Recent advances in X-ray microanalysis in dermatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslind, B.; Grundin, T.G.; Lindberg, M.
1985-01-01
Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complementedmore » by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.« less
Scanning proton microprobe applied to analysis of individual aerosol particles from Amazon Basin
NASA Astrophysics Data System (ADS)
Gerab, Fábio; Artaxo, Paulo; Swietlicki, Erik; Pallon, Jan
1998-03-01
The development of the Scanning Proton Microprobe (SPM) offers a new possibility for individual aerosol particle studies. The SPM joins Particle Induced X-ray Emission (PIXE) elemental analysis qualities with micrometric spatial resolution. In this work the Lund University SPM facility was used for elemental characterization of individual aerosol particles emitted to the atmosphere in the Brazilian Amazon Basin, during gold mining activities by the so-called "gold shops".
A study of GeV proton microprobe lens system designs with normal magnetic quadrupole
NASA Astrophysics Data System (ADS)
Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi
2017-12-01
High energy proton irradiation has many applications to the study of radiation effects in semiconductor devices, biological tissues, proton tomography and space science. Many applications could be extended and enhanced by use of a high energy proton microprobe. However the design of a GeV proton microprobe must address significant challenges including beam collimation that minimizes ion scattering and the probe forming lens system for ions of high rigidity. Here we address the probe forming lens system design subject to several practical constraints including the use of non-superconducting normal magnetic quadrupole lenses, the ability to focus 1-5 GeV protons into 5 μm diameter microprobes and compatibility with the beam parameters of GeV proton accelerators. We show that 2, 3 and 4 lens systems of lenses with effective lengths up to 0.63 m can be employed for this purpose with a demagnification up to 58 and investigate the probe size limitations from beam brightness, lens aberrations and machining precision.
Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.
1987-01-01
The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.
Installation and performance of the Budapest Hamburg proton microprobe
NASA Astrophysics Data System (ADS)
Kovács, I.; Kocsonya, A.; Kostka, P.; Szőkefalvi-Nagy, Z.; Schrang, K.; Krüger, A.; Niecke, M.
2005-04-01
A new scanning proton microprobe has been installed at the 5 MV Van de Graaff accelerator of the KFKI Research Institute for Particle and Nuclear Physics. It is the energy-upgraded version of the Hamburg proton microprobe dismantled in 2001. The probe forming system includes a pair of focusing quadrupoles and an additional quadrupole pair in front of it, which is applied to increase the proton beam divergence. The average probe size at 2.5 MeV proton energy is 2.2 μm × 1.1 μm. The test results on stability and the preliminary experiments on cement corrosion and fish otoliths are also presented.
NASA Astrophysics Data System (ADS)
Kawabata, Shunsuke; Kada, Wataru; Parajuli, Raj Kumar; Matsubara, Yoshinori; Sakai, Makoto; Miura, Kenta; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Hanaizumi, Osamu
2016-06-01
Micrometer-scale responses of radio-photoluminescence (RPL) glass dosimeters to focused ionized particle radiation were evaluated by combining ion-beam-induced luminescence (IBIL) and proton beam writing (PBW) using a 3 MeV focused proton microbeam. RPL phosphate glass dosimeters doped with ionic Ag or Cu activators at concentrations of 0.2 and 0.1% were fabricated, and their scintillation intensities were evaluated by IBIL spectroscopy under a PBW micropatterning condition. Compared with the Ag-doped dosimeter, the Cu-doped dosimeter was more tolerant of the radiation, while the peak intensity of its luminescence was lower, under the precise dose control of the proton microprobe. Proton-irradiated areas were successfully recorded using these dosimeters and their RPL centers were visualized under 375 nm ultraviolet light. The reproduction of the irradiated region by post-RPL imaging suggests that precise estimation of irradiation dose using microdosimeters can be accomplished by optimizing RPL glass dosimeters for various proton microprobe applications in organic material analysis and in micrometer-scale material modifications.
Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe
Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.
1981-01-01
Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.
Three-dimensional hydrogen microscopy using a high-energy proton probe
NASA Astrophysics Data System (ADS)
Dollinger, G.; Reichart, P.; Datzmann, G.; Hauptner, A.; Körner, H.-J.
2003-01-01
It is a challenge to measure two-dimensional or three-dimensional (3D) hydrogen profiles on a micrometer scale. Quantitative hydrogen analyses of micrometer resolution are demonstrated utilizing proton-proton scattering at a high-energy proton microprobe. It has more than an-order-of-magnitude better position resolution and in addition higher sensitivity than any other technique for 3D hydrogen analyses. This type of hydrogen imaging opens plenty room to characterize microstructured materials, and semiconductor devices or objects in microbiology. The first hydrogen image obtained with a 10 MeV proton microprobe shows the hydrogen distribution of the microcapillary system being present in the wing of a mayfly and demonstrates the potential of the method.
Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe
NASA Technical Reports Server (NTRS)
Norman, M. D.; Griffin, W. L.; Ryan, C. G.
1993-01-01
In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.
Elemental mapping of biological samples using a scanning proton microprobe
NASA Astrophysics Data System (ADS)
Watt, F.; Grime, G. W.
1988-03-01
Elemental mapping using a scanning proton microprobe (SPM) can be a powerful technique for probing trace elements in biology, allowing complex interfaces to be studied in detail, identifying contamination and artefacts present in the specimen, and in certain circumstances obtaining indirect chemical information. Examples used to illustrate the advantages of the technique include the elemental mapping of growing pollen tubes, honey bee brain section, a mouse macrophage cell, human liver section exhibiting primary biliary cirrhosis, and the attack by a mildew fungus on a pea leaf.
Mulware, Stephen Juma
2015-01-01
The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.
Study of Italian Renaissance sculptures using an external beam nuclear microprobe
NASA Astrophysics Data System (ADS)
Zucchiatti, A.; Bouquillon, A.; Moignard, B.; Salomon, J.; Gaborit, J. R.
2000-03-01
The use of an extracted proton micro-beam for the PIXE analysis of glazes is discussed in the context of the growing interest in the creation of an analytical database on Italian Renaissance glazed terracotta sculptures. Some results concerning the frieze of an altarpiece of the Louvre museum, featuring white angels and cherubs heads, are presented.
On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falcon-Gonzalez, J. M.; Bernal-Alvarado, J.; Sosa, M.
2008-08-11
The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard wasmore » used.« less
NASA Astrophysics Data System (ADS)
Hughes, N. P.; Perry, C. C.; Williams, R. J. P.; Watt, F.; Grime, G. W.
1988-03-01
Proton-induced X-ray emission (PIXE) combined with the Oxford scanning proton microprobe (SPM) was used to investigate the abundance and spatial distribution of inorganic elements in mineralising stinging emergences from the leaf of the Common Stinging Nettle, Urtica dioica L. Elemental maps and point analytical data were collected for emergences at two stages of maturity. In all emergences calcium and silicon were spatially organised and present at high concentration. The inorganic elements K, P, S and Mn were also spatially organised during mineralisation, but at maturity these elements were present only at background levels and then showed no specific localisation. The observed changes in the inorganic content of the emergences are obviously related to the mineralisation processes. The possible biochemical significance of the distribution of the elements is discussed.
The Oxford scanning proton microprobe: A medical diagnostic application
NASA Astrophysics Data System (ADS)
Watt, F.; Grime, G. W.; Takacs, J.; Vaux, D. J. T.
1984-04-01
Primary biliary cirrhosis (PBC) is a disease characterised by progressive destruction of small intrahepatic bile ducts, cholestasis, and high levels of copper within the liver. The Oxford 1 μm scanning proton microprobe (SPM) has been used to construct elemental maps of a 7 μm section of diseased liver at several different magnifications. The results of these investigations have shown that the copper is distributed in small deposits ( < 5 μm) at specific locations in the liver. Further there appears to be a 1:1 atomic correlation between copper and sulphur, indicating the presence of an inorganic salt or a protein with approximately equal numbers of copper and sulphur atoms.
Micro-PIXE analysis of silicate reference standards
Czamanske, G.K.; Sisson, T.W.; Campbell, J.L.; Teesdale, W.J.
1993-01-01
The accuracy and precision of the University of Guelph proton microprobe have been evaluated through trace-element analysis of well-characterized silicate glasses and minerals, including BHVO-1 glass, Kakanui augite and hornblende, and ten other natural samples of volcanic glass, amphibole, pyroxene, and garnet. Using the 2.39 wt% Mo in a NIST steel as the standard, excellent precision and agreement between reported and analyzed abundances were obtained for Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, and Nb. -from Authors
The external scanning proton microprobe of Firenze: A comprehensive description
NASA Astrophysics Data System (ADS)
Giuntini, L.; Massi, M.; Calusi, S.
2007-06-01
An external proton scanning microbeam setup is installed on the -30° line of the new 3 MV tandem accelerator in Firenze; the most relevant features of the line, such as detection setup for IBA measurements, target viewing system, beam diagnostic and transport are described here. With our facility we can work with a beam spot on sample better than 10 μm full-width half-maximum (FWHM) and an intensity of some nanoamperes. Standard beam exit windows are silicon nitride (Si 3N 4) TEM membranes, 100 nm thick and 0.5×0.5 mm 2 wide; we also successfully performed measurements using membranes 1×1 mm 2 wide, 100 nm thick, and 2×2 mm 2 wide, 200 and 500 nm thick. Exploiting the yield of Si X-rays produced by the beam in the exit window as an indirect measurement of the charge, a beam charge monitor system was implemented. The analytical capabilities of the microbeam have been extended by integrating a two-detector PIXE setup with BS and PIGE detectors; the external scanning proton microprobe in Firenze is thus a powerful instrument to fully characterize samples by ion beam analysis, through the simultaneous collection of PIXE, PIGE and BS elemental maps. Its characteristics can make it often competitive with traditional in vacuum microbeam for measurements of thick targets.
NASA Astrophysics Data System (ADS)
Janssens, K.; Aerts, A.; Vincze, L.; Adams, F.; Yang, C.; Utui, R.; Malmqvist, K.; Jones, K. W.; Radtke, M.; Garbe, S.; Lechtenberg, F.; Knöchel, A.; Wouters, H.
1996-04-01
A series of 89 glass fragments of Roman glass are studied using electron, proton and synchrotron radiation induced X-ray emission from microscopic areas on the sample surface. The glass originates from Qumran, Jordan and was buried for 1900 years. The weathering layers that result from the extended contact with ground water have been studied, next to the trace composition of the original glass of these pieces. The latter information indicates that at Qumran, large quantities of glass objects were being used in Ancient times. Cross-sectional profiles of the glass show a complex migration behaviour of various groups of major and trace elements.
NASA Technical Reports Server (NTRS)
Berger, Pascal; Sayir, Ali; Berger, Marie-Helene
2004-01-01
The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.
Minkin, J.A.; Finkelman, R.B.; Thompson, C.L.; Chao, E.C.T.; Ruppert, L.F.; Blank, H.; Cecil, C.B.
1984-01-01
Optical and scanning electron microscope as well as electron and proton microprobe techniques have been used in a detailed investigation of the modes of occurrence of arsenic and selenium in pyrite in Upper Freeport coal from the Homer City area, Indiana County, Pennsylvania. Polished blocks were prepared from columnar samples of the coal bed to represent particular zones continuously from top to bottom. Initial selection of zones to be studied was based on chemical analysis of bench-channel samples. Microprobe data indicate that the highest concentrations of arsenic (as great as 1. 5 wt. %) are apparently in solid solution in pyrite within a limited stratigraphic interval of the coal bed. Smaller amounts of arsenic and selenium (concentrations up to approximately 0. 1 and 0. 2 wt. % respectively) were detected at isolated points within pyrite grains in various strata of the coal bed.
Elemental maps of Amoeba proteus by a scanning proton microprobe
NASA Astrophysics Data System (ADS)
Li, Minqian; Zhu, Jingde; Zhu, Jieqing; Zhou, Zheng; Huang, Zeqi; Zhou, Weiying; Cholewa, M.; Legge, G. J. F.
1991-03-01
Elemental maps for P, S, Cl, K, Ca and Zn of individual Amoeba proteus were obtained with the Melbourne scanning proton microprobe. The emphasis was put on the relationship of both distribution and concentration of Zn within the cell and the growth inhibitory effect of higher Zn concentrations in the culture medium. At a concentration of 0.04 mmol ZnCl 2, Amoeba growth was inhibited. But at a concentration of 0.0016 mmol, the Amoeba grew as well as a control grown without addition of Zn. We found that in the former (0.04 mmol) Zn concentrated three times more than in the latter (0.0016 mmol), and also that Zn was enriched much more in the nucleus and endoplasm (five to six times) than in other parts of the cell (two times). Future work along these lines may provide insight into the mechanism by which Zn affects the growth of Amoeba proteus and other cells.
NASA Astrophysics Data System (ADS)
Braun-Dullaeus, Karl-Ulrich; Traxel, Kurt
1995-02-01
One method forestimating cooling rates of meteorite parent bodies is to model measured nickel distributions in taenite lamellae of iron meteorites. Goldstein and Ogilvie ( Geochim. Cosmochim. Acta29, 893, 1965) and Rasmussen ( Icarus45, 564, 1981) developed techniques based on this idea to examine the cooling history in the temperature range between ˜700 and ˜400°C. As a result of Instrumental Neutron Activation Analysis (INAA) Rasmussen et al. ( Meteoritics23, 105, 1988) postulated that some trace elements would also be good cooling rate indicators. They argued that elements with distinct diffusion behavior are sensitive to different temperature ranges. The new Heidelberg proton microprobe uses the method of Proton Induced X-ray Emission (PIXE) for elemental analysis. This microprobe is an appropriate instrument to measure distributions of trace elements with a spatial resolution of 2 μm. We demonstrated on the iron meteorites Cape York (Agpalilik), Toluca and Odessa that the elements copper, zinc, gallium and germanium imitate the profiles of nickel in taenite lamella. The interpretation of the Zn, Ga and Ge profiles leads to the conclusion that these elements undergo diffusion mechanisms comparable to those of Ni. The numerical simulation of Cu distributions with a simplified model points out that little new information can be obtained about the cooling history of the meteorites by modelling Cu profiles. To simulate Zn, Ga or Ge distributions, the use of ternary phase diagrams is necessary.
Focused Heavy Ion Nuclear Microprobe facility at the University of North Texas
NASA Astrophysics Data System (ADS)
Guo, B. N.; Yang, C.; El Bouanani, M.; Duggan, J. L.; McDaniel, F. D.
1999-10-01
A Focused Heavy Ion Nuclear Microprobe facility has been constructed at the University of North Texas. The microprobe utilizes two separated Russian magnetic quadrupole quadruplets. The two identical magnetic quadrupole doublet lenses are separated by 2.61 meters. The lens system with ~ 80 times demagnification has the ability to focus proton, alpha particle, or heavier ions down to a spot size of ~ 1 μm. The microprobe components rest on a 7 meter steel beam support with vibration isolation. A computer provides control for the lens power supplies and also the parameters for a post-lens scanning coil to raster-scan the beam across the sample. Up to four detection channels can be used for simultaneous data acquisition under VME control. A RISC workstation is used to collect, display and analyze the data. The data is transferred via ethernet. A detailed description of the facility and data acquisition system along with preliminary testing results on TEM grids with Rutherford Backscattering Spectrometry and the Ion Beam Induced Charge Collection techniques will be presented.
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
NASA Astrophysics Data System (ADS)
Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.
Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.
2000-03-01
The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.
Proton-beam writing channel based on an electrostatic accelerator
NASA Astrophysics Data System (ADS)
Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.
2016-09-01
We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.
Nuclear micro-probe analysis of Arabidopsis thaliana leaves
NASA Astrophysics Data System (ADS)
Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; López-Martín, M. C.; Gotor, C.; Romero, L. C.
2003-09-01
Phytoremediation is a cost-effective plant-based approach for remediation of soils and waters which takes advantage of the remarkable ability of some plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, such as toxic heavy metals and organic pollutants. Nowadays, phytoremediation technology is becoming of paramount importance when environmental decontamination is concerned, due to the emerging knowledge of its physiological and molecular mechanisms and the new biological and engineering strategies designed to optimize and improve it. In addition, the feasibility of using plants for environmental cleanup has been confirmed by many different trials around the world. Arabidopsis thaliana plants can be used for basic studies to improve the technology on phytoremediation. Making use of nuclear microscopy techniques, in this paper we study leaves of wild type and transgenic A. thaliana plants grown in a cadmium-rich environment under different conditions. Micro-PIXE, RBS and SEM analyses, performed on the scanning proton micro-probe at the CNA in Seville (Spain), prove that cadmium is preferentially sequestered in the central region of epidermal trichome and allow comparing the effects of genetic modifications.
Channeling STIM analysis of radiation damage in single crystal diamond membrane
NASA Astrophysics Data System (ADS)
Sudić, I.; Cosic, D.; Ditalia Tchernij, S.; Olivero, P.; Pomorski, M.; Skukan, N.; Jakšić, M.
2017-08-01
The use of focused ion beam transmission channeling patterns to monitor the damage creation process in thin diamond single crystal membrane is described. A 0.8 MeV proton beam from the Ruđer Bošković Institute nuclear microprobe was used to perform Channeling Scanning Transmission Ion Microscopy (CSTIM) measurements. CSTIM was used instead of RBS channeling because of (several orders of magnitude) lower damage done to the sample during the measurements. Damage was introduced in selected areas by 15 MeV carbon beam in range of fluences 3·1015-2·1017 ions/cm2. Contrary to Ion Beam Induced Charge (IBIC), CSTIM is shown to be sensitive to the large fluences of ion beam radiation. Complementary studies of both IBIC and CSTIM are presented to show that very high fluence range can be covered by these two microprobe techniques, providing much wider information about the diamond radiation hardness. In addition micro Raman measurements were performed and the height of the GR 1 peak was correlated to the ion beam fluence.
NASA Astrophysics Data System (ADS)
Xiao, Guoqing; Shen, Hao; Du, Guanghua
2017-08-01
This special issue of Nuclear Instruments and Methods B contains the proceedings of the 15th International Conference on Nuclear Microprobe Technology and Applications (ICNMTA2016) and the 6th International Workshop on Proton Beam Writing held in Lanzhou, China, from 31 July to 5 August 2016. The conference was hosted by the Institute of Modern Physics, Chinese Academy of Sciences and was co-organized by Fudan University.
NASA Astrophysics Data System (ADS)
Brune, D.; Brunell, G.; Lindh, U.
1982-06-01
Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.
Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation
NASA Astrophysics Data System (ADS)
Moser, M.; Reichart, P.; Bergmaier, A.; Greubel, C.; Schiettekatte, F.; Dollinger, G.
2016-03-01
Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton-proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness.
Transport of a high brightness proton beam through the Munich tandem accelerator
NASA Astrophysics Data System (ADS)
Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.
2015-04-01
Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.
NASA Astrophysics Data System (ADS)
Nxumalo, V.; Kramers, J.; Mongwaketsi, N.; Przybyłowicz, W. J.
2017-08-01
Uranium occurrence and characterisation in the coal samples of the upper coal zones of the Vryheid Formation and mudstones of the Volksrust Formation was investigated using micro-PIXE (Proton-Induced X-ray Emission) and proton backscattering spectrometry (BS) in conjunction with the nuclear microprobe. Two styles of uranium mineralisation in the Springbok Flats Basin were found: syngenetic mineralisation in which uranium occurs organically bound with coal matrix, with no discrete uranium minerals formed, and epigenetic mineralisation in which uranium occurs in veins that are filled with coffinite with botryoidal texture in the mudstones of the Volksrust Formation, overlying the coal zones. Micro-PIXE analysis made it possible to map out trace elements (including uranium) associated with the coals at low levels of detection, which other techniques such as SEM-EDS and ore microscopy failed. This information will help in better understanding of the best extraction methods to be employed to recover uranium from the coals of the Springbok Flats Basin.
Ion beam microanalysis of human hair follicles
NASA Astrophysics Data System (ADS)
Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.
2007-07-01
Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.
NASA Astrophysics Data System (ADS)
Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.
2005-04-01
With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.
Elementary review of electron microprobe techniques and correction requirements
NASA Technical Reports Server (NTRS)
Hart, R. K.
1968-01-01
Report contains requirements for correction of instrumented data on the chemical composition of a specimen, obtained by electron microprobe analysis. A condensed review of electron microprobe techniques is presented, including background material for obtaining X ray intensity data corrections and absorption, atomic number, and fluorescence corrections.
PIXE analysis of caries related trace elements in tooth enamel
NASA Astrophysics Data System (ADS)
Annegarn, H. J.; Jodaikin, A.; Cleaton-Jones, P. E.; Sellschop, J. P. F.; Madiba, C. C. P.; Bibby, D.
1981-03-01
PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas susceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surfaces), with the aim of determining the possible roles of trace elements in the curious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and the capability of localised surface analysis compared with the pooled samples required for neutron activation analysis, makes it a powerful and useful technique in dental analysis.
A microbeam slit system for high beam currents
NASA Astrophysics Data System (ADS)
Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.
2015-04-01
A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.
NASA Astrophysics Data System (ADS)
Olabanji, S. O.; Ige, O. A.; Mazzoli, C.; Ceccato, D.; Akintunde, J. A.; De Poli, M.; Moschini, G.
2005-10-01
For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.
Low LET proton microbeam to understand high-LET RBE by shaping spatial dose distribution
NASA Astrophysics Data System (ADS)
Greubel, Christoph; Ilicic, Katarina; Rösch, Thomas; Reindl, Judith; Siebenwirth, Christian; Moser, Marcus; Girst, Stefanie; Walsh, Dietrich W. M.; Schmid, Thomas E.; Dollinger, Günther
2017-08-01
High LET radiation, like heavy ions, are known to have a higher biological effectiveness (RBE) compared to low LET radiation, like X- or γ -rays. Theories and models attribute these higher effectiveness mostly to their extremely inhomogeneous dose deposition, which is concentrated in only a few micron sized spots. At the ion microprobe SNAKE, low LET 20 MeV protons (LET in water of 2.6 keV/μm) can be applied to cells either randomly distributed or focused to submicron spots, approximating heavy ion dose deposition. Thus, the transition between low and high LET energy deposition is experimentally accessible and the effect of different spatial dose distributions can be analysed. Here, we report on the technical setup to cultivate and irradiate 104 cells with submicron spots of low LET protons to measure cell survival in unstained cells. In addition we have taken special care to characterise the beam spot of the 20 MeV proton microbeam with fluorescent nuclear track detectors.
NASA Astrophysics Data System (ADS)
Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.
2010-06-01
Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.
NASA Astrophysics Data System (ADS)
Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi
2018-03-01
This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.
Jamieson, Heather E.; Robinson, Clare; Alpers, Charles N.; Nordstrom, D. Kirk; Poustovetov, Alexei; Lowers, Heather A.
2005-01-01
Jarosite-group minerals accumulate in the form of stalactites and fine-grained mud on massive pyrite in the D drift of the Richmond mine, Iron Mountain, California. Water samples were collected by placing beakers under the dripping stalactites and by extracting pore water from the mud using a centrifuge. The water is rich in Fe3+ and SO4 2−, with a pH of approximately 2.1, which is significantly higher than the extremely acidic waters found elsewhere in the mine. Electron-microprobe analysis and X-ray mapping indicate that the small crystals (<10 μm in diameter) are compositionally zoned with respect to Na and K, and include hydronium jarosite corresponding to the formula (H3O)0.6K0.3Na0.1Fe3 3+(SO4)2(OH)6. The proton-microprobe analyses indicate that the jarosite-group minerals contain significant amounts of As, Pb and Zn, and minor levels of Bi, Rb, Sb, Se, Sn and Sr. Speciation modeling indicates that the drip waters are supersaturated with respect to jarosite-group minerals. The expected range in composition of jarosite-group solid-solution in equilibrium with the pore water extracted from the mud was found to be consistent with the observed range in composition.
Electron microprobe mineral analysis guide
NASA Technical Reports Server (NTRS)
Brown, R. W.
1980-01-01
Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.
NASA Astrophysics Data System (ADS)
Pålsgård, Eva; Johansson, Carina; Li, Gang; Grime, Geoff W.; Triffitt, J. T.
1997-07-01
To respond to varying environmental demands the bone tissue in the body is under continual reconstruction throughout life. It is known that metallic elements are important for maintaining normal bone structure, but their roles are not well understood. More information about the effects of metal excess or deficiency is needed to help in the development of metallic bone implants and to improve the treatment of bone fractures and defects. The Oxford Scanning Proton Microprobe (SPM) is being applied in two studies involving metal ions in bone: (1) bone regrowth and bonding to titanium bone implants may be influenced by diffusion of Ti ions into the bone. We are using microPIXE to determine the metal ion content of bone developing in contact with implants of pure Nb, Ti and Ti alloys. (2) Bone lengthening as a surgical procedure is induced by fracturing the bone and allowing it to heal with a small gap between the fractured ends created by the use of external fixators. The gap can be slowly increased during the healing process to stimulate the production of new bone. The enzymes and other constituents of the developing bone need certain metals for their function. Using experimental animals we have studied the concentrations of the metals and whether a deficiency of trace metals limits the optimum rate of bone lengthening.
Pineda-Vargas, C A; Eisa, M E M; Rodgers, A L
2009-03-01
The micro-PIXE and RBS techniques are used to investigate the matrix as well as the trace elemental composition of calcium-rich human tissues on a microscopic scale. This paper deals with the spatial distribution of trace metals in hard human tissues such as kidney stone concretions, undertaken at the nuclear microprobe (NMP) facility. Relevant information about ion beam techniques used for material characterization will be discussed. Mapping correlation between different trace metals to extract information related to micro-regions composition will be illustrated with an application using proton energies of 1.5 and 3.0 MeV and applied to a comparative study for human kidney stone concretions nucleation region analysis from two different population groups (Sudan and South Africa).
Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.
ERIC Educational Resources Information Center
Denoyer, Eric; And Others
1982-01-01
Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)
Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe
NASA Technical Reports Server (NTRS)
Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.
1993-01-01
A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.
NASA Technical Reports Server (NTRS)
Gray, H. R.
1972-01-01
Use of an ion microprobe and a laser microprobe to measure concentrations of corrosion-produced hydrogen on a microscopic scale. Hydrogen concentrations of several thousand ppm were measured by both analytical techniques below corroded and fracture surfaces of hot salt stress corroded titanium alloy specimens. This extremely high concentration compares with only about 100 ppm hydrogen determined by standard vacuum fusion chemical analyses of bulk samples. Both the ion and laser microprobes were used to measure hydrogen concentration profiles in stepped intervals to substantial depths below the original corroded and fracture surfaces. For the ion microprobe, the area of local analysis was 22 microns in diameter and for the laser microprobe, the area of local analysis was about 300 microns in diameter. The segregation of hydrogen below fracture surfaces supports a previously proposed theory that corrosion-produced hydrogen is responsible for hot salt stress corrosion embrittlement and cracking of titanium alloys. These advanced analytical techniques suggest great potential for many areas of stress corrosion and hydrogen embrittlement research, quality control, and field inspection of corrosion problems. For example, it appears possible that a contour map of hydrogen distribution at notch roots and crack tips could be quantitatively determined. Such information would be useful in substantiating current theories of stress corrosion and hydrogen embrittlement.
Analysis of uniformity of as prepared and irradiated S.I. GaAs radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nava, F.; Vanni, P.; Canali, C.
1998-06-01
SI (semi-insulating) LEC (Liquid Encapsulated Czochralsky) GaAs (gallium arsenide) Schottky barrier detectors have been irradiated with high energy protons (24 GeV/c, fluence up to 16.45 {times} 10{sup 13} p/cm{sup 2}). The detectors have been characterized in terms of I/V curves, charge collection efficiency (cce) for incident 5.48 MeV {alpha}-, 2 MeV proton and minimum ionizing {beta}-particles and of cce maps by microprobe technique IBIC (Ion Beam Induced Charge). At the highest fluence a significant degradation of the electron and hole collection efficiencies and a remarkable improvement of the Full Width Half Maximum (FWHM) energy resolution have been measured with {alpha}-more » and proton particles. Furthermore, the reduction in the cce is greater than the one measured with {beta}-particles and the energy resolution worsens with increasing the applied bias, V{sub a}, above the voltage V{sub d} necessary to extend the electric field al the way to the ohmic contact. On the contrary, in the unirradiated detectors the charge collection efficiencies with {alpha}-, {beta}- and proton particles are quite similar and the energy resolution improves with increasing V{sub a} > V{sub d}. IBIC spectra and IBIC space maps obtained by scanning a focused (8 {micro}m{sup 2}) 2 MeV proton microbeam on front (Schottky) and back (ohmic) contacts, support the observed electric field dependence of the energy resolution both in unirradiated and most irradiated detectors. The results obtained let them explain the effect of the electric field strength and the plasma on the collection of the charge carriers and the FWHM energy resolution.« less
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1989-01-01
Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.
NASA Technical Reports Server (NTRS)
Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.
1989-01-01
The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.
NASA Astrophysics Data System (ADS)
Pineda-Vargas, C. A.; Eisa, M. E.; Chikte, U. M. E.; Conradie, J. L.
2004-10-01
The process of demineralisation in tooth erosion due to exposure to acidic media was investigated in a group of test and control healthy human molar teeth. Analysis by micro-PIXE and proton-backscattering showed that the levels of trace elements were enriched and/or depleted according to experimental treatment. The atomic ratios of major constituents in the matrix were characteristic of test or controls with typical ratios: O 5P 1Ca 3F 1 for tests and O 6P 0.5Ca 3F 0.5 for controls. The correlation between maps of Ca and Zn in and around the interface between dentine and enamel in control samples showed two kinds of correlation strengths (for enamel and dentine). The strongest correlation was related to the enamel area.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-12-01
A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.
NASA Technical Reports Server (NTRS)
Mckay, G.; Wagstaff, J.; Yang, S.-R.
1986-01-01
Partition coefficients were determined for Gd, Lu, Hf and Zr among ilmenite, armalcolite, and synthetic high-Ti mare basaltic melts at temperatures from 1122 deg to 1150 deg, and at oxygen fugacities of IW x 10 exp 0.5, by in situ analysis with an electron microprobe, using samples doped to present concentration levels. Coefficients for Zr were also measured for samples containing 600-1600 ppm Zr using this microprobe. In addition, coefficients were determined for Hf and Zr between chromian ulvospinel and melt, for Hf between pigeonite and melt, and for Lu between olivine and melt by microprobe analysis of samples doped to present levels. Values measured using the microprobe were in agreement with the values measured by analyzing mineral separates from the same run products by isotope dilution. Coefficient values for ilmenite are less than 0.01 for the LREE, are around 0.1 for the HREE, and are several times greater than this for Zr and Hf.
U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads
NASA Astrophysics Data System (ADS)
Bischoff, James L.; Wooden, Joe; Murphy, Fred; Williams, Ross W.
2005-04-01
We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ˜60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few μm deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems.
U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads
Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.
2005-01-01
We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.
Microprobe monazite geochronology: new techniques for dating deformation and metamorphism
NASA Astrophysics Data System (ADS)
Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.
2003-04-01
High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic dating techniques. They allow geochronology to be incorporated into the microstructural analytical process, resulting in a new level of integration of time (t) into P-T-D histories.
Microprobe investigation of brittle segregates in aluminum MIG and TIG welds
NASA Technical Reports Server (NTRS)
Larssen, P. A.; Miller, E. L.
1968-01-01
Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.
Raman microprobe analysis of single ramie fiber during mercerization
Akira Isogai; Umesh P. Agarwal; Rajai H. Atalla
2003-01-01
The Raman microprobe technique was applied to structural analysis of single ramie fibers during mercerization. Polarized laser beam was irradiated on a ramie fiber in 0-30 % NaOD/D2O with the electric vector at 0 or 90° to the fiber axis, and Raman spectra thus obtained were studied in relation to the concentration of NaOD in D2O. Conversion of -OH to -OD in ramie...
Mars Microprobe Entry Analysis
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Mitcheltree, Robert A.; Cheatwood, F. McNeil
1998-01-01
The Mars Microprobe mission will provide the first opportunity for subsurface measurements, including water detection, near the south pole of Mars. In this paper, performance of the Microprobe aeroshell design is evaluated through development of a six-degree-of-freedom (6-DOF) aerodynamic database and flight dynamics simulation. Numerous mission uncertainties are quantified and a Monte-Carlo analysis is performed to statistically assess mission performance. Results from this 6-DOF Monte-Carlo simulation demonstrate that, in a majority of the cases (approximately 2-sigma), the penetrator impact conditions are within current design tolerances. Several trajectories are identified in which the current set of impact requirements are not satisfied. From these cases, critical design parameters are highlighted and additional system requirements are suggested. In particular, a relatively large angle-of-attack range near peak heating is identified.
Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J
2015-09-01
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bernstein, Max P.; Moore, Marla H.; Elsila, Jamie E.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.
2003-01-01
Ices at ~15 K consisting of the polycyclic aromatic hydrocarbon coronene (C24H12) condensed either with H2O, CO2, or CO in the ratio of 1:100 or greater have been subjected to MeV proton bombardment from a Van de Graaff generator. The resulting reaction products have been examined by infrared transmission-reflection-transmission spectroscopy and by microprobe laser-desorption laser-ionization mass spectrometry. Just as in the case of UV photolysis, oxygen atoms are added to coronene, yielding, in the case of H2O ices, the addition of one or more alcohol (OH) and ketone (>CO) side chains to the coronene scaffolding. There are, however, significant differences between the products formed by proton irradiation and the products formed by UV photolysis of coronene containing CO and CO2 ices. The formation of a coronene carboxylic acid (COOH) by proton irradiation is facile in solid CO but not in CO2, the reverse of what was previously observed for UV photolysis under otherwise identical conditions. This work presents evidence that cosmic-ray irradiation of interstellar or cometary ices should have contributed to the formation of aromatics bearing ketone and carboxylic acid functional groups in primitive meteorites and interplanetary dust particles.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.
NASA Technical Reports Server (NTRS)
Hutcheon, I. D.; Steele, I. M.; Smith, J. V.; Clayton, R. N.
1978-01-01
Three Type B inclusions from the Allende meteorite have been analyzed. A grain-to-grain characterization of mineral chemistry and isotopic content was made possible by the use of a range of techniques, including luminescence and scanning electron microscopy and electron and ion microprobe analysis. Cathodoluminescence was used in fine-grained, optically opaque regions to distinguish between sub-micrometer phases, such as garnet and Si-rich material, subsequently identified by electron probe and scanning electron microscope analyses. Four types of luminescence patterns, due to twinning, primary sector zoning, alteration of boundaries and fractures, and shock effects, were identified in Allende plagioclase. Luminescence color exhibited a strong correlation with Mg content and provided a guide for an electron probe quantitative map of Mg and Na distributions. Ion microprobe studies of individual grains revealed large excesses of Mg-26.
NASA Astrophysics Data System (ADS)
Armstrong, J. T.; McSwiggen, P.; Nielsen, C.
2013-12-01
Quantitative electron microprobe analysis has revolutionized two-dimensional elemental analysis of Earth materials at the micrometer-scale. Newly available commercial field emission (FE-) source instruments represent significant technological advances in quantitative measurement with high spatial resolution at sub-micrometer scale - helping to bridge the gap between conventional microprobe and AEM analyses. Their performance specifications suggest the ability to extend routine quantitative analyses from ~3-5 micrometer diameter areas down to 1-2 micrometer diameter at beam energies of 15 keV; and, with care, down to 200-500 nm diameter at reduced beam energies. . In order to determine whether the level of performance suggested by the specifications is realistic, we spent a week doing analyses at the newly installed JEOL JXA-8530F field emission microprobe at Arizona State University, using a series of samples that are currently being studied in various projects at CIW. These samples included: 1) high-pressure experiment run product containing intergrowths of sub-micrometer grains of metal, sulfide, Fe-Mg-perovskite, and ferropericlase; 2) a thin section of the Ivankinsky basalt, part of the Siberian flood basalt sequence containing complex sub-micrometer intergrowths of magnetite, titanomagnetite, ilmenite, titanite and rutile; 3) a polished section of the Giroux pallasite, being studied for element partitioning, that we used as an analogue to test the capabilities for zonation and diffusion determination; and 4) a polished section of the Semarkona ordinary chondrite containing chondules comprised of highly zoned and rimmed olivines and pyroxenes in a complex mesostasis of sub-micrometer pyroxenes and glass. The results of these analyses that we will present confirmed our optimism regarding the new analytical capabilities of a field emission microprobe. We were able, at reduced voltages, to accurately analyze the major and minor element composition of intergrowth and rimming phases as small as 200 nm without artifact contribution from the surrounding phases. We were able to determine the compositional gradients at kamacite-taenite boundaries in the pallasite specimen with a resolution of ~180 nm, enabling much higher precision and accuracy determination of the meteorite's cooling rate than previously possible with microprobe measurements. We were able to determine the composition and zonation of phases in the experimental run product, none of which were large enough to be analyzable in a conventional electron microprobe.
An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth
NASA Astrophysics Data System (ADS)
Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo
2017-12-01
Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.
NASA Technical Reports Server (NTRS)
Walter, L. S.; Doan, A. S., Jr.; Wood, F. M., Jr.; Bredekamp, J. H.
1972-01-01
A combined WDS-EDS system obviates the severe X-ray peak overlap problems encountered with Na, Mg, Al and Si common to pure EDS systems. By application of easily measured empirical correction factors for pulse pile-up and peak overlaps which are normally observed in the analysis of silicate minerals, the accuracy of analysis is comparable with that expected for WDS electron microprobe analyses. The continuum backgrounds are subtracted for the spectra by a spline fitting technique based on integrated intensities between the peaks. The preprocessed data are then reduced to chemical analyses by existing data reduction programs.
Presence of negative charge on the basal planes of New York talc.
Burdukova, E; Becker, M; Bradshaw, D J; Laskowski, J S
2007-11-01
Potentiometric titration measurements as well as rheological measurements of talc aqueous suspensions indicate that the behavior of the New York talc particles is consistent with the presence of a negative charge on their basal planes. The possibility of the presence of a negative electrical charge on the basal planes of talc particles is analyzed in this paper. Samples of New York talc were studied using electron microprobe analysis and dehydration techniques and the exact chemical formula of New York talc was determined. It was found that there exists a deficiency of protons in the tetrahedral layers of talc, resulting from substitution of Si(4+) ions with Al(3+) and Ti(3+) ions. The comparison of the level of substitution of Si(4+) ions with ions of a lower valency was found to be of a similar order of magnitude as that found in other talc deposits. This strongly points to the presence of a negative charge on the talc basal planes.
Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model.
Girst, Stefanie; Greubel, Christoph; Reindl, Judith; Siebenwirth, Christian; Zlobinskaya, Olga; Walsh, Dietrich W M; Ilicic, Katarina; Aichler, Michaela; Walch, Axel; Wilkens, Jan J; Multhoff, Gabriele; Dollinger, Günther; Schmid, Thomas E
2016-05-01
Proton minibeam radiation therapy is a novel approach to minimize normal tissue damage in the entrance channel by spatial fractionation while keeping tumor control through a homogeneous tumor dose using beam widening with an increasing track length. In the present study, the dose distributions for homogeneous broad beam and minibeam irradiation sessions were simulated. Also, in an animal study, acute normal tissue side effects of proton minibeam irradiation were compared with homogeneous irradiation in a tumor-free mouse ear model to account for the complex effects on the immune system and vasculature in an in vivo normal tissue model. At the ion microprobe SNAKE, 20-MeV protons were administered to the central part (7.2 × 7.2 mm(2)) of the ear of BALB/c mice, using either a homogeneous field with a dose of 60 Gy or 16 minibeams with a nominal 6000 Gy (4 × 4 minibeams, size 0.18 × 0.18 mm(2), with a distance of 1.8 mm). The same average dose was used over the irradiated area. No ear swelling or other skin reactions were observed at any point after minibeam irradiation. In contrast, significant ear swelling (up to fourfold), erythema, and desquamation developed in homogeneously irradiated ears 3 to 4 weeks after irradiation. Hair loss and the disappearance of sebaceous glands were only detected in the homogeneously irradiated fields. These results show that proton minibeam radiation therapy results in reduced adverse effects compared with conventional homogeneous broad-beam irradiation and, therefore, might have the potential to decrease the incidence of side effects resulting from clinical proton and/or heavy ion therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.
2005-01-01
The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.
Bioimaging of cells and tissues using accelerator-based sources.
Petibois, Cyril; Cestelli Guidi, Mariangela
2008-07-01
A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.
Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness
NASA Astrophysics Data System (ADS)
Schmid, T. E.; Greubel, C.; Hable, V.; Zlobinskaya, O.; Michalski, D.; Girst, S.; Siebenwirth, C.; Schmid, E.; Molls, M.; Multhoff, G.; Dollinger, G.
2012-10-01
This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm-1) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBEMN = 1.48 ± 0.07) and dicentrics (RBED = 1.92 ± 0.15), in human-hamster hybrid (AL) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm2 matrix compared to quasi homogeneous in a 1 × 1 µm2 matrix applied protons (RBEMN = 1.28 ± 0.07; RBED = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a 12C ion with 55 MeV total energy (4.48 MeV u-1). The enhancements are about half of that obtained for 12C ions (RBEMN = 2.20 ± 0.06 and RBED = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.
Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness.
Schmid, T E; Greubel, C; Hable, V; Zlobinskaya, O; Michalski, D; Girst, S; Siebenwirth, C; Schmid, E; Molls, M; Multhoff, G; Dollinger, G
2012-10-07
This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm(-1)) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE(MN) = 1.48 ± 0.07) and dicentrics (RBE(D) = 1.92 ± 0.15), in human-hamster hybrid (A(L)) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm(2) matrix compared to quasi homogeneous in a 1 × 1 µm(2) matrix applied protons (RBE(MN) = 1.28 ± 0.07; RBE(D) = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a (12)C ion with 55 MeV total energy (4.48 MeV u(-1)). The enhancements are about half of that obtained for (12)C ions (RBE(MN) = 2.20 ± 0.06 and RBE(D) = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.
NASA Astrophysics Data System (ADS)
Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.
1993-05-01
A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.
NASA Astrophysics Data System (ADS)
Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.
1999-11-01
High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.
Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE
Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.
1997-01-01
The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.
