for every local proton configuration, with the region 2000-2600 cm(-1) being mostly governed by the distorted Eigen-like configuration. We find a continuous red shift of the special-pair O⋯H(+)⋯O stretching frequency, and an increase in the flanking water bending intensity with decreasing δ. Also, we find that the flanking water stretch mode of the Zundel-like species is strongly mixed with the flanking water bend, and the special pair proton oscillation band is strongly coupled with the bend modes of the central H5O2+moiety.

  4. Minibeam Therapy With Protons and Light Ions: Physical Feasibility and Potential to Reduce Radiation Side Effects and to Facilitate Hypofractionation

    SciTech Connect

    Dilmanian, F. Avraham; Eley, John G.; Krishnan, Sunil

    2015-06-01

    Purpose: Despite several advantages of proton therapy over megavoltage x-ray therapy, its lack of proximal tissue sparing is a concern. The method presented here adds proximal tissue sparing to protons and light ions by turning their uniform incident beams into arrays of parallel, small, or thin (0.3-mm) pencil or planar minibeams, which are known to spare tissues. As these minibeams penetrate the tissues, they gradually broaden and merge with each other to produce a solid beam. Methods and Materials: Broadening of 0.3-mm-diameter, 109-MeV proton pencil minibeams was measured using a stack of radiochromic films with plastic spacers. Monte Carlo simulations were used to evaluate the broadening in water of minibeams of protons and several light ions and the dose from neutron generated by collimator. Results: A central parameter was tissue depth, where the beam full width at half maximum (FWHM) reached 0.7 mm, beyond which tissue sparing decreases. This depth was 22 mm for 109-MeV protons in a film stack. It was also found by simulations in water to be 23.5 mm for 109 MeV proton pencil minibeams and 26 mm for 116 MeV proton planar minibeams. For light ions, all with 10 cm range in water, that depth increased with particle size; specifically it was 51 mm for Li-7 ions. The ∼2.7% photon equivalent neutron skin dose from the collimator was reduced 7-fold by introducing a gap between the collimator and the skin. Conclusions: Proton minibeams can be implemented at existing particle therapy centers. Because they spare the shallow tissues, they could augment the efficacy of proton therapy and light particle therapy, particularly in treating tumors that benefit from sparing of proximal tissues such as pediatric brain tumors. They should also allow hypofractionated treatment of all tumors by allowing the use of higher incident doses with less concern about proximal tissue damage.

  5. Creativity in later life.

    PubMed

    Price, K A; Tinker, A M

    2014-08-01

    The ageing population presents significant challenges for the provision of social and health services. Strategies are needed to enable older people to cope within a society ill prepared for the impacts of these demographic changes. The ability to be creative may be one such strategy. This review outlines the relevant literature and examines current public health policy related to creativity in old age with the aim of highlighting some important issues. As well as looking at the benefits and negative aspects of creative activity in later life they are considered in the context of the theory of "successful ageing". Creative activity plays an important role in the lives of older people promoting social interaction, providing cognitive stimulation and giving a sense of self-worth. Furthermore, it is shown to be useful as a tool in the multi-disciplinary treatment of health problems common in later life such as depression and dementia. There are a number of initiatives to encourage older people to participate in creative activities such as arts-based projects which may range from visual arts to dance to music to intergenerational initiatives. However, participation shows geographical variation and often the responsibility of provision falls to voluntary organisations. Overall, the literature presented suggests that creative activity could be a useful tool for individuals and society. However, further research is needed to establish the key factors which contribute to patterns of improved health and well-being, as well as to explore ways to improve access to services.

  6. Proton Collimators for Fusion Reactors

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Momota, Hiromu

    2003-01-01

    Proton collimators have been proposed for incorporation into inertial-electrostatic-confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications.

