Heating, Cooling, and Gravitational Instabilities in Protostellar and Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Pickett, B. K.; Mejia, A. C.; Durisen, R. H.
2001-12-01
We present three-dimensional hydrodynamic simulations of protostellar disk models, in order to explore how the interplay between heating and cooling regulates significant gravitational instabilities. Artificial viscosity is used to treat irreversible heating, such as would occur in shocks; volumetric cooling at several different rates is also applied throughout a broad radial region of the disk. We study the evolution of a disk that is already unstable (due to the low value of the Toomre Q parameter), and a marginally unstable disk that is cooled towards instability. The evolutions have implications for the transport of mass and angular momentum in protostellar disks, the effects of gravitational instabilities on the vertical structure of the disks, and the formation of stellar and substellar companions on dynamic time scales due to disk instabilties. This work is supported by grants from the NASA Planetary Geology and Geophysics and Origins of Solar Systems Programs.
On the tidal interaction between protostellar disks and companions
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J. C. B.
1993-01-01
Formation of protoplanets and binary stars in a protostellar disk modifies the structure of the disk. Through tidal interactions, energy and angular momentum are transferred between the disk and protostellar or protoplanetary companion. We summarize recent progress in theoretical investigations of the disk-companion tidal interaction. We show that low-mass protoplanets excite density waves at their Lindblad resonances and that these waves are likely to be dissipated locally. When a protoplanet acquires sufficient mass, its tidal torque induces the formation of a gap in the vicinity of its orbit. Gap formation leads to the termination of protoplanetary growth by accretion. For proto-Jupiter to attain its present mass, we require that (1) the primordial solar nebula is heated by viscous dissipation; (2) the viscous evolution time scale of the nebula is comparable to the age of typical T Tauri stars with circumstellar disks; and (3) the mass distribution in the nebula is comparable to that estimated from a minimum-mass nebula model.
Protostellar Disk Instabilities and the Formation of Substellar Companions
NASA Astrophysics Data System (ADS)
Pickett, Brian K.; Durisen, Richard H.; Cassen, Patrick; Mejia, Annie C.
2000-09-01
Recent numerical simulations of self-gravitating protostellar disks have suggested that gravitational instabilities can lead to the production of substellar companions. In these simulations, the disk is typically assumed to be locally isothermal; i.e., the initial, axisymmetric temperature in the disk remains everywhere unchanged. Such an idealized condition implies extremely efficient cooling for outwardly moving parcels of gas. While we have seen disk disruption in our own locally isothermal simulations of a small, massive protostellar disk, no long-lived companions formed as a result of the instabilities. Instead, thermal and tidal effects and the complex interactions of the disk material prevented permanent condensations from forming, despite the vigorous growth of spiral instabilities. In order to compare our results more directly with those of other authors, we here present three-dimensional evolutions of an older, larger, but less massive protostellar disk. We show that potentially long-lived condensations form only for the extreme of local isothermality, and then only when severe restrictions are placed on the natural tendency of the protostellar disk to expand in response to gravitational instabilities. A more realistic adiabatic evolution leads to vertical and radial expansion of the disk but no clump formation. We conclude that isothermal disk calculations cannot demonstrate companion formation by disk fragmentation but only suggest it at best. It will be necessary in future numerical work on this problem to treat the disk thermodynamics more realistically.
The Mass Evolution of Protostellar Disks and Envelopes in the Perseus Molecular Cloud
NASA Astrophysics Data System (ADS)
Andersen, Bridget; Stephens, Ian; Dunham, Michael; Pokhrel, Riwaj; Jørgensen, Jes; Frimann, Søren
2018-01-01
In the standard picture for low-mass star formation, a dense molecular cloud undergoes gravitational collapse to form a protostellar system consisting of a new central star, a circumstellar disk, and a surrounding envelope of remaining material. The mass distribution of the system evolves as matter accretes from the large-scale envelope through the disk and onto the protostar. While this general picture is supported by simulations and indirect observational measurements, the specific timescales related to disk growth and envelope dissipation remain poorly constrained. We present a rigorous test of a method introduced by Jørgensen et al. (2009) to obtain observational mass measurements of disks and envelopes around embedded protostars from unresolved (resolution of ~1000 AU) observations. Using data from the recent Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey, we derive disk and envelope mass estimates for 59 protostellar systems in the Perseus molecular cloud. We compare our results to independent disk mass measurements from the VLA Nascent Disk and Multiplicity (VANDAM) survey and find a strong linear correlation. Then, leveraging the size and uniformity of our sample, we find no significant trend in protostellar mass distribution as a function of age, as approximated from bolometric temperatures. These results may indicate that the disk mass of a protostar is set near the onset of the Class 0 protostellar stage and remains roughly constant throughout the Class I protostellar stage.
Signatures of Young Planets in the Continuum Emission from Protostellar Disks
NASA Astrophysics Data System (ADS)
Isella, Andrea; Turner, Neal J.
2018-06-01
Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.
The chemistry of planet-forming regions is not interstellar.
Pontoppidan, Klaus M; Blevins, Sandra M
2014-01-01
Advances in infrared and submillimeter technology have allowed for detailed observations of the molecular content of the planet-forming regions of protoplanetary disks. In particular, disks around solar-type stars now have growing molecular inventories that can be directly compared with both prestellar chemistry and that inferred for the early solar nebula. The data directly address the old question of whether the chemistry of planet-forming matter is similar or different and unique relative to the chemistry of dense clouds and protostellar envelopes. The answer to this question may have profound consequences for the structure and composition of planetary systems. The practical challenge is that observations of emission lines from disks do not easily translate into chemical concentrations. Here, we present a two-dimensional radiative transfer model of RNO 90, a classical protoplanetary disk around a solar-mass star, and retrieve the concentrations of dominant molecular carriers of carbon, oxygen and nitrogen in the terrestrial region around 1 AU. We compare our results to the chemical inventory of dense clouds and protostellar envelopes, and argue that inner disk chemistry is, as expected, fundamentally different from prestellar chemistry. We find that the clearest discriminant may be the concentration of CO2, which is extremely low in disks, but one of the most abundant constituents of dense clouds and protostellar envelopes.
ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng
2018-02-01
Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.
Protostellar Jets: The Revolution with ALMA
NASA Astrophysics Data System (ADS)
Podio, Linda
2017-11-01
Fast and collimated molecular jets as well as slower wide-angle outflows are observed since the earliest stages of the formation of a new star, when the protostellar embryo accretes most of its final mass from the dense parental envelope. Early theoretical studies suggested that jets have a key role in this process as they can transport away angular momentum thus allowing the star to form without reaching its break-up speed. However, an observational validation of these theories is still challenging as it requires to investigate the interface between jets and disks on scales of fractions to tens of AUs. For this reason, many questions about the origin and feedback of protostellar jets remain unanswered, e.g. are jets ubiquitous at the earliest stages of star formation? Are they launched by a magneto-centrifugal mechanism as suggested by theoretical models? Are they able to remove (enough) angular momentum? What is the jet/outflow feedback on the forming star-disk system in terms of transported mass/momentum and shock-induced chemical alterations? The advent of millimetre interferometers such as NOEMA and ALMA with their unprecedented combination of angular resolution and sensitivity are now unraveling the core of pristine jet-disk systems. While NOEMA allows to obtain the first statistically relevant surveys of protostellar jet properties and ubiquity, recent ALMA observations provide the first solid signatures of jet rotation and new insight on the chemistry of the protostellar region. I will review the most recent and exciting results obtained in the field and show how millimetre interferometry is revolutionising our comprehension of protostellar jets.
First Detection of Methanol in a Class O Protostellar Disk
NASA Technical Reports Server (NTRS)
Velusamy, T.; Langer, William D.; Goldsmith, Paul F.
2000-01-01
We report the detection of emission from methanol in a compact source coincident with the position of the L1157 infrared source, which we attribute to molecules in the disk surrounding this young, Class O protostellar object. In addition, we identify a spectral feature in the outflow corresponding to an ethanol transition. Using the Caltech Owens Valley Millimeter Array with a synthesized beam size of 2", we detect spatially unresolved methanol in the 2(sub k) - 1(sub k) transitions at 3mm, which is coincident in position with the peak of the continuum emission. The gas phase methanol could be located in the central region (< 100 AU radius) of a flat disk, or in an extended heated surface layer (approx. 200 AU radius) of a flared disk. The fractional abundance of methanol X(CH3OH) is approx. 2 x l0(exp -8) in the flat disk model, and 3 x l0(exp -7) for the flared disk. The fractional abundance is small in the disk as a whole, but considerably larger in the warm portions. This difference indicates that substantial chemical processing probably takes place in the disk via depletion and desorption. The methanol desorbed from the grains in the warm surface layers returns to the icy grain mantles in the cooler interior of the disk, where it is available to become part of the composition of solar system-like bodies, such as comets, formed in the outer circumstellar region. This first millimeter-wavelength detection of a complex organic molecule in a young protostellar disk has implications for disk structure and chemical evolution and for potential use as a temperature probe. The research of TV and WL was conducted at the Jet Propulsion Laboratory, California Institute of Technology with support from the National Aeronautics and Space Administration.
2007-01-01
primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2...characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different...scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2
Planet Forming Protostellar Disks
NASA Technical Reports Server (NTRS)
Lubow, Stephen
1998-01-01
The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1990-01-01
Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.
The Infrared Reflection Nebula Around the Protostellar System in S140
NASA Technical Reports Server (NTRS)
Harker, D.; Bregman, J.; Tielens, A. G. G. M.; Temi, P.; Rank, D.; Morrison, David (Technical Monitor)
1994-01-01
We have studied the protostellar system in S140 at 2.2, 3.1 and 3.45 microns using a 128x128 InSb array at the Lick Observatory 3m telescope. Besides the protostellar sources, the data reveal a bright infrared reflection nebula. We have developed a simple model of this region and derived the physical conditions. IRSI is surrounded by a dense dusty disk viewed almost edge-on. Photons leaking out through the poles illuminate almost directly north and south the inner edge of a surrounding shell of molecular gas, Analysis of the observed colors and intensities of the NIR light, using Mie scattering theory, reveal that the dust grains in the molecular cloud are somewhat larger than in the general diffuse interstellar medium. Moreover, the incident light has a "cool" color temperature, approximately equals 800K, and likely originates from a dust photosphere close to the protostar. Finally, we find little H2O ice associated with the dusty disk around IRSI. Most of the 3.1 micron ice extinction arises instead from cool intervening molecular cloud material. We have compared our infrared dust observations with millimeter and radio observations of molecular gas associated with this region. The large scale structure observable in the molecular gas is indicative of the interaction between the protostellar wind and the surrounding molecular cloud rather than the geometry of the protostellar disk. We conclude that S140 is a young blister formed by this outflow on the side of a molecular cloud and viewed edge-on.
NASA Astrophysics Data System (ADS)
Forgan, Duncan H.; Ilee, John D.; Meru, Farzana
2018-06-01
The spiral waves detected in the protostellar disk surrounding Elias 2-27 have been suggested as evidence of the disk being gravitationally unstable. However, previous work has shown that a massive, stable disk undergoing an encounter with a massive companion are also consistent with the observations. We compare the spiral morphology of smoothed particle hydrodynamic simulations modeling both cases. The gravitationally unstable disk produces symmetric, tightly wound spiral arms with constant pitch angle, as predicted by the literature. The companion disk’s arms are asymmetric, with pitch angles that increase with radius. However, these arms are not well-fitted by standard analytic expressions, due to the high disk mass and relatively low companion mass. We note that differences (or indeed similarities) in morphology between pairs of spirals is a crucial discriminant between scenarios for Elias 2-27, and hence future studies must fit spiral arms individually. If Elias 2-27 continues to show symmetric tightly wound spiral arms in future observations, then we posit that it is the first observed example of a gravitationally unstable protostellar disk.
Flares, Magnetic Reconnections and Accretion Disk Viscosity
NASA Astrophysics Data System (ADS)
Welsh, William
2001-07-01
Accretion disks are invoked to explain a host of astrophysical phenomena, from protostellar objects to AGN. And yet the mechanism allowing accretion disks to operate are completely unknown. This proposal seeks to observe the ``smoking gun'' signature of magnetically-driven viscosity in accretion disks. Magnetically-induced viscosity is a plausible and generally accepted hypothesis {for esthetic reasons}, but it is completely untested. Determining the cause of accretion disk viscosity is of major significance to all accretion-disk powered systems {e.g. CVs, X-ray binaries, AGN and protostellar disks}. These data will also firmly establish the importance of magnetic fields in accretion disks. Because of its known flaring properites, we will observe the accretion disk in EM Cyg simulataneously with STIS/FUV and CHANDRA. The simultaneous X-rays are absolutely necessary for the unambiguous detection of accretion disk magnetic reconnection flares.
Nonaxisymmetric evolution in protostellar disks
NASA Technical Reports Server (NTRS)
Laughlin, Gregory; Bodenheimer, Peter
1994-01-01
We present a two-dimensional, multigridded hydrodynamical simulation of the collapse of an axisymmetric, rotating, 1 solar mass protostellar cloud, which forms a resolved, hydrotastic disk. The code includes the effects of physical viscosity, radiative transfer and radiative acceleration but not magnetic fields. We examine how the disk is affected by the inclusion of turbulent viscosity by comparing a viscous simulation with an inviscid model evolved from the same initial conditions, and we derive a disk evolutionary timescale on the order of 300,000 years if alpha = 0.01. Effects arising from non-axisymmetric gravitational instabilities in the protostellar disk are followed with a three-dimensional SPH code, starting from the two-dimensional structure. We find that the disk is prone to a series of spiral instabilities with primary azimulthal mode number m = 1 and m = 2. The torques induced by these nonaxisymmetric structures elicit material transport of angular momentum and mass through the disk, readjusting the surface density profile toward more stable configurations. We present a series of analyses which characterize both the development and the likely source of the instabilities. We speculate that an evolving disk which maintains a minimum Toomre Q-value approximately 1.4 will have a total evolutionary span of several times 10(exp 5) years, comparable to, but somewhat shorter than the evolutionary timescale resulting from viscous turbulence alone. We compare the evolution resulting from nonaxisymmetric instabilities with solutions of a one-dimensional viscous diffusion equation applied to the initial surface density and temperature profile. We find that an effective alpha-value of 0.03 is a good fit to the results of the simulation. However, the effective alpha will depend on the minimum Q in the disk at the time the instability is activated. We argue that the major fraction of the transport characterized by the value of alpha is due to the action of gravitational torques, and does not arise from inherent viscosity within the smoothed particle hydrodynamics method.
Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations
NASA Astrophysics Data System (ADS)
Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa
2017-05-01
We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.
NASA Astrophysics Data System (ADS)
Vorobyov, Eduard I.
2011-03-01
We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun, M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun, M mdn d,CI = 0.15 M sun, respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun. Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.
Chemical Evolution of Protostellar Matter
NASA Technical Reports Server (NTRS)
Langer, William D.; vanDishoeck, Ewine F.; Bergin, Edwin A.; Blake, Geoffrey A.; Tielens, Alexander G. G. M.; Velusamy, Thangasamy; Whittet, Douglas C. B.
2000-01-01
We review the chemical processes that are important in the evolution from a molecular cloud core to a protostellar disk. These cover both gas phase and gas grain interactions. The current observational and theoretical state of this field are discussed.
A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou
2018-03-01
HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.
Dynamics of binary and planetary-system interaction with disks - Eccentricity changes
NASA Technical Reports Server (NTRS)
Atrymowicz, Pawel
1992-01-01
Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.
NASA Astrophysics Data System (ADS)
Matthews, Brenda; Hull, Chat
2018-01-01
Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa
2016-06-20
We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of themore » centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.« less
NASA Astrophysics Data System (ADS)
Pickett, Brian K.; Cassen, Patrick; Durisen, Richard H.; Link, Robert
2000-02-01
In the paper ``The Effects of Thermal Energetics on Three-dimensional Hydrodynamic Instabilities in Massive Protostellar Disks. II. High-Resolution and Adiabatic Evolutions'' by Brian K. Pickett, Patrick Cassen, Richard H. Durisen, and Robert Link (ApJ, 529, 1034 [2000]), the wrong version of Figure 10 was published as a result of an error at the Press. The correct version of Figure 10 appears below. The Press sincerely regrets this error.
Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi
HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanolmore » (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.« less
SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruobing; Vorobyov, Eduard; Pavlyuchenkov, Yaroslav
2016-06-01
Protostellar (class 0/I) disks, which have masses comparable to those of their nascent host stars and are fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and millimeter-wave interferometry, we explore the observational signatures of GI in disks using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and millimeter dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of astronomical units, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane; therefore,more » arms scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. In contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes; such fragments appear fainter than their surroundings in NIR scattered light. Spiral arms and streamers recently imaged in four FU Ori systems at NIR wavelengths resemble GI-induced structures and support the interpretation that FUors are gravitationally unstable protostellar disks. At millimeter wavelengths, both spirals and clumps appear brighter in thermal emission than the ambient disk and can be detected by ALMA at distances up to 0.4 kpc with one hour integration times at ∼0.″1 resolution. Collapsed fragments having masses ≳1 M {sub J} can be detected by ALMA within ∼10 minutes.« less
Signs of Early-stage Disk Growth Revealed with ALMA
NASA Astrophysics Data System (ADS)
Yen, Hsi-Wei; Koch, Patrick M.; Takakuwa, Shigehisa; Krasnopolsky, Ruben; Ohashi, Nagayoshi; Aso, Yusuke
2017-01-01
We present ALMA 1.3 mm continuum, 12CO, C18O, and SO data for the Class 0 protostars Lupus 3 MMS, IRAS 15398-3559, and IRAS 16253-2429 at resolutions of ˜100 au. By measuring a rotational profile in C18O, a 100 au Keplerian disk around a 0.3 M⊙ protostar is observed in Lupus 3 MMS. No 100 au Keplerian disks are observed in IRAS 15398-3559 and IRAS 16253-2429. Nevertheless, embedded compact (<30 au) continuum components are detected. The C18O emission in IRAS 15398-3559 shows signatures of infall with a constant angular momentum. IRAS 16253-2429 exhibits signatures of infall and rotation, but its rotational profile is unresolved. By fitting the C18O data with our kinematic models, the protostellar masses and the disk radii are inferred to be 0.01 M⊙ and 20 au in IRAS 15398-3559, and 0.03 M⊙ and 6 au in IRAS 16253-2429. By comparing the specific angular momentum profiles from 10,000 au to 100 au in eight Class 0 and I protostars, we find that the evolution of envelope rotation can be described with conventional inside-out collapse models. In comparison with a sample of 18 protostars with known disk radii, our results reveal signs of disk growth, with the disk radius increasing as {{M}* }0.8+/- 0.14 or {t}1.09+/- 0.37 in the Class 0 stage, where M* is the protostellar mass and t is the age. The disk growth rate slows down in the Class I stage. In addition, we find a hint that the mass accretion rate declines as {t}-0.26+/- 0.04 from the Class 0 to the Class I stages.
Disk Accretion and the Stellar Birthline
NASA Astrophysics Data System (ADS)
Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.
1997-02-01
We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our calculations also suggest that the relatively low disk accretion rates characteristic of T Tauri stars below the birthline cause low-mass stars to contract only slightly faster than normal Hayashi track evolution, so that ages for older pre-main-sequence stars estimated from H-R diagram positions are relatively secure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhiyun; Krasnopolsky, Ruben; Shang, Hsien
2013-09-01
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al.,more » is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.« less
A circumstellar disk associated with a massive protostellar object.
Jiang, Zhibo; Tamura, Motohide; Fukagawa, Misato; Hough, Jim; Lucas, Phil; Suto, Hiroshi; Ishii, Miki; Yang, Ji
2005-09-01
The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin-Neugebauer protostellar object, which has a mass of at least seven solar masses (M(o)). This strongly supports the theory that stars with masses of at least 7M(o) form in the same way as lower mass stars.
A Triple Protostar System in L1448 IRS3B Formed via Fragmentation of a Gravitationally Unstable Disk
NASA Astrophysics Data System (ADS)
Tobin, John J.; Kratter, Kaitlin M.; Persson, Magnus; Looney, Leslie; Dunham, Michael; Segura-Cox, Dominique; Li, Zhi-Yun; Chandler, Claire J.; Sadavoy, Sarah; Harris, Robert J.; Melis, Carl; Perez, Laura M.
2017-01-01
Binary and multiple star systems are a frequent outcome of the star formation process; most stars form as part of a binary/multiple protostar system. A possible pathway to the formation of close (< 500 AU) binary/multiple star systems is fragmentation of a massive protostellar disk due to gravitational instability. We observed the triple protostar system L1448 IRS3B with ALMA at 1.3 mm in dust continuum and molecular lines to determine if this triple protostar system, where all companions are separated by < 200 AU, is likely to have formed via disk fragmentation. From the dust continuum emission, we find a massive, 0.39 solar mass disk surrounding the three protostars with spiral structure. The disk is centered on two protostars that are separated by 61 AU and the third protostar is located in the outer disk at 183 AU. The tertiary companion is coincident with a spiral arm, and it is the brightest source of emission in the disk, surrounded by ~0.09 solar masses of disk material. Molecular line observations from 13CO and C18O confirm that the kinematic center of mass is coincident with the two central protostars and that the disk is consistent with being in Keplerian rotation; the combined mass of the two close protostars is ~1 solar mass. We demonstrate that the disk around L1448 IRS3B remains marginally unstable at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning the companion stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takakuwa, Shigehisa; Kiyokane, Kazuhiro; Saigo, Kazuya
2015-12-01
We performed mapping observations of the Class I protostellar binary system L1551 NE in the C{sup 18}O (J = 3–2), {sup 13}CO (J = 3–2), CS (J = 7–6), and SO (J{sub N} = 7{sub 8}–6{sub 7}) lines with the Atacama Submillimeter Telescope Experiment (ASTE). The ASTE C{sup 18}O data were combined with our previous SMA C{sup 18}O data, which show a r ∼ 300 AU scale Keplerian disk around the protostellar binary system. The C{sup 18}O maps show a ∼20,000 AU scale protostellar envelope surrounding the central Keplerian circumbinary disk. The envelope exhibits a northeast (blue) to southwest (red) velocity gradient along the minor axis, which can be interpreted as amore » dispersing gas motion with an outward velocity of 0.3 km s{sup −1}, while no rotational motion in the envelope is seen. In addition to the envelope, two ≲4000 AU scale, high-velocity (≳1.3 km s{sup −1}) redshifted {sup 13}CO and CS emission components are found ∼40″ southwest and ∼20″ west of the protostellar binary. These redshifted components are most likely outflow components driven from the neighboring protostellar source L1551 IRS 5, and are colliding with the envelope in L1551 NE. The net momentum, kinetic, and internal energies of the L1551 IRS 5 outflow components are comparable to those of the L1551 NE envelope, and the interactions between the outflows and the envelope are likely to cause the dissipation of the envelope and thus suppression of further growth of the mass and mass ratio of the central protostellar binary in L1551 NE.« less
NASA Astrophysics Data System (ADS)
Natta, A.
Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary
Disk Chemistry and Cometary Composition
NASA Astrophysics Data System (ADS)
Markwick, A. J.; Charnley, S. B.
2003-05-01
We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula, as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks, Markwick, A. J., Ilgner, M., Millar, T. J., Henning, Th. (2002), Astron. Astrophys., 385, 632.
Disk Chemistry and Cometary Composition
NASA Astrophysics Data System (ADS)
Markwick, A. J.; Charnley, S. B.
2005-01-01
We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks Markwick A. J. Ilgner M. Millar T. J. Henning Th. (2002) Astron. Astrophys. 385 632
From protostellar to pre-main-sequence evolution
NASA Astrophysics Data System (ADS)
D'Antona, F.
I summarize the status of pre-main-sequence evolutionary tracks starting from the first steps dating back to the concept of Hayashi track. Understanding of the dynamical protostellar phase in the vision of Palla & Stahler, who introduced the concept of the deuterium burning thermostat and of stellar birthline, provided for a long time a link between the dynamical and hydrostatic evolution. Disk accretion however changed considerably the view, but re-introducing some ambiguities which must still be solved. The limitations and uncertainties in the mass and age determination from models for young stellar objects are summarized, but the burning of light elements is still a powerful observational signature.
Knotty protostellar jets as a signature of episodic protostellar accretion?
NASA Astrophysics Data System (ADS)
Vorobyov, Eduard I.; Elbakyan, Vardan G.; Plunkett, Adele L.; Dunham, Michael M.; Audard, Marc; Guedel, Manuel; Dionatos, Odysseas
2018-05-01
Aims: We aim to study the causal link between the knotty jet structure in CARMA 7, a young Class 0 protostar in the Serpens South cluster, and episodic accretion in young protostellar disks. Methods: We used numerical hydrodynamics simulations to derive the protostellar accretion history in gravitationally unstable disks around solar-mass protostars. We compared the time spacing between luminosity bursts Δτmod, caused by dense clumps spiralling on the protostar, with the differences of dynamical timescales between the knots Δτobs in CARMA 7. Results: We found that the time spacing between the bursts have a bi-modal distribution caused by isolated and clustered luminosity bursts. The former are characterized by long quiescent periods between the bursts with Δτmod = a few × (103-104) yr, whereas the latter occur in small groups with time spacing between the bursts Δτmod = a few × (10-102) yr. For the clustered bursts, the distribution of Δτmod in our models can be fit reasonably well to the distribution of Δτobs in the protostellar jet of CARMA 7, if a certain correction for the (yet unknown) inclination angle with respect to the line of sight is applied. The Kolmogorov-Smirnov test on the model and observational data sets suggests the best-fit values for the inclination angles of 55-80°, which become narrower (75-80°) if only strong luminosity bursts are considered. The dynamical timescales of the knots in the jet of CARMA 7 are too short for a meaningful comparison with the long time spacings between isolated bursts in our models. Moreover, the exact sequences of time spacings between the luminosity bursts in our models and knots in the jet of CARMA 7 were found difficult to match. Conclusions: Given the short time that has passed since the presumed luminosity bursts (tens to hundreds years), a possible overabundance of the gas-phase CO in the envelope of CARMA 7 compared to what could be expected from the current luminosity may be used to confirm the burst nature of this object. More sophisticated numerical models and observational data on jets with longer dynamical timescales are needed to further explore the possible causal link between luminosity bursts and knotty jets.
MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.
The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov
2016-11-20
We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less
The Chemistry of Protostellar Jet-Disk Systems
NASA Astrophysics Data System (ADS)
Codella, Claudio
2017-11-01
The birth of a Sun-like star is a complex game played by several participants whose respective roles are not yet entirely clear. On the one hand, the star-to-be accretes matter from a collapsing envelope. The gravitational energy released in the process heats up the material surrounding the protostar, creating warm regions enriched by interstellar complex organic molecules (iCOMs, at least 6 atoms) called hot-corinos. On the other hand, the presence of angular momentum and magnetic fields leads to two consequences: (i) the formation of circumstellar disks; and (ii) substantial episodes of matter ejection, as e.g. collimated jets. Thanks to the combination of the high-sensitivities and high-angular resolu- tions provided by the advent of new telescopes such as ALMA and NOEMA, it is now possible to image in details the earliest stages of the Sun-like star formation, thus inspecting the inner ( < 50 AU from the protostar) jet. at these spatial scales a proper study of jets has to take into account also the effects connected with the accreting disk. In other words, it is time to study the protostellar jet-disk system as a whole. Several still unanswered questions can be addressed. What is the origin of the chemically enriched hot corinos: are they jet-driven shocked regions? What is the origin of the ejections: are they due to disk or stellar winds? Shocks are precious tool to attack these questions, given they enrich the gas phase with the species deposited onto the dust mantles and/or locked in the refractory dust cores. Basically, we have to deal with two kind of shocks: (i) high-velocity shocks produced by protostellar jets, and (ii) slow accretion shocks located close to the centrifugal barrier of the accretion disks. Both shocks are factories of iCOMs, which can be then efficiently used to follow both the kinematics and the chemistry of the inner protostellar systems. With this in mind, we will discuss recent results obtained in the framework of different observational campaigns at mm and sub-mm wavelengths.
First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength
Lee, Chin-Fei; Li, Zhi-Yun; Ho, Paul T. P.; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien
2017-01-01
In the earliest (so-called “Class 0”) phase of Sun-like (low-mass) star formation, circumstellar disks are expected to form, feeding the protostars. However, these disks are difficult to resolve spatially because of their small sizes. Moreover, there are theoretical difficulties in producing these disks in the earliest phase because of the retarding effects of magnetic fields on the rotating, collapsing material (so-called “magnetic braking”). With the Atacama Large Millimeter/submillimeter Array (ALMA), it becomes possible to uncover these disks and study them in detail. HH 212 is a very young protostellar system. With ALMA, we not only detect but also spatially resolve its disk in dust emission at submillimeter wavelength. The disk is nearly edge-on and has a radius of ~60 astronomical unit. It shows a prominent equatorial dark lane sandwiched between two brighter features due to relatively low temperature and high optical depth near the disk midplane. For the first time, this dark lane is seen at submillimeter wavelength, producing a “hamburger”-shaped appearance that is reminiscent of the scattered-light image of an edge-on disk in optical and near infrared light. Our observations open up an exciting possibility of directly detecting and characterizing small disks around the youngest protostars through high-resolution imaging with ALMA, which provides strong constraints on theories of disk formation. PMID:28439561
VLTI + MIDI Study of the High Mass Protostellar Candidate NGC 3603 IRS 9A
NASA Astrophysics Data System (ADS)
Nürnberger, D. E. A.; Vehoff, S.; Hummel, C. A.; Duschl, W. J.
2010-02-01
The formation and early evolution of high mass stars is among the hottest topics in astrophysics. Interferometric studies of these young stars and their circumstellar environments (envelopes, disks and jets) at near and mid infrared wavelengths are still rare and in terms of data analysis/interpretation very challenging. We here report on observations of the high mass protostellar candidate NGC 3603 IRS 9A which we undertook with VLTI + MIDI in 2005, complemented by near and mid infrared imaging and spectroscopic data. We discuss our results obtained from dedicated modeling efforts, employing both DUSTY and MC3D radiative transfer codes for a selected number of source geometries and surface brightness distributions.
The circumstellar disk response to the motion of the host star
NASA Astrophysics Data System (ADS)
Regály, Zs.; Vorobyov, E.
2017-05-01
Context. Grid-based hydrodynamics simulations of circumstellar disks are often performed in the curvilinear coordinate system, in which the center of the computational domain coincides with the motionless star. However, the center of mass may be shifted from the star due to the presence of any non-axisymmetric mass distribution. As a result, the system exerts a non-zero gravity force on the star, causing the star to move in response, which can in turn affect the evolution of the circumstellar disk. Aims: We aim at studying the effects of stellar motion on the evolution of protostellar and protoplanetary disks. In protostellar disks, a non-axisymmetric distribution of matter in the form of spiral arms and/or massive clumps can form due to gravitational instability. Protoplanetary disks can also feature non-axisymmetric structures caused by an embedded high-mass planet or a large-scale vortex formed at viscosity transitions. Methods: We use 2D grid-based numerical hydrodynamic simulations to explore the effect of stellar motion. We adopt a non-inertial polar coordinate system centered on the star, in which the stellar motion is taken into account by calculating the indirect potential caused by the non-axisymmetric disk, a high-mass planet, or a large-scale vortex. We compare the results of numerical simulations with and without stellar motion. Results: We found that the stellar motion has a moderate effect on the evolution history and the mass accretion rate in protostellar disks, reducing somewhat the disk size and mass, while having a profound effect on the collapsing envelope, changing its inner shape from an initially axisymmetric to a non-axisymmetric configuration. Protoplanetary disk simulations show that the stellar motion slightly reduces the width of the gap opened by a high-mass planet, decreases the planet migration rate, and strengthens the large-scale vortices formed at the viscosity transition. Conclusions: We conclude that the inclusion of the indirect potential is recommended in grid-based hydrodynamics simulations of circumstellar disks which use the curvilinear coordinate system.
Super-Earths as Failed Cores in Orbital Migration Traps
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro
2016-11-01
I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores’ inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1 au. Planets at this location exceeding about 3 M ⊕ open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4 M ⊕, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M ⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.
On the apparent positions of T Tauri stars in the H-R diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenyon, S.J.; Hartmann, L.W.
1990-01-01
The spread in apparent luminosities of T Tauri stars caused by occultation and emission from protostellar disks is investigated. A random distribution of disk inclination angles, coupled with a plausible range of accretion rates, introduces a significant scatter in apparent luminosities for intrinsically identical stars. The observed dispersion of luminosities for K7-M1 Hayashi track stars thought to have disks in Taurus-Auriga is similar to predictions of the simple accretion disk model, which suggets that age determinations form many pre-main-sequence stars are uncertain. The results also suggest that Stahler's birthline for convective track pre-main-sequence stars may be located at slightly lowermore » luminosities than previously thought. 38 refs.« less
WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lile; Goodman, Jeremy J.
Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionlessmore » ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.« less
Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?
NASA Astrophysics Data System (ADS)
Sevrinsky, Raymond Andrew; Dunham, Michael
2017-01-01
In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
Investigating FP Tau’s protoplanetary disk structure through modeling
NASA Astrophysics Data System (ADS)
Brinjikji, Marah; Espaillat, Catherine
2017-01-01
This project presents a study aiming to understand the structure of the protoplanetary disk around FP Tau, a very young, very low mass star in the Taurus star-forming region. We have gathered existing optical, Spitzer, Herschel and submillimeter observations to construct the spectral energy distribution (SED) of FP Tau. We have used the D’Alessio et al (2006) physically self-consistent irradiated accretion disk model including dust settling to model the disk of FP Tau. Using this method, the best fit for the SED of FP Tau is a model that includes a gap located 10-20 AU away from the star. This gap is filled with optically thin dust that separates the optically thick dust in the outer disk from the optically thick dust in the inner disk. These characteristics indicate that FP Tau’s protostellar system is best classified as a pre-transitional disk. Near-infrared interferometry in the K-Band from Willson et al 2016 indicates that FP Tau has a small gap located 10-20 AU from the star, which is consistent with the model we produced, lending further support to the pre-transitional disk interpretation. The most likely explanation for the existence of a gap in the disk is a forming planet.
The high-mass star-forming core G35.2N: what have we learnt from SOFIA and ALMA observations?
NASA Astrophysics Data System (ADS)
Zinnecker, Hans; Sandell, Goeran
2014-07-01
G35.2N is a luminouos, star forming core in a filamentary cloud at a distance of 2.2 kpc. It is associated with a thermal N-S radio jet and a misaligned NE-SW CO outflow observed both with SOFIA FORCAST (30 and 40 microns, ~4" resolution; Zhang, Tan, de Buizer et al. 2013) and with ALMA band 7 (850 micron line and continuum, 0.4" resolution; Sanchez-Monge, Cesaroni, Beltran et al. 2013, 2014). The ALMA observations revealed a NW-SE Keplerian rotating disk in the CH3CN molecule (Sanchez-Monge et al.) with an enclosed protostellar mass of 18 +/- 3 Mo, whose orientation is inconsistent with the N-S radio jet, and whose protostellar mass is marginally inconsistent with the one inferred from the SED modelling (20-34 Mo, L ~ 10(5) Lo; Zhang et al.) We review the various assumptions involved in the derivation of the disk interpretation and the SED modelling. The dynamical mass could be in the form of a close binary (two 9 Mo stars, say) in which case the predicted total luminosity would be 3 x 10(4) Lo, close to the actually observed one (as opposed to the modelled one, which takes into account the flashlight effect and unmeasured radiation that escapes along a bipolar cavity). One the other hand, if the inferred higher-luminosity model is correct, the disk interpretation of ALMA rotation curve may have to be challenged, and what seems like a nice disk might be a more complex dynamical structure, such as a warped or precessing disk around a binary protostar or a different (outflow-related) velocity-structure altogether. These observations show the complexity of the interpretation of multi-wavelength observations of high-mass star forming regions when viewed with different spatial resolutions.
Dead Zone Accretion Flows in Protostellar Disks
NASA Technical Reports Server (NTRS)
Turner, Neal; Sano, T.
2008-01-01
Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.
CCS Observations of the Protostellar Envelope of B335
NASA Technical Reports Server (NTRS)
Velusamy, T.; Kuiper, T. B. H.; Langer, W. D.
1995-01-01
Knowledge of the density, velocity and chemical profiles around protostars is of fundamental importance for testing dynamical models of protostar evolution and understanding the nature of the material falling onto circumstellar disks. Presented are single dish and interferometric spectral line observations of CCS towards the core of B335, a classic example of a young, low mass stellar object.
NASA Astrophysics Data System (ADS)
Murillo, N. M.; van Dishoeck, E. F.; Tobin, J. J.; Fedele, D.
2016-07-01
Context. Multiplicity is common in field stars and among protostellar systems. Models suggest two paths of formation: turbulent fragmentation and protostellar disk fragmentation. Aims: We attempt to find whether or not the coevality frequency of multiple protostellar systems can help to better understand their formation mechanism. The coevality frequency is determined by constraining the relative evolutionary stages of the components in a multiple system. Methods: Spectral energy distributions (SEDs) for known multiple protostars in Perseus were constructed from literature data. Herschel PACS photometric maps were used to sample the peak of the SED for systems with separations ≥7″, a crucial aspect in determining the evolutionary stage of a protostellar system. Inclination effects and the surrounding envelope and outflows were considered to decouple source geometry from evolution. This together with the shape and derived properties from the SED was used to determine each system's coevality as accurately as possible. SED models were used to examine the frequency of non-coevality that is due to geometry. Results: We find a non-coevality frequency of 33 ± 10% from the comparison of SED shapes of resolved multiple systems. Other source parameters suggest a somewhat lower frequency of non-coevality. The frequency of apparent non-coevality that is due to random inclination angle pairings of model SEDs is 17 ± 0.5%. Observations of the outflow of resolved multiple systems do not suggest significant misalignments within multiple systems. Effects of unresolved multiples on the SED shape are also investigated. Conclusions: We find that one-third of the multiple protostellar systems sampled here are non-coeval, which is more than expected from random geometric orientations. The other two-thirds are found to be coeval. Higher order multiples show a tendency to be non-coeval. The frequency of non-coevality found here is most likely due to formation and enhanced by dynamical evolution.
The Space Infrared Interferometric Telescope (SPIRIT): Mission Study Results
2006-01-01
how planetary systems form it is essential to obtain spatially-resolved far-IR observations of protostars and protoplanetary disks . At the distance...accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their chemical...organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets
IRAS 16293-2422: Evidence for Infall onto a Counter-Rotating Protostellar Accretion Disk
NASA Technical Reports Server (NTRS)
Remijan, Anthony J.; Hollis, J. M.
2005-01-01
We report high spatial resolution VLA observations of the low-mass star-forming region IRAS 16293-2422 using four molecular probes: ethyl cyanide (CH3CH2CN)) methyl formate (CH3OCHO), formic acid (HCOOH), and the ground vibrational state of silicon monoxide (SiO). Ethyl cyanide emission has a spatial scale of approx. 20" and encompasses binary cores A and B as determined by continuum emission peaks. Surrounded by formic acid emission, methyl formate emission has a spatial scale of approx. 6" and is confined to core B. SiO emission shows two velocity components with spatial scales less than 2" that map approx. 2" northeast of the A and B symmetry axis. The redshifted SiO is approx. 2" northwest of blueshifted SiO along a position angle of approx. 135deg which is approximately parallel to the A and B symmetry axis. We interpret the spatial position offset in red and blueshifted SiO emission as due to rotation of a protostellar accretion disk and we derive approx. 1.4 Solar Mass, interior to the SiO emission. In the same vicinity, Mundy et al. (1986) also concluded rotation of a nearly edge-on disk from OVRO observations of much stronger and ubiquitous CO-13 emission but the direction of rotation is opposite to the SiO emission findings. Taken together, SiO and CO-13 data suggest evidence for a counter-rotating disk. Moreover, archival BIMA array CO-12C data show an inverse P Cygni profile with the strongest absorption in close proximity to the SiO emission, indicating unambiguous material infall toward the counter-rotating protostellar disk at a new source location within the IRAS 16293-2422 complex. The details of these observations and our interpretations are discussed.
Generation of a dynamo magnetic field in a protoplanetary accretion disk
NASA Technical Reports Server (NTRS)
Stepinski, T.; Levy, E. H.
1987-01-01
A new computational technique is developed that allows realistic calculations of dynamo magnetic field generation in disk geometries corresponding to protoplanetary and protostellar accretion disks. The approach is of sufficient generality to allow, in the future, a wide class of accretion disk problems to be solved. Here, basic modes of a disk dynamo are calculated. Spatially localized oscillatory states are found to occur in Keplerain disks. A physical interpretation is given that argues that spatially localized fields of the type found in these calculations constitute the basic modes of a Keplerian disk dynamo.
NASA Astrophysics Data System (ADS)
Robson Monteiro Rocha, Will; Pilling, Sergio
2016-07-01
The astrophysical ices survival is directly related with the temperature and ionizing radiation field in protostellars environments such as disks and envelopes. Computational models has shown that pure volatile molecules like CO and CH _{4} should survive only inside densest regions of molecular clouds or protoplanetary disks On the other hand, solid molecules such as H _{2}O and CH _{3}OH can be placed around 5 - 10 AU from the central protostar. Unlike of the previous models, we investigate the role of the UV external radiation field on the presence of ices in disks and envelopes. Once that a star-forming region is composed by the formation of many protostars, the external radiation field should be an important component to understand the real localization of the ices along the sight line. To address this topic it was employed the radiative transfer code RADMC-3D based on the Monte Carlo method. The code was used to model the spectrum and the near-infrared image of Elias 29. The initial parameters of the disk and envelope was taken from our previous paper (Rocha & Pilling (2015), ApJ 803:18). The opacities of the ices were calculated from the complex refractive index obtained at laboratory experiments perfomed at Grand Accélerateur National d'Íons Lourds (GANIL), by using the NKABS code from Rocha & Pilling (2014), SAA 123:436. The partial conclusions that we have obtained shows that pure CO volatile molecule cannot be placed at disk or envelope of Elias 29, unlike shown in our paper about Elias 29. Once it was observed in Elias 29 spectrum obtained with Infrared Space Observatory (ISO) between 2.5 - 190 μm, this molecule should be placed in foreground molecular clouds or trapped in the water ice matrix. The next calculations will be able to show where are placed the ices such as CH _{3}OH and CH _{3}CHO observed in Elias 29 spectrum.