Advances in Laser Microprobe (U-Th)/He Geochronology
NASA Astrophysics Data System (ADS)
van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K. V.
2008-12-01
The development of the laser microprobe (U-Th)/He dating method has the potential to overcome many of the limitations that affect conventional (U-Th)/He geochronology. Conventional single- or multi-crystal (U- Th)/He geochronology requires the use of pristine, inclusion-free, euhedral crystals. Furthermore, the ages that are obtained require corrections for the effects of zoning and alpha ejection based on an ensemble of assumptions before interpretation of their geological relevance is possible. With the utilization of microbeam techniques many of the limitations of conventional (U-Th)/He geochronology can either be eliminated by careful spot selection or accounted for by detailed depth profiling analyses of He, U and Th on the same crystal. Combined He, Th, and U depth profiling on the same crystal potentially even offers the ability to extract thermal histories from the analyzed grains. Boyce et al. (2006) first demonstrated the laser microprobe (U-Th)/He dating technique by successfully dating monazite crystals using UV laser ablation to liberate He and determined U and Th concentrations using a Cameca SX-Ultrachron microprobe. At Arizona State University, further development of the microprobe (U-Th)/He dating technique continues using an ArF Excimer laser connected to a GVI Helix Split Flight Tube noble gas mass spectrometer for He analysis and SIMS techniques for U and Th. The Durango apatite age standard has been successfully dated at 30.7 +/- 1.7 Ma (2SD). Work on dating zircons by laser ablation is currently underway, with initial results from Sri Lanka zircon at 437 +/- 14 Ma (2SD) confirmed by conventional (U-Th)/He analysis and in agreement with the published (U-Th)/He age of 443 +/- 9 Ma (2SD) for zircons from this region in Sri Lanka (Nasdala et al., 2004). The results presented here demonstrate the laser microprobe (U-Th)/He method as a powerful tool that allows application of (U- Th)/He dating to areas of research such as detrital apatite and zircon dating, where conventional (U-Th)/He geochronology has limited applicability. Boyce et al. (2006) GCA 70 (3031-3039), Nasdala et al. (2004) Am. Min. 89 (219-231)
NASA Technical Reports Server (NTRS)
Albee, Arden L.
1993-01-01
During the past three years we have received support to continue our research in elucidating the formation and alteration histories of selected meteoritic materials by a combination of petrographic, trace element, and isotopic analyses employing optical and scanning electron microscopes and electron and ion microprobes. The awarded research funds enabled the P.I. to attend the annual LPSC, the co-I to devote approximately 15 percent of his time to the research proposed in the grant, and partial support for a visiting summer post-doctoral fellow to conduct electron microprobe analyses of meteoritic samples in our laboratory. The research funds, along with support from the NASA Education Initiative awarded to P.I. G. Wasserburg, enabled the co-I to continue a mentoring program with inner-city minority youth. The support enabled us to achieve significant results in the five projects that we proposed (in addition to the Education Initiative), namely: studies of the accretional and post-accretional alteration and thermal histories in CV meteorites, characterization of periclase-bearing Fremdlinge in CV meteorites, characterization of Ni-Pt-Ge-Te-rich Fremdlinge in CV meteorites in an attempt to determine the constraints they place on the petrogenetic and thermal histories of their host CAI's, correlated electron and ion microprobe studies of silicate and phosphate inclusions in the Colomera meteorite in an attempt to determine the petrogenesis of the IE iron meteorites, and development of improved instrumental and correction procedures for improved accuracy of analysis of meteoritic materials with the electron microprobe. This grant supported, in part or whole, 18 publications so far by our research team, with at least three more papers anticipated. The list of these publications is included. The details of the research results are briefly summarized.
Ion microprobe mass analysis of lunar samples. Lunar sample program
NASA Technical Reports Server (NTRS)
Anderson, C. A.; Hinthorne, J. R.
1971-01-01
Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.
Electron Microprobe Analyses of Lithic Fragments and Their Minerals from Luna 20 Fines
NASA Technical Reports Server (NTRS)
Conrad, G. H.; Hlava, P. F.; Green, J. A.; Moore, R. B.; Moreland, G.; Dowty, E.; Prinz, M.; Keil, K.; Nehru, C. E.; Bunch, T. E.
1973-01-01
The bulk analyses (determined with the broad beam electron microprobe technique) of lithic fragments are given in weight percentages and are arranged according to the rock classification. Within each rock group the analyses are arranged in order of increasing FeO content. Thin section and lithic fragment numbers are given at the top of each column of analysis and correspond to the numbers recorded on photo mosaics on file in the Institute of Meteoritics. CIPW molecular norms are given for each analysis. Electron microprobe mineral analyses (given in oxide weight percentages), structural formulae and molecular end member values are presented for plagioclase, olivine, pyroxene and K-feldspar. The minerals are selected mostly from lithic fragments that were also analyzed for bulk composition. Within each mineral group the analyses are presented according to the section number and lithic fragment number. Within each lithic fragment the mineral analyses are arranged as follows: Plagioclase in order of increasing CaO; olivine and pyroexene in order of increasing FeO; and K-feldspar in order of increasing K2O. The mineral grains are identified at the top of each column of analysis by grain number and lithic fragment number.
Kolker, A.; Wooden, J.L.; Persing, H.M.; Zielinski, R.A.
2000-01-01
The distribution of Cr and other trace metals of environmental interest in a range of widely used U.S. coals was investigated using the Stanford-USGS SHRIMP-RG ion microprobe . Using the oxygen ion source, concentrations of Cr (11 to 176 ppm), V (23 to 248 ppm), Mn (2 to 149 ppm), Ni (2 to 30 ppm), and 13 other elements were determined in illite/smectite, a group of clay minerals commonly present in coal. The results confirm previous indirect or semi-quantitative determinations indicating illite/smectite to be an important host of these metals. Calibration was achieved using doped aluminosilicate-glass synthetic standards and glasses prepared from USGS rock standards. Grains for analysis were identified optically, and confirmed by 1) precursory electron microprobe analysis and wavelength-dispersive compositional mapping, and 2) SHRIMP-RG major element data obtained concurrently with trace element results. Follow-up investigations will focus on the distribution of As and other elements that are more effectively ionized with the cesium primary beam currently being tested.
Synchrotron radiation determination of elemental concentrations in coal
Chen, J.R.; Martys, N.; Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.; Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.
1984-01-01
The variations with depth of the elemental concentrations in vitrinites in a series of vitrites have been determined using radiation from the Cornell high energy synchrotron source. All of the vitrites were selected from a single drill core sample of coal from the Emery coalfield, Utah. The results are compared with similar determinations using the Heidelberg proton microprobe. The advantages and disadvantages of the two techniques are discussed. Results are reported for S, Ca, Ti, Fe, Zn, Br, and Sr. For example, it is found that Fe increases from top to bottom of the coal bed in contrast to S, which decreases from top to bottom of the bed. Other features of the two data sets are also described. ?? 1984.
Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.
Microprobe studies of microtomed particles of white druse salts in shergottite EETA 79001
NASA Technical Reports Server (NTRS)
Lindstrom, D. J.
1991-01-01
The white druse material in Antarctic shergottite EETA 79001 has attracted much attention as a possible sample fo Martian aqueous deposits. Instrumental Neutron Activation Analysis (INAA) was used to determine trace element analyses of small particles of this material obtained by handpicking of likely grains from broken surfaces of the meteorite. Electron microprobe work was attempted on grain areas as large as 150x120 microns. Backscattered electron images show considerable variations in brightness, and botryoidal structures were observed. Microprobe analyses showed considerable variability both within single particles and between different particles. Microtomed surfaces of small selected particles were shown to be very useful in obtaining information on the texture and composition of rare lithologies like the white druse of EETA 79001. This material is clearly heterogeneous on all distance scales, so a large number of further analyses will be required to characterize it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, C.M.; Valley, J.W.; Winter, B.L.
1996-12-01
The oxygen isotopic compositions of authigenic quartz cements in sandstones provide a monitor of the temperatures, compositions, and origins of pore-occluding fluids during diagenesis, but quartz overgrowths are too fine-grained to be amenable to conventional isotopic analysis. We have used a Cameca ims-4f ion microprobe to determine oxygen isotopic variations in authigenic and detrital quartz in four samples of the Ordovician St. Peter Sandstone from the Michigan Basin and Wisconsin Arch, midwestern USA. Ion microprobe isotopic analyses have been successfully accomplished with an internal precision of {+-}1{per_thousand} (1{sigma}) and a spatial resolution of 20-30 {mu}m at low mass resolution usingmore » a high voltage offset technique. Repeated analyses of the quartz standard demonstrate a reproducibility of close to {+-}1{per_thousand} (1 sd) in good agreement with that expected from counting statistics. Conventional and ion microprobe analyses are mutually consistent, supporting the accuracy of the ion microprobe analyses. Within-sample isotopic variations of up to 13{per_thousand} and micro-scale isotopic variations of at least 4{per_thousand} over a distance of 100 {mu}m have been measured within quartz overgrowths in a sandstone from the Wisconsin Arch. Overgrowths are uniformly higher in {delta}{sup 18}O than detrital grains, and gradients of up to 25% exist across a few microns. {sup 18}O-enriched quartz overgrowths in sandstones from the Wisconsin Arch show complex CL zonation and reflect one of two possible processes: (1) low-temperature quartz precipitation during mixing of meteoric waters with upwelling basinal fluids; (2) higher temperature quartz precipitation during episodic gravity-driven upwelling of warm basinal fluids (of comparable isotopic composition to Michigan Basin fluids) from the Illinois Basin, related to evolution of Mississippi Valley type Pb-Zn ore-forming fluids. 59 refs., 7 figs., 4 tabs.« less
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1991-01-01
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.
Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girst, Stefanie, E-mail: stefanie.girst@unibw.de; Greubel, Christoph; Reindl, Judith
Purpose: Proton minibeam radiation therapy is a novel approach to minimize normal tissue damage in the entrance channel by spatial fractionation while keeping tumor control through a homogeneous tumor dose using beam widening with an increasing track length. In the present study, the dose distributions for homogeneous broad beam and minibeam irradiation sessions were simulated. Also, in an animal study, acute normal tissue side effects of proton minibeam irradiation were compared with homogeneous irradiation in a tumor-free mouse ear model to account for the complex effects on the immune system and vasculature in an in vivo normal tissue model. Methods andmore » Materials: At the ion microprobe SNAKE, 20-MeV protons were administered to the central part (7.2 × 7.2 mm{sup 2}) of the ear of BALB/c mice, using either a homogeneous field with a dose of 60 Gy or 16 minibeams with a nominal 6000 Gy (4 × 4 minibeams, size 0.18 × 0.18 mm{sup 2}, with a distance of 1.8 mm). The same average dose was used over the irradiated area. Results: No ear swelling or other skin reactions were observed at any point after minibeam irradiation. In contrast, significant ear swelling (up to fourfold), erythema, and desquamation developed in homogeneously irradiated ears 3 to 4 weeks after irradiation. Hair loss and the disappearance of sebaceous glands were only detected in the homogeneously irradiated fields. Conclusions: These results show that proton minibeam radiation therapy results in reduced adverse effects compared with conventional homogeneous broad-beam irradiation and, therefore, might have the potential to decrease the incidence of side effects resulting from clinical proton and/or heavy ion therapy.« less
NASA Astrophysics Data System (ADS)
Pastuovic, Z.; Siegele, R.; Cohen, D. D.; Mann, M.; Ionescu, M.; Button, D.; Long, S.
2017-08-01
The Centre for Accelerator Science facility at ANSTO has been expanded with the new NEC 6 MV ;SIRIUS; accelerator system in 2015. In this paper we present a detailed description of the new nuclear microprobe-Confocal Heavy Ion Micro-Probe (CHIMP) together with results of the microprobe resolution testing and the elemental analysis performed on typical samples of mineral ore deposits and hyper-accumulating plants regularly measured at ANSTO. The CHIMP focusing and scanning systems are based on the OM-150 Oxford quadrupole triplet and the OM-26 separated scan-coil doublet configurations. A maximum ion rigidity of 38.9 amu-MeV was determined for the following nuclear microprobe configuration: the distance from object aperture to collimating slits of 5890 mm, the working distance of 165 mm and the lens bore diameter of 11 mm. The overall distance from the object to the image plane is 7138 mm. The CHIMP beamline has been tested with the 3 MeV H+ and 6 MeV He2+ ion beams. The settings of the object and collimating apertures have been optimized using the WinTRAX simulation code for calculation of the optimum acceptance settings in order to obtain the highest possible ion current for beam spot sizes of 1 μm and 5 μm. For optimized aperture settings of the CHIMP the beam brightness was measured to be ∼0.9 pA μm-2 mrad-2 for 3 MeV H+ ions, while the brightness of ∼0.4 pA μm-2 mrad-2 was measured for 6 MeV He2+ ions. The smallest beam sizes were achieved using a microbeam with reduced particle rate of 1000 Hz passing through the object slit apertures several micrometers wide. Under these conditions a spatial resolution of ∼0.6 μm × 1.5 μm for 3 MeV H+ and ∼1.8 μm × 1.8 μm for 6 MeV He2+ microbeams in horizontal (and vertical) dimension has been achieved. The beam sizes were verified using STIM imaging on 2000 and 1000 mesh Cu electron microscope grids.
NASA Astrophysics Data System (ADS)
Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde
2016-03-01
In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Keller, L. P.; Sutton, S. R.
2004-01-01
Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth s stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to approximately 30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth s atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin (approximately 100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOFSIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the approximately 2 m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile elements Zn and Br, although spatially inhomogeneous, were not concentrated on the surface of any of the IDPs they examined, suggesting that the Zn and the Br enrichments in the IDPs are not due to contamination during stratospheric residence.
NASA Astrophysics Data System (ADS)
Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs
1986-11-01
Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.
Characterization of biogenic elements in interplanetary dust particles
NASA Technical Reports Server (NTRS)
Bunch, T. E.
1986-01-01
Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazehrad, S., E-mail: vazehrad@kth.se; Elfsberg, J., E-mail: jessica.elfsberg@scania.com; Diószegi, A., E-mail: attila.dioszegi@jth.hj.se
An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to bemore » more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.« less
Routh, V H; Helke, C J
1997-02-01
Antibody-coated microprobes are used to measure neuropeptide release in the central nervous system. Although they are not quantitative, they provide the most precise spatial resolution of the location of in vivo release of any currently available method. Previous methods of coating antibody microprobes are difficult and time-consuming. Moreover, using these methods we were unable to produce evenly coated antibody microprobes. This paper describes a novel method for the production of antibody microprobes using thiol-terminal silanes and the heterobifunctional crosslinker, 4-(4-N-maleimidophenyl)butyric acid hydrazide HCl 1/2 dioxane (MPBH). Following silation, glass micropipettes are incubated with antibody to substance P (SP) that has been conjugated to MPBH. This method results in a dense, even coating of antibody without decreasing the biological activity of the antibody. Additionally, this method takes considerably less time than previously described methods without sacrificing the use of antibody microprobes as micropipettes. The sensitivity of the microprobes for SP is in the picomolar range, and there is a linear correlation between the log of SP concentration (M) and B/B0 (r2 = 0.98). The microprobes are stable for up to 3 weeks when stored in 0.1 M sodium phosphate buffer with 50 mM NaCl (pH 7.4) at 5 degrees C. Finally, insertion into the exposed spinal cord of an anesthetized rat for 15 min produces no damage to the antibody coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrant, K.J.; Odselius, R.
1984-01-01
Energy dispersive X-ray microanalysis (EDX) (or electron microprobe analysis) of the relative intensity for calcium in different bone trabeculae from the tibia epiphysis, and in different parts of one and the same trabecula, was performed on 3 patients who had earlier had a fracture of the ipsilateral tibia-diaphysis. The variation in intensity was compared with the histochemical patterns obtained with both the Goldner and the von Kossa staining techniques for detecting calcium in tissues. Previously reported calcium distribution features, found to be typical for posttraumatic osteopenia, such as striated mineralization patterns in individual trabeculae and large differences in mineralization levelmore » between different trabeculae, could be verified both by means of the two histochemical procedures and from the electron microprobe analysis. A pronounced difference was observed, however, between the two histochemical staining techniques as regards their sensitivity to detect calcium. To judge from the values obtained from the EDX measurements, the sensitivity of the Goldner technique should be more than ten times higher than that of von Kossa. The EDX measurements gave more detailed information than either of the two histochemical techniques: great variations in the intensity of the calcium peak were found in trabeculae stained as unmineralized as well as mineralized.« less
Spatial investigation of some uranium minerals using nuclear microprobe
NASA Astrophysics Data System (ADS)
Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.
2018-01-01
In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.
Spatial investigation of some uranium minerals using nuclear microprobe
NASA Astrophysics Data System (ADS)
Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.
2018-06-01
In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.
NASA Astrophysics Data System (ADS)
Weiersbye-Witkowski, I. M.; Przybylowicz, W. J.; Straker, C. J.; Mesjasz-Przybylowicz, J.
1997-07-01
Genotypes of the Southern African cucurbit, Lagenaria sphaerica, that are resistant to powdery-mildew ( Sphaerotheca fuliginea) exhibit foliar hypersensitive (HS) lesions on inoculation with this fungal pathogen. Elemental distributions across radially symmetrical HS lesions, surrounding unlesioned leaf tissue and uninoculated leaf tissue, were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3 MeV protons were complemented by simultaneous PIXE and BS point analyses. The composition of cellulose (C 6H 10O 5) was used as constant matrix composition for scans, and the sample thickness was found from BS spectra. Si and elements heavier than Ca contributed to matrix composition within HS lesions and the locally elevated Ca raised the limits of detection for some trace metals of interest. In comparison to uninoculated tissue, inoculated tissue was characterised by higher overall concentrations of all measured elements except Cu. Fully developed, 6 day-old HS lesions and the surrounding tissue could be divided into five zones, centred on the fungal infection site. Each zone was characterized by distinct local elemental distributions (either depletion, or accumulation to potentially phytotoxic levels).
Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites
NASA Technical Reports Server (NTRS)
Hinton, R. W.; Bischoff, A.
1984-01-01
Ion and electron microprobes were used to examine Mg-26 excesses from Al-26 decay in four Al-rich objects from the type 3 ordinary hibonite clast in the Dhajala chondrite. The initial Al-26/Al-27 ratio was actually significantly lower than Al-rich inclusions in carbonaceous chondrites. Also, no Mg-26 excesses were found in three plagioclase-bearing chondrules that were also examined. The Mg-26 excesses in the hibonite chondrites indicated a common origin for chondrites with the excesses. The implied Al-26 content in a proposed parent body could not, however, be confirmed as a widespread heat source in the early solar system.
In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes
Harris, J P; Hess, A E; Rowan, S J; Weder, C; Zorman, C A; Tyler, D J; Capadona, J R
2012-01-01
We recently introduced a series of stimuli-responsive, mechanically-adaptive polymer nanocomposites. Here, we report the first application of these bio-inspired materials as substrates for intracortical microelectrodes. Our hypothesis is that the ideal electrode should be initially stiff to facilitate minimal trauma during insertion into the cortex, yet becomes mechanically compliant to match the stiffness of the brain tissue and minimize forces exerted on the tissue, attenuating inflammation. Microprobes created from mechanically reinforced nanocomposites demonstrated a significant advantage compared to model microprobes composed of neat polymer only. The nanocomposite microprobes exhibit a higher storage modulus (E’ = ~5 GPa) than the neat polymer microprobes (E’ = ~2 GPa) and could sustain higher loads (~17 mN), facilitating penetration through the pia mater and insertion into the cerebral cortex of a rat. In contrast, the neat polymer microprobes mechanically failed under lower loads (~7 mN) before they were capable of inserting into cortical tissue. Further, we demonstrated the material’s ability to morph while in the rat cortex to more closely match the mechanical properties of the cortical tissue. Nanocomposite microprobes that were implanted into the rat cortex for up to 8 weeks demonstrated increased cell density at the microelectrode-tissue interface and a lack of tissue necrosis or excessive gliosis. This body of work introduces our nanocomposite-based microprobes as adaptive substrates for intracortical microelectrodes and potentially other biomedical applications. PMID:21654037
SUBMICROSCOPIC ( less than 1 mu m) MINERAL CONTENTS OF VITRINITES IN SELECTED BITUMINOUS COAL BEDS.
Minkin, J.A.; Chao, E.C.T.; Thompson, C.L.; Wandless, M.-V.; Dulong, F.T.; Larson, R.R.; Neuzil, S.G.; ,
1983-01-01
An important aspect of the petrographic description of coal is the characterization of coal quality, including chemical attributes. For geologic investigations, data on the concentrations, distribution, and modes of occurrence of minor and trace elements provide a basis for reconstructing the probable geochemical environment of the swamp material that was converted into peat, and the geochemical conditions that prevailed during and subsequent to coalification. We have been using electron (EPMA) and proton (PIXE) microprobe analytical methods to obtain data on the chemical characteristics of specific coal constituents in their original associations within coal samples. The present study is aimed at evaluation of the nature of mineral occurrences and heterogeneous elemental concentrations within vitrinites. Vitrinites are usually the most abundant, and therefore most important, maceral group in bituminous coal. 8 refs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ice, G.E.; Barbee, T.; Bionta, R.
The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Genemore » Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.« less
The electron microprobe as a metallographic tool
NASA Technical Reports Server (NTRS)
Goldstein, J. I.
1974-01-01
The electron microprobe (EMP) is shown to represent one of the most powerful techniques for the examination of the microstructure of materials. It is an electron optical instrument in which compositional and topographic information is obtained from regions smaller than 1 micron in diameter on a specimen. Photographs of compositional and topographic changes in 1-sq-mm to 20-sq-micron areas on various types of specimens can also be obtained. These photographs are strikingly similar to optical photomicrographs. Various signals measured in the EMP (X-rays, secondary electrons, backscattered electrons, etc.) are discussed, along with their resolution and the type of information they may help obtain. In addition to elemental analysis, solid state detecting and scanning techniques are reviewed. Various techniques extending the EMP instrument capabilities, such as deconvolution and soft X-ray analysis, are also described.
Study on the occurrence of platinum in Xinjie CuNi sulfide deposits by a combination of SPM and NAA
NASA Astrophysics Data System (ADS)
Li, Xiaolin; Zhu, Jieqing; Lu, Rongrong; Gu, Yingmei; Wu, Xiankang; Chen, Youhong
1997-07-01
A combination of neutron-activation analysis (NAA) and scanning proton microprobe (SPM) was used to study the distribution of platinum-group elements (PGEs) in rocks and ores from Xinjie CuNi deposit. The minimum detection limits of PGEs by NAA had been much improved by means of a nickel-sulfide fire-assay technique for pre-concentration of PGEs in the ore samples. A simple and effective method was developed for true element mapping in SPM experiments. A pair of moveable absorption filters was set up in the target chamber for high sensitivities of both major and trace elements. The bulk analysis results by NNA indicated that the PGE mineralization occurred at the base of Xinjie layered intrusion in clinopyroxenite rocks and the CuNi sulfide minerals disseminated within the rocks had high abundance level of PGEs. However, the micro-PIXE analysis of the CuNi sulfide mineral grains did not find PGEs above the MDL of 6-9 ppm for Rh, Ru and Pd, and 60 ppm for Pt. The search for platinum occurrence in sulfide minerals was followed by scanning analysis of SPM when some smaller platinum enriched grains were found in the sulfide minerals. The microscopic analysis results suggested that platinum occurred in the CuNi sulfide matrix as independent arsenide mineral grains. The chemical formula of the arsenide sperrylite was PtAs 2. The information of the platinum occurrence was helpful to future mineralogical research and mineral processing and beneficiation of the CuNi deposit.
SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
Tijero, M; Gabriel, G; Caro, J; Altuna, A; Hernández, R; Villa, R; Berganzo, J; Blanco, F J; Salido, R; Fernández, L J
2009-04-15
This paper presents a minimally invasive needle-shaped probe capable of monitoring the electrical impedance of living tissues. This microprobe consists of a 160 microm thick SU-8 substrate containing four planar platinum (Pt) microelectrodes. We design the probe to minimize damage to the surrounding tissue and to be stiff enough to be inserted in living tissues. The proposed batch fabrication process is low cost and low time consuming. The microelectrodes obtained with this process are strongly adhered to the SU-8 substrate and their impedance does not depend on frequency variation. In vitro experiments are compared with previously developed Si and SiC based microprobes and results suggest that it is preferable to use the SU-8 based microprobes due to their flexibility and low cost. The microprobe is assembled on a flexible printed circuit FPC with a conductive glue, packaged with epoxy and wired to the external instrumentation. This flexible probe is inserted into a rat kidney without fracturing and succeeds in demonstrating the ischemia monitoring.
Microprobe Analysis of Pu-Ga Standards
Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel
2017-08-04
In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less
Microprobe Analysis of Pu-Ga Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Angélique D.; Romero, Joseph P.; Schwartz, Daniel
In order to obtain quantitative analysis using an Electron Scanning Microprobe it is essential to have a standard of known composition. Most elemental and multi-elemental standards can be easily obtained from places like Elemental Scientific or other standards organizations that are NIST (National Institute of Standards and Technology) traceable. It is, however, more challenging to find standards for plutonium. Past work performed in our group has typically involved using the plutonium sample to be analysed as its own standard as long as all other known components of the sample have standards to be compared to [1,2,3]. Finally, this method worksmore » well enough, but this experiment was performed in order to develop a more reliable standard for plutonium using five samples of known chemistry of a plutonium gallium mix that could then be used as the main plutonium and gallium standards for future experiments.« less
Muhammad, Pir; Liu, Jia; Xing, Rongrong; Wen, Yanrong; Wang, Yijia; Liu, Zhen
2017-12-01
Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL -1 ), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Magnetic Resonance Imaging of Electrolysis.
Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris
2015-01-01
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942
Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.
2004-01-01
Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.
RN12 and RN30 Epidote anlayses
Andrew Fowler
2015-01-01
Results for laser ablation measurement of reare earth elments and electron microprobe analysis of major elments in hydrothermal epidote. Laser ablation measurements were completed using an Agilent 7700 quadrupole ICP-MS coupled with 193nm Photon Instruments Excimer laser.
NASA Astrophysics Data System (ADS)
Ostrooumov, M.
2016-08-01
The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.
Centeno, J A; Mullick, F G; Panos, R G; Miller, F W; Valenzuela-Espinoza, A
1999-07-01
Raman spectroscopy (the analysis of scattered photons after excitation with a monochromatic light source) provides a nondestructive method for identifying organic and inorganic materials on the basis of the molecule's characteristic spectrum of vibrational frequencies. Although the technique has been predominantly applied in sciences other than pathology, the recent advent of high-quality microscope optics coupled to optical Raman spectrometers (a variation known as a Raman microprobe) rendered this technique amenable to applications in human pathology. In the Raman microprobe, a laser beam is focused on a spot approximately 1 microm in diameter on the surface of the sample, e.g., tissue, and the scattered light is collected and analyzed. In this investigation, we used the Raman microprobe for the identification of foreign materials in breast implant capsular tissues. The characteristic silicone group frequencies associated with the silicon-oxygen stretch, the silicone-carbon stretch, the silicon-methyl and the methyl carbon-hydrogen stretch frequencies were used to identify polydimethylsiloxane and to define chemical differences among the various other implant-related inclusions. All of the inclusions were positively identified in a series of 44 capsules from silicone gel-filled implants: polydimethylsiloxane was found in 44 of 44 capsules surrounding silicone gel-filled implants; polyurethane was seen in 4 of 4 capsules around polyurethane foam-coated gel-filled implants; 4 of 4 capsules enveloping Dacron patch gel-filled implants revealed Dacron; and talc was identified in 8 of these 44 capsules. Raman microspectroscopy provides a rapid, accurate, and sensitive method for identifying inclusions associated with silicone and other implant materials in tissue.
NASA Technical Reports Server (NTRS)
Zare, Richard N.; Boyce, Joseph M. (Technical Monitor)
2001-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are of considerable interest today because they are ubiquitous on Earth and in the interstellar medium (ISM). In fact, about 20% of cosmic carbon in the galaxy is estimated to be in the form of PAHs. Investigation of these species has obvious uses for determining the cosmochemistry of the solar system. Work in this laboratory has focused on four main areas: 1) Mapping the spatial distribution of PAHs in a variety of meteoritic samples and comparing this distribution with mineralogical features of the meteorite to determine whether a correlation exists between the two. 2) Developing a method for detection of fullerenes in extraterrestrial samples using microprobe Laser Desorption Ionization Mass Spectroscopy and utilizing this technique to investigate fullerene presence, while exploring the possibility of spatially mapping the fullerene distribution in these samples through in situ detection. 3) Investigating a possible formation pathway for meteoritic and ancient terrestrial kerogen involving the photochemical reactions of PAHs with alkanes under prebiotic and astrophysically relevant conditions. 4) Studying reaction pathways and identifying the photoproducts generated during the photochemical evolution of PAH-containing interstellar ice analogs as part of an ongoing collaboration with researchers at the Astrochemistry Lab at NASA Ames. All areas involve elucidation of the solar system formation and chemistry using microprobe Laser Desorption Laser Ionization Mass Spectrometry. A brief description of microprobe Laser Desorption Ionization Mass Spectroscopy, which allows selective investigation of subattomole levels of organic species on the surface of a sample at 10-40 micrometer spatial resolution, is given.
Laboratory technology and cosmochemistry
Zinner, Ernst K.; Moynier, Frederic; Stroud, Rhonda M.
2011-01-01
Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS. PMID:21498689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, J .Y. Peter; Sham, Tsun-Kong; Chakrabarti, Subrata
2009-12-01
Hemochromatosis is a genetic disorder that causes body to store excess iron in organs such as heart or liver. Distribution of iron, as well as copper, zinc and calcium, and chemical identity of iron in hemochromatosis liver and intestine were investigated by X-ray microprobe experiments, which consist of X-ray microscopy and micro-X-ray absorption fine structure. Our results show that iron concentration in hemochromatosis liver tissue is high, while much less Fe is found in intestinal tissue. Moreover, chemical identity of Fe in hemochromatosis liver can be identified. X-ray microprobe experiments allows for examining elemental distribution at an excellent spatial resolution.more » Moreover, chemical identity of element of interest can be obtained.« less
NASA Astrophysics Data System (ADS)
Griffin, W. L.; Fisher, N. I.; Friedman, J. H.; O'Reilly, Suzanne Y.; Ryan, C. G.
2002-12-01
Three novel statistical approaches (Cluster Analysis by Regressive Partitioning [CARP], Patient Rule Induction Method [PRIM], and ModeMap) have been used to define compositional populations within a large database (n > 13,000) of Cr-pyrope garnets from the subcontinental lithospheric mantle (SCLM). The variables used are the major oxides and proton-microprobe data for Zn, Ga, Sr, Y, and Zr. Because the rules defining these populations (classes) are expressed in simple compositional variables, they are easily applied to new samples and other databases. The classes defined by the three methods show strong similarities and correlations, suggesting that they are statistically meaningful. The geological significance of the classes has been tested by classifying garnets from 184 mantle-derived peridotite xenoliths and from a smaller database (n > 5400) of garnets analyzed for >20 trace elements by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICPMS). The relative abundances of these classes in the lithospheric mantle vary widely across different tectonic settings, and some classes are absent or very rare in either Archean or Phanerozoic SCLM. Their distribution with depth also varies widely within individual lithospheric sections and between different sections of similar tectonothermal age. These garnet classes therefore are a useful tool for mapping the geology of the SCLM. Archean SCLM sections show high degrees of depletion and varying degrees of metasomatism, and they are commonly strongly layered. Several Proterozoic SCLM sections show a concentration of more depleted material near their base, grading upward into more fertile lherzolites. The distribution of garnet classes reflecting low-T phlogopite-related metasomatism and high-T melt-related metasomatism suggests that many of these Proterozoic SCLM sections consist of strongly metasomatized Archean SCLM. The garnet-facies SCLM beneath Phanerozoic terrains is only mildly depleted relative to Primitive Upper Mantle (PUM) compositions. These data emphasize the secular evolution of SCLM composition defined earlier [Griffin et al., 1998, 1999a] and suggest that at least part of this evolutionary trend reflects reworking and refertilization of SCLM formed in the Archean time.
Ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples
NASA Technical Reports Server (NTRS)
Meyer, C., Jr.; Anderson, D. H.; Bradley, J. G.
1974-01-01
The ion microprobe was used to measure the composition and distribution of trace elements in lunar plagioclase, and these analyses are used as criteria in determining the possible origins of some nonmare lunar samples. The Apollo 16 samples with metaclastic texture and high-bulk trace-element contents contain plagioclase clasts with extremely low trace-element contents. These plagioclase inclusions represent unequilibrated relicts of anorthositic, noritic, or troctolitic rocks that have been intermixed as a rock flour into the KREEP-rich matrix of these samples. All of the plagioclase-rich inclusions which were analyzed in the KREEP-rich Apollo 14 breccias were found to be rich in trace elements. This does not seem to be consistent with the interpretation that the Apollo 14 samples represent a pre-Imbrium regolith, because such an ancient regolith should have contained many plagioclase clasts with low trace-element contents more typical of plagioclase from the pre-Imbrium crust. Ion-microprobe analyses for Ba and Sr in large plagioclase phenocrysts in 14310 and 68415 are consistent with the bulk compositions of these rocks and with the known distribution coefficients for these elements. The distribution coefficient for Li (basaltic liquid/plagioclase) was measured to be about 2.
NASA Astrophysics Data System (ADS)
Bechtel, H. A.; Allen, C.; Bajt, S.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grun, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Nittler, L. R.; Ogliore, R. C.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Westphal, A. J.; Zolensky, M. E.; 29,000 Stardust@Home Dusters
2011-03-01
More than 20 aerogel keystones, many of which contained candidates for interstellar dust, were extracted from the Stardust interstellar dust collector and examined with synchrotron FTIR spectromicroscopy.
The study of voids in the AuAl thin-film system using the nuclear microprobe
NASA Astrophysics Data System (ADS)
de Waal, H. S.; Pretorius, R.; Prozesky, V. M.; Churms, C. L.
1997-07-01
A Nuclear Microprobe (NMP) was used to study void formation in thin film gold-aluminium systems. Microprobe Rutherford Backscattering Spectrometry (μRBS) was utilised to effectively obtain a three-dimensional picture of the void structure on the scale of a few nanometers in the depth dimension and a few microns in the in-plane dimension. This study illustrates the usefulness of the NMP in the study of materials and specifically thin-film structures.
In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe
NASA Astrophysics Data System (ADS)
Lo, Leu-Wei; Yang, Chung-Shi
2005-02-01
To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.
Analysis of biological materials using a nuclear microprobe
NASA Astrophysics Data System (ADS)
Mulware, Stephen Juma
The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.
Geochemistry and origin of regional dolomites. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.N.; Meyers, W.J.
1995-05-01
The main goal of our research on dolomites has been to better understand the composition of the fluids and processes of the fluid-rock interaction responsible for the formation of massive dolostones occurring over regional scales within sedimentary sequences. Understanding the timing of dolomitization, the fluids responsible for the dolomitization and the timing of the development of porosity has major economic ramifications in that dolomites are major oil reservoirs often having better reservoir properties than associated limestones. Our approach has been to apply trace element, major element, petrographic, crystallographic, stable isotope and radiogenic isotope systems to test models for the originsmore » of dolomites and to give information that may allow us to develop new models. Fluid compositions and processes are evaluated through the use of numerical models which we have developed showing the simultaneous evolution of the trace element and isotope systems during dolomitization. Our research has included the application of B, O, C, Sr, Nd and Pb isotope systematics and the trace elements Mn, Fe St, rare earth elements, Rb, Ba, U, Th, Pb, Zn, Na, Cl, F and SO{sub 4}{sup 2-}. Analyses are possible on individual cements or dolomite types using micro-sampling or microprobe techniques. The microprobe techniques used include synchrotron X-ray microprobe analysis at Brookhaven National Laboratory or electron microprobe at Stony Brook. Lack of a modern analogue for ancient massive dolostones has limited the application of the uniformitarian concept to developing models for the ancient regional dolostones. In addition it has not been possible to synthesize dolomite in the laboratory under conditions similar to the sedimentary or diagenetic possible environments in which the dolomites must have formed.« less
Scanning Auger Microprobe and atomic absorption studies of lunar volcanic volatiles
NASA Technical Reports Server (NTRS)
Cirlin, E. H.; Housley, R. M.
1979-01-01
Results on lunar volatile transport processes have been obtained by studying green and brown glass droplets, orange and black core tube samples and the surface sample 74241 with the Scanning Auger Microprobe (SAM) and by Flameless Atomic Absorption Analysis (FLAA). SAM analyses show that the most dominant volatiles in the top few atomic layers of droplets are Zn and S, confirming that the surface Zn and S are good indicators of pyroclastic origin, and they are not entirely present as ZnS. In addition, FLAA thermal release profiles show that almost all the Zn and Cd are on grain surfaces, indicating that Zn and Cd were completely outgassed from lava fountain products during the volcanic eruption, were recondensed during or after the eruptions, and are thus present as surface coating.
NASA Astrophysics Data System (ADS)
Gautret, P.; Ramboz, C.; de Wit, R.; Delarue, F.; Orange, F.; Sorieul, S.; Westall, F.
2012-04-01
Physico-chemical and biological micro-scale environmental parameters within microbial mats formed in hypersaline conditions favour the precipitation of minerals, such as carbonates. We used optical microscopy and the technique "Fluorescence Induction Relaxation » (FIRe) to differentiate the photosynthetic activity of oxygenic photosynthesisers (cyanobacteria) from anoxygenic photosynthesisers (Chloroflexus-like bacteria, CFB) in samples obtained in 2011. After this preliminary investigation, we characterised the elemental composition of the different species of microorganisms, their extracellular substances (EPS), and the minerals precipitated on their surface. This study was made in-situ by µ-PIXE using the nuclear microprobe of the AIFIRA platform (CEN Bordeaux-Gradignan ; protons of 1.5 or 3MeV). With this microprobe it is possible to map the distribution of elements occurring in quantities down to several ppm, a resolution that is particularly favourable for studying microorganisms. SEM observation of the same zones allowed us to localise exactly the microbial structures (cells, EPS) and minerals analysed by nuclear probe. We were thus able to document the differential S and P concentrations in the different microbial species, the CLB being richer in P. Note that the CLB filaments are < 1 µm in diameter. We were also able to demonstrate the anti-correlation of Ca and Mg in the minerals precipitated directly on the microorganisms and on their EPS. Thus we have shown the utility of these in situ, nano-scale methods in studying microbial structures consisting of different species with different metabolic activitie, and different functional groups on their cell walls and EPS implicated in the bioprecipitation of different kinds of minerals. Such features in ancient microbial mats could aid their interpretation and possibly the distinction between ancient oxygenic and anoxygenic mats.
Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.
2012-01-01
Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.
Phase diagram and electrical behavior of silicon-rich iridium silicide compounds
NASA Technical Reports Server (NTRS)
Allevato, C. E.; Vining, Cronin B.
1992-01-01
The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.
µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS
Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...
Dense Membranes for Anode Supported all Perovskite IT-SOFCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rambabu Bobba
2006-09-14
During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electronmore » microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to determine the % of solubility in the crystal lattice of perovskite, apatites. Various electrode and electrolyte material compositions were prepared and characterized by XRD, SEM, XPS and electron microprobe. The material compositions were selected based on their thermo-physical properties to achieve compatibility with each other in ideal fuel cell operating conditions. The series of electrode materials investigated are LaGa{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, x = 0.1), LaCr{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, Co, x=0.1), LaNi{sub 1-x}Fe{sub x}O{sub 3} (0 < x < 0.6) and Gd{sub 1-x}M{sub x}CoO{sub 3} (M=Ca, x=0.1). Attempts were made to prepare proton-conducting perovskites of SrCe{sub 1-x} M{sub x}O{sub 3} (M= Dy, Eu, Er, Tb, x=0.1) by using sonochemical and hydrothermal technique followed by microwave sintering processes. These compositions were prepared characterized by XRD, TEM, SEM and electrical conductivity of the pellets was measured. The interest of low temperature proton conducting electrolyte is to replace the well known oxide ion conducting solid electrolyte in SOFCs, thereby reducing the operating temperature of SOFC to lower temperature (i.e 400-600 C) and named it as PC-SOFC (proton conducting-solid oxide fuel cell).« less
NASA Technical Reports Server (NTRS)
Fournelle, John; Carpenter, Paul
2006-01-01
Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.
A thermal microprobe fabricated with wafer-stage processing
NASA Astrophysics Data System (ADS)
Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.
1998-05-01
A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.
Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study
NASA Technical Reports Server (NTRS)
Elthon, Donald
1988-01-01
The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.
Preparation and Thermoelectric Properties of Semiconcucting Zn(sub 4) Sb(sub 3)
NASA Technical Reports Server (NTRS)
Caillat, T.; Fleurial, J. P.; Barshchevsky, A.
1996-01-01
Hot-pressed samples fothe semiconducting compound Beta - Zn(sub 4) Sb(sub 3) were prepared and characterized by x-ray and microprobe analysis. Some physical properties of Beta - Zn(sub 4) Sb(sub 3) were determined and its thermoelectric properties measured between room temperature and 650K.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.; Horz, F.
2000-01-01
Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.
Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE
NASA Astrophysics Data System (ADS)
Ager, F. J.; Ynsa, M. D.; Domínguez-Solís, J. R.; Gotor, C.; Respaldiza, M. A.; Romero, L. C.
2002-04-01
Remediation of metal-contaminated soils and waters poses a challenging problem due to its implications in the environment and the human health. The use of metal-accumulating plants to remove toxic metals, including Cd, from soil and aqueous streams has been proposed as a possible solution to this problem. The process of using plants for environmental restoration is termed phytoremediation. Cd is a particularly favourable target metal for this technology because it is readily transported and accumulated in the shoots of several plant species. This paper investigates the sites of metal localization within Arabidopsis thaliana leaves, when plants are grown in a cadmium-rich environment, by making use of nuclear microscopy techniques. Micro-PIXE, RBS and SEM analyses were performed on the scanning proton microprobe at the CNA in Seville (Spain), showing that cadmium is sequestered within the trichomes on the leaf surface. Additionally, regular PIXE analyses were performed on samples prepared by an acid digestion method in order to assess the metal accumulation of such plants.