  7. Preliminary shielding assessment for the 100 MeV proton linac (KOMAC).

    PubMed

    Lee, Young-Ouk; Cho, Y S; Chang, J

    2005-01-01

    The Proton Engineering Frontier Project is building the Korea Multipurpose Accelerator Complex facilities from 2002 to 2012, which consists of a high-current 100 MeV proton linear accelerator and various beam-lines. This paper provides a preliminary estimate of the shielding required for the 20 mA proton linac and the beam-dump. For an accurate information on secondary neutron production from the guiding magnet and primary heat sink of the beam dump, proton-induced 63Cu and 65Cu cross section data were evaluated and applied to shielding calculations. The required thickness of the concrete was assessed by a simple line-of-sight model for the lateral shielding of the beam-line and the full shielding of the beam dump. Monte Carlo simulations were also performed using the MCNPX code to obtain the source term and attenuation coefficients for the three-dimensional lateral shielding model of the beam-line.

  8. Polarized proton collider at RHIC

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A. N.

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998 [2]), reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to s=500 GeV.

  9. Effects of target plasma electron-electron collisions on correlated motion of fragmented protons.

    PubMed

    Barriga-Carrasco, Manuel D

    2006-02-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature Te=10 eV and density n=10(23) cm(-3), and proton velocities are vp=vth, vp=2vth, and vp=3vth, where vth is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (vp=vth) and misaligns for faster ones (vp=2vth, vp=3vth). They also contribute to a great extend to increase the energy loss of the fragmented H2 + ion. This later effect is more significant in reducing projectile velocity.

  10. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  11. Predicting Solar Protons: A Statistical Approach

    DTIC Science & Technology

    2009-03-01

    above the background flux of protons (Kahler and Vourlidas , 2005). These are known as solar energetic protons (SEP). Some of these groups of protons...tempsep,10, ’b+’); 79 Bibliography Aschwanden, M. Physics of the solar corona , Praxis Publishing Ltd. 2004 Balch, C. C. ―SEC proton...prediction of all models measured. 15. SUBJECT TERMS Solar Energetic Protons, Solar Flares, Protons, Solar Corona , Cosmic Radiation 16

  12. 8. PIER, LOWER CHORD, LATERAL BRACE, LATERAL GUSSET PLATE, FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PIER, LOWER CHORD, LATERAL BRACE, LATERAL GUSSET PLATE, FLOOR BEAM AND STRINGER - CAMELBACK TRUSS - Parker Bridge, Spanning Verdigris River 1.5 miles Southeast of Coffeyville, Coffeyville, Montgomery County, KS

  13. 8. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. UPPER INSIDE CHORD, VERTICAL, LATERAL STRUT, UPPER LATERAL & GUSSET PLATE, ONE DIAGONAL BRACE - Enterprise Parker Truss Bridge, Spanning Smoky Hill River on K-43 Highway, Enterprise, Dickinson County, KS

  14. Lower lateral crural reverse plasty.

    PubMed

    Kubilay, Utku; Azizli, Elad; Erdoğdu, Suleyman

    2013-11-01

    The lateral crus plays a significant role in the aesthetic appearance of the nose. Excessive concavities of the lower lateral crura can lead to heavy aesthetic disfigurement of the nasal tip and to insufficiencies of the external nasal valve. The lateral crus of the alar cartilage may also cause a concavity of the alar rim and even collapse of the alar rim in severe cases. Surgical techniques performed on the lateral crus help to treat both functional and aesthetic deformities of the lateral nasal tip. We present a reverse plasty technique for the lateral crus, and we evaluated the advantages and disadvantages of the technique.

  15. The proton (nuclear) microprobe

    NASA Astrophysics Data System (ADS)

    Legge, G. J. F.

    1989-04-01

    The scanning proton microprobe (SPMP) is closely related to the scanning electron microprobe (SEMP) or scanning electron microscope (SEM) with X-ray detector. Though the much greater elemental sensitivity of the SPMP is inherent in the physics, the generally inferior spatial resolution of the SPMP is not inherent and big improvements are possible, As its alternative name would imply, the SPMP is often used with heavier particle beams and with nuclear rather than atomic reactions. Its versatility and quantitative accuracy have justified greater instrumentation and computer power than that associated with other microprobes. It is fast becoming an industrially and commercially important instrument and there are few fields of scientific research in which it has not played a part. Notable contributions have been made in biology, medicine, agriculture, semiconductors, geology, mineralogy, extractive metallurgy, new materials, archaeology, forensic science, catalysis, industrial problems and reactor technology.