NASA Astrophysics Data System (ADS)
Landry, Russell; Dodson-Robinson, Sarah E.; Turner, Neal J.; Abram, Greg
2013-07-01
Magnetorotational instability (MRI) is the most promising mechanism behind accretion in low-mass protostellar disks. Here we present the first analysis of the global structure and evolution of non-ideal MRI-driven T-Tauri disks on million-year timescales. We accomplish this in a 1+1D simulation by calculating magnetic diffusivities and utilizing turbulence activity criteria to determine thermal structure and accretion rate without resorting to a three-dimensional magnetohydrodynamical (MHD) simulation. Our major findings are as follows. First, even for modest surface densities of just a few times the minimum-mass solar nebula, the dead zone encompasses the giant planet-forming region, preserving any compositional gradients. Second, the surface density of the active layer is nearly constant in time at roughly 10 g cm-2, which we use to derive a simple prescription for viscous heating in MRI-active disks for those who wish to avoid detailed MHD computations. Furthermore, unlike a standard disk with constant-α viscosity, the disk midplane does not cool off over time, though the surface cools as the star evolves along the Hayashi track. Instead, the MRI may pile material in the dead zone, causing it to heat up over time. The ice line is firmly in the terrestrial planet-forming region throughout disk evolution and can move either inward or outward with time, depending on whether pileups form near the star. Finally, steady-state mass transport is an extremely poor description of flow through an MRI-active disk, as we see both the turnaround in the accretion flow required by conservation of angular momentum and peaks in \\dot{M}(R) bracketing each side of the dead zone. We caution that MRI activity is sensitive to many parameters, including stellar X-ray flux, grain size, gas/small grain mass ratio and magnetic field strength, and we have not performed an exhaustive parameter study here. Our 1+1D model also does not include azimuthal information, which prevents us from modeling the effects of Rossby waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, Russell; Dodson-Robinson, Sarah E.; Turner, Neal J.
2013-07-10
Magnetorotational instability (MRI) is the most promising mechanism behind accretion in low-mass protostellar disks. Here we present the first analysis of the global structure and evolution of non-ideal MRI-driven T-Tauri disks on million-year timescales. We accomplish this in a 1+1D simulation by calculating magnetic diffusivities and utilizing turbulence activity criteria to determine thermal structure and accretion rate without resorting to a three-dimensional magnetohydrodynamical (MHD) simulation. Our major findings are as follows. First, even for modest surface densities of just a few times the minimum-mass solar nebula, the dead zone encompasses the giant planet-forming region, preserving any compositional gradients. Second, themore » surface density of the active layer is nearly constant in time at roughly 10 g cm{sup -2}, which we use to derive a simple prescription for viscous heating in MRI-active disks for those who wish to avoid detailed MHD computations. Furthermore, unlike a standard disk with constant-{alpha} viscosity, the disk midplane does not cool off over time, though the surface cools as the star evolves along the Hayashi track. Instead, the MRI may pile material in the dead zone, causing it to heat up over time. The ice line is firmly in the terrestrial planet-forming region throughout disk evolution and can move either inward or outward with time, depending on whether pileups form near the star. Finally, steady-state mass transport is an extremely poor description of flow through an MRI-active disk, as we see both the turnaround in the accretion flow required by conservation of angular momentum and peaks in M-dot (R) bracketing each side of the dead zone. We caution that MRI activity is sensitive to many parameters, including stellar X-ray flux, grain size, gas/small grain mass ratio and magnetic field strength, and we have not performed an exhaustive parameter study here. Our 1+1D model also does not include azimuthal information, which prevents us from modeling the effects of Rossby waves.« less
The early evolution of protostellar disks
NASA Technical Reports Server (NTRS)
Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad
1994-01-01
We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).
NASA Astrophysics Data System (ADS)
Nagasawa, M.; Lin, D. N. C.; Ida, S.
2003-04-01
Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.
NASA Astrophysics Data System (ADS)
Ida, Shigeru; Lin, D. N. C.
2004-11-01
The apparent dependence of detection frequency of extrasolar planets on the metallicity of their host stars is investigated with Monte Carlo simulations using a deterministic core-accretion planet formation model. According to this model, gas giants formed and acquired their mass Mp through planetesimal coagulation followed by the emergence of cores onto which gas is accreted. These protoplanets migrate and attain their asymptotic semimajor axis a through tidal interaction with their nascent disk. Based on the observed properties of protostellar disks, we generate an Mp-a distribution. Our results reproduce the observed lack of planets with intermediate mass Mp=10-100 M⊕ and a<~3 AU and with large mass Mp>~103 M⊕ and a<~0.2 AU. Based on the simulated Mp-a distributions, we also evaluate the metallicity dependence of the fraction of stars harboring planets that are detectable with current radial velocity surveys. If protostellar disks attain the same fraction of heavy elements as contained in their host stars, the detection probability around metal-rich stars would be greatly enhanced because protoplanetary cores formed in them can grow to several Earth masses prior to their depletion. These large masses are required for the cores to initiate rapid gas accretion and to transform into giant planets. The theoretically extrapolated metallicity dependence is consistent with the observations. This correlation does not arise naturally in the gravitational-instability scenario. We also suggest other metallicity dependences of the planet distributions that can be tested by ongoing observations.
Selected Papers on Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Bell, K. R.; Cassen, P. M.; Wasson, J. T.; Woolum, D. S.; Klahr, H. H.; Henning, Th.
2004-01-01
Three papers present studies of thermal balances, dynamics, and electromagnetic spectra of protoplanetary disks, which comprise gas and dust orbiting young stars. One paper addresses the reprocessing, in a disk, of photons that originate in the disk itself in addition to photons that originate in the stellar object at the center. The shape of the disk is found to strongly affect the redistribution of energy. Another of the three papers reviews an increase in the optical luminosity of the young star FU Orionis. The increase began in the year 1936 and similar increases have since been observed in other stars. The paper summarizes astronomical, meteoric, and theoretical evidence that these increases are caused by increases in mass fluxes through the inner portions of the protoplanetary disks of these stars. The remaining paper presents a mathematical-modeling study of the structures of protostellar accretion disks, with emphasis on limits on disk flaring. Among the conclusions reached in the study are that (1) the radius at which a disk becomes shadowed from its central stellar object depends on radial mass flow and (2) most planet formation has occurred in environments unheated by stellar radiation.
The nature of very low luminosity objects (VeLLOs)
NASA Astrophysics Data System (ADS)
Vorobyov, Eduard I.; Elbakyan, Vardan; Dunham, Michael M.; Guedel, Manuel
2017-04-01
Aims: The nature of very low luminosity objects (VeLLOs) with the internal luminosity Lobj ≤ 0.1 L⊙ is investigated by means of numerical modeling coupling the core collapse simulations with the stellar evolution calculations. Methods: The gravitational collapse of a large sample of model cores in the mass range 0.1-2.0 M⊙ is investigated. Numerical simulations were started at the pre-stellar phase and terminated at the end of the embedded phase when 90% of the initial core mass had been accreted onto the forming protostar plus disk system. The disk formation and evolution was studied using numerical hydrodynamics simulations, while the formation and evolution of the central star was calculated using a stellar evolution code. Three scenarios for mass accretion from the disk onto the star were considered: hybrid accretion in which a fraction of accreted energy absorbed by the protostar depends on the accretion rate, hot accretion wherein a fraction of accreted energy is constant, and cold accretion wherein all accretion energy is radiated away. Results: Our conclusions on the nature of VeLLOs depend crucially on the character of protostellar accretion. In the hybrid accretion scenario, most VeLLOs (90.6%) are expected to be the first hydrostatic cores (FHSCs) and only a small fraction (9.4%) are true protostars. In the hot accretion scenario, all VeLLOs are FHSCs due to overly high photospheric luminosity of protostars. In the cold accretion scenario, on the contrary, the majority of VeLLOs belong to the Class I phase of stellar evolution. The reason is that the stellar photospheric luminosity, which sets the floor for the total internal luminosity of a young star, is lower in cold accretion, thus enabling more VeLLOs in the protostellar stage. VeLLOs are relatively rare objects occupying 7%-11% of the total duration of the embedded phase and their masses do not exceed 0.3 M⊙. When compared with published observations inferring a fraction of VeLLOs in the protostellar stage of 6.25%, we find that cold accretion provides a much better fit to observations than hybrid accretion (5.7% for cold accretion vs. 0.7% for hybrid accretion). Both accretion scenarios predict more VeLLOs in the Class I phase than in the Class 0 phase, in contrast to observations. Finally, when accretion variability with episodic bursts is artificially filtered out from our numerically derived accretion rates, the fraction of VeLLOs in the protostellar stage drops significantly, suggesting a causal link between the two phenomena.
MRI and Related Astrophysical Instabilities in the Lab
NASA Astrophysics Data System (ADS)
Goodman, Jeremy
2018-06-01
The dynamics of accretion in astronomical disks is only partly understood. Magnetorotational instability (MRI) is surely important but has been studied largely through linear analysis and numerical simulations rather than experiments. Also, it is unclear whether MRI is effective in protostellar disks, which are likely poor electrical conductors. Shear-driven hydrodynamic turbulence is very familiar in terrestrial flows, but simulations indicate that it is inhibited in disks. I summarize experimental progress and challenges relevant to both types of instability.
The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293-2422
NASA Astrophysics Data System (ADS)
Jacobsen, S. K.; Jørgensen, J. K.; van der Wiel, M. H. D.; Calcutt, H.; Bourke, T. L.; Brinch, C.; Coutens, A.; Drozdovskaya, M. N.; Kristensen, L. E.; Müller, H. S. P.; Wampfler, S. F.
2018-04-01
Context. The Class 0 protostellar binary IRAS 16293-2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims: The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods: We present 13CO, C17O and C18O J = 3-2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293-2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results: Radiative transfer modeling in our sampled parameter space suggests that, while the disk around source A could not be constrained, the disk around source B has to be vertically extended. This puffed-up structure can be obtained with both a protoplanetary disk model with an unexpectedly high scale-height and with the density solution from an infalling, rotating collapse. Combined constraints on our 3D model, from observed dust continuum and CO isotopologue emission between the sources, corroborate that source A should be at least six times more luminous than source B. We also demonstrate that the volume of high-temperature regions where complex organic molecules arise is sensitive to whether or not the total luminosity is in a single radiation source or distributed into two sources, affecting the interpretation of earlier chemical modeling efforts of the IRAS 16293-2422 hot corino which used a single-source approximation. Conclusions: Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplanetary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source A to be much more luminous than source B; LA 18 L⊙ and LB 3 L⊙.
Change in the chemical composition of infalling gas forming a disk around a protostar.
Sakai, Nami; Sakai, Takeshi; Hirota, Tomoya; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Kahane, Claudine; Bottinelli, Sandrine; Caux, Emmanuel; Demyk, Karine; Vastel, Charlotte; Coutens, Audrey; Taquet, Vianney; Ohashi, Nagayoshi; Takakuwa, Shigehisa; Yen, Hsi-Wei; Aikawa, Yuri; Yamamoto, Satoshi
2014-03-06
IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.
NASA Astrophysics Data System (ADS)
Maury, A. J.; Belloche, A.; André, Ph.; Maret, S.; Gueth, F.; Codella, C.; Cabrit, S.; Testi, L.; Bontemps, S.
2014-03-01
Aims: We investigate the origin of complex organic molecules (COMs) in the gas phase around the low-mass Class 0 protostar NGC 1333-IRAS2A, to determine if the COM emission lines trace an embedded disk, shocks from the protostellar jet, or the warm inner parts of the protostellar envelope. Methods: In the framework of the CALYPSO IRAM Plateau de Bure survey, we obtained large bandwidth spectra at sub-arcsecond resolution towards NGC 1333-IRAS2A. We identify the emission lines towards the central protostar and perform Gaussian fits to constrain the size of the emitting region for each of these lines, tracing various physical conditions and scales. Results: The emission of numerous COMs such as methanol, ethylene glycol, and methyl formate is spatially resolved by our observations. This allows us to measure, for the first time, the size of the COM emission inside the protostellar envelope, finding that it originates from a region of radius 40-100 AU, centered on the NGC 1333-IRAS2A protostellar object. Our analysis shows no preferential elongation of the COM emission along the jet axis, and therefore does not support the hypothesis that COM emission arises from shocked envelope material at the base of the jet. Down to similar sizes, the dust continuum emission is well reproduced with a single power-law envelope model, and therefore does not favor the hypothesis that COM emission arises from the thermal sublimation of grains embedded in a circumstellar disk. Finally, the typical scale ~60 AU observed for COM emission is consistent with the size of the inner envelope where Tdust > 100 K is expected. Our data therefore strongly suggest that the COM emission traces the hot corino in IRAS2A, i.e., the warm inner envelope material where the icy mantles of dust grains evaporate because they are passively heated by the central protostellar object. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).CALYPSO stands for Continuum And Lines in Young ProtoStellar Objects.Appendix A, Tables 1, 2, and Figs. 3, 4 are available in electronic form at http://www.aanda.orgThe integrated emission maps shown in Fig. 3 are available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/L2
EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armitage, Philip J., E-mail: pja@jilau1.colorado.edu
EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because ofmore » the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.« less
The structure of protostellar accretion disks and the origin of bipolar flows
NASA Technical Reports Server (NTRS)
Wardle, Mark; Koenigl, Arieh
1993-01-01
Equations are obtained which govern the disk-wind structure and identify the physical parameters relevant to circumstellar disks. The system of equations is analyzed in the thin-disk approximation, and it is shown that the system can be consistently reduced to a set of ordinary differential equations in z. Representative solutions are presented, and it is shown that the apparent paradox discussed by Shu (1991) is resolved when the finite thickness of the disk is taken into account. Implications of the results for the origin of bipolar flows in young stellar objects and possible application to active galactic nuclei are discussed.
Interaction between a pulsating jet and a surrounding disk wind. A hydrodynamical perspective
NASA Astrophysics Data System (ADS)
Tabone, B.; Raga, A.; Cabrit, S.; Pineau des Forêts, G.
2018-06-01
Context. The molecular richness of fast protostellar jets within 20-100 au of their source, despite strong ultraviolet irradiation, remains a challenge for the models investigated so far. Aim.We aim to investigate the effect of interaction between a time-variable jet and a surrounding steady disk wind, to assess the possibility of jet chemical enrichement by the wind, and the characteristic signatures of such a configuration. Methods: We have constructed an analytic model of a jet bow shock driven into a surrounding slower disk wind in the thin shell approximation. The refilling of the post bow shock cavity from below by the disk wind is also studied. An extension of the model to the case of two or more successive internal working surfaces (IWS) is made. We then compared this analytic model with numerical simulations with and without a surrounding disk wind. Results: We find that at early times (of order the variability period), jet bow shocks travel in refilled pristine disk wind material, before interacting with the cocoon of older bow shocks. This opens the possibility of bow shock chemical enrichment (if the disk wind is molecular and dusty) and of probing the unperturbed disk wind structure near the jet base. Several distinctive signatures of the presence of a surrounding disk wind are identified, in the bow shock morphology and kinematics. Numerical simulations validate our analytical approach and further show that at large scale, the passage of many jet IWS inside a disk wind produces a stationary V-shaped cavity, closing down onto the axis at a finite distance from the source.
The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Buizer, James M.; Shuping, Ralph; Liu, Mengyao
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μ m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in themore » survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m {sub *} ∼ 10–50 M {sub ⊙} accreting at ∼10{sup −4}–10{sup −3} M {sub ⊙} yr{sup −1} inside cores of initial masses M {sub c} ∼ 30–500 M {sub ⊙} embedded in clumps with mass surface densities Σ{sub cl} ∼ 0.1–3 g cm{sup −2}. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.« less
Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud
NASA Astrophysics Data System (ADS)
Sheehan, Patrick D.; Eisner, Josh A.
2017-12-01
Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.
Chemistry of Protostellar Envelopes and Disks
NASA Astrophysics Data System (ADS)
Flores Rivera, Lizxandra; Terebey, Susan; Willacy, Karen
2018-06-01
Molecule formation is dynamic during the protostar collapse phase, driven by changes in temperature, density, and UV radiation as gas and dust flows from the envelope onto the forming protoplanetary disk. In this work, we compare physical models based on two different collapse solutions. We modeled the chemistry (created by Karen Willacy) for C18O to see how its abundance changes over time using as primary input parameters the temperature and density profile that were produced by the dust Radiative Transfer (MCRT) model called HOCHUNK3D from Whitney (2003). Given this model, we produce synthetic line emission maps from L1527 IRS to simulate the Class 0/I protostar L1527 IRS using RADMC3D code and compare them with previous observations from ALMA. High concentrations of gas phase molecules of C18O are found within the 20 AU in areas in the envelope that are close to the surface of the disk. In the outermost part of the disk surface, the C18O freezes out beyond 400 AU, showing a much reduced abundance where the temperature profile drops down below 25 K. In cold regions, the radiation field plays an important role in the chemistry.
NASA Astrophysics Data System (ADS)
Johnstone, Doug; Herczeg, Gregory J.; Mairs, Steve; Hatchell, Jennifer; Bower, Geoffrey C.; Kirk, Helen; Lane, James; Bell, Graham S.; Graves, Sarah; Aikawa, Yuri; Chen, Huei-Ru Vivien; Chen, Wen-Ping; Kang, Miju; Kang, Sung-Ju; Lee, Jeong-Eun; Morata, Oscar; Pon, Andy; Scicluna, Peter; Scholz, Aleks; Takahashi, Satoko; Yoo, Hyunju; The JCMT Transient Team
2018-02-01
We analyze results from the first 18 months of monthly submillimeter monitoring of eight star-forming regions in the JCMT Transient Survey. In our search for stochastic variability in 1643 bright peaks, only the previously identified source, EC 53, shows behavior well above the expected measurement uncertainty. Another four sources—two disks and two protostars—show moderately enhanced standard deviations in brightness, as expected for stochastic variables. For the two protostars, this apparent variability is the result of single epochs that are much brighter than the mean. In our search for secular brightness variations that are linear in time, we measure the fractional brightness change per year for 150 bright peaks, 50 of which are protostellar. The ensemble distribution of slopes is well fit by a normal distribution with σ ∼ 0.023. Most sources are not rapidly brightening or fading at submillimeter wavelengths. Comparison against time-randomized realizations shows that the width of the distribution is dominated by the uncertainty in the individual brightness measurements of the sources. A toy model for secular variability reveals that an underlying Gaussian distribution of linear fractional brightness change σ = 0.005 would be unobservable in the present sample, whereas an underlying distribution with σ = 0.02 is ruled out. Five protostellar sources, 10% of the protostellar sample, are found to have robust secular measures deviating from a constant flux. The sensitivity to secular brightness variations will improve significantly with a sample over a longer time duration, with an improvement by factor of two expected by the conclusion of our 36 month survey.
Protostellar collapse in a self-gravitating sheet
NASA Technical Reports Server (NTRS)
Hartmann, Lee; Boss, Alan; Calvet, Nuria; Whitney, Barbara
1994-01-01
We present preliminary calculations of protostellar cloud collapse starting from an isothermal, self-gravitating gaseous layer in hydrostatic equilibrium. This gravitationally unstable layer collapses into a flattened or toroidal density distribution, even in the absence of rotation or magnetic fields. We suggest that the flat infalling envelope recently observed in HL Tau by Hayashi et al.is the result of collapse from an initially nonspherical layer. We also speculate that the later evolution of such a flattened, collapsing envelope can produce a structure similar to the 'flared disk' invoked by Kenyon and Hartmann to explain the infrared excesses of many T Tauri stars.
Revealing H2D+ Depletion and Compact Structure in Starless and Protostellar Cores with ALMA
NASA Astrophysics Data System (ADS)
Friesen, R. K.; Di Francesco, J.; Bourke, T. L.; Caselli, P.; Jørgensen, J. K.; Pineda, J. E.; Wong, M.
2014-12-01
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 110-111 emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M <~ 0.02 M ⊙ (~20 M Jup). The SM1 condensation is consistent with a nearly symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates that these sources are unlikely to fragment, suggesting that both will form single stars. H2D+ is only detected toward SM1N, offset from the continuum peak by ~150-200 AU. This offset may be due to either heating from an undetected, young, low-luminosity protostellar source or first hydrostatic core, or HD (and consequently H2D+) depletion in the cold center of the condensation. We propose that SM1 is protostellar and that the condensation detected by ALMA is a warm (T ~ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data observationally reveal the earliest stages of the formation of circumstellar accretion regions and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.
Turbulent Collapse of Gravitationally Bound Clouds
NASA Astrophysics Data System (ADS)
Murray, Daniel W.
In this dissertation, I explore the time-variable rate of star formation, using both numerical and analytic techniques. I discuss the dynamics of collapsing regions, the effect of protostellar jets, and development of software for use in the hydrodynamic code RAMSES. I perform high-resolution adaptive mesh refinement simulations of star formation in self-gravitating turbulently driven gas. I have run simulations including hydrodynamics (HD), and HD with protostellar jet feedback. Accretion begins when the turbulent fluctuations on largescales, near the driving scale, produce a converging flow. I find that the character of the collapse changes at two radii, the disk radius rd, and the radius r* where the enclosed gas mass exceeds the stellar mass. This is the first numerical work to show that the density evolves to a fixed attractor, rho(r, t) → rho( r), for rd < r < r*; mass flows through this structure onto a sporadically gravitationally unstable disk, and from thence onto the star. The total stellar mass M*(t) (t - t*)2, where (t - t *)2 is the time elapsed since the formation of the first star. This is in agreement with previous numerical and analytic work that suggests a linear rate of star formation. I show that protostellar jets change the normalization of the stellar mass accretion rate, but do not strongly affect the dynamics of star formation in hydrodynamics runs. In particular, M*(t) infinity (1 - f jet)2(t - t*) 2 is the fraction of mass accreted onto the protostar, where fjet is the fraction ejected by the jet. For typical values of fjet 0.1 - 0.3 the accretion rate onto the star can be reduced by a factor of two or three. However, I find that jets have only a small effect (of order 25%) on the accretion rate onto the protostellar disk (the "raw" accretion rate). In other words, jets do not affect the dynamics of the infall, but rather simply eject mass before it reaches the star. Finally, I show that the small scale structure--the radial density, velocity, and mass accretion profiles--are very similar in the jet and no-jet cases.
Evolution of CO lines in time-dependent models of protostellar disk formation
NASA Astrophysics Data System (ADS)
Harsono, D.; Visser, R.; Bruderer, S.; van Dishoeck, E. F.; Kristensen, L. E.
2013-07-01
Context. Star and planet formation theories predict an evolution in the density, temperature, and velocity structure as the envelope collapses and forms an accretion disk. While continuum emission can trace the dust evolution, spectrally resolved molecular lines are needed to determine the physical structure and collapse dynamics. Aims: The aim of this work is to model the evolution of the molecular excitation, line profiles, and related observables during low-mass star formation. Specifically, the signatures of disks during the deeply embedded stage (Menv > M⋆) are investigated. Methods: The semi-analytic 2D axisymmetric model of Visser and collaborators has been used to describe the evolution of the density, stellar mass, and luminosity from the pre-stellar to the T-Tauri phase. A full radiative transfer calculation is carried out to accurately determine the time-dependent dust temperatures. The time-dependent CO abundance is obtained from the adsorption and thermal desorption chemistry. Non-LTE near-IR (NIR), far-IR (FIR), and submm lines of CO have been simulated at a number of time steps. Results: In single dish (10-20'' beams), the dynamics during the collapse are best probed through highly excited 13CO and C18O lines, which are significantly broadened by the infall process. In contrast to the dust temperature, the CO excitation temperature derived from submm/FIR data does not vary during the protostellar evolution, consistent with C18O observations obtained with Herschel and from ground-based telescopes. The NIR spectra provide complementary information to the submm lines by probing not only the cold outer envelope but also the warm inner region. The NIR high-J (≥8) absorption lines are particularly sensitive to the physical structure of the inner few AU, which does show evolution. The models indicate that observations of 13CO and C18O low-J submm lines within a ≤1″ (at 140 pc) beam are well suited to probe embedded disks in Stage I (Menv < M⋆) sources, consistent with recent interferometric observations. High signal-to-noise ratio subarcsec resolution data with ALMA are needed to detect the presence of small rotationally supported disks during the Stage 0 phase and various diagnostics are discussed. The combination of spatially and spectrally resolved lines with ALMA and at NIR is a powerful method to probe the inner envelope and disk formation process during the embedded phase. Appendices are available in electronic form at http://www.aanda.org
Disk Masses around Solar-mass Stars are Underestimated by CO Observations
NASA Astrophysics Data System (ADS)
Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.
2017-05-01
Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H2 abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H2 ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low-J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.
Gas Heating, Chemistry and Photoevaporation in Protostellar Disks
NASA Technical Reports Server (NTRS)
Hollenbach, David
2004-01-01
We model the thermal balance, the chemistry, and the radiative transfer in dusty disks orbiting young, low mass stars. These models are motivated by observations of infrared and ultraviolet transitions of H2 from protoplanetary disks, as well as millimeter and submillimeter observations of other molecules such as CO, and infrared continuum observations of the dust. The dust grains are heated primarily by the stellar radiation and the infrared radiation field produced by the dust itself. The gas is heated by collisions with warmer dust grains, X-rays from the region close to the stellar surface, UV pumping of hydrogen molecules, and the grain photoelectric heating mechanism initiated by UV photons from the central star. We treat cases where the gas to dust ratio is high, because the dust has settled to the midplane and coagulated into relatively large objects. We discuss situations in which the infrared emission from H2 can be detected, and how the comparison of the observations with our models can deduce physical parameters such as the mass and the density and temperature distribution of the gas.
Gravitational Instabilities in Circumstellar Disks
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin; Lodato, Giuseppe
2016-09-01
Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular momentum transport rate in thick disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Mo; Evans II, Neal J.; Dodson-Robinson, Sarah E.
Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H{sub 2} abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a functionmore » of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H{sub 2} ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low- J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.« less
NASA Astrophysics Data System (ADS)
Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.
2017-12-01
Turbulence is the leading candidate for angular momentum transport in protoplanetary disks and therefore influences disk lifetimes and planet formation timescales. However, the turbulent properties of protoplanetary disks are poorly constrained observationally. Recent studies have found turbulent speeds smaller than what fully-developed MRI would produce (Flaherty et al.). However, existing studies assumed a constant CO/H2 ratio of 10-4 in locations where CO is not frozen-out or photo-dissociated. Our previous studies of evolving disk chemistry indicate that CO is depleted by incorporation into complex organic molecules well inside the freeze-out radius of CO. We consider the effects of this chemical depletion on measurements of turbulence. Simon et al. suggested that the ratio of the peak line flux to the flux at line center of the CO J = 3-2 transition is a reasonable diagnostic of turbulence, so we focus on that metric, while adding some analysis of the more complex effects on spatial distribution. We simulate the emission lines of CO based on chemical evolution models presented in Yu et al., and find that the peak-to-trough ratio changes as a function of time as CO is destroyed. Specifically, a CO-depleted disk with high turbulent velocity mimics the peak-to-trough ratios of a non-CO-depleted disk with lower turbulent velocity. We suggest that disk observers and modelers take into account the possibility of CO depletion when using line profiles or peak-to-trough ratios to constrain the degree of turbulence in disks. Assuming that {CO}/{{{H}}}2={10}-4 at all disk radii can lead to underestimates of turbulent speeds in the disk by at least 0.2 km s-1.
High-sensitivity survey of a pole-on disk-jet system around high mass YSOs
NASA Astrophysics Data System (ADS)
Motogi, Kazuhito; Walsh, Andrew; Hirota, Tomoya; Niinuma, Kotaro; Sugiyama, Koichiro; Fujisawa, Kenta; Yonekura, Yoshinori; Honma, Mareki; Sorai, Kazuo
2013-10-01
Recent theoretical works have suggested that detailed evolution of a high mass protostellar object highly depends on effective accretion rate and exact accretion geometry. Observational studies of the innermost accretion properties are, thus, an essential task in the ALMA era. High mass protostellar objects with a pole-on disk-jet system are, hence, excellent targets for such a study, since an outflow cavity reduces the total optical depth along the line-of-sight. Our previous studies have shown that some singular water maser sources called dominant blue-shifted masers (DBSMs) are plausible candidates of pole-on disk jet systems. There are, however, still two major problems as follows, (1) Some DBSMs can be a "fake", because of the significant variability of water masers. (2) It is difficult to verify the sources are really in pole-on geometry. The first problems can be checked with the thermal counterparts, and the second problem can be tested by morphologies of the class II CH3OH maser sources. We propose a high-sensitivity survey of real “pole-on” disk-jet systems towards the southern ten DBSMs. This new survey consists of multi-band observations between C/X/K/W bands. We will start from the C/X-continuum survey in this semester. Scientific goals in this semester are, (1) surveying radio jet activities with the C/X continuum emission, (2) estimating the inclination angle of disk-jet systems based on the morphologies of the CH3OH maser spots. (3) determining the exact positions of driving sources.
A Survey of CH3CN and HC3N in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bergner, Jennifer B.; Guzmán, Viviana G.; Öberg, Karin I.; Loomis, Ryan A.; Pegues, Jamila
2018-04-01
The organic content of protoplanetary disks sets the initial compositions of planets and comets, thereby influencing subsequent chemistry that is possible in nascent planetary systems. We present observations of the complex nitrile-bearing species CH3CN and HC3N toward the disks around the T Tauri stars AS 209, IM Lup, LkCa 15, and V4046 Sgr as well as the Herbig Ae stars MWC 480 and HD 163296. HC3N is detected toward all disks except IM Lup, and CH3CN is detected toward V4046 Sgr, MWC 480, and HD 163296. Rotational temperatures derived for disks with multiple detected lines range from 29 to 73 K, indicating emission from the temperate molecular layer of the disk. V4046 Sgr and MWC 480 radial abundance profiles are constrained using a parametric model; the gas-phase CH3CN and HC3N abundances with respect to HCN are a few to tens of percent in the inner 100 au of the disk, signifying a rich nitrile chemistry at planet- and comet-forming disk radii. We find consistent relative abundances of CH3CN, HC3N, and HCN between our disk sample, protostellar envelopes, and solar system comets; this is suggestive of a robust nitrile chemistry with similar outcomes under a wide range of physical conditions.
Wave Excitation in Accretion Disks by Protoplanets
NASA Astrophysics Data System (ADS)
Koller, J.; Li, H.
2002-05-01
The ongoing discoveries of extrasolar planets in the recent years revealed remarkable properties and unexpected results concerning the formation process. We studied the perturbation of a protostellar accretion disk by a companion utilizing APOLLO, a fast hydro disk code well tested in the case of accretion disks without a companion (Li et al. 2001, ApJ, 551, 874). We consider limiting cases where the companion's mass is much smaller than the central protostar and resides in a circular keplerian orbit. The gravitational field of the protoplanet, embedded in a numerically thin disk, generates spiral density waves and Rossby instabilities resulting in a non-axisymmetric density distribution. We present nonlinear hydro simulations to investigate those non-axisymmetric density distribution with different disk and planet parameters in order to understand how disks respond to a fixed companion in orbit. This work has been supported by IGPP at LANL (award # 1109) and NASA (grant # NAG5-9223).
NASA Astrophysics Data System (ADS)
Koerner, D. W.; Ressler, M. E.; Werner, M. W.; Backman, D. E.
1998-08-01
We report the discovery of a circumstellar disk around the young A0 star HR 4796 in thermal infrared imaging carried out at the W. M. Keck Observatory. By fitting a model of the emission from a flat dusty disk to an image at λ=20.8 μm, we derive a disk inclination, i=72deg+6deg-9deg from face-on, with the long axis of emission at P.A. 28deg+/-6deg. The intensity of emission does not decrease with radius, as expected for circumstellar disks, but increases outward from the star, peaking near both ends of the elongated structure. We simulate this appearance by varying the inner radius in our model and find an inner hole in the disk with radius Rin=55+/-15 AU. This value corresponds to the radial distance of our own Kuiper belt and may suggest a source of dust in the collision of cometesimals. By contrast with the appearance at 20.8 μm, excess emission at λ=12.5 μm is faint and concentrated at the stellar position. Similar emission is also detected at 20.8 μm in residual subtraction of the best-fit model from the image. The intensity and ratio of flux densities at the two wavelengths could be accounted for by a tenuous dust component that is confined within a few AU of the star with mean temperature of a few hundred degrees K, similar to that of zodiacal dust in our own solar system. The morphology of dust emission from HR 4796 (age 10 Myr) suggests that its disk is in a transitional planet-forming stage, between that of massive gaseous protostellar disks and more tenuous debris disks such as the one detected around Vega.
Formation of wide binaries by turbulent fragmentation
NASA Astrophysics Data System (ADS)
Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.
2017-08-01
Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.
Signatures of Young Star Formation Activity within Two Parsecs of Sgr A*
NASA Astrophysics Data System (ADS)
Yusef-Zadeh, F.; Wardle, M.; Sewilo, M.; Roberts, D. A.; Smith, I.; Arendt, R.; Cotton, W.; Lacy, J.; Martin, S.; Pound, M. W.; Rickert, M.; Royster, M.
2015-07-01
We present radio and infrared observations indicating ongoing star formation activity inside the ˜2-5 pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of ongoing star formation has taken place near Sgr A* over the last few million years. First, Very Large Array observations with spatial resolution 2.″17 × 0.″81 reveal 13 water masers, several of which have multiple velocity components. The presence of interstellar water masers suggests gas densities that are sufficient for self-gravity to overcome the tidal shear of the 4× {10}6 {M}⊙ black hole. Second, spectral energy distribution modeling of stellar sources indicates massive young stellar object (YSO) candidates interior to the molecular ring, supporting in situ star formation near Sgr A* and appear to show a distribution similar to that of the counter-rotating disks of ˜100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS 5) have bow shock structures, suggesting that they have gaseous disks that are phototoevaporated and photoionized by the strong radiation field. Third, we detect clumps of SiO (2-1) and (5-4) line emission in the ring based on Combined Array for Research in Millimeter-wave Astronomy and Sub-Millimeter Array observations. The FWHM and luminosity of the SiO emission is consistent with shocked protostellar outflows. Fourth, two linear ionized features with an extent of ˜0.8 pc show blue and redshifted velocities between +50 and -40 km s-1, suggesting protostellar jet driven outflows with mass-loss rates of ˜ 5× {10}-5 {M}⊙ yr-1. Finally, we present the imprint of radio dark clouds at 44 GHz, representing a reservoir of molecular gas that feeds star formation activity close to Sgr A*.
Local study of helical magnetorotational instability in viscous Keplerian disks
NASA Astrophysics Data System (ADS)
MahdaviGharavi, M.; Hajisharifi, K.; Mehidan, H.
2018-03-01
In this paper, regarding the recent detection of significant azimuthal magnetic field in some accretion disks such as protostellar (Donati et al. in Nature 438:466, 2005), the multi-fluid model has been employed to analysis the stability of Keplerian rotational viscous dusty plasma system in a current-free helical magnetic field structure. Using the fluid-Maxwell equations, the general dispersion relation of the excited modes in the system has been obtained by applying the local approximation method in the linear perturbation theory. The typical numerical analysis of the obtained dispersion relation in the high-frequency regime shows that the presence of azimuthal magnetic field component in Keplerian flow has a considerable role in the stability conditions of the system. It also shows that the magnetic field helicity has a stabilization role against the magnetorotational instability (MRI) in the system due to contraction of the unstable wavelength region and decreasing the maximum growth rate of the instability. In this sense, the stabilization role of the viscosity term is more considerable for HMRI (instability in the presence of azimuthal magnetic field component) than the corresponding MRI (instability in the absence of azimuthal magnetic field component). Moreover, considering the discovered azimuthal magnetic field in these systems, the MRI can be arisen in the over-all range of dust grains construction values in contract with traditional MRI. This investigation can greatly contribute to better understanding the physics of some astrophysical phenomena, such as the main source of turbulence and angular momentum transport in protostellar and the other sufficiently ionized astrophysical disks, where the azimuthal magnetic field component in these systems can play a significant role.
From Cores to Envelopes to Disks: A Multi-scale View of Magnetized Star Formation
NASA Astrophysics Data System (ADS)
Hull, Charles L. H.
2014-12-01
Observations of polarization in star forming regions have been made across many wavelengths, many size scales, and many stages of stellar evolution. One of the overarching goals of these observations has been to determine the importance of magnetic fields -- which are the cause of the polarization -- in the star formation process. We begin by describing the commissioning and the calibration of the 1.3 mm dual-polarization receiver system we built for CARMA (the Combined Array for Research in Millimeter-wave Astronomy), a radio telescope in the eastern Sierra region of California. One of the primary science drivers behind the polarization system is to observe polarized thermal emission from dust grains in the dense clumps of dust and gas where the youngest, Class 0 protostars are forming. We go on to describe the CARMA TADPOL survey -- the largest high-resolution (~1000 AU scale) survey to date of dust polarization in low-mass protostellar cores -- and discuss our main findings: (1) Magnetic fields (B-fields) on scales of ~1000 AU are not tightly aligned with protostellar outflows. Rather, the data are consistent both with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular) and where they are randomly aligned. (2) Sources with high CARMA polarization fractions have consistent B-field orientations on large scales (~20'', measured using single-dish submillimeter telescopes) and small scales (~2.5'', measured by CARMA). We interpret this to mean that in at least some cases B-fields play a role in regulating the infall of material all the way down to the ~1000 AU scales of protostellar envelopes. Finally, (3) While on the whole outflows appear to be randomly aligned with B-fields, in sources with low polarization fractions there is a hint that outflows are preferentially perpendicular to small-scale B-fields, which suggests that in these sources the fields have been wrapped up by envelope rotation. This work shows that the ~1000 AU protostellar envelope may be a turning point: at larger scales B-fields may still retain the memory of the global B-field drawn in from the ambient medium; but at smaller scales the B-fields may be affected by the dynamics of both envelope and disk rotation. This sets the stage for ALMA (the Atacama Large Millimeter/submillimeter Array), which will soon reveal the morphology of B-fields in circumstellar disks themselves.
Kratter, Kaitlin M.; Matzner, Christopher D.; Krumholz, Mark R.; ...
2009-12-23
We study rapidly accreting, gravitationally unstable disks with a series of idealized global, numerical experiments using the code ORION. Our numerical parameter study focuses on protostellar disks, showing that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the infall rate to the disk sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infallmore » rate and governed by gravitational torques generated by low-m spiral modes. Furthermore, we also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.« less
System Engineering the Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Hyde, Tristram T.; Leisawitz, David T.; Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) was designed to accomplish three scientific objectives: (1) learn how planetary systems form from protostellar disks and how they acquire their inhomogeneous chemical composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. SPIRIT will accomplish these objectives through infrared observations with a two aperture interferometric instrument. This paper gives an overview of SPIRIT design and operation, and how the three design cycle concept study was completed. The error budget for several key performance values allocates tolerances to all contributing factors, and a performance model of the spacecraft plus instrument system demonstrates meeting those allocations with margin.
Properties of Planet-Forming Prostellar Disks
NASA Technical Reports Server (NTRS)
Lindstrom, David (Technical Monitor); Lubow, Stephen
2005-01-01
The proposal achieved many of its objectives. The main area of investigation was the interaction of young planets with surrounding protostellar disks. The grant funds were used to support visits by CoIs and visitors: Gordon Ogilvie, Gennaro D Angelo, and Matthew Bate. Funds were used for travel and partial salary support for Lubow. We made important progress in two areas described in the original proposal: secular resonances (Section 3) and nonlinear waves in three dimensions (Section 5). In addition, we investigated several new areas: planet migration, orbital distribution of planets, and noncoorbital corotation resonances.
NASA Astrophysics Data System (ADS)
Takakuwa, Shigehisa; Saigo, Kazuya; Matsumoto, Tomoaki; Saito, Masao; Lim, Jeremy; Hanawa, Tomoyuki; Yen, Hsi-Wei; Ho, Paul T. P.
2017-03-01
We report the ALMA Cycle 2 observations of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C18O (3-2), 13CO (3-2), SO (78-67), and CS (7-6) emission. At 0.″18 (=25 au) resolution, ˜4 times higher than that of our Cycle 0 observations, the circumbinary disk (CBD) as seen in the 0.9 mm emission is shown to be composed of a northern and a southern spiral arm, with the southern arm connecting to the circumstellar disk (CSD) around Source B. The western parts of the spiral arms are brighter than the eastern parts, suggesting the presence of an m = 1 spiral mode. In the C18O emission, the infall gas motions in the interarm regions and the outward gas motions in the arms are identified. These observed features are well reproduced with our numerical simulations, where gravitational torques from the binary system impart angular momenta to the spiral-arm regions and extract angular momenta from the interarm regions. Chemical differentiation of the CBD is seen in the four molecular species. Our Cycle 2 observations have also resolved the CSDs around the individual protostars, and the beam-deconvolved sizes are 0.″29 × 0.″19 (=40 × 26 au) (P.A. = 144°) and 0.″26 × 0.″20 (=36 × 27 au) (P.A. = 147°) for Sources A and B, respectively. The position and inclination angles of these CSDs are misaligned with those of the CBD. The C18O emission traces the Keplerian rotation of the misaligned disk around Source A.
NASA Astrophysics Data System (ADS)
Fuente, A.; Gerin, M.; Pety, J.; Commerçon, B.; Agúndez, M.; Cernicharo, J.; Marcelino, N.; Roueff, E.; Lis, D. C.; Wootten, H. A.