Direct quantification of rare earth doped titania nanoparticles in individual human cells
NASA Astrophysics Data System (ADS)
Jeynes, J. C. G.; Jeynes, C.; Palitsin, V.; Townley, H. E.
2016-07-01
There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.
NASA Astrophysics Data System (ADS)
Burton, A. S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.; Moore, J. F.
2018-04-01
Laser microprobe of surfaces utilizing a two laser setup whereby the desorption laser threshold is lowered below ionization, and the resulting neutral plume is examined using 157nm Vacuum Ultraviolet laser light for mass spec surface mapping.
A microprobe for parallel optical and electrical recordings from single neurons in vivo.
LeChasseur, Yoan; Dufour, Suzie; Lavertu, Guillaume; Bories, Cyril; Deschênes, Martin; Vallée, Réal; De Koninck, Yves
2011-04-01
Recording electrical activity from identified neurons in intact tissue is key to understanding their role in information processing. Recent fluorescence labeling techniques have opened new possibilities to combine electrophysiological recording with optical detection of individual neurons deep in brain tissue. For this purpose we developed dual-core fiberoptics-based microprobes, with an optical core to locally excite and collect fluorescence, and an electrolyte-filled hollow core for extracellular single unit electrophysiology. This design provides microprobes with tips < 10 μm, enabling analyses with single-cell optical resolution. We demonstrate combined electrical and optical detection of single fluorescent neurons in rats and mice. We combined electrical recordings and optical Ca²(+) measurements from single thalamic relay neurons in rats, and achieved detection and activation of single channelrhodopsin-expressing neurons in Thy1::ChR2-YFP transgenic mice. The microprobe expands possibilities for in vivo electrophysiological recording, providing parallel access to single-cell optical monitoring and control.
Maher, K.; Wooden, J.L.; Paces, J.B.; Miller, D.M.
2007-01-01
We used the sensitive high-resolution ion microprobe reverse-geometry (SHRIMP-RG) to date pedogenic opal using the 230Th-U system. Due to the high-spatial resolution of an ion microprobe (typically 30 ??m), regions of pure opal within a sample can be targeted and detrital material can be avoided. In addition, because the technique is non-destructive, the sample can be preserved for other types of analyses including electron microprobe or other stable isotope or trace element ion microprobe measurements. The technique is limited to material with U concentrations greater than ???50 ppm. However, the high spatial resolution, small sample requirements, and the ability to avoid detrital material make this technique a suitable technique for dating many Pleistocene deposits formed in semi-arid environments. To determine the versatility of the method, samples from several different deposits were analyzed, including silica-rich pebble coatings from pedogenic carbonate horizons, a siliceous sinter deposit, and opaline silica deposited as a spring mound. U concentrations for 30-??m-diameter spots ranged from 50 to 1000 ppm in these types of materials. The 230Th/232Th activity ratios also ranged from ???100 to 106, eliminating the need for detrital Th corrections that reduce the precision of traditional U-Th ages for many milligram- and larger-sized samples. In pedogenic material, layers of high-U opal (ca. 500 ppm) are commonly juxtaposed next to layers of calcite with much lower U concentrations (1-2 ppm). If these types of samples are not analyzed using a technique with the appropriate spatial resolution, the ages may be strongly biased towards the age of the opal. Comparison with standard TIMS (Thermal Ionization Mass Spectrometry) measurements from separate microdrilled samples suggests that although the analytical precision of the ion microprobe (SHRIMP-RG) measurements is less than TIMS, the high spatial resolution results in better accuracy in the age determination for finely layered or complex deposits. The ion microprobe approach also may be useful for pre-screening samples to determine the age and degree of post-depositional alteration, analyzing finely layered samples or samples with complex growth histories, and obtaining simultaneous measurements of trace elements.
High-speed microprobe for roughness measurements in high-aspect-ratio microstructures
NASA Astrophysics Data System (ADS)
Doering, Lutz; Brand, Uwe; Bütefisch, Sebastian; Ahbe, Thomas; Weimann, Thomas; Peiner, Erwin; Frank, Thomas
2017-03-01
Cantilever-type silicon microprobes with an integrated tip and a piezoresistive signal read out have successfully proven to bridge the gap between scanning force microscopy and stylus profilometry. Roughness measurements in high-aspect-ratio microstructures (HARMS) with depths down to 5 mm and widths down to 50 µm have been demonstrated. To improve the scanning speed up to 15 mm s-1, the wear of the tip has to be reduced. The atomic layer deposition (ALD) technique with alumina (Al2O3) has been tested for this purpose. Repeated wear measurements with coated and uncoated microprobe cantilevers have been carried out on a roughness standard at a speed of 15 mm s-1. The tip shape and the wear have been measured using a new probing tip reference standard containing rectangular silicon grooves with widths from 0.3 µm to 3 µm. The penetration depth of the microprobe allows one to measure the wear of the tip as well as the tip width and the opening angle of the tip. The roughness parameters obtained on the roughness standard during wear experiments agree well with the reference values measured with a calibrated stylus instrument, nevertheless a small amount of wear still is observable. Further research is necessary in order to obtain wear resistant microprobe tips for non-destructive inspection of microstructures in industry and microform measurements, for example in injection nozzles.
A versatile system for the rapid collection, handling and graphics analysis of multidimensional data
NASA Astrophysics Data System (ADS)
O'Brien, P. M.; Moloney, G.; O'Connor, A.; Legge, G. J. F.
1993-05-01
The aim of this work was to provide a versatile system for handling multiparameter data that may arise from a variety of experiments — nuclear, AMS, microprobe elemental analysis, 3D microtomography etc. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development and use at MARC for the past 15 years. It has now been made adaptable to the needs of multiparameter (or single parameter) experiments in general. The original system has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology — a VME bus computer with a real time operating system and a RISC workstation running Unix and the X Window system. This provides the necessary (i) power, speed and versatility, (ii) expansion and updating capabilities (iii) standardisation and adaptability, (iv) coherent modular programming structures, (v) ability to interface to other programs and (vi) transparent operation with several levels, involving the use of menus, programmed function keys and powerful macro programming facilities.
Nuclear microprobe imaging of gallium nitrate in cancer cells
NASA Astrophysics Data System (ADS)
Ortega, Richard; Suda, Asami; Devès, Guillaume
2003-09-01
Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.
Silver and mercury in single gold grains from the Witwatersrand and Barberton, South Africa
NASA Astrophysics Data System (ADS)
von Gehlen, K.
1983-10-01
The contents of silver and mercury in 323 spots on gold grains from seven localities of the Witwatersrand palaeo-placer and Archaean vein deposits from Barberton were measured using an electron microprobe. The objective was to obtain information on the extent of gold alteration during fluvial transport and post-depositional geological processes. The results, however, show that Ag and Hg are distributed homogeneously in the gold grains studied. No indications were found that the gold was transported in solution nor that leaching took place in an oxidizing fluvial environment. This strongly suggests that the Ag and Hg contents in Witwatersrand gold grains represent geochemical ‘fingerprints’ inherited from their eroded primary sources. Combined analysis for Ag and Hg in Witwatersrand gold grains by electron microprobe can therefore be a valuable tool in establishing the types of primary sources for the gold.
CAMECA IMS 1300-HR3: The New Generation Ion Microprobe
NASA Astrophysics Data System (ADS)
Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.
2016-12-01
The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.
Scanning ion images; analysis of pharmaceutical drugs at organelle levels
NASA Astrophysics Data System (ADS)
Larras-Regard, E.; Mony, M.-C.
1995-05-01
With the ion analyser IMS 4F used in microprobe mode, it is possible to obtain images of fields of 10 × 10 [mu]m2, corresponding to an effective magnification of 7000 with lateral resolution of 250 nm, technical characteristics that are appropriate for the size of cell organelles. It is possible to characterize organelles by their relative CN-, P- and S- intensities when the tissues are prepared by freeze fixation and freeze substitution. The recognition of organelles enables correlation of the tissue distribution of ebselen, a pharmaceutical drug containing selenium. The various metabolites characterized in plasma, bile and urine during biotransformation of ebselen all contain selenium, so the presence of the drug and its metabolites can be followed by images of Se. We were also able to detect the endogenous content of Se in tissue, due to the increased sensitivity of ion analysis in microprobe mode. Our results show a natural occurrence of Se in the border corresponding to the basal lamina of cells of proximal but not distal tubules of the kidney. After treatment of rats with ebselen, an additional site of Se is found in the lysosomes. We suggest that in addition to direct elimination of ebselen and its metabolites by glomerular filtration and urinary elimination, a second process of elimination may occur: Se compounds reaching the epithelial cells via the basal lamina accumulate in lysosomes prior to excretion into the tubular fluid. The technical developments of using the IMS 4F instrument in the microprobe mode and the improvement in preparation of samples by freeze fixation and substitution further extend the limit of ion analysis in biology. Direct imaging of trace elements and molecules marked with a tracer make it possible to determine their targets by comparison with images of subcellular structures. This is a promising advance in the study of pathways of compounds within tissues, cells and the whole organism.
NASA Technical Reports Server (NTRS)
Smith, R. K.; Lofgren, G. E.
1982-01-01
Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.
1978-10-17
because of the rapid progress made in laser technology to date. The use of the Laser Microprobe in spectrochemical analysis of the elements is based on...spectroscopy to vaporize microscopic amounts of samples for elemental analysis . On the other hand, the intense, highly monochromatic laser beam is being...employed as a light source for Raman spectroscopy to study molecular structure. These two uses of lasers in spectroscopic analysis have been sucessful
Laser-Ablation (U-Th)/He Geochronology
NASA Astrophysics Data System (ADS)
Hodges, K.; Boyce, J.
2003-12-01
Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate ablation experiments results in considerably worse spatial resolution than that typically possible for 40Ar/39Ar laser microprobe dating, it is possible to site the LA-ICPMS ablation pit within a few microns of the pit used for He extraction, or to simply re-occupy and enlarge the original ablation pit. The potential effective spatial resolution of the technique is thus on the order of a few tens to roughly 100 microns. As a proof-of-concept exercise, we have applied this technique to fluorapatite from Cerro de Mercado, Durango, Mexico, which has a generally accepted (U-Th)/He age of 32.1 +/- 3.4 Ma (2 sigma) based on single-crystal fusion analyses reported by House et al. (2000, EPSL). Using the approach described above, we made 48 separate age measurements on a 12 mm polished section cut through a single crystal of Durango fluorapatite perpendicular to its c axis. The measured dates yield a mean of 34.9 +/- 5.1 Ma (2 sigma), with a total dispersion of dates comparable to that reported by House et al. Much of the apparent age variation observed in both studies is due to documented U+Th heterogeneities in single crystals of the Durango fluorapatite. Nevertheless, the consistency of the laser ablation and conventional results for this material is striking. Compared to conventional laser and furnace methods of (U-Th)/He geochronology, the laser microprobe approach offers substantially improved spatial resolution, and the ability to avoid (or at least minimize) alpha-ejection corrections. In addition, the method affords improved sample throughput, such that age estimates for homogeneous materials can be made with considerably higher precision based on a larger number of analyses.
Defense Small Business Innovation Research Program (SBIR). Abstracts of Phase I Awards. 1986.
1986-01-01
RELATIVE HUMIDITY AT TEMPERATURES FOUND IN ARCTIC ENVIRONMENTS. IT IS BASED ON THE OBSERVATION THAT CERTAIN FLUORESCENT AND PHOSPHORESCENT COMPOUNDS ...FREEDMAN TITLE: III-V COMPOUNDS TRACE ELEMENT PROFILE ANALYSIS USING LASER ASSISTED S PECTROSCOPY T 55 OFFICE: RADC/DOR A NOVEL MICROPROBE ANALYSIS...AND II-VI AND III-V COMPOUNDS . THESE ADVANTAGES MAKE THE LSCE TECHNIQUE PARTICULARY WELL SUITED TO THE DEPOSITION OF QUANTUM WELL AND SUPERLATT ICE
X-ray microprobe analysis of platelets. Principles, methods and review of the literature.
Yarom, R
1983-01-01
Platelets are well suited to X-ray microanalysis as there is no need for chemical fixation or sectioning, and the concentrations of calcium and phosphorus are above 10(-3). The principles of the technique, the methods of specimen preparation, instrumental conditions during analysis and ways of quantitation are described. This is followed by a review of published reports and a brief summary of the author's own work in the field.
Mastalerz, Maria; Gurba, L.W.
2001-01-01
This paper discusses nitrogen determination with the Cameca SX50 electron microprobe using PCO as an analyzing crystal. A set of conditions using differing accelerating voltages, beam currents, beam sizes, and counting times were tested to determine parameters that would give the most reliable nitrogen determination. The results suggest that, for the instrumentation used, 10 kV, current 20 nA, and a counting time of 20 s provides the most reliable nitrogen determination, with a much lower detection limit than the typical concentration of this element in coal. The study demonstrates that the electron microprobe technique can be used to determine the nitrogen content of coal macerals successfully and accurately. ?? 2001 Elsevier Science B.V. All rights reserved.
Characterization of Alq3 thin films by a near-field microwave microprobe.
Hovsepyan, Artur; Lee, Huneung; Sargsyan, Tigran; Melikyan, Harutyun; Yoon, Youngwoon; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin
2008-09-01
We observed tris-8-hydroxyquinoline aluminum (Alq3) thin films dependence on substrate heating temperatures by using a near-field microwave microprobe (NFMM) and by optical absorption at wavelengths between 200 and 900 nm. The changes of absorption intensity at different substrate heating temperatures are correlated to the changes in the sheet resistance of Alq3 thin films.
Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe
NASA Technical Reports Server (NTRS)
Chodos, A. A.; Devaney, J. R.; Evens, K. C.
1972-01-01
Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.
Iron, transferrin and myelinogenesis
NASA Astrophysics Data System (ADS)
Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.
2003-09-01
Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.
NASA Astrophysics Data System (ADS)
Jimenez-Ramos, M. C.; Eriksson, M.; García-López, J.; Ranebo, Y.; García-Tenorio, R.; Betti, M.; Holm, E.
2010-09-01
In order to validate and to gain confidence in two micro-beam techniques: particle induced X-ray emission with nuclear microprobe technique (μ-PIXE) and synchrotron radiation induced X-ray fluorescence in a confocal alignment (confocal SR μ-XRF) for characterization of microscopic particles containing actinide elements (mixed plutonium and uranium) a comparative study has been performed. Inter-comparison of the two techniques is essential as the X-ray production cross-sections for U and Pu are different for protons and photons and not well defined in the open literature, especially for Pu. The particles studied consisted of nuclear weapons material, and originate either in the so called Palomares accident in Spain, 1966 or in the Thule accident in Greenland, 1968. In the determination of the average Pu/U mass ratios (not corrected by self-absorption) in the analysed microscopic particles the results from both techniques show a very good agreement. In addition, the suitability of both techniques for the analysis with good resolution (down to a few μm) of the Pu/U distribution within the particles has been proved. The set of results obtained through both techniques has allowed gaining important information concerning the characterization of the remaining fissile material in the areas affected by the aircraft accidents. This type of information is essential for long-term impact assessments of contaminated sites.
1981-08-01
electron microprobe analysis and other laboratory procedures is also acknowledged. The author recognizes the considerable contributions of Ms. Cheryl ...J. Knott , Acta Met., 23, (7), (1975), 841. 473. A. Tetelman and A. McEvily, op. cit. 474. J. Feeney and J. McMillan and R. Wei, Met. Trans., 1, (1970
NASA Astrophysics Data System (ADS)
Lei, Qiantao; Liu, Ke; Gao, Jie; Li, Xiaolin; Shen, Hao; Li, Yan
2017-08-01
Nickel-based alloys as candidate materials for Thorium Molten Salt Reactor (TMSR), need to be used under high temperature in molten salt environment. In order to ensure the safety of the reactor running, it is necessary to study the elemental move characteristic of nickel-based alloys in the high temperature molten salts. In this work, the scanning nuclear microprobe at Fudan University was applied to study the elemental move. The Nickel-based alloy samples were corroded by molten salt at different temperatures. The element concentrations in the Nickel-based alloys samples were determined by the scanning nuclear microprobe. Micro-PIXE results showed that the element concentrations changed from the interior to the exterior of the alloy samples after the corrosion.
Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.
1992-01-01
Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.
Molecular imaging of cannabis leaf tissue with MeV-SIMS method
NASA Astrophysics Data System (ADS)
Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož
2016-03-01
To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.
NASA Astrophysics Data System (ADS)
Rigato, Valentino; Giuntini, Lorenzo; Vittone, Ettore
2015-04-01
This special issue of Nuclear Instruments and Methods in Physics Research B is dedicated to the proceedings of the 14th International Conference on Microprobe Technology and Applications (ICNMTA2014) and of the Workshop on Proton Beam Writing. ICNMTA2014, held in Padova (Italy) from 7th to 11th July 2014, follows the conferences in Lisbon (2012, Portugal), Leipzig (Germany, 2010), Debrecen (Hungary, 2008), Singapore (2006), Cavtat-Dubrovnik (Croatia, 2004), Takasaki (Japan, 2002), Bordeaux (2000, France), Spier Estate (1998, South Africa), Santa Fe (1996, NM, USA), Shanghai (1994, PRC), Uppsala (1992, Sweden), Melbourne (1990, Australia), Oxford (1987, UK) and Namur (1981, Belgium). The conference was organized by the INFN (Istituto Nazionale di Fisica Nucleare), under the patronage of the Universities of Padova, Firenze, Torino and of the Comune di Padova, in cooperation with the International Atomic Energy Agency (IAEA). 135 delegates (∼15% women and ∼20% students) from 27 countries of the 5 continents attended ICNMTA2014: the first day of conference took place in the magnificent Aula Magna of the University of Padova, adjacent to the Galileo's desk, and proceeded in the historical building of the Centro Culturale San Gaetano in Padova.
The grape cluster, metal particle 63344,1. [in lunar coarse fines
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Axon, H. J.; Agrell, S. O.
1975-01-01
The grape cluster metal particle 63344,1 found in lunar coarse fines is examined using the scanning electron microscope (SEM), electron microprobe, and an optical microscope. This metal particle is approximately 0.5 cm in its largest dimension and consists of hundreds of metallic globules welded together to form a structure somewhat like a bunch of grapes. Electron microprobe analysis for Fe, Ni, Co, P, and S in the metal was carried out using wavelength dispersive detectors. No primary solidification structure is observed in the globules, and the particle is slow cooled from the solidification temperature (nearly 1300 C) taking days to probably months to reach 600 C. Two mechanisms for the formation of globules are proposed. One mechanism involves the primary impact of an iron meteorite which produces a metallic liquid and vapor phase. The second mechanism involves the formation of a liquid pool of metal after impact of an iron meteorite projectile followed by a secondary impact in the liquid metal pool.
NASA Technical Reports Server (NTRS)
Drake, M. J.; Newsom, H. E.; Reed, S. J. B.; Enright, M. C.
1984-01-01
The distribution of Ga between solid Fe metal and synthetic basaltic melt is investigated experimentally at temperatures of 1190 and 1330 C, and over a narrow range of oxygen fugacities. Metal-silicate reversal experiments were conducted, indicating a close approach to equilibrium. The analysis of the partitioned products was performed using electron and ion microprobes. At one bar total pressure, the solid metal/silicate melt partition coefficient D(Ga) is used to evaluate metal-silicate fractionation processes in the earth, moon, and Eucrite Parent Body (EPB). It is found that the depletion of Ga abundances in the EPB is due to the extraction of Ga into a metallic core. Likewise, the depletion of Ga in the lunar mantle is consistent with the extraction of Ga into a smaller lunar core if Ga was originally present in a subchondritic concentration. The relatively high Ga abundances in the earth's mantle are discussed, with reference to several theoretical models.
First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data
NASA Astrophysics Data System (ADS)
Radici, Marco; Bacchetta, Alessandro
2018-05-01
We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzel, J; Jacobsen, B; Hutcheon, I D
2009-09-09
The {sup 53}Mn-{sup 53}Cr systematics of meteorite samples provide an important high resolution chronometer for early solar system events. Accurate determination of the initial abundance of {sup 53}Mn ({tau}{sub 1/2} = 3.7 Ma) by secondary ion mass spectrometry (SIMS) is dependent on properly correcting for differing ion yields between Mn and Cr by use of a relative sensitivity factor (RSF). Ideal standards for SIMS analysis should be compositionally and structurally similar to the sample of interest. However, previously published Mn-Cr studies rely on few standards (e.g., San Carlos olivine, NIST 610 glass) despite significant variations in chemical composition. We investigatemore » a potential correlation between RSF and bulk chemical composition by determining RSFs for {sup 55}Mn/{sup 52}Cr in 11 silicate glass and mineral standards (San Carlos olivine, Mainz glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, BM90/21-G, and T1-G, NIST 610 glass, and three LLNL pyroxene-composition glasses). All standards were measured on the Cameca ims-3f ion microprobe at LLNL, and a subset were also measured on the Cameca ims-1270 ion microprobe at the Geological Survey of Japan. The standards cover a range of bulk chemical compositions with SiO{sub 2} contents of 40-71 wt.%, FeO contents of 0.05-20 wt.% and Mn/Cr ratios between 0.4 and 58. We obtained RSF values ranging from 0.83 to 1.15. The data obtained on the ims-1270 ion microprobe are within {approx}10% of the RSF values obtained on the ims-3f ion microprobe, and the RSF determined for San Carlos olivine (0.86) is in good agreement with previously published data. The typical approach to calculating an RSF from multiple standard measurements involves making a linear fit to measured {sup 55}Mn/{sup 52}Cr versus true {sup 55}Mn/{sup 52}Cr. This approach may be satisfactory for materials of similar composition, but fails when compositions vary significantly. This is best illustrated by the {approx}30% change in RSF we see between glasses with similar Mn/Cr ratios but variable Fe and Na content. We are developing an approach that uses multivariate analysis to evaluate the importance of different chemical components in controlling the RSF and predict the RSF of unknowns when standards of appropriate composition are not available. Our analysis suggests that Fe, Si, and Na are key compositional factors in these silicate standards. The RSF is positively correlated with Fe and Si and negatively correlated with Na. Work is currently underway to extend this analysis to a wider range of chemical compositions and to evaluate the variability of RSF on measurements obtained by NanoSIMS.« less
Fused Bead Analysis of Diogenite Meteorites
NASA Technical Reports Server (NTRS)
Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.
2009-01-01
Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.
NASA Astrophysics Data System (ADS)
Kelly, Jacque L.; Fu, Bin; Kita, Noriko T.; Valley, John W.
2007-08-01
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ 18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ 18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ 18O between 9.8‰ and 16.7‰ ( n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ 18O = 29.3 ± 1.0‰ (1SD, n = 161). Given the similarity, on average, of δ 18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ 18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement. Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ 18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ 18O values of -10‰ to -5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.
Kesler, G; Koren, R; Kesler, A; Hay, N; Gal, R
1998-10-01
Until now, no suitable delivery fiber has existed for CO2 laser endodontic radiation in the apical region, where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we have designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal and thus favorably increasing the thermal effects. A CO2 laser microprobe coupled onto a special hand piece was attached to the delivery fiber of a Sharplan 15-F CO2 laser. The study was conducted on 30 vital maxillary or mandibulary, central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees C. Ten teeth represented the control group, in which only root canal preparation was performed in the conventional method. Histological examination of the laser-treated teeth showed coagulation necrosis and vacuolization of the remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal in all cases treated with 15-F CO2 laser. Gram stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, with no thermal damage to the surrounding tissue. The combination of classical root canal preparation with CO2 laser irradiation using this special microprobe before closing the canal can drastically change the quality of root canal fillings.
NASA Technical Reports Server (NTRS)
Wopenka, Brigitte; Jollife, Bradley L.; Zinner, Ernst; Kremser, Daniel T.
1996-01-01
We have determined major (Si, Zr, Hf), minor (Al, Y, Fe, P), and trace element (Ca, Sc, Ti, Ba, REE, Th, U) concentrations and Raman spectra of a zoned, 200 microns zircon grain in lunar sample 14161,7069, a quartz monzodiorite breccia collected at the Apollo 14 site. Analyses were obtained on a thin section in situ with an ion microprobe, an electron microprobe, and a laser Raman microprobe. The zircon grain is optically zoned in birefringence, a reflection of variable (incomplete) metamictization resulting from zo- nation in U and Th concentrations. Variations in the concentrations of U and Th correlate strongly with those of other high-field-strength trace elements and with changes in Raman spectral parameters. Concentrations of U and Th range from 21 to 55 ppm and 6 to 31 ppm, respectively, and correlate with lower Raman peak intensities, wider Raman peaks, and shifted Si-O peak positions. Concentrations of heavy rare earth elements range over a factor of three to four and correlate with intensities of fluorescence peaks. Correlated variations in trace element concentrations reflect the original magmatic differentiation of the parental melt approx. 4 b.y. ago. Degradation of the zircon structure, as reflected by the observed Raman spectral parameters, has occurred in this sample over a range of alpha-decay event dose from approx. 5.2 x 10(exp 14) to 1.4 x 10(exp 15) decay events per milligram of zircon, as calculated from the U and Th concentrations. This dose is well below the approx. 10(exp 16) events per milligram cumulative dose that causes complete metamictization and indicates that laser Raman microprobe spectroscopy is an analytical technique that is very sensitive to the radiation-induced damage in zircon.
Paces, J.B.; Neymark, L.A.; Wooden, J.L.; Persing, H.M.
2004-01-01
Two novel methods of in situ isotope analysis, ion microprobe and microdigestion, were used for 230Th/U and 234U/238U dating of finely laminated opal hemispheres formed in unsaturated felsic tuff at Yucca Mountain, Nevada, proposed site for a high-level radioactive waste repository. Both methods allow analysis of layers as many as several orders of magnitude thinner than standard methods using total hemisphere digestion that were reported previously. Average growth rates calculated from data at this improved spatial resolution verified that opal grew at extremely slow rates over the last million years. Growth rates of 0.58 and 0.69 mm/m.y. were obtained for the outer 305 and 740 ??m of two opal hemispheres analyzed by ion microprobe, and 0.68 mm/m.y. for the outer 22 ??m of one of these same hemispheres analyzed by sequential microdigestion. These Pleistocene growth rates are 2 to 10 times slower than those calculated for older secondary calcite and silica mineral coatings deposited over the last 5 to 10 m.y. dated by the U-Pb method and may reflect differences between Miocene and Pleistocene seepage flux. The microdigestion data also imply that opal growth rates may have varied over the last 40 k.y. These data are the first indication that growth rates and associated seepage in the proposed repository horizon may correlate with changes in late Pleistocene climate, involving faster growth during wetter, cooler climates (glacial maximum), slower growth during transition climates, and no growth during the most arid climate (modern). Data collected at this refined spatial scale may lead to a better understanding of the hydrologic variability expected within the thick unsaturated zone at Yucca Mountain over the time scale of interest for radioactive waste isolation. ?? 2004 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chen, Zewu
This thesis describes the experimental work in the fabrication of doubly-curved mica diffractors and their applications in monochromatic microprobe x-ray fluorescence analysis and wavelength dispersive spectrometry. Three-dimension focusing of x-rays can be achieved by diffraction from a doubly-curved diffractor. A Johann point-focusing mica diffractor was fabricated for focusing the Cu Kα1 radiation and characterized by using a microfocus x-ray source. The intensity of the focused beam was measured to be 1.01 × 108 photons/s at the focal spot. The spot size of the focused beam was measured by the knife edge scan method. A Cu Kα1 focal spot of 43 μm x 68 μm has been obtained. Monochromatic microprobe x-ray fluorescence (MMXRF) analysis was performed by using the focused Cu Kα1 radiation. The microfocus x-ray source was operated at 30 kV and 0.1 mA. MMXRF spectra of bulk specimens of GaAs, Si, ZnSe, Mg and 40 μm thick Muscovite were recorded with a Si(Li) energy dispersive detector. Exceptional high signal-to-background ratios were observed. Due to the low background, detection limits as low as 1.6 ppm were predicted for a measurement time of 500 s for bulk specimens. The detector background was determined by recording a spectrum from an Fe55 source and was found to be a significant contribution to the total observed background. A wavelength dispersive spectrometer was designed and constructed for the use in a JEOL transmission electron microscope. A logarithmic spiral of revolution diffractor was fabricated and used explored for measurement of Ca concentration in the TEM. Bench tests were carried out by using the microfocus x-ray source. Preliminary data of tests in the TEM indicated that the spectrometer may give better performance than EDS systems previously used.
Pluth, Joseph J.; Smith, Joseph V.
2002-01-01
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O; triclinic, P1̄, a = 13.634(5) Å, b = 13.687(7), c = 14.522(7), α = 110.83(1)°, β = 107.21(1), γ = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4⋅H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404
Pluth, Joseph J; Smith, Joseph V
2002-08-20
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16* approximately 8H2O; triclinic, P1, a = 13.634(5) A, b = 13.687(7), c = 14.522(7), alpha = 110.83(1) degrees, beta = 107.21(1), gamma = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4.H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite.
Kisban, S; Herwik, S; Seidl, K; Rubehn, B; Jezzini, A; Umiltà, M A; Fogassi, L; Stieglitz, T; Paul, O; Ruther, P
2007-01-01
This paper reports on a novel type of silicon-based microprobes with linear, two and three dimensional (3D) distribution of their recording sites. The microprobes comprise either single shafts, combs with multiple shafts or 3D arrays combining two combs with 9, 36 or 72 recording sites, respectively. The electrical interconnection of the probes is achieved through highly flexible polyimide ribbon cables attached using the MicroFlex Technology which allows a connection part of small lateral dimensions. For an improved handling, probes can be secured by a protecting canula. Low-impedance electrodes are achieved by the deposition of platinum black. First in vivo experiments proved the capability to record single action potentials in the motor cortex from electrodes close to the tip as well as body electrodes along the shaft.
NASA Technical Reports Server (NTRS)
Morgan, R. S.; Sattilaro, R. F.
1972-01-01
Atomic absorption spectroscopy, electron microprobe analysis, and dithizone staining of trophozoites and cysts of Entamoeba invadens demonstrate that these cells have a high concentration of zinc (approximately one picogram per cell or 1% of their dry weight). In the cysts of this organism, the zinc is confined to the chromatoid bodies, which previous work has shown to contain crystals of ribosomes. The chemical state and function of this zinc are unknown.
Petrology of 60035 - Evolution of a polymict ANT breccia
NASA Technical Reports Server (NTRS)
Warner, R. D.; Taylor, G. J.; Keil, K.
1980-01-01
Extensive analysis of the lunar rock sample 60035 with optical microscopy and electron microprobe methods show it to be a polymict ANT breccia partly coated with glass, containing abundant clasts which have troctolitic/noritic anorthosite compositions. At least two episodes of crushing and mixing were involved in the petrogenesis of 60035, and annealing and mineral equilibration have not been extensive since the formation of the breccia.
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.
2013-07-01
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.
2013-07-03
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less
NASA Technical Reports Server (NTRS)
Sutton, S. R.
1989-01-01
The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.
DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules
NASA Technical Reports Server (NTRS)
Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.
1997-01-01
The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.
Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.
NASA Astrophysics Data System (ADS)
de Waal, H.; Pretorius, R.
1999-10-01
In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.
1988-11-01
Bilayer ........................................... 14 5. Current-Voltage Curve for Gramacidin in a Lecithin -Sphingomyelin Patch Bilayer... lecithin (Avanti). 9 2. MATERIALS 2.1 Patch Microprobe Instrumentation. The basis of the microprobe system is an AxoPatch Patch- Clamping Amplifier System...histogram of 1024 events cut above 2 pA. Events sampled are thought to be from the same single gramacidin channel in a lecithin : sphingomyelin (5:1) patch
Pure phase encode magnetic field gradient monitor.
Han, Hui; MacGregor, Rodney P; Balcom, Bruce J
2009-12-01
Numerous methods have been developed to measure MRI gradient waveforms and k-space trajectories. The most promising new strategy appears to be magnetic field monitoring with RF microprobes. Multiple RF microprobes may record the magnetic field evolution associated with a wide variety of imaging pulse sequences. The method involves exciting one or more test samples and measuring the time evolution of magnetization through the FIDs. Two critical problems remain. The gradient waveform duration is limited by the sample T(2)*, while the k-space maxima are limited by gradient dephasing. The method presented is based on pure phase encode FIDs and solves the above two problems in addition to permitting high strength gradient measurement. A small doped water phantom (1-3 mm droplet, T(1), T(2), T(2)* < 100 micros) within a microprobe is excited by a series of closely spaced broadband RF pulses each followed by FID single point acquisition. Two trial gradient waveforms have been chosen to illustrate the technique, neither of which could be measured by the conventional RF microprobe measurement. The first is an extended duration gradient waveform while the other illustrates the new method's ability to measure gradient waveforms with large net area and/or high amplitude. The new method is a point monitor with simple implementation and low cost hardware requirements.
The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface
NASA Astrophysics Data System (ADS)
Blue, Randel
2000-01-01
The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.
Light stable isotope analysis of meteorites by ion microprobe
NASA Technical Reports Server (NTRS)
Mcsween, Harry Y., Jr.
1994-01-01
The main goal was to develop the necessary secondary ion mass spectrometer (SIMS) techniques to use a Cameca ims-4f ion microprobe to measure light stable isotope ratios (H, C, O and S) in situ and in non-conducting mineral phases. The intended application of these techniques was the analysis of meteorite samples, although the techniques that have been developed are equally applicable to the investigation of terrestrial samples. The first year established techniques for the analysis of O isotope ratios (delta O-18 and delta O-17) in conducting mineral phases and the measurement of S isotope ratios (delta S-34) in a variety of sulphide phases. In addition, a technique was developed to measure delta S-34 values in sulphates, which are insulators. Other research undertaken in the first year resulted in SIMS techniques for the measurement of wide variety of trace elements in carbonate minerals, with the aim of understanding the nature of alteration fluids in carbonaceous chondrites. In the second year we developed techniques for analyzing O isotope ratios in nonconducting mineral phases. These methods are potentially applicable to the measurement of other light stable isotopes such as H, C and S in insulators. Also, we have further explored the analytical techniques used for the analysis of S isotopes in sulphides by analyzing troilite in a number of L and H ordinary chondrites. This was done to see if there was any systematic differences with petrological type.
A Two-Dimensional Multielectrode Microprobe for the Visual Cortex.
1979-12-01
used in studies of the auditory nerve (Ref 5t494-500) and studies of cortical electrical activity during seizures (Ref 6s414). Since silicon is the...Master of Science by 7> Joseph A. Tatman 2Lt USAF Graduate Electrical Engineering December 1979 Approved for public releases distribution unlimited s...designed around this microprobe to detect- the cortico- electrical C , signas, multiplex and modulate these data, and then transmit them across the
NASA Astrophysics Data System (ADS)
Ozerov, Alexei Y.
2000-01-01
The origin of calc-alkaline high-alumina basalts (HAB) of the Klyuchevskoy volcano, Kamchatka, was examined using electron microprobe analyses of phenocrysts and mineral phases included in the phenocrysts. Continuous trends on major-element variation diagrams suggest the HAB were derived from high-magnesia basalt (HMB) by fractional crystallization. Phenocrysts in the HAB are strongly zoned: olivine (Mg# 91-64), clinopyroxene (Wo 45-38En 40-51Fs 5-20) and chrome—spinel/magnetite inclusions in them (Cr 2O 3 45-0 wt.%, TiO 2 0.5-11%). Microprobe analyses of minerals included in the phenocrysts provide additional constraints on the mineral crystallization trends in the HAB. Fe/Mg partitioning data, when applied to the phenocrysts cores, show they crystallized from a HMB. The similarity of phenocryst core compositions in HAB with those in HMB strongly suggests a genetic relationship between the two magma types.
Sensing surface mechanical deformation using active probes driven by motor proteins
Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira
2016-01-01
Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937
NASA Technical Reports Server (NTRS)
Distefano, S.; Rameshan, R.; Fitzgerald, D. J.
1991-01-01
Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.
In situ 40K-40Ca ‘double-plus’ SIMS dating resolves Klokken feldspar 40K-40Ar paradox
NASA Astrophysics Data System (ADS)
Harrison, T. Mark; Heizler, Matthew T.; McKeegan, Kevin D.; Schmitt, Axel K.
2010-11-01
The 40K- 40Ca decay system has not been widely utilized as a geochronometer because quantification of radiogenic daughter is difficult except in old, extremely high K/Ca domains. Even these environments have not heretofore been exploited by ion microprobe analysis due to the very high mass resolving power (MRP) of 25,000 required to separate 40K + from 40Ca +. We introduce a method that utilizes doubly-charged K and Ca species which permits isotopic measurements to be made at relatively low MRP (~ 5000). We used this K-Ca 'double-plus' approach to address an enduring controversy in 40Ar/ 39Ar thermochronology revolving around exsolved alkali feldspars from the 1166 Ma Klokken syenite (southern Greenland). Ion microprobe 40K- 40Ca analysis of Klokken samples reveal both isochron and pseudoisochron behaviors that reflect episodic isotopic and chemical exchange of coarsely exsolved perthites and a near end-member K-feldspar until ≤ 719 Ma, and perhaps as late at ~ 400 Ma. Feldspar microtextures in the Klokken syenite evolved over a protracted interval by non-thermal processes (fluid-assisted recrystallization) and thus this sample makes a poor model from which to address the general validity of 40Ar/ 39Ar thermochronological methodologies.
An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.
1998-03-01
External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, Kristin A., E-mail: kristin.higgins@emory.edu; Winship Cancer Institute, Emory University, Atlanta, Georgia; O'Connell, Kelli
Purpose: To analyze outcomes and predictors associated with proton radiation therapy for non-small cell lung cancer (NSCLC) in the National Cancer Database. Methods and Materials: The National Cancer Database was queried to capture patients with stage I-IV NSCLC treated with thoracic radiation from 2004 to 2012. A logistic regression model was used to determine the predictors for utilization of proton radiation therapy. The univariate and multivariable association with overall survival were assessed by Cox proportional hazards models along with log–rank tests. A propensity score matching method was implemented to balance baseline covariates and eliminate selection bias. Results: A total of 243,822more » patients (photon radiation therapy: 243,474; proton radiation therapy: 348) were included in the analysis. Patients in a ZIP code with a median income of <$46,000 per year were less likely to receive proton treatment, with the income cohort of $30,000 to $35,999 least likely to receive proton therapy (odds ratio 0.63 [95% confidence interval (CI) 0.44-0.90]; P=.011). On multivariate analysis of all patients, non-proton therapy was associated with significantly worse survival compared with proton therapy (hazard ratio 1.21 [95% CI 1.06-1.39]; P<.01). On propensity matched analysis, proton radiation therapy (n=309) was associated with better 5-year overall survival compared with non-proton radiation therapy (n=1549), 22% versus 16% (P=.025). For stage II and III patients, non-proton radiation therapy was associated with worse survival compared with proton radiation therapy (hazard ratio 1.35 [95% CI 1.10-1.64], P<.01). Conclusions: Thoracic radiation with protons is associated with better survival in this retrospective analysis; further validation in the randomized setting is needed to account for any imbalances in patient characteristics, including positron emission tomography–computed tomography staging.« less
A clinical pathologic study of mercurialentis medicamentosus.
Garron, L K; Wood, I S; Spencer, W H; Hayes, T L
1976-01-01
Thirty-one patients who used eye drops containing the preservative, phenylmercuric nitrate for from 3 to 15 years, developed a brownish pigmentation of the anterior capsule of the pupillary area. Light and electron microscopic studies on two lenses demonstrated deposits of dense particulate material resembling melanin pigment on and in the anterior capsule of the lens in the area of the pupil. Special studies, including electron microprobe analysis and neutron activation analysis established the presence of mercury in a lens with mercurialentis. No mercury was found in two lenses used as controls.
Integrated otpical monitoring of MEMS for closed-loop control
NASA Astrophysics Data System (ADS)
Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.
2003-01-01
Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.
The Perils of Electron Microprobe Analysis of Apatite
NASA Astrophysics Data System (ADS)
Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.
2010-12-01
Accurate electron microprobe analysis of apatite is problematic, especially for F and Cl, whose concentrations are essential in calculating a non-analyzable OH component. The issues include beam-induced sample damage and temporal variation of F and Cl X-rays; both effects are mainly dependent on beam current, beam spot size and apatite orientation [1]. To establish a rigorous analytical procedure, several oriented apatite samples, including the well-known Durango and Wilberforce fluorapatites, were analyzed for a large suite of elements, including oxygen. Careful X-ray spectroscopy was performed, including selection of appropriate analytical standards, background measurement positions and comparison of area peak factors. Polarized infrared spectra on oriented apatite samples were also collected for complementary information. The results show that when apatite samples are oriented with the c-axis parallel to the electron beam, there is significant nonlinear variation (an increase or decrease, depending on measurement conditions) of F and Cl X-ray intensities during analyses, and systematically higher-than-expected F apparent concentrations, despite the careful selection of electron beam conditions from a series of X-ray time scans and zero-time count rate extrapolation. On the other hand, when the electron beam is oriented perpendicular to the c-axis, with a ≤ 15 nA beam current and a ≥ 5 µm diameter defocused beam, F and Cl X-ray intensities do not vary or vary slowly and predictably with time, yielding quantitative analysis results for the Durango and Wilberforce apatites (both containing little OH) which are in good agreement with published wet chemical analyses. Furthermore, the OH and CO2 contents inferred for three other analyzed apatite samples are roughly consistent with infrared analyses. For example, for an apatite from Silver Crater Mine in Ontario, significant deficiency in the P site, as well as extra F, was inferred from microprobe analyses. Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.
Comparative analysis of cation/proton antiporter superfamily in plants.
Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun
2013-06-01
The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Andersen, C. A.; Hinthorne, J. R.
1972-01-01
Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.
NASA Technical Reports Server (NTRS)
Martinez, I.; Guyot, F.; Schaerer, U.
1992-01-01
In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.
NASA Astrophysics Data System (ADS)
Mouri, H.; Brandl, G.; Whitehouse, M.; de Waal, S.; Guiraud, M.