  16. Proton decay, 1982

    NASA Astrophysics Data System (ADS)

    Marciano, W. J.

    1982-03-01

    Employing the current world average Lambda/sub MS/ = 0.160 GeV as input, the minimal Georgi-Glashow SU(5) model predicts sq sin theta/sub W/(m/sub W/) = 0.214, m/sub b/m/sub tau/ approximately 2.8 and tau/sub p approximately (0.4 approximately 12) x 10 approximately to the 29th power yr. The first two predictions are in excellent agreement with experiment; but the implied proton life time is already somewhat below the present experimental bound. In this status report, uncertainties in tau/sub p/ are described and effects of appendages to the SU(5) model (such as new fermion generations, scalars, supersymmetry, etc.) are examined.

  17. Ion-proton pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  18. Primary Lateral Sclerosis

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; Dimachkie, Mazen M.; Floeter, Mary Kay; Mitsumoto, Hiroshi

    2015-01-01

    Synopsis Primary lateral sclerosis (PLS) is characterized by insidious onset of progressive upper motor neuron dysfunction in the absence of clinical signs of lower motor neuron involvement. Patients experience stiffness, decreased balance and coordination, and mild weakness, and if the bulbar region is affected, difficulty speaking and swallowing, and emotional lability. The diagnosis is made based on clinical history, typical exam findings, and diagnostic testing negative for other causes of upper motor neuron dysfunction. EMG is normal, or only shows mild neurogenic findings in a few muscles, not meeting El Escorial criteria. Although no test is specific for PLS, some neurodiagnostic tests are supportive: including absent or delayed central motor conduction times; and changes in the precentral gyrus or corticospinal tracts on MRI, DTI or MR Spectroscopy. Treatment is largely supportive, and includes medications for spasticity, baclofen pump, and treatment for pseudobulbar affect. The prognosis in PLS is more benign than ALS, making this a useful diagnostic category. PMID:26515619

  19. Amyotrophic lateral sclerosis.

    PubMed

    Hardiman, Orla; Al-Chalabi, Ammar; Chio, Adriano; Corr, Emma M; Logroscino, Giancarlo; Robberecht, Wim; Shaw, Pamela J; Simmons, Zachary; van den Berg, Leonard H

    2017-10-05

    Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is characterized by the degeneration of both upper and lower motor neurons, which leads to muscle weakness and eventual paralysis. Until recently, ALS was classified primarily within the neuromuscular domain, although new imaging and neuropathological data have indicated the involvement of the non-motor neuraxis in disease pathology. In most patients, the mechanisms underlying the development of ALS are poorly understood, although a subset of patients have familial disease and harbour mutations in genes that have various roles in neuronal function. Two possible disease-modifying therapies that can slow disease progression are available for ALS, but patient management is largely mediated by symptomatic therapies, such as the use of muscle relaxants for spasticity and speech therapy for dysarthria.

  20. Money Now, Money Later.

    PubMed

    Piquero, Alex R; Farrington, David P; Jennings, Wesley G

    2016-12-01

    Two prominent criminological theories offer time discounting, or the preference for an immediate reward over a later one, as a central part of understanding involvement in criminal activity. Yet, there exist only a few studies investigating this issue, and they are limited in a few respects. The current study extends prior work in this area by using multiple measures of time discounting collected at three different periods of the life course to examine the link to criminal offending into late middle adulthood in the Cambridge Study in Delinquent Development. Results show that greater time discounting is positively related to a higher number of criminal convictions by late middle adulthood, and this effect remains after controlling for early life-course individual and environmental risk in a multivariate framework. Study limitations and implications are also discussed.