2017-10-01
The extremely young Class 0 object B1b-S and the first hydrostatic core (FSHC) candidate, B1b-N, provide a unique opportunity to study the chemical changes produced in the elusive transition from the prestellar core to the protostellar phase. We present 40″ × 70″ images of Barnard 1b in the 13CO 1 → 0, C18O 1 → 0, NH2D 11,1a→ 10,1s, and SO 32→ 21 lines obtained with the NOEMA interferometer. The observed chemical segregation allows us to unveil the physical structure of this young protostellar system down to scales of 500 au. The two protostellar objects are embedded in an elongated condensation, with a velocity gradient of 0.2-0.4 m s-1 au-1 in the east-west direction, reminiscent of an axial collapse. The NH2D data reveal cold and dense pseudo-disks (R 500 - 1000 au) around each protostar. Moreover, we observe evidence of pseudo-disk rotation around B1b-S. We do not see any signature of the bipolar outflows associated with B1b-N and B1b-S, which were previously detected in H2CO and CH3OH, in any of the imaged species. The non-detection of SO constrains the SO/CH3OH abundance ratio in the high-velocity gas. Based on observations carried out with the IRAM Northern Extended Millimeter Array (NOEMA). IRAM is supported by INSU/ CNRS (France), MPG (Germany), and IGN (Spain).The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/L3
NASA Astrophysics Data System (ADS)
Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard
2017-12-01
Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.
Dust Coagulation in Protoplanetary Accretion Disks
NASA Technical Reports Server (NTRS)
Schmitt, W.; Henning, Th.; Mucha, R.
1996-01-01
The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.
The Distribution and Excitation of CH3CN in a Solar Nebula Analog
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Cleeves, L. Ilsedore; Öberg, Karin I.; Aikawa, Yuri; Bergner, Jennifer; Furuya, Kenji; Guzman, V. V.; Walsh, Catherine
2018-06-01
Cometary studies suggest that the organic composition of the early Solar Nebula was rich in complex nitrile species such CH3CN. Recent ALMA detections in protoplanetary disks suggest that these species may be common during planet and comet formation, but connecting gas-phase measurements to cometary abundances first requires constraints on formation chemistry and distributions of these species. We present here the detection of seven spatially resolved transitions of CH3CN in the protoplanetary disk around the T-Tauri star TW Hya. Using a rotational diagram analysis, we find a disk-averaged column density of {N}T={1.45}-0.15+0.19× {10}12 cm‑2 and a rotational temperature of {T}rot}={32.7}-3.4+3.9 K. A radially resolved rotational diagram shows the rotational temperature to be constant across the disk, suggesting that the CH3CN emission originates from a layer at z/r ∼ 0.3. Through comparison of the observations with predictions from a disk chemistry model, we find that grain-surface reactions likely dominate CH3CN formation and that in situ disk chemistry is sufficient to explain the observed CH3CN column density profile without invoking inheritance from the protostellar phase. However, the same model fails to reproduce a solar system cometary abundance of CH3CN relative to H2O in the midplane, suggesting that either vigorous vertical mixing or some degree of inheritance from interstellar ices occurred in the Solar Nebula.
Fragment Production and Survival in Irradiated Disks: A Comprehensive Cooling Criterion
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin M.; Murray-Clay, Ruth A.
2011-10-01
Accretion disks that become gravitationally unstable can fragment into stellar or substellar companions. The formation and survival of these fragments depends on the precarious balance between self-gravity, internal pressure, tidal shearing, and rotation. Disk fragmentation depends on two key factors: (1) whether the disk can get to the fragmentation boundary of Q = 1 and (2) whether fragments can survive for many orbital periods. Previous work suggests that to reach Q = 1, and have fragments survive, a disk must cool on an orbital timescale. Here we show that disks heated primarily by external irradiation always satisfy the standard cooling time criterion. Thus, even though irradiation heats disks and makes them more stable in general, once they reach the fragmentation boundary, they fragment more easily. We derive a new cooling criterion that determines fragment survival and calculate a pressure-modified Hill radius, which sets the maximum size of pressure-supported objects in a Keplerian disk. We conclude that fragmentation in protostellar disks might occur at slightly smaller radii than previously thought and recommend tests for future simulations that will better predict the outcome of fragmentation in real disks.
Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OTKP Team
2010-01-01
The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.
Studies of Young, Star-forming Circumstellar Disks
NASA Astrophysics Data System (ADS)
Bae, Jaehan
2017-08-01
Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks. When a planet forms in a disk, the gravitational interaction between the planet and disk can create structures, such as spiral arms and gaps. In Chapter 5, I compared the disk structures formed by planetary companions in numerical simulations with the observed structures in the disk surrounding an 8 Myr-old Herbig Ae star SAO 206462. Based on the experiments, I made predictions for the mass and position of a currently unrevealed planet, which can help guide future observations to search for more conclusive evidence for the existence of a planetary companion in the system. In Chapter 6, I showed for the first time in global simulation domains that spiral waves, driven for instance by planets or gravitational instability, can be unstable due to resonant interactions with inertial modes, breaking into turbulence. In Chapter 7, I showed that the spiral wave instability operates on the waves launched by planets and that the resulting turbulence can significantly stir up solid particles from the disk midplane. The stirring of solid particles can have influences on the observation appearance of the parent disk and on the subsequent assembly of planetary bodies in the disk. Finally, in Chapter 8, I investigated the dispersal of circumstellar disks via photoevaporative winds, finding that the photoevaporative loss alone, coupled with a range of initial angular momenta of protostellar clouds, can explain the observed decline of the disk frequency with increasing age. The findings and future possibilities are summarized in Chapter 9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu
2014-06-10
A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure tomore » undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.« less
Offner, Stella S. R.; Klein, Richard I.; McKee, Christopher F.
2008-10-20
Molecular clouds are observed to be turbulent, but the origin of this turbulence is not well understood. As a result, there are two different approaches to simulating molecular clouds, one in which the turbulence is allowed to decay after it is initialized, and one in which it is driven. We use the adaptive mesh refinement (AMR) code, Orion, to perform high-resolution simulations of molecular cloud cores and protostars in environments with both driven and decaying turbulence. We include self-gravity, use a barotropic equation of state, and represent regions exceeding the maximum grid resolution with sink particles. We analyze the propertiesmore » of bound cores such as size, shape, line width, and rotational energy, and we find reasonable agreement with observation. At high resolution the different rates of core accretion in the two cases have a significant effect on protostellar system development. Clumps forming in a decaying turbulence environment produce high-multiplicity protostellar systems with Toomre Q unstable disks that exhibit characteristics of the competitive accretion model for star formation. In contrast, cores forming in the context of continuously driven turbulence and virial equilibrium form smaller protostellar systems with fewer low-mass members. Furthermore, our simulations of driven and decaying turbulence show some statistically significant differences, particularly in the production of brown dwarfs and core rotation, but the uncertainties are large enough that we are not able to conclude whether observations favor one or the other.« less
Radiation transfer of models of massive star formation. III. The evolutionary sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi, E-mail: yichen.zhang@yale.edu, E-mail: jt@astro.ufl.edu, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp
2014-06-20
We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core massmore » M{sub c} , the mass surface density of the ambient clump Σ{sub cl}, and the ratio of the core's initial rotational to gravitational energy β {sub c}. Evolutionary sequences with various M{sub c} , Σ{sub cl}, and β {sub c} are constructed. We find that in a fiducial model with M{sub c} = 60 M {sub ☉}, Σ{sub cl} = 1 g cm{sup –2}, and β {sub c} = 0.02, the final mass of the protostar reaches at least ∼26 M {sub ☉}, making the final star formation efficiency ≳ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σ{sub cl}, with higher temperatures in a higher Σ{sub cl} core, but only weakly on M{sub c} . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at ≲ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σ{sub cl} and β {sub c} (which determines disk size) are discussed. We find that, despite scatter caused by different M{sub c} , Σ{sub cl}, β {sub c}, and inclinations, sources at a given evolutionary stage appear in similar regions of color-color diagrams, especially when using colors with fluxes at ≳ 70 μm, where scatter due to inclination is minimized, implying that such diagrams can be useful diagnostic tools for identifying the evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution and can thus act as additional diagnostics of the massive star formation process.« less
NASA Astrophysics Data System (ADS)
Pickett, Brian K.; Cassen, Patrick; Durisen, Richard H.; Link, Robert
2000-02-01
In this paper, the effects of thermal energetics on the evolution of gravitationally unstable protostellar disks are investigated by means of three-dimensional hydrodynamic calculations. The initial states for the simulations correspond to stars with equilibrium, self-gravitating disks that are formed early in the collapse of a uniformly rotating, singular isothermal sphere. In a previous paper (Pickett et al.), it was shown that the nonlinear development of locally isentropic disturbances can be radically different than that of locally isothermal disturbances, even though growth in the linear regime may be similar. When multiple low-order modes grew rapidly in the star and inner disk region and saturated at moderate nonlinear levels in the isentropic evolution, the same modes in the isothermal evolution led to shredding of the disk into dense arclets and ejection of material. In this paper, we (1) examine the fate of the shredded disk with calculations at higher spatial resolution than the previous simulations had and (2) follow the evolution of the same initial state using an internal energy equation rather than the assumption of locally isentropic or locally isothermal conditions. Despite the complex structure of the nonlinear features that developed in the violently unstable isothermal disk referred to above, our previous calculation produced no gravitationally independent, long-lived stellar or planetary companions. The higher resolution calculations presented here confirm this result. When the disk of this model is cooled further, prompting even more violent instabilities, the end result is qualitatively the same--a shredded disk. At least for the disks studied here, it is difficult to produce condensations of material that do not shear away into fragmented spirals. It is argued that the ultimate fate of such fragments depends on how readily local internal energy is lost. On the other hand, if a dynamically unstable disk is to survive for very long times without shredding, then some mechanism must mitigate and control any violent phenomena that do occur. The prior simulations demonstrated a marked difference in final outcome, depending upon the efficiency of disk cooling under two different, idealized thermal conditions. We have here incorporated an internal energy equation that allows for arbitrary heating and cooling. Simulations are presented for adiabatic models with and without artificial viscosity. The artificial viscosity accounts for dissipation and heating due to shocks in the code physics. The expected nonaxisymmetric instabilities occur and grow as before in these energy equation evolutions. When artificial viscosity is not present, the model protostar displays behavior between the locally isentropic and locally isothermal cases of the last paper; a strong two-armed spiral grows to nonlinear amplitudes and saturates at a level higher than in the locally isentropic case. Since the amplitude of the spiral disturbance is large, it is expected that continued transport of material and angular momentum will occur well after the end of the calculation at nearly four outer rotation periods. The spiral is not strong enough, however, to disrupt the disk as in the locally isothermal case. When artificial viscosity is present, the same disturbances reach moderate nonlinear amplitude, then heat the gas, which in turn greatly reduces their strength and effects on the disk. Additional heating in the low-density regions of the disk also leads to a gentle flow of material vertically off the computational grid. The energy equation and high-resolution isothermal calculations are used to discuss the importance and relevance of the different thermal regimes so far examined, with particular attention to applications to star and planet formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosero, V.; Hofner, P.; McCoy, M.
2014-12-01
We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm),more » which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.« less
Interstellar Magnetic Fields and Polarimetry of Dust Emission
NASA Technical Reports Server (NTRS)
Dowell, Darren
2010-01-01
Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).
Studies of Circumstellar Disk Evolution
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2004-01-01
Spitzer Space Telescope infrared data for our program on disk evolution has been taken (the main IRAC - 3-8 micron exposures; the 24 and 70 micron MIPS data are to come later). We now have deep maps in the four IRAC bands of the 3-Myr-old cluster Trumpler 37, and the 10-Myr-old cluster NGC 7160. Analysis of these data has now begun. We will be combining these data with our ground-based photometric and spectroscopic data to obtain a complete picture of disk frequency as a function of mass through this important age range, which spans the likely epoch of (giant) planet formation in most systems. Analysis of the SIRTF data, and follow-on ground-based spectroscopy on the converted MMT telescope using the wide-field, fiber-fed, multiobject spectrographs, Hectospec and Hectochelle, will be the major activity during the next year.Work was also performed on the following: protoplanetary disk mass accretion rates in very low-mass stars; the inner edge of T Tauri disks; accretion in intermediate-mass T Tauri stars (IMPS); and the near-infrared spectra of the rapidly-accreting protostellar disks FU Ori and V1057 Cyg.
Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration
NASA Astrophysics Data System (ADS)
Ida, S.; Lin, D. N. C.
2008-01-01
In a further development of a deterministic planet formation model (Ida & Lin), we consider the effect of type I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type I migration leads to their efficient self-clearing. But embryos continue to form from residual planetesimals, repeatedly migrate inward, and provide a main channel of heavy-element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model, and type I migration is no longer effective for Mars-mass embryos. Over wide ranges of initial disk surface densities and type I migration efficiencies, the surviving population of embryos interior to the ice line has a total mass of several M⊕. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. However, the onset of efficient gas accretion requires the emergence and retention of cores more massive than a few M⊕ prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type I migration. We suggest that the distributions consistent with observations can be reproduced only if the actual type I migration timescale is at least an order of magnitude longer than that deduced from linear theories.
NASA Astrophysics Data System (ADS)
Ida, S.; Lin, D. N. C.
2004-03-01
In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration. We adopt a working model for nascent protostellar disks with a wide variety of surface density distributions in order to explore the range of diversity among extrasolar planetary systems. We evaluate the cores' mass growth rate Mc through runaway planetesimal accretion and oligarchic growth. The accretion rate of cores is estimated with a two-body approximation. In the inner regions of disks, the cores' eccentricity is effectively damped by their tidal interaction with the ambient disk gas and their early growth is stalled by ``isolation.'' In the outer regions, the cores' growth rate is much smaller. If some cores can acquire more mass than a critical value of several Earth masses during the persistence of the disk gas, they would be able to rapidly accrete gas and evolve into gas giant planets. The gas accretion process is initially regulated by the Kelvin-Helmholtz contraction of the planets' gas envelope. Based on the assumption that the exponential decay of the disk gas mass occurs on the timescales ~106-107 yr and that the disk mass distribution is comparable to those inferred from the observations of circumstellar disks of T Tauri stars, we carry out simulations to predict the distributions of masses and semimajor axes of extrasolar planets. In disks as massive as the minimum-mass disk for the solar system, gas giants can form only slightly outside the ``ice boundary'' at a few AU. However, cores can rapidly grow above the critical mass inside the ice boundary in protostellar disks with 5 times more heavy elements than those of the minimum-mass disk. Thereafter, these massive cores accrete gas prior to its depletion and evolve into gas giants. The limited persistence of the disk gas and the decline in the stellar gravity prevent the formation of cores capable of efficient gas accretion outside 20-30 AU. Unimpeded dynamical accretion of gas is a runaway process that is terminated when the residual gas is depleted either globally or locally in the form of a gap in the vicinity of their orbits. Since planets' masses grow rapidly from 10 to 100 M⊕, the gas giant planets rarely form with asymptotic masses in this intermediate range. Our model predicts a paucity of extrasolar planets with mass in the range 10-100 M⊕ and semimajor axis less than 3 AU. We refer to this deficit as a ``planet desert.'' We also examine the dynamical evolution of protoplanets by considering the effect of orbital migration of giant planets due to their tidal interactions with the gas disks, after they have opened up gaps in the disks. The effect of migration is to sharpen the boundaries and to enhance the contrast of the planet desert. It also clarifies the separation between the three populations of rocky, gas giant, and ice giant planets. Based on our results, we suggest that the planets' mass versus semimajor axes diagram can provide strong constraints on the dominant formation processes of planets analogous to the implications of the color-magnitude diagram on the paths of stellar evolution. We show that the mass and semimajor axis distributions generated in our simulations for the gas giants are consistent with those of the known extrasolar planets. Our results also indicate that a large fraction (90%-95%) of the planets that have migrated to within 0.05 AU must have perished. Future observations can determine the existence and the boundaries of the planet desert in this diagram, which can be used to extrapolate the ubiquity of rocky planets around nearby stars. Finally, the long-term dynamical interaction between planets of various masses can lead to both eccentricity excitation and scattering of planets to large semimajor axes. These effects are to be included in future models.
A Vorticity-preserving Hydrodynamical Scheme for Modeling Accretion Disk Flows
NASA Astrophysics Data System (ADS)
Seligman, Darryl; Laughlin, Gregory
2017-10-01
Vortices, turbulence, and unsteady nonlaminar flows are likely both prominent and dynamically important features of astrophysical disks. Such strongly nonlinear phenomena are often difficult, however, to simulate accurately, and are generally amenable to analytic treatment only in idealized form. In this paper, we explore the evolution of compressible two-dimensional flows using an implicit dual-time hydrodynamical scheme that strictly conserves vorticity (if applied to simulate inviscid flows for which Kelvin’s Circulation Theorem is applicable). The algorithm is based on the work of Lerat et al., who proposed it in the context of terrestrial applications such as the blade-vortex interactions generated by helicopter rotors. We present several tests of Lerat et al.'s vorticity-preserving approach, which we have implemented to second-order accuracy, providing side-by-side comparisons with other algorithms that are frequently used in protostellar disk simulations. The comparison codes include one based on explicit, second-order van Leer advection, one based on spectral methods, and another that implements a higher-order Godunov solver. Our results suggest that the Lerat et al. algorithm will be useful for simulations of astrophysical environments in which vortices play a dynamical role, and where strong shocks are not expected.
NASA Technical Reports Server (NTRS)
Wieneke, B.; Clayton, D. D.
1983-01-01
The growth and evolution of grains in the protostellar nebula are investigated within the context of turbulent low-mass disk models developed by previous investigators. Because of grain collisions promoted by the turbulent velocities, particles aggregate to millimeter size in times of the order of 1000 yrs. During the growth the particles acquire a large inward radial velocity due to gas drag (Weidenschilling, 1977) and spiral into the sun. The calculations indicate that the final size of the particles does not exceed a few centimeters. This result is not very sensitive to the specific nebula parameters. For all conditions investigated it seems impossible to grow meter- or kilometer-sized bodies that could decouple from the gas motion. An additional argument is given that shows that only particles smaller than centimeter size can survive drift into the growing sun by being transported radially outward by turbulent mixing. This agrees well with the maximum size of inclusions and chondrules. Since sedimentation of grains and subsequent dust disk instability is effectively inhibited by turbulent stirring, the formation of planetesimals and planets cannot be explained in the above scenario without further assumptions.
Gravitational Instabilities in Protostellar and Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Mejia, A. C.; Pickett, B. K.
Self-gravity in fluid and particle systems is the primary mechanism for the creation of structure in the Universe on astronomical scales. The rapidly rotating Solar System-sized disks which orbit stars during the early phases of star and planet formation can be massive and thus susceptible to spontaneous growth of spiral distortions driven by disk self-gravity. These are called gravitational instabilities (GI's). They can be important sources of mass and angular momentum transport due to the long-range torques they generate; and, if strong enough, they may fragment the disk into bound lumps with masses in therange of gas giant planets and brown dwarfs. My research group has been using numerical 3D hydrodynamics techniques to study the growth and nonlinear behavior of GI's in disks around young stars. Our simulations have demonstrated the sensitivity of outcomes to the thermal physics of the disks and have helped to delineate conditions conducive to the formation of dense clumps. We are currently concentrating our efforts on determining how GI's affect the long-term evolution and appearance of young stellar disks, with the hope of finding characteristic GI signatures by which we may recognize their occurrence in real systems.
ALMA Observations of a Misaligned Binary Protoplanetary Disk System in Orion
NASA Astrophysics Data System (ADS)
Williams, Jonathan P.; Mann, Rita K.; Di Francesco, James; Andrews, Sean M.; Hughes, A. Meredith; Ricci, Luca; Bally, John; Johnstone, Doug; Matthews, Brenda
2014-12-01
We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ~9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ~72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.
Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley
We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of polarized dust emission from the protostellar source Ser-emb 8 at a linear resolution of 140 au. Assuming models of dust-grain alignment hold, the observed polarization pattern gives a projected view of the magnetic field structure in this source. Contrary to expectations based on models of strongly magnetized star formation, the magnetic field in Ser-emb 8 does not exhibit an hourglass morphology. Combining the new ALMA data with previous observational studies, we can connect magnetic field structure from protostellar core (∼80,000 au) to disk (∼100 au) scales. We compare our observations withmore » four magnetohydrodynamic gravo-turbulence simulations made with the AREPO code that have initial conditions ranging from super-Alfvénic (weakly magnetized) to sub-Alfvénic (strongly magnetized). These simulations achieve the spatial dynamic range necessary to resolve the collapse of protostars from the parsec scale of star-forming clouds down to the ∼100 au scale probed by ALMA. Only in the very strongly magnetized simulation do we see both the preservation of the field direction from cloud to disk scales and an hourglass-shaped field at <1000 au scales. We conduct an analysis of the relative orientation of the magnetic field and the density structure in both the Ser-emb 8 ALMA observations and the synthetic observations of the four AREPO simulations. We conclude that the Ser-emb 8 data are most similar to the weakly magnetized simulations, which exhibit random alignment, in contrast to the strongly magnetized simulation, where the magnetic field plays a role in shaping the density structure in the source. In the weak-field case, it is turbulence—not the magnetic field—that shapes the material that forms the protostar, highlighting the dominant role that turbulence can play across many orders of magnitude in spatial scale.« less
X-ray insights into star and planet formation.
Feigelson, Eric D
2010-04-20
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.
X-ray insights into star and planet formation
Feigelson, Eric D.
2010-01-01
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.
2015-01-01
Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can mergemore » into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10{sup –7} M {sub ☉} yr{sup –1}) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency.« less
From Large-scale to Protostellar Disk Fragmentation into Close Binary Stars
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Cruz, Fidel; Gabbasov, Ruslan; Klapp, Jaime; Ramírez-Velasquez, José
2018-04-01
Recent observations of young stellar systems with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Karl G. Jansky Very Large Array are helping to cement the idea that close companion stars form via fragmentation of a gravitationally unstable disk around a protostar early in the star formation process. As the disk grows in mass, it eventually becomes gravitationally unstable and fragments, forming one or more new protostars in orbit with the first at mean separations of 100 au or even less. Here, we report direct numerical calculations down to scales as small as ∼0.1 au, using a consistent Smoothed Particle Hydrodynamics code, that show the large-scale fragmentation of a cloud core into two protostars accompanied by small-scale fragmentation of their circumstellar disks. Our results demonstrate the two dominant mechanisms of star formation, where the disk forming around a protostar (which in turn results from the large-scale fragmentation of the cloud core) undergoes eccentric (m = 1) fragmentation to produce a close binary. We generate two-dimensional emission maps and simulated ALMA 1.3 mm continuum images of the structure and fragmentation of the disks that can help explain the dynamical processes occurring within collapsing cloud cores.
Magnetically driven jets and winds
NASA Technical Reports Server (NTRS)
Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.
1991-01-01
Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.
Workshop on Physics of Accretion Disks Around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Liang, E (Editor); Stepinski, T. F. (Editor)
1995-01-01
The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.
ALMA detection of a disk wind from HD 163296
NASA Astrophysics Data System (ADS)
Klaassen, Pamela; Juhasz, Attila; Mathews, Geoffrey; Mottram, Joseph; De Gregorio-Monsalvo, Itziar; van Dishoeck, Ewine; Takahashi, Satoko; Akiyama, Eiji; Chapillon, Edwige; Espada, Daniel; Hales, Antonio; Hogerheijde, Michiel; Rawlings, Mark; Schmalzl, Markus; Testi, Leonardo
2013-07-01
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA Science Verification data of CO J=2-1 and J=3-2 emission which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km/s. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet which is moving at much higher velocities. We show that the J=3-2 emission is likely heavily filtered by the interferometer, but the J=2-1 emission suffers less due to the larger beam and measurable angular scales. Excitation analysis suggests temperatures exceeding 900 K in these compact features. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star, signaling the end of the main accretion phase.
SUSTAINED TURBULENCE IN DIFFERENTIALLY ROTATING MAGNETIZED FLUIDS AT A LOW MAGNETIC PRANDTL NUMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nauman, Farrukh; Pessah, Martin E., E-mail: nauman@nbi.ku.dk
2016-12-20
We show for the first time that sustained turbulence is possible at a low magnetic Prandtl number in local simulations of Keplerian flows with no mean magnetic flux. Our results indicate that increasing the vertical domain size is equivalent to increasing the dynamical range between the energy injection scale and the dissipative scale. This has important implications for a large variety of differentially rotating systems with low magnetic Prandtl number such as protostellar disks and laboratory experiments.
FU Orionis Outbursts and the Solar Nebula
NASA Technical Reports Server (NTRS)
Bell, Robbins; Young, Rich (Technical Monitor)
1998-01-01
Protostellar systems are variable on many timescales. The FU Orionis outburst is one of the most drastic forms of variability known to occur in low mass stellar systems. During a typical outburst lasting several decades, system luminosities may be a hundred times what is normal of the quiescent state. FU Orionis outburst events are believed to have significant impacts on the thermal structure of the protosolar nebula. Their existence has been utilized to explain features in the meteoritic record from thermally induced homogenization to chondrule formation. Recent numerical models have shown the viability of the hypothesis that the radiation observed during outburst is emitted by a luminous circumstellar disk transporting mass at a thousand times the quiescent rate. We will begin by describing what is known about the FU Orionis outburst phenomenon from recent observations and theory. We will discuss evidence that suggests that outburst radiation is emitted by a circumstellar disk rather than by the star and will briefly describe the thermal instability as a mechanism for outburst. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Soko; Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk
2016-02-10
Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of thesemore » elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.« less
NASA Technical Reports Server (NTRS)
Boogert, A. C. A.; Hogerheijde, M. R.; Blake, G. A.
2001-01-01
We explore the infrared M band (4.7 micron) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R =25,000; (Delta)v =12 km s(exp -1). A large number of narrow absorption lines of gas phase (12)CO, (13)CO, and C(sup 18)O are detected, as well as a prominent band of solid (12)CO. The gas phase (12)CO lines have red shifted absorption wings (up to 100 km s(exp -1)), which likely originate from warm disk material falling toward the central object. Both the isotopes and the extent of the (12)CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object. This shows that the inward motions seen in millimeter wave emission lines continue to within approx. 0.1 AU from the star. The amount of high velocity infalling gas is however overestimated by this model, suggesting that only part of the disk is infalling, e.g. a hot surface layer or hot gas in magnetic field tubes. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated, the depletion factor of CO onto grains is remarkably low (approx. 7%), and the CO2 traced in the CO band profile was possibly formed energetically. This study shows that high spectral resolution 4.7 micron observations provide important and unique information on the dynamics and structure of protostellar disks and the origin and evolution of ices in these disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C., E-mail: yen@math.fju.edu.tw
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates ismore » expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.« less
Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojia; Lin, Douglas N. C.; Liu, Beibei
2014-12-10
According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} >more » 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.« less
Synthetic observations of protostellar multiple systems
NASA Astrophysics Data System (ADS)
Lomax, O.; Whitworth, A. P.
2018-04-01
Observations of protostars are often compared with synthetic observations of models in order to infer the underlying physical properties of the protostars. The majority of these models have a single protostar, attended by a disc and an envelope. However, observational and numerical evidence suggests that a large fraction of protostars form as multiple systems. This means that fitting models of single protostars to observations may be inappropriate. We produce synthetic observations of protostellar multiple systems undergoing realistic, non-continuous accretion. These systems consist of multiple protostars with episodic luminosities, embedded self-consistently in discs and envelopes. We model the gas dynamics of these systems using smoothed particle hydrodynamics and we generate synthetic observations by post-processing the snapshots using the SPAMCART Monte Carlo radiative transfer code. We present simulation results of three model protostellar multiple systems. For each of these, we generate 4 × 104 synthetic spectra at different points in time and from different viewing angles. We propose a Bayesian method, using similar calculations to those presented here, but in greater numbers, to infer the physical properties of protostellar multiple systems from observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Hyunju; Cho, Jungyeon; Lee, Jeong-Eun
During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a submillimeter luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first six months of our survey, from 2016 February to August. The submillimeter emission began to brighten in 2016 September, reached a peak brightness of 1.5 times the faint state,more » and has been decaying slowly since 2017 February. The change in submillimeter brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of ≥4. The 850 μ m light curve resembles the historical K -band light curve, which varies by a factor of ∼6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and submillimeter wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.« less
Water in embedded low-mass protostars: cold envelopes and warm outflows
NASA Astrophysics Data System (ADS)
Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud
2015-08-01
As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of warm and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the cold outer molecular envelope of low-mass protostars, and the warm gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.
Characterization of methanol as a magnetic field tracer in star-forming regions
NASA Astrophysics Data System (ADS)
Lankhaar, Boy; Vlemmings, Wouter; Surcis, Gabriele; van Langevelde, Huib Jan; Groenenboom, Gerrit C.; van der Avoird, Ad
2018-02-01
Magnetic fields play an important role during star formation1. Direct magnetic field strength observations have proven particularly challenging in the extremely dynamic protostellar phase2-4. Because of their occurrence in the densest parts of star-forming regions, masers, through polarization observations, are the main source of magnetic field strength and morphology measurements around protostars2. Of all maser species, methanol is one of the strongest and most abundant tracers of gas around high-mass protostellar disks and in outflows. However, as experimental determination of the magnetic characteristics of methanol has remained largely unsuccessful5, a robust magnetic field strength analysis of these regions could hitherto not be performed. Here, we report a quantitative theoretical model of the magnetic properties of methanol, including the complicated hyperfine structure that results from its internal rotation6. We show that the large range in values of the Landé g factors of the hyperfine components of each maser line lead to conclusions that differ substantially from the current interpretation based on a single effective g factor. These conclusions are more consistent with other observations7,8 and confirm the presence of dynamically important magnetic fields around protostars. Additionally, our calculations show that (nonlinear) Zeeman effects must be taken into account to further enhance the accuracy of cosmological electron-to-proton mass ratio determinations using methanol9-12.
NASA Technical Reports Server (NTRS)
Cassen, Pat
1991-01-01
Attempts to derive a theoretical framework for the interpretation of the meteoritic record have been frustrated by our incomplete understanding of the fundamental processes that controlled the evolution of the primitive solar nebula. Nevertheless, it is possible to develop qualitative models of the nebula that illuminate its dynamic character, as well as the roles of some key parameters. These models draw on the growing body of observational data on the properties of disks around young, solar-type stars, and are constructed by applying the results of known solutions of protostellar collapse problems; making simple assumptions about the radial variations of nebular variables; and imposing the integral constraints demanded by conservation of mass, angular momentum, and energy. The models so constructed are heuristic, rather than predictive; they are intended to help us think about the nebula in realistic ways, but they cannot provide a definitive description of conditions in the nebula.
The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2
NASA Astrophysics Data System (ADS)
Broekhoven-Fiene, H.; Matthews, B. C.; Harvey, P.; Kirk, H.; Chen, M.; Currie, M. J.; Pattle, K.; Lane, J.; Buckle, J.; Di Francesco, J.; Drabek-Maunder, E.; Johnstone, D.; Berry, D. S.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wilson, C. D.; Wouterloot, J.; Yates, J.; Zhu, M.
2018-01-01
We present 850 and 450 μm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 μm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency.
NASA Technical Reports Server (NTRS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; VanCleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.
2004-01-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
NASA Astrophysics Data System (ADS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; Van Cleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.; Saumon, D.; Leggett, S.; Chen, C.; Kemper, F.; Hartmann, L.; Marley, M.; Cushing, M.; Mainzer, A. K.; Kirkpatrick, D.; Jura, M.; Houck, J. R.
2004-05-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14, 2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and of debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Pickett, Brian K.; Mejía, Annie C.; Durisen, Richard H.; Cassen, Patrick M.; Berry, Donald K.; Link, Robert P.
2003-06-01
We present a series of high-resolution, three-dimensional hydrodynamics simulations of a gravitationally unstable solar nebula model. The influences of both azimuthal grid resolution and the treatment of thermal processes on the origin and evolution of gravitational instabilities are investigated. In the first set of simulations, we vary the azimuthal resolution for a locally isothermal simulation, doubling and quadrupling the resolution used in a previous study; the largest number of grid points is (256,256,64) in cylindrical coordinates (r,ϕ,z). At this resolution, the disk breaks apart into a dozen short-lived condensations. Although our previous calculations underresolved the number and growth rate of clumps in the disk, the overall qualitative, but fundamental, conclusion remains: fragmentation under the locally isothermal condition in numerical simulations does not in itself lead to the survival of clumps to become gaseous giant protoplanets. Since local isothermality represents an extreme assumption about thermal processes in the disk, we also present several extended simulations in which heating from an artificial viscosity scheme and cooling from a simple volumetric cooling function are applied to two different models of the solar nebula. The models are differentiated primarily by disk temperature: a high-Q model generated directly by our self-consistent field equilibrium code and a low-Q model generated by cooling the high-Q model in a two-dimensional version of our hydrodynamics code. Here, ``high-Q'' and ``low-Q'' refer to the minimum values of the Toomre stability parameter Q in each disk, Qmin=1.8 and 0.9, respectively. Previous simulations, by ourselves as well as others, have focused on initial states that are already gravitationally unstable, i.e., models similar to the low-Q model. This paper presents for the first time the numerical evolution of an essentially stable initial equilibrium state (the high-Q model) to a severely unstable one by cooling. The additional heating and cooling are applied to each model over the outer half of the disk or the entire disk. The models are subject to the rapid growth of a four-armed spiral instability; the subsequent evolution of the models depends on the thermal behavior of the disk. The cooling function tends to overwhelm the heating included in our artificial viscosity prescription, and as a result the spiral structure strengthens. The spiral disturbances transport mass at prodigious rates during the early nonlinear stages of development and significantly alter the disk's vertical surface. Although dense condensations of material can appear, their character depends on the extent of the volumetric cooling in the disk. In the simulation of the high-Q model with heating and cooling applied throughout the disk, thin, dense rings form at radii ranging from 1 to 3 AU and steadily increase in mass; later companion formation may occur in these rings as cooling drives them toward instability. When heating and cooling are applied only over the outer radial half of the disk, however, a succession of single condensations appears near 5 AU. Each clump has roughly the mass of Saturn, and some survive a complete orbit. Since the clumps form near the artificial boundary in the treatment of the disk gas physics, the production of a clump in this case is a numerical artifact. Nevertheless, radially abrupt transitions in disk gas characteristics, for example, in opacity, might mimic the artificial boundary effects in our simulations and favor the production of stable companions in actual protostellar and protoplanetary disks. The ultimate survival of condensations as eventual stellar or substellar companions to the central star is still largely an open question.
On the diversity and statistical properties of protostellar discs
NASA Astrophysics Data System (ADS)
Bate, Matthew R.
2018-04-01
We present results from the first population synthesis study of protostellar discs. We analyse the evolution and properties of a large sample of protostellar discs formed in a radiation hydrodynamical simulation of star cluster formation. Due to the chaotic nature of the star formation process, we find an enormous diversity of young protostellar discs, including misaligned discs, and discs whose orientations vary with time. Star-disc interactions truncate discs and produce multiple systems. Discs may be destroyed in dynamical encounters and/or through ram-pressure stripping, but reform by later gas accretion. We quantify the distributions of disc mass and radii for protostellar ages up to ≈105 yr. For low-mass protostars, disc masses tend to increase with both age and protostellar mass. Disc radii range from of order 10 to a few hundred au, grow in size on time-scales ≲ 104 yr, and are smaller around lower mass protostars. The radial surface density profiles of isolated protostellar discs are flatter than the minimum mass solar nebula model, typically scaling as Σ ∝ r-1. Disc to protostar mass ratios rarely exceed two, with a typical range of Md/M* = 0.1-1 to ages ≲ 104 yr and decreasing thereafter. We quantify the relative orientation angles of circumstellar discs and the orbit of bound pairs of protostars, finding a preference for alignment that strengths with decreasing separation. We also investigate how the orientations of the outer parts of discs differ from the protostellar and inner disc spins for isolated protostars and pairs.
ALMA detection of the rotating molecular disk wind from the young star HD 163296
NASA Astrophysics Data System (ADS)
Klaassen, P. D.; Juhasz, A.; Mathews, G. S.; Mottram, J. C.; De Gregorio-Monsalvo, I.; van Dishoeck, E. F.; Takahashi, S.; Akiyama, E.; Chapillon, E.; Espada, D.; Hales, A.; Hogerheijde, M. R.; Rawlings, M.; Schmalzl, M.; Testi, L.
2013-07-01
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA science verification data of CO J = 2-1 and J = 3-2 emission, which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km s-1. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet that is moving at much higher velocities. We show that the J = 3-2 emission is likely heavily filtered by the interferometer, but the J = 2-1 emission suffers less due to the larger beam and sensitivity to larger scale structures. Excitation analysis suggests temperatures exceeding 900 K in these compact features, with the wind mass, momentum and energy being of order 10-5 M⊙, 10-4 M⊙ km s-1 and 1040 erg, respectively. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star.
NASA Astrophysics Data System (ADS)
Herczeg, Gregory J.; Johnstone, Doug; Mairs, Steve; Hatchell, Jennifer; Lee, Jeong-Eun; Bower, Geoffrey C.; Chen, Huei-Ru Vivien; Aikawa, Yuri; Yoo, Hyunju; Kang, Sung-Ju; Kang, Miju; Chen, Wen-Ping; Williams, Jonathan P.; Bae, Jaehan; Dunham, Michael M.; Vorobyov, Eduard I.; Zhu, Zhaohuan; Rao, Ramprasad; Kirk, Helen; Takahashi, Satoko; Morata, Oscar; Lacaille, Kevin; Lane, James; Pon, Andy; Scholz, Aleks; Samal, Manash R.; Bell, Graham S.; Graves, Sarah; Lee, E.'lisa M.; Parsons, Harriet; He, Yuxin; Zhou, Jianjun; Kim, Mi-Ryang; Chapman, Scott; Drabek-Maunder, Emily; Chung, Eun Jung; Eyres, Stewart P. S.; Forbrich, Jan; Hillenbrand, Lynne A.; Inutsuka, Shu-ichiro; Kim, Gwanjeong; Kim, Kyoung Hee; Kuan, Yi-Jehng; Kwon, Woojin; Lai, Shih-Ping; Lalchand, Bhavana; Lee, Chang Won; Lee, Chin-Fei; Long, Feng; Lyo, A.-Ran; Qian, Lei; Scicluna, Peter; Soam, Archana; Stamatellos, Dimitris; Takakuwa, Shigehisa; Tang, Ya-Wen; Wang, Hongchi; Wang, Yiren
2017-11-01
Most protostars have luminosities that are fainter than expected from steady accretion over the protostellar lifetime. The solution to this problem may lie in episodic mass accretion—prolonged periods of very low accretion punctuated by short bursts of rapid accretion. However, the timescale and amplitude for variability at the protostellar phase is almost entirely unconstrained. In A James Clerk Maxwell Telescope/SCUBA-2 Transient Survey of Protostars in Nearby Star-forming Regions, we are monitoring monthly with SCUBA-2 the submillimeter emission in eight fields within nearby (< 500 pc) star-forming regions to measure the accretion variability of protostars. The total survey area of ˜1.6 deg2 includes ˜105 peaks with peaks brighter than 0.5 Jy/beam (43 associated with embedded protostars or disks) and 237 peaks of 0.125-0.5 Jy/beam (50 with embedded protostars or disks). Each field has enough bright peaks for flux calibration relative to other peaks in the same field, which improves upon the nominal flux calibration uncertainties of submillimeter observations to reach a precision of ˜2%-3% rms, and also provides quantified confidence in any measured variability. The timescales and amplitudes of any submillimeter variation will then be converted into variations in accretion rate and subsequently used to infer the physical causes of the variability. This survey is the first dedicated survey for submillimeter variability and complements other transient surveys at optical and near-IR wavelengths, which are not sensitive to accretion variability of deeply embedded protostars.
NASA Astrophysics Data System (ADS)
Anderl, S.; Maret, S.; Cabrit, S.; Belloche, A.; Maury, A. J.; André, Ph.; Codella, C.; Bacmann, A.; Bontemps, S.; Podio, L.; Gueth, F.; Bergin, E.
2016-06-01
Context. So-called snow lines, indicating regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars, which are still in their early phase of heavy accretion. Aims: We aim to use the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. This information is crucial to get the full picture of the early protostellar collapse and the subsequent evolution of young protostars. Methods: As part of the CALYPSO IRAM Large Program, we have obtained observations of C18O, N2H+, and CH3OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources, we have modeled the emission using a chemical code coupled with a radiative transfer module. Results: We observe an anti-correlation of C18O and N2H+ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N2H+ forming a ring (perturbed by the outflow) around the centrally peaked C18O emission. This emission morphology, which is due to N2H+ being chemically destroyed by CO, reveals the CO and N2 ice sublimation regions in these protostellar envelopes with unprecedented resolution. We also observe compact methanol emission towards three of the sources. Based on our chemical model and assuming temperature and density profiles from the literature, we find that for all four sources the CO snow line appears further inwards than expected from the binding energy of pure CO ices (~855 K). The emission regions of models and observations match for a higher value of the CO binding energy of 1200 K, corresponding to a dust temperature of ~24 K at the CO snow line. The binding energy for N2 ices is modeled at 1000 K, also higher than for pure N2 ices. Furthermore, we find very low CO abundances inside the snow lines in our sources, about an order of magnitude lower than the total CO abundance observed in the gas on large scales in molecular clouds before depletion sets in. Conclusions: The high CO binding energy may hint at CO being frozen out in a polar ice environment like amorphous water ice or in non-polar CO2-rich ice. The low CO abundances are comparable to values found in protoplanetary disks, which may indicate an evolutionary scenario where these low values are already established in the protostellar phase. Based on observations carried out under project number U052 with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
Molecular emission in chemically active protostellar outflows
NASA Astrophysics Data System (ADS)
Lefloch, B.
2011-12-01
Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.