2008-02-01
The combination of ion microprobe dating and cathodoluminescence (CL) imaging of zircons from a high-grade rock from the Central Zone of the Limpopo Belt were used to constrain the age of metamorphic events in the area. Zircon grains extracted from an orthopyroxene-gedrite-bearing granulite were prepared for single crystal CL-imaging and ion microprobe dating. The grains display complex zoning when using SEM-based CL-imaging. A common feature in most grains is the presence of a distinct core with a broken oscillatory zoned structure, which clearly appears to be the remnant of an original grain of igneous origin. This core is overgrown by an unzoned thin rim measuring about 10-30 μm in diameter, which is considered as new zircon growth during a single metamorphic event. Selected domains of the zircon grains were analysed for U, Pb and Th isotopic composition using a CAMECA IMS 1270 ion microprobe (Nordsim facility). Most of the grains define a near-concordant cluster with some evidence of Pb loss. The most concordant ages of the cores yielded a weighted mean 207Pb/ 206Pb age of 2689 ± 15 (2 σ) Ma, interpreted as the age of the protolith of an igneous origin. The unzoned overgrowths of the zircon grains yielded a considerably younger weighted mean 207Pb/ 206Pb age of ˜2006.5 ± 8.0 Ma (2 σ), and these data are interpreted to reflect closely the age of the ubiquitous high-grade metamorphic event in the Central Zone. This study shows clearly, based on both the internal structure of the zircons and the data obtained by ion microprobe dating, that only a single metamorphic event is recorded by the studied 2.69 Ga old rocks, and we found no evidence of an earlier metamorphic event at ˜2.5 Ga as postulated earlier by some workers.
Characteristics of proton beams and secondary neutrons arising from two different beam nozzles
NASA Astrophysics Data System (ADS)
Choi, Yeon-Gyeong; Kim, Yu-Seok
2015-10-01
A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.
Boron Carbide Aluminum Cermets for External Pressure Housing Applications
1992-09-01
CHEMISTRY AND MICROSTRUCTURES OF THE B4C/Al SYSTEM ......................................... 4 3.2 MECHANICAL PROPERTIES OF B4C/AI COMPOSITES ....... 10...TABLES 1. Phase chemistry of B4C/A1 composites as a function of baking temperature (by stereology) .................. ...... 10 2. Summary of the...diffractometer using CuKo radiation and a scan rate of 2° per minute. The chemistry of all phases was determined from electron microprobe analysis of
Ilmenite exsolution schemes in Apollo-17 high-Ti basalts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaniman, D.; Heiken, G.; Muhich, T.
1990-01-01
Combined electron microprobe and scanning electron microscope (SEM) x-ray image analyses are used to obtain semiquantitative data on the relations between ilmenite grains and their exsolved chromite and rutile. Comparisons of these data for ilmenites in four Apollo-17 high-Ti basalts with a database of electron microprobe analyses from the literature indicates that Cr expulsion from ilmenite can be as important as Fe{sup 2+} reduction in causing subsolidus exsolution of chromite and rutile from ilmenite. 12 refs., 4 figs., 5 tabs.
NASA Technical Reports Server (NTRS)
Barta, D. J.; Tibbitts, T. W.
1991-01-01
An electron microprobe with wavelength-dispersive x-ray spectrometry (WDS) was found to be useful for the determination of Ca concentrations in leaf tissue deficient in Ca. WDS effectively detected Ca concentrations as low as 0.2 mg/g dry wt in the presence of high levels of K and Mg (120 and 50 mg/g dry wt, respectively). Leaf specimens were prepared for analysis by quick-freezing in liquid nitrogen and freeze-drying at -20 degrees C to maintain elemental integrity within the tissue. Because dry material was analyzed, sample preparation was simple and samples could be stored for long periods before analysis. A large beam diameter of 50 gm was used to minimize tissue damage under the beam and analyze mineral concentrations within several cells at one time. Beam penetration was between 50 and 55 microns, approximately one-third of the thickness of the leaf. For analysis of concentrations in interveinal areas, analyses directed into the abaxial epidermis were found most useful. However, because of limited beam penetration, analyses of veinal areas would require use of cross sections [correction of crosssections]. Solid mineral standards were used for instrument standardization. To prevent measurement errors resulting from differences between the matrix of the mineral standards and the analyzed tissue, concentrations in leaves were corrected using gelatin standards prepared and analyzed under the same conditions. WDS was found to be useful for documenting that very low Ca levels occur in specific areas of lettuce leaves exhibiting the Ca deficiency injury termed tipburn.
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers prepare to mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the background, Chris Voorhees watches. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars microprobe from a drum. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.
2009-06-04
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.
2009-04-29
The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker checks the Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the two Mars microprobes are shown mounted on opposite sides of the Mars Polar Lander. The two microprobes and the lander are scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), two JPL workers measure a Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker carries a Mars microprobe to the Mars Polar Lander at left. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, David A., E-mail: dbush@llu.edu; Smith, Jason C.; Slater, Jerry D.
2016-05-01
Purpose: To describe results of a planned interim analysis of a prospective, randomized clinical trial developed to compare treatment outcomes among patients with newly diagnosed hepatocellular carcinoma (HCC). Methods and Materials: Eligible subjects had either clinical or pathologic diagnosis of HCC and met either Milan or San Francisco transplant criteria. Patients were randomly assigned to transarterial chemoembolization (TACE) or to proton beam radiation therapy. Patients randomized to TACE received at least 1 TACE with additional TACE for persistent disease. Proton beam radiation therapy was delivered to all areas of gross disease to a total dose of 70.2 Gy in 15 daily fractionsmore » over 3 weeks. The primary endpoint was progression-free survival, with secondary endpoints of overall survival, local tumor control, and treatment-related toxicities as represented by posttreatment days of hospitalization. Results: At the time of this analysis 69 subjects were available for analysis. Of these, 36 were randomized to TACE and 33 to proton. Total days of hospitalization within 30 days of TACE/proton was 166 and 24 days, respectively (P<.001). Ten TACE and 12 proton patients underwent liver transplantation after treatment. Viable tumor identified in the explanted livers after TACE/proton averaged 2.4 and 0.9 cm, respectively. Pathologic complete response after TACE/proton was 10%/25% (P=.38). The 2-year overall survival for all patients was 59%, with no difference between treatment groups. Median survival time was 30 months (95% confidence interval 20.7-39.3 months). There was a trend toward improved 2-year local tumor control (88% vs 45%, P=.06) and progression-free survival (48% vs 31%, P=.06) favoring the proton beam treatment group. Conclusions: This interim analysis indicates similar overall survival rates for proton beam radiation therapy and TACE. There is a trend toward improved local tumor control and progression-free survival with proton beam. There are significantly fewer hospitalization days after proton treatment, which may indicate reduced toxicity with proton beam therapy.« less
Chromium in urban sediment particulates: an integrated micro-chemical and XANES study
NASA Astrophysics Data System (ADS)
Taylor, Kevin; Byrne, Patrick; Hudson-Edwards, Karen
2015-04-01
Chromium is generally common within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid phase chemical speciation of Cr in the particles. In this study, we use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK. Cr-bearing grains within RDS are predominantly iron oxide grains, commonly of goethite or haematite mineralogy, but Cr-bearing silicate glass grains are also present. Iron oxide glass grains most likely have sorbed Cr, and derive from the rusting of Cr-steel particles from vehicles. Electron microprobe analysis indicates concentrations of Cr up to 3200 μg/g in these grains, and XANES analysis indicates that Cr(III) is the dominant oxidation state, with some trace amounts of Cr(VI). Cr-bearing grains within aquatic sediments are dominated by alumino-silicate glass grains derived from industrial waste. These grains contain Cr-rich areas with up to 19% Cr2O3 and XANES analysis indicates that Cr is present as Cr(III). The dominance of Cr(III) in these urban particulate grains suggests limited bioavailability or toxicity. However, the presence within two markedly different grain types (iron oxides and silicate glasses) indicates that the long-term geochemical behaviour and environmental risk of RDS and the aquatic sediments studied are likely to be quite different. These findings highlight the importance of understanding sources of metal contaminants in urban environments and the geochemical processes that affect their transfer through the urban sediment cascade and the wider river basin.
Workshop on Cometary Dust in Astrophysics
NASA Technical Reports Server (NTRS)
2003-01-01
The paper include contribution of each Lunar and Planetary Institute. Contents include the following: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. In-situ analysis of complex organic matter in cometary dust by ion microprobe. Pristine presolar silicon carbide. Infrared spectra of melilite solid solution. Comet observations with SIRTF. Ice and carbon chemistry in comets. The nature in interstellar dust. Modeling the infrared emission from protoplanetary dust disks.
1988-12-01
by light finger pressure; and surface shaded or rubbed by soft pencil, charcoal, or crayon. Anglers initiated this custom as a means of recording...related to the barium titanate or simple nects, and mixers. Some of these applica- perovskite unit cell (Figure 1). In this struc- tions can be...dispersive spectroscopy (EDS), Target-~ microprobe analysis, and x-ray diffraction R~orOC(XRD). MagnetsOptical microscopy with polarized light
A Review of Positive Ion Sensitivities for the SIMS Analysis of CMT
1991-05-01
microprobe. Inter-laboratory exercises organised by NRL using standardised glasses and steels’ s showed considerable agreement usually within a factor...would be sufficient oxygen to convert all the remaining matrix atoms to oxides, TeO2 and CdO. Any general theory of the lonisation of sputtered particles...Eggert equation which works well for many other matrices, such as metals, glasses and ceramics. Despite decades of basic studies there is still no
Hot-phonon generation in THz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
2007-12-01
Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.
Zhu, Yu-Min; Zhang, Hua; Fan, Shi-Suo; Wang, Si-Jia; Xia, Yi; Shao, Li-Ming; He, Pin-Jing
2014-07-15
Due to the heterogeneity of metal distribution, it is challenging to identify the speciation, source and fate of metals in solid samples at micro scales. To overcome these challenges single particles of air pollution control residues were detected in situ by synchrotron microprobe after each step of chemical extraction and analyzed by multivariate statistical analysis. Results showed that Pb, Cu and Zn co-existed as acid soluble fractions during chemical extraction, regardless of their individual distribution as chlorides or oxides in the raw particles. Besides the forms of Fe2O3, MnO2 and FeCr2O4, Fe, Mn, Cr and Ni were closely associated with each other, mainly as reducible fractions. In addition, the two groups of metals had interrelations with the Si-containing insoluble matrix. The binding could not be directly detected by micro-X-ray diffraction (μ-XRD) and XRD, suggesting their partial existence as amorphous forms or in the solid solution. The combined method on single particles can effectively determine metallic multi-associations and various extraction behaviors that could not be identified by XRD, μ-XRD or X-ray absorption spectroscopy. The results are useful for further source identification and migration tracing of heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.
Tykot, Robert H
2002-08-01
Chemical fingerprinting using major or trace element composition is used to characterize the Mediterranean island sources of obsidian and can even differentiate as many as nine flows in the Monte Arci region of Sardinia. Analysis of significant numbers of obsidian artifacts from Neolithic sites in the central Mediterranean reveals specific patterns of source exploitation and suggests particular trade mechanisms and routes. The use of techniques such as X-ray fluorescence, the electron microprobe, neutron activation analysis, and laser ablation ICP mass spectrometry are emphasized in order to produce quantitative results while minimizing damage to valuable artifacts.
Optical and chemical analysis of iron in Luna 20 plagioclase.
NASA Technical Reports Server (NTRS)
Bell, P. M.; Mao, H. K.
1973-01-01
Review of analytical data on the iron content of Luna 20 anorthitic plagioclase, obtained by a highly sensitive technique for measuring polarized absorption related to crystal-field splittings and by automated electron microprobe analysis of oriented single crystals. The iron content is found to range from a few hundredths to a few tenths of a weight per cent from crystal to crystal. The optical and chemical properties of the iron appear to be caused by postcrystallization migration and exsolution. Postcrystallization effects may obscure evidence of the original oxidation state and iron concentration of these crystals.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
The synchrotron x-ray microprobe is being used to obtain oxidation state information on planetary materials with high spatial resolution. Initial results on chromium in olivine from various sources including laboratory experiments, lunar basalt, and kimberlitic diamonds are reported. The lunar olivine was dominated by Cr(2+) whereas the diamond inclusions had Cr(2+/Cr(3+) ratios up to about 0.3. The simpliest interpretation is that the terrestrial olivine crystallized in a more oxidizing environment than the lunar olivine.
Vizkelethy, G.; King, M. P.; Aktas, O.; ...
2016-12-02
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, G.; King, M. P.; Aktas, O.
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
NASA Astrophysics Data System (ADS)
Bolton, Philip H.
Heteronuclear two-dimensional magnetic resonance is a novel method for investigating the conformations of cellular phosphates. The two-dimensional proton spectra are detected indirectly via the phosphorus-31 nucleus and thus allow determination of proton chemical shifts and coupling constants in situations in which the normal proton spectrum is obscured. Previous investigations of cellular phosphates with relatively simple spin systems have shown that the two-dimensional proton spectrum can be readily related to the normal proton spectrum by subspectral analysis. The normal proton spectrum can be decomposed into two subspectra, one for each polarization of the phosphorus-31 nucleus. The two-dimensional spectrum arises from the difference between the subspectra, and the normal proton spectrum is the sum. This allows simulation of the two-dimensional spectra and hence determination of the proton chemical shifts and coupling constants. Many cellular phosphates of interest, such as 5'-nucleotides and phosphoserine, contain three protons coupled to the phosphorus which are strongly coupled to one another. These samples are amenable to the two-dimensional method and the straightforward subspectral analysis is preserved when a 90° pulse is applied to the protons in the magnetization transfer step. The two-dimensional proton spectra of the samples investigated here have higher resolution than the normal proton spectra, revealing spectral features not readily apparent in the normal proton spectra.
Hydrogen concentration analysis in clinopyroxene using proton-proton scattering analysis
NASA Astrophysics Data System (ADS)
Weis, Franz A.; Ros, Linus; Reichart, Patrick; Skogby, Henrik; Kristiansson, Per; Dollinger, Günther
2018-02-01
Traditional methods to measure water in nominally anhydrous minerals (NAMs) are, for example, Fourier transformed infrared (FTIR) spectroscopy or secondary ion mass spectrometry (SIMS). Both well-established methods provide a low detection limit as well as high spatial resolution yet may require elaborate sample orientation or destructive sample preparation. Here we analyze the water content in erupted volcanic clinopyroxene phenocrysts by proton-proton scattering and reproduce water contents measured by FTIR spectroscopy. We show that this technique provides significant advantages over other methods as it can provide a three-dimensional distribution of hydrogen within a crystal, making the identification of potential inclusions possible as well as elimination of surface contamination. The sample analysis is also independent of crystal structure and orientation and independent of matrix effects other than sample density. The results are used to validate the accuracy of wavenumber-dependent vs. mineral-specific molar absorption coefficients in FTIR spectroscopy. In addition, we present a new method for the sample preparation of very thin crystals suitable for proton-proton scattering analysis using relatively low accelerator potentials.
The Role of the Ion Microprobe in Solid-Earth Geochemistry
NASA Astrophysics Data System (ADS)
Hauri, E. H.
2002-12-01
Despite the early success of the electron microprobe in taking petrology to the micron scale, and the widespread use of mass spectrometers in geochemistry and geochronology, it was not until the mid-1970s that the ion microprobe came into its own as an in situ analytical tool in the Earth sciences. Despite this inauspicious beginning, secondary ion mass spectrometry (SIMS) was widely advertised as a technology that would eventually eclipse thermal ion mass spectrometry (TIMS) in isotope geology. However this was not to happen. While various technical issues in SIMS such as interferences and matrix effects became increasingly clear, an appreciation grew for the complimentary abilities of SIMS and TIMS that, even with the advent of ICP-MS, continues to this day. Today the ion microprobe is capable of abundance measurements in the parts-per-billion range across nearly the entire periodic table, and SIMS stable isotope data quality is now routinely crossing the 1 per mil threshold, all at the micron scale. Much of this success is due to the existence of multi-user community facilities for SIMS research, and the substantial efforts of interested scientists to understand the fundamentals of sputtered ion formation and their application to geochemistry. Recent discoveries of evidence for the existence of ancient crust and oceans, the emergence of life on Earth, the large-scale cycling of surficial materials into the deep Earth, and illumination of fundamental high-pressure phenomena have all been made possible by SIMS, and these (and many more) discoveries owe a debt to the vision of creating and supporting multi-user community facilities for SIMS. The ion microprobe remains an expensive instrument to purchase and maintain, yet it is also exceedingly diverse in application. Major improvements in SIMS, indeed in all mass spectrometry, are visible on the near horizon. Yet the geochemical community cannot depend on commercial manufacturers alone to design and build the next generation of instrumentation for geochemistry. Such will be the role of instrument-minded scientists asking questions that simply cannot be answered by extant means. And it will be multi-user facilities that will make such advancements available to the wider geochemical community.
NASA Technical Reports Server (NTRS)
Huneke, J. C.; Armstrong, J. T.; Wassserburg, G. J.
1983-01-01
Isotopic ratios have been determined, at a precision level approaching that of counting statistics using beam switching, by employing PANURGE, a modified CAMECA IMS3F ion microprobe at a mass resolving power of 5000. This technique is used to determine the isotopic composition of Mg and Si and the atomic ratio of Al/Mg in minerals from the Allende inclusion WA and the Allende FUN inclusion C1. Results show enrichment in Mg-26 of up to 260 percent. Results of Mg and Al/Mg measurements on cogenetic spinel inclusion and host plagiclase crystals show Mg-Al isochrons in excellent agreement with precise mineral isochrons determined by thermal emission mass spectrometry. The measurements are found to confirm the presence of substantial excess Mg-26 in WA and its near absence in C1. Data is obtained which indicates a metamorphic reequilibrium of Mg in Allende plagioclase at least 0.6 my after WA formation. Ion probe measurements are obtained which confirm that the Mg composition in Allende C1 is highly fractionated and is uniform among pyroxene, melilite, plagioclase, spinel crystals, and spinel included in melilite and plagioclase crystals.
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.
Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C
2015-10-01
The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
McKeegan, Kevin D.
1998-01-01
NASA NAGW-4112 has supported development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The instrument has been brought to an operational status and techniques developed for accurate, precise microbeam analysis of oxygen isotope ratios in polished thin-sections. We made the first oxygen isotopic (delta(18)O and delta(17)O) measurements of rare mafic silicates in the most chemically primitive meteorites, the a chondrites (Leshin et al., 1997). The results have implications for both high temperature processing in the nebula and low-T aqueous alteration on the CI asteroid. We have performed measurements of oxygen isotopic compositions of magnetite and co-existing olivine from carbonaceous (Choi et al., 1997) and unequilibrated ordinary chondrites (Choi et al., in press). This work has identified a significant new oxygen isotope reservoir in the early solar system: water characterized by a very high Delta(17)) value of approx. 5 % per thousand. We have determined the spatial distributions of oxygen isotopic anomalies in all major mineral phases of a type B CAI from Allende. We have also studied an unusual fractionated CAI from Leoville and made the first oxygen isotopic measurements in rare CAIs from ordinary chondrites.
Background of SAM atom-fraction profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Frank
Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which ismore » validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.« less
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1981-01-01
Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.
Dual fiber microprobe for mapping elemental distributions in biological cells
Martin, Rodger C [Powell, TN; Martin, Madhavi Z [Powell, TN
2007-07-31
Laser-induced breakdown spectroscopy (LIBS) is applied on a microscale for in situ elemental analysis and spatial mapping in biological cells. A high power laser beam is focused onto a cell surface using a dual branching optical fiber probe for optical excitation of the cell constituents. Dual spectrometers and ICCD detectors capture the emission spectra from the excited cell(s). Repeated probing or repositioning of the laser beam with respect to the cell can provide 2-D or 3-D mapping of the cell.
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet Propulsion Laboratory, observe a Mars microprobe on the workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millelnnium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe
Bacon, C.R.; Persing, H.M.; Wooden, J.L.; Ireland, T.R.
2000-01-01
Variably melted granodiorite blocks ejected during the Holocene caldera-forming eruption of Mount Mazama were plucked from the walls of the climactic magma chamber ~15 km depth. Ion-microprobe U-Pb dating of zircons from two unmelted granodiorite blocks with SHRIMP RG (sensitive high-resolution ion microprobe-reverse geometry) gives a nominal 238U/206Pb age of 101+78-80 ka, or 174+89-115 ka when adjusted for an initial 230Th deficit. SHRIMP RG U-Th measurements on a subset of the zircons yield a 230Th/238U isochron age of 112 ?? 24 ka, considered to be the best estimate of the time of solidification of the pluton. These results suggest that the granodiorite is related to andesite and dacite of Mount Mazama and not to magmas of the climactic eruption. The unexposed granodiorite has an area of at least 28 km2. This young, shallow pluton was emplaced in virtually the same location where a similarly large magma body accumulated and powered violent explosive eruptions ~7700 yr ago, resulting in collapse of Crater Lake caldera.
NASA Astrophysics Data System (ADS)
Abiy, Lidet; Telischi, Fred; Parel, Jean-Marie A.; Manns, Fabrice; Saettele, Ralph; Morawski, Krzysztof; Ozdamar, Ozcan; Borgos, John; Delgado, Rafael; Miskiel, Edward; Yavuz, Erdem
2003-06-01
The aim of this project is the development of a microsurgical laser Doppler (LD) probe that simultaneously monitors blood flow and Electrocochleography (ECochG) from the round window of the ear. The device will prevent neurosensory hearing loss during acoustic neuroma surgery by preventing damage to the internal auditory nerve and to the cochlear blood flow supply. A commercially available 0.5 mm diameter Laser-Doppler velocimetry probe (LaserFlo, Vasamedics) was modified to integrate an ECochG electrode. A tube for suction and irrigation was incorporated into a sheath of the probe shaft, to facilitate cleaning of the round window (RW) and allow drug delivery to the round window membrane. The prototype microprobe was calibrated on a single vessel model and tested in vivo in a rabbit model. Preliminary results indicate that the microprobe was able to measure changes in cochlear blood flow (CBF) and ECochG potentials from the round window of rabbits in vivo. The microprobe is suitable for monitoring cochlear blood flow and auditory cochlear potentials during human surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, C.K.; Papike, J.J.; Simon, S.B.
1989-05-01
To study the effects of crystallization sequence and rate on trace element zoning characteristics of pyroxenes, the authors used combined electron microprobe-ion microprobe techniques on four nearly isochemical Apollo 12 and 15 pigeonite basalts with different cooling rates and crystallization histories. Major and minor element zoning characteristics are nearly identical to those reported in the literature. All the pyroxenes have similar chondrite-normalized REE patterns: negative Eu anomalies, positive slopes as defined by Yb/Ce, and slopes of REE patterns from Ce to Sm much steeper than from Gd to Yb. These trace element zoning characteristics in pyroxene and the partitioning ofmore » trace elements between pyroxene and the melt are intimately related to the interplay among the efficiency of the crystallization process, the kinetics at the crystal-melt interface, the kinetics of plagioclase nucleation and the characteristics of the crystal chemical substitutions within both the pyroxene and the associated crystallizing phases (i.e. plagioclase).« less
Richard, Patrick J.; Zeng, Jing; Apisarnthanarax, Smith; Rengan, Ramesh; Phillips, Mark H.
2018-01-01
Background Although proton radiation treatments are more costly than photon/X-ray therapy, they may lower overall treatment costs through reducing rates of severe toxicities and the costly management of those toxicities. To study this issue, we created a decision-model comparing proton vs. X-ray radiotherapy for locally advanced non-small cell lung cancer patients. Methods An influence diagram was created to model for radiation delivery, associated 6-month pneumonitis/esophagitis rates, and overall costs (radiation plus toxicity costs). Pneumonitis (age, chemo type, V20, MLD) and esophagitis (V60) predictors were modeled to impact toxicity rates. We performed toxicity-adjusted, rate-adjusted, risk group-adjusted, and radiosensitivity analyses. Results Upfront proton treatment costs exceeded that of photons [$16,730.37 (3DCRT), $23,893.83 (IMRT), $41,061.80 (protons)]. Based upon expected population pneumonitis and esophagitis rates for each modality, protons would be expected to recover $1,065.62 and $1,139.63 of the cost difference compared to 3DCRT or IMRT. For patients treated with IMRT experiencing grade 4 pneumonitis or grade 4 esophagitis, costs exceeded patients treated with protons without this toxicity. 3DCRT patients with grade 4 esophagitis had higher costs than proton patients without this toxicity. For the risk group analysis, high risk patients (age >65, carboplatin/paclitaxel) benefited more from proton therapy. A biomarker may allow patient selection for proton therapy, although the AUC alone is not sufficient to determine if the biomarker is clinically useful. Conclusions The comparison between proton and photon/X-ray radiation therapy for NSCLC needs to consider both the up-front cost of treatment and the possible long term cost of complications. In our analysis, current costs favor X-ray therapy. However, relatively small reductions in the cost of proton therapy may result in a shift to the preference for proton therapy.
Rapid correction of electron microprobe data for multicomponent metallic systems
NASA Technical Reports Server (NTRS)
Gupta, K. P.; Sivakumar, R.
1973-01-01
This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.
$ANBA; a rapid, combined data acquisition and correction program for the SEMQ electron microprobe
McGee, James J.
1983-01-01
$ANBA is a program developed for rapid data acquisition and correction on an automated SEMQ electron microprobe. The program provides increased analytical speed and reduced disk read/write operations compared with the manufacturer's software, resulting in a doubling of analytical throughput. In addition, the program provides enhanced analytical features such as averaging, rapid and compact data storage, and on-line plotting. The program is described with design philosophy, flow charts, variable names, a complete program listing, and system requirements. A complete operating example and notes to assist in running the program are included.
Micro-PIXE studies of Lupinus angustifolius L. after treatment of seeds with molybdenum
NASA Astrophysics Data System (ADS)
Przybylowicz, W. J.; Mesjasz-Przybylowicz, J.; Wouters, K.; Vlassak, K.; Combrink, N. J. J.
1997-02-01
An example of nuclear microprobe application in agriculture is presented. The NAC nuclear microprobe was used to determine quantitative elemental distribution of major, minor and trace elements in Lupinus angustifolius L. (Leguminosae) after treatment of seeds with molybdenum. Experiments were performed in order to establish safe concentration levels and sources of Mo in seed treatments. Elemental distributions in Mo-treated plants and in the non-treated control plants were studied in order to explain how Mo causes toxicity. Some specific regions of Mo and other main and trace elements enrichment were identified.
Herrera, Barbara
2011-05-01
In this article, a theoretical study of 1-5 proton transfers is presented. Two model systems which represent 1-5 proton transfer, 3-hidroxy-2-propenimine and salicyldenaniline have been studied as shown in Fig. 1. For this purpose, a DFT/B3LYP/6-311+G**, reaction force and reaction electronic flux analysis is made. The obtained results indicate that both proton transfers exhibit energetic and electronic differences emphasizing the role of the neighbor ring and the impact of conjugation on electronic properties.
NASA Technical Reports Server (NTRS)
Khakoo, M. A.; Srivastava, S. K.
1985-01-01
The kinetic energy spectra of protons resulting from the dissociative ionization of H2 by electron impact have been measured for electron impact energies from threshold (approximately 17 eV) to 160 eV at 90 deg and 30 deg detection angles, using a crossed-beam experimental arrangement. To check reliability, two separate proton energy analysis methods have been employed, i.e., a time-of-flight proton energy analysis and an electrostatic hemispherical energy analyzer. The present results are compared with previous measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrach, D J; Phillis, C C; Weber, P K
2004-09-17
Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass. This study examines migration in striped bass as part of a larger study investigating bioaccumulation and maternal transfer of xenobiotics to progeny in the San Francisco Estuary system. Habitat use, residence time and spawning migration over the life of females (n = 23) was studied. Female striped bass were collected between Knights Landing and Colusa on the Sacramento River during the spawning runs of 1999 and 2001. Otoliths were removed, processed and aged via otolith microstructure. Subsequently, otoliths were analyzed for strontium/calciummore » (Sr/Ca) ratio using an electron-microprobe to measure salinity exposure and to distinguish freshwater, estuary, and marine habitat use. Salinity exposure during the last year before capture was examined more closely for comparison of habitat use by the maternal parent to contaminant burden transferred to progeny. Results were selectively confirmed by ion microprobe analyses for habitat use. The Sr/Ca data demonstrate a wide range of migratory patterns. Age of initial ocean entry differs among individuals before returning to freshwater, presumably to spawn. Some fish reside in freshwater year-round, while others return to more saline habitats and make periodic migrations to freshwater. Frequency of habitat shifts and residence times differs among fish, as well as over the lifetime of individual fish. While at least one fish spent its final year in freshwater, the majority of spawning fish spent their final year in elevated salinity. However, not all fish migrated to freshwater to spawn in the previous year. Results from this investigation concerning migration history in striped bass can be combined with contaminant and histological developmental analyses to better understand the bioaccumulation of contaminants and the subsequent effects they and habitat use have on fish populations in the San Francisco Estuary system.« less
The petrogenesis of L-6 chondrites - Insights from the chemistry of minerals
NASA Technical Reports Server (NTRS)
Curtis, D. B.; Schmitt, R. A.
1979-01-01
Measurements of the major, minor and trace element abundances of the major minerals of the L-6 chondrites Alfianello, Colby (WI) and Leedey are used to investigate the formation mechanisms of L-6 chondrites. Electron microprobe analysis was performed on individual grains of each mineral, and separated minerals were analyzed by instrumental and radiochemical neutron activation analysis. The compositions of the three meteorites are observed to be generally uniform, however different abundances and distributions of rare earth elements and Co and Ni indicate that the meteorites have different petrogenetic histories. Alkali element distributions are found to be incompatible with internal equilibration of a closed system.
Evaluating the quality of NMR structures by local density of protons.
Ban, Yih-En Andrew; Rudolph, Johannes; Zhou, Pei; Edelsbrunner, Herbert
2006-03-01
Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high-resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z-scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z-scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711-1733) generated by all atom contact analysis. Local density Z-scores for NMR structures exhibit a significantly wider range of values than for X-ray structures and demonstrate a combination of potentially problematic inflation and compression. Water-refined NMR structures show improved packing quality. Our analysis of a high-quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures. 2005 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranson, W.A.; Garihan, J.M.; Ulmer, K.E.
1992-01-01
Amphibolite outcrops of unusual mineralogy within the Chunky Gal Mountain mafic-ultramafic complex display cm-scale rhythmic layers with moderate-steep dips. Layers are troctolitic, gabbroic, and anorthositic in composition, locally in contact with dunite of the Buck Creek ultramafic body. Meta-gabbroic layers contain striking bladed, emerald green amphibole as the chief mafic phase and relict bronzite with reacted margins. An additional major phase is plagioclase, [approximately]An 95 based on microprobe analysis. Ruby corundum is a minor (> 5%) constituent, which in some of the gabbroic rocks is mantled by a reaction rim of fibrolite. The clinoamphibole has optical properties resembling magnesio-cummingtonite: colorlessmore » to pale green in plane light with (+) sign and 2V = 60--70[degree]. However, microprobe analysis of the clinoamphibole indicates alumino-magnesio-hornblende. Although the texture of the bronzite shows that it is breaking down, it is clear that the clinoamphibole and corundum could not be the reaction products without the addition of Al, Ca, and Si in an aqueous fluid. Associated meta-troctolitic layers contain plagioclase and coarse, anhedral olivines displaying an inner corona of bladed orthopyroxene, rimmed by symplectite. The granulite facies reactions is: plagioclase + olivine = clinopyroxene + garnet. The mesoscopic-scale proximity of troctolitic and gabbroic rhythmic layers indicates both underwent granulite facies metamorphism. Retrogression to amphibolite grade is apparent only in the gabbroic layers, resulting in assemblages distinguished locally by abundant emerald green clinoamphibole and corundum porphyroblasts rimmed by fibrolite.« less
NASA Astrophysics Data System (ADS)
Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.
2014-12-01
A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.
NASA Astrophysics Data System (ADS)
Grosch, Eugene
2017-04-01
Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.
Price, Neil P J; Hartman, Trina M; Vermillion, Karl E
2015-07-21
The structural analysis of complex carbohydrates typically requires the assignment of three parameters: monosaccharide composition, the position of glycosidic linkages between monosaccharides, and the position and nature of noncarbohydrate substituents. The glycosidic linkage positions are often determined by permethylation analysis, but this can be complicated by high viscosity or poor solubility, resulting in under-methylation. This is a drawback because an under-methylated position may be misinterpreted as the erroneous site of a linkage or substituent. Here, we describe an alternative approach to linkage analysis that makes use of a nonreversible deuterium exchange of C-H protons on the carbohydrate backbone. The exchange reaction is conducted in deuterated water catalyzed by Raney nickel, and results in the selective exchange of C-H protons adjacent to free hydroxyl groups. Hence, the position of the residual C-H protons is indicative of the position of glycosidic linkages or other substituents and can be readily assigned by heteronuclear single quantum coherence-nuclear magnetic resonance (HSQC-NMR) or, following suitable derivatization, by gas chromatography-mass spectroscopy (GC/MS) analysis. Moreover, because the only changes to the parent sugar are proton/deuterium exchanges, the composition and linkage analysis can be determined in a single step.
Proton-proton bremsstrahlung towards the elastic limit
NASA Astrophysics Data System (ADS)
Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.
2005-05-01
In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.
Comparative analysis of proton- and neutron-halo breakups
NASA Astrophysics Data System (ADS)
Mukeru, B.
2018-06-01
A detailed analysis of the proton- and neutron-halo breakup cross sections is presented. Larger neutron-halo breakup cross sections than proton-halo breakup cross sections are obtained. This is found to be mainly due to the projectile structure, namely the ground state wave function and the dipole electric response function. It is also found that the continuum–continuum couplings are stronger in the proton-halo breakup than in the neutron-halo breakup. The increase of proton- and neutron-halo ground state separation energy slightly strengthens these couplings in the proton- and neutron-halo total and nuclear breakups, while they are weakened in the proton- and neutron-halo Coulomb breakups. The Coulomb-nuclear interference remains strongly destructive in both proton- and neutron-halo breakups and this is independent of the ground state separation energy. The results also show that the increase of the neutron-halo ground state separation energy decreases significantly the agreement between the proton- and neutron-halo breakup cross sections, both qualitatively and quantitatively. It is obtained that when the proton-halo ground state separation energy is increased by a factor of 4.380, the proton-halo breakup cross section is reduced by a factor of 4.392, indicating a clear proportionality. However, when the neutron-halo ground state separation energy is increased by the same factor, the neutron-halo total breakup cross section is reduced by a factor of 8.522.
NASA Astrophysics Data System (ADS)
Kesler, Gavriel; Koren, Rumelia; Gal, Rivka
1998-04-01
Until now, no suitable delivery fiber existed for CO2 laser endodontic radiation in the apical region where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal, thus favorably increasing the thermal effects. The 15 F CO2 microprobe is a flexible, hollow, metal fiber, 300 micrometer in diameter and 20 mm in length, coupled onto a handpiece, with the following radiation parameters: wavelength -- 10.6 micrometer; pulse duration -- 50m/sec; energy per pulse 0.25 joule; energy density -- 353.7J/cm2 per pulse; power on tissue -- 5 W. The study was conducted on 30 vital maxillary or mandibulary; central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees Celsius. Ten teeth represented the control group in which only root canal preparation was performed in the conventional method. Histological examination of the laser treated teeth showed coagulation necrosis and vacuolization of remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal, in all cases treated with 15 F CO2 laser. Gramm stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, and no thermal damage to the surrounding tissue.
Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; Foudoulis, C.
2004-01-01
Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crown Copyright ?? 2004 Published by Elsevier B.V. All rights reserved.
Makishima, Hirokazu; Ishikawa, Hitoshi; Terunuma, Toshiyuki; Hashimoto, Takayuki; Yamanashi, Koichi; Sekiguchi, Takao; Mizumoto, Masashi; Okumura, Toshiyuki; Sakae, Takeji; Sakurai, Hideyuki
2015-01-01
Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose–volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5–V20, mean lung dose (MLD), and heart V30–V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer. PMID:25755255
Why Is It so? The [superscript 1]H-NMR CH[subscript 2] Splitting in Substituted Propanes
ERIC Educational Resources Information Center
Lim, Kieran F.; Dereani, Marino
2010-01-01
Nuclear magnetic resonance (NMR) spectroscopy is an important tool in the structural analysis of both organic and inorganic molecules. Proton NMR spectra can yield information about the chemical or bonding environment surrounding various protons, the number of protons in those environments, and the number of neighbouring protons around each…
NASA Astrophysics Data System (ADS)
Iatan, E. L.; Popescu, Gh. C.
2012-04-01
Rosia Poieni is the largest porphyry copper (±Au±Mo) deposits associated with Neogene magmatic rocks from the South Apuseni Mountains, being located approximately 8 km northeast of the town of Abrud. During a recent examination of some epithermal mineralized veins, crosscutting the porphyry mineralization from the Roşia Poieni deposit, two species of tellurides and one tellurosulfide minerals were identified. The studied samples were collected from the + 1045 m level, SW side of the open pit and are represented by epithermal veins, crosscutting the porphyry copper mineralized body. The thickness of the veins is almost 4 cm. Following reflected-polarized light microscopy to identify the ore-mineral assemblages, the polished sections were studied with a Scanning Electron Microscope (SEM) equipped with a back-scattered electron (BSE) detector to study fine-sized minerals. Quantitative compositional data were determined using a Cameca SX 50 electron microprobe (EMP). Based on optical microscopy, SEM and EMPA three mineral associations have been separated inside the epithermal vein, from the margins to the centre: 1. quartz+tennantite-tetrahedrite+goldfieldite+pyrite+sphalerite; 2. quartz+pyrite+tellurobismutite; 3. chalcopyrite+hessite+vivianite. Goldfieldite occurs in anhedral grains and it is associated with tennantite-tetrahedrite and quartz. The electron microprobe analysis gave a variable content in Te between 13.28-13.39 wt.%, 43.34 wt.% Cu, 0.1 wt. % Fe, 0.2 wt.% Zn, 14.68 wt.% As, 4.35 wt.% Sb and 24.84 wt.% S. The calculated formula for the goldfieldite is Cu11.8Te1.8(Sb,As)4S13.4. The EPM analyses on tetrahedrite-tennantite revealed a low content in Te (0.02-0.03 wt.%) and 42.23 wt.% Cu, 2.67 wt.% Fe, 7.34 wt.% Zn, 0.04 wt.% Sb, 19.28 wt.% As and 28.4 wt.% S. The calculated formula is Cu9.8(Fe,Zn)2.4(Sb,As,Te)3.8S13. The variable ratio of the Te content may reflect a variable content of Te in the hydrothermal fluids from which the tellurian tetrahedrite precipitated. Hessite lies close to the grain boundary between the calchopyrite grains, which is associated with vivianite. Electron microprobe analysis gave 57.73 wt.% Ag and 42.27 wt.% Te with calculated stoichiometric formula Ag1.9Te1.1 . Tellurobismuthite it forms irregular grains and it is associated with quartz and pyrite. Electron microprobe analysis gave 57.20 wt.% Bi and 42.80 wt.% Te with calculated stoichiometric formula Bi2.2Te2.8. Based on the mineral assemblages separated inside the ore vein and on the ratio of the Te content for the different identified tellurium bearing minerals, we can conclude that the Te content of the fluids from which they precipitated, increased from the margins to the centre of the vein. In summary, this study of specimens from Rosia Poieni porphyry copper deposit, has resulted in the recognition of some tellurium-bearing minerals, not reported by previous workers. These minerals are represented by tellurobismutite, hessite and goldfieldite and they are associated with epithermal vein mineralization (pyrite, chalcopyrite, sphalerite, tennantite-tetrahedrite, quartz, vivianite). The presence of tellurium indicates the transition between porphyry-style mineralization to epithermal vein mineralization. Acknowledgements: This work was supported by the strategic grant POSDRU/89/1.5/S58852, Project "Postdoctoral program for training scientific researches" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013".
A High Resolution Microprobe Study of EETA79001 Lithology C
NASA Technical Reports Server (NTRS)
Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.
2010-01-01
Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.
X-ray microprobe of orbital alignment in strong-field ionized atoms.
Young, L; Arms, D A; Dufresne, E M; Dunford, R W; Ederer, D L; Höhr, C; Kanter, E P; Krässig, B; Landahl, E C; Peterson, E R; Rudati, J; Santra, R; Southworth, S H
2006-08-25
We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.
Electron microprobe evaluation of terrestrial basalts for whole-rock K-Ar dating
Mankinen, E.A.; Brent, Dalrymple G.
1972-01-01
Four basalt samples for whole-rock K-Ar dating were analyzed with an electron microprobe to locate potassium concentrations. Highest concentrations of potassium were found in those mineral phases which were the last to crystallize. The two reliable samples had potassium concentrated in fine-grained interstitial feldspar and along grain boundaries of earlier formed plagioclase crystals. The two unreliable samples had potassium concentrated in the glassy matrix, demonstrating the ineffectiveness of basaltic glass as a retainer of radiogenic argon. In selecting basalt samples for whole-rock K-Ar dating, particular emphasis should be placed on determining the nature and condition of the fine-grained interstitial phases. ?? 1972.
Pezzotti, Giuseppe; Sakakura, Seiji
2003-05-01
A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.
To flow or not to flow : a study of elliptic flow and nonflow in proton-proton collisions in ALICE
NASA Astrophysics Data System (ADS)
van der Kolk, N.