Chondrules and the Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Hewins, R. H.; Jones, Rhian; Scott, Ed
2011-03-01
Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV. Heating, Cooling and Volatiles: 20. A dynamic crystallization model for chondrule melts G. E. Lofgren; 21. Peak temperatures of flash-melted chondrules R. H. Hewins and H. C. Connolly Jr.; 22. Congruent melting kinetics: constraints on chondrule formation J. P. Greenwood and P. C. Hess; 23. Sodium and sulfur in chondrules: heating time and cooling curves Y. Yu, R. H. Hewins and B. Zanda; 24. Open-system behaviour during chondrule formation D. W. G. Sears, S. Huang and P. H. Benoit; 25. Recycling and volatile loss in chondrule formation C. M. O'D. Alexander; 26. Chemical fractionations of chondrites: signatures of events before chondrule formation J. N. Grossmann; Part V. Models of Chondrule Formation: 27. A concise guide to chondrule formation models A. P. Boss; 28. Models for multiple heating mechanisms L. L. Hood and D. A. Kring; 29. Chondrule formation in the accretional shock T. V. Ruzmaikina and W. H. Ip; 30. The protostellar jet model of chondrule formation K. Liffman and M. Brown; 31. Chondrule formation in lightning discharges: status of theory and experiments M. Horanyi and S. Robertson; 32. Chondrules and their associates in ordinary chondrites: a planetary connection? R. Hutchinson; 33. Collision of icy and slightly differentiated bodies as an origin for unequilibriated ordinary chondrites M. Kitamura and A. Tsuchiyama; 34. A chondrule-forming scenario involving molten planetisimals I. S. Sanders.
A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor
NASA Astrophysics Data System (ADS)
Gaches, Brandt A. L.; Offner, Stella S. R.
2018-02-01
We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.
The Composition of the Protosolar Disk and the Formation Conditions for Comets
NASA Astrophysics Data System (ADS)
Willacy, K.; Alexander, C.; Ali-Dib, M.; Ceccarelli, C.; Charnley, S. B.; Doronin, M.; Ellinger, Y.; Gast, P.; Gibb, E.; Milam, S. N.; Mousis, O.; Pauzat, F.; Tornow, C.; Wirström, E. S.; Zicler, E.
2015-12-01
Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today.
Evolution of the Solar Nebula. II. Thermal Structure during Nebula Formation
NASA Astrophysics Data System (ADS)
Boss, Alan P.
1993-11-01
Models of the thermal structure of protoplanetary disks are required for understanding the physics and chemistry of the earliest phases of planet formation. Numerical hydrodynamical models of the protostellar collapse phase have not been evolved far enough in time to be relevant to planet formation, i.e., to a relatively low-mass disk surrounding a protostar. One simplification is to assume a pre-existing solar-mass protostar, and calculate the structure of just the disk as it forms from the highest angular momentum vestiges of the placental cloud core. A spatially second-order accurate, axisymmetric (two-dimensional), radiative hydrodynamics code has been used to construct three sets of protoplanetary disk models under this assumption. Because compressional heating has been included, but not viscous or other heating sources, the model temperatures obtained should be considered lower bounds. The first set started from a spherically symmetric configuration appropriate for freely falling gas: ρ ∝ r-3/2, υr ∝ r-1/2, but with rotation (Ω ∝ r-1, where r is the spherical coordinate radius). These first models turned out to be unsatisfactory because in order to achieve an acceptable mass accretion rate onto the protostar (Mṡ ≤ 10-5 Msun yr-1 for low-mass star formation), the disk mass became much too small (˜ 0.0002 Msun). The second set improved on the first set by ensuring that the late-arriving, high angular momentum gas did not accrete directly onto the protosun. By starting from a disklike cloud flattened about the equatorial plane and flowing vertically toward the midplane, these models led to Mṡ → 0, as desired. However, because the initial cloud was not chosen to be close to equilibrium, the disk rapidly contracted vertically, producing an effective disk mass accretion rate Mṡd ˜ 10-2 Msun yr-1, again too high. Hence, the third (and most realistic) set started from an approximate equilibrium state for an adiabatic, self-gravitating "fat" Keplerian disk, with surface density σ ∝ r-1/2, surrounded by a much lower density "halo" infalling onto the disk. This initial condition produced Mṡs → 0 and Mṡd ˜ 10-6 to 10-5 Msun yr-1, as desired. The resulting nebula temperature distributions show that midplane temperatures of at least 1000 K inside 2.5 AU, falling to around 100 K outside 5 AU, are to be expected during the formation phase of a minimum mass nebula containing ˜0.02 Msun within 10 AU. This steady state temperature distribution appears to be consistent with cosmochemical evidence which has been interpreted as implying a phase of relatively high temperatures in the inner nebula. The temperature distribution also implies that the nebula would be cool enough outside 5 AU to allow ices to accumulate into planetesimals even at this relatively early phase of nebula evolution.
Stratospheric Observatory for Infrared Astornomy and Planetary Science
NASA Astrophysics Data System (ADS)
Reach, William T.; SOFIA Sciece Mission Operations
2016-10-01
The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.
The SOLA Team: A Star Formation Project To Study the Soul of Lupus with ALMA
NASA Astrophysics Data System (ADS)
De Gregorio-Monsalvo, Itziar; Saito, M.; Rodon, J.; Takahashi, S.
2017-06-01
The SOLA team is a multi-national and multi-wavelength collaboration composed by scientists with technical expertise in ALMA and in infrared and optical techniques. The aim of the team is to establish a low-mass star formation scenario based on the Lupus molecular clouds. In this talk I will present our unique catalog of pre-stellar and proto-stellar cores toward Lupus molecular clouds, the results on our latest studies in protoplanetary disks, as well as our ALMA Cycle 3 data aiming at testing the formation mechanism of sub-stellar objects in Lupus molecular clouds.
Studies of low-mass star formation with the large deployable reflector
NASA Technical Reports Server (NTRS)
Hollenbach, D. J.; Tielens, Alexander G. G. M.
1984-01-01
Estimates are made of the far-infrared and submillimeter continuum and line emission from regions of low mass star formation. The intensity of this emission is compared with the sensitivity of the large deployable reflector (LDR), a large space telescope designed for this wavelength range. The proposed LDR is designed to probe the temperature, density, chemical structure, and the velocity field of the collapsing envelopes of these protostars. The LDR is also designed to study the accretion shocks on the cores and circumstellar disks of low-mass protostars, and to detect shock waves driven by protostellar winds.
THE SPINDLE: AN IRRADIATED DISK AND BENT PROTOSTELLAR JET IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bally, John; Youngblood, Allison; Ginsburg, Adam, E-mail: John.Bally@colorado.edu, E-mail: Allison.Youngblood@colorado.edu, E-mail: Adam.Ginsburg@colorado.edu
2012-09-10
We present Hubble Space Telescope observations of a bent, pulsed Herbig-Haro jet, HH 1064, emerging from the young star Parenago 2042 embedded in the H II region NGC 1977 located about 30' north of the Orion Nebula. This outflow contains eight bow shocks in the redshifted western lobe and five bow shocks in the blueshifted eastern lobe. Shocks within a few thousand AU of the source star exhibit proper motions of {approx}160 km s{sup -1} but motions decrease with increasing distance. Parenago 2042 is embedded in a proplyd-a photoevaporating protoplanetary disk. A remarkable set of H{alpha} arcs resembling a spindlemore » surround the redshifted (western) jet. The largest arc with a radius of 500 AU may trace the ionized edge of a circumstellar disk inclined by {approx}30 Degree-Sign . The spindle may be the photoionized edge of either a {approx}3 km s{sup -1} FUV-driven wind from the outer disk or a faster MHD-powered flow from an inner disk. The HH 1064 jet appears to be deflected north by photoablation of the south-facing side of a mostly neutral jet beam. V2412 Ori, located 1' west of Parenago 2042 drives a second bent flow, HH 1065. Both HH 1064 and 1065 are surrounded by LL Ori-type bows marking the boundary between the outflow cavity and the surrounding nebula.« less
The MYStIX Infrared-Excess Source Catalog
NASA Astrophysics Data System (ADS)
Povich, Matthew S.; Kuhn, Michael A.; Getman, Konstantin V.; Busk, Heather A.; Feigelson, Eric D.; Broos, Patrick S.; Townsley, Leisa K.; King, Robert R.; Naylor, Tim
2013-12-01
The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes (d = 0.4-3.6 kpc). Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. We present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M17). We combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying our methodology consistently across 18 of the target complexes, we produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8686 probable stellar members of the MYStIX target complexes. We also classify the SEDs of 9365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MIRES Catalog provides a foundation for follow-up studies of diverse phenomena related to massive star cluster formation, including protostellar outflows, circumstellar disks, and sequential star formation triggered by massive star feedback processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceccarelli, C.; López-Sepulcre, A.; Dominik, C.
2014-07-20
There is evidence that the young Sun emitted a high flux of energetic (≥10 MeV) particles. The collisions of these particles with the material at the inner edge of the Protosolar Nebula disk induced spallation reactions that formed short-lived radionuclei, like {sup 10}Be, whose trace is now visible in some meteorites. However, it is poorly known exactly when this happened, and whether and how it affected the solar system. Here, we present indirect evidence for an ejection of energetic particles in the young protostar, OMC-2 FIR 4, similar to that experienced by the young solar system. In this case, the energeticmore » particles collide with the material in the protostellar envelope, enhancing the abundance of two molecular ions, HCO{sup +} and N{sub 2}H{sup +}, whose presence is detected via Herschel observations. The flux of energetic particles at a distance of 1 AU from the emitting source, estimated from the measured abundance ratio of HCO{sup +} and N{sub 2}H{sup +}, can easily account for the irradiation required by meteoritic observations. These new observations demonstrate that the ejection of ≥10 MeV particles is a phenomenon occurring very early in the life of a protostar, before the disappearance of the envelope from which the future star accretes. The whole envelope is affected by the event, which sets constraints on the magnetic field geometry in the source and opens up the possibility that the spallation reactions are not limited to the inner edge of the Protosolar Nebula disk.« less
NASA Astrophysics Data System (ADS)
Jørgensen, J. K.; van der Wiel, M. H. D.; Coutens, A.; Lykke, J. M.; Müller, H. S. P.; van Dishoeck, E. F.; Calcutt, H.; Bjerkeli, P.; Bourke, T. L.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Garrod, R. T.; Jacobsen, S. K.; Öberg, K. I.; Persson, M. V.; Wampfler, S. F.
2016-11-01
Context. The inner regions of the envelopes surrounding young protostars are characterized by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. The Atacama Large Millimeter/submillimeter Array (ALMA) provides an unprecedented view of these regions zooming in on solar system scales of nearby protostars and mapping the emission from rare species. Aims: The goal is to introduce a systematic survey, the Protostellar Interferometric Line Survey (PILS), of the chemical complexity of one of the nearby astrochemical templates, the Class 0 protostellar binary IRAS 16293-2422, using ALMA in order to understand the origin of the complex molecules formed in its vicinity. In addition to presenting the overall survey, the analysis in this paper focuses on new results for the prebiotic molecule glycolaldehyde, its isomers, and rarer isotopologues and other related molecules. Methods: An unbiased spectral survey of IRAS 16293-2422 covering the full frequency range from 329 to 363 GHz (0.8 mm) has been obtained with ALMA, in addition to a few targeted observations at 3.0 and 1.3 mm. The data consist of full maps of the protostellar binary system with an angular resolution of 0.5'' (60 AU diameter), a spectral resolution of 0.2 km s-1, and a sensitivity of 4-5 mJy beam-1 km s-1, which is approximately two orders of magnitude better than any previous studies. Results: More than 10 000 features are detected toward one component in the protostellar binary, corresponding to an average line density of approximately one line per 3 km s-1. Glycolaldehyde; its isomers, methyl formate and acetic acid; and its reduced alcohol, ethylene glycol, are clearly detected and their emission well-modeled with an excitation temperature of 300 K. For ethylene glycol both lowest state conformers, aGg' and gGg', are detected, the latter for the first time in the interstellar medium (ISM). The abundance of glycolaldehyde is comparable to or slightly larger than that of ethylene glycol. In comparison to the Galactic Center these two species are over-abundant relative to methanol, possibly an indication of formation of the species at low temperatures in CO-rich ices during the infall of the material toward the central protostar. Both 13C and the deuterated isotopologues of glycolaldehyde are detected, also for the first time ever in the ISM. For the deuterated species, a D/H ratio of ≈5% is found with no differences between the deuteration in the different functional groups of glycolaldehyde, in contrast to previous estimates for methanol and recent suggestions of significant equilibration between water and -OH functional groups at high temperatures. Measurements of the 13C-species lead to a 12C:13C ratio of ≈30, lower than the typical ISM value. This low ratio may reflect an enhancement of 13CO in the ice due to either ion-molecule reactions in the gas before freeze-out or to differences in the temperatures where 12CO and 13CO ices sublimate. Conclusions: The results reinforce the importance of low-temperature grain surface chemistry for the formation of prebiotic molecules seen here in the gas after sublimation of the entire ice mantle. Systematic surveys of the molecules thought to be chemically related, as well as the accurate measurements of their isotopic composition, hold strong promise for understanding the origin of prebiotic molecules in the earliest stages of young stars.
NASA Astrophysics Data System (ADS)
Goddi, C.; Greenhill, L.; Humphreys, E.; Matthews, L.; Chandler, C.
2010-11-01
Around high-mass Young Stellar Objects (YSOs), outflows are expected to be launched and collimated by accretion disks inside radii of 100 AU. Strong observational constraints on disk-mediated accretion in this context have been scarce, largely owing to difficulties in probing the circumstellar gas at scales 10-100 AU around high-mass YSOs, which are on average distant (>1 Kpc), form in clusters, and ignite quickly whilst still enshrouded in dusty envelopes. Radio Source I in Orion BN/KL is the nearest example of a high-mass YSO, and only one of three YSOs known to power SiO masers. Using VLA and VLBA observations of different SiO maser transitions, the KaLYPSO project (http://www.cfa.harvard.edu/kalypso/) aims to overcome past observational limitations by mapping the structure, 3-D velocity field, and dynamical evolution of the circumstellar gas within 1000 AU from Source I. Based on 19 epochs of VLBA observations of v=1,2 SiO masers over ~2 years, we produced a movie of bulk gas flow tracing the compact disk and the base of the protostellar wind at radii < 100 AU from Source I. In addition, we have used the VLA to map 7mm SiO v=0 emission and track proper motions over 10 years. We identify a narrowly collimated outflow with a mean motion of 18 km/s at radii 100-1000 AU, along a NE-SW axis perpendicular to that of the disk traced by the v=1,2 masers. The VLBA and VLA data exclude alternate models that place outflow from Source I along a NW-SE axis. The analysis of the complete (VLBA and VLA) dataset provides the most detailed evidence to date that high-mass star formation occurs via disk-mediated accretion.
NASA Technical Reports Server (NTRS)
Berry, Richard; Rajagopa, J.; Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.
2005-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the near-infrared to mid-infrared spectral region (3-8 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to JWST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We report additional studies of the imaging capabilities of the FKSI with various configurations of two to five telescopes, studies of the capabilities of FKSI assuming an increase in long wavelength response to 10 or 12 microns (depending on availability of detectors), and preliminary results from our nulling testbed.
The Fourier-Kelvin Stellar Interferometer
NASA Astrophysics Data System (ADS)
Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.; Millan-Gabet, R.; Monnier, J. D.; Mumma, M.; Mundy, L. G.; Noecker, C.; Rajagopal, J.; Seager, S.; Traub, W. A.
2003-10-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the mid-infrared spectral region (5- 28 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as the NASA Vision Missions SAFIR and SPECS. It will also be a high angular resolution infrared space observatory complementary to JWST. The scientific emphasis of the mission is on detection and spectroscopy of the atmospheres of Extra-solar Giant Planets (EGPs), the search for Brown Dwarfs and other low mass stellar companions, and the evolution of protostellar systems. FKSI can observe these systems from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We present the major results of a set of detailed design studies for the FKSI mission that were performed as a method of understanding major trade-offs pertinent to schedule, cost, and risk in preparation for submission of a Discovery proposal.
The Impact of FU Orionis Outbursts and the Solar Nebula
NASA Technical Reports Server (NTRS)
Bell, Robbins; Young, Richard E. (Technical Monitor)
1998-01-01
Protostellar systems are variable on many timescales. One of the most dramatic forms of variability known to occur in low mass stellar systems is the FU Orionis outburst (Herbig 1977). Throughout a typical outburst lasting several decades, system luminosities may be a hundred times what is typical of the quiesent state. FU Orionis outburst events are thought to have significant impact on the thermal structure of the protosolar nebula; their existence has been used to explain features in the meteoritic record from thermally induced homogenization to the formation of chondrules. Until recently, the magnitude of the likely effect from such outbursts has been largely speculative due to the lack of a detailed understanding of the outburst mechanism. Recent numerical models (Bell\\& Lin 1994) have demonstrated the viability of the observational hypothesis (Hartmann\\& Kenyon 1985) that the radiation observed during outburst is emitted by a luminous circumstellar disk transporting mass at a thousand times the quiesent rate. Light curves and color and line width evolution observed in FU Orionis systems are naturally explained by time dependent outbursting model disks (Bell et al. 1995). The radial temperature structure and shape of the disk during outburst derived from these models may be used to calculate the outburst's expected impact on primitive material at various radii throughout the disk. In this review, we will begin by discussing what is known about the FU Orionis outburst phenomenon from recent observations and theory including statistically deduced outburst timescales and observed peak temperatures. Unless covered by another author, we will discuss the evidence which suggests that outburst radiation is emitted by a circumstellar disk rather than by the star and will briefly review the thermal instability as a mechanism for outburst. We will then report on recent work which investigates the likely heating of solar nebula material due to FU Orionis outbursts including the following effects: (1) heating of the planet forming region by direct radiation from the hot inner nebula; (2) heating by the diffuse radiation field of a coccooning envelope; and (3) time-dependent penetration of the increased luminosity from the above sources into the optically thick nebula. Some of this work is currently in progress. The potential effects on condensation and migration in the nebula and the thermal processing of solids will be evaluated.
Depletion of chlorine into HCl ice in a protostellar core. The CHESS spectral survey of OMC-2 FIR 4
NASA Astrophysics Data System (ADS)
Kama, M.; Caux, E.; López-Sepulcre, A.; Wakelam, V.; Dominik, C.; Ceccarelli, C.; Lanza, M.; Lique, F.; Ochsendorf, B. B.; Lis, D. C.; Caballero, R. N.; Tielens, A. G. G. M.
2015-02-01
Context. The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <10-5 has not yet been well studied. Aims: Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. Methods: We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H2 hyperfine collisional excitation rate coefficients. Results: A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9 × 10-11, a factor of only 10-3 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous foreground cloud, where we find no depletion of volatile chlorine. Conclusions: Gas-phase HCl is the tip of the chlorine iceberg in protostellar cores. Using a gas-grain chemical model, we show that the hydrogenation of atomic chlorine on grain surfaces in the dark cloud stage sequesters at least 90% of the volatile chlorine into HCl ice, where it remains in the protostellar stage. About 10% of chlorine is in gaseous atomic form. Gas-phase HCl is a minor, but diagnostically key reservoir, with an abundance of ≲10-10 in most of the protostellar core. We find the [35Cl]/[37Cl] ratio in OMC-2 FIR 4 to be 3.2 ± 0.1, consistent with the solar system value. Appendices are available in electronic form at http://www.aanda.org
A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cécere, Mariana; Velázquez, Pablo F.; De Colle, Fabio
2016-01-10
Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray)more » synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.« less
The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA
NASA Technical Reports Server (NTRS)
Leisawitz, Dave
2007-01-01
We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.
EARTH, MOON, SUN, AND CV ACCRETION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, M. M.
2009-11-01
Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths'more » equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if accretion disks are present or not. Our results suggest that the accretion disk's geometric shape directly affects the disk's precession rate.« less
Broad N2H+ Emission toward the Protostellar Shock L1157-B1
NASA Astrophysics Data System (ADS)
Codella, C.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Benedettini, M.; Busquet, G.; Caselli, P.; Fontani, F.; Gómez-Ruiz, A.; Podio, L.; Vasta, M.
2013-10-01
We present the first detection of N2H+ toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ~0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originated from the dense (>=105 cm-3) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N2H+ column density of a few 1012 cm-2 corresponding to an abundance of (2-8) × 10-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 104 yr, i.e., for more than the shock kinematical age (sime2000 yr). Modeling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 104 cm-3, and then further compressed and accelerated by the shock.
NASA Astrophysics Data System (ADS)
Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.
2018-06-01
The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.
Host Star Dependence of Small Planet Mass–Radius Distributions
NASA Astrophysics Data System (ADS)
Neil, Andrew R.; Rogers, Leslie A.
2018-05-01
The planet formation environment around M dwarf stars is different than around G dwarf stars. The longer hot protostellar phase, activity levels and lower protoplanetary disk mass of M dwarfs all may leave imprints on the composition distribution of planets. We use hierarchical Bayesian modeling conditioned on the sample of transiting planets with radial velocity mass measurements to explore small planet mass–radius distributions that depend on host star mass. We find that the current mass–radius data set is consistent with no host star mass dependence. These models are then applied to the Kepler planet radius distribution to calculate the mass distribution of close-orbiting planets and how it varies with host star mass. We find that the average heavy element mass per star at short orbits is higher for M dwarfs compared to FGK dwarfs, in agreement with previous studies. This work will facilitate comparisons between microlensing planet surveys and Kepler, and will provide an analysis framework that can readily be updated as more M dwarf planets are discovered by ongoing and future surveys such as K2 and the Transiting Exoplanet Survey Satellite.
Local shear instabilities in weakly ionized, weakly magnetized disks
NASA Technical Reports Server (NTRS)
Blaes, Omer M.; Balbus, Steven A.
1994-01-01
We extend the analysis of axisymmetric magnetic shear instabilities from ideal magnetohydrodynamic (MHD) flows to weakly ionized plasmas with coupling between ions and neutrals caused by collisions, ionization, and recombination. As part of the analysis, we derive the single-fluid MHD dispersion relation without invoking the Boussinesq approximation. This work expands the range of applications of these instabilities from fully ionized accretion disks to molecular disks in galaxies and, with somewhat more uncertainty, to protostellar disks. Instability generally requires the angular velocity to decrease outward, the magnetic field strengths to be subthermal, and the ions and neutrals to be sufficiently well coupled. If ionization and recombination processes can be neglected on an orbital timescale, adequate coupling is achieved when the collision frequency of a given neutral with the ions exceeds the local epicyclic freqency. When ionization equilibrium is maintained on an orbital timescale, a new feature is present in the disk dynamics: in contrast to a single-fluid system, subthermal azimuthal fields can affect the axisymmetric stability of weakly ionized two-fluid systems. We discuss the underlying causes for this behavior. Azimuthal fields tend to be stabilizing under these circumstances, and good coupling between the neutrals and ions requires the collision frequency to exceed the epicyclic frequency by a potentially large secant factor related to the magnetic field geometry. When the instability is present, subthermal azimuthal fields may also reduce the growth rate unless the collision frequency is high, but this is important only if the field strengths are very subthermal and/or the azimuthal field is the dominant field component. We briefly discuss our results in the context of the Galactic center circumnuclear disk, and suggest that the shear instability might be present there, and be responsible for the observed turbulent motions.
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Materese, C. K.; Nuevo, M.
2015-01-01
Aromatic hydrocarbons are an important class of molecules for both astrochemistry and astrobiology (Fig. 1). Within this class of molecules, polycyclic aromatic hydrocarbons (PAHs) are known to be ubiquitous in many astrophysical environments, and are likely present in interstellar clouds and protostellar disks. In dense clouds, PAHs are expected to condense onto grains as part of mixed molecular ice mantles dominated by small molecules like H2O,CH3OH, NH3, CO, and CO2. These ices are exposed to ionizing radiation in the form of cosmic rays and ambient high-energy X-ray and UV photons.
Deuterium chemistry in the young massive protostellar core NGC 2264 CMM3
NASA Astrophysics Data System (ADS)
Awad, Z.; Shalabiea, O. M.
2018-01-01
In this work we present the first attempt of modelling the deuterium chemistry in the massive young protostellar core NGC 2264 CMM3. We investigated the sensitivity of this chemistry to the physical conditions in its surrounding environment. The results showed that deuteration, in the protostellar gas, is affected by variations in the core density, the amount of gas depletion onto grain surfaces, the CR ionisation rate, but it is insensitive to variations in the H2 ortho-to-para ratio. Our results, also, showed that deuteration is often enhanced in less-dense, partially depleted (<85%), or cores that are exerted to high CR ionisation rates (≥6.5×10^{-17} s^{-1}). However, in NGC 2264 CMM3, decreasing the amount of gas depleted onto grains and enhancing the CR ionisation rate are often overestimating the observed values in the core. The best fit time to observations occurs around (1-5) × 104 yrs for core densities in the range (1-5)×106 cm^{-3} with CR ionisation rate between (1.7-6.5)×10^{-17} s^{-1}. These values are in agreement with the results of the most recent theoretical chemical model of CMM3, and the time range of best fit is, also, in-line with the estimated age of young protostellar objects. We conclude that deuterium chemistry in protostellar cores is: (i) sensitive to variations in the physical conditions in its environment, (ii) insensitive to changes in the H2 ortho-to-para ratio. We also conclude that the core NGC 2264 CMM3 is in its early stages of chemical evolution with an estimated age of (1-5)×104 yrs.
NASA Astrophysics Data System (ADS)
Michael, Scott; Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C.
2012-02-01
We conduct a convergence study of a protostellar disk, subject to a constant global cooling time and susceptible to gravitational instabilities (GIs), at a time when heating and cooling are roughly balanced. Our goal is to determine the gravitational torques produced by GIs, the level to which transport can be represented by a simple α-disk formulation, and to examine fragmentation criteria. Four simulations are conducted, identical except for the number of azimuthal computational grid points used. A Fourier decomposition of non-axisymmetric density structures in cos (mphi), sin (mphi) is performed to evaluate the amplitudes Am of these structures. The Am , gravitational torques, and the effective Shakura & Sunyaev α arising from gravitational stresses are determined for each resolution. We find nonzero Am for all m-values and that Am summed over all m is essentially independent of resolution. Because the number of measurable m-values is limited to half the number of azimuthal grid points, higher-resolution simulations have a larger fraction of their total amplitude in higher-order structures. These structures act more locally than lower-order structures. Therefore, as the resolution increases the total gravitational stress decreases as well, leading higher-resolution simulations to experience weaker average gravitational torques than lower-resolution simulations. The effective α also depends upon the magnitude of the stresses, thus αeff also decreases with increasing resolution. Our converged αeff is consistent with predictions from an analytic local theory for thin disks by Gammie, but only over many dynamic times when averaged over a substantial volume of the disk.
Formation of massive seed black holes via collisions and accretion
NASA Astrophysics Data System (ADS)
Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.
2018-05-01
Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.
Small Scale Chemical Segregation Within Keplerian Disk Candidate G35.20-0.74N
NASA Astrophysics Data System (ADS)
Allen, Veronica; van der Tak, Floris; Sánchez-Monge, Álvaro; Cesaroni, Riccardo; Beltrán, Maria T.
2016-06-01
In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive protostar. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. With the advent of the highly sensitive sub-millimeter interferometer, ALMA, the ability to chemically characterize high mass star forming regions other than Orion has become possible. In the up-and-coming field of observational astrochemistry, these sensitive high resolution observations have opened up opportunities to find small scale variations in young protostellar sources.We have done an in depth analysis of high spatial resolution (~1000 AU) Cycle 0 ALMA observations of the high mass star forming region G35.20-0.74N, where Sánchez-Monge et al (2013) found evidence for Keplerian rotation. After further chemical analysis, numerous complex organic species have been identified in this region and we notice an interesting asymmetry in the distribution of the Nitrogen-bearing species within this source. In my talk, I will briefly outline the case for the disk and the consequences for this hypothesis following the chemical segregation we have seen.
3-D MHD disk wind simulations of protostellar jets
NASA Astrophysics Data System (ADS)
Staff, Jan E.; Koning, Nico; Ouyed, Rachid; Tanaka, Kei; Tan, Jonathan C.
2016-01-01
We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disk winds for different initial magnetic field configurations. The jets are followed from the source to distances, which are resolvable by HST and ALMA observations. Our simulations show that jets are heated along their length by many shocks. The mass of the protostar is a free parameter that can be inserted in the post processing of the data, and we apply the simulations to both low mass and high mass protostars. For the latter we also compute the expected diagnostics when the outflow is photoionized by the protostar. We compute the emission lines that are produced, and find excellent agreement with observations. For a one solar mass protostar, we find the jet width to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. For the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disk (counter-rotating). This is not seen in the less open field configurations.
NASA Astrophysics Data System (ADS)
Frimann, Søren; Jørgensen, Jes K.; Dunham, Michael M.; Bourke, Tyler L.; Kristensen, Lars E.; Offner, Stella S. R.; Stephens, Ian W.; Tobin, John J.; Vorobyov, Eduard I.
2017-06-01
Context. Understanding how accretion proceeds is a key question of star formation, with important implications for both the physical and chemical evolution of young stellar objects. In particular, very little is known about the accretion variability in the earliest stages of star formation. Aims: Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods: A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems and their Evolution with the SMA" (MASSES). The size of the C18O-emitting region, where CO has sublimated into the gas-phase, is measured towards each source and compared to the expected size of the region given the current luminosity. The SMA observations also include 1.3 mm continuum data, which are used to investigate whether or not a link can be established between accretion bursts and massive circumstellar disks. Results: Depending on the adopted sublimation temperature of the CO ice, between 20% and 50% of the sources in the sample show extended C18O emission indicating that the gas was warm enough in the past that CO sublimated and is currently in the process of refreezing; something which we attribute to a recent accretion burst. Given the fraction of sources with extended C18O emission, we estimate an average interval between bursts of 20 000-50 000 yr, which is consistent with previous estimates. No clear link can be established between the presence of circumstellar disks and accretion bursts, however the three closest known binaries in the sample (projected separations <20 AU) all show evidence of a past accretion burst, indicating that close binary interactions may also play a role in inducing accretion variability.
Formation of X-ray emitting stationary shocks in magnetized protostellar jets
NASA Astrophysics Data System (ADS)
Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.
2016-12-01
Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Ciardi, David R.
2015-01-01
Most stars are born in binaries, and the evolution of protostellar disks in pre-main sequence (PMS) binary stars is a current frontier of star formation research. PMS binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces. Thus, accretion in PMS binaries is controlled by not only radiation, disk viscosity, and magnetic fields, but also by orbital dynamics.As part of a larger, ongoing effort to characterize mass accretion in young binary systems, we test the predictions of the binary accretion stream theory through continuous, multi-orbit, multi-color optical and near-infrared (NIR) time-series photometry. Observations such as these are capable of detecting and characterizing these modulated accretion streams, if they are generally present. Broad-band blue and ultraviolet photometry trace the accretion luminosity and photospheric temperature while NIR photometry provide a measurement of warm circumstellar material, all as a function of orbital phase. The predicted phase and magnitude of enhanced accretion are highly dependent on the binary orbital parameters and as such, our campaign focuses on 10 PMS binaries of varying periods and eccentricities. Here we present multi-color optical (U, B,V, R), narrowband (Hα), and multi-color NIR (J, H) lightcurves of the PMS binary V4046 Sgr (P=2.42 days) obtained with the SMARTS 1.3m telescope and LCOGT 1m telescope network. These results act to showcase the quality and breadth of data we have, or are currently obtaining, for each of the PMS binaries in our sample. With the full characterization of our sample, these observations will guide an extension of the accretion paradigm from single young stars to multiple systems.
The formation of protostellar disks. 2: Disks around intermediate-mass stars
NASA Technical Reports Server (NTRS)
Yorke, Harold W.; Bodenheimer, Peter; Laughlin, G.
1995-01-01
Hydrodynamical calculations of the evolution of a collapsing, rotating axisymmetric 10 solar masses molecular clump, including the effects of radiative acceleration but without magnetic fields, are represented. The initial cloud is assumed to be uniformly rotating, centrally condensed sphere with rho is proportional to r(exp -2). Several cases are considered, in which both the overall clump size and the total amount of angular momentum are varied. The calculations show how a warm, quasi-hydrostatic disk surrounding a central unresolved core of only a few solar masses forms and grows in size and mass. The disk is encased in two distinct accretion shock fronts, both of which are several scale heights above the equatorial plane. At the end of the calculation of our standard case, the central unresolved region is found to have a mass of 2.7 solar masses and a ratio of rotational to gravitational energy of approximately 0.45, sufficiently large to be unstable to nonaxisymmetric perturbations. In addition, the inner portions of the disk containing most of the mass are unstable according to the local Toomre criterion, implying that also in this region nonaxisymmetric perturbations will lead to rapid evolution. Under the assumption that gravitational torques would transport angular momentum out of this region, a central core of less than or approximately 8 solar masses with a stable disk of greater than or approximately = 2 solar masses should result. Frequency-dependent radiative transfer calculations of the standard case at selected ages show how the continuum spectrum of the structure depends on the disk's orientation and age and how the observed isophotal contours vary with wavelength. Because of the strong dependence on viewing angle, continuum spectra alone should not be used to estimate the evolutionary stage of development of these objects. Comparable results were obtained for the other cases considered.
NASA Astrophysics Data System (ADS)
Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Hosokawa, Takashi; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Kunitomo, Masanobu; Kawamura, Akiko; Fukui, Yasuo; Tachihara, Kengo
2017-11-01
We report ALMA observations in 0.87 mm continuum and 12CO (J = 3-2) toward a very low-luminosity (<0.1 L ⊙) protostar, which is deeply embedded in one of the densest cores, MC27/L1521F, in Taurus with an indication of multiple star formation in a highly dynamical environment. The beam size corresponds to ˜20 au, and we have clearly detected blueshifted/redshifted gas in 12CO associated with the protostar. The spatial/velocity distributions of the gas show there is a rotating disk with a size scale of ˜10 au, a disk mass of ˜10-4 M ⊙, and a central stellar mass of ˜0.2 M ⊙. The observed disk seems to be detached from the surrounding dense gas, although it is still embedded at the center of the core whose density is ˜106 cm-3. The current low-outflow activity and the very low luminosity indicate that the mass accretion rate onto the protostar is extremely low in spite of a very early stage of star formation. We may be witnessing the final stage of the formation of ˜0.2 M ⊙ protostar. However, we cannot explain the observed low luminosity with the standard pre-main-sequence evolutionary track unless we assume cold accretion with an extremely small initial radius of the protostar (˜0.65 {R}⊙ ). These facts may challenge our current understanding of the low mass star formation, in particular the mass accretion process onto the protostar and the circumstellar disk.
ALMA Reveals Transition of Polarization Pattern with Wavelength in HL Tau’s Disk
NASA Astrophysics Data System (ADS)
Stephens, Ian W.; Yang, Haifeng; Li, Zhi-Yun; Looney, Leslie W.; Kataoka, Akimasa; Kwon, Woojin; Fernández-López, Manuel; Hull, Charles L. H.; Hughes, Meredith; Segura-Cox, Dominique; Mundy, Lee; Crutcher, Richard; Rao, Ramprasad
2017-12-01
The mechanism for producing polarized emission from protostellar disks at (sub)millimeter wavelengths is currently uncertain. Classically, polarization is expected from non-spherical grains aligned with the magnetic field. Recently, two alternatives have been suggested. One polarization mechanism is caused by self-scattering from dust grains of sizes comparable with the wavelength, while the other mechanism is due to grains aligned with their short axes along the direction of radiation anisotropy. The latter has recently been shown as a likely mechanism for causing the dust polarization detected in HL Tau at 3.1 mm. In this paper, we present ALMA polarization observations of HL Tau for two more wavelengths: 870 μm and 1.3 mm. The morphology at 870 μm matches the expectation for self-scattering, while that at 1.3 mm shows a mix between self-scattering and grains aligned with the radiation anisotropy. The observations cast doubt on the ability of (sub)millimeter continuum polarization to probe disk magnetic fields for at least HL Tau. By showing two distinct polarization morphologies at 870 μm and 3.1 mm and a transition between the two at 1.3 mm, this paper provides definitive evidence that the dominant (sub)millimeter polarization mechanism transitions with wavelength. In addition, if the polarization at 870 μm is due to scattering, the lack of polarization asymmetry along the minor axis of the inclined disk implies that the large grains responsible for the scattering have already settled into a geometrically thin layer, and the presence of asymmetry along the major axis indicates that the HL Tau disk is not completely axisymmetric.
The formation of protostellar binaries in primordial minihalos
NASA Astrophysics Data System (ADS)
Riaz, R.; Bovino, S.; Vanaverbeke, S.; Schleicher, D. R. G.
2018-06-01
The first stars are known to form in primordial gas, either in minihalos with about 106 M⊙ or so-called atomic cooling halos of about 108 M⊙. Simulations have shown that gravitational collapse and disk formation in primordial gas yield dense stellar clusters. In this paper, we focus particularly on the formation of protostellar binary systems, and aim to quantify their properties during the early stage of their evolution. For this purpose, we combine the smoothed particle hydrodynamics code GRADSPH with the astrochemistry package KROME. The GRADSPH-KROME framework is employed to investigate the collapse of primordial clouds in the high-density regime, exploring the fragmentation process and the formation of binary systems. We observe a strong dependence of fragmentation on the strength of the turbulent Mach number M and the rotational support parameter β. Rotating clouds show significant fragmentation, and have produced several Pop. III proto-binary systems. We report maximum and minimum mass accretion rates of 2.31 × 10-1 M⊙ yr-1 and 2.18 × 10-4 M⊙ yr-1. The mass spectrum of the individual Pop III proto-binary components ranges from 0.88 M⊙ to 31.96 M⊙ and has a sensitive dependence on the Mach number M as well as on the rotational parameter β. We also report a range from ˜0.01 to ˜1 for the mass ratio of our proto-binary systems.
OH masers towards IRAS 19092+0841
NASA Astrophysics Data System (ADS)
Edris, K. A.; Fuller, G. A.; Etoka, S.; Cohen, R. J.
2017-12-01
Context. Maser emission is a strong tool for studying high-mass star-forming regions and their evolutionary stages. OH masers in particular can trace the circumstellar material around protostars and determine their magnetic field strengths at milliarcsecond resolution. Aims: We seek to image OH maser emission towards high-mass protostellar objects to determine their evolutionary stages and to locate the detected maser emission in the process of high-mass star formation. Methods: In 2007, we surveyed OH maser emission towards 217 high-mass protostellar objects to study its presence. In this paper, we present follow-up MERLIN observations of a ground-state OH maser emission towards one of these objects, IRAS 19092+0841. Results: We detect emissions from the two OH main spectral lines, 1665 and 1667 MHz, close to the central object. We determine the positions and velocities of the OH maser features. The masers are distributed over a region of 5'' corresponding to 22 400 AU (or 0.1 pc) at a distance of 4.48 kpc. The polarization properties of the OH maser features are determined as well. We identify three Zeeman pairs from which we inferred a magnetic field strength of 4.4 mG pointing towards the observer. Conclusions: The relatively small velocity spread and relatively wide spacial distribution of the OH maser features support the suggestion that this object could be in an early evolutionary state before the presence of disk, jets or outflows.
Laboratory Measurements for H3+ Deuteration Reactions
NASA Astrophysics Data System (ADS)
Bowen, Kyle; Hillenbrand, Pierre-Michel; Urbain, Xavier; Savin, Daniel Wolf
2018-06-01
Deuterated molecules are important chemical tracers of protostellar cores. At the ~106 cm-3 particle densities and ~20 K temperatures typical for protostellar cores, most molecules freeze onto dust grains. A notable exception is H3+ and its isotopologues. These become important carriers of positive charge in the gas, can couple to any ambient magnetic field, and can thereby alter the cloud dynamics. Knowing the total abundance of H3+ and its isotopologues is important for studying the evolution of protostellar cores. However, H3+ and D3+ have no dipole moment. They lack a pure rotational spectrum and are not observable at protostellar core temperatures. Fortunately H2D+ and D2H+ have dipole moments and a pure rotational spectrum that can be excited in protostellar cores. Observations of these two molecules, combined with astrochemical models, provide information about the total abundance of H3+ and all its isotopologues. The inferred abundances, though, rely on accurate astrochemical data for the deuteration of H3+ and its isotopologues.Here we present laboratory measurements of the rate coefficients for three important deuterating reactions, namely D + H3+/H2D+/D2H+ → H + H2D+/ D2H+/D3+. Astrochemical models currently rely on rate coefficients from classical (Langevin) or semi-classical methods for these reactions, as fully quantum-mechanical calculations are beyond current computational capabilities. Laboratory studies are the most tractable means of providing the needed data. For our studies we used our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and molecular ions. Co-propagating beams allow us to measure experimental rate coefficients as a function of collision energy. We extract cross section data from these results, which we then convolve with a Maxwell-Boltzmann distribution to generate thermal rate coefficients. Here we present our results for these three reactions and discuss some implications.
NASA Astrophysics Data System (ADS)
Jorgensen, Jes K.; Coutens, Audrey; Bourke, Tyler L.; Favre, Cecile; Garrod, Robin; Lykke, Julie; Mueller, Holger; Oberg, Karin I.; Schmalzl, Markus; van der Wiel, Matthijs; van Dishoeck, Ewine; Wampfler, Susanne F.
2015-08-01
Understanding how, when and where complex organic and potentially prebiotic molecules are formed is a fundamental goal of astrochemistry and an integral part of origins of life studies. Already now ALMA is showing its capabilities for studies of the chemistry of solar-type stars with its high sensitivity for faint lines, high spectral resolution which limits line confusion, and high angular resolution making it possible to study the structure of young protostars on solar-system scales. We here present the first results from a large unbiased survey “Protostellar Interferometric Line Survey (PILS)” targeting one of the astrochemical template sources, the low-mass protostellar binary IRAS 16293-2422. The survey is more than an order of magnitude more sensitive than previous surveys of the source and provide imaging down to 25 AU scales (radius) around each of the two components of the binary. An example of one of the early highlights from the survey is unambiguous detections of the (related) prebiotic species glycolaldehyde, ethylene glycol (two lowest energy conformers), methyl formate and acetic acid. The glycolaldehyde-ethylene glycol abundance ratio is high in comparison to comets and other protostars - but agrees with previous measurements, e.g., in the Galactic Centre clouds possibly reflecting different environments and/or evolutionary histories. Complete mapping of this and other chemical networks in comparison with detailed chemical models and laboratory experiments will reveal the origin of complex organic molecules in a young protostellar system and investigate the link between these protostellar stages and the early Solar System.
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto
2016-01-01
Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential-decay typical of flares. While both are present, accretion dominates the observed variability providing evidence for the accretion stream theory and detailed mass accretion rates for comparison with numerical simulations.
Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis
NASA Astrophysics Data System (ADS)
Sullivan, Kendall; Prato, Lisa; Avilez, Ian
2018-01-01
S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.
La Freccia Rossa: An IR-dark cloud hosting the Milky Way intermediate-mass black hole candidate
NASA Astrophysics Data System (ADS)
Ravi, Vikram; Vedantham, Harish; Phinney, E. Sterl
2018-05-01
The dynamics of the high-velocity compact molecular cloud CO-0.40-0.22 have been interpreted as evidence for a ˜105M⊙ black hole within 60 pc of Sgr A*. Recently, Oka et al. have identified a compact millimetre-continuum source, CO-0.40-0.22*, with this candidate black hole. Here we present a collation of radio and infrared data at this location. ATCA constraints on the radio spectrum, and the detection of a mid-infrared counterpart, are in tension with an Sgr A*-like model for CO-0.40-0.22* despite the comparable bolometric to Eddington luminosity ratios under the IMBH interpretation. A protostellar-disk scenario is, however, tenable. CO-0.40-0.22(*) is positionally coincident with an arrowhead-shaped infrared-dark cloud (which we call the Freccia Rossa). If the VLSR ≈ 70 km s-1 systemic velocity of CO-0.40-0.22 is common to the entire Freccia Rossa system, we hypothesise that it is the remnant of a high-velocity cloud that has plunged into the Milky Way from the Galactic halo.
The Birth of Disks Around Protostars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
The dusty disks around young stars make the news regularly due to their appeal as the birthplace of early exoplanets. But how do disks like these first form and evolve around their newly born protostars? New observations from the Atacama Large Millimeter/submillimeter Array (ALMA) are helping us to better understand this process.Formation from CollapseStars are born from the gravitational collapse of a dense cloud of molecular gas. Long before they start fusing hydrogen at their centers when they are still just hot overdensities in the process of contracting we call them protostars. These low-mass cores are hidden at the hearts of the clouds of molecular gas from which they are born.Aerial image of the Atacama Large Millimeter/submillimeter Array. [EFE/Ariel Marinkovic]During this contraction phase, before a protostar transitions to a pre-main-sequence star (which it does by blowing away its outer gas envelope, halting the stars growth), much of the collapsing material will spin into a centrifugally supported Keplerian disk that surrounds the young protostar. Later, these circumstellar disks will become the birthplace for young planets something for which weve seen observational evidence in recent years.But how do these Keplerian disks which eventually have scales of hundreds of AU first form and grow around protostars? We need observations of these disks in their early stages of formation to understand their birth and evolution a challenging prospect, given the obscuring molecular gas that hides them at these stages. ALMA, however, is up to the task: it can peer through to the center of the gas clouds to see the emission from protostellar cores and their surroundings.ALMA observations of the protostar Lupus 3 MMS. The molecular outflows from the protostar are shown in panel a. Panel b shows the continuum emission, which has a compact component that likely traces a disk surrounding the protostar. [Adapted from Yen et al. 2017]New Disks Revealed?In a recent publication led by Hsi-Wei Yen (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists presents results from ALMAs observations of three very early-stage protostars: Lupus 3 MMS, IRAS 153983559, and IRAS 153982429. ALMAs spectacular resolution allowed Yen and collaborators to infer the presence of a 100-AU Keplerian disk around Lupus 3 MMS, and signatures of infall on scales of 30 AU around the other two sources.The authors construct models of the sources and show that the observations are consistent with the presence of disks around all three sources: a 100-AU disk around a 0.3 solar-mass protostar in the Lupus system, a 20-AU disk around a 0.01 solar-mass protostar in IRAS 153983559, and 6-AU disk around a 0.03 solar-mass protostar in IRAS 153982429.By comparing their observations to those of other early-stage protostars, the authors conclude that in the earliest protostar stage, known as the Class 0 stage, the protostars disk grows rapidly in radius. As the protostar ages and enters the Class I stage, the disk growth stagnates, changing only very slowly after this.These observations mark an important step in our ability to study the gas motions on such small scales at early stages of stellar birth. Additional future studies will hopefully allow us to continue to buildthis picture!CitationHsi-Wei Yen et al 2017 ApJ 834 178. doi:10.3847/1538-4357/834/2/178
Chemistry of a newly detected circumbinary disk in Ophiuchus
NASA Astrophysics Data System (ADS)
Artur de la Villarmois, Elizabeth; Kristensen, Lars E.; Jørgensen, Jes K.; Bergin, Edwin A.; Brinch, Christian; Frimann, Søren; Harsono, Daniel; Sakai, Nami; Yamamoto, Satoshi
2018-06-01
Context. Astronomers recently started discovering exoplanets around binary systems. Therefore, understanding the formation and evolution of circumbinary disks and their environment is crucial for a complete scenario of planet formation. Aims: The purpose of this paper is to present the detection of a circumbinary disk around the system Oph-IRS67 and analyse its chemical and physical structure. Methods: We present high-angular-resolution (0.''4, 60 AU) observations of C17O, H13CO+, C34S, SO2, C2H and c-C3H2 molecular transitions with the Atacama Large Millimeter/submillimeter Array (ALMA) at wavelengths of 0.8 mm. The spectrally and spatially resolved maps reveal the kinematics of the circumbinary disk as well as its chemistry. Molecular abundances are estimated using the non-local thermodynamic equilibrium (LTE) radiative-transfer tool RADEX. Results: The continuum emission agrees with the position of Oph-IRS67 A and B, and reveals the presence of a circumbinary disk around the two sources. The circumbinary disk has a diameter of 620 AU and is well traced by C17O and H13CO+ emission. Two further molecular species, C2H and c-C3H2, trace a higher-density region which is spatially offset from the sources ( 430 AU). Finally, SO2 shows compact and broad emission around only one of the sources, Oph-IRS67 B. The molecular transitions which trace the circumbinary disk are consistent with a Keplerian profile on smaller disk scales (≲200 AU) and an infalling profile for larger envelope scales (≳200 AU). The Keplerian fit leads to an enclosed mass of 2.2 M⊙. Inferred CO abundances with respect to H2 are comparable to the canonical ISM value of 2.7 × 10-4, reflecting that freeze-out of CO in the disk midplane is not significant. Conclusions: Molecular emission and kinematic studies prove the existence and first detection of the circumbinary disk associated with the system Oph-IRS67. The high-density region shows a different chemistry than the disk, being enriched in carbon chain molecules. The lack of methanol emission agrees with the scenario where the extended disk dominates the mass budget in the innermost regions of the protostellar envelope, generating a flat density profile where less material is exposed to high temperatures, and thus, complex organic molecules would be associated with lower column densities. Finally, Oph-IRS67 is a promising candidate for proper motion studies and the detection of both circumstellar disks with higher-angular-resolution observations.
DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J., E-mail: s.mohanty@imperial.ac.uk, E-mail: ercolano@usm.lmu.de, E-mail: neal.turner@jpl.nasa.gov
We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with Mmore » {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.« less
The magnetic field of molecular clouds
NASA Astrophysics Data System (ADS)
Padoan, P.
2018-01-01
The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determines the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport during the protostellar collapse, and affects the stability of circumstellar disks. In this work, we focus on the problem of the determination of the magnetic field strength. We review the idea that the MC turbulence is super-Alfvénic, and we argue that MCs are bound to be born super-Alfvénic. We show that this scenario is supported by results from a recent simulation of supernova-driven turbulence on a scale of 250 pc, where the turbulent cascade is resolved on a wide range of scales, including the interior of MCs.
STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzner, Christopher D.; Jumper, Peter H., E-mail: matzner@astro.utoronto.ca
2015-12-10
During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when itsmore » column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive.« less
Spectroscopic diagnostics of organic chemistry in the protostellar environment
NASA Technical Reports Server (NTRS)
Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.
2001-01-01
A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.
Episodic accretion in binary protostars emerging from self-gravitating solar mass cores
NASA Astrophysics Data System (ADS)
Riaz, R.; Vanaverbeke, S.; Schleicher, D. R. G.
2018-06-01
Observations show a large spread in the luminosities of young protostars, which are frequently explained in the context of episodic accretion. We tested this scenario with numerical simulations that follow the collapse of a solar mass molecular cloud using the GRADSPH code, thereby varying the strength of the initial perturbations and temperature of the cores. A specific emphasis of this paper is to investigate the role of binaries and multiple systems in the context of episodic accretion and to compare their evolution to the evolution in isolated fragments. Our models form a variety of low-mass protostellar objects including single, binary, and triple systems in which binaries are more active in exhibiting episodic accretion than isolated protostars. We also find a general decreasing trend in the average mass accretion rate over time, suggesting that the majority of the protostellar mass is accreted within the first 105 years. This result can potentially help to explain the surprisingly low average luminosities in the majority of the protostellar population.
Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar
NASA Technical Reports Server (NTRS)
Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)
2002-01-01
We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r(sub k) is greater than or equal to 4.6. Its low luminosity (2 solar masses) and high veiling dictate that its central protostar is very low mass, M is approx. 0.1 solar masses. We also evaluate multi-epoch X ray data along with these spectra and conclude that the X ray variabilities of these sources are not directly related to their protostellar rotation velocities.
Deuterated water in low-mass protostars
NASA Astrophysics Data System (ADS)
Coutens, Audrey; Vastel, Charlotte; Chess Collaboration; Wish Collaboration; Hexos Collaboration
2013-07-01
In addition to its dominant role in the cooling of warm gas and in the oxygen chemistry, water is a primordial species in the emergence of life, and comets may have brought a large fraction to Earth to form the oceans. Observations of deuterated water are an important complement for studies of H2O to understand how water forms and how it has evolved from cold prestellar cores to protoplanetary disks and consequently oceans for the Earth's specific, but probably not isolated, case. Several deuterated water transitions were observed with the Herschel/HIFI (Heterodyne Instrument for Far Infrared) instrument towards three low-mass protostars: IRAS 16293-2422, NGC1333 IRAS4A and NGC1333 IRAS4B. In the first source, both HDO and D2O lines are detected, thanks to the unbiased spectral survey carried out by the CHESS key program (Vastel et al. 2010, Coutens et al. 2013a). In the framework of a collaboration between the CHESS, WISH and HEXOS programs, two HDO key lines were observed towards the two other protostars. In addition, complementary observations were carried out with several ground-based single-dish telescopes (IRAM-30m, JCMT, APEX). We used the non-LTE RATRAN spherical model (Hogerheijde & van der Tak 2000) to determine the HDO abundance distribution throughout the protostellar envelope. An abundance jump at 100 K is required to reproduce the line profiles. Indeed, water molecules trapped in the icy grain mantles thermally desorb in the hot corinos, the inner warm regions of the protostellar envelopes. We also obtain that it is necessary to add a water-rich external absorbing layer to reproduce the absorbing components of the HDO and D2O fundamental transitions in all sources (Coutens et al. 2012, 2013a,b). The results derived for the different sources will be then presented and discussed.
NASA Technical Reports Server (NTRS)
Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.
2013-01-01
Chondritic porous IDPs may be among the most primitive objects found in our solar system [1]. They consist of many micron to submicron minerals, glasses and carbonaceous matter [2,3,4,5,6,7] with > 10(exp 4) grains in a 10 micron cluster [8]. Speculation on the environment where these fine grained, porous IDPs formed varies with possible sources being presolar dusty plasma clouds, protostellar condensation, solar asteroids or comets [4,6,9]. Also, fine grained dust forms in our solar system today [10,11]. Isotopic anomalies in some particles in IDPs suggest an interstellar source[4,7,12]. IDPs contain relic particles left from the dusty plasma that existed before the protostellar disk formed and other grains in the IDPs formed later after the cold dense nebula cloud collapsed to form our protostar and other grains formed more recently. Fe and CR XANES spectroscopy is used here to investigate the oxygen environment in a large (>50 10 micron or larger sub-units) IDP. Conclusions: Analyzing large (>50 10 micron or larger sub-units) CP IDPs gives one a view on the environments where these fine dust grains formed which is different from that found by only analyzing the small, 10 micron IDPs. As with cluster IDP L2008#5 [3], L2009R2 cluster #13 appears to be an aggregate of grains that sample a diversity of solar and perhaps presolar environments. Sub-micron, grain by grain measurement of trace element contents and elemental oxidation states determined by XANES spectroscopy offers the possibility of understanding the environments in which these grains formed when compared to standard spectra. By comparing thermodynamic modeling of condensates with analytical data an understanding of transport mechanisms operating in the early solar system may be attained.
Theory of Bipolar Outflows from Accreting Hot Stars
NASA Astrophysics Data System (ADS)
Konigl, A.
1996-05-01
There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main sequence while they were still accreting? Does the evolution of protostellar disks differ in low-mass and high-mass objects?).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhiyun; Krasnopolsky, Ruben; Shang Hsien
Dense, star-forming cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk (RSD) during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through two-dimensional (axisymmetric) simulations, the question of whether realistic levels of non-ideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable an RSD to form. We find that ambipolar diffusion (AD), the dominant non-ideal MHD effect over most ofmore » the density range relevant to disk formation, does not enable disk formation, at least in two dimensions. The reason is that AD allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for an RSD to form, either by itself or in combination with AD. The Hall effect, the least explored of these three non-ideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form an RSD. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.« less
Magnetically Controlled Spasmodic Accretion during Star Formation. II. Results
NASA Astrophysics Data System (ADS)
Tassis, Konstantinos; Mouschovias, Telemachos Ch.
2005-01-01
The problem of the late accretion phase of the evolution of an axisymmetric, isothermal magnetic disk surrounding a forming star has been formulated in a companion paper. The ``central sink approximation'' is used to circumvent the problem of describing the evolution inside the opaque central region for densities greater than 1011 cm-3 and radii smaller than a few AU. Only the electrons are assumed to be attached to the magnetic field lines, and the effects of both negatively and positively charged grains are accounted for. After a mass of 0.1 Msolar accumulates in the central cell (forming star), a series of magnetically driven outflows and associated outward-propagating shocks form in a quasi-periodic fashion. As a result, mass accretion onto the protostar occurs in magnetically controlled bursts. We refer to this process as spasmodic accretion. The shocks propagate outward with supermagnetosonic speeds. The period of dissipation and revival of the outflow decreases in time, as the mass accumulated in the central sink increases. We evaluate the contribution of ambipolar diffusion to the resolution of the magnetic flux problem of star formation during the accretion phase, and we find it to be very significant albeit not sufficient to resolve the entire problem yet. Ohmic dissipation is completely negligible in the disk during this phase of the evolution. The protostellar disk is found to be stable against interchange-like instabilities, despite the fact that the mass-to-flux ratio has temporary local maxima.
Silicate Emission in the TW Hydrae Association
NASA Astrophysics Data System (ADS)
Sitko, Michael L.; Lynch, David K.; Russell, Ray W.
2000-11-01
The TW Hydrae association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 μm. In TW Hya, the spectrum shows a silicate emission feature that is similar to many other young stars' with protostellar disks. The 11.2 μm feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us, but also reported by Sylvester & Skinner) is intermediate in strength between TW Hya and HR 4796A.
Formation and Recondensation of Complex Organic Molecules During Protostellar Luminosity Outbursts
NASA Technical Reports Server (NTRS)
Taquet, Vianney; Wirstrom, Eva S.; Charnley, Steven B.
2016-01-01
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
Formation and Recondensation of Complex Organic Molecules during Protostellar Luminosity Outbursts
NASA Astrophysics Data System (ADS)
Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.
2016-04-01
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
NASA Astrophysics Data System (ADS)
Gray, William J.; McKee, Christopher F.; Klein, Richard I.
2018-01-01
Star-forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently, the formation of protostellar discs is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-turbulent protostellar disc formation with realistic magnetic fields have shown that these fields are efficient in removing angular momentum from the forming discs, preventing their formation. However, once turbulence is included, discs can form in even highly magnetized clouds, although the precise mechanism remains uncertain. Here, we present several high-resolution simulations of turbulent, realistically magnetized, high-mass molecular clouds with both aligned and random turbulence to study the role that turbulence, misalignment, and magnetic fields have on the formation of protostellar discs. We find that when the turbulence is artificially aligned so that the angular momentum is parallel to the initial uniform field, no rotationally supported discs are formed, regardless of the initial turbulent energy. We conclude that turbulence and the associated misalignment between the angular momentum and the magnetic field are crucial in the formation of protostellar discs in the presence of realistic magnetic fields.
The Anatomy of the Young Protostellar Outflow HH 211
NASA Astrophysics Data System (ADS)
Tappe, A.; Forbrich, J.; Martín, S.; Yuan, Y.; Lada, C. J.
2012-05-01
We present Spitzer Space Telescope 5-36 μm mapping observations toward the southeastern lobe of the young protostellar outflow HH 211. The southeastern terminal shock of the outflow shows a rich mid-infrared spectrum including molecular emission lines from OH, H2O, HCO+, CO2, H2, and HD. The spectrum also shows a rising infrared continuum toward 5 μm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v = 1-0 fundamental band. This interpretation is supported by a strong excess flux observed in the Spitzer/IRAC 4-5 μm channel 2 image compared to the other IRAC channels. The extremely high critical densities of the CO v = 1-0 ro-vibrational lines and a comparison to H2 and CO excitation models suggest jet densities larger than 106 cm-3 in the terminal shock. We also observed the southeastern terminal outflow shock with the Submillimeter Array and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow backbone as well as the terminal shock. HCN traces individual dense knots along the outflow and in the terminal shock, whereas HCO+ solely appears in the terminal shock. The unique combination of our mid-infrared and submillimeter observations with previously published near-infrared observations allow us to study the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help us to understand the nature of some of the so-called green fuzzies (Extended Green Objects), and elucidate the physical conditions that cause high OH excitation and affect the chemical OH/H2O balance in protostellar outflows and young stellar objects. In an appendix to this paper, we summarize our Spitzer follow-up survey of protostellar outflow shocks to find further examples of highly excited OH occurring together with H2O and H2.
The Magnetic Field of the Class I Protostar WL 17
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; Greene, T. P.; Doppmann, G.; Covey, K. R.
2007-12-01
Strong stellar magnetic fields are believed to truncate the inner accretion disks around young stars, redirecting the accreting material to the high latitude regions of the stellar surface. In the past few years, observations of strong stellar fields on Classical T Tauri stars [class II young stellar objects (YSOs)] with field strengths in general agreement with the predictions of magnetopsheric accretion theory have bolstered this picture. Currently, nothing is known about the magnetic field properties of younger, more embedded class I YSOs. It is during this protostellar evolutionary phase that stars accrete most of their final mass, but the physics governing this process remains poorly understood. Here, we use high resolution near infrared spectra obtained with NIRSPEC on Keck and with PHOENIX on Gemini South to measure the magnetic field properties of the class I protostar WL 17. We find clear signatures of a strong stellar magnetic field. Initial analysis of this data suggests a surface average field strength of 3.6 kG on the surface of WL 17. This is the highest mean surface field detected to date on any YSO. We present our field measurements and discuss how they fit with the general model of magnetospheric accretion in young stars.
Interstellar Methanol from the Lab to Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Drozdovskaya, Maria; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine
2015-08-01
Interstellar methanol is considered to be a parent species of larger, more complex organic molecules. It holds a central role in many astrochemical models [e.g. 1]. Methanol has also been the focus of several laboratory studies [e.g. 2, 3] in an effort to gain insight into grain-surface chemistry, which potentially builds chemical complexity already in the cold, dark phases of protostellar evolution. The case of methanol is a prime example of experimental work having implications on astronomical scales. For this meeting, I would like to highlight how physical and chemical models can be unified to simulate infalling material during the birth of a low-mass protostar. An axisymmetric 2D semi-analytic collapse model [4], wavelength-dependent radiative transfer calculations with RADMC3D [5] and a comprehensive gas-grain chemical network [6] are used to study two physical scenarios. In the first case, the dominant disc growth mechanism is viscous spreading, while in the second, continuous infall of matter prevails. The results show that the infall path influences the abundance of methanol entering each type of disk, ranging from complete loss of methanol to an enhancement by a factor of >1 relative to the prestellar phase [7]. This work illustrates how the experimentally verified hydrogenation sequence of carbon monoxide leading to methanol influences the delivery of methanol ice to the planet- and comet-forming zones of protoplanetary disks. Such intriguing links will soon be tested by upcoming cometary data from the Rosetta mission and ALMA observations.[1] Garrod R. T., Herbst E., 2006, A&A, 457, 927[2] Watanabe N., Nagaoka A., Shiraki T., Kouchi A., 2004, ApJ, 616, 638[3] Fuchs G. W., Cuppen H. M., Ioppolo S., Romanzin C., Bisschop S. E., Andersson S., van Dishoeck E. F., Linnartz H., 2009, A&A, 505, 629[4] Visser R., van Dishoeck E. F., Doty S. D., Dullemond C. P., 2009, A&A, 495, 881[5] Dullemond C. P., Dominik C., 2004, A&A, 417, 159[6] Walsh C., Millar T. J., Nomura H., Herbst E., Widicus Weaver S., Aikawa Y., Laas J. C., Vasyunin A. I., 2014, A&A, 563, A33[7] Drozdovskaya M. N., Walsh C., Visser R., Harsono D., van Dishoeck E. F., 2014, MNRAS, 445, 91
NASA Astrophysics Data System (ADS)
Jensen, Sigurd S.; Haugbølle, Troels
2018-02-01
Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.
Models of Interacting Stellar Winds
NASA Astrophysics Data System (ADS)
Wilkin, Francis Patrick
Stars drive supersonic winds which interact violently with their surroundings. Analytic and numerical models of hypersonic, interacting circumstellar flows are presented for several important astrophysical problems. A new solution method for steady-state, axisymmetric, wind collision problems is applied to radiative bow shocks from moving stars and to the collision of two spherical winds in a binary star system. The solutions obtained describe the shape of the geometrically thin, shocked shell of matter, as well as its mass surface density and the tangential velocity within it. Analytic solutions are also obtained for non-axisymmetric bow shocks, where the asymmetry arises due to either a transverse gradient in the ambient medium, or a misaligned, axisymmetric stellar wind. While the solutions are all easily scaled in terms of their relevant dimensional parameters, the important assumption of radiative shocks implies that the models are most applicable towards systems with dense environments and low preshock velocities. The bow shock model has previously been applied to cometary, ultracompact HII regions by Van Buren et al. (1990), who discussed extensively the applicability of the thin shell approximation. I next model the collision between a protostellar wind and supersonic infall from a rotating cloud, employing a quasi-steady, thin-shell formulation. The spherical wind is initially crushed to the protostellar surface by nearly spherical infall. The centrifugal distortion of infalling matter eventually permits a wind-supported, trapped bubble to slowly expand on an evolutionary (~ 105 yr) time. The shell becomes progressively more extended along the rotational axis, due to the asymmetry of the infall. When the quasi-steady assumption breaks down, the shell has become a needle-like, bipolar configuration that may represent a precursor to protostellar jets. I stress, however, the likelihood of instability for the shell, and the possibility of oscillatory behavior in a fully time-dependent model.
NASA Astrophysics Data System (ADS)
Liu, Hauyu Baobab; Vorobyov, Eduard I.; Dong, Ruobing; Dunham, Michael M.; Takami, Michihiro; Galván-Madrid, Roberto; Hashimoto, Jun; Kóspál, Ágnes; Henning, Thomas; Tamura, Motohide; Rodríguez, Luis F.; Hirano, Naomi; Hasegawa, Yasuhiro; Fukagawa, Misato; Carrasco-Gonzalez, Carlos; Tazzari, Marco
2017-06-01
Aims: The aim of this work is to constrain properties of the disk around the archetype FU Orionis object, FU Ori, with as good as 25 au resolution. Methods: We resolved FU Ori at 29-37 GHz using the Karl G. Jansky Very Large Array (JVLA) in the A-array configuration, which provided the highest possible angular resolution to date at this frequency band ( 0.07 arcsec). We also performed complementary JVLA 8-10 GHz observations, Submillimeter Array (SMA) 224 GHz and 272 GHz observations, and compared these with archival Atacama Large Millimeter Array (ALMA) 346 GHz observations to obtain the spectral energy distributions (SEDs). Results: Our 8-10 GHz observations do not find evidence for the presence of thermal radio jets, and constrain the radio jet/wind flux to at least 90 times lower than the expected value from the previously reported bolometric luminosity-radio luminosity correlation. The emission at frequencies higher than 29 GHz may be dominated by the two spatially unresolved sources, which are located immediately around FU Ori and its companion FU Ori S, respectively. Their deconvolved radii at 33 GHz are only a few au, which is two orders of magnitude smaller in linear scale than the gaseous disk revealed by the previous Subaru-HiCIAO 1.6 μm coronagraphic polarization imaging observations. We are struck by the fact that these two spatially compact sources contribute to over 50% of the observed fluxes at 224 GHz, 272 GHz, and 346 GHz. The 8-346 GHz SEDs of FU Ori and FU Ori S cannot be fit by constant spectral indices (over frequency), although we cannot rule out that it is due to the time variability of their (sub)millimeter fluxes. Conclusions: The more sophisticated models for SEDs considering the details of the observed spectral indices in the millimeter bands suggest that the >29 GHz emission is contributed by a combination of free-free emission from ionized gas and thermal emission from optically thick and optically thin dust components. We hypothesize that dust in the innermost parts of the disks (≲0.1 au) has been sublimated, and thus the disks are no longer well shielded against the ionizing photons. The estimated overall gas and dust mass based on SED modeling, can be as high as a fraction of a solar mass, which is adequate for developing disk gravitational instability. Our present explanation for the observational data is that the massive inflow of gas and dust due to disk gravitational instability or interaction with a companion/intruder, was piled up at the few-au scale due to the development of a deadzone with negligible ionization. The piled up material subsequently triggered the thermal instability and the magnetorotational instability when the ionization fraction in the inner sub-au scale region exceeded a threshold value, leading to the high protostellar accretion rate.
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.
2015-12-01
The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards
NASA Technical Reports Server (NTRS)
Leisawitz, D,; Baker, G.; Barger, A.; Benford, D.; Blain, A; Boyle, R.; Broderick, R.; Budinoff, J.; Carpenter, J.; Caverly, R.;
2007-01-01
We report results of a recently-completed study of SPIRIT, a candidate NASA Origins Probe. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets form, and why some planets are ice giants and others are rocky; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously. SPIRIT will pave the way to the 1 km maximum baseline interferometer known as the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). In addition to the SPIRIT mission concept, this talk will emphasize the importance of dense u-v plane coverage and describe some of the practical considerations associated with alternative interferometric baseline sampling schemes.
NASA Technical Reports Server (NTRS)
Leisawitz, David; Hyde, T. Tupper; Rinehart, Stephen A.; Weiss, Michael
2008-01-01
Although the Space Infrared Interferometric Telescope (SPIRIT) was studied as a candidate NASA Origins Probe mission, the real world presents a broader set of options, pressures, and constraints. Fundamentally, SPIRIT is a far-IR observatory for high-resolution imaging and spectroscopy designed to address a variety of compelling scientific questions. How do planetary systems form from protostellar disks, dousing some planets in water while leaving others dry? Where do planets form, and why are some ice giants while others are rocky? How did high-redshift galaxies form and merge to form the present-day population of galaxies? This paper takes a pragmatic look at the mission design solution space for SPIRIT, presents Probe-class and facility-class mission scenarios, and describes optional design changes. The costs and benefits of various mission design alternatives are roughly evaluated, giving a basis for further study and to serve as guidance to policy makers.
NASA Astrophysics Data System (ADS)
Tobin, John J.; Looney, Leslie W.; Li, Zhi-Yun; Chandler, Claire J.; Dunham, Michael M.; Segura-Cox, Dominique; Sadavoy, Sarah I.; Melis, Carl; Harris, Robert J.; Kratter, Kaitlin; Perez, Laura
2016-02-01
We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array survey at Ka-band (8 mm and 1 cm) and C-band (4 and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L⊙ and ˜33 L⊙, with a median of 0.7 L⊙. This multiplicity study is based on the Ka-band data, having a best resolution of ˜0.″065 (15 au) and separations out to ˜43″ (10,000 au) can be probed. The overall multiplicity fraction (MF) is found to be 0.40 ± 0.06 and the companion star fraction (CSF) is 0.71 ± 0.06. The MF and CSF of the Class 0 protostars are 0.57 ± 0.09 and 1.2 ± 0.2, and the MF and CSF of Class I protostars are both 0.23 ± 0.08. The distribution of companion separations appears bi-modal, with a peak at ˜75 au and another peak at ˜3000 au. Turbulent fragmentation is likely the dominant mechanism on >1000 au scales and disk fragmentation is likely to be the dominant mechanism on <200 au scales. Toward three Class 0 sources we find companions separated by <30 au. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50-400 au) structures and may be candidates for ongoing disk fragmentation.
THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herczeg, Gregory J.; Dong, Subo; Chen, Ping
Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star–disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5 mag brightening in the V band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission frommore » ∼10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km s{sup −1}. The wind and hot gas both disappeared as the outburst faded and the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10–20 days. Fluorescent excitation of H{sub 2} is detected in emission from vibrational levels as high as v = 11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, though the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling.« less
Formation of stellar clusters in magnetized, filamentary infrared dark clouds
NASA Astrophysics Data System (ADS)
Li, Pak Shing; Klein, Richard I.; McKee, Christopher F.
2018-01-01
Star formation in a filamentary infrared dark cloud (IRDC) is simulated over the dynamic range of 4.2 pc to 28 au for a period of 3.5 × 105 yr, including magnetic fields and both radiative and outflow feedback from the protostars. At the end of the simulation, the star formation efficiency is 4.3 per cent and the star formation rate per free-fall time is εff ≃ 0.04, within the range of observed values. The total stellar mass increases as ∼t2, whereas the number of protostars increases as ∼t1.5. We find that the density profile around most of the simulated protostars is ∼ρ ∝ r-1.5. At the end of the simulation, the protostellar mass function approaches the Chabrier stellar initial mass function. We infer that the time to form a star of median mass 0.2 M⊙ is about 1.4 × 105 yr from the median mass accretion rate. We find good agreement among the protostellar luminosities observed in the large sample of Dunham et al., our simulation and a theoretical estimate, and we conclude that the classical protostellar luminosity problem is resolved. The multiplicity of the stellar systems in the simulation agrees, to within a factor of 2, with observations of Class I young stellar objects; most of the simulated multiple systems are unbound. Bipolar protostellar outflows are launched using a subgrid model, and extend up to 1 pc from their host star. The mass-velocity relation of the simulated outflows is consistent with both observation and theory.
Water in the envelopes and disks around young high-mass stars
NASA Astrophysics Data System (ADS)
van der Tak, F. F. S.; Walmsley, C. M.; Herpin, F.; Ceccarelli, C.
2006-03-01
Single-dish spectra and interferometric maps of (sub-)millimeter lines of H218O and HDO are used to study the chemistry of water in eight regions of high-mass star formation. The spectra indicate HDO excitation temperatures of ~110 K and column densities in an 11'' beam of ˜2×1014 cm-2 for HDO and ˜2×1017 cm-2 for H2O, with the N(HDO)/N(H2O) ratio increasing with decreasing temperature. Simultaneous observations of CH3OH and SO2 indicate that 20-50% of the single-dish line flux arises in the molecular outflows of these objects. The outflow contribution to the H218O and HDO emission is estimated to be 10-20%. Radiative transfer models indicate that the water abundance is low (~10-6) outside a critical radius corresponding to a temperature in the protostellar envelope of ≈100 K, and "jumps" to H2O/H2 ~ 10-4 inside this radius. This value corresponds to the observed abundance of solid water and together with the derived HDO/H2O abundance ratios of ~10-3 suggests that the origin of the observed water is evaporation of grain mantles. This idea is confirmed in the case of AFGL 2591 by interferometer observations of the HDO 110-111, H218O 313-220 and SO2 120,12-111,11 lines, which reveal compact (Ø ~ 800 AU) emission with a systematic velocity gradient. This size is similar to that of the 1.3 mm continuum towards AFGL 2591, from which we estimate a mass of ≈0.8 M⊙, or ~5% of the mass of the central star. We speculate that we may be observing a circumstellar disk in an almost face-on orientation.
The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A⋆⋆
NASA Astrophysics Data System (ADS)
Koumpia, E.; Semenov, D. A.; van der Tak, F. F. S.; Boogert, A. C. A.; Caux, E.
2017-07-01
Context. It is not well known what drives the chemistry of a protostellar envelope, in particular the role of the stellar mass and the protostellar outflows on the chemical enrichment of such environments. Aims: We study the chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A in order to (I) investigate the influence of the outflows on the chemistry; (II) constrain the age of our studied object; (III) compare it with a typical high-mass protostellar envelope. Methods: In our analysis we use JCMT line mapping (360-373 GHz) and HIFI pointed spectra (626.01-721.48 GHz). To study the influence of the outflow on the degree of deuteration, we compare JCMT maps of HCO+ and DCO+ with non-LTE (RADEX) models in a region that spatially covers the outflow activity of IRAS 4A. To study the envelope chemistry, we derive empirical molecular abundance profiles for the observed species using the Monte Carlo radiative transfer code (RATRAN) and adopting a 1D dust density/temperature profile from the literature. We use a combination of constant abundance profiles and abundance profiles that include jumps at two radii (T 100 K or T 30 K) to fit our observations. We compare our best-fit observed abundance profiles with the predictions from the time dependent gas grain chemical code (ALCHEMIC). Results: We detect CO, 13CO, C18O, CS, HCN, HCO+, N2H+, H2CO, CH3OH, H2O, H2S, DCO+, HDCO, D2CO, SO, SO2, SiO, HNC, CN, C2H and OCS. We divide the detected lines in three groups based on their line profiles: a) broad emission (FWHM = 4-11 km s-1), b) narrow emission (FWHM< 4 km s-1), and c) showing absorption features. The broad component is indicative of outflow activity, the narrow component arises from dynamically quiescent gas (I.e. envelope) and the absorption is a result of infall motions or the presence of foreground material. Our maps provide information about the spatial and velocity structure of many of the molecules mentioned above, including the deuterated species, making it possible to distinguish between envelope and outflow structures also spatially. The derived abundance profiles are based only on the narrow component (envelope) of the species and are reproduced by a 1D pseudo-time-dependent gas-grain chemical model for the outer envelope, with the exceptions of HCN, HNC, CN. These species along with the CO abundance require an enhanced UV field which points towards an outflow cavity. The abundances with respect to H2 are 1 to 2 orders of magnitude lower than those observed in the high mass protostellar envelope (AFGL 2591), while they are found to be similar within factors of a few when they are estimated with respect to CO. Differences in UV radiation intensity may also be responsible for such chemical differentiation, but temperature differences seem a more plausible explanation, especially the absence of a freeze-out zone in the high mass case. The CH3OH modeled abundance profile points towards an age of ≥4 × 104 yr for IRAS 4A. The spatial distribution of H2D+ differs from that of other deuterated species (I.e. DCO+, HDCO and D2CO), indicating an origin from a colder layer (<20 K) in the foreground, which is not seen in any other tracer. Conclusions: The observed abundances can be explained by passive heating towards the high mass protostellar envelope, while the presence of UV cavity channels become more important toward the low mass protostellar envelope (e.g. CO, HCO+). Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Reduced data (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A88
Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces
NASA Astrophysics Data System (ADS)
Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.
2014-10-01
A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.
NASA Astrophysics Data System (ADS)
Bracco, A.; Palmeirim, P.; André, Ph.; Adam, R.; Ade, P.; Bacmann, A.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; D'Addabbo, A.; Désert, F.-X.; Didelon, P.; Doyle, S.; Goupy, J.; Könyves, V.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Motte, F.; Pajot, F.; Pascale, E.; Peretto, N.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Rigby, A.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roy, A.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2017-08-01
The characterization of dust properties in the interstellar medium is key for understanding the physics and chemistry of star formation. Mass estimates are crucial to determine gravitational collapse conditions for the birth of new stellar objects in molecular clouds. However, most of these estimates rely on dust models that need further observational constraints to capture the relevant parameter variations depending on the local environment: from clouds to prestellar and protostellar cores. We present results of a new study of dust emissivity changes based on millimeter continuum data obtained with the NIKA camera at the IRAM-30 m telescope. Observing dust emission at 1.15 mm and 2 mm allows us to constrain the dust emissivity index, β, in the Rayleigh-Jeans tail of the dust spectral energy distribution far from its peak emission, where the contribution of other parameters (I.e. dust temperature) is more important. Focusing on the Taurus molecular cloud, one of the most famous low-mass star-forming regions in the Gould Belt, we analyze the emission properties of several distinct objects in the B213 filament. This subparsec-sized region is of particular interest since it is characterized by a collection ofevolutionary stages of early star formation: three prestellar cores, two Class 0/I protostellar cores and one Class II object. We are therefore able to compare dust properties among a sequence of sources that likely derive from the same parent filament. By means of the ratio of the two NIKA channel maps, we show that in the Rayleigh-Jeans approximation, βRJ varies among the objects: it decreases from prestellar cores (βRJ 2) to protostellar cores (βRJ 1) and the Class II object (βRJ 0). For one prestellar and two protostellar cores, we produce a robust study using available Herschel data to constrain the dust temperature of the sources. By using the Abel transform inversion technique we derive accurate radial temperature profiles that allow us to obtain radial β profiles. We find systematic spatial variations of β in the protostellar cores that are not observed in the prestellar core. While in the former case β decreases toward the center (with β varying between 1 and 2), in the latter it remains constant (β = 2.4 ± 0.3). Moreover, the dust emissivity index appears anticorrelated with the dust temperature. We discuss the implication of these results in terms of dust grain evolution between pre- and protostellar cores. Based on observations carried out under project number 146-13 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).The FITS file of the published maps is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A52
Efficient radiative transfer techniques in hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Mercer, A.; Stamatellos, D.; Dunhill, A.
2018-05-01
Radiative transfer is an important component of hydrodynamic simulations as it determines the thermal properties of a physical system. It is especially important in cases where heating and cooling regulate significant processes, such as in the collapse of molecular clouds, the development of gravitational instabilities in protostellar discs, disc-planet interactions, and planet migration. We compare two approximate radiative transfer methods which indirectly estimate optical depths within hydrodynamic simulations using two different metrics: (i) the gravitational potential and density of the gas (Stamatellos et al.), and (ii) the pressure scale-height (Lombardi et al.). We find that both methods are accurate for spherical configurations e.g. in collapsing molecular clouds and within clumps that form in protostellar discs. However, the pressure scale-height approach is more accurate in protostellar discs (low and high-mass discs, discs with spiral features, discs with embedded planets). We also investigate the β-cooling approximation which is commonly used when simulating protostellar discs, and in which the cooling time is proportional to the orbital period of the gas. We demonstrate that the use of a constant β cannot capture the wide range of spatial and temporal variations of cooling in protostellar discs, which may affect the development of gravitational instabilities, planet migration, planet mass growth, and the orbital properties of planets.
NASA Astrophysics Data System (ADS)
Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.
2016-02-01
Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.
[Kelvin-Helmholtz instability in protostellar jets
NASA Technical Reports Server (NTRS)
Stone, James; Hardee, Philip
1996-01-01
NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of surface and/or body waves could accelerate the ambient gas to low velocity. This latter effect represents a new mechanism by which supersonic jets can accelerate low velocity outflows.
NASA Astrophysics Data System (ADS)
Tappe, Achim; Forbrich, J.; Martín, S.; Lada, C. J.
2011-05-01
We present Spitzer Space Telescope 5-37 µm spectroscopic mapping observations toward the southeastern lobe of the young protostellar outflow HH 211 (part of IC 348 in Perseus, 260 pc). The terminal shock of the outflow shows a rich atomic and molecular spectrum with emission lines from OH, H2O, HCO+, CO2, H2, HD, [Fe II], [Si II], [Ne II], [S I], and [Cl I]. The spectrum also shows a rising continuum towards 5 µm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v=1-0 fundamental band. This interpretation is confirmed by a strong excess flux observed in the Spitzer IRAC 4-5 µm channel 2 image. We also observed the terminal outflow shock of this lobe with the Submillimeter Array (SMA) and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow and the terminal shock, whereas the vibrationally excited CO seen with Spitzer follows the continuation of the collimated outflow backbone in the terminal shock. The extremely high critical densities of the CO v=1-0 rovibrational lines indicate terminal shock jet densities larger than 107 cm-3. The unique combination of mid-infrared, submillimeter, and previous near-infrared observations allow us to gain detailed insights into the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help to understand the nature of some of the so-called `green fuzzies’ (Extended Green Objects) identified by their Spitzer IRAC channel 2 excess and association with star-forming regions. They also provide a critical observational test to models of pulsed protostellar jets.
Evidence for disks at an early stage in class 0 protostars?
NASA Astrophysics Data System (ADS)
Gerin, M.; Pety, J.; Commerçon, B.; Fuente, A.; Cernicharo, J.; Marcelino, N.; Ciardi, A.; Lis, D. C.; Roueff, E.; Wootten, H. A.; Chapillon, E.