2012-01-01
The standard model of particle physics describes all known elementary particles and the forces between them. The strong force, which binds quarks inside hadrons and nucleons inside nuclei, is described by the theory of Quantum Chromodynamics. This theory predicts a new state of matter at extreme temperatures and densities: the Quark Gluon plasma. The ALICE experiment at the Large Hadron Collider near Geneva was build to study this QGP by looking at collisions of the most heavy stable ions: lead (Pb) ions. In such collisions one hopes to achieve sufficient energy density for the creation of a QGP. One of the signatures of QGP formation in high energy heavy ion collisions is the presence of collective behaviour in the system formed during the collision. This collectivity manifests itself in a common velocity in all produced particles: a collective flow. The most dominant contribution to collective flow is elliptic flow, which originates from the anisotropic overlap region of the two nuclei in non-central collisions and is visible in the azimuthal distribution of the produced particles. Elliptic flow is related to the equation of state of the system and its degree of thermalisation. The analysis of elliptic flow is complicated by the presence of correlations between particles from other sources, summarised in the term nonflow. Several analysis methods have become available over the years and have been implemented for elliptic flow analysis within the ALICE computing framework. These methods have different sensitivities to these nonflow correlations. Because the centre of mass energy at the LHC is so high, predictions have been made of collective behaviour even in proton-proton collisions. These predictions are very divers and give values between 0 and 0.2 for elliptic flow using different models. To constrain these predictions proton-proton data, recorded with the ALICE experiment at the LHC in the 2010 7 TeV proton-proton run, was studied. In proton-proton collisions large nonflow correlations are certainly present and might mask the elliptic flow correlation. The nonflow correlations have to be suppressed sufficiently such that the elliptic flow signal becomes detectable. Therefor an analysis method was choosen that can suppress nonflow correlations by increasing the separation in pseudorapidity of two subevents. This method is called the scalar product method. How much nonflow is suppressed is shown to depend on the pseudorapidity range of the nonflow. The dependence on the pseudorapidity gap size between the subevents, in 7 TeV proton-proton collisions, points to a strong nonflow component, because the signal decreases with increasing gap size. The corresponding Monte Carlo data set shows the same dependence, while it only includes nonflow correlations. This enforces the conclusion that nonflow is the dominant or the only correlation in 7 TeV proton-proton data at the LHC. The conclusion from this analysis is that elliptic flow in 7 TeV proton-proton collisions with at least 10 particles is less than 0.05. Predictions of a higher elliptic flow for these events can be excluded. To exclude or confirm lower predicted values the nonflow contribution has to be further reduced.
The uses of synchrotron radiation sources for elemental and chemical microanalysis
Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.
1990-01-01
Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.
Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert
1998-01-01
MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.
Ion microprobe U-Pb dating and strontium isotope analysis of biogenic apatite
NASA Astrophysics Data System (ADS)
Sano, Y.; Toyoshima, K.; Takahata, N.; Shirai, K.
2012-12-01
Conodonts are micro-fossils chemically composed of apatite which occurred in the body of one animal. They are guide fossils to show formation ages of sedimentary sequences with the highest resolution [1] and good samples to verify the dating method. We developed the ion microprobe U-Pb dating of apatite [2] and applied the method to a Carboniferous conodont [3] by using a SHRIMP II installed at Department of Earth and Planetary Sciences, Hiroshima University. Recently we have developed the NanoSIMS U-Pb dating method and successfully measured the formation ages of monazite [4] and zircon [5] at Atmosphere and Ocean Research Institute, University of Tokyo. In this work we carried out the NanoSIMS U-Pb dating of biogenic apatite such as conodont. Since the spot size of NanoSIMS is smaller than SHRIMP II, it is easier to have multi-spots on the single fragment of biogenic apatite. Based on the isochron method of U-Pb system, we have calculated the formation ages. They are consistent with those in literature. In order to study the chemical evolution of ocean during the past 600 Million years, strontium isotopes (87Sr/86Sr) of fossil marine carbonate such as coral skeletons and foraminifera tests were measured and compiled [6]. However they are not robust when the age is older than 500Ma, partly due to post-depositional histories. Apatite is more stable and more resistant to the alteration than carbonate [7]. Recently we have developed the method of NanoSIMS strontium isotopic analysis of a fish otolith, which composed of aragonite [8]. In this work we carried out the strontium isotopic analysis of biogenic apatite. The advantage of the ion microprobe technique over the TIMS (thermal ionization mass spectrometer) and MC-ICP-MS (multi-collector inductively coupled argon plasma mass spectrometer) method is preservation of the important textural context and to provide an opportunity for other simultaneous analytical work with high spatial resolution. This is the case for the combination of U-Pb dating and strontium isotope analysis of biogenic apatite. This method may be useful to extract the information of the chemistry of Past ocean in future. [1] Sweet and Donoghue (2001) J. Paleont. 75, 1174-1184. [3] Sano et al., (1999) Chem. Geol. 153, 249-258. [3] Sano and Terada (2001) Geophys. Res. Lett. 28, 831-834. [4] Sano et al. (2006) Geochem. J. 40, 597-608. [5] Takahata et al. (2008) Gondwana Res. 14, 587-596. [6] Prokoph et al. (2008) Earth Sci. Rev. 87, 113-133. [7] Karhu and Epstein (1986) Geochim. Cosmochim. Acta 50, 1745-1756. [8] Sano et al. (2008) App. Geochem. 23, 2406-2413.
Development of Technology for Image-Guided Proton Therapy
2011-10-01
testing proton RBE in the Penn proton beam facility Assemble equipment and develop data analysis software Install and test tablet PCs...production Use dual-energy CT and MRI to determine the composition of materials Year 4 ending 9/30/2011 Measurement of RBE for protons using the...Penn proton beam facility Measure LET for scattered and scanned beams Enter forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9
Aspects of the evolution of the West Antarctic margin of Gondwanaland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunow, A.M.
1989-01-01
A combination of paleomagnetism, structural field mapping, microprobe analysis, microfabric analysis and {sup 40}Ar/{sup 39}Ar geochronology was used to elucidate the history of the West Antarctic crustal block and the evolution of subduction complexes along the Scotia Ridge. West Antarctica is composed of four crustal blocks whose relationship to East Antarctica and to each other throughout the Phanerozoic is not well known. These blocks are: the Ellsworth-Whitmore Mountains (EWM); the Antarctic Peninsula (AP); Thurston Island (TI); Marie Byrd Land (MBL). Paleomagnetic sampling and analysis were conducted on rocks from the EWM and TI blocks in the hope of constraining themore » motion of these blocks and the opening history of the Weddell Sea. The paleomagnetic results suggest that the AP, EWM, and TI blocks have moved relative to East Antarctica prior to the mid-Cretaceous and that the main opening of the Weddell Sea was between the Early and mid-Cretaceous. Detailed field mapping was conducted on the subduction complexes of the Scotia Metamorphic Complex (SMC) on Smith Island and Elephant Island (Antarctica). Polyphase ductile deformation characterizes the Smith Island and Elephant Island tectonites. Microprobe analyses indicate that the blue amphiboles from both areas are primary crossite. Pressure-temperature estimates for Smith Island blueschist metamorphism are {approximately}350 C at 6-7 kbars. The {sup 40}Ar/{sup 39}Ar geochronology indicates a complex thermal evolution for the SMC. The north to south increase in intensity of deformation and metamorphism on Elephant Island corresponds to decrease in {sup 40}Ar/{sup 39}Ar age. Uplift of the Smith Island blueschists occurred since 47 Ma while most of the uplift on Elephant Island occurred since {approximately}102 Ma.« less
An analysis of beam parameters on proton-acoustic waves through an analytic approach.
Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin
2017-06-21
It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.
NASA Astrophysics Data System (ADS)
Kim, Hee Jin; Talukdar, Krishan; Choi, Sang-June
2016-02-01
Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion® was tuned by the incorporation of HKUST-1. It has CuII-paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by CuII to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H3PO4-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis.
Electron microprobe analysis program for biological specimens: BIOMAP
NASA Technical Reports Server (NTRS)
Edwards, B. F.
1972-01-01
BIOMAP is a Univac 1108 compatible program which facilitates the electron probe microanalysis of biological specimens. Input data are X-ray intensity data from biological samples, the X-ray intensity and composition data from a standard sample and the electron probe operating parameters. Outputs are estimates of the weight percentages of the analyzed elements, the distribution of these estimates for sets of red blood cells and the probabilities for correlation between elemental concentrations. An optional feature statistically estimates the X-ray intensity and residual background of a principal standard relative to a series of standards.
Thermal stress cycling of GaAs solar cells
NASA Technical Reports Server (NTRS)
Francis, Robert W.
1987-01-01
Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.
Thermoelectric properties of n-type polycrystalline BixSb2-xTe3 alloys
NASA Technical Reports Server (NTRS)
Snyder, J.; Gerovac, N.; Caillat, T.
2002-01-01
(BixSbl-x)2Te3(.5 = x = .7) polycrystalline samples were synthesized using a combination of melting and powder metallurgy techniques. The samples were hot pressed in graphite dies and cut perpendicular and parallel to the pressing direction. Samples were examined by microprobe analysis to determine their atomic composition. The thermoelectric properties were measured at room temperature in both directions. These properties include Seebeck coefficient, thermal conductivity, electrical resistivity, and Hall effect. The thermoelectric figure-of-merit, ZT, was calculated fiom these properties.
NASA Astrophysics Data System (ADS)
Tomilenko, A. A.; Kuzmin, D. V.; Bul'bak, T. A.; Sobolev, N. V.
2017-08-01
The primary melt and fluid inclusions in regenerated zonal crystals of olivine and homogeneous phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, were first studied by means of microthermometry, optic and scanning electron microscopy, electron and ion microprobe analysis (SIMS), inductively coupled plasma mass-spectrometry (ICP MSC), and Raman spectroscopy. It was established that olivine crystals were regenerated from silicate-carbonate melts at a temperature of 1100°C.
Chemistry and particle track studies of Apollo 14 glasses.
NASA Technical Reports Server (NTRS)
Glass, B. P.; Storzer, D.; Wagner, G. A.
1972-01-01
The abundance and the composition of Apollo 14 glasses have been studied. Glass particles were analyzed for Si, Ti, Al, Fe, Mn, Mg, Na, and K by electron microprobe analysis. The refractive indices of 26 particles were determined by the oil immersion method. Track analyses have been carried out in order to determine the uranium content and the radiation history of glass particles. The proper identification of galactic and solar flare nuclei tracks makes it possible to estimated residence times of the glass particles in the top layer of the lunar soil.
Extracellular proteins limit the dispersal of biogenic nanoparticles
Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.
2007-01-01
High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
The U--Al--Fe constitution diagram up to about 1000 ppm each of aluminum and iron is sthdied. The techniques used for this study include optical, electron, and x-ray metallography; microprobe analysis, electric conductivity, and hardness measurements. A combination of techniques are giving evidence of the amount of solid solubility of aluminum and iron in alpha, beta, and gamma uranium at selected higher temperatures. The U-Al and U-Fe phase diagrams are also being determined. (N.W.R.)
Newly recognized hosts for uranium in the Hanford Site vadose zone
Stubbs, J.E.; Veblen, L.A.; Elbert, D.C.; Zachara, J.M.; Davis, J.A.; Veblen, D.R.
2009-01-01
Uranium contaminated sediments from the U.S. Department of Energy's Hanford Site have been investigated using electron microscopy. Six classes of solid hosts for uranium were identified. Preliminary sediment characterization was carried out using optical petrography, and electron microprobe analysis (EMPA) was used to locate materials that host uranium. All of the hosts are fine-grained and intergrown with other materials at spatial scales smaller than the analytical volume of the electron microprobe. A focused ion beam (FIB) was used to prepare electron-transparent specimens of each host for the transmission electron microscope (TEM). The hosts were identified as: (1) metatorbernite [Cu(UO2)2(PO4)2??8H2O]; (2) coatings on sediment clasts comprised mainly of phyllosilicates; (3) an amorphous zirconium (oxyhydr)oxide found in clast coatings; (4) amorphous and poorly crystalline materials that line voids within basalt lithic fragments; (5) amorphous palagonite surrounding fragments of basaltic glass; and (6) Fe- and Mn-oxides. These findings demonstrate the effectiveness of combining EMPA, FIB, and TEM to identify solid-phase contaminant hosts. Furthermore, they highlight the complexity of U geochemistry in the Hanford vadose zone, and illustrate the importance of microscopic transport in controlling the fate of contaminant metals in the environment. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.
2004-06-01
To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.
NASA Technical Reports Server (NTRS)
Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong
2007-01-01
A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.
Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors
2015-09-01
13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath
Periods of High Intensity Solar Proton Flux
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.
2012-01-01
Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
ß-delayed γ-proton decay in ⁵⁶Zn: Analysis of the charged-particle spectrum
Orrigo, S. E.A.; Rubio, B.; Fujita, Y.; ...
2015-01-01
A study of the β decay of the proton-rich T z = –2 nucleus ⁵⁶Zn has been reported in a recent publication. A rare and exotic decay mode, β-de-layed γ-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focusing on the charged particle spectrum.
Establishing Cost-Effective Allocation of Proton Therapy for Breast Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mailhot Vega, Raymond B.; Ishaq, Omar; Raldow, Ann
Purpose: Cardiac toxicity due to conventional breast radiation therapy (RT) has been extensively reported, and it affects both the life expectancy and quality of life of affected women. Given the favorable oncologic outcomes in most women irradiated for breast cancer, it is increasingly paramount to minimize treatment side effects and improve survivorship for these patients. Proton RT offers promise in limiting heart dose, but the modality is costly and access is limited. Using cost-effectiveness analysis, we provide a decision-making tool to help determine which breast cancer patients may benefit from proton RT referral. Methods and Materials: A Markov cohort model wasmore » constructed to compare the cost-effectiveness of proton versus photon RT for breast cancer management. The model was analyzed for different strata of women based on age (40 years, 50 years, and 60 years) and the presence or lack of cardiac risk factors (CRFs). Model entrants could have 1 of 3 health states: healthy, alive with coronary heart disease (CHD), or dead. Base-case analysis assumed CHD was managed medically. No difference in tumor control was assumed between arms. Probabilistic sensitivity analysis was performed to test model robustness and the influence of including catheterization as a downstream possibility within the health state of CHD. Results: Proton RT was not cost-effective in women without CRFs or a mean heart dose (MHD) <5 Gy. Base-case analysis noted cost-effectiveness for proton RT in women with ≥1 CRF at an approximate minimum MHD of 6 Gy with a willingness-to-pay threshold of $100,000/quality-adjusted life-year. For women with ≥1 CRF, probabilistic sensitivity analysis noted the preference of proton RT for an MHD ≥5 Gy with a similar willingness-to-pay threshold. Conclusions: Despite the cost of treatment, scenarios do exist whereby proton therapy is cost-effective. Referral for proton therapy may be cost-effective for patients with ≥1 CRF in cases for which photon plans are unable to achieve an MHD <5 Gy.« less
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; De la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration
1989-07-01
A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.
Analysis of Proton Radiation Effects on Gallium Nitride High Electron Mobility Transistors
2017-03-01
energy levels on a GaN-on-silicon high electron mobility transistor was created. Based on physical results of 2.0-MeV protons irradiation to fluence...and the physical device at 2.0-MeV proton irradiation , predictions were made for 5.0, 10.0, 20.0 and 40.0-MeV proton irradiation . The model generally...nitride, high electron mobility transistor, electronics, 2 MeV proton irradiation , radiation effects 15. NUMBER OF PAGES 87 16. PRICE CODE 17. SECURITY
Protonation enthalpies of metal oxides from high temperature electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.
2012-01-01
Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa modelmore » for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.« less
Protonation enthalpies of metal oxides from high temperature electrophoresis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.
2012-01-01
Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one ismore » based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.« less
NASA Technical Reports Server (NTRS)
Stoeffler, D.; Deutsch, A.; Avermann, M.; Brockmeyer, P.; Lakomy, R.; Mueller-Mohr, V.
1992-01-01
Within the Sudbury Project of the University of Muenster and the Ontario Geological Survey special emphasis was put on the breccia formations exposed at the Sudbury structure (SS) because of their crucial role for the impact hypothesis. They were mapped and sampled in selected areas of the north, east, and south ranges of the SS. The relative stratigraphic positions of these units are summarized. Selected samples were analyzed by optical microscopy, SEM, microprobe, XRF and INAA, Rb-Sr and SM-Nd-isotope geochemistry, and carbon isotope analysis. The results of petrographic and chemical analysis for those stratigraphic units that were considered the main structural elements of a large impact basin are summarized.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Burlingame, A. L.
1972-01-01
The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.
New eutectic alloys and their heats of transformation
NASA Technical Reports Server (NTRS)
Farkas, D.; Birchenall, C. E.
1985-01-01
Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.
You, J H S; Lee, A C M; Wong, S C Y; Chan, F K L
2003-03-15
Studies on the use of low-dose proton pump inhibitor for the maintenance therapy of gastro-oesophageal reflux disease have shown that it might be comparable with standard-dose proton pump inhibitor treatment and superior to standard-dose histamine-2 receptor antagonist therapy. To compare the impact of standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor treatment for the maintenance therapy of gastro-oesophageal reflux disease on symptom control and health care resource utilization from the perspective of a public health organization in Hong Kong. A Markov model was designed to simulate, over 12 months, the economic and clinical outcomes of gastro-oesophageal reflux disease patients treated with standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor. The transition probabilities were derived from the literature. Resource utilization was retrieved from a group of gastro-oesophageal reflux disease patients in Hong Kong. Sensitivity analysis was conducted to examine the robustness of the model. The standard-dose proton pump inhibitor strategy was associated with the highest numbers of symptom-free patient-years (0.954 years) and quality-adjusted life-years gained (0.999 years), followed by low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist. The direct medical cost per patient in the standard-dose proton pump inhibitor group (904 US dollars) was lower than those of the low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist groups. The standard-dose proton pump inhibitor strategy appears to be the most effective and least costly for the maintenance management of patients with gastro-oesophageal reflux disease in Hong Kong.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung Nam; Lee, Kitae, E-mail: klee@kaeri.re.kr; Kumar, Manoj
A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beammore » with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.« less
Jurado-Campos, Natividad; Garrido-Delgado, Rocío; Martínez-Haya, Bruno; Eiceman, Gary A; Arce, Lourdes
2018-08-01
Significant substances in emerging applications of ion mobility spectrometry such as breath analysis for clinical diagnostics and headspace analysis for food purity include low molar mass alcohols, ketones, aldehydes and esters which produce mobility spectra containing protonated monomers and proton-bound dimers. Spectra for all n- alcohols, aldehydes and ketones from carbon number three to eight exhibited protonated monomers and proton-bound dimers with ion drift times of 6.5-13.3 ms at ambient pressure and from 35° to 80 °C in nitrogen. Only n-alcohols from 1-pentanol to 1-octanol produced proton-bound trimers which were sufficiently stable to be observed at these temperatures and drift times of 12.8-16.3 ms. Polar functional groups were protected in compact structures in ab initio models for proton-bound dimers of alcohols, ketones and aldehydes. Only alcohols formed a V-shaped arrangement for proton-bound trimers strengthening ion stability and lifetime. In contrast, models for proton-bound trimers of aldehydes and ketones showed association of the third neutral through weak, non-specific, long-range interactions consistent with ion dissociation in the ion mobility drift tube before arriving at the detector. Collision cross sections derived from reduced mobility coefficients in nitrogen gas atmosphere support the predicted ion structures and approximate degrees of hydration. Copyright © 2018 Elsevier B.V. All rights reserved.
The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study
NASA Astrophysics Data System (ADS)
Ballhaus, C.; Ryan, C. G.; Mernagh, T. P.; Green, D. H.
1994-01-01
This paper describes new experimental and analytical techniques to study element partitioning behavior between crystalline material and a late- to post-magmatic fluid phase. Samples of the fluid phase are isolated at experimental run conditions as synthetic fluid in quartz. Individual fluid inclusions are later analyzed for dissolved metals using Proton Induced X-ray Emission (PIXE). Back reactions between fluid and solid phases during quenching are prevented because the fluid is isolated at the experimental pressure, temperature ( P, T) conditions before quenching occurs. The technique is applied to study the partitioning of chalcophile elements (Fe, Ni, Cu, Pt and Au) between sulfide phases, metal alloys and supercritical SiO 2-NaCl-saturated H2O ± CH4- CO2- H2S fluids. Synthetic Ni-Cu-rich monosulfide solid solution (mss) doped with PtS or Au is packed in a quartz capsule and, together with a hydrogen buffer capsule and compounds to generate a fluid phase, welded shut in an outer Pt or Au metal capsule. The fluid phase is generated by combustion and reaction of various C-H-O fluid components during heating. Depending on capsule material and sample composition, the run products consist of platiniferous or auriferous mss, Pt-Fe, or ( Au, Cu) alloy phases, PtS, Fe 3O 4, sometimes a Cu-rich sulfide melt, and a fluid phase. Samples of the fluid are trapped in the walls of the quartz sample capsule as polyphase fluid inclusions. All phases are now available for analysis: fluid speciation is analyzed by piercing the outer metal capsule under vacuum and feeding the released fluid into a mass spectrometer. Phases and components within fluid inclusions are identified with Raman spectroscopy. Platinum and gold in solid solution in mss are determined with a CAMECA SX50 electron microanalyser. Metal contents trapped in selected fluid inclusions are determined quantitatively by in situ analysis with a proton microprobe using PIXE and a correction procedure specifically developed for quantitative fluid inclusion analysis. Initial results of metal solubilities in the fluid are as follows. Iron decreases from above 6,000 ppm under reduced conditions in the presence of H 2S in the fluid, to less than 1,000 ppm if hematite is stable in the crystalline run product. Copper and gold concentrations in the fluid range from about 600 to over 1200 and from 150 to about 270 ppm, respectively. The solubilities of these two metals in NaCl-saturated fluids are apparently independent of fluid speciations covered here. Nickel is mostly below detection limit (<10 ppm) and apparently poorly soluble in high-temperature fluid phases. Platinum concentrations in fluid inclusions are highly variable even among fluid inclusions of single runs, possibly because Pt tends to form multi-atom complexes in fluid phases.
Micro Electron MicroProbe and Sample Analyzer
NASA Technical Reports Server (NTRS)
Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles
2009-01-01
A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.
Extraction of the proton radius from electron-proton scattering data
Lee, Gabriel; Arrington, John R.; Hill, Richard J.
2015-07-27
We perform a new analysis of electron-proton scattering data to determine the proton electric and magnetic radii, enforcing model-independent constraints from form factor analyticity. A wide-ranging study of possible systematic effects is performed. An improved analysis is developed that rebins data taken at identical kinematic settings and avoids a scaling assumption of systematic errors with statistical errors. Employing standard models for radiative corrections, our improved analysis of the 2010 Mainz A1 Collaboration data yields a proton electric radius r E = 0.895(20) fm and magnetic radius r M = 0.776(38) fm. A similar analysis applied to world data (excluding Mainzmore » data) implies r E = 0.916(24) fm and r M = 0.914(35) fm. The Mainz and world values of the charge radius are consistent, and a simple combination yields a value r E = 0.904(15) fm that is 4σ larger than the CREMA Collaboration muonic hydrogen determination. The Mainz and world values of the magnetic radius differ by 2.7σ, and a simple average yields r M = 0.851(26) fm. As a result, the circumstances under which published muonic hydrogen and electron scattering data could be reconciled are discussed, including a possible deficiency in the standard radiative correction model which requires further analysis.« less
Makishima, Hirokazu; Ishikawa, Hitoshi; Terunuma, Toshiyuki; Hashimoto, Takayuki; Yamanashi, Koichi; Sekiguchi, Takao; Mizumoto, Masashi; Okumura, Toshiyuki; Sakae, Takeji; Sakurai, Hideyuki
2015-05-01
Cardiopulmonary late toxicity is of concern in concurrent chemoradiotherapy (CCRT) for esophageal cancer. The aim of this study was to examine the benefit of proton beam therapy (PBT) using clinical data and adaptive dose-volume histogram (DVH) analysis. The subjects were 44 patients with esophageal cancer who underwent definitive CCRT using X-rays (n = 19) or protons (n = 25). Experimental recalculation using protons was performed for the patient actually treated with X-rays, and vice versa. Target coverage and dose constraints of normal tissues were conserved. Lung V5-V20, mean lung dose (MLD), and heart V30-V50 were compared for risk organ doses between experimental plans and actual treatment plans. Potential toxicity was estimated using protons in patients actually treated with X-rays, and vice versa. Pulmonary events of Grade ≥2 occurred in 8/44 cases (18%), and cardiac events were seen in 11 cases (25%). Risk organ doses in patients with events of Grade ≥2 were significantly higher than for those with events of Grade ≤1. Risk organ doses were lower in proton plans compared with X-ray plans. All patients suffering toxicity who were treated with X-rays (n = 13) had reduced predicted doses in lung and heart using protons, while doses in all patients treated with protons (n = 24) with toxicity of Grade ≤1 had worsened predicted toxicity with X-rays. Analysis of normal tissue complication probability showed a potential reduction in toxicity by using proton beams. Irradiation dose, volume and adverse effects on the heart and lung can be reduced using protons. Thus, PBT is a promising treatment modality for the management of esophageal cancer. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Analysis of Deactivation Mechanism on a Multi-Component Sulfur-Tolerant Steam Reforming Catalyst
2010-08-01
Alkaline Fuel Cells (AFC) .............................................................................. 4 1.1.2. Proton Exchange Membrane Fuel Cells ( PEMFC ...temperature fuel cells. Alkaline Fuel Cell (AFC), Proton Exchange Membrane Fuel Cell ( PEMFC ), DMFC and Phosphoric Acid Fuel Cell (PAFC) are low...1960s. 1.1.2. Proton Exchange Membrane Fuel Cells ( PEMFC ) Proton exchange membrane fuel cells are said to be the best type of fuel cells to replace
Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe
2015-03-01
Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P < 0.01) while the pH-dependent exchange rate followed a dominantly base-catalyzed exchange relationship (P < 0.01). In summary, our study verified that a simplified qCEST analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
The angular distribution of the flavor-changing neutral current decay Bmore » $^+$$\\to$$ K$$^+\\mu^+\\mu^-$$ is studied in proton-proton collisions at a center-of-mass energy of 8 TeV. The analysis is based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb$$^{-1}$$. The forward-backward asymmetry $$A_{\\mathrm{FB}}$$ of the dimuon system and the contribution $$F_{\\mathrm{H}}$$ from the pseudoscalar, scalar, and tensor amplitudes to the decay width are measured as a function of the dimuon mass squared. The measurements are consistent with the standard model expectations.« less
Development of Ultra Low Temperature, Impact Resistant Lithium Battery for the Mars Microprobe
NASA Technical Reports Server (NTRS)
Frank, H.; Deligiannis, F.; Davies, E.; Ratnakumar, Bugga V.; Surampudi, S.; Russel, P. G.; Reddy, T. B.
1998-01-01
The requirements of the power source for the Mars Microprobe, to be backpacked on the Mars 98 Spacecraft, are fairly demanding, with survivability to a shock of the order of 80,000 g combined with an operational requirement at -80 C. Development of a suitable power system, based on primary lithium-thionyl chloride is underway for the last eighteen months, together with Yardney Technical Products Inc., Pawcatuck, CT. The battery consists of 4 cells of 2 Ah capacity at 25 C, of which at least 25 % would be available at -80 C, at a moderate rate of C/20. Each probe contains two batteries and two such probes will be deployed. The selected cell is designed around an approximate 1/2 "D" cells, with flat plate electrodes. Significant improvements to the conventional Li-SOCl2 cell include: (a) use of tetrachlorogallate salt instead of aluminate for improved low temperature performance and reduced voltage delay, (b) optimization of the salt concentration, and (c) modification of the cell design to develop shock resistance to 80,000 g. We report here results from our several electrical performance tests, mission simulation tests, microcalorimetry and AC impedance studies, and Air gun tests. The cells have successfully gone through mission-enabling survivability and performance tests for the Mars Microprobe penetrator.
NASA Astrophysics Data System (ADS)
Schofield, Robert; Lefevre, Harlan; Shaffer, Michael
1989-04-01
Energy-loss scanning transmission ion microscopy (ELSTIM or just STIM), PIXE and electron microprobe techniques are used to investigate certain minor element accumulations in a few spiders and scorpions. STIM and PIXE are used to survey the unsectioned specimens, while electron microprobe techniques are used for higher resolution investigations of several sections of the specimens. Concentration values measured using STIM and PIXE are found to be in satisfactory agreement with those measured using electron probe microanalysis. A garden spider Araneus diadematus is found to contain high concentrations of zinc in a thin layer near the surface of its fangs (reaching 23% of dry weight), and manganese in its marginal teeth (about 5% of dry weight). A wolf spider Alopecosa kochi is found to have similar concentrations of zinc in a layer near the surface of it's fang, and concentrations of manganese reaching 1.5% in a layer beneath the zinc containing layer. A scorpion Centruroides sp. is found to contain high concentrations of iron (reaching 8%) and zinc (reaching 24%) in the tips of teeth on the cheliceral fingers, and manganese (about 5%) in the stinger. The hypothesis that these elements simply harden the cuticle does not appear to explain their segregation patterns.
Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System
NASA Technical Reports Server (NTRS)
Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.
NASA Astrophysics Data System (ADS)
Marques, A. F.; Marques, J. P.; Casaca, C.; Carvalho, M. L.
2004-10-01
This work reports on the measurements of elemental profiles in teeth collected from patients with renal insufficiency. Elemental concentrations of Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Rb Sr and Pb in different parts of teeth from patients with renal insufficiency are discussed and correlated with the corresponding values for healthy citizens. Both situations, patients with and without dialysis treatment were studied. The purpose of this work is to point out the influence of renal insufficiency together with long dialysis treatment, on teeth elemental content. An X-ray fluorescence set-up with microprobe capabilities, installed at the LURE synchrotron (France) was used for elemental determination. The resolution of the synchrotron microprobe was 100 μm and the energy of the incident photons was 19 keV. Teeth of citizens with renal insufficiency and those submitted since several years to dialysis treatment show a similar concentration with teeth of healthy subjects in what concerns the elemental distribution for Mn, Fe, Cu, Zn and Sr. However, higher levels of Pb were found in pulp region of diseased citizens when compared to values of healthy people. Very low concentrations of Ti, Co, Ni, Se, Br and Rb were found in all the analysed teeth. No difference was found in patients with and without dialysis treatment.
Tunable lasers and their application in analytical chemistry
NASA Technical Reports Server (NTRS)
Steinfeld, J. I.
1975-01-01
The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.
NASA Astrophysics Data System (ADS)
Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.
2015-12-01
Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
Xiao, Zhiyan; Zou, Wei J; Chen, Ting; Yue, Ning J; Jabbour, Salma K; Parikh, Rahul; Zhang, Miao
2018-03-01
The goal of this study was to exam the efficacy of current DVH based clinical guidelines draw from photon experience for lung cancer radiation therapy on proton therapy. Comparison proton plans and IMRT plans were generated for 10 lung patients treated in our proton facility. A gEUD based plan evaluation method was developed for plan evaluation. This evaluation method used normal lung gEUD(a) curve in which the model parameter "a" was sampled from the literature reported value. For all patients, the proton plans delivered lower normal lung V 5 Gy with similar V 20 Gy and similar target coverage. Based on current clinical guidelines, proton plans were ranked superior to IMRT plans for all 10 patients. However, the proton and IMRT normal lung gEUD(a) curves crossed for 8 patients within the tested range of "a", which means there was a possibility that proton plan would be worse than IMRT plan for lung sparing. A concept of deficiency index (DI) was introduced to quantify the probability of proton plans doing worse than IMRT plans. By applying threshold on DI, four patients' proton plan was ranked inferior to the IMRT plan. Meanwhile if a threshold to the location of curve crossing was applied, 6 patients' proton plan was ranked inferior to the IMRT plan. The contradictory ranking results between the current clinical guidelines and the gEUD(a) curve analysis demonstrated there is potential pitfalls by applying photon experience directly to the proton world. A comprehensive plan evaluation based on radio-biological models should be carried out to decide if a lung patient would really be benefit from proton therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Karthick, V; Ramanathan, K
2014-11-01
M2 proton channel is the target for treating the patients who ere suffering from influenza A infection, which facilitates the spread of virions. Amantadine and rimantadine are adamantadine-based drugs, which target M2 proton channel and inhibit the viral replication. Preferably, rimantadine drug is used more than amantadine because of its fewer side effects. However, S31N mutation in the M2 proton channel was highly resistant to the rimantadine drug. Therefore, in the present study, we focused to understand the drug-resistance mechanism of S31N mutation with the aid of molecular docking and dynamics approach. The docking analysis undoubtedly indicates that affinity for rimantadine with mutant-type M2 proton channel is significantly lesser than the native-type M2 proton channel. In addition, RMSD, RMSF, and principal component analysis suggested that the mutation shows increased flexibility. Furthermore, the intermolecular hydrogen bonds analysis showed that there is a complete loss of hydrogen bonds in the mutant complex. On the whole, we conclude that the intermolecular contact was maintained by D-44, a key residue for stable binding of rimantadine. These findings are certainly helpful for better understanding of drug-resistance mechanism and also helpful for designing new drugs for treating influenza infection against drug-resistance target.
NASA Astrophysics Data System (ADS)
Kesler, Gavriel; Koren, Rumelia; Kesler, Anat; Hay, Nissim; Gal, Rivka
1999-05-01
The purpose of this study was to determine the efficiency of 15 F CO2 laser microprobe, in cases of periapical lesions, by eliminating the pathological reaction caused by certain species of bacteria, reduction of reinfection and stimulation of osteogenesis in the periapical region. Until now, no suitable delivery fiber existed for CO2 laser endodontic radiation in the apical region where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, Sharplan laser designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal, thus favorably increasing the thermal effects. The study was conducted on 900 teeth, divided in two groups. 468 were new case, carefully selected according to strict parameters such as: wide periapical translucency over 1mm, supported by digital x-ray, with a lesion of 3mm and more. All root canals were mechanically prepared in the conventional method up to size 35, Physiological saline solution served as finding solution and were treated by 15 F CO2 laser microprobe for 60 pulses repeatedly. The temperature at the surrounding tissue of the root did not exceed 38 degrees C filling of the canal was possible at the same appointment, without antibiotical treatment. 432 of the cases, which were referred to us by other dentists, after an unsuccessful treatment according to the classical therapy, were treated by the same laser therapy. Follow up was performed by clinical examination, and digital x-ray taken, during and after treatment as well as after 3, 6, 9, 12 month. The result demonstrate 98% success rate in both study groups, according to objective criteria for a successful treatment such as: reduction of apical translucency after 2- 6 months, freedom form clinical complains, and no need for periapical surgery.
Flares, ejections, proton events
NASA Astrophysics Data System (ADS)
Belov, A. V.
2017-11-01
Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976-2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.
Cho, Eunji; Ahn, Miri; Kim, Young Hwan; Kim, Jongwon; Kim, Sunghwan
2013-10-01
A proton source employing a nanostructured gold surface for use in (+)-mode laser desorption ionization mass spectrometry (LDI-MS) was evaluated. Analysis of perdeuterated polyaromatic hydrocarbon compound dissolved in regular toluene, perdeuterated toluene, and deuterated methanol all showed that protonated ions were generated irregardless of solvent system. Therefore, it was concluded that residual water on the surface of the LDI plate was the major source of protons. The fact that residual water remaining after vacuum drying was the source of protons suggests that protons may be the limiting reagent in the LDI process and that overall ionization efficiency can be improved by incorporating an additional proton source. When extra proton sources, such as thiolate compounds and/or citric acid, were added to a nanostructured gold surface, the protonated signal abundance increased. These data show that protons are one of the limiting components in (+)-mode LDI MS analyses employing nanostructured gold surfaces. Therefore, it has been suggested that additional efforts are required to identify compounds that can act as proton donors without generating peaks that interfere with mass spectral interpretation.
Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.
Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for amore » LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pK a. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.« less
Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons.
Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A
2017-01-17
Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15-0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor-acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [⟨d O-O ⟩ = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O-O distance with increasing H-bond donor pK a . This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid-carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.
Energy dependence of SEP electron and proton onset times
NASA Astrophysics Data System (ADS)
Xie, H.; Mäkelä, P.; Gopalswamy, N.; St. Cyr, O. C.
2016-07-01
We study the large solar energetic particle (SEP) events that were detected by GOES in the >10 MeV energy channel during December 2006 to March 2014. We derive and compare solar particle release (SPR) times for the 0.25-10.4 MeV electrons and 10-100 MeV protons for the 28 SEP events. In the study, the electron SPR times are derived with the time-shifting analysis (TSA) and the proton SPR times are derived using both the TSA and the velocity dispersion analysis (VDA). Electron anisotropies are computed to evaluate the amount of scattering for the events under study. Our main results include (1) near-relativistic electrons and high-energy protons are released at the same time within 8 min for most (16 of 23) SEP events. (2)There exists a good correlation between electron and proton acceleration, peak intensity, and intensity time profiles. (3) The TSA SPR times for 90.5 MeV and 57.4 MeV protons have maximum errors of 6 min and 10 min compared to the proton VDA release times, respectively, while the maximum error for 15.4 MeV protons can reach to 32 min. (4) For 7 low-intensity events of the 23, large delays occurred for 6.5 MeV electrons and 90.5 MeV protons relative to 0.5 MeV electrons. Whether these delays are due to times needed for the evolving shock to be strengthened or due to particle transport effects remains unsolved.
Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.
Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S
2012-10-01
Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.
Petrology and Mineral Chemistry of New Olivine-Phyric Shergottite RBT04262
NASA Technical Reports Server (NTRS)
Dalton, H. A.; Peslier, A. H.; Brandon, A. D.; Lee, C.-T. A.; Lapen, T. J.
2008-01-01
RBT04262 was found by the 2004-2005 ANSMET team at the Roberts Massif in Antarctica. It is paired with RBT04261 and is classified as an olivine-phyric shergottite. RBT04261 is 4.0 x 3.5 x 2.5 cm and 78.8 g, and RBT04262 is 6.5 x 5.5 x 3.5 cm and 204.6 g. Both were partially covered by a fusion crust [1]. Chemical analysis and mapping of this meteorite was performed using the Cameca SX100 electron microprobe at NASA Johnson Space Center.
An occurrence of metastable cristobalite in high-pressure garnet Granulite
Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.
1997-01-01
High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.
Oxidation of silicon nitride sintered with rare-earth oxide additions
NASA Technical Reports Server (NTRS)
Mieskowski, D. M.; Sanders, W. A.
1985-01-01
The effects of rare-earth oxide additions on the oxidation of sintered Si3N4 were examined. Insignificant oxidation occurred at 700 and 1000 C, with no evidence of phase instability. At 1370 C, the oxidation rate was lowest for Y2O3 and increased for additions of La2O3, Sm2O3, and CeO2, in that order. Data obtained from X-ray diffraction, electron microprobe analysis, and scanning electron microscopy indicate that oxidation occurs via diffusion of cationic species from Si3N4 grain boundaries.
Li, D K; Yan, P; Abou-Samra, A-B; Chung, R T; Butt, A A
2018-01-01
Proton pump inhibitors are among the most commonly prescribed medications in the United States. Their safety in cirrhosis has recently been questioned, but their overall effect on disease progression in noncirrhotic patients with chronic liver disease remains unclear. To determine the impact of proton pump inhibitors on the progression of liver disease in noncirrhotic patients with hepatitis C virus (HCV) infection. Using the electronically retrieved cohort of HCV-infected veterans (ERCHIVES) database, we identified all subjects who received HCV treatment and all incident cases of cirrhosis, hepatic decompensation and hepatocellular carcinoma. Proton pump inhibitor use was measured using cumulative defined daily dose. Multivariate Cox regression analysis was performed after adjusting univariate predictors of cirrhosis and various indications for proton pump inhibitor use. Among 11 526 eligible individuals, we found that exposure to proton pump inhibitors was independently associated with an increased risk of developing cirrhosis (hazard ratio [HR]: 1.32; 95% confidence interval: [1.17, 1.49]). This association remained robust to sensitivity analysis in which only patients who achieved sustained virologic response were analysed as well as analysis excluding those with alcohol abuse/dependence. Proton pump inhibitor exposure was also independently associated with an increased risk of hepatic decompensation (HR: 3.79 [2.58, 5.57]) and hepatocellular carcinoma (HR: 2.01 [1.50, 2.70]). In patients with chronic HCV infection, increasing proton pump inhibitor use is associated with a dose-dependent risk of progression of chronic liver disease to cirrhosis, as well as an increased risk of hepatic decompensation and hepatocellular carcinoma. © 2017 John Wiley & Sons Ltd.
THE MULTIELEMENTAL ANALYSIS OF DRINKING WATER USING PROTON-INDUCED X-RAY EMISSION (PIXE)
A new, rapid, and economical method for the multielemental analysis of drinking water samples is described. The concentrations of 76 elements heavier than aluminum are determined using proton-induced x-ray emission (PIXE) technology. The concentration of sodium is evaluated using...
Stable transport in proton driven fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.
2009-09-15
Proton beam transport in the context of proton driven fast ignition is usually assumed to be stable due to proton high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven fast ignition parameters. In the cold regime, two fast growing modes are found, with an inverse growth rate much smaller than the beam time of flight to the target core. The stability issue is thus not so obvious, and kinetic effects are investigated. One unstable modemore » is found stabilized by the background plasma proton and electron temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than {approx}10 keV. In fusion conditions, the beam propagation should therefore be stable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, R., E-mail: ruth.harding2@wales.nhs.uk; Trnková, P.; Lomax, A. J.