2017-10-01
Aims: The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions. Methods: We present 0.06-0.1'' resolution images at 350 GHz toward B1b-N and B1b-S, which are young class 0 protostars, possibly first hydrostatic cores. The images have been obtained with ALMA, and we compare these data with magnetohydrodynamics simulations of a collapsing turbulent and magnetized core. Results: The submillimeter continuum emission is spatially resolved by ALMA. Compact structures with optically thick 350 GHz emission are detected toward both B1b-N and B1b-S, with 0.2 and 0.35'' radii (46 and 80 au at the Perseus distance of 230 pc), within a more extended envelope. The flux ratio between the compact structure and the envelope is lower in B1b-N than in B1b-S, in agreement with its earlier evolutionary status. The size and orientation of the compact structure are consistent with 0.2'' resolution 32 GHz observations obtained with the Very Large Array as a part of the VANDAM survey, suggesting that grains have grown through coagulation. The morphology, temperature, and densities of the compact structures are consistent with those of disks formed in numerical simulations of collapsing cores. Moreover, the properties of B1b-N are consistent with those of a very young protostar, possibly a first hydrostatic core. These observations provide support for the early formation of disks around low-mass protostars. The reduced images and datacubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A35
Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula
NASA Technical Reports Server (NTRS)
Podosek, Frank A.; Cassen, Patrick
1994-01-01
There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We also consider alternative interpretations, particularly the hypothesis of radically heterogeneous distribution of Al-26, which would avoid these chronological interpretations. The principal impetus for such alternative interpretations seems to be precisely the obviation of the chronological interpretation (i.e., the presumption rather than the inference of a short (less than or equal to 1 Ma) lifetime of the nebula). Astronomical observations of T Tauri stars indicate that the presence of dusty disks is a common if not universal feature, that the disks are massive enough to accomodate a planetary system such as ours, and that at least some persist for 110(exp 7) yr or more. The results are consistent with the time scales inferred from the meteoritic isotopic data. They cannot be considered conclusive with regard to solar nebula time scales, however, in part because it is difficult to relate disk observations to processes that affect meteorites, and in part because the ages assigned for these stars could be wrong by a factor of several in either direction. We conclude that the balance of available evidence favors the view that the nebula existed and was active for at least several Ma. However, because the evidence is not definitive, it is important that the issue be perceived to be an open question, whose answer should be sought rather than presumed.
Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula
NASA Technical Reports Server (NTRS)
Podosek, Frank A.; Cassen, Patrick
1994-01-01
There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or = 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modelling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molecular clouds in the interstellar medium. The collapse to a star and disk occurs rapidly on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronologically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differentiated meteorites (eucrites and angrites) - appear to have experience potentially dateable nebular events. In both case, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We also consider alternative interpretations, particularly the hypothesis of radically heterogeneous distribution of Al-26, which would avoid these chronological interpretations. The principal impetus for such alternative interpretations seems to be precisely the obviation of the chronological interpretation (i.e., the presumption rather than the inference of a short (less than or = Ma) lifetime of the nebula). Astronomical observations of T Tauri stars indicate that the presence of dusty disks is a common if not universal feature, that the disks are massive enough to accomodate a planetary system such as ours, and that at least some persist for 10(exp 7) yr or more. The results are consistent with the time scales inferred from the meteorite isotopic data. They cannot be considered conclusive with regard to solar nebula time scales, however,in part because it is difficult to relate disk observations to processes that affect meteorites, and in part because the ages assigned for these stars could be wrong by a factor of several in either direction. We conclude that the balance of available evidence favors the view that the nebula existed and was active for at least several Ma. However, because the evidence is not definitive, it is important that the issue be perceived to be an open question, whose answer should be sought rather than presumed.
The role of magnetic fields in the collapse of protostellar gas clouds
NASA Technical Reports Server (NTRS)
Scott, E. H.; Black, D. C.
1980-01-01
The paper presents the results of a numerical calculation of the collapse of an idealized protostellar gas cloud including the effects of a 'frozen-in' magnetic field. The 'traditional' picture of magnetic effects on gas clouds and recent observational and theoretical work on the subject are summarized. Attention is given to the method of calculation and the results are interpreted. It is found that the central magnetic field in the collapsing cloud model follows a rho to the 1/2 power relation, and the discussion implies that this is a general result which should hold true for some range of initial conditions around those chosen. In addition, it is found that the outer envelope of the cloud will be held up by tension in the field lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takakuwa, Shigehisa; Saigo, Kazuya; Matsumoto, Tomoaki
We report the ALMA Cycle 2 observations of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C{sup 18}O (3–2), {sup 13}CO (3–2), SO (7{sub 8}–6{sub 7}), and CS (7–6) emission. At 0.″18 (=25 au) resolution, ∼4 times higher than that of our Cycle 0 observations, the circumbinary disk (CBD) as seen in the 0.9 mm emission is shown to be composed of a northern and a southern spiral arm, with the southern arm connecting to the circumstellar disk (CSD) around Source B. The western parts of the spiral arms are brighter than the eastern parts,more » suggesting the presence of an m = 1 spiral mode. In the C{sup 18}O emission, the infall gas motions in the interarm regions and the outward gas motions in the arms are identified. These observed features are well reproduced with our numerical simulations, where gravitational torques from the binary system impart angular momenta to the spiral-arm regions and extract angular momenta from the interarm regions. Chemical differentiation of the CBD is seen in the four molecular species. Our Cycle 2 observations have also resolved the CSDs around the individual protostars, and the beam-deconvolved sizes are 0.″29 × 0.″19 (=40 × 26 au) (P.A. = 144°) and 0.″26 × 0.″20 (=36 × 27 au) (P.A. = 147°) for Sources A and B, respectively. The position and inclination angles of these CSDs are misaligned with those of the CBD. The C{sup 18}O emission traces the Keplerian rotation of the misaligned disk around Source A.« less
The Importance of High Frequency Observations for the SKA
NASA Astrophysics Data System (ADS)
Welch, William J.
2007-12-01
The plan for the Square Kilometer Array (SKA) is one or more very large arrays operating in two or more contiguous frequency bands: roughly 15 - 90 MHz, 120 - 500 MHz, and 500 MHz - 25 GHz. The last band may be further divided into roughly 500 MHz - 1.5 GHz and 1.5 - 25 GHz. Construction costs may delay or forgo one or more of these bands. We argue that the entire high frequency band is of special importance for astronomy both in the local universe and at great distances and early times. One of the Key Science Projects, the Cradle of Life, requires high sensitivity and resolution at frequencies up to 20 GHz for the study of forming disks around new stars with disk opacities too great for millimeter wave observations. The larger issue of star formation, a poorly understood area, will also benefit from high sensitivity observations at short cm wavelengths. Magnetic field measurements through the Zeeman effect in the densest star forming gas are best done using tracers such as CCS at frequencies of 11 and 22 GHz. The wide frequency range of the SKA permits the observation of multiple rotational transitions of long chain molecules, providing accurate measures of both gas densities and temperatures. The wide field of view will permit large scale surveys of entire star forming clouds revealing, at high resolution, the formation of clusters of pre-protostellar stars and class 0-2 protostars in line radiation. The continuum cm wave radiation will reveal the growth of grains in disks. On the larger scale, observations of CO at high redshifts will trace the evolution of star formation and the formation of metals back to the Epic of Reionization.
Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE
NASA Astrophysics Data System (ADS)
Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.
2007-09-01
We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.
Modeling Jet and Outflow Feedback during Star Cluster Formation
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.
2014-08-01
Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.
Substructures In Protostellar Discs: Spirals, Gaps (And Warps)
NASA Astrophysics Data System (ADS)
Lodato, Giuseppe
2016-07-01
The advent of high resolution imaging of protostellar discs, both in the sub-mm (thanks to ALMA) and in the near infrared, has radically changed our understanding of the evolution of such discs and of the planet formation process occuring within them. While in the past disc were modeled as simplified, axi-symmetric structures, often characterized by simple radial power-law for density and temperature, we now need more advanced modeling, able to describe the substructures observed. Such modeling needs to take into account both the gas component, that dominates the dynamics and the line emission, and the dust, which is responsible for the continuum mm band emission. Here, I review several aspects of such modeling. I will discuss the theory and some hydrodynamical simulations describing: (a) spiral density waves, for example induced by gravitational instabilities in young and massive discs; (b) gaps induced by the presence of a forming planet in the disc, with particular emphasis on the spectacular case of HL Tau, that we have recently successfully modeled; (c) warps, which are expected to develop in circumbinary discs, or in discs where a planet has been put on a very inclined orbit.
The Confinement and Breakout of Protostellar Winds: Time-Dependent Solution
NASA Technical Reports Server (NTRS)
Wilkin, F.; Stahler, S.
2000-01-01
Jets from embedded young stars may be collimated by the anisotropic infall of their cloud envelopes. To model this effect, we have followed numerically the motion of the shocked shell created by the impact of a spherical wind and a rotating, collapsing cloud.
IRAS01202+6133: A Possible Case of Protostellar Collapse Triggered by a Small HIIRegion
NASA Astrophysics Data System (ADS)
Kang, Sung-Ju; Kerton, C.
2012-01-01
The molecular gas surrounding an HII region is thought to be a place where star formation can be induced. One of the main questions in the study of star formation is how protostars accrete material from their parent molecular clouds and observations of infall motions are needed to provide direct evidence for accretion. This poster will present an analysis of submm spectroscopic observations of the submm/infrared source IRAS 01202+6133 located on the periphery of the HII region KR 120. HCO+(J=3-2) spectra of this source show a classic blue-dominated double-peaked profile indicative of infall motions that would be expected to occur in the envelope surrounding a young protostellar object. The HCO+ spectrum toward the core was fitted using models incorporating both outflow and infall components along with basic assumptions regarding excitation temperature trends within molecular cloud cores. Using the models, we derive physical properties of the infall kinematics and the envelope structure.
IRAS 01202+6133 : A Possible Case of Protostellar Collapse Triggered by a Small HII Region
NASA Astrophysics Data System (ADS)
Kang, Sung-Ju; Kerton, C.
2012-01-01
The molecular gas surrounding an HII region is thought to be a place where star formation can be induced. One of the main questions in the study of star formation is how protostars accrete material from their parent molecular clouds and observations of infall motions are needed to provide direct evidence for accretion. This poster will present an analysis of submm spectroscopic observations of the submm/infrared source IRAS 01202+6133 located on the periphery of the HII region KR 120. HCO+(J=3-2) spectra of this source show a classic blue-dominated double-peaked profile indicative of infall motions that would be expected to occur in the envelope surrounding a young protostellar object. The HCO+ spectrum toward the core was fitted using models incorporating both outflow and infall components along with basic assumptions regarding excitation temperature trends within molecular cloud cores. Using the models, we derive physical properties of the infall kinematics and the envelope structure.
Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings
NASA Astrophysics Data System (ADS)
Plunkett, Adele
2018-01-01
Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reipurth, Bo; Connelley, Michael; Mikkola, Seppo
2010-12-10
We explore the origin of a population of distant companions ({approx}1000-5000 AU) to Class I protostellar sources recently found by Connelley and coworkers, who noted that the companion fraction diminished as the sources evolved. Here, we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes asmore » the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as {approx}0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.« less
Abnormal behaviour of lithium in coeval stars?
NASA Astrophysics Data System (ADS)
Llorente de Andrés, F.; Morales-Durán, C.; Chavero, C.; de la Reza, R.
2015-05-01
Due to its fragility, the light element lithium (Li) is an excellent and very used indicator of stellar processes. Our interest here is to explore and try to understand the Li dispersion observed in some stellar open clusters which are not explained by the standard theories. A typical and historical case, for example, is that found for stars cooler than the stellar effective temperature Teff ˜ 5500 K in the Pleiades cluster with an age of ˜ 130 My (see details in Figure 2 of this poster). What is the mechanism that provoques this dispersion?. Up to now, mainly three mechanisms are being proposed : (1) Episodic accretion during the protostellar phase (Barafee et al. 2010). (2) Rotational stellar internal mixing shears due to a star-disk interaction (Eggenberger at al. 2012) and (3) Li depletion by an increased stellar radius (Somers et al. 2014). We will explore this problem using the rotational option (2) (Chavero et al. 2014) and also identifying stellar interlopers in some groups.
Ice Chemistry in Interstellar Dense Molecular Clouds, Protostellar Disks, and Comets
NASA Technical Reports Server (NTRS)
Sandford, Scott A.
2015-01-01
Despite the low temperatures (T less than 20K), low pressures, and low molecular densities found in much of the cosmos, considerable chemistry is expected to occur in many astronomical environments. Much of this chemistry happens in icy grain mantles on dust grains and is driven by ionizing radiation. This ionizing radiation breaks chemical bonds of molecules in the ices and creates a host of ions and radicals that can react at the ambient temperature or when the parent ice is subsequently warmed. Experiments that similar these conditions have demonstrated a rich chemistry associated with these environments that leads to a wide variety of organic products. Many of these products are of considerable interest to astrobiology. For example, the irradiation of simple ices has been shown to abiotically produce amino acids, nucleobases, quinones, and amphiphiles, all compounds that play key roles in modern biochemistry. This suggests extraterrestrial chemistry could have played a role in the origin of life on Earth and, by extension, do so on planets in other stellar systems.
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael; Petre, Robert; Teets, William K.; Principe, David
2012-01-01
We report a periodicity of approx.1 day in the highly elevated X-ray emission from the protostar V1647 Ori during its two recent multiple-year outbursts of mass accretion. This periodicity is indicative of protostellar rotation at near-breakup speed. Modeling of the phased X-ray light curve indicates the high-temperature ( 50 MK), X-ray-emitting plasma, which is most likely heated by accretion-induced magnetic reconnection, resides in dense ( 5 1010 cm.3), pancake-shaped magnetic footprints where the accretion stream feeds the newborn star. The sustained X-ray periodicity of V1647 Ori demonstrates that such protostellar magnetospheric accretion configurations can be stable over timescales of years. Subject headings: stars: formation stars: individual (V1647 Ori) stars: pre-main sequence X-rays: stars
Molecular Outflows: Explosive versus Protostellar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina
2017-02-10
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, butmore » with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.« less
D/H Measurements in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Keane, Jacqueline
2007-05-01
It is generally accepted that a considerable fraction of early Earths water was delivered by asteroids, comets, and planetesimals. The local planets and comets were assembled from the material in circumstellar disks, which in turn evolved from the envelopes and clouds surrounding protostars. Here at the University of Hawaii-NASA Astrobiology Institute the key research goal is to connect the major aspects of starformation and planetary water, in effect aiming to understand the terms of a "watery Drake Equation". To achieve this goal, we use the infrared and submillimeter telescopes on Mauna Kea to survey several molecules in a variety of starforming clouds. Observations show that water is the most common interstellar ice component. Moreover, there is evidence for enhanced water ice formation in the inner parts of protostellar envelopes. Simple molecules form on the icy grain mantles from surface reactions or thermal annealing of the ice, in turn these molecules drive a rich gas phase chemistry that produces more complex prebiotic molecules. Ice bands, therefore, serve as unique tracers of the chemical and thermal history of circumstellar environments. Here we will discuss constraints on the reservoirs of water and organic molecules in starforming regions, taking in to account the latest observational and theoretical measurements. Recent observations of a number of deuterated molecules, including water, will be discussed in terms of grain surface chemistry and its role in driving the enhanced fractionation of methanol like species, while at the same time inhibiting the deuteration of water.
Discussing the low fraction of disk-bearing T Tauri stars discovered near to the Sh2-296 nebula
NASA Astrophysics Data System (ADS)
Gregorio-Hetem, Jane
2015-08-01
A multiband study has been developed by our team in the direction of young star clusters associated to the Sh2-296 nebula aiming to unveil the star formation history of this galactic molecular cloud that shows a mixing of different age stellar groups. A sample of 58 pre-main sequence stars has been recently discovered by us in this region (Fernandes et al. 2015, MNRAS in press), based on optical spectral features. Only 41% of the sample shows evidence of IR excess revealing the presence of circumstellar disks. It is interesting to note that the targets were revealed by their strong X-ray emission, typically found in T Tauri stars (TTs) (Santos-Silva et al. 2015, in preparation) . In this case, it would be expected a larger number of disk-bearing stars and also the fraction of circumstellar emission (fc = Ldisk/Ltotal ) should be more significant in these objects. However, we verified that only 12% of the sample has fc > 30%. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation. In the present work we explore the circumstellar structure of a subsample of 8 TTs associated to Sh2-296. The TTs were selected on the basis of their high circumstellar emission, which is estimated by SED fitting that uses near- to mid-IR data extracted from available catalogues (WISE, AKARI, MSX). The circumstellar characteristics are confronted to interstellar environment by comparing the stellar spatial distribution with 12CO maps (Nanten Survey, Fukui et al. ). Most of the TTs are projected against moderate molecular emission (33 Jy), but some of them are found in regions of lower levels of gas distribution (3.8 Jy). The similarities and differences found among the studied objects are discussed in order to better understand the formation and evolution of protostellar disks of the selected sample and their role in the star formation scenario nearby Sh2-296
Shocks and Molecules in Protostellar Outflows
NASA Astrophysics Data System (ADS)
Arce, Héctor
2014-06-01
As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offner, Stella S. R.; Arce, Héctor G., E-mail: stella.offner@yale.edu
2014-03-20
We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ = 0.01-0.1 and find that even well-collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in themore » surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of {sup 12}CO, {sup 13}CO, and C{sup 18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.« less
NASA Technical Reports Server (NTRS)
Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezan, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.; Millan-Gabet, R.; Monnier, J. D.
2003-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to NGST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We have been studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. We present results of detailed design studies of the FKSI starting with a design consisting of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral data simultaneously for a given orientation of the array. The spacecraft will be rotated to give sufficient Fourier data to reconstruct complex images of a broad range of astrophysical sources. Alternative and simpler three and two telescope designs emphasizing nulling and spectroscopy also have been investigated and will be discussed.
NASA Technical Reports Server (NTRS)
Milam, S. N.; Charnley, S. B.
2011-01-01
Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing. Here, we show the results of models and observations of the nitrogen and carbon fractionation in proto-stellar cores.
Planet Traps and Planetary Cores: Origins of the Planet-Metallicity Correlation
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro; Pudritz, Ralph E.
2014-10-01
Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ~= 1 AU, and the low-mass planets. We show using a statistical approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = -0.2 to -0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M c, crit) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > -0.6, our models predict that the most likely value of the "mean" critical core mass of Jovian planets is langM c, critrang ~= 5 M ⊕ rather than 10 M ⊕. This implies that grain opacities in accreting envelopes should be reduced in order to lower M c, crit.
Planet traps and planetary cores: origins of the planet-metallicity correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Yasuhiro; Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca
2014-10-10
Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ≅ 1 AU, and the low-mass planets. We show using a statisticalmore » approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = –0.2 to –0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M {sub c,} {sub crit}) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > –0.6, our models predict that the most likely value of the 'mean' critical core mass of Jovian planets is (M {sub c,} {sub crit}) ≅ 5 M {sub ⊕} rather than 10 M {sub ⊕}. This implies that grain opacities in accreting envelopes should be reduced in order to lower M {sub c,} {sub crit}.« less
Chemistry and Evolution of Interstellar Clouds
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.
2003-01-01
In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.
NASA Technical Reports Server (NTRS)
Kafatos, Minas C. (Editor); Harrington, Robert S. (Editor); Maran, Stephen P. (Editor)
1986-01-01
Various reports on theoretical and observational studies of brown dwarfs (BDs) are presented. The topics considered include: astrometric detection of BDs, search for substellar companions to nearby stars using IR imaging, constraints on BD mass function from optical and IR searches, properties of stellar objects near the main sequence mass limit, search for low-mass stellar companions with the HF precision velocity technique, dynamical search for substellar objects, search for BDs in the IRAS data base, deep CCD survey for low mass stars in the disk and halo, the Berkeley search for a faint solar companion, the luminosity function for late M stars, astronomic search for IR dwarfs, and the role of the Space Telescope in the detection of BDs. Also addressed are: theoretical significance of BDs, evolution of super-Jupiters, compositional indicators in IR spectra of BDs, evolution of BDs and the evolutionary status of VB8B, the position of BDs on universal diagrams, theoretical determination of the minimum protostellar mass, Population II BDs and dark halos.
NASA Astrophysics Data System (ADS)
López-Sepulcre, A.; Sakai, N.; Neri, R.; Imai, M.; Oya, Y.; Ceccarelli, C.; Higuchi, A. E.; Aikawa, Y.; Bottinelli, S.; Caux, E.; Hirota, T.; Kahane, C.; Lefloch, B.; Vastel, C.; Watanabe, Y.; Yamamoto, S.
2017-10-01
Context. Hot corinos are extremely rich in complex organic molecules (COMs). Accurate abundance measurements of COMs in such objects are crucial to constrain astrochemical models. In the particular case of close binary systems this can only be achieved through high angular resolution imaging. Aims: We aim to perform an interferometric study of multiple COMs in NGC 1333 IRAS 4A, which is a protostellar binary hosting hot corino activity, at an angular resolution that is sufficient to distinguish easily the emission from the two cores separated by 1.8''. Methods: We used the Atacama Large (sub-)Millimeter Array (ALMA) in its 1.2 mm band and the IRAM Plateau de Bure Interferometer (PdBI) at 2.7 mm to image, with an angular resolution of 0.5'' (120 au) and 1'' (235 au), respectively, the emission from 11 different organic molecules in IRAS 4A. This allowed us to clearly disentangle A1 and A2, the two protostellar cores. For the first time, we were able to derive the column densities and fractional abundances simultaneously for the two objects, allowing us to analyse the chemical differences between them. Results: Molecular emission from organic molecules is concentrated exclusively in A2, while A1 appears completely devoid of COMs or even simpler organic molecules, such as HNCO, even though A1 is the strongest continuum emitter. The protostellar core A2 displays typical hot corino abundances and its deconvolved size is 70 au. In contrast, the upper limits we placed on COM abundances for A1 are extremely low, lying about one order of magnitude below prestellar values. The difference in the amount of COMs present in A1 and A2 ranges between one and two orders of magnitude. Our results suggest that the optical depth of dust emission at these wavelengths is unlikely to be sufficiently high to completely hide a hot corino in A1 similar in size to that in A2. Thus, the significant contrast in molecular richness found between the two sources is most probably real. We estimate that the size of a hypothetical hot corino in A1 should be less than 12 au. Conclusions: Our results favour a scenario in which the protostar in A2 is either more massive and/or subject to a higher accretion rate than A1, as a result of inhomogeneous fragmentation of the parental molecular clump. This naturally explains the smaller current envelope mass in A2 with respect to A1 along with its molecular richness. The extremely low abundances of organic molecules in A1 with respect to those in A2 demonstrate that the dense inner regions of a young protostellar core lacking hot corino activity may be poorer in COMs than the outer protostellar envelope. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A121
A grid of one-dimensional low-mass star formation collapse models
NASA Astrophysics Data System (ADS)
Vaytet, N.; Haugbølle, T.
2017-02-01
Context. Numerical simulations of star formation are becoming ever more sophisticated, incorporating new physical processes in increasingly realistic set-ups. These models are being compared to the latest observations through state-of-the-art synthetic renderings that trace the different chemical species present in the protostellar systems. The chemical evolution of the interstellar and protostellar matter is very topical, with more and more chemical databases and reaction solvers available online to the community. Aims: The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modelling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. Methods: A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert-like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 M⊙, temperatures of 5-30 K, and radii 3000 ≤ R0 ≤ 30 000 AU. Results: A spread due to differing initial conditions and optical depths, was found in the thermal evolutionary tracks of the runs. Within less than an order of magnitude, all first and second Larson cores had masses and radii essentially independent of the initial conditions. Radial profiles of the gas density, velocity, and temperature were found to vary much more outside of the first core than inside. The time elapsed between the formation of the first and second cores was found to strongly depend on the first core mass accretion rate, and no first core in our grid of models lived for longer than 2000 years before the onset of the second collapse. Conclusions: The end product of a protostellar cloud collapse, the second Larson core, is at birth a canonical object with a mass and radius of about 3 MJ and 8 RJ, independent of its initial conditions. The evolution sequence which brings the gas to stellar densities can, however, proceed in a variety of scenarios, on different timescales or along different isentropes, but each story line can largely be predicted by the initial conditions. All the data from the simulations are publicly available. The figures and raw data for every simulation output can be found at this address: http://starformation.hpc.ku.dk/grid-of-protostars. Copies of the outputs, as well as Table C.1, are also available in the form of static electronic tables at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A116
Binary star formation: gravitational fragmentation followed by capture
NASA Astrophysics Data System (ADS)
Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.
1995-11-01
We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does intervene, provided the binary components are well matched (i.e. of comparable mass) and the third body is not too massive, such interventions will - more often than not - harden the orbit further. In two appendices we describe the code used in the simulations presented in this and the companion paper, and the tests performed to demonstrate the code's ability to handle the physical processes involved.
The Formation and Fragmentation of Primordial Protostellar Discs
NASA Astrophysics Data System (ADS)
Clark, Paul C.; Glover, Simon C. O.; Smith, Rowan J.; Greif, Thomas H.; Klessen, Ralf S.; Bromm, Volker
2010-11-01
We study the formation and evolution of the protostellar discs that form around the first stars in the Universe. Using sink particles, we replace the gravitationally bound gas at densities higher than 1015 cm-3 and radii greater than 3 AU from the central protostellar core, with an accreting point mass that is able to gravitationally interact with the surrounding gas. We find the disc is gravitationally (or `Toomre') unstable, and is dominated by a strong m = 2 spiral mode. Although the angular momentum transport is dominated by a combination of gravitational torques and Reynolds stresses, which are extremely efficient mechanisms, the disc is unable to process the infalling material and grows increasingly gravitationally unstable. During the build-up of the disc, the temperature in the gas is regulated by a combination of H2 line cooling, collision-induced emission and H2 dissociation, which together help to offset heating from the gravitational collapse and feedback from the protostar. Once the disc starts to fragment, H2 dissociation keeps the gas almost isothermal as the collapse of the fragment progresses. The fragmentation occurs when the protostar/disc system is only 230 yr old and at a distance of ~20 AU from its sibling, by which point the central protostar has a mass of ~1 Msolar. Given the angular momentum of the new protostellar system, it is likely that the protostars will grow to become a massive binary system.
NASA Technical Reports Server (NTRS)
Myhill, Elizabeth A.; Boss, Alan P.
1993-01-01
In Boss & Myhill (1992) we described the derivation and testing of a spherical coordinate-based scheme for solving the hydrodynamic equations governing the gravitational collapse of nonisothermal, nonmagnetic, inviscid, radiative, three-dimensional protostellar clouds. Here we discuss a Cartesian coordinate-based scheme based on the same set of hydrodynamic equations. As with the spherical coorrdinate-based code, the Cartesian coordinate-based scheme employs explicit Eulerian methods which are both spatially and temporally second-order accurate. We begin by describing the hydrodynamic equations in Cartesian coordinates and the numerical methods used in this particular code. Following Finn & Hawley (1989), we pay special attention to the proper implementations of high-order accuracy, finite difference methods. We evaluate the ability of the Cartesian scheme to handle shock propagation problems, and through convergence testing, we show that the code is indeed second-order accurate. To compare the Cartesian scheme discussed here with the spherical coordinate-based scheme discussed in Boss & Myhill (1992), the two codes are used to calculate the standard isothermal collapse test case described by Bodenheimer & Boss (1981). We find that with the improved codes, the intermediate bar-configuration found previously disappears, and the cloud fragments directly into a binary protostellar system. Finally, we present the results from both codes of a new test for nonisothermal protostellar collapse.
Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity
NASA Astrophysics Data System (ADS)
Zhao, Bo; Caselli, Paola; Li, Zhi-Yun
2018-05-01
We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.
NASA Astrophysics Data System (ADS)
van der Wiel, M. H. D.; Pagani, L.; van der Tak, F. F. S.; Kaźmierczak, M.; Ceccarelli, C.
2013-05-01
Context. Linear rotor molecules such as CO, HCO+ and HCN are important probes of star-forming gas. For these species, temperatures of ≲ 50 K are sufficient to produce emission lines that are observable from the ground at (sub)millimeter wavelengths. Molecular gas in the environment of massive protostellar objects, however, is known to reach temperatures of several hundred K. To probe this, space-based far-infrared observations are required. Aims: We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL 2591. Methods: Rotational spectral line signatures of CO species, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30 m spectra, cover transitions in the energy range (Eup/k) between 5 K and ~ 300 K. Selected frequency settings in the highest frequency HIFI bands (up to 1850 GHz) extend this range to 750 K for 12C16O. The resolved spectral line profiles are used to separate and study various kinematic components. Observed line intensities are compared with a numerical model that calculates excitation balance and radiative transfer based on spherical geometry. Results: The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level. This trend is qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as Eup/k increases from ≲ 50 to ~700 K. The H2 density and temperature of the outflow gas are constrained to ~105-106 cm-3 and 60-200 K. In addition, we derive a temperature between 9 and 17 K and N(H2) ~ 3 × 1021 cm-2 for a known foreground cloud seen in absorption, and N(H2) ≲ 1019 cm-2 for a second foreground component. Conclusions: Our spherical envelope model systematically underproduces observed line emission at Eup/k ≳ 150 K for all species. This indicates that warm gas should be added to the model and that the model's geometry should provide low optical depth pathways for line emission from this warm gas to escape, for example in the form of UV heated outflow cavity walls viewed at a favorable inclination angle. Physical and chemical conditions derived for the outflow gas are similar to those in the protostellar envelope, possibly indicating that the modest velocity (≲10 km s-1) outflow component consists of recently swept-up gas. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Disentangling the outflow and protostars in HH 900 in the Carina Nebula
NASA Astrophysics Data System (ADS)
Reiter, Megan; Smith, Nathan; Kiminki, Megan M.; Bally, John; Anderson, Jay
2015-04-01
HH 900 is a peculiar protostellar outflow emerging from a small, tadpole-shaped globule in the Carina Nebula. Previous Hα imaging with Hubble Space Telescope (HST)/Advanced Camera for Surveys showed an ionized outflow with a wide opening angle that is distinct from the highly collimated structures typically seen in protostellar jets. We present new narrowband near-IR [Fe II] images taken with the Wide Field Camera 3 on the HST that reveal a remarkably different structure than Hα. In contrast to the unusual broad Hα outflow, the [Fe II] emission traces a symmetric, collimated bipolar jet with the morphology and kinematics that are more typical of protostellar jets. In addition, new Gemini adaptive optics images reveal near-IR H2 emission coincident with the Hα emission, but not the [Fe II]. Spectra of these three components trace three separate and distinct velocity components: (1) H2 from the slow, entrained molecular gas, (2) Hα from the ionized skin of the accelerating outflow sheath, and (3) [Fe II] from the fast, dense, and collimated protostellar jet itself. Together, these data require a driving source inside the dark globule that remains undetected behind a large column density of material. In contrast, Hα and H2 emission trace the broad outflow of material entrained by the jet, which is irradiated outside the globule. As it get dissociated and ionized, it remains visible for only a short time after it is dragged into the H II region.
NASA's Far-IR/Submillimeter Roadmap Missions SAFIR and SPECS
NASA Technical Reports Server (NTRS)
Leisawitz, David
2003-01-01
The far-IR is rich with information about star, disk and planet formation because protostars emit predominantly in this spectral range, and the radiation can escape from the inherently dusty stellar birth sites. Spectral lines contain particularly valuable information about the cooling, collapse, and chemistry of molecular cloud cores and protostars. However, the interpretation of line intensities and profiles is model-dependent; ultimately, high angular resolution is needed to break model degeneracy and definitively characterize the source. Processes occurring on scales smaller than 10,000 AU (72 arcsec at 140 pc, where the nearest protostellar objects are found) likely affect the stellar initial mass function and determine the product of cloud collapse (Binary star or planetary system? How many planets, and what kind will they be?) The next-generation far-IR observatories SIRTF, SOFIA, and Herschel will revolutionize star formation studies and leave the community yearning for telescopes that operate in this spectral region but provide many orders of magnitude better angular resolution. NASA's space science roadmap includes the JWST-scale Single Aperture Far-IR (SAFIR) telescope and the 1 km maximum baseline far-IR interferometer, SPECS (the Submillimeter Probe of the Evolution of Cosmic Structure). I will give the scientific motivation for these missions, describe mission concepts and telescope measurement capabilities, and compare these capabilities with those of the next-generation IR telescopes and with the complementary JWST and ALMA. I will also describe the Space Infrared Interferometric Telescope (SPIRIT), a science and technology pathfinder for SPECS, which could be ready to launch in about a decade. At 100 microns, SAFIR will provide 2.5 arcsec resolution (10 times better than SIRTF), SPIRIT will provide 0.25 arcsec resolution, and SPECS will provide 10 milli-arcsec resolution, which is comparable to that of the Hubble Space Telescope.
Directed Panspermia. 3. strategies and Motivation for Seeding Star-Forming Clouds
NASA Astrophysics Data System (ADS)
Mautner, Michael N.
1997-11-01
Microbial swarms aimed at star-forming regions of interstellar clouds can seed stellar associations of 10 - 100 young planetary systems. Swarms of millimeter size, milligram packets can be launched by 35 cm solar sails at 5E-4 c, to penetrate interstellar clouds. Selective capture in high-density planetary accretion zones of densities > 1E-17 kg m-3 is achieved by viscous drag. Strategies are evaluated to seed dense cloud cores, or individual protostellar condensations, accretion disks or young planets therein. Targeting the Ophiuchus cloud is described as a model system. The biological content, dispersed in 30 μm, 1E-10 kg capsules of 1E6 freeze-dried microorganisms each, may be captured by new planets or delivered to planets after incorporation first into carbonaceous asteroids and comets. These objects, as modeled by meteorite materials, contain biologically available organic and mineral nutrients that are shown to sustain microbial growth. The program may be driven by panbiotic ethics, predicated on: 1. The unique position of complex organic life amongst the structures of Nature; 2. Self-propagation as the basic propensity of the living pattern; 3. The biophysical unity humans with of the organic, DNA/protein family of life; and 4. Consequently, the primary human purpose to safeguard and propagate our organic life form. To promote this purpose, panspermia missions with diverse biological payloads will maximize survival at the targets and induce evolutionary pressures. In particular, eukaryotes and simple multicellular organisms in the payload will accelerate higher evolution. Based on the geometries and masses of star-forming regions, the 1E24 kg carbon resources of one solar system, applied during its 5E9 yr lifespan, can seed all newly forming planetary systems in the galaxy.
Submillimeter astronomy and the problem of star formation
NASA Technical Reports Server (NTRS)
Harwit, M.
1984-01-01
Sources that have traditionally been called 'protostars,' because they were strong emitters of infrared radiation embedded in dust clouds, are now recognized to be 'newly formed' stars instead. Recent developments in submillimeter astronomy should permit a redoubling of efforts to find bodies that are the actual predecessors of newly formed stars. This renewed search for true protostars will be aided by advances that have occurred in submillimeter spectroscopy; these will permit an analysis of the physical conditions and chemical constitution of cooler protostellar clouds, and may provide insight into circumstances favoring protostellar collapse.
The Hall effect in star formation
NASA Astrophysics Data System (ADS)
Braiding, C. R.; Wardle, M.
2012-05-01
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.
The JCMT Gould Belt Survey: A First Look at SCUBA-2 Observations of the Lupus I Molecular Cloud
NASA Astrophysics Data System (ADS)
Mowat, C.; Hatchell, J.; Rumble, D.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Pattle, K.; Tisi, S.; Di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fich, M.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Rawlings, J.; Retter, B.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.
2017-05-01
This paper presents observations of the Lupus I molecular cloud at 450 and 850 μm with Submillimetre Common User Bolometer Array (SCUBA-2) as part of the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS). Nine compact sources, assumed to be the discs of young stellar objects (YSOs), 12 extended protostellar, pre-stellar and starless cores, and one isolated, low-luminosity protostar, are detected in the region. Spectral energy distributions, including submillimetre fluxes, are produced for 15 YSOs, and each is fitted with the models of Robitaille et al. The proportion of Class 0/I protostars is higher than that seen in other Gould Belt regions such as Ophiuchus and Serpens. Circumstellar disc masses are calculated for more evolved sources, while protostellar envelope masses are calculated for protostars. Up to four very low luminosity objects are found; a large fraction when compared to other Spitzer c2d regions. One YSO has a disc mass greater than the minimum mass solar nebula. 12 starless/protostellar cores are detected by SCUBA-2 and their masses are calculated. The stability of these cores is examined using both the thermal Jeans mass and a turbulent virial mass when possible. Two cores in Lupus I are super-Jeans and contain no known YSOs. One of these cores has a virial parameter of 1.1 ± 0.4, and could therefore be pre-stellar. The high ratio of Class 0/I to Class III YSOs (1:1), and the presence of a pre-stellar core candidate, provides support for the hypothesis that a shock recently triggered star formation in Lupus I.
Centrifugally driven winds from protostellar accretion discs - I. Formulation and initial results
NASA Astrophysics Data System (ADS)
Nolan, C. A.; Salmeron, R.; Federrath, C.; Bicknell, G. V.; Sutherland, R. S.
2017-10-01
Protostellar discs play an important role in star formation, acting as the primary mass reservoir for accretion on to young stars and regulating the extent to which angular momentum and gas is released back into stellar nurseries through the launching of powerful disc winds. In this study, we explore how disc structure relates to the properties of the wind-launching region, mapping out the regions of protostellar discs where wind launching could be viable. We combine a series of 1.5D semi-analytic, steady-state, vertical disc-wind solutions into a radially extended 1+1.5D model, incorporating all three diffusion mechanisms (Ohm, Hall and ambipolar). We observe that the majority of mass outflow via disc winds occurs over a radial width of a fraction of an astronomical unit, with outflow rates attenuating rapidly on either side. We also find that the mass accretion rate, magnetic field strength and surface density profile each have significant effects on both the location of the wind-launching region and the ejection/accretion ratio \\dot{M}_out/\\dot{M}_in. Increasing either the accretion rate or the magnetic field strength corresponds to a shift of the wind-launching region to smaller radii and a decrease in \\dot{M}_out/\\dot{M}_in, while increasing the surface density corresponds to launching regions at larger radii with increased \\dot{M}_out/\\dot{M}_in. Finally, we discover a class of disc winds containing an ineffective launching configuration at intermediate radii, leading to two radially separated regions of wind launching and diminished \\dot{M}_out/\\dot{M}_in. We find that the wind locations and ejection/accretion ratio are consistent with current observational and theoretical estimates.
51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Christopher C.; Kuchner, Marc J.; Traub, Wesley A.
2009-10-01
We present observations of the 51 Ophiuchi circumstellar disk made with the Keck interferometer operating in nulling mode at N band. We model these data simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum using a variety of optically thin dust cloud models and an edge-on optically thick disk model. We find that single-component optically thin disk models and optically thick disk models are inadequate to reproduce the observations, but an optically thin two-component disk model can reproduce all of the major spectral and interferometric features. Our preferred disk model consists of an inner disk of blackbody grains extendingmore » to {approx}4 AU and an outer disk of small silicate grains extending out to {approx}1200 AU. Our model is consistent with an inner 'birth' disk of continually colliding parent bodies producing an extended envelope of ejected small grains. This picture resembles the disks around Vega, AU Microscopii, and beta Pictoris, supporting the idea that 51 Ophiuchius may be a beta Pictoris analog.« less
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Klapp, Jaime
2000-03-01
Fragmentation has long been advocated as the primary mechanism for explaining the observed binary frequency among pre-main-sequence stars and, more recently, for explaining the emerging evidence for binary and multiple protostellar systems. The role of magnetic fields and ambipolar diffusion is essential to understand how dense cloud cores begin dynamic collapse and eventually fragment into protostars. Here we consider new numerical models of the gravitational collapse and fragmentation of slowly rotating molecular cloud cores, including the effects of magnetic support and ambipolar diffusion. The starting point of the evolution is provided by a magnetically stable (subcritical) condensation that results from adding a magnetic field pressure, B2/8π [with the field strength given by the scaling relation B=B0(ρ/ρ0)1/2], to a reference state consisting of a thermally supercritical (α~0.36), slowly rotating (β~0.037), Gaussian cloud core of prolate shape and central density ρ0. The effects of ambipolar diffusion are approximated by allowing the reference field strength B0 to gradually decrease over a timescale of 10 free-fall times. The models also include the effects of tidal interaction due to a gravitational encounter with another protostar, and so they may apply to low-mass star formation within a cluster-forming environment. The results indicate that the magnetic forces delay the onset of dynamic collapse, and hence of fragmentation, by an amount of time that depends on the initial central mass-to-flux ratio. Compared with previous magnetic collapse calculations of rapidly rotating (β=0.12) clouds, lower initial rotation (β~0.037) is seen to result in much shorter delay periods, thus anticipating binary fragmentation. In general, the results show that the models are still susceptible to fragment into binary systems. Intermediate magnetic support (η~0.285) and low tidal forces (τ<~0.201) may lead to final triple or quadruple protostellar systems, while increasing the size of η and τ always results in final binary protostellar cores. The formed binary systems have separations of ~200-350 AU, suggesting that the recently observed peaks around ~90 AU and 215 AU for T Tauri stars may be explained by the collapse and fragmentation of initially slowly rotating magnetic cloud cores with β<~0.04.
Gas-grain energy transfer in solar nebula shock waves: Implications for the origin of chondrules
NASA Technical Reports Server (NTRS)
Hood, L. L.; Horanyi, M.
1993-01-01
Meteoritic chondrules provide evidence for the occurrence of rapid transient heating events in the protoplanetary nebula. Astronomical evidence suggests that gas dynamic shock waves are likely to be excited in protostellar accretion disks by processes such as protosolar mass ejections, nonaxisymmetric structures in an evolving disk, and impact on the nebula surface of infalling 'clumps' of circumstellar gas. Previous detailed calculations of gas-grain energy and momentum transfer have supported the possibility that such shock waves could have melted pre-existing chondrule-sized grains. The main requirement for grains to reach melting temperatures in shock waves with plausibly low Mach numbers is that grains existed in dust-rich zones (optical depth greater than 1) where radiative cooling of a given grain can be nearly balanced by radiation from surrounding grains. Localized dust-rich zones also provide a means of explaining the apparent small spatial scale of heating events. For example, the scale size of at least some optically thick dust-rich zones must have been relatively small (less than 10 kilometers) to be consistent with petrologic evidence for accretion of hot material onto cold chondrules. The implied number density of mm-sized grains for these zones would be greater than 30 m(exp -3). In this paper, we make several improvements of our earlier calculations to include radiation self-consistently in the shock jump conditions, and we include heating of grains due to radiation from the shocked gas. In addition, we estimate the importance of momentum feedback of dust concentrations onto the shocked gas which would tend to reduce the efficiency of gas dynamic heating of grains in the center of the dust cloud.
Fully kinetic simulations of magnetic reconnection in partially ionised gases
NASA Astrophysics Data System (ADS)
Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.
2016-12-01
Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Rice, Ken
2013-07-01
Recently, the gravitational instability (GI) model of giant planet and brown dwarf formation has been revisited and recast into what is often referred to as the "tidal downsizing" hypothesis. The fragmentation of self-gravitating protostellar discs into gravitationally bound embryos - with masses of a few to tens of Jupiter masses, at semi major axes above 30 - 40 AU - is followed by a combination of grain sedimentation inside the embryo, radial migration towards the central star and tidal disruption of the embryo's upper layers. The properties of the resultant object depends sensitively on the timescales upon which each process occurs. Therefore, GI followed by tidal downsizing can theoretically produce objects spanning a large mass range, from terrestrial planets to giant planets and brown dwarfs. Whether such objects can be formed in practice, and what proportions of the observed population they would represent, requires a more involved statistical analysis. We present a simple population synthesis model of star and planet formation via GI and tidal downsizing. We couple a semi-analytic model of protostellar disc evolution to analytic calculations of fragmentation, initial embryo mass, grain growth and sedimentation, embryo migration and tidal disruption. While there are key pieces of physics yet to be incorporated, it represents a first step towards a mature statistical model of GI and tidal downsizing as a mode of star and planet formation. We show results from four runs of the population synthesis model, varying the opacity law and the strength of migration, as well as investigating the effect of disc truncation during the fragmentation process.
FORMATION AND RECONDENSATION OF COMPLEX ORGANIC MOLECULES DURING PROTOSTELLAR LUMINOSITY OUTBURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taquet, Vianney; Wirström, Eva S.; Charnley, Steven B.
2016-04-10
During the formation of stars, the accretion of surrounding material toward the central object is thought to undergo strong luminosity outbursts followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas-phase formation and recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas-phase chemical network forming COMs in which ammonia plays a key role. The modelmore » calculations presented here demonstrate that ion–molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas-phase reaction branching ratios. In spite of the short outburst timescales of about 100 years, abundance ratios of the considered species higher than 10% with respect to methanol are predicted during outbursts due to their low binding energies relative to water and methanol which delay their recondensation during cooling. Although the current luminosity of most embedded protostars would be too low to produce complex organics in the hot-core regions that are observable with current sub-millimetric interferometers, previous luminosity outburst events would induce the formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.« less
Reliability model of disk arrays RAID-5 with data striping
NASA Astrophysics Data System (ADS)
Rahman, P. A.; D'K Novikova Freyre Shavier, G.
2018-03-01
Within the scope of the this scientific paper, the simplified reliability model of disk arrays RAID-5 (redundant arrays of inexpensive disks) and an advanced reliability model offered by the authors taking into the consideration nonzero time of the faulty disk replacement and different failure rates of disks in normal state of the disk array and in degraded and rebuild states are discussed. The formula obtained by the authors for calculation of the mean time to data loss (MTTDL) of the RAID-5 disk arrays on basis of the advanced model is also presented. Finally, the technique of estimation of the initial reliability parameters, which are used in the reliability model, and the calculation examples of the mean time to data loss of the RAID-5 disk arrays for the different number of disks are also given.
Probing Cometary Chemistry with ALMA
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.
2010-01-01
Comets are considered to bear the record of the primitive Solar nebula as remnants of planetesimals that formed the outer planets. To date there are just over two dozen known cometary species compared to the >150 known interstellar molecules. This is likely due to the challenges posed when attempting to measure the composition of these small bodies. With the significant improvement in sensitivity, ALMA will likely enable the detection of new molecules to help us gain better understanding of the chemical complexity found in comets. This advancement in sensitivity will also assist in the measurement of isotope ratios in various species. These values are imperative for determining the conditions during cometary formation as well as provide insight into ongoing speculations of parent species, the possible delivery of H2O to Earth, and a direct comparison to protostellar disk chemistry. The high angular resolution obtained with ALMA will be capable of resolving any compact distributions or density enhancements in the more extended distribution that may lead to a better understanding of the formation of these species in the outer coma. By studying comet compositions we gain insight into the composition of the early Solar System as well as their astrobiological implications.
A Flux-Pinning Mechanism for Segment Assembly and Alignment
NASA Technical Reports Server (NTRS)
Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip
2011-01-01
Currently, the most compelling astrophysics questions include how planets and the first stars formed and whether there are protostellar disks that contain large organic molecules. Although answering these questions requires space telescopes with apertures of at least 10 meters, such large primaries are challenging to construct by scaling up previous designs; the limited capacity of a launch vehicle bounds the maximum diameter of a monolithic primary, and beyond a certain size, deployable telescopes cannot fit in current launch vehicle fairings. One potential solution is connecting the primary mirror segments edgewise using flux-pinning mechanisms, which are analogous to non-contacting damped springs. In the baseline design, a flux-pinning mechanism consists of a magnet and a superconductor separated by a predetermined gap, with the damping adjusted by placing aluminum near the interface. Since flux pinning is possible only when the superconductor is cooled below a critical temperature, flux-pinning mechanisms are uniquely suited for cryogenic space telescopes. By placing these mechanisms along the edges of the mirror segments, a primary can be built up over time. Since flux pinning requires no mechanical deployments, the assembly process could be robotic or use some other non-contacting scheme. Advantages of this approach include scalability and passive stability.
First Science Observations with SOFIA/FORCAST: 6-37 μm Imaging of Orion BN/KL
NASA Astrophysics Data System (ADS)
De Buizer, James M.; Morris, Mark R.; Becklin, E. E.; Zinnecker, Hans; Herter, Terry L.; Adams, Joseph D.; Shuping, Ralph Y.; Vacca, William D.
2012-04-01
The Becklin-Neugebauer/Kleinmann-Low (BN/KL) region of the Orion Nebula is the nearest region of high-mass star formation in our galaxy. As such, it has been the subject of intense investigation at a variety of wavelengths, which have revealed it to be brightest in the infrared to submillimeter wavelength regime. Using the newly commissioned SOFIA airborne telescope and its 5-40 μm camera FORCAST, images of the entire BN/KL complex have been acquired. The 31.5 and 37.1 μm images represent the highest resolution observations (lsim4'') ever obtained of this region at these wavelengths. These observations reveal that the BN object is not the dominant brightness source in the complex at wavelengths >= 31.5 μm and that this distinction goes instead to the source IRc4. It was determined from these images and derived dust color temperature maps that IRc4 is also likely to be self-luminous. A new source of emission has also been identified at wavelengths >= 31.5 μm that coincides with the northeastern outflow lobe from the protostellar disk associated with radio source I.
Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?
NASA Astrophysics Data System (ADS)
Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.
2017-10-01
I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).
Science with the Space Infrared Telescope Facility
NASA Technical Reports Server (NTRS)
Roellig, Thomas L.
2003-01-01
The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.
Search for water and life's building blocks in the universe: A summary
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Kwok, Sun; Bergin, Edwin
2015-08-01
Water and organic compounds are essential ingredients for life on Earth and possibly elsewhere. In gaseous form water acts as a coolant that allows interstellar gas clouds to collapse to form stars, whereas water ice covers small dust particles that agglomerate to form planetesimals and planets. The variety of organic compounds identified in interstellar and circumstellar regions reflects complex reaction schemes in the gaseous and icy/solid state. Interstellar volatiles and refractory materials were processed and radially mixed within the protostellar disk from which our solar system formed. But the dynamic solar nebula was also a source for new materials and the search for water and life’s building blocks on terrestrial planets, most of the outer-solar-system satellites as well as small solar system bodies reveals exciting new findings. The analysis of small bodies and their fragments, meteorites and interplanetary dust particles, sheds lights onto the extraterrestrial delivery process of prebiotic molecules to young planets and the pathways to life’s origin on Earth and possibly elsewhere. We summarize the results of invited and contributed papers of this Focus Meeting which will allow us to better assess the habitability of objects in our solar system and provide constraints for exoplanets.
NASA Astrophysics Data System (ADS)
Kristensen, L. E.; van Dishoeck, E. F.; Mottram, J. C.; Karska, A.; Yıldız, U. A.; Bergin, E. A.; Bjerkeli, P.; Cabrit, S.; Doty, S.; Evans, N. J.; Gusdorf, A.; Harsono, D.; Herczeg, G. J.; Johnstone, D.; Jørgensen, J. K.; van Kempen, T. A.; Lee, J.-E.; Maret, S.; Tafalla, M.; Visser, R.; Wampfler, S. F.
2017-09-01
Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still not understood. Aims: We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods: Observations are presented of the highly excited CO line J = 16-15 (Eup/kB = 750 K) with the Herschel Heterodyne Instrument for the Far Infrared (HIFI) toward a sample of 24 low-mass protostellar objects. The sources were selected from the Herschel "Water in Star-forming regions with Herschel" (WISH) and "Dust, Ice, and Gas in Time" (DIGIT) key programs. Results: The spectrally resolved line profiles typically show two distinct velocity components: a broad Gaussian component with an average FWHM of 20 km s-1 containing the bulk of the flux, and a narrower Gaussian component with a FWHM of 5 km s-1 that is often offset from the source velocity. Some sources show other velocity components such as extremely-high-velocity features or "bullets". All these velocity components were first detected in H2O line profiles. The average rotational temperature over the entire profile, as measured from comparison between CO J = 16-15 and 10-9 emission, is 300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is 0.02, suggesting a total H2O abundance of 2 × 10-6, independent of velocity. Conclusions: Two distinct velocity profiles observed in the HIFI line profiles suggest that the high-J CO ladder observed with PACS consists of two excitation components. The warm PACS component (300 K) is associated with the broad HIFI component, and the hot PACS component (700 K) is associated with the offset HIFI component. The former originates in either outflow cavity shocks or the disk wind, and the latter in irradiated shocks. The low water abundance can be explained by photodissociation. The ubiquity of the warm and hot CO components suggest that fundamental mechanisms govern the excitation of these components; we hypothesize that the warm component arises when H2 stops being the dominant coolant. In this scenario, the hot component arises in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
The Fourier-Kelvin Stellar Interferometer Mission Concept
NASA Technical Reports Server (NTRS)
Danchi, W. C.; Allen, R.; Benford, D.; Gezari, D.; Leisawitz, D.; Mundy, L.; Oegerle, William (Technical Monitor)
2002-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological precursor to TPF as well as Space Infrared Interferometric Telescope (SPIRIT), Submillimeter Probe Evolution of Cosmic Structure (SPECS), and Single Aperture for Infrared Observatory (SAFIR). It will also be a high angular resolution system complementary to Next Generation Space Telescope (NGST). The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We are in the process of studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. The goal of the design study is to determine if a mid-infrared interferometry mission can be performed within the cost and schedule requirements of a Discovery class mission. At the present time we envision the FKSI as comprised of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral data simultaneously for a given orientation of the array. The spacecraft will be rotated to give sufficient Fourier data to reconstruct complex images of a broad range of astrophysical sources.
NASA Astrophysics Data System (ADS)
Smith, Rachel L.; Pontoppidan, Klaus M.; Young, Edward D.; Morris, Mark R.; van Dishoeck, Ewine F.
2009-08-01
Using very high resolution (λ/Δλ ≈ 95 000) 4.7 μm fundamental and 2.3 μm overtone rovibrational CO absorption spectra obtained with the Cryogenic Infrared Echelle Spectrograph infrared spectrometer on the Very Large Telescope (VLT), we report detections of four CO isotopologues—C16O, 13CO, C18O, and the rare species, C17O—in the circumstellar environment of two young protostars: VV CrA, a binary T Tauri star in the Corona Australis molecular cloud, and Reipurth 50, an intermediate-mass FU Ori star in the Orion Molecular Cloud. We argue that the observed CO absorption lines probe a protoplanetary disk in VV CrA, and a protostellar envelope in Reipurth 50. All CO line profiles are spectrally resolved, with intrinsic line widths of ≈3-4 km s-1 (FWHM), permitting direct calculation of CO oxygen isotopologue ratios with 5%-10% accuracy. The rovibrational level populations for all species can be reproduced by assuming that CO absorption arises in two temperature regimes. In the higher temperature regime, in which the column densities are best determined, the derived oxygen isotope ratios in VV CrA are: [C16O]/[C18O] =690 ± 30; [C16O]/[C17O] =2800 ± 300, and [C18O]/[C17O]=4.1 ± 0.4. For Reipurth 50, we find [C16O]/[C18O] =490 ± 30; [C16O]/[C17O] =2200 ± 150, [C18O]/[C17O] = 4.4 ± 0.2. For both objects, 12C/13C are on the order of 100, nearly twice the expected interstellar medium (ISM) ratio. The derived oxygen abundance ratios for the VV CrA disk show a significant mass-independent deficit of C17O and C18O relative to C16O compared to ISM baseline abundances. The Reipurth 50 envelope shows no clear differences in oxygen CO isotopologue ratios compared with the local ISM. A mass-independent fractionation can be interpreted as being due to selective photodissociation of CO in the disk surface due to self-shielding. The deficits in C17 O and C18 O in the VV CrA protoplanetary disk are consistent with an analogous origin of the 16O variability in the solar system by isotope selective photodissociation, confirmation of which may be obtained via study of additional sources. The higher fractionation observed for the VV CrA disk compared with the Reipurth 50 envelope is likely due to a combination of disk geometry, grain growth, and vertical mixing processes. This work is based on observations collected at the European Southern Observatory Very Large Telescope under program ID 179.C-0151.
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.
2017-08-10
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.
2017-08-01
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
Tests and consequences of disk plus halo models of gamma-ray burst sources
NASA Technical Reports Server (NTRS)
Smith, I. A.
1995-01-01
The gamma-ray burst observations made by the Burst and Transient Source Experiment (BATSE) and by previous experiments are still consistent with a combined Galactic disk (or Galactic spiral arm) plus extended Galactic halo model. Testable predictions and consequences of the disk plus halo model are discussed here; tests performed on the expanded BATSE database in the future will constrain the allowed model parameters and may eventually rule out the disk plus halo model. Using examples, it is shown that if the halo has an appropriate edge, BATSE will never detect an anisotropic signal from the halo of the Andromeda galaxy. A prediction of the disk plus halo model is that the fraction of the bursts observed to be in the 'disk' population rises as the detector sensitivity improves. A careful reexamination of the numbers of bursts in the two populations for the pre-BATSE databases could rule out this class of models. Similarly, it is predicted that different satellites will observe different relative numbers of bursts in the two classes for any model in which there are two different spatial distribiutions of the sources, or for models in which there is one spatial distribution of the sources that is sampled to different depths for the two classes. An important consequence of the disk plus halo model is that for the birthrate of the halo sources to be small compared to the birthrate of the disk sources, it is necessary for the halo sources to release many orders of magnitude more energy over their bursting lifetime than the disk sources. The halo bursts must also be much more luminous than the disk bursts; if this disk-halo model is correct, it is necessary to explain why the disk sources do not produce halo-type bursts.
Disk flexibility effects on the rotordynamics of the SSME high pressure turbopumps
NASA Technical Reports Server (NTRS)
Flowers, George T.
1990-01-01
Rotordynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that it may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbopumps. Finite element analyses were performed for a simplified free-free flexible disk rotor models and the modes and frequencies compared to those of a rigid disk model. Equations were developed to account for disk flexibility in rotordynamical analysis. Simulation studies were conducted to assess the influence of disk flexibility on the HPOTP. Some recommendations are given as to the importance of disk flexibility and for how this project should proceed.
1961-2011: Fifty years of Hayashi tracks
NASA Astrophysics Data System (ADS)
Palla, Francesco
2012-09-01
Fifty years after the seminal paper by Prof. C. Hayashi, the field of pre-main sequence (PMS) evolution still plays a fundamental role in observational and theoretical astrophysics. In this contribution, I highlight the contribution made by Hayashi in establishing the theoretical foundation of early stellar evolution. Then, I discuss the changes of the classical theory introduced by the inclusion of protostellar evolution in PMS models and present selected results on young stars.
HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou
We present Submillimeter Array polarization observations of the CO J = 3–2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ∼1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ∼20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ∼2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly frommore » an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind–envelope interaction in the wind-driven outflows. The CO data reveal a PA of ∼30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ∼10° deflection of the outflows by means of Lorentz force.« less
An analytic performance model of disk arrays and its application
NASA Technical Reports Server (NTRS)
Lee, Edward K.; Katz, Randy H.
1991-01-01
As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.
EVLA Observation of Centimeter Continuum Emission from Protostars in Serpens South
NASA Astrophysics Data System (ADS)
Kern, Nicholas S.; Tobin, John J.; Keown, Jared A.; Gutermuth, Robert A.
2015-01-01
Serpens South is a protocluster with an unusually high abundance of Class 0 and I protostars, suggesting it is in a very early phase of star formation and may eventually form a star cluster. Following its discovery in 2008 with the Spitzer space telescope, infrared and millimeter observations and analysis quickly followed, however, Serpens South has yet to be fully explored in the radio. Radio observations at centimeter wavelengths have long been used as a tool to probe the dynamical processes of young protostars that are still heavily shrouded in their protostellar envelopes and thus cannot be seen at longer wavelengths. Radio observations then become an important tool in understanding Serpens South due to its young age. To this end, we have conducted EVLA C band continuum observations of the central region of the Serpens South protostellar cluster in order to map the centimeter continuum emission in a region of high Class 0 / I protostellar surface density. We report the detection of centimeter emission corresponding to protostars identified by Spitzer, and to protostars identified but blended by Herschel. We characterize their centimeter emission, and put them in context with previous Spitzer and Herschel infrared and far-infrared observations, as well as IRAM millimeter observations. Additionally, we make an assessment of the protostars' bolometric luminosity, and compare them to the known protostellar 3.6 cm to 6.0 cm luminosity vs. bolometric luminosity relation. With the EVLA, we present a mid-resolution map of centimeter emission from the central region of Serpens South with the highest sensitivity to date, with a beam size of ~5 arcseconds and rms on the order of 15 microJansky.
Inner Structure in the TW Hya Circumstellar Disk
NASA Astrophysics Data System (ADS)
Akeson, Rachel L.; Millan-Gabet, R.; Ciardi, D.; Boden, A.; Sargent, A.; Monnier, J.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.
2011-05-01
TW Hya is a nearby (50 pc) young stellar object with an estimated age of 10 Myr and signs of active accretion. Previous modeling of the circumstellar disk has shown that the inner disk contains optically thin material, placing this object in the class of "transition disks". We present new near-infrared interferometric observations of the disk material and use these data, as well as previously published, spatially resolved data at 10 microns and 7 mm, to constrain disk models based on a standard flared disk structure. Our model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also some optically thick material within this gap. Our model is consistent with the suggestion by previous authors of a planet with an orbital radius of a few AU. This work was conducted at the NASA Exoplanet Science Institute, California Institute of Technology.
Contraction Signatures toward Dense Cores in the Perseus Molecular Cloud
NASA Astrophysics Data System (ADS)
Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.
2016-03-01
We report the results of an HCO+ (3-2) and N2D+ (3-2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO+ asymmetry using a dimensionless asymmetry parameter δv, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO+ profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22 cores. Comparing the δv and collapse model results, we find that δv is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s-1) to supersonic (0.4 km s-1), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/MJ > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/MJ, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.
NASA Astrophysics Data System (ADS)
Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.
2018-03-01
It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.
NASA Astrophysics Data System (ADS)
Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.
2018-06-01
Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.
VizieR Online Data Catalog: Young clumps embedded in IRDC (Traficante+, 2015)
NASA Astrophysics Data System (ADS)
Traficante, A.; Fuller, G. A.; Peretto, N.; Pineda, J. E.; Molinari, S.
2015-06-01
Photometric parameters for 667 starless clumps (sources identified at 160um with a counterpart at 250 and 350um) and 1056 protostellar clumps (sources identified at 160um with a counterpart at 70, 250 and 350um). Photometric parameters obtained with Hyper photometry code (2015A&A...574A.119T). The photometry is corrected for aperture and colour corrections. The parameter list is the standard Hyper output (see description below). SED fit parameters for 650 starless clumps and 1034 protostellar clumps (all clumps with good SED fitting: Chi2<10, Temperature<40K. See the paper for details) (4 data files).
NASA Technical Reports Server (NTRS)
Flowers, George T.
1989-01-01
Rotor dynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that is may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbo-pumps. Finite element analyses have been performed for a simplified free-free flexible disk rotor model and the modes and frequencies compared to those of a rigid disk model. The simple model was then extended to a more sophisticated HPTOP rotor model and similar results were observed. Equations were developed that are suitable for modifying the current rotordynamical analysis program to account for disk flexibility. Some conclusions are drawn from the results of this work as to the importance of disk flexibility on the HPTOP rotordynamics and some recommendations are given for follow-up research in this area.
NASA Technical Reports Server (NTRS)
Kim, Y. W.; Metzger, D. E.
1992-01-01
The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.
NASA Astrophysics Data System (ADS)
Farahinezhad, M.; Khesali, A. R.
2018-05-01
In this paper, the effects of global magnetic field and thermal conduction on the vertical structure of the accretion disks has been investigated. In this study, four types disks were examined: Gas pressure dominated the standard disk, while radiation pressure dominated the standard disk, ADAF disk, slim disk. Moreover, the general shape of the magnetic field, including toroidal and poloidal components, is considered. The magnetohydrodynamic equations were solved in spherical coordinates using self-similar assumptions in the radial direction. Following previous authors, the polar velocity vθ is non-zero and Trφ was considered as a dominant component of the stress tensor. The results show that the disk becomes thicker compared to the non-magnetic fields. It has also been shown that the presence of the thermal conduction in the ADAF model makes the disk thicker; the disk is expanded in the standard model.
Multifluid magnetohydrodynamics of weakly ionized plasmas
NASA Astrophysics Data System (ADS)
Menzel, Raymond
The process of star formation is an integral part of the new field of astrobiology, which studies the origins of life. Since the gas that collapses to form stars and their resulting protoplanetary disks is known to be weakly ionized and contain magnetic fields, star formation is governed by multifluid magnetohydrodynamics. In this thesis we consider two important problems involved in the process of star formation that may have strongly affected the origins of life, with the goal of determining the thermal effects of these flows and modeling the physical conditions of these environments. We first considered the outstanding problem of how primitive bodies, specifically asteroids, were heated in protoplanetary disks early in their lifetime. Reexamining asteroid heating due to the classic unipolar induction heating mechanism described by Sonett et al. (1970), we find that this mechanism contains a subtle conceptual error. As original conceived, heating due to this mechanism is driven by a uniform, supersonic, fully-ionized, magnetized, T Tauri solar wind, which sweeps past an asteroid and causes the asteroid to experience a motional electric field in its rest frame. We point out that this mechanism ignores the interaction between the body surface and the flow, and thus only correctly describes the electric field far away from the asteroid where the plasma streams freely. In a realistic protoplanetary disk environment, we show that the interaction due to friction between the asteroid surface and the flow causes a shear layer to form close to the body, wherein the motional electric field predicted by Sonett et al. decreases and tends to zero at the asteroid surface. We correct this error by using the equations of multifluid magnetohydrodynamics to explicitly treat the shear layer. We calculate the velocity field in the plasma, and the magnetic and electric fields everywhere for two flows over an idealized infinite asteroid with varying magnetic field orientations. We show that the total electric field in the asteroid may either be of comparable strength to the electric field predicted by Sonett et al. or vanish depending on the magnetic field geometry. We include the effects of dust grains in the gas and calculate the heating rates in the plasma flow due to ion-neutral scattering and viscous dissipation. We term this newly discovered heating mechanism "electrodynamic heating", use measurements of asteroid electrical conductivities to estimate the upper limits of the possible heating rates and amount of thermal energy that can be deposited in the solid body, and compare these to the heating produced by the decay of radioactive nuclei like Al26. For the second problem we modeled molecular line emission from time-dependent multifluid MHD shock waves in star-forming regions. By incorporating realistic radiative cooling by CO and H2 into the numerical method developed by Ciolek & Roberge (2013), we present the only current models of truly time-dependent multifluid MHD shock waves in weakly-ionized plasmas. Using the physical conditions determined by our models, we present predictions of molecular emission in the form of excitation diagrams, which can be compared to observations of protostellar outflows in order to trace the physical conditions of these environments. Current work focuses on creating models for varying initial conditions and shock ages, which are and will be the subject of several in progress studies of observed molecular outflows and will provide further insight into the physics and chemistry of these flows.
Inflow Motions Associated with High-mass Protostellar Objects
NASA Astrophysics Data System (ADS)
Yoo, Hyunju; Kim, Kee-Tae; Cho, Jungyeon; Choi, Minho; Wu, Jingwen; Evans, Neal J., II; Ziurys, L. M.
2018-04-01
We performed a molecular line survey of 82 high-mass protostellar objects in a search for inflow signatures associated with high-mass star formation. Using the H13CO+ (1‑0) line as an optically thin tracer, we detected a statistically significant excess of blue asymmetric line profiles in the HCO+ (1‑0) transition, but nonsignificant excesses in the HCO+ (3‑2) and H2CO (212–111) transitions. The negative blue excess for the HCN (3‑2) transition suggests that the line profiles are affected by dynamics other than inflow motion. The HCO+ (1‑0) transition thus seems to be the suitable tracer of inflow motions in high-mass star-forming regions, as previously suggested. We found 27 inflow candidates that have at least 1 blue asymmetric profile and no red asymmetric profile, and derived the inflow velocities to be 0.23‑2.00 km s‑1 for 20 of them using a simple two-layer radiative transfer model. Our sample is divided into two groups in different evolutionary stages. The blue excess of the group in relatively earlier evolutionary stages was estimated to be slightly higher than that of the other in the HCO+ (1‑0) transition.
Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme
2015-01-01
Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471
Radiative Transfer Modeling in Proto-planetary Disks
NASA Astrophysics Data System (ADS)
Kasper, David; Jang-Condell, Hannah; Kloster, Dylan
2016-01-01
Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.
Optimizing a tandem disk model
NASA Astrophysics Data System (ADS)
Healey, J. V.
1983-08-01
The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.
Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle
2010-11-01
Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.
Imaging the water snowline in a protostellar envelope with H13CO+
NASA Astrophysics Data System (ADS)
van 't Hoff, Merel L. R.; Persson, Magnus V.; Harsono, Daniel; Taquet, Vianney; Jørgensen, Jes K.; Visser, Ruud; Bergin, Edwin A.; van Dishoeck, Ewine F.
2018-05-01
Context. Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks because of the close proximity of this snowline to the central star. Aims: Based on chemical considerations, HCO+ is predicted to be a good chemical tracer of the water snowline because it is particularly abundant in dense clouds when water is frozen out. This work aims to map the optically thin isotopolog H13CO+ toward the envelope of the low-mass protostar NGC 1333-IRAS2A, where the snowline is at a greater distance from the star than in disks. Comparison with previous observations of H218O show whether H13CO+ is indeed a good tracer of the water snowline. Methods: NGC 1333-IRAS2A was observed using the NOrthern Extended Millimeter Array (NOEMA) at 0.''9 resolution, targeting the H13CO+ J = 3 - 2 transition at 260.255 GHz. The integrated emission profile was analyzed using 1D radiative transfer modeling of a spherical envelope with a parametrized abundance profile for H13CO+. This profile was validated with a full chemical model. Results: The H13CO+ emission peaks 2'' northeast of the continuum peak, whereas H218O shows compact emission on source. Quantitative modeling shows that a decrease in H13CO+ abundance by at least a factor of six is needed in the inner 360 AU to reproduce the observed emission profile. Chemical modeling indeed predicts a steep increase in HCO+ just outside the water snowline; the 50% decrease in gaseous H2O at the snowline is not enough to allow HCO+ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC 1333-IRAS2A. In contrast, DCO+ observations show that the CO snowline is at the expected location, making an outburst scenario unlikely. Conclusions: The spatial anticorrelation of H13CO+ and H218O emission provide proof of concept that H13CO+ can be used as a tracer of the water snowline. The NOEMA data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A29Based on observations carried out with the IRAM NOEMA interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Creating Compositionally-Driven Debris Disk Dust Models
NASA Astrophysics Data System (ADS)
Zimmerman, Mara; Jang-Condell, Hannah; Schneider, Glenn; Chen, Christine; Stark, Chris
2018-06-01
Debris disks play a key role in exoplanet research; planetary formation and composition can be inferred from the nature of the circumstellar disk. In order to characterize the properties of the circumstellar dust, we create models of debris disks in order to find the composition. We apply Mie theory to calculate the dust absorption and emission within debris disks. We have data on nine targets from Spitzer and Hubble Space Telescope. The Spitzer data includes mid-IR spectroscopy and photometry. We have spatially-resolved optical and near-IR images of the disks from HST. Our goal is to compare this data to the model. By using a model that fits for photometric and mid-IR datasimultaneously, we gain a deeper understanding of the structure and composition of the debris disk systems.
Modulated mass-transfer model for superhumps in SU Ursae Majoris stars
NASA Technical Reports Server (NTRS)
Mineshige, Shin
1988-01-01
The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.
Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk
NASA Astrophysics Data System (ADS)
Misra, R.
2000-02-01
We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.
NASA Astrophysics Data System (ADS)
Issaoun, S.; Goddi, C.; Matthews, L. D.; Greenhill, L. J.; Gray, M. D.; Humphreys, E. M. L.; Chandler, C. J.; Krumholz, M.; Falcke, H.
2017-10-01
Context. High-mass star formation remains poorly understood due to observational difficulties (e.g. high dust extinction and large distances) hindering the resolution of disk-accretion and outflow-launching regions. Aims: Orion Source I is the closest known massive young stellar object (YSO) and exceptionally powers vibrationally-excited SiO masers at radii within 100 AU, providing a unique probe of gas dynamics and energetics. We seek to observe and image these masers with Very Long Baseline Interferometry (VLBI). Methods: We present the first images of the 28SiO v = 1, J = 2-1 maser emission around Orion Source I observed at 86 GHz (λ3 mm) with the Very Long Baseline Array (VLBA). These images have high spatial ( 0.3 mas) and spectral ( 0.054 km s-1) resolutions. Results: We find that the λ3 mm masers lie in an X-shaped locus consisting of four arms, with blue-shifted emission in the south and east arms and red-shifted emission in the north and west arms. Comparisons with previous images of the 28SiO v = 1,2, J = 1-0 transitions at λ7 mm (observed in 2001-2002) show that the bulk of the J = 2-1 transition emission follows the streamlines of the J = 1-0 emission and exhibits an overall velocity gradient consistent with the gradient at λ7 mm. While there is spatial overlap between the λ3 mm and λ7 mm transitions, the λ3 mm emission, on average, lies at larger projected distances from Source I ( 44 AU compared with 35 AU for λ7 mm). The spatial overlap between the v = 1, J = 1-0 and J = 2-1 transitions is suggestive of a range of temperatures and densities where physical conditions are favorable for both transitions of a same vibrational state. However, the observed spatial offset between the bulk of emission at λ3 mm and λ7 mm possibly indicates different ranges of temperatures and densities for optimal excitation of the masers. We discuss different maser pumping models that may explain the observed offset. Conclusions: We interpret the λ3 mm and λ7 mm masers as being part of a single wide-angle outflow arising from the surface of an edge-on disk rotating about a northeast-southwest axis, with a continuous velocity gradient indicative of differential rotation consistent with a Keplerian profile in a high-mass proto-binary. The reduced spectral cube (FITS format) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A126
Accretion Disks and the Formation of Stellar Systems
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin Michelle
2011-02-01
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
Experimental dynamic characterizations and modelling of disk vibrations for HDDs.
Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua
2008-01-01
Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.
HUBBLE VIEWS OF THREE STELLAR JETS
NASA Technical Reports Server (NTRS)
2002-01-01
These NASA Hubble Space Telescope views of gaseous jets from three newly forming stars show a new level of detail in the star formation process, and are helping to solve decade-old questions about the secrets of star birth. Jets are a common 'exhaust product' of the dynamics of star formation. They are blasted away from a disk of gas and dust falling onto an embryonic star. [upper left] - This view of a protostellar object called HH-30 reveals an edge-on disk of dust encircling a newly forming star. Light from the forming star illuminates the top and bottom surfaces of the disk, making them visible, while the star itself is hidden behind the densest parts of the disk. The reddish jet emanates from the inner region of the disk, and possibly directly from the star itself. Hubble's detailed view shows, for the first time, that the jet expands for several billion miles from the star, but then stays confined to a narrow beam. The protostar is 450 light-years away in the constellation Taurus. Credit: C. Burrows (STScI and ESA), the WFPC 2 Investigation Definition Team, and NASA [upper right] - This view of a different and more distant jet in object HH-34 shows a remarkable beaded structure. Once thought to be a hydrodynamic effect (similar to shock diamonds in a jet aircraft exhaust), this structure is actually produced by a machine-gun-like blast of 'bullets' of dense gas ejected from the star at speeds of one-half million miles per hour. This structure suggests the star goes through episodic 'fits' of construction where chunks of material fall onto the star from a surrounding disk. The protostar is 1,500 light- years away and in the vicinity of the Orion Nebula, a nearby star birth region. Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition Team, and NASA [bottom] - This view of a three trillion mile-long jet called HH-47 reveals a very complicated jet pattern that indicates the star (hidden inside a dust cloud near the left edge of the image) might be wobbling, possibly caused by the gravitational pull of a companion star. Hubble's detailed view shows that the jet has burrowed a cavity through the dense gas cloud and now travels at high speed into interstellar space. Shock waves form when the jet collides with interstellar gas, causing the jet to glow. The white filaments on the left reflect light from the obscured newborn star. The HH-47 system is 1,500 light-years away, and lies at the edge of the Gum Nebula, possibly an ancient supernova remnant which can be seen from Earth's southern hemisphere. Credit: J. Morse/STScI, and NASA The scale in the bottom left corner of each picture represents 93 billion miles, or 1,000 times the distance between Earth and the Sun. All images were taken with the Wide Field Planetary Camera 2 in visible light. The HH designation stands for 'Herbig-Haro' object -- the name for bright patches of nebulosity which appear to be moving away from associated protostars.
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya
2003-01-01
Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.
Induced massive star formation in the trifid nebula?
Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras
1998-10-16
The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.
Dynamical evolution of young binaries and multiple systems
NASA Astrophysics Data System (ADS)
Reipurth, B.
Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.
Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Johnson, N. M.; Meshik, A.
2010-01-01
When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.
Astrochem: Abundances of chemical species in the interstellar medium
NASA Astrophysics Data System (ADS)
Maret, Sébastien; Bergin, Edwin A.
2015-07-01
Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).
Young Stellar Populations in MYStIX Star-forming Regions: Candidate Protostars
NASA Astrophysics Data System (ADS)
Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.
2016-12-01
The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra-based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.
Origins Space Telescope: Nearby Galaxies, the Milky Way, and the Interstellar Medium
NASA Astrophysics Data System (ADS)
Battersby, Cara; Sandstrom, Karin; Origins Space Telescope Science and Technology Definition Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.eduThis presentation will summarize the science case related to Nearby Galaxies, the Milky Way, and the Interstellar Medium (Interstellar Medium). The Origins Space Telescope will enable a wealth of unprecedented scientific advances in this area, both those we know to expect, and the discovery space that lies unexplored. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multiphase ISM; connecting these physics across scales of galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei, and their interplay, over cosmic time. Origins will unveil the abundance and availability of water for habitable planets by allowing us to trace the trail of water from interstellar clouds to protoplanetary disks, to Earth itself.
The numerical frontier of the high-redshift Universe
NASA Astrophysics Data System (ADS)
Greif, Thomas H.
2015-03-01
The first stars are believed to have formed a few hundred million years after the big bang in so-called dark matter minihalos with masses . Their radiation lit up the Universe for the first time, and the supernova explosions that ended their brief lives enriched the intergalactic medium with the first heavy elements. Influenced by their feedback, the first galaxies assembled in halos with masses , and hosted the first metal-enriched stellar populations. In this review, I summarize the theoretical progress made in the field of high-redshift star and galaxy formation since the turn of the millennium, with an emphasis on numerical simulations. These have become the method of choice to understand the multi-scale, multi-physics problem posed by structure formation in the early Universe. In the first part of the review, I focus on the formation of the first stars in minihalos - in particular the post-collapse phase, where disk fragmentation, protostellar evolution, and radiative feedback become important. I also discuss the influence of additional physical processes, such as magnetic fields and streaming velocities. In the second part of the review, I summarize the various feedback mechanisms exerted by the first stars, followed by a discussion of the first galaxies and the various physical processes that operate in them.
Utilitarian models of the solar nebula
NASA Technical Reports Server (NTRS)
Cassen, Patrick
1994-01-01
Models of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical history. A simple criterion is derived for the condition that silicate grains are evaporated at midplane, and it is argued that this condition was probably fulfilled early in nebular history. Cooling of a hot nebula due tocoagulation of dust and consequent local reduction of optical depth is examined, and it is shown how such a process leads naturally to an enrichment of rock-forming elements in the gas phase.
NASA Astrophysics Data System (ADS)
Sommer-Larsen, Jesper
1996-01-01
Evolutionary models for the disks of large disk galaxies, including effects of star formation, non-instantaneous gas recycling from stars, and infall of low-metallicity gas from the halo, have been calculated and compared with data for nearby, generally large disk galaxies on present disk star-formation rates (based on integrated Hα luminosities) as a function of disk gas fractions. The data were extracted from the work by Kennicutt, Tamblyn, & Congdon. The result of the comparison suggests that for disk galaxies the Hubble sequence is a disk age sequence, with early-type disks being the oldest and late types the youngest. Under the assumption of a minimum age of the Galactic disk of 10 Gyr, the mean age of Sa/Sab galaxies, and hence the age of the universe, is found to be at least 17±2 Gyr. It is furthermore found that the disk star-formation timescale is approximately independent of disk-galaxy type. Finally, it is found that the global initial mass function (IMF) in galactic disks is 2-3 times more weighted toward high-mass stars than the Scalo "best-fitting" model for the solar-neighborhood IMF. The more top-heavy model of Kennicutt provides a good fit to observation.
Extended Millimeter Emission in the HD 141569 Circumstellar Disk Detected with ALMA
NASA Astrophysics Data System (ADS)
White, Jacob Aaron; Boley, A. C.
2018-06-01
We present archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data sets that the system’s morphology is described well by a two-component disk model. The inner disk ranges from approximately 16–45 au with a spectral index of 1.81 (q = 2.95), and the outer disk ranges from 95 to 300 au with a spectral index of 2.28 (q = 3.21). Azimuthally averaged radial emission profiles derived from the continuum images at each frequency show potential emission that is consistent with the visibility modeling. The analysis presented here shows that at ∼5 Myr, HD 141569's grain size distribution is steeper and therefore possibly evolved in the outer disk than in the inner disk.
CONTRACTION SIGNATURES TOWARD DENSE CORES IN THE PERSEUS MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J. L.; Friesen, R. K.; Martin, P. G.
We report the results of an HCO{sup +} (3–2) and N{sub 2}D{sup +} (3–2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO{sup +} asymmetry using a dimensionless asymmetry parameter δ{sub v}, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO{sup +} profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22more » cores. Comparing the δ{sub v} and collapse model results, we find that δ{sub v} is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s{sup −1}) to supersonic (0.4 km s{sup −1}), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/M{sub J} > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/M{sub J}, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.« less
Exact relativistic models of conformastatic charged dust thick disks
NASA Astrophysics Data System (ADS)
García-Reyes, Gonzalo
2018-04-01
We construct relativistic models of charged dust thick disks for a particular conformastatic spacetime through a Miyamoto-Nagai transformation used in Newtonian gravity to model disk like galaxies. Two simple families of thick disk models and a family of thick annular disks based on the field of an extreme Reissner-Nordström black hole and a Morgan-Morgan-like metric are considered. The electrogeodesic motion of test particles around the structures are analyzed. Also the stability of the particles against radial perturbation is studied using an extension of the Rayleigh criteria of stability of a fluid in rest in a gravitational field. The models built satisfy all the energy conditions.
NASA Technical Reports Server (NTRS)
Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.
2013-01-01
Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.
Simulations of polarization from accretion disks
NASA Astrophysics Data System (ADS)
Schultz, J.
2000-12-01
The Monte Carlo Method was used to estimate the level of polarization from axisymmetric accretion disks similar to those in low-mass X-ray binaries and some classes of cataclysmic variables. In low-mass X-ray binaries electron scattering is supposed to be the dominant opacity source in the inner disk, and most of the optical light is produced in the disk. Thompson scattering occuring in the disk corona produces linear polarization. Detailed theoretical models of accretion disks are numerous, but simple mathematical disk models were used, as the accuracy of polarization measurements does not allow distinction of the fine details of disk models. Stokes parameters were used for the radiative transfer. The simulations indicate that the vertical distribution of emissivity has the greatest effect on polarization, and variations of radial emissivity distribution have no detectable effect on polarization. Irregularities in the disk may reduce the degree of polarization. The polarization levels produced by simulations are detectable with modern instruments. Polarization measurements could be used to get rough constraints on the vertical emissivity distribution of an accretion disk, provided that a reasonably accurate disk model can be constructed from photometric or spectrosopic observations in optical and/or X-ray wavelengths. Mainly based on observations taken at the Observatoire de Haute-Provence, France, and on some observations obtained at the European Southern Observatory, Chile (ESO Prog. IDs: 57.C-0492, 59.C-0293, 61.C-0512).