Purpose: Base of skull meningioma can be treated with both intensity modulated radiation therapy (IMRT) and spot scanned proton therapy (PT). One of the main benefits of PT is better sparing of organs at risk, but due to the physical and dosimetric characteristics of protons, spot scanned PT can be more sensitive to the uncertainties encountered in the treatment process compared with photon treatment. Therefore, robustness analysis should be part of a comprehensive comparison between these two treatment methods in order to quantify and understand the sensitivity of the treatment techniques to uncertainties. The aim of this work was tomore » benchmark a spot scanning treatment planning system for planning of base of skull meningioma and to compare the created plans and analyze their robustness to setup errors against the IMRT technique. Methods: Plans were produced for three base of skull meningioma cases: IMRT planned with a commercial TPS [Monaco (Elekta AB, Sweden)]; single field uniform dose (SFUD) spot scanning PT produced with an in-house TPS (PSI-plan); and SFUD spot scanning PT plan created with a commercial TPS [XiO (Elekta AB, Sweden)]. A tool for evaluating robustness to random setup errors was created and, for each plan, both a dosimetric evaluation and a robustness analysis to setup errors were performed. Results: It was possible to create clinically acceptable treatment plans for spot scanning proton therapy of meningioma with a commercially available TPS. However, since each treatment planning system uses different methods, this comparison showed different dosimetric results as well as different sensitivities to setup uncertainties. The results confirmed the necessity of an analysis tool for assessing plan robustness to provide a fair comparison of photon and proton plans. Conclusions: Robustness analysis is a critical part of plan evaluation when comparing IMRT plans with spot scanned proton therapy plans.« less
Proton Induced X-Ray Emission (PIXE): Determining the Concentration of Samples
NASA Astrophysics Data System (ADS)
McCarthy, Mallory; Rodriguez Manso, Alis; Pajouhafsar, Yasmin; J Yennello, Sherry
2017-09-01
We used Proton Induced X-ray Emission (PIXE) as an analysis technique to determine the composition of samples, in particular, the elemental constituents and the concentrations. Each of the samples are bombarded with protons, which in result displaces a lower level electron and causes a higher level electron to fall into its place. This displacement produces characteristic x-rays that are `fingerprints' for each element. The protons supplied for the bombardment are produced and accelerated by the K150 proton beam in the Cyclotron Institute at Texas A&M University. The products are detected by three x-ray detectors: XR-100CR Si-PIN, XR-100SDD, and XR-100T CdTe. The peaks of the spectrum are analyzed using a software analysis tool, GUPIXWIN, to determine the concentration of the known elements of each particular sample. The goals of this work are to test run the Proton Induced X-Ray Emission experimental set up at Texas A&M University (TAMU) and to determine the concentration of thin films containing KBr given by the TAMU Chemical Engineering Department.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Jasiunas, A.
Evolution of the microwave-probed photoconductivity transients and of the proton induced luminescence has simultaneously been examined in polycrystalline CdS layers evaporated in vacuum during exposure to a 1.6 MeV proton beam. The decrease of the intensity of luminescence peaked at 510 and 709 nm wavelengths and of values of the effective carrier lifetime has been correlated in dependence of proton irradiation fluence. The defect introduction rate has been evaluated by the comparative analysis of the laser and proton beam induced luminescence. The difference of a carrier pair generation mechanism inherent for light and for a proton beam has been revealed.
Exact solution of equations for proton localization in neutron star matter
NASA Astrophysics Data System (ADS)
Kubis, Sebastian; Wójcik, Włodzimierz
2015-11-01
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.
Hirano, Emi; Fuji, Hiroshi; Onoe, Tsuyoshi; Kumar, Vinay; Shirato, Hiroki; Kawabuchi, Koichi
2014-03-01
The aim of this study is to evaluate the cost-effectiveness of proton beam therapy with cochlear dose reduction compared with conventional X-ray radiotherapy for medulloblastoma in childhood. We developed a Markov model to describe health states of 6-year-old children with medulloblastoma after treatment with proton or X-ray radiotherapy. The risks of hearing loss were calculated on cochlear dose for each treatment. Three types of health-related quality of life (HRQOL) of EQ-5D, HUI3 and SF-6D were used for estimation of quality-adjusted life years (QALYs). The incremental cost-effectiveness ratio (ICER) for proton beam therapy compared with X-ray radiotherapy was calculated for each HRQOL. Sensitivity analyses were performed to model uncertainty in these parameters. The ICER for EQ-5D, HUI3 and SF-6D were $21 716/QALY, $11 773/QALY, and $20 150/QALY, respectively. One-way sensitivity analyses found that the results were sensitive to discount rate, the risk of hearing loss after proton therapy, and costs of proton irradiation. Cost-effectiveness acceptability curve analysis revealed a 99% probability of proton therapy being cost effective at a societal willingness-to-pay value. Proton beam therapy with cochlear dose reduction improves health outcomes at a cost that is within the acceptable cost-effectiveness range from the payer's standpoint.
Herath, Mahesha B; Creager, Stephen E; Kitaygorodskiy, Alex; DesMarteau, Darryl D
2010-09-10
A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst-Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors.
Duggan, A W; Schaible, H G; Hope, P J; Lang, C W
1992-05-08
Antibody microprobes bearing antibodies to the C-terminus of substance P (SP) were used to measure release of immunoreactive (ir) SP in the dorsal horn of barbiturate anaesthetized spinal cats. Electrical stimulation of unmyelinated primary afferents of the ipsilateral tibial nerve produced a relatively localised release of ir SP in the superficial dorsal horn. Prior microinjection of the peptidase inhibitors kelatorphan and enalaprilat in the dorsal horn resulted in ir SP being detected over the whole of the dorsal horn and the overlying dorsal column. This pattern had previously been observed with evoked release of ir neurokinin A and supports the proposal that a slow degradation results in a neuropeptide accessing many sites remote from sites of release.
The Amsterdam quintuplet nuclear microprobe
NASA Astrophysics Data System (ADS)
van den Putte, M. J. J.; van den Brand, J. F. J.; Jamieson, D. N.; Rout, B.; Szymanski, R.
2003-09-01
A new nuclear microprobe comprising of a quintuplet lens system is being constructed at the Ion Beam Facility of the "Vrije Universiteit" Amsterdam in collaboration with the Microanalytical Research Centre of the University of Melbourne. An overview of the Amsterdam set-up will be presented. Detailed characterisation of the individual lenses was performed with the grid shadow method using a 2000 mesh Cu grid mounted at a relative angle of 0.5° to the vertical lens line focus. The lenses were found to have very low parasitic aberrations equal or below the minimum detectable limit for the method, which was approximately 0.1% for the sextupole component and 0.2% for the octupole component. We present experimental and theoretical grid shadow patterns, showing results for all five lenses.
Excited state proton transfer in strongly enhanced GFP (sGFP2).
van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M
2012-07-07
Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.
Proton scattering by short lived sulfur isotopes
NASA Astrophysics Data System (ADS)
Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bauge, E.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Delaroche, J. P.; Fauerbach, M.; Girod, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kelley, J. H.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Scheit, H.; Steiner, M.
1999-09-01
Elastic and inelastic proton scattering has been measured in inverse kinematics on the unstable nucleus 40S. A phenomenological distorted wave Born approximation analysis yields a quadrupole deformation parameter β2=0.35+/-0.05 for the 2+1 state. Consistent phenomenological and microscopic proton scattering analyses have been applied to all even-even sulfur isotopes from A=32 to A=40. The second analysis used microscopic collective model densities and a modified Jeukenne-Lejeune-Mahaux nucleon-nucleon effective interaction. This microscopic analysis suggests the presence of a neutron skin in the heavy sulfur isotopes. The analysis is consistent with normalization values for λv and λw of 0.95 for both the real and imaginary parts of the Jeukenne-Lejeune-Mahaux potential.
What is heartburn worth? A cost-utility analysis of management strategies.
Heudebert, G R; Centor, R M; Klapow, J C; Marks, R; Johnson, L; Wilcox, C M
2000-03-01
To determine the best treatment strategy for the management of patients presenting with symptoms consistent with uncomplicated heartburn. We performed a cost-utility analysis of 4 alternatives: empirical proton pump inhibitor, empirical histamine2-receptor antagonist, and diagnostic strategies consisting of either esophagogastroduodenoscopy (EGD) or an upper gastrointestinal series before treatment. The time horizon of the model was 1 year. The base case analysis assumed a cohort of otherwise healthy 45-year-old individuals in a primary care practice. Empirical treatment with a proton pump inhibitor was projected to provide the greatest quality-adjusted survival for the cohort. Empirical treatment with a histamine2 receptor antagonist was projected to be the least costly of the alternatives. The marginal cost-effectiveness of using a proton pump inhibitor over a histamine2-receptor antagonist was approximately $10,400 per quality-adjusted life year (QALY) gained in the base case analysis and was less than $50,000 per QALY as long as the utility for heartburn was less than 0.95. Both diagnostic strategies were dominated by proton pump inhibitor alternative. Empirical treatment seems to be the optimal initial management strategy for patients with heartburn, but the choice between a proton pump inhibitor or histamine2-receptor antagonist depends on the impact of heartburn on quality of life.
NASA Astrophysics Data System (ADS)
Park, Jun-Hyub; Shin, Myung-Soo
2011-09-01
This paper describes the results of tensile tests for a beryllium-copper (BeCu) alloy thin film and the application of the results to the design of a probe. The copper alloy films were fabricated by electroplating. To obtain the tensile characteristics of the film, the dog-bone type specimen was fabricated by the etching method. The tensile tests were performed with the specimen using a test machine developed by the authors. The BeCu alloy has an elastic modulus of 119 GPa and the 0.2% offset yield and ultimate tensile strengths of 1078 MPa and 1108 MPa, respectively. The design and manufacture of a smaller probe require higher pad density and smaller pad-pitch chips. It should be effective in high-frequency testing. For the design of a new micro-probe, we investigated several design parameters that may cause problems, such as the contact force and life, using the tensile properties and the design of experiment method in conjunction with finite element analysis. The optimal dimensions of the probe were found using the response surface method. The probe with optimal dimensions was manufactured by a precision press process. It was verified that the manufactured probe satisfied the life, the contact force and the over drive through the compression tests and the life tests of the probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
Distribution of siderophile and other trace elements in melt rock at the Chicxulub impact structure
NASA Technical Reports Server (NTRS)
Schuraytz, B. C.; Lindstrom, D. J.; Martinez, R. R.; Sharpton, V. L.; Marin, L. E.
1994-01-01
Recent isotopic and mineralogical studies have demonstrated a temporal and chemical link between the Chicxulub multiring impact basin and ejecta at the Cretaceous-Tertiary boundary. A fundamental problem yet to be resolved, however, is identification of the projectile responsible for this cataclysmic event. Drill core samples of impact melt rock from the Chichxulub structure contain Ir and Os abundances and Re-Os isotopic ratios indicating the presence of up to approx. 3 percent meteoritic material. We have used a technique involving microdrilling and high sensitivity instrumental neutron activation analysis (INAA) in conjunction with electron microprobe analysis to characterize further the distribution of siderophile and other trace elements among phases within the C1-N10 melt rock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.
The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence frommore » experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.« less
Limitations on analysis of small particles with an electron probe: pollution studies
Heidel, R.H.; Desborough, G.A.
1975-01-01
Recent literature concerning the size and composition of airborne lead particles in automobile exhaust emissions determined by electron microprobe analysis reports 14 distinct lead compounds. Particle sizes reported were from 0.2 ??m to 2 ??m in the diameter. The determination of chemical formulae for compounds requires quantitative elemental data for individual particles. It was also assumed that the lead bearing particles analysed were solid (specifically non porous or non fluffy) compounds which occurred as discrete (non aggregate) particles. Intensity data obtained in the laboratory from the excited volume in a 1 ??m diameter sphere of solid lead chloride indicate insufficient precision and sensitivity to obtain chemical formulae as reported in the literature for exhaust emission products.
Ways to Improve the Quality of Die Steel 5KhNM
NASA Astrophysics Data System (ADS)
Efimov, S. V.; Malykhina, O. Yu; Pavlova, A. G.; Milyuts, V. G.; Tsukanov, V. V.; Vikharev, V. V.
2017-12-01
There was performed an analysis of influence of the deoxidation technology, hydrogen content and high concentration of titanium in steel 5KhNM (Rus. “5XHM”) on quality of die blanks, evaluated based on the results of the ultrasonic test. The fractographic examinations of fractures and the X-ray microprobe analysis of chemical composition of non-metallic inclusions were conducted, the evaluation of macro- and micro-structure of a die blank with high titanium content was performed. It is demonstrated that defects of dies from steel 5KhNM (Rus. “5XHM”) are cracks from merged flakes and micro-flakes; in most cases large concentrations of sulphides appeared to be hydrogen collectors for formation of flakes and micro-flakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartz, W., E-mail: wojciech.bartz@ing.uni.wroc.pl; Filar, T.
Optical microscopic observations, scanning electron microscopy and microprobe with energy dispersive X-ray analysis, X-ray diffraction and differential thermal/thermogravimetric analysis allowed detailed characterization of rendering mortars from decorative details (figures of Saints) of a baroque building in Kozuchow (Lubuskie Voivodship, Western Poland). Two separate coats of rendering mortars have been distinguished, differing in composition of their filler. The under coat mortar has filler composed of coarse-grained siliceous sand, whereas the finishing one has much finer grained filler, dominated by a mixture of charcoal and Fe-smelting slag, with minor amounts of quartz grains. Both mortars have air-hardening binder composed of gypsum andmore » micritic calcite, exhibiting microcrystalline structure.« less
NASA Astrophysics Data System (ADS)
Ivanova, B. B.
2005-11-01
A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.
Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis
NASA Technical Reports Server (NTRS)
Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.
2016-01-01
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, L. K., E-mail: lan.jian@nasa.gov; Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; Moya, P. S.
2016-03-25
Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.
Analysis and verification of a prediction model of solar energetic proton events
NASA Astrophysics Data System (ADS)
Wang, J.; Zhong, Q.
2017-12-01
The solar energetic particle event can cause severe radiation damages near Earth. The alerts and summary products of the solar energetic proton events were provided by the Space Environment Prediction Center (SEPC) according to the flux of the greater than 10 MeV protons taken by GOES satellite in geosynchronous orbit. The start of a solar energetic proton event is defined as the time when the flux of the greater than 10 MeV protons equals or exceeds 10 proton flux units (pfu). In this study, a model was developed to predict the solar energetic proton events, provide the warning for the solar energetic proton events at least minutes in advance, based on both the soft X-ray flux and integral proton flux taken by GOES. The quality of the forecast model was measured against verifications of accuracy, reliability, discrimination capability, and forecast skills. The peak flux and rise time of the solar energetic proton events in the six channels, >1MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >100 MeV, were also simulated and analyzed.
Colomban, Philippe; Zaafrani, Oumaya; Slodczyk, Aneta
2012-01-01
Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS), thermogravimetric analysis (TGA), Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1–5 × 10−3 mole/mole), but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure. PMID:24958293
The solubility and site preference of Fe3+ in Li7−3xFexLa3Zr2O12 garnets
Rettenwander, D.; Geiger, C.A.; Tribus, M.; Tropper, P.; Wagner, R.; Tippelt, G.; Lottermoser, W.; Amthauer, G.
2015-01-01
A series of Fe3+-bearing Li7La3Zr2O12 (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and 57Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe3+ pfu could be incorporated in Li7−3xFexLa3Zr2O12 garnet solid solutions. At Fe3+ concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe3+ contents lower than 0.52 Fe3+ pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a0, for all solid-solution garnets is similar with a value of a0≈12.98 Å regardless of the amount of Fe3+. 57Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO3 in syntheses with Fe3+ contents greater than 0.16 Fe3+ pfu. The composition of different phase pure Li7−3xFexLa3Zr2O12 garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li6.89Fe0.03La3.05Zr2.01O12, Li6.66Fe0.06La3.06Zr2.01O12, Li6.54Fe0.12La3.01Zr1.98O12, and Li6.19Fe0.19La3.02Zr2.04O12. The 57Fe Mössbauer spectrum of cubic Li6.54Fe0.12La3.01Zr1.98O12 garnet indicates that most Fe3+ occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe3+ in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li6.54Fe0.12La3.01Zr1.98O12 this Fe3+ has a distorted 4-fold coordination. PMID:26435549
Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin
2015-09-01
Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
On-line catalogs of solar energetic protons at SRTI-BAS
NASA Astrophysics Data System (ADS)
Miteva, R.; Danov, D.
2017-08-01
We outline the status of the on-line catalogs of solar energetic particles supported by the Space Climate group at the Space Research and Technology, Bulgarian Academy of Sciences (SRTI-BAS). In addition to the already compiled proton catalog from Wind/EPACT instrument, in the current report we present preliminary results on the high energy SOHO/ERNE proton enhancement identifications as well as comparative analysis with two other proton lists. The future plans for the on-line catalogs are briefly summarized.
Wang, Wei-Hong; Huang, Jia-Qing; Zheng, Ge-Fan; Xia, Harry Hua-Xiang; Wong, Wai-Man; Lam, Shiu-Kum; Wong, Benjamin Chun-Yu
2005-01-01
AIM: To systematically evaluate the efficacy of H2-receptor antagonists (H2RAs) and proton pump inhibitors in healing erosive esophagitis (EE). METHODS: A meta-analysis was performed. A literature search was conducted in PubMed, Medline, Embase, and Cochrane databases to include randomized controlled head-to-head comparative trials evaluating the efficacy of H2RAs or proton pump inhibitors in healing EE. Relative risk (RR) and 95% confidence interval (CI) were calculated under a random-effects model. RESULTS: RRs of cumulative healing rates for each comparison at 8 wk were: high dose vs standard dose H2RAs, 1.17 (95%CI, 1.02-1.33); standard dose proton pump inhibitors vs standard dose H2RAs, 1.59 (95%CI, 1.44-1.75); standard dose other proton pump inhibitors vs standard dose omeprazole, 1.06 (95%CI, 0.98-1.06). Proton pump inhibitors produced consistently greater healing rates than H2RAs of all doses across all grades of esophagitis, including patients refractory to H2RAs. Healing rates achieved with standard dose omeprazole were similar to those with other proton pump inhibitors in all grades of esophagitis. CONCLUSION: H2RAs are less effective for treating patients with erosive esophagitis, especially in those with severe forms of esophagitis. Standard dose proton pump inhibitors are significantly more effective than H2RAs in healing esophagitis of all grades. Proton pump inhibitors given at the recommended dose are equally effective for healing esophagitis. PMID:15996033
An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities.
Armesto, Néstor; Paukkunen, Hannu; Penín, José Manuel; Salgado, Carlos A; Zurita, Pía
2016-01-01
We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the large hadron collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: (i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; (ii) testing the constraining power of these data in eventual global fits, for which we use the Bayesian reweighting technique. We find an overall good, even too good, description of the data, indicating that more constraining power would require a better control over the systematic uncertainties and/or the proper proton-proton reference from LHC Run II. Some of the observables, however, show sizeable tension with specific choices of proton and nuclear PDFs. We also comment on the corresponding improvements as regards the theoretical treatment.
Electrode erosion in steady-state electric propulsion engines
NASA Technical Reports Server (NTRS)
Pivirotto, Thomas J.; Deininger, William D.
1988-01-01
The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.
NASA Astrophysics Data System (ADS)
Rohdjeß, H.; Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Diehl, O.; Dohrmann, F.; Engelhardt, H.-P.; Eversheim, P. D.; Gasthuber, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Igelbrink, M.; Langkau, R.; Maier, R.; Mosel, F.; Müller, M.; Münstermann, M.; Prasuhn, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.
2006-01-01
The EDDA-detector at the cooler-synchrotron COSY/Jülich has been operated with an internal CH2 fiber target to measure proton-proton elastic scattering differential cross-sections. For data analysis knowledge of beam parameters, like position, width and angle, are indispensable. We have developed a method to obtain these values with high precision from the azimuthal and polar angles of the ejectiles only, by exploiting the coplanarity of the two final-state protons with the beam and the kinematic correlation. The formalism is described and results for beam parameters obtained during beam acceleration are given.
Watson: A new link in the IIE iron chain
NASA Technical Reports Server (NTRS)
Olsen, Edward; Davis, Andrew; Clarke, Roy S., Jr.; Schultz, Ludolf; Weber, Hartwig W.; Clayton, Robert; Mayeda, Toshiko; Jarosewich, Eugene; Sylvester, Paul; Grossman, Lawrence
1994-01-01
Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the IIE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new IIE iron. Whole rock Watson silicate shows an enrichment in K and P (each approximately 2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo14)(with very fine exsolution lamellae), antiperthite feldspar (An1-3Or5) with less than 1 micron exsolution lamellae (An1-3Or greater than 40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of approximately 300X and 100-150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsenheimer, D.W.
1992-01-01
The extent of fluid/rock interaction within the crust is a function of crustal depth, with large hydrothermal systems common in the brittle, hydrostatically pressured upper crust, but restricted fluid flow in the lithostatically pressured lower crust. To quantify this fluid/rock interaction, a Nd-YAG/CO[sub 2] laser microprobe system was constructed to analyze oxygen isotope ratios in silicates. Developed protocols produce high precision in [sigma][sup 18]O ([+-]0.2, 1[sigma]) and accuracy comparable to conventional extraction techniques on samples of feldspar and quartz as small as 0.3mg. Analysis of sub-millimeter domains in quartz and feldspar in granite from the Isle of Skye, Scotland, revealsmore » complex intragranular zonation. Contrasting heterogeneous and homogeneous [sigma][sup 18]O zonation patterns are revealed in samples <10m apart. These differences suggest fluid flow and isotopic exchange was highly heterogeneous. It has been proposed that granulite-facies metamorphism in the Highland Southwestern Complex (HSWC), Sri Lanka, resulted from the pervasive influx of CO[sub 2], with the marbles and calc-silicates within the HSWC a proposed fluid source. The petrologic and stable isotopic characteristic of HSWC marbles are inconsistent with extensive decarbonation. Wollastonite calc-silicates occur as deformed bands and as post-metamorphis veins with isotopic compositions that suggest vein fluids that are at least in part magmatic. Post-metamorphic magmatic activity is responsible for the formation of secondary disseminated graphite growth in the HSWC. This graphite has magmatic isotopic compositions and is associated with vein graphite and amphibolite-granulite facies transitions zones. Similar features in Kerela Khondalite Belt, South India, may suggest a common metamorphic history for the two terranes.« less
Microrisks for medical decision analysis.
Howard, R A
1989-01-01
Many would agree on the need to inform patients about the risks of medical conditions or treatments and to consider those risks in making medical decisions. The question is how to describe the risks and how to balance them with other factors in arriving at a decision. In this article, we present the thesis that part of the answer lies in defining an appropriate scale for risks that are often quite small. We propose that a convenient unit in which to measure most medical risks is the microprobability, a probability of 1 in 1 million. When the risk consequence is death, we can define a micromort as one microprobability of death. Medical risks can be placed in perspective by noting that we live in a society where people face about 270 micromorts per year from interactions with motor vehicles. Continuing risks or hazards, such as are posed by following unhealthful practices or by the side-effects of drugs, can be described in the same micromort framework. If the consequence is not death, but some other serious consequence like blindness or amputation, the microrisk structure can be used to characterize the probability of disability. Once the risks are described in the microrisk form, they can be evaluated in terms of the patient's willingness-to-pay to avoid them. The suggested procedure is illustrated in the case of a woman facing a cranial arteriogram of a suspected arterio-venous malformation. Generic curves allow such analyses to be performed approximately in terms of the patient's sex, age, and economic situation. More detailed analyses can be performed if desired. Microrisk analysis is based on the proposition that precision in language permits the soundness of thought that produces clarity of action and peace of mind.
Single ion hit detection set-up for the Zagreb ion microprobe
NASA Astrophysics Data System (ADS)
Smith, R. W.; Karlušić, M.; Jakšić, M.
2012-04-01
Irradiation of materials by heavy ions accelerated in MV tandem accelerators may lead to the production of latent ion tracks in many insulators and semiconductors. If irradiation is performed in a high resolution microprobe facility, ion tracks can be ordered by submicrometer positioning precision. However, full control of the ion track positioning can only be achieved by a reliable ion hit detection system that should provide a trigger signal irrespectively of the type and thickness of the material being irradiated. The most useful process that can be utilised for this purpose is emission of secondary electrons from the sample surface that follows the ion impact. The status report of the set-up presented here is based on the use of a channel electron multiplier (CEM) detector mounted on an interchangable sample holder that is inserted into the chamber in a close geometry along with the sample to be irradiated. The set-up has been tested at the Zagreb ion microprobe for different ions and energies, as well as different geometrical arrangements. For energies of heavy ions below 1 MeV/amu, results show that efficient (100%) control of ion impact can be achieved only for ions heavier than silicon. The successful use of the set-up is demonstrated by production of ordered single ion tracks in a polycarbonate film and by monitoring fluence during ion microbeam patterning of Foturan glass.
NASA Astrophysics Data System (ADS)
Godart, J.; Weiss, P.; Chantepie, B.; Clemens, J. C.; Delpierre, P.; Dinkespiler, B.; Janvier, B.; Jevaud, M.; Karkar, S.; Lefebvre, F.; Mastrippolito, R.; Menouni, M.; Pain, F.; Pangaud, P.; Pinot, L.; Morel, C.; Laniece, P.
2010-06-01
We present a design study of PIXSIC, a new β+ radiosensitive microprobe implantable in rodent brain dedicated to in vivo and autonomous measurements of local time activity curves of beta radiotracers in a small (a few mm3) volume of brain tissue. This project follows the initial β microprobe previously developed at IMNC, which has been validated in several neurobiological experiments. This first prototype has been extensively used on anesthetized animals, but presents some critical limits for utilization on awake and freely moving animals. Consequently, we propose to develop a wireless setup that can be worn by an animal without constraints upon its movements. To that aim, we have chosen a Silicon-based detector, highly β sensitive, which allows for the development of a compact pixellated probe (typically 600 × 200 × 1000 μm3), read out with miniaturized wireless electronics. Using Monte-Carlo simulations, we show that high resistive Silicon pixels are appropriate for this purpose, assuming that the pixel dimensions are adapted to our specific signals. More precisely, a tradeoff has to be found between the sensitivity to β+ particles and to the 511 keV j background resulting from annihilations of β+ with electrons. We demonstrate that pixels with maximized surface and minimized thickness can lead to an optimization of their β+ sensitivity with a relative transparency to the annihilation background.
Distinct Modulations of Human Capsaicin Receptor by Protons and Magnesium through Different Domains*
Wang, Shu; Poon, Kinning; Oswald, Robert E.; Chuang, Huai-hu
2010-01-01
The capsaicin receptor (TRPV1) is a nonselective cation channel that integrates multiple painful stimuli, including capsaicin, protons, and heat. Protons facilitate the capsaicin- and heat-induced currents by decreasing thermal threshold or increasing agonist potency for TRPV1 activation (Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. (1998) Neuron 21, 531–543). In the presence of saturating capsaicin, rat TRPV1 (rTRPV1) reaches full activation, with no further stimulation by protons. Human TRPV1 (hTRPV1), a species ortholog with high homology to rTRPV1, is potentiated by extracellular protons and magnesium, even at saturating capsaicin. We investigated the structural basis for protons and magnesium modulation of fully capsaicin-bound human receptors. By analysis of chimeric channels between hTRPV1 and rTRPV1, we found that transmembrane domain 1–4 (TM1–4) of TRPV1 determines whether protons can further open the fully capsaicin-bound receptors. Mutational analysis identified a titratable glutamate residue (Glu-536) in the linker between TM3 and TM4 critical for further stimulation of fully liganded hTRPV1. In contrast, hTRPV1 TM5–6 is required for magnesium augmentation of capsaicin efficacy. Our results demonstrate that capsaicin efficacy of hTRPV1 correlates with the extracellular ion milieu and unravel the relevant structural basis of modulation by protons and magnesium. PMID:20145248
Proton upsets in LSI memories in space
NASA Technical Reports Server (NTRS)
Mcnulty, P. J.; Wyatt, R. C.; Filz, R. C.; Rothwell, P. L.; Farrell, G. E.
1980-01-01
Two types of large scale integrated dynamic random access memory devices were tested and found to be subject to soft errors when exposed to protons incident at energies between 18 and 130 MeV. These errors are shown to differ significantly from those induced in the same devices by alphas from an Am-241 source. There is considerable variation among devices in their sensitivity to proton-induced soft errors, even among devices of the same type. For protons incident at 130 MeV, the soft error cross sections measured in these experiments varied from 10 to the -8th to 10 to the -6th sq cm/proton. For individual devices, however, the soft error cross section consistently increased with beam energy from 18-130 MeV. Analysis indicates that the soft errors induced by energetic protons result from spallation interactions between the incident protons and the nuclei of the atoms comprising the device. Because energetic protons are the most numerous of both the galactic and solar cosmic rays and form the inner radiation belt, proton-induced soft errors have potentially serious implications for many electronic systems flown in space.
A view on elemental distribution alterations of coronary artery walls in atherogenesis
NASA Astrophysics Data System (ADS)
Pallon, J.; Homman, P.; Pinheiro, T.; Halpern, M. J.; Malmqvist, K.
1995-09-01
In this study, the Nuclear Microprobe technique was employed to investigate the elemental concentration alterations of minor and trace elements at the different cellular layers and structures of freeze-dried cryosections of human coronary arteries. Nuclear microprobe analyses enable to determine 7 elements, i.e., P, S, Cl, K, Ca, Fe and Zn in the artery walls. Furthermore, it was possible to identify early modifications of the artery due to the atherosclerosis progression that cannot be detected with specific staining or conventional histological methods. These modifications are shown to be related to abnormal Fe and Zn depositions in the surroundings of the elastic laminae. Later on, the calcifications of these regions occur, contributing to the elastic laminae damage and leading to the atheroma growing and maturation.
NASA Astrophysics Data System (ADS)
Tros, G. H. J.; Lyaruu, D. M.; Vis, R. D.
1993-10-01
A procedure was developed for analysing the effect of fluoride on mineralization in the enamel of neonatal hamster molars during amelogenesis by means of the quantitative determination of the mineral content. In this procedure the distribution of calcium and mineral concentration was determined in sections containing developing tooth enamel mineral embedded in an organic epoxy resin matrix by means of the micro-PIXE technique. This allowed the determination of the calcium content along preselected tracks with a spatial resolution of 2 μm using a microprobe PIXE setup with a 3 MeV proton beam of 10 to 50 pA with a spot size of 2 μm in the track direction. In this procedure the X-ray yield is used as a measure for the calcium content. The thickness of each sample section is determined independently by measuring the energy loss of α-particles from a calibration source upon passing through the sample. The sample is considered as consisting of two bulk materials, allowing the correction for X-ray self-absorption and the calculation of the calcium concentration. The procedure was applied for measuring the distribution of mineral concentration in 2 μm thick sections taken from tooth germs of hamsters administered with NaF. The measurements indicated that a single intraperitoneal administration of 20 mg NaF/kg body weight to 4-to-5-day-old hamsters leads within 24 h to hypermineralization of certain focal enamel surface areas containing cystic lesions under transitional and early secretory ameloblasts. The mineral concentration there is substantially increased due to the fluoride treatment (35%, instead of 5 to 10% as in the controls), indicating that the normal mineralization process has been seriously disturbed. Furthermore it is found that using this technique the mineral concentration peaks at about 70% at the dentine-enamel junction, which is comparable to that reported for human dentine using other techniques.
Hertz-Schünemann, Romy; Streibel, Thorsten; Ehlert, Sven; Zimmermann, Ralf
2013-09-01
A micro-probe (μ-probe) gas sampling device for on-line analysis of gases evolving in confined, small objects by single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) was developed. The technique is applied for the first time in a feasibility study to record the formation of volatile and flavour compounds during the roasting process within (inside) or in the direct vicinity (outside) of individual coffee beans. A real-time on-line analysis of evolving volatile and semi-volatile organic compounds (VOC and SVOC) as they are formed under the mild pyrolytic conditions of the roasting process was performed. The soft-ionisation mass spectra depict a molecular ion signature, which is well corresponding with the existing knowledge of coffee roasting and evolving compounds. Additionally, thereby it is possible to discriminate between Coffea arabica (Arabica) and Coffea canephora (Robusta). The recognized differences in the roasting gas profiles reflect the differences in the precursor composition of the coffee cultivars very well. Furthermore, a well-known set of marker compounds for Arabica and Robusta, namely the lipids kahweol and cafestol (detected in their dehydrated form at m/z 296 and m/z 298, respectively) were observed. If the variation in time of different compounds is observed, distinctly different evolution behaviours were detected. Here, phenol (m/z 94) and caffeine (m/z 194) are exemplary chosen, whereas phenol shows very sharp emission peaks, caffeine do not have this highly transient behaviour. Finally, the changes of the chemical signature as a function of the roasting time, the influence of sampling position (inside, outside) and cultivar (Arabica, Robusta) is investigated by multivariate statistics (PCA). In summary, this pilot study demonstrates the high potential of the measurement technique to enhance the fundamental knowledge of the formation processes of volatile and semi-volatile flavour compounds inside the individual coffee bean.
Ground-state proton decay of 69Br and implications for the rp -process 68Se waiting-point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Andrew M; Shapira, Dan; Lynch, William
2011-01-01
The first direct measurement of the proton separation energy, S p , for the proton-unbound nucleus 69Br is reported. Of interest is the exponential dependence of the 2 p-capture rate on S p which can bypass the 68Se waiting-point in the astrophysical rp process. An analysis of the observed proton decay spectrum is given in terms of the 69Se mirror nucleus and the influence of S p is explored within the context of a single-zone X-ray burst model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
2012-10-15
Proton imaging is commonly used to reveal the electric and magnetic fields that are found in high energy density plasmas. Presented here is an analysis of this technique that is directed towards developing additional insight into the underlying physics. This approach considers: formation of images in the limits of weak and strong intensity variations; caustic formation and structure; image inversion to obtain line-integrated field characteristics; direct relations between images and electric or magnetic field structures in a plasma; imaging of sharp features such as Debye sheaths and shocks. Limitations on spatial and temporal resolution are assessed, and similarities with opticalmore » shadowgraphy are noted. Synthetic proton images are presented to illustrate the analysis. These results will be useful for quantitatively analyzing experimental proton imaging data and verifying numerical codes.« less
Spectroscopy of excited states of unbound nuclei 30Ar and 29Cl
NASA Astrophysics Data System (ADS)
Xu, X.-D.; Mukha, I.; Grigorenko, L. V.; Scheidenberger, C.; Acosta, L.; Casarejos, E.; Chudoba, V.; Ciemny, A. A.; Dominik, W.; Duénas-Díaz, J.; Dunin, V.; Espino, J. M.; Estradé, A.; Farinon, F.; Fomichev, A.; Geissel, H.; Golubkova, T. A.; Gorshkov, A.; Janas, Z.; Kamiński, G.; Kiselev, O.; Knöbel, R.; Krupko, S.; Kuich, M.; Litvinov, Yu. A.; Marquinez-Durán, G.; Martel, I.; Mazzocchi, C.; Nociforo, C.; Ordúz, A. K.; Pfützner, M.; Pietri, S.; Pomorski, M.; Prochazka, A.; Rymzhanova, S.; Sánchez-Benítez, A. M.; Sharov, P.; Simon, H.; Sitar, B.; Slepnev, R.; Stanoiu, M.; Strmen, P.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Weick, H.; Winkler, M.; Winfield, J. S.
2018-03-01
Several states of proton-unbound isotopes 30Ar and 29Cl were investigated by measuring their in-flight decay products, 28S + proton + proton and 28S + proton, respectively. A refined analysis of 28S-proton angular correlations indicates that the ground state of 30Ar is located at 2 .45-0.10+0.05 MeV above the two-proton emission threshold. The investigation of the decay mechanism of the 30Ar ground state demonstrates that it has the transition dynamics. In the "transitional" region, the correlation patterns of the decay products present a surprisingly strong sensitivity to the two-proton decay energy of the 30Ar ground state and the one-proton decay energy as well as the one-proton decay width of the 29Cl ground state. The comparison of the experimental 28S-proton angular correlations with those resulting from Monte Carlo simulations of the detector response illustrates that other observed 30Ar excited states decay by sequential emission of protons via intermediate resonances in 29Cl. Based on the findings, the decay schemes of the observed states in 30Ar and 29Cl were constructed. For calibration purposes and for checking the performance of the experimental setup, decays of the previously known states of a two-proton emitter 19Mg were remeasured. Evidences for one new excited state in 19Mg and two unknown states in 18Na were found.
Minimizing treatment planning errors in proton therapy using failure mode and effects analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yuanshui, E-mail: yuanshui.zheng@okc.procure.com; Johnson, Randall; Larson, Gary
Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authorsmore » estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.« less
Minimizing treatment planning errors in proton therapy using failure mode and effects analysis.
Zheng, Yuanshui; Johnson, Randall; Larson, Gary
2016-06-01
Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.
NASA Technical Reports Server (NTRS)
Witt, N.; Blum, P. W.; Ajello, J. M.
1981-01-01
The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.
Layer dependence of the superconducting transition temperature of HgBa2Can-1 CunO2 n+2+ δ
NASA Astrophysics Data System (ADS)
Scott, B. A.; Suard, E. Y.; Tsuei, C. C.; Mitzi, D. B.; McGuire, T. R.; Chen, B.-H.; Walker, D.
1994-09-01
High-pressure methods have been used to synthesize multiphase compositions in the Hg12{ n-1} n homologous series. The phase assemblages were examined by optical, electron diffraction and X-ray diffraction techniques, and their stoichiometries verified by electron microprobe. Transport and magnetic susceptibility measurements were combined with the results of the phase analysis to establish superconducting transition temperatures for both as-prepared and O 2- or Ar-annealed materials. It was found that the transition temperature peaks at Tc = 134 K for n = 3 and then decreases abruptly for n>4, reaching Tc<90 K for n⪖7.
NASA Technical Reports Server (NTRS)
Young, S. G.
1973-01-01
The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.
Northwest Africa 5298: A Basaltic Shergottite
NASA Technical Reports Server (NTRS)
Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John
2009-01-01
NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.
Segregation and inhomogeneities in photorefractive SBN fibers
NASA Astrophysics Data System (ADS)
Erdei, Sandor; Galambos, Ludwig; Tanaka, Isao; Hesselink, Lambertus; Ainger, Frank W.; Cross, Leslie E.; Feigelson, Robert S.
1996-10-01
Ce doped and undoped SrxBa1-xNb2O6 (SBN) fibers grown by the laser heated pedestal growth (LHPG) technique in Stanford University were investigated by 2D scanning electron microprobe analysis. The SBN fibers grown along c [001] or a [100] axes often show radially distributed optical inhomogeneities (core effects) of varying magnitude. Ba enrichment and Sr reduction were primarily detected in the core which can be qualitatively described by a complex-segregation effect. This defect structure as a complex-congruency related phenomenon modified by the composition-control mechanism of LHPG system. Its radial dependence of effective segregation coefficient is described by the modified Burton-Prim- Slichter equation.
NASA Technical Reports Server (NTRS)
Manning, C. R., Jr.; Honeycutt, L., III
1974-01-01
Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.
Phase relations in the system CuMoS
Dawei, H.; Chang, L.L.Y.; Knowles, C.R.
1990-01-01
Phase relations in the system CuMoS were studied in the temperature range 500-1000 ??C by using the conventional sealed, evacuated glass capsule technique. Reflected-light microscopy, X-ray powder diffraction and electron microprobe analysis were used for phase characterization. The chevrel-type phase, CuxMo3S4, is stable above 600??C, and forms equilibrium assemblages with the cubic Cu2S solid solution, copper, molybdenum, Mo2S3 and MoS2. Its solid solution ranges from Cu1.50-2.00Mo3S4 at 700??C to Cu1.22-2.00Mo3S4 at 1000 ??C. ?? 1990.
Textural variability of ordinary chondrite chondrules: Implications of their formation
NASA Technical Reports Server (NTRS)
Zinovieva, N. G.; Mitreikina, O. B.; Granovsky, L. B.
1994-01-01
Scanning electron microscopy (SEM) and microprobe examination of the Raguli H3-4, Saratov L3, and Fucbin L5-6 ordinary chondrites and the analysis of preexisted data on other meteorites have shown that the variety of textural types of chondrules depends on the chemical composition of the chondrules. The comparison of bulk-rock chemistries of the chondrules by major components demonstrates that they apparently fall, like basic-ultrabasic rock, into groups of dunitic and pyroxenitic composition. This separation is further validated by the character of zoning in chondrules of the intermediate, peridotitic type. The effect is vividly demonstrated by the 'chondrule-in-chondrule' structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
The determination of the U--Al-- Fe constitution diagram up to about 1000 ppm each of aluminum and iron is now being implemented by a determination of the U--Al and U-- Fe binary systems. The techniques to be used for this study include optical, electron and x-ray metallography, microprobe analysis, electrical resistance, and hothardness measurements. It is expected that a combination of techniques will give evidence of the amount of solid solubility of aluminum and iron in alpha uranium from 300 to 660 deg C, and in beta uranium at selected higher temperatures. (N.W.R.)
Scanning Electron Microscopy | Materials Science | NREL
platform. The electron microprobe JEOL 8900L is the preference when quantitative composition of specimens , electroluminescence, lateral transport measurements, NFCL JEOL JXA-8900L Electron probe microanalysis Quantitative
NASA Astrophysics Data System (ADS)
Harrold, Zoë R.; Gorman-Lewis, Drew
2013-05-01
Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.
Plasma properties and heating at the anode of a 1 kW arcjet using electrostatic probes
NASA Astrophysics Data System (ADS)
Tiliakos, Nicholas
A 1 kW hydrazine arcjet thruster has been modified for internal probing of the near-anode boundary layer with an array of fourteen electrostatic micro-probes. The main objectives of this experimental investigation were to: (1) obtain axial and azimuthal distributions of floating potential phisbf, anode sheath potential phisbs, probe current density at zero volts jsba, electron number density nsbes, electron temperature Tsbes, and anode heating due to electrons qsbe for arc currents Isbarc, between 7.8 and 10.6 A, propellant flow rates m = 40-60 mg/s, and specific energies, 18.8 MJ/kg ≤ P/m ≤ 27.4 MJ/kg; (2) probe the anode boundary layer using flush-mounted and cylindrical micro-probes; (3) verify azimuthal current symmetry; (4) understand what affects anode heating, a critical thruster lifetime issue; and (5) provide experimental data for validation of the Megli-Krier-Burton (MKB) model. All of the above objectives were met through the design, fabrication and implementation of fourteen electrostatic micro-probes, of sizes ranging from 0.170 mm to 0.43 mm in diameter. A technique for cleaning and implementing these probes was developed. Two configurations were used: flush-mounted planar probes and cylindrical probes extended 0.10-0.30 mm into the plasma flow. The main results of this investigation are: (1) electrostatic micro-probes can successfully be used in the harsh environment of an arcjet; (2) under all conditions tested the plasma is highly non-equilibrium in the near-anode region; (3) azimuthal current symmetry exists for most operating conditions; (4) the propellant flow rate affects the location of maximum anode sheath potential, current density, and anode heating more than the arc current; (5) the weighted anode sheath potential is always positive and varies from 8-17 V depending on thruster operating conditions; (6) the fraction of anode heating varies from 18-24% of the total input power over the range of specific energies tested; and (7) based on an energy loss factor of delta = 1200, reasonable correlation between the experimental data and the MKB model was found.
Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.
2015-03-27
Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and withoutmore » a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.« less
Heudebert, Gustavo R; Centor, Robert M; Klapow, Joshua C; Marks, Robert; Johnson, Lawrence; Wilcox, C Mel
2000-01-01
OBJECTIVE T o determine the best treatment strategy for the management of patients presenting with symptoms consistent with uncomplicated heartburn. METHODS We performed a cost-utility analysis of 4 alternatives: empirical proton pump inhibitor, empirical histamine2-receptor antagonist, and diagnostic strategies consisting of either esophagogastroduodenoscopy (EGD) or an upper gastrointestinal series before treatment. The time horizon of the model was 1 year. The base case analysis assumed a cohort of otherwise healthy 45-year-old individuals in a primary care practice. MAIN RESULTS Empirical treatment with a proton pump inhibitor was projected to provide the greatest quality-adjusted survival for the cohort. Empirical treatment with a histamine2receptor antagonist was projected to be the least costly of the alternatives. The marginal cost-effectiveness of using a proton pump inhibitor over a histamine2-receptor antagonist was approximately $10,400 per quality-adjusted life year (QALY) gained in the base case analysis and was less than $50,000 per QALY as long as the utility for heartburn was less than 0.95. Both diagnostic strategies were dominated by proton pump inhibitor alternative. CONCLUSIONS Empirical treatment seems to be the optimal initial management strategy for patients with heartburn, but the choice between a proton pump inhibitor or histamine2-receptor antagonist depends on the impact of heartburn on quality of life. PMID:10718898
NASA Technical Reports Server (NTRS)
Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam
2003-01-01
SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT structures and map out the spatial sensitivities using the Sandia Focused Heavy Ion Microprobe Facility s Ion Beam Induced Charge Collection (IBICC) technique. Combining the two data sets offers insights into the charge collection mechanisms responsible for circuit level response and provides the first insights into the SEE characteristics of this latest version of IBM s commercial SiGe process.
Evolution of Proton and Alpha Particle Velocities through the Solar Cycle
NASA Astrophysics Data System (ADS)
Ďurovcová, T.; Šafránková, J.; Němeček, Z.; Richardson, J. D.
2017-12-01
Relative properties of solar wind protons and α particles are often used as indicators of a source region on the solar surface, and analysis of their evolution along the solar wind path tests our understanding of physics of multicomponent magnetized plasma. The paper deals with the comprehensive analysis of the difference between proton and α particle bulk velocities at 1 au with a special emphasis on interplanetary coronal mass ejections (ICMEs). A comparison of about 20 years of Wind observations at 1 au with Helios measurements closer to the Sun (0.3-0.7 au) generally confirms the present knowledge that (1) the differential speed between both species increases with the proton speed; (2) the differential speed is lower than the local Alfvén speed; (3) α particles are faster than protons near the Sun, and this difference decreases with the increasing distance. However, we found a much larger portion of observations with protons faster than α particles in Wind than in Helios data and attributed this effect to a preferential acceleration of the protons in the solar wind. A distinct population characterized by a very small differential velocity and nearly equal proton and α particle temperatures that is frequently observed around the maximum of solar activity was attributed to ICMEs. Since this population does not exhibit any evolution with increasing collisional age, we suggest that, by contrast to the solar wind from other sources, ICMEs are born in an equilibrium state and gradually lose this equilibrium due to interactions with the ambient solar wind.
Proton-Induced Conductivity Enhancement in AlGaN/GaN HEMT Devices
NASA Astrophysics Data System (ADS)
Lee, In Hak; Lee, Chul; Choi, Byoung Ki; Yun, Yeseul; Chang, Young Jun; Jang, Seung Yup
2018-04-01
We investigated the influence of proton irradiation on the AlGaN/GaN high-electron-mobility transistor (HEMT) devices. Unlike previous studies on the degradation behavior upon proton irradiation, we observed improvements in their electrical conductivity and carrier concentration of up to 25% for the optimal condition. As we increased the proton dose, the carrier concentration and the mobility showed a gradual increase and decrease, respectively. From the photoluminescence measurements, we observed a reduction in the near-band-edge peak of GaN ( 366 nm), which correlate on the observed electrical properties. However, neither the Raman nor the X-ray diffraction analysis showed any changes, implying a negligible influence of protons on the crystal structures. We demonstrated that high-energy proton irradiation could be utilized to modify the transport properties of HEMT devices without damaging their crystal structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.E.
This report describes the analysis of carbonxyl-terminated butadiene (CTB), carboxyl-terminated butadiene/acrylonitrile (CTBN), and a CTBN adduct prepared by reaction with Epon 828. Data from gel permeation chromatography, nuclear magnetic resonance spectroscopy, high performance liquid chromatography, and ion chromatography are presented and discussed. Quantitative methods based on carbon-13 and proton NMR for analyzing CTBN are described. Proton NMR was found to be useful in identifying lots that have an abnormal amount of CTBN protons. One such lot exhibited a phase separation of a polybutadiene impurity. Carbon-13 NMR was found to be capable of determining nitrile content directly. Carbon-13 NMR had amore » relative standard deviation of 8.3% and a proton NMR of 3.9%. Proton NMR was found to be useful in identifying lots that have 5% more CTBN protons than other lots. 3 refs., 11 figs., 4 tabs.« less
SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olguin, E; Flampouri, S; Lipnharski, I
Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMsmore » using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out-of-field organ doses.« less
Theoretical detection limit of PIXE analysis using 20 MeV proton beams
NASA Astrophysics Data System (ADS)
Ishii, Keizo; Hitomi, Keitaro
2018-02-01
Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.
Charged particle induced delayed X-rays (DEX) for the analysis of intermediate and heavy elements
NASA Astrophysics Data System (ADS)
Pillay, A. E.; Erasmus, C. S.; Andeweg, A. H.; Sellschop, J. P. F.; Annegarn, H. J.; Dunn, J.
1988-12-01
The emission of K X-rays from proton-rich and metastable radionuclides, following proton activation of the stable isotopes of the elements of interest, has not been widely used as a means of analysis. The thrust of this paper proposes a nuclear technique using delayed X-rays for the analysis of low concentrations of intermediate and heavy elements. The method is similar to the delayed gamma-ray technique. Proton bombardment induces mainly (p, n) reactions whereas the delayed X-rays originate largely from e --capture and isomeric transition. Samples of rare earth and platinum group elements (PGE), in the form of compacted powders, were irradiated with an 11 MeV proton beam and delayed X-rays detected with a 100 mm 2 Ge detector. Single element spectra for a range of rare earths and PGEs are presented. Analytical conditions are demonstrated for Pd in the range 0.1-5%. Spectra from actual geological samples of a PGE ore, preconcentrated by fire-assay, and monazite are presented. All six platinum group elements are visible and interference-free in a single spectrum, a marked advance on other nuclear techniques for these elements, including PIXE and neutron activation analysis (NAA).
Luo, Zhoujie; Gao, Ya; Zhu, Tong; Zhang, John Zenghui; Xia, Fei
2017-08-31
Water molecules can serve as proton shuttles for proton transfer in the C-H bond insertion reactions catalyzed by transition metal complexes. Recently, the control experiments performed for C-H bond insertion of phenol and anisol by gold carbenes show that large discrepancy exists in the yields of hydrogenated and deuterated products. Thus, we conducted a detailed theoretical analysis on the function of water molecules in the C-H bond insertion reactions. The comparison of calculated results and control experiments indicates that the solution water molecules play a crucial role of proton shuttle in C-H bond insertion. In particular, it was found that the hydroxyl groups in phenols were capable of donating protons via water shuttles for the production of C-H products, which had a substantial influence on the yields of inserted products. The hydroxyl groups instead of C-H bonds in phenols function like "proton reservoirs" in the C-H bond insertion, which we call the "proton self-sufficient" (PSS) function of phenol. The PSS function of phenol indicates that the substrates with and without proton reservoirs will lead to different C-H bond insertion products.
Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei
2016-03-01
Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.
SU-E-T-656: Quantitative Analysis of Proton Boron Fusion Therapy (PBFT) in Various Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, D; Jung, J; Shin, H
2015-06-15
Purpose: Three alpha particles are concomitant of proton boron interaction, which can be used in radiotherapy applications. We performed simulation studies to determine the effectiveness of proton boron fusion therapy (PBFT) under various conditions. Methods: Boron uptake regions (BURs) of various widths and densities were implemented in Monte Carlo n-particle extended (MCNPX) simulation code. The effect of proton beam energy was considered for different BURs. Four simulation scenarios were designed to verify the effectiveness of integrated boost that was observed in the proton boron reaction. In these simulations, the effect of proton beam energy was determined for different physical conditions,more » such as size, location, and boron concentration. Results: Proton dose amplification was confirmed for all proton beam energies considered (< 96.62%). Based on the simulation results for different physical conditions, the threshold for the range in which proton dose amplification occurred was estimated as 0.3 cm. Effective proton boron reaction requires the boron concentration to be equal to or greater than 14.4 mg/g. Conclusion: We established the effects of the PBFT with various conditions by using Monte Carlo simulation. The results of our research can be used for providing a PBFT dose database.« less
A method of mounting multiple otoliths for beam-based microchemical analyses
Donohoe, C.J.; Zimmerman, C.E.
2010-01-01
Beam-based analytical methods are widely used to measure the concentrations of elements and isotopes in otoliths. These methods usually require that otoliths be individually mounted and prepared to properly expose the desired growth region to the analytical beam. Most analytical instruments, such as LA-ICPMS and ion and electron microprobes, have sample holders that will accept only one to six slides or mounts at a time. We describe a method of mounting otoliths that allows for easy transfer of many otoliths to a single mount after they have been prepared. Such an approach increases the number of otoliths that can be analyzed in a single session by reducing the need open the sample chamber to exchange slides-a particularly time consuming step on instruments that operate under vacuum. For ion and electron microprobes, the method also greatly reduces the number of slides that must be coated with an electrical conductor prior to analysis. In this method, a narrow strip of cover glass is first glued at one end to a standard microscope slide. The otolith is then mounted in thermoplastic resin on the opposite, free end of the strip. The otolith can then be ground and flipped, if needed, by reheating the mounting medium. After otolith preparation is complete, the cover glass is cut with a scribe to free the otolith and up to 20 small otoliths can be arranged on a single petrographic slide. ?? 2010 The Author(s).
Isotope Geochemistry of Possible Terrestrial Analogue for Martian Meteorite ALH84001
NASA Technical Reports Server (NTRS)
Mojzsis, Stephen J.
2000-01-01
We have studied the microdomain oxygen and carbon isotopic compositions by SIMS of complex carbonate rosettes from spinel therzolite xenoliths, hosted by nepheline basanite, from the island of Spitsbergen (Norway). The Quaternary volcanic rocks containing the xenoliths erupted into a high Arctic environment and through relatively thick continental crust containing carbonate rocks. We have attempted to constrain the sources of the carbonates in these rocks by combined O-18/O-16 and C-13/C-12 ratio measurements in 25 micron diameter spots of the carbonate and compare them to previous work based primarily on trace-element distributions. The origin of these carbonates can be interpreted in terms of either contamination by carbonate country rock during ascent of the xenoliths in the host basalt, or more probably by hydrothermal processes after emplacement. The isotopic composition of these carbonates from a combined delta.18O(sub SMOW) and delta.13C(sub PDB) standpoint precludes a primary origin of these minerals from the mantle. Here a description is given of the analysis procedure, standardization of the carbonates, major element compositions of the carbonates measured by electron microprobe, and their correlated C and O isotope compositions as measured by ion microprobe. Since these carbonate rosettes may represent a terrestrial analogue to the carbonate "globules" found in the martian meteorite ALH84001 interpretations for the origin of the features found in the Spitsbergen may be of interest in constraining the origin of these carbonate minerals on Mars.
A comparative study of modern and fossil cone scales and seeds of conifers: A geochemical approach
Artur, Stankiewicz B.; Mastalerz, Maria; Kruge, M.A.; Van Bergen, P. F.; Sadowska, A.
1997-01-01
Modern cone scales and seeds of Pinus strobus and Sequoia sempervirens, and their fossil (Upper Miocene, c. 6 Mar) counterparts Pinus leitzii and Sequoia langsdorfi have been studied using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), electron-microprobe and scanning electron microscopy. Microscopic observations revealed only minor microbial activity and high-quality structural preservation of the fossil material. The pyrolysates of both modern genera showed the presence of ligno-cellulose characteristic of conifers. However, the abundance of (alkylated)phenols and 1,2-benzenediols in modern S. sempervirens suggests the presence of non-hydrolysable tannins or abundant polyphenolic moieties not previously reported in modern conifers. The marked differences between the pyrolysis products of both modern genera are suggested to be of chemosystematic significance. The fossil samples also contained ligno-cellulose which exhibited only partial degradation, primarily of the carbohydrate constituents. Comparison between the fossil cone scale and seed pyrolysates indicated that the ligno-cellulose complex present in the seeds is chemically more resistant than that in the cone scales. Principal component analysis (PCA) of the pyrolysis data allowed for the determination of the discriminant functions used to assess the extent of degradation and the chemosystematic differences between both genera and between cone scales and seeds. Elemental composition (C, O, S), obtained using electron-microprobe, corroborated the pyrolysis results. Overall, the combination of chemical, microscopic and statistical methods allowed for a detailed characterization and chemosystematic interpretations of modern and fossil conifer cone scales and seeds.
Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. V.; Pinzhin, Yu. P.
2016-10-01
Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.
Nuclear analytical techniques in medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesareo, R.
1988-01-01
This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and tomore » map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.« less
XAP, a program for deconvolution and analysis of complex X-ray spectra
Quick, James E.; Haleby, Abdul Malik
1989-01-01
The X-ray analysis program (XAP) is a spectral-deconvolution program written in BASIC and specifically designed to analyze complex spectra produced by energy-dispersive X-ray analytical systems (EDS). XAP compensates for spectrometer drift, utilizes digital filtering to remove background from spectra, and solves for element abundances by least-squares, multiple-regression analysis. Rather than base analyses on only a few channels, broad spectral regions of a sample are reconstructed from standard reference spectra. The effects of this approach are (1) elimination of tedious spectrometer adjustments, (2) removal of background independent of sample composition, and (3) automatic correction for peak overlaps. Although the program was written specifically to operate a KEVEX 7000 X-ray fluorescence analytical system, it could be adapted (with minor modifications) to analyze spectra produced by scanning electron microscopes, electron microprobes, and probes, and X-ray defractometer patterns obtained from whole-rock powders.
NASA Astrophysics Data System (ADS)
Moretto, P.; Ortega, R.; Llabador, Y.; Simonoff, M.; Bénard, J.; Moretto, Ph.
1995-09-01
Macro-and Micro-PIXE analysis were applied to study the mechanisms of cellular resistance to cisplatin, a chemotherapeutic agent, widely used nowadays for the treatment of ovarian cancer. Two cultured cell lines, a cisplatin-sensitive and a resistant one, were compared for their trace elements content and platinum accumulation following in vitro exposure to the drug. Bulk analysis revealed significant differences in copper and iron content between the two lines. Subsequent individual cell microanalysis permitted us to characterize the response of the different morphological cell types of the resistant line. This study showed that the metabolism of some trace metals in cisplatin-resistant cells could be affected but the exact relationship with the resistant phenotype remains to be determined. From a technical point of view, this experiment demonstrated that an accurate measurement of trace elements could be derived from nuclear microprobe analysis of individual cell.
Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells
NASA Technical Reports Server (NTRS)
Li, S. S.
1981-01-01
Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.
Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot
Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2015-01-01
Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582
NASA Astrophysics Data System (ADS)
Scott, Jill R.; Tremblay, Paul L.
2002-03-01
Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (˜5 μm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ˜9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olimov, K., E-mail: olimov@uzsci.net; Glagolev, V. V.; Gulamov, K. G.
2014-12-15
The results of a comparative analysis of channels involving the inclusive production of deuterons and tritons in {sup 16}Op collisions at a projectile momentum of 3.25 GeV/c per nucleon are presented. The mechanisms governing proton, deuteron, and triton production in the fragmentation of oxygen nuclei are found to be independent. It is shown that the observed proton-multiplicity correlations are associated predominantly with the character of the primary event of a proton-nucleon collision in {sup 16}Op interactions. It is found that, in reactions involving triton production, the contributions of processes leading to an increase in the mean proton multiplicity (n →more » p + π{sup −} and np → pn) and processes leading to its decrease (p → n + π{sup +}) compensate each other.« less
NASA Astrophysics Data System (ADS)
Ivontsin, L. A.; Mashkovtseva, E. V.; Nartsissov, Ya R.
2017-11-01
Implications of quantum-mechanical approach to the description of proton transport in biological systems are a tempting subject for an overlapping of fundamental physics and biology. The model of proton transport through the integrated membrane enzyme FoF1-ATP synthase responsible for ATP synthesis was developed. The estimation of the mathematical expectation of the proton transfer time through the half-channel was performed. Observed set of proton pathways through the inlet half-channel showed the nanosecond timescale highly dependable of some amino acid residues. There were proposed two types of crucial amino acids: critically localized (His245) and being a part of energy conserving system (Asp119).
NASA Astrophysics Data System (ADS)
Verma, Shivcharan; Mohanty, Biraja P.; Singh, Karn P.; Kumar, Ashok
2018-02-01
The proton beam facility at variable energy cyclotron (VEC) Panjab University, Chandigarh, India is being used for Particle Induced X-ray Emission (PIXE) analysis of different environmental, biological and industrial samples. The PIXE method, however, does not provide any information of low Z elements like carbon, nitrogen, oxygen and fluorine. As a result of the increased need for rapid and multi-elemental analysis of biological and environmental samples, the PIXE facility was upgraded and standardized to facilitate simultaneous measurements using PIXE and Proton Elastic Scattering Analysis (PESA). Both PIXE and PESA techniques were calibrated and standardized individually. Finally, the set up was tested by carrying out simultaneous PIXE and PESA measurements using a 2 mm diameter proton beam of 2.7 MeV on few multilayered thin samples. The results obtained show excellent agreement between PIXE and PESA measurements and confirm adequate sensitivity and precision of the experimental set up.
Catalogue of 55-80 MeV solar proton events extending through solar cycles 23 and 24
NASA Astrophysics Data System (ADS)
Paassilta, Miikka; Raukunen, Osku; Vainio, Rami; Valtonen, Eino; Papaioannou, Athanasios; Siipola, Robert; Riihonen, Esa; Dierckxsens, Mark; Crosby, Norma; Malandraki, Olga; Heber, Bernd; Klein, Karl-Ludwig
2017-06-01
We present a new catalogue of solar energetic particle events near the Earth, covering solar cycle 23 and the majority of solar cycle 24 (1996-2016), based on the 55-80 MeV proton intensity data gathered by the Solar and Heliospheric Observatory/the Energetic and Relativistic Nuclei and Electron experiment (SOHO/ERNE). In addition to ERNE proton and heavy ion observations, data from the Advanced Composition Explorer/Electron, Proton and Alpha Monitor (ACE/EPAM) (near-relativistic electrons), SOHO/EPHIN (Electron Proton Helium Instrument) (relativistic electrons), SOHO/LASCO (Large Angle and Spectrometric Coronagraph) (coronal mass ejections, CMEs) and Geostationary Operational Environmental Satellite (GOES) soft X-ray experiments are also considered and the associations between the particle and CME/X-ray events deduced to obtain a better understanding of each event. A total of 176 solar energetic particle (SEP) events have been identified as having occurred during the time period of interest; their onset and solar release times have been estimated using both velocity dispersion analysis (VDA) and time-shifting analysis (TSA) for protons, as well as TSA for near-relativistic electrons. Additionally, a brief statistical analysis was performed on the VDA and TSA results, as well as the X-rays and CMEs associated with the proton/electron events, both to test the viability of the VDA and to investigate possible differences between the two solar cycles. We find, in confirmation of a number of previous studies, that VDA results for protons that yield an apparent path length of 1 AU < s ≾ 3 AU seem to be useful, but those outside this range are probably unreliable, as evidenced by the anticorrelation between apparent path length and release time estimated from the X-ray activity. It also appears that even the first-arriving energetic protons apparently undergo significant pitch angle scattering in the interplanetary medium, with the resulting apparent path length being on average about twice the length of the spiral magnetic field. The analysis indicates an increase in high-energy SEP events originating from the far-eastern solar hemisphere; for instance, such an event with a well-established associated GOES flare has so far occurred three times during cycle 24 but possibly not at all during cycle 23. The generally lower level of solar activity during cycle 24, as opposed to cycle 23, has probably caused a significant decrease in total ambient pressure in the interplanetary space, leading to a larger proportion of SEP-associated halo-type CMEs. Taken together, these observations point to a qualitative difference between the two solar cycles.
Flores, M; Wajnberg, E; Bemski, G
2000-01-01
Electron nuclear double resonance (ENDOR) spectroscopy has been used to study protons in nitrosyl horse heart myoglobin (MbNO). (1)H ENDOR spectra were recorded for different settings of the magnetic field. Detailed analysis of the ENDOR powder spectra, using computer simulation, based on the "orientation-selection" principle, leads to the identification of the available protons in the heme pocket. We observe hyperfine interactions of the N(HisF8)-Fe(2+)-N(NO) complex with five protons in axial and with eight protons in the rhombic symmetry along different orientations, including those of the principal axes of the g-tensor. Protons from His-E7 and Val-E11 residues are identified in the two symmetries, rhombic and axial, exhibited by MbNO. Our results indicate that both residues are present inside the heme pocket and help to stabilize one particular conformation. PMID:10733988
The controlled relay of multiple protons required at the active site of nitrogenase.
Dance, Ian
2012-07-07
The enzyme nitrogenase, when reducing natural and unnatural substrates, requires large numbers of protons per chemical catalytic cycle. The active face of the catalytic site (the FeMo-cofactor, FeMo-co) is situated in a protein domain which is largely hydrophobic and anhydrous, and incapable of serial provision of multiple protons. Through detailed analysis of the high quality protein crystal structures available the characteristics of a chain of water molecules leading from the protein surface to a key sulfur atom (S3B) of FeMo-co are described. The first half of the water chain from the surface inwards is branched, slightly variable, and able to accommodate exogenous small molecules: this is dubbed the proton bay. The second half, from the proton bay to S3B, is comprised of a single chain of eight hydrogen bonded water molecules. This section is strictly conserved, and is intimately involved in hydrogen bonds with homocitrate, an essential component that chelates Mo. This is the proton wire, and a detailed Grotthuss mechanism for serial translocation of protons through this proton wire to S3B is proposed. This controlled serial proton relay from the protein surface to S3B is an essential component of the intramolecular hydrogenation paradigm for the complete chemical mechanisms of nitrogenase. Each proton reaching S3B, instigated by electron transfer to FeMo-co, becomes a hydrogen atom that migrates to other components of the active face of FeMo-co and to bound substrates and intermediates, allowing subsequent multiple proton transfers along the proton wire. Experiments to test the proposed mechanism of proton supply are suggested. The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.
NASA Astrophysics Data System (ADS)
Belyanin, Georgy A.; Kramers, Jan D.; Andreoli, Marco A. G.; Greco, Francesco; Gucsik, Arnold; Makhubela, Tebogo V.; Przybylowicz, Wojciech J.; Wiedenbeck, Michael
2018-02-01
The stone named "Hypatia" found in the Libyan Desert Glass area of southwest Egypt is carbon-dominated and rich in microdiamonds. Previous noble gas and nitrogen isotope studies suggest an extraterrestrial origin. We report on a reconnaissance study of the carbonaceous matrix of this stone and the phases enclosed in it. This focused on areas not affected by numerous transecting fractures mostly filled with secondary minerals. The work employed scanning electron microscopy (SEM) with energy-dispersive (EDS) and wavelength-dispersive (WDS) electron microprobe (EMPA) analysis, Proton Induced X-ray Emission (PIXE) spectrometry and micro-Raman spectroscopy. We found that carbonaceous matrices of two types occur irregularly intermingled on the 50-500 μm scale: Matrix-1, consisting of almost pure carbonaceous matter, and Matrix-2, containing Fe, Ni, P and S at abundances analyzable by microprobe. Matrix-2 contains the following phases as inclusions: (i) (Fe,Ni) sulphide occurring in cloud-like concentrations of sub-μm grains, in domains of the matrix that are enriched in Fe and S. These domains have (Fe + Ni)/S (atomic) = 1.51 ± 0.24 and Ni/Fe = 0.086 ± 0.061 (both 1SD); (ii) grains up to ∼5 μm in size of moissanite (SiC); (iii) Ni-phosphide compound grains up to 60 μm across that appear cryptocrystalline or amorphous and have (Ni + Fe)/P (atomic) = 5.6. ± 1.7 and Ni/Fe = 74 ± 29 (both 1SD), where both these ratios are much higher than any known Ni-phosphide minerals; (iv) rare grains (observed only once) of graphite, metallic Al, Fe and Ag, and a phase consisting of Ag, P and I. In Matrix-2, Raman spectroscopy shows a prominent narrow diamond band at 1340 cm-1. In Matrix-1 the D and G bands of disordered carbon are dominant, but a minor diamond band is ubiquitous, accounting for the uniform hardness of the material. The D and G bands have average full width at half maximum (FWHM) values of 295 ± 19 and 115 ± 19 cm-1, respectively, and the D/G intensity ratio is 0.75 ± 0.09 (both 1SD). These values are similar to those of the most primitive solar system carbonaceous matter. The diamond phase is considered to be a product of shock. The (Fe, Ni) sulphide phase is probably pyrrhotite and a shock origin is likewise proposed for it. Moissanite is frequently associated with the Ni-phosphide phase, and a presolar origin for both is suggested. The lack of recrystallization of the Ni-phosphide phase suggests that the Hypatia stone did not experience long-lasting thermal metamorphism, in accord with the Raman D-G band characteristics. A lack of silicate matter sets the stone apart from interplanetary dust particles and known cometary material. This, along with the dual intermingled matrices internal to it, could indicate a high degree of heterogeneity in the early solar nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balabekyan, A. R., E-mail: balabekyan@ysu.am; Danagulyan, A. S.; Drnoyan, J. R.
2011-05-15
Cross sections for the production of residual nuclei on the isotopes {sup 112,118,120,124}Sn irradiated with 0.66-, 1.0-, 3.65-, and 8.1-GeV proton beams were investigated. A ten-parameter semiempirical formula was used to systematize the cross sections in question. A comparative analysis of parameter values obtained at different proton energies was performed.
Time Exceedances for High Intensity Solar Proton Fluxes
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.
2011-01-01
A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
NASA Astrophysics Data System (ADS)
Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.
2005-04-01
In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.
Craig L. Perkins, Ph.D. | NREL
molecular beam epitaxy systems, two photoemission systems, a field-emission scanning Auger microprobe, a ;Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid
Vergara, M; Vallve, M; Gisbert, J P; Calvet, X
2003-09-15
It is not known whether certain proton-pump inhibitors are more efficacious than others when used in triple therapy for Helicobacter pylori eradication. To compare the efficacy of different proton-pump inhibitors in triple therapy by performing a meta-analysis. A MEDLINE search was performed. Abstracts of the European Helicobacter pylori Study Group and the American Gastroenterological Association congresses from 1996 to 2002 were also examined. Randomized studies with at least two branches of triple therapy that differed only in terms of type of proton-pump inhibitor were included in a meta-analysis using Review Manager 4.1. Fourteen studies were included. Intention-to-treat cure rates were similar for omeprazole and lansoprazole: 74.7% vs. 76%, odds ratio (OR) 0.91 [95% confidence interval (CI) 0.69-1.21] in a total of 1085 patients; for omeprazole and rabeprazole: 77.9% vs. 81.2%, OR 0.81 (95% CI 0.58-1.15) in a total of 825 patients; for omeprazole and esomeprazole: 87.7% vs. 89%, OR 0.89 (95% CI 0.58-1.35) in 833 patients; and for lansoprazole and rabeprazole: 81% vs. 85.7%, OR 0.77 (95% CI 0.48-1.22) in 550 patients. The efficacy of various proton-pump inhibitors seems to be similar when used for H. pylori eradication in standard triple therapy.
MacLaren, Robert; Campbell, Jon
2014-04-01
To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine receptor-2 antagonists, but the survival benefit of 0.0167% favored proton pump inhibitors. Histamine receptor-2 antagonist therapy appears to reduce costs with survival benefit comparable to proton pump inhibitor therapy for stress ulcer prophylaxis. Ventilator-associated pneumonia and bleed are the variables most affecting these outcomes. The uncertainty in the findings justifies a prospective trial.
Reconstruction of bar {p}p events in PANDA
NASA Astrophysics Data System (ADS)
Spataro, S.
2012-08-01
The PANDA experiment will study anti-proton proton and anti-proton nucleus collisions in the HESR complex of the facility FAIR, in a beam momentum range from 2 GeV jc up to 15 GeV/c. In preparation for the experiment, a software framework based on ROOT (PandaRoot) is being developed for the simulation, reconstruction and analysis of physics events, running also on a GRID infrastructure. Detailed geometry descriptions and different realistic reconstruction algorithms are implemented, currently used for the realization of the Technical Design Reports. The contribution will report about the reconstruction capabilities of the Panda spectrometer, focusing mainly on the performances of the tracking system and the results for the analysis of physics benchmark channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Li-Te; College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009; Li, Xiao-Pei
2015-12-15
The proton-conducting materials have potential application in devices such as fuel cells. In this study, a mineral kaolinite-based proton conducting material, kaolinite-4-amidinopyridinium hydrochloride (K-4-APy–HCl), was synthesized by the intercalated compound kaolinite-4-amidinopyridine (K-4-APy) adsorbing volatilizing HCl. The thermogravimetric analysis (TG), powder X-ray diffraction (PXRD) and IR spectrum confirmed the HCl successfully inserting into the interlayer space of kaolinite and the 4-aminopyridine being protonated. The intercalation efficiency is estimated to be ca. 85.6%. With respect to K-4-APy, the interlayer space expends by 1.53 Å. The thermal decomposition mechanism was studied by PXRD and TG techniques. The K-4-APy–HCl shows proton conductivity with σ=3.379×10{supmore » −8} S cm{sup −1} at 373 K and E{sub a}=1.159 eV in the anhydrous condition, which are comparable to MOFs-based proton conducting materials. - Graphical abstract: The intercalated hybrid of mineral kaolinite with 4-amidinopyridinium hydrochloride is prepared to use as proton conducting material. - Highlights: • A new strategy is proposed for preparation of kaolinite-based proton conductor. • Intercalatied hybrid was prepared by sequentially inserting 4-amidinopyridine and adsorbing HCl. • The proton conductivity of intercalated hybrid is comparable to MOFs-based proton-conductors.« less
Kim, Y S; Balland, V; Limoges, B; Costentin, C
2017-07-21
Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.
Observation of a diffractive contribution to dijet production in proton-proton collisions at s=7TeV
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bansal, M.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Proskuryakov, A.; Sarycheva, L.; Savrin, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Bachtis, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.
2013-01-01
The cross section for dijet production in proton-proton collisions at s=7TeV is presented as a function of ξ˜, a variable that approximates the fractional momentum loss of the scattered proton in single-diffractive events. The analysis is based on an integrated luminosity of 2.7nb-1 collected with the CMS detector at the LHC at low instantaneous luminosities, and uses events with jet transverse momentum of at least 20 GeV. The dijet cross section results are compared to the predictions of diffractive and nondiffractive models. The low-ξ˜ data show a significant contribution from diffractive dijet production, observed for the first time at the LHC. The associated rapidity gap survival probability is estimated.
Modelling of proton acceleration in application to a ground level enhancement
NASA Astrophysics Data System (ADS)
Afanasiev, A.; Vainio, R.; Rouillard, A. P.; Battarbee, M.; Aran, A.; Zucca, P.
2018-06-01
Context. The source of high-energy protons (above 500 MeV) responsible for ground level enhancements (GLEs) remains an open question in solar physics. One of the candidates is a shock wave driven by a coronal mass ejection, which is thought to accelerate particles via diffusive-shock acceleration. Aims: We perform physics-based simulations of proton acceleration using information on the shock and ambient plasma parameters derived from the observation of a real GLE event. We analyse the simulation results to find out which of the parameters are significant in controlling the acceleration efficiency and to get a better understanding of the conditions under which the shock can produce relativistic protons. Methods: We use the results of the recently developed technique to determine the shock and ambient plasma parameters, applied to the 17 May 2012 GLE event, and carry out proton acceleration simulations with the Coronal Shock Acceleration (CSA) model. Results: We performed proton acceleration simulations for nine individual magnetic field lines characterised by various plasma conditions. Analysis of the simulation results shows that the acceleration efficiency of the shock, i.e. its ability to accelerate particles to high energies, tends to be higher for those shock portions that are characterised by higher values of the scattering-centre compression ratio rc and/or the fast-mode Mach number MFM. At the same time, the acceleration efficiency can be strengthened by enhanced plasma density in the corresponding flux tube. The simulations show that protons can be accelerated to GLE energies in the shock portions characterised by the highest values of rc. Analysis of the delays between the flare onset and the production times of protons of 1 GV rigidity for different field lines in our simulations, and a subsequent comparison of those with the observed values indicate a possibility that quasi-perpendicular portions of the shock play the main role in producing relativistic protons.
Protonation states and pH titration in the photocycle of photoactive yellow protein.
Demchuk, E; Genick, U K; Woo, T T; Getzoff, E D; Bashford, D
2000-02-08
Photoactive yellow protein (PYP) undergoes a light-driven cycle of color and protonation states that is part of a mechanism of bacterial phototaxis. This article concerns functionally important protonation states of PYP and the interactions that stabilize them, and changes in the protonation state during the photocycle. In particular, the chromophore pK(a) is known to be shifted down so that the chromophore is negatively charged in the ground state (dark state) even though it is buried in the protein, while nearby Glu46 has an unusually high pK(a). The photocycle involves changes of one or both of these protonation states. Calculations of pK(a) values and protonation states using a semi-macroscopic electrostatic model are presented for the wild-type and three mutants, in both the ground state and the bleached (I(2)) intermediate state. Calculations allowing multiple H-bonding arrangements around the chromophore also have been carried out. In addition, ground-state pK(a) values of the chromophore have been measured by UV-visible spectroscopy for the wild-type and the same three mutants. Because of the unusual protonation states and strong electrostatic interactions, PYP represents a severe test of the ability of theoretical models to yield correct calculations of electrostatic interactions in proteins. Good agreement between experiment and theory can be obtained for the ground state provided the protein interior is assumed to have a relatively low dielectric constant, but only partial agreement between theory and experiment is obtained for the bleached state. We also present a reinterpretation of previously published data on the pH-dependence of the recovery of the ground state from the bleached state. The new analysis implies a pK(a) value of 6.37 for Glu46 in the bleached state, which is consistent with other available experimental data, including data that only became available after this analysis. The new analysis suggests that signal transduction is modulated by the titration properties of the bleached state, which are in turn determined by electrostatic interactions. Overall, the results of this study provide a quantitative picture of the interactions responsible for the unusual protonation states of the chromophore and Glu46, and of protonation changes upon bleaching.
Ionizing radiation calculations and comparisons with LDEF data
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.
1992-01-01
In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search for a new scalar resonance decaying to a pair of Z bosons is performed in the mass range from 130 GeV to 3 TeV, and for various width scenarios. The analysis is based on proton-proton collisions recorded by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fbmore » $$^{-1}$$ at a center-of-mass energy of 13 TeV. The Z boson pair decays are reconstructed using the 4$$\\ell$$, 2$$\\ell$$2q, and 2$$\\ell$$2$$\
The Importance of Protons in Reactive Transport Modeling
NASA Astrophysics Data System (ADS)
McNeece, C. J.; Hesse, M. A.
2014-12-01
The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of proton adsorption is of utmost importance to reactive transport modeling.
de Souza, Iure Kalinine Ferraz; da Silva, Alcino Lázaro; de Araújo, Alex; Santos, Fernanda Carolina Barbosa; Mendonça, Bernardo Pinto Coelho Keuffer
2013-01-01
For a few decades the long-term use of proton pump inhibitors has had wide application in the treatment of several gastrointestinal diseases. Since then, however, several studies have called attention to the possible development of anatomical and pathological changes of gastric mucosa, resulting from the long term use of this therapeutic modality. Recent experimental and clinical studies suggest that these changes have connection not only to the development of precancerous lesions, but also of gastric tumors. To present a qualitative analysis of anatomical and pathological changes of gastric mucosa resulting from the long-term use of proton pump inhibitors. The headings used were: proton pump inhibitors, precancerous lesions and gastric neoplasms for a non systematic review of the literature, based on Medline, Lillacs and Scielo. Twelve articles were selected from clinical (9) and experimental (3) studies, for qualitative analysis of the results. The gastric acid suppression by high doses of proton pump inhibitors induces hypergastrinemia and the consequent emergence of neuroendocrine tumors in animal models. Morphological changes most often found in these experimental studies were: enterochromaffin-like cell hyperplasia, neuroendocrine tumor, atrophy, metaplasia and adenocarcinoma. In the studies in humans, however, despite enterochromaffin-like cell hyperplasia, the other effects, neuroendocrine tumor and gastric atrophy, gastric metaplasia and or adenocarcinoma, were not identified. Although it is not possible to say that the long-term treatment with proton pump inhibitors induces the appearance or accelerates the development of gastric cancer in humans, several authors have suggested that prolonged administration of this drug could provoke the development of gastric cancer. Thus, the evidence demonstrated in the animal model as well as the large number of patients who do or will do a long-term treatment with proton pump inhibitors, justifies the maintenance of this important line of research.
Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems
NASA Technical Reports Server (NTRS)
Pawar, A. V.; Tenney, D. R.
1974-01-01
The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.
Ding, Z.; Zheng, B.; Zhang, Jiahua; Belkin, H.E.; Finkelman, R.B.; Zhao, F.; Zhou, D.; Zhou, Y.; Chen, C.
1999-01-01
Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray diffraction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.
NASA Astrophysics Data System (ADS)
Pourattar, Parisa
The cementation process of making Egyptian faience, reported by Hans Wulff from a workshop in Qom, Iran, has not been easy to replicate and various views have been set forth to understand the transport of materials from the glazing powder to the surfaces of the crushed quartz beads. Replications of the process fired to 950° C and under-fired to 850° C were characterized by electron beam microprobe analysis (EPMA), petrographic thin section analysis, and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDS). Chemical variations were modeled using thermal data, phase diagrams, and copper vaporization experiments. These replications were compared to 52 examples from various collections, including 20th century ethnographic collections of beads, glazing powder and plant ash, 12th century CE beads and glazing powder from Fustat (Old Cairo), Egypt, and to an earlier example from Abydos, Egypt in the New Kingdom and to an ash example from the Smithsonian Institution National Museum of Natural History.
Thermal Analysis of Acetylene Terminated Sulfone (ATS) Resin
1990-01-18
Hydrogen Sulfide by Difference Gravimetry 71 (6) Analysis by Quantitative Proton Nuclear 72 Magnetic Resonance (NMR) Spectroscopy C.YI The Noncondensable...CARBONYL SULFIDE 24 DISTRIBUTION OF SULFUR IN THE PRODUCTS OF THERMAL 72 DEGRADATION TO 1020’C OF PRECURED ATS-G 25 GRAVIMETRY OF THE CONDENSABLE VOLATILE...procedure was devised making use of gravimetry in conjunction with proton NMR spectroscopy. The condensable volatile product fraction of degradation was
2007-12-01
Justthebasics.html [Accessed September 29, 2007]. [8] Smithsonian National Museum of American History . “ Proton Exchange Membrame (PEM) Fuel Cell...hydrogen-rich fuel, is fed to the anode where a catalyst separates hydrogen’s negatively charged electrons from the positively charged protons ...The protons are conducted through the electrolyte to the cathode, whereas the electrons are forced to travel in an external circuit, due to the
Petrology and Geochemistry of the NWA 3368 Eucrite
NASA Astrophysics Data System (ADS)
Gardner, K. G.; Lauretta, D. S.; Hill, D. H.; Goreva, J. S.; Domanik, K. J.; Franchi, I. A.; Drake, M. J.
2006-03-01
We report the petrology and geochemistry of NWA 3368, a new non-cumulate, monomict eucrite breccia with a variety of clast sizes and a pink-tinted matrix. Analytical techniques include electron microprobe, INAA, and ICP-MS.
NASA Astrophysics Data System (ADS)
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2016-02-01
Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.
NASA Technical Reports Server (NTRS)
Galbreath, K. C.; Shearer, C. K.; Papike, J. J.; Shimizu, N.
1990-01-01
Results are presented on major- and trace-element abundance analyses of Apollo 15 pyroclastic green glasses from groups A, B, C, D, and E, carried out using electron- and ion-microprobe techniques. The diagrams depicting Sr, Zr, Ba, and Nd vs Co variations indicate the presence of a high-Co trend in groups A and D and a low-Co trend in groups B and C. Group-E glasses were found to be significantly enriched in Sr, relative to the other four glass groups. Chemical data of this study were integrated with previous data to evaluate various magmatic processes that have been proposed in the past to explain chemical variations in the lunar green glass. Results of calculations using a source mixing model suggest that the Apollo 15 green glasses represent multiple eruptive events from three chemically distinct but compositionally variable source regions.
NASA Technical Reports Server (NTRS)
Macpherson, Glenn J.; Davis, Andrew M.
1993-01-01
A Type B Ca-, Al-rich 6-m-diam inclusion (CAI) found in the Vigarano C3V chondrite was inspected using optical and scanning electron microscopies and ion microprobe analyses. It was found that the primary constituents of the CAI inclusion are (in percent), melilite (52), fassaite, (20), anorthite (18), spinel (10), and trace Fe-Ni metal. It is noted that, while many of the properties of the inclusion indicate solidification from a melt droplet, the Al-26/Mg-26 isotopic systematics and some textural relationships are incompatible with single-stage closed system crystallization of a homogeneous molten droplet, indicating that the history of this inclusion must have been more complex than melt solidification alone. Moreover, there was unusually high content of Na in melilite, suggesting that the droplet did not form by melting of pristine high-temperature nebular condensates.
Yorozu, M; Yanagida, T; Nakajyo, T; Okada, Y; Endo, A
2001-04-20
We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.
Electron microprobe analyses of Ca, S, Mg and P distribution in incisors of Spacelab-3 rats
NASA Technical Reports Server (NTRS)
Rosenberg, G. D.; Simmons, D. J.
1985-01-01
The distribution of Ca, S, Mg and P was mapped within the incisors of Spacelab-3 rats using an electron microprobe. The data indicate that Flight rats maintained in orbit for 7 days have significantly higher Ca/Mg ratios in dentin due to both higher Ca and lower Mg content than in dentin of ground-based Controls. There is no statistical difference in distribution of either P or S within Fligth animals and Controls, but there is clear indication that, for P at least, the reason is the greater variability of the Control data. These results are consistent with those obtained on a previous NASA/COSMOS flight of 18.5 days duration, although they are not pronounced. The results further suggest that continuously growing rat incisors provide useful records of the effects of weightlessness on Ca metabolism.
Secondary ion collection and transport system for ion microprobe
Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.
1985-01-01
A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Polar Lander is prepared to receive a number of microprobes being added to the spacecraft. Scheduled to be launched on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
Hg diffusion in books of XVIII and XIX centuries by synchrotron microprobe
NASA Astrophysics Data System (ADS)
Pessanha, S.; Carvalho, M. L.; Manso, M.; Guilherme, A.; Marques, A. F.; Perez, C. A.
2009-08-01
The pigment vermilion (HgS) was used to color the fore edge, tail and head of books. Dissemination and quantification of Hg present in the ink used to color books from XVIII and XIX centuries are reported. Mercury is a very toxic element for the human body, therefore it is extremely important to know whether Hg tends to disseminate throughout the paper or stays confined to the borders of the books with less danger for readers. Synchrotron X-ray microprobe was used to evaluate Hg dissemination from the border to the centre of the paper sheet. The diffusion pattern of Hg was compared with the results obtained by a portable X-ray fluorescence spectrometer and mean quantitative calculations were obtained by a stationary X-ray fluorescence system with triaxial geometry. The results showed high concentrations of Hg in the external regions, but no diffusion was observed for the inner parts of the paper.
Proposed linear energy transfer areal detector for protons using radiochromic film.
Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro
2015-04-01
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.
Yarnykh, V L; Prihod'ko, I Y; Savelov, A A; Korostyshevskaya, A M
2018-05-10
Fast macromolecular proton fraction mapping is a recently emerged MRI method for quantitative myelin imaging. Our aim was to develop a clinically targeted technique for macromolecular proton fraction mapping of the fetal brain and test its capability to characterize normal prenatal myelination. This prospective study included 41 pregnant women (gestational age range, 18-38 weeks) without abnormal findings on fetal brain MR imaging performed for clinical indications. A fast fetal brain macromolecular proton fraction mapping protocol was implemented on a clinical 1.5T MR imaging scanner without software modifications and was performed after a clinical examination with an additional scan time of <5 minutes. 3D macromolecular proton fraction maps were reconstructed from magnetization transfer-weighted, T1-weighted, and proton density-weighted images by the single-point method. Mean macromolecular proton fraction in the brain stem, cerebellum, and thalamus and frontal, temporal, and occipital WM was compared between structures and pregnancy trimesters using analysis of variance. Gestational age dependence of the macromolecular proton fraction was assessed using the Pearson correlation coefficient ( r ). The mean macromolecular proton fraction in the fetal brain structures varied between 2.3% and 4.3%, being 5-fold lower than macromolecular proton fraction in adult WM. The macromolecular proton fraction in the third trimester was higher compared with the second trimester in the brain stem, cerebellum, and thalamus. The highest macromolecular proton fraction was observed in the brain stem, followed by the thalamus, cerebellum, and cerebral WM. The macromolecular proton fraction in the brain stem, cerebellum, and thalamus strongly correlated with gestational age ( r = 0.88, 0.80, and 0.73; P < .001). No significant correlations were found for cerebral WM regions. Myelin is the main factor determining macromolecular proton fraction in brain tissues. Macromolecular proton fraction mapping is sensitive to the earliest stages of the fetal brain myelination and can be implemented in a clinical setting. © 2018 by American Journal of Neuroradiology.
Lórenz-Fonfría, Víctor A; Kandori, Hideki; Padrós, Esteve
2011-06-23
We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.
Sahu, Kalyanasis; Nandi, Nilanjana; Dolai, Suman; Bera, Avisek
2018-06-05
Emission spectrum of a fluorophore undergoing excited state proton transfer (ESPT) often exhibits two distinct bands each representing emissions from protonated and deprotonated forms. The relative contribution of the two bands, best represented by an emission intensity ratio (R) (intensity maximum of the protonated band / intensity maximum of the deprotonated band), is an important parameter which usually denotes feasibility or promptness of the ESPT process. However, the use of ratio is only limited to the interpretation of steady-state fluorescence spectra. Here, for the first time, we exploit the time-dependence of the ratio (R(t)), calculated from time-resolved emission spectra (TRES) at different times, to analyze ESPT dynamics. TRES at different times were fitted with a sum of two lognormal-functions representing each peaks and then, the peak intensity ratio, R(t) was calculated and further fitted with an analytical function. Recently, a time-resolved area-normalized emission spectra (TRANES)-based analysis was presented where the decay of protonated emission or the rise of deprotonated emission intensity conveniently accounts for the ESPT dynamics. We show that these two methods are equivalent but the new method provides more insights on the nature of the ESPT process.
Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.
2015-01-01
The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694
Evidence for extreme Ti-50 enrichments in primitive meteorites
NASA Technical Reports Server (NTRS)
Fahey, A.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.
1985-01-01
The results of the first high mass resolution ion microprobe study of Ti isotopic compositions in individual refractory grains from primitive carbonaceous meteorites are reported. One hibonite from the Murray carbonaceous chondrite has a 10 percent excess of Ti-50, 25 times higher than the maximum value previously reported for bulk samples of refractory inclusions from carbonaceous chondrites. The variation of the Ti compositions between different hibonite grains, and among pyroxenes from a single Allende refractory inclusion, indicates isotopic inhomogeneities over small scale lengths in the solar nebula and emphasizes the importance of the analysis of small individual phases. This heterogeneity makes it unlikely that the isotopic anomalies were carried into the solar system in the gas phase.
Analyses of amphibole asbestiform fibers in municipal water supplies
Nicholson, William J.
1974-01-01
Details are given of the techniques used in the analysis of asbestiform fibers in the water systems of Duluth, Minnesota and other cities. Photographic electron diffraction and electron microprobe analyses indicated that the concentration of verified amphibole mineral fibers ranged from 20 × 106 to 75 × 106 fibers/l. Approximately 50–60% of the fibers were in the cummingtonite-grunerite series and 20% were in the actinolite-tremolite series. About 5% were chemically identical with amosite. A wide variety of analytical techniques must be employed for unique identification of the mineral species present in water systems. ImagesFIGURE 1.FIGURE 2.FIGURE 3.FIGURE 4.FIGURE 5.FIGURE 6. PMID:4470931
Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites
NASA Technical Reports Server (NTRS)
Sharp, Thomas G.
2000-01-01
The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.
NASA Astrophysics Data System (ADS)
Kolesnik, O. N.; Astakhova, N. V.
2018-01-01
Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.
Composition, structure, and properties of iron-rich nontronites of different origins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchik, N. A., E-mail: nadezhda@igm.nsc.ru; Grigorieva, T. N.; Moroz, T. N.
2013-03-15
The composition, structure, and properties of smectites of different origins have been studied by X-ray diffraction, IR spectroscopy, scanning electron microscopy, and microprobe analysis. The results showed that nontronites of different origins differ in composition, properties, morphology, and IR spectroscopic characteristics. Depending on the degree of structural order and the negative charge of iron-silicate layers in nontronites, the shift of the 001 reflection to smaller angles as a result of impregnation with ethylene glycol (this shift is characteristic of the smectite group) occurs differently. The calculated values of the parameter b (from 9.11 to 9.14A) are valid for the extrememore » terms of dioctahedral smectite representatives: nontronites.« less
Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.
2015-01-01
Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.
Experimental study of pp{eta} dynamics with WASA-at-COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Neha
2011-10-24
To investigate the interaction of {eta}-meson with the nucleons, its production, near the kinematical threshold, in proton-proton collisions has been studied with the WASA detector at COSY storage ring in Juelich, Germany. The data has been taken at beam energy 1400 MeV (corresponding to excess energy (Q = 57 MeV). The {eta}-meson was detected via its 3{pi}{sup 0} decay in nearly 4{pi} detector and two protons were measured in forward direction. The determination of four vectors of both protons and the {eta}-meson in the final state allowed to derive complete kinematical information of the pp{eta}-system. The analysis resulted in 9x10{supmore » 6} events of {eta}{yields}3{pi}{sup 0} giving total production cross-section (8.87{+-}0.03{sub stat}{+-}2.57{sub sys}){mu}b. The angular distribution of {eta}-meson in the center of mass frame is anisotropic and squared invariant mass distributions for proton-proton and proton-{eta} shows deviation from pure phase space.« less
Wang, Li; Wang, Xiaochun; Li, Yuting; Han, Shichao; Zhu, Jinming; Wang, Xiaofang; Molkentine, David P; Blanchard, Pierre; Yang, Yining; Zhang, Ruiping; Sahoo, Narayan; Gillin, Michael; Zhu, Xiaorong Ronald; Zhang, Xiaodong; Myers, Jeffrey N; Frank, Steven J
2017-04-01
Human papillomavirus (HPV)-positive oropharyngeal carcinomas response better to X-ray therapy (XRT) than HPV-negative disease. Whether HPV status influences the sensitivity of head and neck cancer cells to proton therapy or the relative biological effectiveness (RBE) of protons versus XRT is unknown. Clonogenic survival was used to calculate the RBE; immunocytochemical analysis and neutral comet assay were used to evaluate unrepaired DNA double-strand breaks. HPV-positive cells were more sensitive to protons and the unrepaired double-strand breaks were more numerous in HPV-positive cells than in HPV-negative cells (p < .001). Protons killed more cells than did XRT at all fraction sizes (all RBEs > 1.06). Cell line type and radiation fraction size influenced the RBE. HPV-positive cells were more sensitive to protons than HPV-negative cells maybe through the effects of HPV on DNA damage and repair. The RBE for protons depends more on cell type and fraction size than on HPV status. © 2016 Wiley Periodicals, Inc. Head Neck 39: 708-715, 2017. © 2016 Wiley Periodicals, Inc.
Photoproduction of $$ \\pi^{0}$$-pairs off protons and off neutrons
Dieterle, M.; Oberle, M.; Ahrens, J.; ...
2015-11-04
Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of π 0π 0 pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557MeV, which produced bremsstrahlung in thin radiator foils. The tagged photon beam covered energies up to 1400MeV. The data from the free proton target are in good agreement with previous measurements and were only used to test the analysis procedures. Themore » results for differential cross sections (angular distributions and invariant-mass distributions) for free and quasi-free protons are almost identical in shape, but differ in absolute magnitude up to 15%. Thus, moderate final-state interaction effects are present. The data for quasi-free neutrons are similar to the proton data in the second resonance region (final-state invariant masses up to ≈1550 MeV), where both reactions are dominated by the N(1520)3/2 –→Δ(1232)3/2 +π decay. At higher energies, angular and invariant-mass distributions are different. A simple analysis of the shapes of the invariant-mass distributions in the third resonance region is consistent with strong contributions of an N*→Nσ decay for the proton, while the reaction is dominated by a sequential decay via a Δπ intermediate state for the neutron. Here, the data are compared to predictions from the Two-Pion-MAID model and the Bonn-Gatchina coupled-channel analysis.« less
Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.
O'Hagan, Molly; Shaw, Wendy J; Raugei, Simone; Chen, Shentan; Yang, Jenny Y; Kilgore, Uriah J; DuBois, Daniel L; Bullock, R Morris
2011-09-14
Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in homogeneous catalysts and enzymes in general, with specific implications for the proton channel in the Ni-Fe hydrogenase enzyme.
Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.
2004-01-01
Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin
2015-05-01
Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.
Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Smith, Robert L.; And Others
1988-01-01
Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)
SU(2) Flavor Asymmetry of the Proton Sea in Chiral Effective Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenney, J. R.; Sato Gonzalez, Nobuo; Melnitchouk, Wally
We refine the computation of themore » $$\\bar{d}$$ - $$\\bar{u}$$ flavor asymmetry in the proton sea with a complementary effort to reveal the dynamics of pion exchange in high-energy processes. In particular, we discuss the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA along with the $$\\bar{d}$$ - $$\\bar{u}$$ flavor asymmetry in the proton. A detailed χ 2 analysis of the ZEUS and H1 data, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. Based on the fit results, we also address a possible estimate for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward protons.« less
Double binding energy differences: Mean-field or pairing effect?
NASA Astrophysics Data System (ADS)
Qi, Chong
2012-10-01
In this Letter we present a systematic analysis on the average interaction between the last protons and neutrons in atomic nuclei, which can be extracted from the double differences of nuclear binding energies. The empirical average proton-neutron interaction Vpn thus derived from experimental data can be described in a very simple form as the interplay of the nuclear mean field and the pairing interaction. It is found that the smooth behavior as well as the local fluctuations of the Vpn in even-even nuclei with N ≠ Z are dominated by the contribution from the proton-neutron monopole interactions. A strong additional contribution from the isoscalar monopole interaction and isovector proton-neutron pairing interaction is seen in the Vpn for even-even N = Z nuclei and for the adjacent odd-A nuclei with one neutron or proton being subtracted.
NASA Astrophysics Data System (ADS)
Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.
2016-09-01
The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael
2015-06-01
Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.
Spectral characterization of laser-accelerated protons with CR-39 nuclear track detector.
Seimetz, M; Bellido, P; García, P; Mur, P; Iborra, A; Soriano, A; Hülber, T; García López, J; Jiménez-Ramos, M C; Lera, R; Ruiz-de la Cruz, A; Sánchez, I; Zaffino, R; Roso, L; Benlloch, J M
2018-02-01
CR-39 nuclear track material is frequently used for the detection of protons accelerated in laser-plasma interactions. The measurement of track densities allows for determination of particle angular distributions, and information on the kinetic energy can be obtained by the use of passive absorbers. We present a precise method of measuring spectral distributions of laser-accelerated protons in a single etching and analysis process. We make use of a one-to-one relation between proton energy and track size and present a precise calibration based on monoenergetic particle beams. While this relation is limited to proton energies below 1 MeV, we show that the range of spectral measurements can be significantly extended by simultaneous use of absorbers of suitable thicknesses. Examples from laser-plasma interactions are presented, and quantitative results on proton energies and particle numbers are compared to those obtained from a time-of-flight detector. The spectrum end points of continuous energy distributions have been determined with both detector types and coincide within 50-100 keV.
An evolutionarily conserved gene family encodes proton-selective ion channels.
Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R
2018-03-02
Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review.
Amichetti, Maurizio; Amelio, Dante; Minniti, Giuseppe
2012-12-14
Stereotactic radiosurgery (SRS) is an important treatment option for intracranial lesions. Many studies have shown the effectiveness of photon-SRS for the treatment of skull base (SB) tumours; however, limited data are available for proton-SRS.Several photon-SRS techniques, including Gamma Knife, modified linear accelerators (Linac) and CyberKnife, have been developed and several studies have compared treatment plan characteristics between protons and photons.The principles of classical radiobiology are similar for protons and photons even though they differ in terms of physical properties and interaction with matter resulting in different dose distributions.Protons have special characteristics that allow normal tissues to be spared better than with the use of photons, although their potential clinical superiority remains to be demonstrated.A critical analysis of the fundamental radiobiological principles, dosimetric characteristics, clinical results, and toxicity of proton- and photon-SRS for SB tumours is provided and discussed with an attempt of defining the advantages and limits of each radiosurgical technique.
NASA Astrophysics Data System (ADS)
Rogers, Andrew; Anderson, C.; Barney, J.; Estee, J.; Lynch, W. G.; Manfredi, J.; Setiawan, H.; Showalter, R. H.; Sweany, S.; Tangwancharoen, S.; Tsang, M. B.; Winkelbauer, J. R.; Brown, K. W.; Elson, J. M.; Pruitt, C.; Sobotka, L. G.; Chajecki, Z.; Lee, J.
2017-09-01
Properties of nuclei beyond the proton drip-line are important for mass models, nuclear structure, and astrophysics. Weakly-bound or proton-unbound nuclei near the rp-process waiting points, such as the unbound Tz = -1/2 nucleus 73Rb, play a critical role in constraining calculations and observations of type I x-ray bursts. For instance, the rp process is greatly slowed near 72Kr (N = Z) due to its relatively long β-decay half life and inhibited proton capture. This waiting point, however, may be bypassed by sequential 2p-capture through 73Rb -a reaction which is sensitive to the 73Rb proton separation energy, Sp. Using invariant-mass spectroscopy, we have performed an experiment at NSCL to measure the decay of 73Rb ->p+72Kr in an attempt to directly determine Sp (73Rb) . Analysis of reconstructed proton-emission spectra and decay signatures will be discussed. This work is supported by the U.S. DOE Office of Nuclear Physics, Award No. DE-FG02-94ER40848.
Rah, Jeong-Eun; Shin, Dongho; Oh, Do Hoon; Kim, Tae Hyun; Kim, Gwe-Ya
2014-09-01
To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. The authors established a customized tolerance level of ±2% for D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors' analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.
NASA Astrophysics Data System (ADS)
Biswas, Sohag; Dasgupta, Teesta; Mallik, Bhabani S.
2016-09-01
We present the reactivity of an organic intermediate by studying the proton transfer process from water to ketyl radical anion using gas phase electronic structure calculations and the metadynamics method based first principles molecular dynamics (FPMD) simulations. Our results indicate that during the micro solvation of anion by water molecules systematically, the presence of minimum three water molecules in the gas phase cluster is sufficient to observe the proton transfer event. The analysis of trajectories obtained from initial FPMD simulation of an aqueous solution of the anion does not show any evident of complete transfer of the proton from water. The cooperativity of water molecules and the relatively weak anion-water interaction in liquid state prohibit the full release of the proton. Using biasing potential through first principles metadynamics simulations, we report the observation of proton transfer reaction from water to ketyl radical anion with a barrier height of 16.0 kJ/mol.
Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review
2012-01-01
Stereotactic radiosurgery (SRS) is an important treatment option for intracranial lesions. Many studies have shown the effectiveness of photon-SRS for the treatment of skull base (SB) tumours; however, limited data are available for proton-SRS. Several photon-SRS techniques, including Gamma Knife, modified linear accelerators (Linac) and CyberKnife, have been developed and several studies have compared treatment plan characteristics between protons and photons. The principles of classical radiobiology are similar for protons and photons even though they differ in terms of physical properties and interaction with matter resulting in different dose distributions. Protons have special characteristics that allow normal tissues to be spared better than with the use of photons, although their potential clinical superiority remains to be demonstrated. A critical analysis of the fundamental radiobiological principles, dosimetric characteristics, clinical results, and toxicity of proton- and photon-SRS for SB tumours is provided and discussed with an attempt of defining the advantages and limits of each radiosurgical technique. PMID:23241206
FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cliver, E. W.
2016-12-01
Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that eventsmore » omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10{sup 5}) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10{sup 3}, similar to those of comparably sized well-connected (W20–W90) SEP events.« less
Flare vs. Shock Acceleration of High-energy Protons in Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Cliver, E. W.
2016-12-01
Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 105) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ˜2 × 103, similar to those of comparably sized well-connected (W20-W90) SEP events.
Evaluation of the radiation hazard for ion-beam analysis with MeV external proton beams (X-IBA)
NASA Astrophysics Data System (ADS)
Hofsäss, Hans
2018-07-01
MeV ion beams which are extracted into air or He atmosphere are used in many labs for proton-induced X-ray emission (PIXE), proton induced gamma ray emission (PIGE) or Rutherford backscattering (RBS) to analyze samples which are difficult or impossible to handle in vacuum. When MeV proton beams are extracted into air through thin Kapton foils or nowadays thin silicon nitride membranes, the protons will interact with air, as well as elements present in the analyzed samples. Typically the range of MeV protons in air is several cm, in Helium atmosphere several 10 cm and in human skin around 100 μm. Besides the severe radiation hazard in case of a direct exposure of skin with protons, there are a manifold of nuclear reactions or inelastic proton scattering processes which may cause activation of air and target materials but also prompt radiation. The radiation hazard associated with the direct and scattered beam, nuclear reaction products and radionuclide production in air have been discussed in a publication by Doyle et al. in 1991 which was used as a reference in several later publications. I have reevaluated the radiation hazards for external proton beams with up to 4.5 MeV using proton reaction cross sections taken from the JANIS book of proton induced cross sections. The radionuclide production in air is about 3 orders of magnitude lower compared to values given in the 1991 publication. Radionuclide production as well as generation of prompt alpha, gamma and neutron radiation in target materials for elements up to molybdenum is also evaluated.
Detailed characterization of the LLNL imaging proton spectrometer
Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; ...
2016-09-01
Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter themore » diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less
SU-F-T-163: Improve Proton Therapy Efficiency: Report of a Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Flanz, J; Mah, D
Purpose: The technology of proton therapy, especially the pencil beam scanning technique, is evolving very quickly. However, the efficiency of proton therapy seems to lag behind conventional photon therapy. The purpose of the abstract is to report on the findings of a workshop on improvement of QA, planning and treatment efficiency in proton therapy. Methods: A panel of physicists, clinicians, and vendor representatives from over 18 institutions in the United States and internationally were convened in Knoxville, Tennessee in November, 2015. The panel discussed several topics on how to improve proton therapy efficiency, including 1) lean principle and failure modemore » and effects analysis, 2) commissioning and machine QA, 3) treatment planning, optimization and evaluation, 4) patient positioning and IGRT, 5) vendor liaison and machine availability, and 6) staffing, education and training. Results: The relative time needed for machine QA, treatment planning & check in proton therapy was found to range from 1 to 2.5 times of that in photon therapy. Current status in proton QA, planning and treatment was assessed. Key areas for efficiency improvement, such as elimination of unnecessary QA items or steps and development of efficient software or hardware tools, were identified. A white paper to summarize our findings is being written. Conclusion: It is critical to improve efficiency by developing reliable proton beam lines, efficient software tools on treatment planning, optimization and evaluation, and dedicated proton QA device. Conscious efforts and collaborations from both industry leaders and proton therapy centers are needed to achieve this goal and further advance the technology of proton therapy.« less
ATS-6 - Synchronous orbit trapped radiation studies with an electron-proton spectrometer
NASA Technical Reports Server (NTRS)
Walker, R. J.; Swanson, R. L.; Winckler, J. R.; Erickson, K. N.
1975-01-01
The paper discusses the University of Minnesota experiment on ATS-6 designed to study the origin and dynamics of high-energy electrons and protons in the outer radiation belt and in the near-earth plasma sheet. The experiment consists of two nearly identical detector assemblies, each of which is a magnetic spectrometer containing four gold-silicon surface barrier detectors. The instrument provides a clean separation between protons and electrons by the combination of pulse height analysis and magnetic deflection.
Electronic structure and properties of unsubstituted rhodamine in different electron states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artyukhov, V.Ya.
1988-04-01
An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S/sub 4/) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.
Electronic structure and properties of unsubstituted rhodamine in different electron states
NASA Astrophysics Data System (ADS)
Artyukhov, V. Ya.
1987-10-01
An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S4) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.
NASA Astrophysics Data System (ADS)
Pain, F.; Dhenain, M.; Gurden, H.; Routier, A. L.; Lefebvre, F.; Mastrippolito, R.; Lanièce, P.
2008-10-01
The β-microprobe is a simple and versatile technique complementary to small animal positron emission tomography (PET). It relies on local measurements of the concentration of positron-labeled molecules. So far, it has been successfully used in anesthetized rats for pharmacokinetics experiments and for the study of brain energetic metabolism. However, the ability of the technique to provide accurate quantitative measurements using 18F, 11C and 15O tracers is likely to suffer from the contribution of 511 keV gamma rays background to the signal and from the contribution of positrons from brain loci surrounding the locus of interest. The aim of the present paper is to provide a method of evaluating several parameters, which are supposed to affect the quantification of recordings performed in vivo with this methodology. We have developed realistic voxelized phantoms of the rat whole body and brain, and used them as input geometries for Monte Carlo simulations of previous β-microprobe reports. In the context of realistic experiments (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; local glucose metabolic rate measurement with 18F-FDG and H2O15 blood flow measurements in the somatosensory cortex), we have calculated the detection efficiencies and corresponding contribution of 511 keV gammas from peripheral organs accumulation. We confirmed that the 511 keV gammas background does not impair quantification. To evaluate the contribution of positrons from adjacent structures, we have developed β-Assistant, a program based on a rat brain voxelized atlas and matrices of local detection efficiencies calculated by Monte Carlo simulations for several probe geometries. This program was used to calculate the 'apparent sensitivity' of the probe for each brain structure included in the detection volume. For a given localization of a probe within the brain, this allows us to quantify the different sources of beta signal. Finally, since stereotaxic accuracy is crucial for quantification in most microprobe studies, the influence of stereotaxic positioning error was studied for several realistic experiments in favorable and unfavorable experimental situations (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; binding of 18F-MPPF to 5HT1A receptors in the dorsal raphe nucleus).
Pickens, C L; Milliron, A R; Fussner, A L; Dversdall, B C; Langenstroer, P; Ferguson, S; Fu, X; Schmitz, F J; Poole, E C
1999-07-01
Several urinary calculi were submitted to our institution for compositional analysis. The typical techniques of analysis, polarized light microscopy, electron microprobe analysis, and infrared spectroscopy proved inadequate for a definitive identification. As a result, a more detailed organic analysis was conducted to determine the exact chemical structure of the material. Infrared spectroscopy and mass spectrometric analysis were carried out on the solid material, providing information concerning the functional groups and the molecular mass of the organic constituent and its components. The stone was solubilized in deuterated solvents and analyzed by nuclear magnetic resonance spectroscopy, which resulted in a definitive chemical structure. The spectroscopic analysis indicated that the stones were composed of a calcium salt of beta-(2-methoxyphenoxy)-lactic acid, a metabolite of the pharmaceutical guaifenesin, which is used as an expectorant. Guaifenesin, an expectorant common in over-the-counter cold and allergy remedies, can cause urolithiasis if taken in excess. Discussions with physicians and their patients confirmed that most patients admitted to taking large doses of guaifenesin-containing medications.
Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level
NASA Astrophysics Data System (ADS)
Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.
1995-11-01
A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.
Hodson, Mark E; Benning, Liane G; Demarchi, Bea; Penkman, Kirsty E H; Rodriguez-Blanco, Juan D; Schofield, Paul F; Versteegh, Emma A A
Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg -1 (n = 3; ± std dev) per individual amino acid); the CaCO 3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν 2 : ν 4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. ACC present in earthworm CaCO 3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. Graphical abstractSynchrotron-based μ-FTIR mapping was used to determine the spatial distribution of amorphous calcium carbonate in earthworm-produced CaCO 3 granules.
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Sukumaran, Indu
2017-09-01
Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.
NASA Astrophysics Data System (ADS)
Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq
2018-05-01
Natural atomic charge analysis and molecular electrostatic potential (MEP) surface analysis of hydrogen bonded charge transfer (HBCT) and proton transfer (PT) complex of 3,5-dinitrobenzoic acid (DNBA) and 1,2-dimethylimidazole (DMI) have been investigated by theoretical modelling using widely employed DFT/B3LYP/6-311G(d,p) level of theory. Along with this analysis, Hirshfeld surface study of the intermolecular interactions and associated 2D finger plot for reported PT complex between DNBA and DMI have been explored.
Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua
2014-01-01
Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p < 0.01), with little difference in their exchange rate (p = 0.32). In summary, our study extends the conventional omega plot for quantitative analysis of DIACEST MRI. Copyright © 2014 John Wiley & Sons, Ltd.
Harper, M E; Brand, M D
1994-08-01
Thyroid hormones have well-known effects on oxidative phosphorylation, but there is little quantitative information on their important sites of action. We have used top-down elasticity analysis, an extension of metabolic control analysis, to identify the sites of action of thyroid hormones on oxidative phosphorylation in rat hepatocytes. We divided the oxidative phosphorylation system into three blocks of reactions: the substrate oxidation subsystem, the phosphorylating subsystem, and the mitochondrial proton leak subsystem and have identified those blocks of reactions whose kinetics are significantly changed by hyperthyroidism. Our results show significant effects on the kinetics of the proton leak and the phosphorylating subsystems. Quantitative analyses revealed that 43% of the increase in resting respiration rate in hyperthyroid hepatocytes compared with euthyroid hepatocytes was due to differences in the proton leak and 59% was due to differences in the activity of the phosphorylating subsystem. There were no significant effects on the substrate oxidation subsystem. Changes in nonmitochondrial oxygen consumption accounted for -2% of the change in respiration rate. Top-down control analysis revealed that the distribution of control over the rates of mitochondrial oxygen consumption, ATP synthesis and consumption, and proton leak and over mitochondrial membrane potential (delta psi m) was similar in hepatocytes from hyperthyroid and littermate-paired euthyroid controls. The results of this study include the first complete top-down elasticity and control analyses of oxidative phosphorylation in hepatocytes from hyperthyroid rats.
Edwards, S J; Lind, T; Lundell, L
2006-09-01
No randomized controlled trial has compared all the licensed standard dose proton pump inhibitors in the healing of reflux oesophagitis. To compare the effectiveness of esomeprazole with licensed standard dose proton pump inhibitors for healing of reflux oesophagitis (i.e. lansoprazole 30 mg, omeprazole 20 mg, pantoprazole 40 mg and rabeprazole 20 mg). Systematic review of CENTRAL, BIOSIS, EMBASE and MEDLINE for randomized controlled trials in patients with reflux oesophagitis. Searching was completed in February 2005. Data on endoscopic healing rates at 4 and 8 weeks were extracted and re-analysed if not analysed by intention-to-treat. Meta-analysis was conducted using a fixed effects model. Of 133 papers identified in the literature search, six were of sufficient quality to be included in the analysis. No studies were identified comparing rabeprazole with esomeprazole. A meta-analysis of healing rates of esomeprazole 40 mg compared with standard dose proton pump inhibitors gave the following results: at 4 weeks [relative risk (RR) 0.92; 95% CI: 0.90, 0.94; P < 0.00001], and 8 weeks (RR 0.95; 95% CI: 0.94, 0.97; P < 0.00001). Publication bias did not have a significant impact on the results. The results were robust to changes in the inclusion/exclusion criteria and using a random effects model. Esomeprazole consistently demonstrates higher healing rates when compared with standard dose proton pump inhibitors.
NASA Astrophysics Data System (ADS)
Zhao, Qingya
2011-12-01
Proton radiotherapy has advantages to deliver accurate high conformal radiation dose to the tumor while sparing the surrounding healthy tissue and critical structures. However, the treatment effectiveness is degraded greatly due to patient free breathing during treatment delivery. Motion compensation for proton radiotherapy is especially challenging as proton beam is more sensitive to the density change along the beam path. Tumor respiratory motion during treatment delivery will affect the proton dose distribution and the selection of optimized parameters for treatment planning, which has not been fully addressed yet in the existing approaches for proton dose calculation. The purpose of this dissertation is to develop an approach for more accurate dose delivery to a moving tumor in proton radiotherapy, i.e., 4D proton dose calculation and delivery, for the uniform scanning proton beam. A three-step approach has been carried out to achieve this goal. First, a solution for the proton output factor calculation which will convert the prescribed dose to machine deliverable monitor unit for proton dose delivery has been proposed and implemented. The novel sector integration method is accurate and time saving, which considers the various beam scanning patterns and treatment field parameters, such as aperture shape, aperture size, measuring position, beam range, and beam modulation. Second, tumor respiratory motion behavior has been statistically characterized and the results have been applied to advanced image guided radiation treatment. Different statistical analysis and correlation discovery approaches have been investigated. The internal / external motion correlation patterns have been simulated, analyzed, and applied in a new hybrid gated treatment to improve the target coverage. Third, a dose calculation method has been developed for 4D proton treatment planning which integrates the interplay effects of tumor respiratory motion patterns and proton beam delivery mechanism. These three steps provide an innovative integrated framework for accurate 4D proton dose calculation and treatment planning for a moving tumor, which extends the functionalities of existing 3D planning systems. In short, this dissertation work addresses a few important problems for effective proton radiotherapy to a moving target. The outcomes of the dissertation are very useful for motion compensation with advanced image guided proton treatment.
NASA Astrophysics Data System (ADS)
Adriani, O.; Berti, E.; Bonechi, L.; Bongi, M.; D'Alessandro, R.; Haguenauer, M.; Itow, Y.; Iwata, T.; Kasahara, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Muraki, Y.; Papini, P.; Ricciarini, S.; Sako, T.; Sakurai, N.; Shinoda, M.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W. C.; Ueno, M.; Zhou, Q. D.; LHCf Collaboration
2018-05-01
In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of η > 10.94 and 8.99 > η > 8.81, measured by the LHCf experiment with proton-proton collisions at √{ s } = 13TeV. The results from the analysis of 0.191nb-1 of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.
NASA Technical Reports Server (NTRS)
Garrard, T. L.
1972-01-01
The differential energy spectra of cosmic ray protons and He nuclei were measured at energies up to 315 MeV/nucleon using balloon-borne and satellite-borne instruments. These spectra are presented for solar quiet times for the years 1966 through 1970. The data analysis is verified by extensive accelerator calibrations of the detector systems and by calculations and measurements of the production of secondary protons in the atmosphere. The spectra of protons and He nuclei in this energy range are dominated by the solar modulation of the local interstellar spectra. Numerical solutions to the transport equation are presented for a wide range of parameters.
Highlights of modern nuclear structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, P. J.
1998-09-11
Excitations of nuclei close to magic {sup 132}Sn have been investigated by analysis of fission product {gamma}-ray data measured at Eurogam II using a {sup 248}Cm source. Results for the N=82 isotopes up to {sup 136}Xe, for the one proton-one neutron nucleus {sup 134}Sb, and for the N=84 isotones {sup 134}Sn. {sup 135}Sb, and {sup 136}Te are summarized. The interpretation of the observed level spectra is mainly based on shell model calculations using empirical proton-proton interactions from {sup 134}Te, neutron-neutron interactions from is {sup 134}Sn, and proton-neutron interactions estimated (with scaling as A{sup {minus}1/3}) from the well-known {sup 210}Bi spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slowinski, B.; Strugalski, Z.
1977-02-20
Results are presented of an analysis of the angular distributions of protons with E/sub p/> or =30 MeV emitted with different numbers of secondary charged particles in ..pi../sup +/+Xe interactions at 2.34 GeV/c. The obtained distributions are compared with the analogous characteristics of the protons emitted in collisions of protons or ..cap alpha.. particles with heavy emulsion nuclei and with lead at 70 and 17 GeV/c. It is concluded that the investigated distributions reveal no irregularities capable of attesting to a noticable role of the shock-wave mechanism in the target nuclei.
Richter, Heiko; Kierdorf, Uwe; Richards, Alan; Melcher, Frank; Kierdorf, Horst
2011-08-01
Fluoride concentration in dentine has been recommended as the best marker for the level of chronic fluoride intake and the most suitable indicator of an individual's total body burden of fluoride. We analysed fluoride concentrations in the dentine of cheek teeth of European roe deer from fluoride-polluted habitats to retrospectively assess the level of fluoride uptake into the tissue. Thereby, we tested the hypothesis of the existence of mechanisms that limit fluoride intake of individuals and fluoride exposure of forming dental hard tissues during the late foetal and early postnatal periods in the species. Using electron-microprobe analysis, fluoride profiles were obtained on sectioned P(4)s, M(1)s, and M(3)s from individuals exhibiting pronounced dental fluorosis. Fluoride concentrations were compared between early formed (peripheral) and late-formed (juxtapulpal) dentine both within single teeth and amongst the three different teeth studied. Peripheral dentine of the M(1), which is formed during the late foetal and early postnatal periods, exhibited markedly lower fluoride concentrations than juxtapulpal dentine of the same tooth and both, peripheral and juxtapulpal dentine of P(4) and M(3) that are formed post-weaning. Our study provides strong support for the hypothesis that in the European roe deer the prenatal and early postnatal (pre-weaning) stages of dental development are (largely) protected against exposure to excess fluoride. This is attributed to the operation of certain protective mechanisms during these periods. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helz, R. T.; Cottrell, E.; Brounce, M. N.
The 1959 summit eruption of Kmore » $$\\bar{i}$$lauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most K$$\\bar{i}$$lauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.« less
Approximate chemical analysis of volcanic glasses using Raman spectroscopy
Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.
2015-01-01
The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038
Monte Carlo simulations of soft proton flares: testing the physics with XMM-Newton
NASA Astrophysics Data System (ADS)
Fioretti, Valentina; Bulgarelli, Andrea; Malaguti, Giuseppe; Spiga, Daniele; Tiengo, Andrea
2016-07-01
Low energy protons (< 100 - 300 keV) in the Van Allen belt and the outer regions can enter the field of view of X-ray focusing telescopes, interact with the Wolter-I optics, and reach the focal plane. The funneling of soft protons was discovered after the damaging of the Chandra/ACIS Front-Illuminated CCDs in September 1999 after the first passages through the radiation belt. The use of special filters protects the XMM-Newton focal plane below an altitude of 70000 km, but above this limit the effect of soft protons is still present in the form of sudden ares in the count rate of the EPIC instruments that can last from hundreds of seconds to hours and can hardly be disentangled from X-ray photons, causing the loss of large amounts of observing time. The accurate characterization of (i) the distribution of the soft proton population, (ii) the physics interaction at play, and (iii) the effect on the focal plane, are mandatory to evaluate the background and design the proton magnetic diverter on board future X-ray focusing telescopes (e.g. ATHENA). Several solutions have been proposed so far for the primary population and the physics interaction, however the difficulty in precise angle and energy measurements in laboratory makes the smoking gun still unclear. Since the only real data available is the XMM-Newton spectrum of soft proton flares in orbit, we try to characterize the input proton population and the physics interaction by simulating, using the BoGEMMS framework, the proton interaction with a simplified model of the X-ray mirror module and the focal plane, and comparing the result with a real observation. The analysis of ten orbits of observations of the EPIC/pn instrument show that the detection of flares in regions far outside the radiation belt is largely influenced by the different orientation of the Earth's magnetosphere respect with XMM-Newton'os orbit, confirming the solar origin of the soft proton population. The Equator-S proton spectrum at 70000 km altitude is used for the proton population entering the optics, where a combined multiple and Firsov scattering is used as physics interaction. If the thick filter is used, the soft protons in the 30-70 keV energy range are the main contributors to the simulated spectrum below 10 keV. We are able to reproduce the proton vignetting observed in real data-sets, with a 50% decrease from the inner to the outer region, but a maximum flux of 0:01 counts cm2 s-1 keV-1 is obtained below 10 keV, about 5 times lower than the EPIC/MOS detection and 100 times lower than the EPIC/pn one. Given the high variability of the are intensity, we conclude that an average spectrum, based on the analysis of a full season of soft proton events is required to compare Monte Carlo simulations with real events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gameiro, Sofia R.; Malamas, Anthony S.; Bernstein, Michael B.
Purpose: To provide the foundation for combining immunotherapy to induce tumor antigen–specific T cells with proton radiation therapy to exploit the activity of those T cells. Methods and Materials: Using cell lines of tumors frequently treated with proton radiation, such as prostate, breast, lung, and chordoma, we examined the effect of proton radiation on the viability and induction of immunogenic modulation in tumor cells by flow cytometric and immunofluorescent analysis of surface phenotype and the functional immune consequences. Results: These studies show for the first time that (1) proton and photon radiation induced comparable up-regulation of surface molecules involved in immune recognition (histocompatibilitymore » leukocyte antigen, intercellular adhesion molecule 1, and the tumor-associated antigens carcinoembryonic antigen and mucin 1); (2) proton radiation mediated calreticulin cell-surface expression, increasing sensitivity to cytotoxic T-lymphocyte killing of tumor cells; and (3) cancer stem cells, which are resistant to the direct cytolytic activity of proton radiation, nonetheless up-regulated calreticulin after radiation in a manner similar to non-cancer stem cells. Conclusions: These findings offer a rationale for the use of proton radiation in combination with immunotherapy, including for patients who have failed radiation therapy alone or have limited treatment options.« less
Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.
Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M
2008-07-01
In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Seong-Moon, E-mail: castme@kims.re.kr; Jeong, Hi-Won; Ahn, Young-Keun
Quantitative microsegregation analyses were systematically carried out during the solidification of the Ni-base superalloy CMSX-10 to clarify the methodological effect on the quantification of microsegregation and to fully understand the solidification microstructure. Three experimental techniques, namely, mushy zone quenching (MZQ), planar directional solidification followed by quenching (PDSQ), and random sampling (RS), were implemented for the analysis of microsegregation tendency and the magnitude of solute elements by electron probe microanalysis. The microprobe data and the calculation results of the diffusion field ahead of the solid/liquid (S/L) interface of PDSQ samples revealed that the liquid composition at the S/L interface is significantlymore » influenced by quenching. By applying the PDSQ technique, it was also found that the partition coefficients of all solute elements do not change appreciably during the solidification of primary γ. All three techniques could reasonably predict the segregation behavior of most solute elements. Nevertheless, the RS approach has a tendency to overestimate the magnitude of segregation for most solute elements when compared to the MZQ and PDSQ techniques. Moreover, the segregation direction of Cr and Mo predicted by the RS approach was found to be opposite from the results obtained by the MZQ and PDSQ techniques. This conflicting segregation behavior of Cr and Mo was discussed intensively. It was shown that the formation of Cr-rich areas near the γ/γ′ eutectic in various Ni-base superalloys, including the CMSX-10 alloy, could be successfully explained by the results of microprobe analysis performed on a sample quenched during the planar directional solidification of γ/γ′ eutectic. - Highlights: • Methodological effect on the quantification of microsegregation was clarified. • The liquid composition at the S/L interface was influenced by quenching. • The segregation direction of Cr varied depending on the experimental techniques. • Cr and Mo segregation in Ni-base superalloys was fully understood.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macente, A.; Fusseis, F.; Menegon, L.
Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets withmore » increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine-rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localisation, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.« less