You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2017-01-01
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.
NASA Astrophysics Data System (ADS)
Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.
2017-12-01
We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.
Search for massive protostellar candidates in the southern hemisphere. I. Association with dense gas
NASA Astrophysics Data System (ADS)
Fontani, F.; Beltrán, M. T.; Brand, J.; Cesaroni, R.; Testi, L.; Molinari, S.; Walmsley, C. M.
2005-03-01
We have observed two rotational transitions of both CS and C17O, and the 1.2 mm continuum emission towards a sample of 130 high-mass protostellar candidates with δ < -30°. This work represents the first step of the extension to the southern hemisphere of a project started more than a decade ago aimed at the identification of massive protostellar candidates. Following the same approach adopted for sources with δ ≥ -30°, we have selected from the IRAS Point Source Catalogue 429 sources which potentially are compact molecular clouds on the basis of their IR colours. The sample has then been divided into two groups according to the colour indices [25 12] and [60 12]: the 298 sources with [25 12] ≥ 0.57 and [60 12] ≥ 1.30 have been called High sources, the remaining 131 have been called Low sources. In this paper, we check the association with dense gas and dust in 130 Low sources. We have obtained a detection rate of ~85% in CS, demonstrating a tight association of the sources with dense molecular clumps. Among the sources detected in CS, ~76% have also been detected in C17O and ~93% in the 1.2 mm continuum. Millimeter-continuum maps show the presence of clumps with diameters in the range 0.2-2 pc and masses from a few M⊙ to 105 M⊙; H2 volume densities computed from CS line ratios lie between ~104.5 and 105.5 cm-3. The bolometric luminosities of the sources, derived from IRAS data, are in the range 103-106 L⊙, consistent with embedded high-mass objects. Based on our results and those found in the literature for other samples of high-mass young stellar objects, we conclude that our sources are massive objects in a very early evolutionary stage, probably prior to the formation of an Hii region. We propose a scenario in which High and Low sources are both made of a massive clump hosting a high-mass protostellar candidate and a nearby stellar cluster. The difference might be due to the fact that the 12 μm IRAS flux, the best discriminant between the two groups, is dominated by the emission from the cluster in Lows and from the massive protostellar object in Highs. Based on results collected at the European Southern Observatory (ESO), La Silla, Chile. Tables [see full text]-[see full text] are only available in electronic form at http://www.edpsciences.org
On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies
NASA Astrophysics Data System (ADS)
Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.
2018-06-01
H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P., E-mail: aboss@carnegiescience.edu
2017-02-10
Observational evidence exists for the formation of gas giant planets on wide orbits around young stars by disk gravitational instability, but the roles of disk instability and core accretion for forming gas giants on shorter period orbits are less clear. The controversy extends to population synthesis models of exoplanet demographics and to hydrodynamical models of the fragmentation process. The latter refers largely to the handling of radiative transfer in three-dimensional (3D) hydrodynamical models, which controls heating and cooling processes in gravitationally unstable disks, and hence dense clump formation. A suite of models using the β cooling approximation is presented here.more » The initial disks have masses of 0.091 M {sub ⊙} and extend from 4 to 20 au around a 1 M {sub ⊙} protostar. The initial minimum Toomre Qi values range from 1.3 to 2.7, while β ranges from 1 to 100. We show that the choice of Q {sub i} is equal in importance to the β value assumed: high Q{sub i} disks can be stable for small β , when the initial disk temperature is taken as a lower bound, while low Q{sub i} disks can fragment for high β . These results imply that the evolution of disks toward low Q{sub i} must be taken into account in assessing disk fragmentation possibilities, at least in the inner disk, i.e., inside about 20 au. The models suggest that if low Q{sub i} disks can form, there should be an as yet largely undetected population of gas giants orbiting G dwarfs between about 6 au and 16 au.« less
The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity
NASA Astrophysics Data System (ADS)
Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.
2015-09-01
Context. Protostellar outflows are a crucial ingredient of the star-formation process. However, the physical conditions in the warm outflowing gas are still poorly known. Aims: We present a multi-transition, high spectral resolution CO study of the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow and to constrain the physical conditions of the various components in order to understand the origin of the mass-loss phenomenon. Methods: We have observed the J = 12-11, J = 13-12, and J = 16-15 CO lines at high spectral resolution with SOFIA/GREAT and the J = 5-4, J = 9-8, and J = 14-13 CO lines with HIFI/Herschel towards the position of the terminal bowshock HH377 in the southern outflow lobe. These observations were complemented with maps of CO transitions obtained with the IRAM 30 m telescope (J = 1-0, 2-1), the Plateau de Bure interferometer (J = 2-1), and the James Clerk Maxwell Telescope (J = 3-2, 4-3). Results: We identify three main components in the protostellar outflow: the jet, the cavity, and the bowshock, with a typical size of 1.7″ × 21″, 4.5″, and 22″ × 10″, respectively. In the jet, the emission from the low-J CO lines is dominated by a gas layer at Tkin = 80-100 K, column density N(CO) = 9 × 1016 cm-2, and density n(H2) = (0.5-1) × 105 cm-3; the emission of the high-J CO lines arises from a warmer (Tkin = 400-750 K), denser (n(H2) = (0.5-1) × 106 cm-3), lower column density (N(CO) = 1.5 × 1016 cm-2) gas component. Similarly, in the outflow cavity, two components are detected: the emission of the low-J lines is dominated by a gas layer of column density N(CO) = 7 × 1017 cm-2 at Tkin = 55-85 K and density in the range (1-8) × 105 cm-3; the emission of the high-J lines is dominated by a hot, denser gas layer with Tkin = 500-1500K, n(H2) = (1-5) × 106 cm-3, and N(CO) = 6 × 1016 cm-2. A temperature gradient as a function of the velocity is found in the high-excitation gas component. In the terminal bowshock HH377, we detect gas of moderate excitation, with a temperature in the range Tkin ≈ 400-500 K, density n(H2) ≃ (1 -2) × 106 cm-3 and column density N(CO) = 1017 cm-2. The amounts of momentum carried away in the jet and in the entrained ambient medium are similar. Comparison with time-dependent shock models shows that the hot gas emission in the jet is well accounted for by a magnetized shock with an age of 220-740 yr propagating at 20-30 km s-1 in a medium of density n(H2) = (0.5-1) × 105 cm-3, consistent with that of the bulk material. Conclusions: The Cep E protostellar outflow appears to be a convincing case of jet bowshock driven outflow. Our observations trace the recent impact of the protostellar jet into the ambient cloud, produing a non-stationary magnetized shock, which drives the formation of an outflow cavity. Appendices are available in electronic form at http://www.aanda.org
Externally Induced Evaporation of Young Stellar Disks in Orion
NASA Technical Reports Server (NTRS)
Johnstone, D.; Hollenbach, D.; Shu, F.
1996-01-01
In this paper we propose a model for the evaporation of disks around young low-mass stars by external sources of high energy photons. Two evaporation techniques are possible. Lyman continuum radiation can ionize hydrogen at the disk surface powering a steady thermal ionized disk-wind, or FUV radiation can heat the disk through photo-electric grain processes powering a slower thermal neutral disk-wind. Applying these two models to the evaporating objects in the Trapezium produces a satisfactory solution to both the mass-loss rate and size of the ionized envelopes.
Forced response of mistuned bladed disk assemblies
NASA Technical Reports Server (NTRS)
Watson, Brian C.; Kamat, Manohar P.; Murthy, Durbha V.
1993-01-01
A complete analytic model of mistuned bladed disk assemblies, designed to simulate the dynamical behavior of these systems, is analyzed. The model incorporates a generalized method for describing the mistuning of the assembly through the introduction of specific mistuning modes. The model is used to develop a computational bladed disk assembly model for a series of parametric studies. Results are presented demonstrating that the response amplitudes of bladed disk assemblies depend both on the excitation mode and on the mistune mode.
Kobayashi, Seiji
2002-05-10
A point-spread function (PSF) is commonly used as a model of an optical disk readout channel. However, the model given by the PSF does not contain the quadratic distortion generated by the photo-detection process. We introduce a model for calculating an approximation of the quadratic component of a signal. We show that this model can be further simplified when a read-only-memory (ROM) disk is assumed. We introduce an edge-spread function by which a simple nonlinear model of an optical ROM disk readout channel is created.
Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666
NASA Astrophysics Data System (ADS)
Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke
2018-01-01
Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.
Modeling circumbinary planets: The case of Kepler-38
NASA Astrophysics Data System (ADS)
Kley, Wilhelm; Haghighipour, Nader
2014-04-01
Context. Recently, a number of planets orbiting binary stars have been discovered by the Kepler space telescope. In a few systems the planets reside close to the dynamical stability limit. Owing to the difficulty of forming planets in such close orbits, it is believed that they have formed farther out in the disk and migrated to their present locations. Aims: Our goal is to construct more realistic models of planet migration in circumbinary disks and to determine the final position of these planets more accurately. In our work, we focus on the system Kepler-38 where the planet is close to the stability limit. Methods: The evolution of the circumbinary disk is studied using two-dimensional hydrodynamical simulations. We study locally isothermal disks as well as more realistic models that include full viscous heating, radiative cooling from the disk surfaces, and radiative diffusion in the disk midplane. After the disk has been brought into a quasi-equilibrium state, a 115 Earth-mass planet is embedded and its evolution is followed. Results: In all cases the planets stop inward migration near the inner edge of the disk. In isothermal disks with a typical disk scale height of H/r = 0.05, the final outcome agrees very well with the observed location of planet Kepler-38b. For the radiative models, the disk thickness and location of the inner edge is determined by the mass in the system. For surface densities on the order of 3000 g/cm2 at 1 AU, the inner gap lies close to the binary and planets stop in the region between the 5:1 and 4:1 mean-motion resonances with the binary. A model with a disk with approximately a quarter of the mass yields a final position very close to the observed one. Conclusions: For planets migrating in circumbinary disks, the final position is dictated by the structure of the disk. Knowing the observed orbits of circumbinary planets, radiative disk simulations with embedded planets can provide important information on the physical state of the system during the final stages of its evolution. Movies are available in electronic form at http://www.aanda.org
Far-infrared image restoration analysis of the protostellar cluster in S140
NASA Technical Reports Server (NTRS)
Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.
1986-01-01
Image restoration techniques are applied to one-dimensional scans at 50 and 100 microns of the protostellar cluster in S140. These measurements resolve the surrounding nebula clearly, and Fourier methods are used to match the effective beam profiles at these wavelengths. This allows the radial distribution of temperature and dust column density to be derived at a diffraction limited spatial resolution of 23 arcsec (0.1 pc). Evidence for heating of the S140 molecular cloud by a nearby ionization front is established, and the dissociation of molecules inside the ionization front is spatially well correlated with the heating of the dust. The far-infrared spectral distribution of the three near-infrared sources within 10 arcsesc of the cluster center is presented.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2011-01-01
When hydrogen, nitrogen and CO are exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions. Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these reactions. The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic material. Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.
Assessing Model Fitting of Megamaser Disks with Simulated Observations
NASA Astrophysics Data System (ADS)
Han, Jiwon; Braatz, James; Pesce, Dominic
2018-01-01
The Megamaser Cosmology Project (MCP) measures the Hubble Constant by determining distances to galaxies with observations of 22 GHz H20 megamasers. The megamasers arise in the circumnuclear accretion disks of active galaxies. In this research, we aim to improve the estimation of systematic errors in MCP measurements. Currently, the MCP fits a disk model to the observed maser data with a Markov Chain Monte Carlo (MCMC) code. The disk model is described by up to 14 global parameters, including up to 6 that describe the disk warping. We first assess the model by generating synthetic datasets in which the locations and dynamics of the maser spots are exactly known, and fitting the model to these data. By doing so, we can also test the effects of unmodeled substructure on the estimated uncertainties. Furthermore, in order to gain better understanding of the physics behind accretion disk warping, we develop a physics-driven model for the warp and test it with the MCMC approach.
Metallicity Distribution of Disk Stars and the Formation History of the Milky Way
NASA Astrophysics Data System (ADS)
Toyouchi, Daisuke; Chiba, Masashi
2018-03-01
We investigate the formation history of the stellar disk component in the Milky Way (MW) based on our new chemical evolution model. Our model considers several fundamental baryonic processes, including gas infall, reaccretion of outflowing gas, and radial migration of disk stars. Each of these baryonic processes in the disk evolution is characterized by model parameters that are determined by fitting to various observational data of the stellar disk in the MW, including the radial dependence of the metallicity distribution function (MDF) of the disk stars, which has recently been derived in the APOGEE survey. We succeeded to obtain the best set of model parameters that well reproduces the observed radial dependences of the mean, standard deviation, skewness, and kurtosis of the MDFs for the disk stars. We analyze the basic properties of our model results in detail to gain new insights into the important baryonic processes in the formation history of the MW. One of the remarkable findings is that outflowing gas, containing many heavy elements, preferentially reaccretes onto the outer disk parts, and this recycling process of metal-enriched gas is a key ingredient for reproducing the observed narrower MDFs at larger radii. Moreover, important implications for the radial dependence of gas infall and the influence of radial migration on the MDFs are also inferred from our model calculation. Thus, the MDF of disk stars is a useful clue for studying the formation history of the MW.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
Millimeter image of the HL Tau Disk: gaps opened by planets?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui
2015-10-20
Several observed features which favor planet-induced gaps in the disk are pointed out. Parameters of a two-fluid simulation model are listed, and some model results are shown. It is concluded that (1) interaction between planets, gas, and dust can explain the main features in the ALMA observation; (2) the millimeter image of a disk is determined by the dust profile, which in turn is influenced by planetary masses, viscosity, disk self-gravity, etc.; and (3) models that focus on the complex physics between gas and dust (and planets) are crucial in interpreting the (sub)millimeter images of disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, M.; Kudo, T.; Terada, H.
We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without themore » photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.« less
NASA Astrophysics Data System (ADS)
Cannizzo, John K.
2017-01-01
We utilize the time dependent accretion disk model described by Ichikawa & Osaki (1992) to explore two basic ideas for the outbursts in the SU UMa systems, Osaki's Thermal-Tidal Model, and the basic accretion disk limit cycle model. We explore a range in possible input parameters and model assumptions to delineate under what conditions each model may be preferred.
Applying a Particle-only Model to the HL Tau Disk
NASA Astrophysics Data System (ADS)
Tabeshian, Maryam; Wiegert, Paul A.
2018-04-01
Observations have revealed rich structures in protoplanetary disks, offering clues about their embedded planets. Due to the complexities introduced by the abundance of gas in these disks, modeling their structure in detail is computationally intensive, requiring complex hydrodynamic codes and substantial computing power. It would be advantageous if computationally simpler models could provide some preliminary information on these disks. Here we apply a particle-only model (that we developed for gas-poor debris disks) to the gas-rich disk, HL Tauri, to address the question of whether such simple models can inform the study of these systems. Assuming three potentially embedded planets, we match HL Tau’s radial profile fairly well and derive best-fit planetary masses and orbital radii (0.40, 0.02, 0.21 Jupiter masses for the planets orbiting a 0.55 M ⊙ star at 11.22, 29.67, 64.23 au). Our derived parameters are comparable to those estimated by others, except for the mass of the second planet. Our simulations also reproduce some narrower gaps seen in the ALMA image away from the orbits of the planets. The nature of these gaps is debated but, based on our simulations, we argue they could result from planet–disk interactions via mean-motion resonances, and need not contain planets. Our results suggest that a simple particle-only model can be used as a first step to understanding dynamical structures in gas disks, particularly those formed by planets, and determine some parameters of their hidden planets, serving as useful initial inputs to hydrodynamic models which are needed to investigate disk and planet properties more thoroughly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espaillat, C.; D'Alessio, P.; Hernandez, J.
In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less
Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk
NASA Astrophysics Data System (ADS)
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul
2014-01-01
We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.
Damage Tolerant Design for Cold-Section Turbine Engine Disks
1981-06-01
Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen
The near-infrared properties of compact binary systems
NASA Astrophysics Data System (ADS)
Froning, Cynthia Suzanne
I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)
PHOTOIONIZATION MODELS OF THE INNER GASEOUS DISK OF THE HERBIG BE STAR BD+65 1637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca
2016-01-20
We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700–10500 Å) from the ESPaDOnS instrument on the Canada–France–Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with themore » observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca ii IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca ii lines, a model in which the equatorial disk density falls as 10{sup −10} (R{sub *}/R){sup 3} g cm{sup −3} seen at an inclination of 45° for a 50 R{sub *} disk provides reasonable matches to the overall line shapes and strengths. The Ca ii lines seem to require a shallower drop-off as 10{sup −10} (R{sub *}/R){sup 2} g cm{sup −3} to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.« less
Photoionization Models of the Inner Gaseous Disk of the Herbig Be Star BD+65 1637
NASA Astrophysics Data System (ADS)
Patel, P.; Sigut, T. A. A.; Landstreet, J. D.
2016-01-01
We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700-10500 Å) from the ESPaDOnS instrument on the Canada-France-Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with the observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca II IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca II lines, a model in which the equatorial disk density falls as 10-10 (R*/R)3 g cm-3 seen at an inclination of 45° for a 50 R* disk provides reasonable matches to the overall line shapes and strengths. The Ca II lines seem to require a shallower drop-off as 10-10 (R*/R)2 g cm-3 to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.
In-plane inertial coupling in tuned and severely mistuned bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.
1982-01-01
A model has been developed and verified for blade-disk-shaft coupling in rotors due to the in-plane rigid body modes of the disk. An analytic model has been developed which couples the in-plane rigid body modes of the disk on an elastic shaft with the blade bending modes. Bench resonance test were carried out on the M.I.T. Compressor Rotor, typical of research rotors with flexible blades and a thick rigid disk. When the rotor was carefully tuned, the structural coupling of the blades by the disks was confined to zero and one nodal diameter modes, whose modal frequencies were greater than the blade cantilever frequency. In the case of the tuned rotor, and in two cases where severe mistuning was intentionally introduced, agreement between the predicted and observed natural frequencies is excellent. The analytic model was then extended to include the effects of constant angular rotation of the disk.
Stability of general-relativistic accretion disks
NASA Astrophysics Data System (ADS)
Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard
2011-02-01
Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.
Nature of shocks revealed by SOFIA OI observations in the Cepheus E protostellar outflow
NASA Astrophysics Data System (ADS)
Gusdorf, A.; Anderl, S.; Lefloch, B.; Leurini, S.; Wiesemeyer, H.; Güsten, R.; Benedettini, M.; Codella, C.; Godard, B.; Gómez-Ruiz, A. I.; Jacobs, K.; Kristensen, L. E.; Lesaffre, P.; Pineau des Forêts, G.; Lis, D. C.
2017-06-01
Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chemical and energetic impacts on the surrounding medium. Aims: We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions in the various components, and to understand the nature of the underlying shocks, thus probing the origin of the mass-loss phenomenon. Methods: We present observations of the O I 3P1 → 3P2, OH between 2Π1/2J = 3/2 and J = 1/2 at 1837.8 GHz, and CO (16-15) lines with the GREAT receiver onboard SOFIA towards three positions in the Cep E protostellar outflow: Cep E-mm (the driving protostar), Cep E-BI (in the southern lobe), and Cep E-BII (the terminal position in the southern lobe). Results: The CO (16-15) line is detected at all three positions. The [OI]63μm line is detected in Cep E-BI and BII, whereas the OH line is not detected. In Cep E-BII, we identify three kinematical components in O I and CO. These were already detected in CO transitions and relate to spatial components: the jet, the HH377 terminal bow-shock, and the outflow cavity. We measure line temperature and line integrated intensity ratios for all components. The O I column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is the region where the abundance ratio of O I to CO is the lowest (about 0.2), whereas the jet component is atomic (N(O I)/N(CO) 2.7). In the jet, we compare the [OI]63μm observations with shock models that successfully fit the integrated intensity of 10 CO lines. We find that these models most likely do not fit the [OI]63μm data. Conclusions: The high intensity of O I emission points towards the propagation of additional dissociative or alternative FUV-irradiated shocks, where the illumination comes from the shock itself. A picture emerges from the sample of low-to-high mass protostellar outflows, where similar observations have been performed, with the effects of illumination increasing with the mass of the protostar. These findings need confirmation with more observational constraints and a larger sample. This article uses Herschel-PACS data; Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.All spectra shown in Fig. 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A8
Stress singularities in a model of a wood disk under sinusoidal pressure
Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson
2005-01-01
A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...
Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system
NASA Technical Reports Server (NTRS)
Stanford, S. A.; Balcells, Marc
1991-01-01
Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.
Protoplanetary disk formation and evolution models: DM Tau and GM Aur
NASA Astrophysics Data System (ADS)
Hueso, R.; Guillot, T.
2002-09-01
We study the formation and evolution of protoplanetary disks using an axisymmetric turbulent disk model. We compare model results with observational parameters derived for the DM Tau and GM Aur systems. These are relatively old T Tauri stars with large and massive protoplanetary disks. Early disk formation is studied in the standard scenario of slowly rotating isothermal collapsing spheres and is strongly dependent on the initial angular momentum and the collapse accretion rate. The viscous evolution of the disk is integrated in time using the classical Alpha prescription of turbulence. We follow the temporal evolution of the disks until their characteristics fit the observed characteristics of DM Tau and GM Aur. We therefore obtain the set of model parameters that are able to explain the present state of these disks. We also study the disk evolution under the Beta parameterization of turbulence, recently proposed for sheared flows on protoplanetary disks. Both parameterizations allow explaining the present state of both DM Tau and GM Aur. We infer a value of Alpha between 5x10-3 to 0.02 for DM Tau and one order of magnitude smaller for GM Aur. Values of the Beta parameter are in accordance with theoretical predictions of Beta around 2x10-5 but with a larger dispersion on other model parameters, which make us favor the Alpha parameterization of turbulence. Implications for planetary system development in these systems are presented. In particular, GM Aur is a massive and slowly evolving disk where conditions are very favorable for planetesimal growth. The large value of present disk mass and the relatively small observed accretion rate of this system may also be indicative of the presence of an inner gas giant planet. Acknowledgements: This work has been supported by Programme Nationale de Planetologie. R. Hueso acknowledges a post-doctoral fellowship from Gobierno Vasco.
Generating large misalignments in gapped and binary discs
NASA Astrophysics Data System (ADS)
Owen, James E.; Lai, Dong
2017-08-01
Many protostellar gapped and binary discs show misalignments between their inner and outer discs; in some cases, ˜70° misalignments have been observed. Here, we show that these misalignments can be generated through a secular resonance between the nodal precession of the inner disc and the precession of the gap-opening (stellar or massive planetary) companion. An evolving protostellar system may naturally cross this resonance during its lifetime due to disc dissipation and/or companion migration. If resonance crossing occurs on the right time-scale, of the order of a few million years, characteristic for young protostellar systems, the inner and outer discs can become highly misaligned, with misalignments ≳ 60° typical. When the primary star has a mass of order a solar mass, generating a significant misalignment typically requires the companion to have a mass of ˜0.01-0.1 M⊙ and an orbital separation of tens of astronomical units. The recently observed companion in the cavity of the gapped, highly misaligned system HD 142527 satisfies these requirements, indicating that a previous resonance crossing event misaligned the inner and outer discs. Our scenario for HD 142527's misaligned discs predicts that the companion's orbital plane is aligned with the outer disc's; this prediction should be testable with future observations as the companion's orbit is mapped out. Misalignments observed in several other gapped disc systems could be generated by the same secular resonance mechanism.
Limits on the location of planetesimal formation in self-gravitating protostellar discs
NASA Astrophysics Data System (ADS)
Clarke, C. J.; Lodato, G.
2009-09-01
In this Letter, we show that if planetesimals form in spiral features in self-gravitating discs, as previously suggested by the idealized simulations of Rice et al., then in realistic protostellar discs, this process will be restricted to the outer regions of the disc (i.e. at radii in excess of several tens of au). This restriction relates to the requirement that dust has to be concentrated in spiral features on a time-scale that is less than the (roughly dynamical) lifetime of such features, and that such rapid accumulation requires spiral features whose fractional amplitude is not much less than unity. This in turn requires that the cooling time-scale of the gas is relatively short, which restricts the process to the outer disc. We point out that the efficient conversion of a large fraction of the primordial dust in the disc into planetesimals could rescue this material from the well-known problem of rapid inward migration at an approximate metre-size scale and that in principle the collisional evolution of these objects could help to resupply small dust to the protostellar disc. We also point out the possible implications of this scenario for the location of planetesimal belts inferred in debris discs around main sequence stars, but stress that further dynamical studies are required in order to establish whether the disc retains a memory of the initial site of planetesimal creation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Christine H.; Mittal, Tushar; Kuchner, Marc
During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-describedmore » using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.« less
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Wang, Jun-Xian; Gu, Wei-Min; Sun, Yu-Han; Wu, Mao-Chun; Huang, Xing-Xing; Chen, Xiao-Yang
2016-07-01
The UV-optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV-optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in the global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (I.e., τ ˜ r; based on that originally proposed by Dexter & Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.
Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group
NASA Astrophysics Data System (ADS)
Yin, J.
2011-05-01
Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the model fails to match the present SFR in M31 disk by predicting too much SFR in the outer disk. We attribute this disagreement to the fact that M31 has been perturbed recently by a violent encounter. The observed SFR profile of M31 caused by this encounter does not seem to follow any form of the K-S law. On the other hand, the stellar metallicity distribution functions (MDFs) measured along the disk of M31 indicate the integrated star formation during the whole disk history and should not be affected by recent events. Our model reproduces rather well those distributions from 6 kpc to 21 kpc (except the region at 16 kpc). Basically, the disks of MW and M31 are formed "inside-out" with similar infall timescale. If M31 is closer to a typical disk galaxy, it would be the best that the researches on the models of this disk galaxy are carried out within the cosmological framework. Simple models, like the one adopted in this thesis, could be used to describe the quiescent galaxy, like the MW. Secondly, the similar model is applied to investigate the formation history of M33 disk. We calculate the radial profiles of gas surface density and SFR surface density, gas fraction, abundances, the surface brightness of FUV and K bands, FUV-K color gradient and so on. All those properties are compared with observations if available. Two different infall histories, namely collapse model and accretion model, are adopted respectively. The effects of free parameters (infall timescale, infall delay time and efficiency of outflow) on the model results are discussed in detail. It is found that the disk of M33 can not be formed by fast collapse process. Observations show that M33 is much smaller and less massive than MW, but has larger gas fraction and lower metallicity. This implies that it should be formed by slow accretion process and is consistent with the slow accretion model. We study the abundance gradients of different elements in M33 disk and find that outflow should play an important role in the evolution of abundance gradients. The present abundances will be much higher than the observation if without outflow. When the disk undergoes an outflow with a similar strength to the local SFR, the abundance within the radius of 6 kpc will be reduced dramatically, but no noticeable change occurs in outer regions, resulting in a flatter abundance gradient. This is consistent with the observed features. Our model predicts a slightly flatter FUV-K color gradient when the long infall timescale and proper outflow are adopted. Considering the uncertainty of the extinction correction, the results are acceptable.
NASA Astrophysics Data System (ADS)
Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff; Harvey, Paul; Green, Joel D.
2016-12-01
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μm infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a min ˜ 3 μm, although a min is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10-5 ⩽ L/L ⊙ ⩽ 2 × 10-4, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alig, C.; Schartmann, M.; Burkert, A.
2013-07-10
We present a high-resolution simulation of an idealized model to explain the origin of the two young, counterrotating, sub-parsec scale stellar disks around the supermassive black hole SgrA* at the center of the Milky Way. In our model, the collision of a single molecular cloud with a circumnuclear gas disk (similar to the one observed presently) leads to multiple streams of gas flowing toward the black hole and creating accretion disks with angular momentum depending on the ratio of cloud and circumnuclear disk material. The infalling gas creates two inclined, counterrotating sub-parsec scale accretion disks around the supermassive black holemore » with the first disk forming roughly 1 Myr earlier, allowing it to fragment into stars and get dispersed before the second counterrotating disk forms. Fragmentation of the second disk would lead to the two inclined, counterrotating stellar disks which are observed at the Galactic center. A similar event might be happening again right now at the Milky Way Galactic center. Our model predicts that the collision event generates spiral-like filaments of gas, feeding the Galactic center prior to disk formation with a geometry and inflow pattern that is in agreement with the structure of the so-called mini spiral that has been detected in the Galactic center.« less
Accretion Disks in Supersoft X-ray Sources
NASA Technical Reports Server (NTRS)
Popham, Robert; DiStefano, Rosanne
1996-01-01
We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.
Foundations of Black Hole Accretion Disk Theory.
Abramowicz, Marek A; Fragile, P Chris
2013-01-01
This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).
Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks.
Boss
2000-06-20
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.
NASA Astrophysics Data System (ADS)
Hu, Yueqiang; Wu, Haoyu; Meng, Yonggang; Wang, Yu; Bogy, David
2018-01-01
The thermal issues in heat-assisted magnetic recording (HAMR) technology have drawn much attention in the recent literature. In this paper, the head flying characteristics and thermal performance of a HAMR system during the touch-down process considering different nanoscale heat transfer models across the head-disk interface are numerically studied. An optical-thermal-mechanical coupled model is first described. The coupling efficiency of the near field transducer is found to be dependent on the head disk clearance. The shortcomings of a constant disk-temperature model are investigated, which reveals the importance of considering the disk temperature as a variable. A study of the head flying on the disk is carried out using an air conduction model and additional near-field heat transfer models. It is shown that when the head disk interface is filled with a solid material caused by the laser-induced accumulation, the heat transfer coefficient can become unexpectedly large and the head's temperature can rise beyond desirable levels. Finally, the additional head protrusion due to the laser heating is investigated.
Reading the Signatures of Extrasolar Planets in Debris Disks
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.
2009-01-01
An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria
The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in amore » regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.« less
The Effects of Accretion Disk Geometry on AGN Reflection Spectra
NASA Astrophysics Data System (ADS)
Taylor, Corbin James; Reynolds, Christopher S.
2017-08-01
Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.
The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum
NASA Astrophysics Data System (ADS)
Taylor, Corbin; Reynolds, Christopher S.
2018-01-01
Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.
Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs
NASA Astrophysics Data System (ADS)
Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; Evans, Neal J., II
2017-06-01
The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
HO-CHUNK: Radiation Transfer code
NASA Astrophysics Data System (ADS)
Whitney, Barbara A.; Wood, Kenneth; Bjorkman, J. E.; Cohen, Martin; Wolff, Michael J.
2017-11-01
HO-CHUNK calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. It is useful for computing spectral energy distributions (SEDs), polarization spectra, and images.
Biotinylated lipid bilayer disks as model membranes for biosensor analyses.
Lundquist, Anna; Hansen, Søren B; Nordström, Helena; Danielson, U Helena; Edwards, Katarina
2010-10-15
The aim of this study was to investigate the potential of polyethylene glycol (PEG)-stabilized lipid bilayer disks as model membranes for surface plasmon resonance (SPR)-based biosensor analyses. Nanosized bilayer disks that included 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)(2000)] (DSPE-PEG(2000)-biotin) were prepared and structurally characterized by cryo-transmission electron microscopy (cryo-TEM) imaging. The biotinylated disks were immobilized via streptavidin to three different types of sensor chips (CM3, CM4, and CM5) varying in their degree of carboxymethylation and thickness of the dextran matrix. The bilayer disks were found to interact with and bind stably to the streptavidin-coated sensor surfaces. As a first step toward the use of these bilayer disks as model membranes in SPR-based studies of membrane proteins, initial investigations were carried out with cyclooxygenases 1 and 2 (COX 1 and COX 2). Bilayer disks were preincubated with the respective protein and thereafter allowed to interact with the sensor surface. The signal resulting from the interaction was, in both cases, significantly enhanced as compared with the signal obtained when disks alone were injected over the surface. The results of the study suggest that bilayer disks constitute a new and promising type of model membranes for SPR-based biosensor studies. Copyright 2010 Elsevier Inc. All rights reserved.
MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry
Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less
Liu; Yuan; Meyer; Meyer-Hofmeister; Xie
1999-12-10
We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.
Time-dependent disk accretion in X-ray Nova MUSCAE 1991
NASA Astrophysics Data System (ADS)
Mineshige, Shin; Hirano, Akira; Kitamoto, Shunji; Yamada, Tatsuya T.; Fukue, Jun
1994-05-01
We propose a new model for X-ray spectral fitting of binary black hole candidates. In this model, it is assumed that X-ray spectra are composed of a Comptonized blackbody (hard component) and a disk blackbody spectra (soft component), in which the temperature gradient of the disk, q identically equal to -d log T/d log r, is left as a fitting parameter. With this model, we have fitted X-ray spectra of X-ray Nova Muscae 1991 obtained by Ginga. The fitting shows that a hot cloud, which Compton up-scatters soft photons from the disk, gradually shrank and became transparent after the main peak. The temperature gradient turns out to be fairly constant and is q approximately 0.75, the value expected for a Newtonian disk model. To reproduce this value with a relativistic disk model, a small inclination angle, i approximately equal to 0 deg to 15 deg, is required. It seems, however, that the q-value temporarily decreased below 0.75 at the main flare, and q increased in a transient fashion at the second peak (or the reflare) occurring approximately 70 days after the main peak. Although statistics are poor, these results, if real, would indicate that the disk brightening responsible for the main and secondary peaks are initiated in the relatively inner portions of the disk.
Modeling the effect of shroud contact and friction dampers on the mistuned response of turbopumps
NASA Technical Reports Server (NTRS)
Griffin, Jerry H.; Yang, M.-T.
1994-01-01
The contract has been revised. Under the revised scope of work a reduced order model has been developed that can be used to predict the steady-state response of mistuned bladed disks. The approach has been implemented in a computer code, LMCC. It is concluded that: the reduced order model displays structural fidelity comparable to that of a finite element model of an entire bladed disk system with significantly improved computational efficiency; and, when the disk is stiff, both the finite element model and LMCC predict significantly more amplitude variation than was predicted by earlier models. This second result may have important practical ramifications, especially in the case of integrally bladed disks.
Towards a Global Evolutionary Model of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning
2016-04-01
A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.
Planetesimal formation during protoplanetary disk buildup
NASA Astrophysics Data System (ADS)
Drążkowska, J.; Dullemond, C. P.
2018-06-01
Context. Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. Aims: In this paper we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. Methods: We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. Results: We find that under most conditions planetesimals only form after the buildup stage, when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv 10-3-10-2) while the turbulent mixing of the dust is reduced compared to that (αt ≲ 10-4), and with the assumption that the water vapor is vertically well-mixed with the gas. Such a αt ≪ αv scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent. Conclusions: In the standard picture where protoplanetary disk accretion is driven by global turbulence, we find that no planetesimals form during the disk buildup stage. Planetesimal formation during the buildup stage is only possible in scenarios in which pebbles reside in a quiescent midplane while the gas and water vapor are diffused at a higher rate.
Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Yuri I.; Gressel, Oliver; Kobayashi, Hiroshi
We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find,more » in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.« less
ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Hull, Charles L. H.; Yang, Haifeng; Li, Zhi-Yun; Kataoka, Akimasa; Stephens, Ian W.; Andrews, Sean; Bai, Xuening; Cleeves, L. Ilsedore; Hughes, A. Meredith; Looney, Leslie; Pérez, Laura M.; Wilner, David
2018-06-01
We present 870 μm ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ∼1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that, while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 μm) and IM Lup (61 μm, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter-sized (or even centimeter-sized) grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Zhen-Yi; Wang, Jun-Xian; Sun, Yu-Han
The UV–optical variability of active galactic nuclei and quasars is useful for understanding the physics of the accretion disk and is gradually being attributed to stochastic fluctuations over the accretion disk. Quasars generally appear bluer when they brighten in the UV–optical bands; the nature of this phenomenon remains controversial. Recently, Sun et al. discovered that the color variation of quasars is timescale-dependent, in the way that faster variations are even bluer than longer term ones. While this discovery can directly rule out models that simply attribute the color variation to contamination from the host galaxies, or to changes in themore » global accretion rates, it favors the stochastic disk fluctuation model as fluctuations in the inner-most hotter disk could dominate the short-term variations. In this work, we show that a revised inhomogeneous disk model, where the characteristic timescales of thermal fluctuations in the disk are radius-dependent (i.e., τ ∼ r ; based on that originally proposed by Dexter and Agol), can reproduce well a timescale-dependent color variation pattern, similar to the observed one and unaffected by the uneven sampling and photometric error. This demonstrates that one may statistically use variation emission at different timescales to spatially resolve the accretion disk in quasars, thus opening a new window with which to probe and test the accretion disk physics in the era of time domain astronomy. Caveats of the current model, which ought to be addressed in future simulations, are discussed.« less
Accretion tori and cones of ionizing radiation in Seyfert galaxies
NASA Technical Reports Server (NTRS)
Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.
1990-01-01
The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.
Accretion in Radiative Equipartition (AiRE) Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca
2017-07-01
Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks andmore » show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.« less
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke
2018-04-01
The surface density of protoplanetary disks is a fundamental parameter that still remains largely unconstrained due to uncertainties in the dust-to-gas ratio and CO abundance. In this talk I will present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. I will provide an initial proof of concept of our model through an application to the disk TW Hya where we are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. Using this method we derive disks that may be much more massive than previously thought, often approaching the limit of gravitational stability.
Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M. J.
2013-01-01
Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.
Accretion in Radiative Equipartition (AiRE) Disks
NASA Astrophysics Data System (ADS)
Yazdi, Yasaman K.; Afshordi, Niayesh
2017-07-01
Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (I.e., inner disk) need to be modified. Here, we present a modification to the Shakura & Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24more » μ m infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a {sub min} ∼ 3 μ m, although a {sub min} is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10{sup −5} ⩽ L / L {sub ⊙} ⩽ 2 × 10{sup −4}, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.« less
High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A
NASA Technical Reports Server (NTRS)
Serabyn, G.; Grady, C. A.; Currie, T.
2012-01-01
We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.
High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A
NASA Astrophysics Data System (ADS)
Tanii, Ryoko; Itoh, Yoichi; Kudo, Tomoyuki; Hioki, Tomonori; Oasa, Yumiko; Gupta, Ranjan; Sen, Asoke K.; Wisniewski, John P.; Muto, Takayuki; Grady, Carol A.; Hashimoto, Jun; Fukagawa, Misato; Mayama, Satoshi; Hornbeck, Jeremy; Sitko, Michael L.; Russell, Ray W.; Werren, Chelsea; Curé, Michel; Currie, Thayne; Ohashi, Nagayoshi; Okamoto, Yoshiko; Momose, Munetake; Honda, Mitsuhiko; Inutsuka, Shu-ichi; Takeuchi, Taku; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; Feldt, Markus; Fukue, Tsubasa; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide
2012-12-01
We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.''15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A, which extends to 120 AU, at a spatial resolution of 0.''1 (14 AU). It is inclined by 46° ± 2°, since the west side is nearest. Although SED modeling and sub-millimeter imagery have suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25-30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66%) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh-scattering nor Mie-scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with radii of 30μm is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations, and have grown in the circumstellar disk of UX Tau A.
NASA Technical Reports Server (NTRS)
Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberge, Aki; Schneider, Glenn
2013-01-01
We present a 0.5-2.2 micrometer scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved Hubble Space Telescope STIS spectroscopy and NICMOS coronagraphic images of the disk. We investigate the morphology of the disk at distances greater than 40 AU over this wide range of wavelengths, and identify the presence of a depression in surface brightness at approximately 80 AU that could be caused by a gap in the disk. Additionally, we quantify the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. Our analysis shows that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We model the disk as a steady a-disk with an ad hoc gap structure. The thermal properties of the disk are selfconsistently calculated using a three-dimensional radiative transfer code that uses ray tracing to model the heating of the disk interior and scattered light images. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partially filled gap of 30% depth at 80 AU and with a self-similar truncation knee at 100 AU. The origin of the gap is unclear, but it could arise from a transition in the nature of the disk's dust composition or the presence of a planetary companion. Based on scalings to previous hydrodynamic simulations of gap-opening criteria for embedded proto-planets, we estimate that a planetary companion forming the gap could have a mass between 6 and 28 solar mass.
An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long Feng; Herczeg, Gregory J.; Pascucci, Ilaria
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey {sup 13}CO and C{sup 18}O J = 3–2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from in the nearby Chamaeleon I star-forming region. We detect {sup 13}CO emission from 17 sources and C{sup 18}O from only one source.more » Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H{sub 2} ratio of 10{sup −4}, the resulting gas masses are implausibly low, with an average gas mass of ∼0.05 M {sub Jup} as inferred from the average flux of stacked {sup 13}CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.« less
An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I
NASA Astrophysics Data System (ADS)
Long, Feng; Herczeg, Gregory J.; Pascucci, Ilaria; Drabek-Maunder, Emily; Mohanty, Subhanjoy; Testi, Leonardo; Apai, Daniel; Hendler, Nathan; Henning, Thomas; Manara, Carlo F.; Mulders, Gijs D.
2017-08-01
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey 13CO and C18O J = 3–2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from in the nearby Chamaeleon I star-forming region. We detect 13CO emission from 17 sources and C18O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H2 ratio of 10‑4, the resulting gas masses are implausibly low, with an average gas mass of ∼0.05 M Jup as inferred from the average flux of stacked 13CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.
NASA Technical Reports Server (NTRS)
Butner, Harold M.
1999-01-01
Our understanding about the inter-relationship between the collapsing cloud envelope and the disk has been greatly altered. While the dominant star formation models invoke free fall collapse and r(sup -1.5) density profile, other star formation models are possible. These models invoke either different cloud starting conditions or the mediating effects of magnetic fields to alter the cloud geometry during collapse. To test these models, it is necessary to understand the envelope's physical structure. The discovery of disks, based on millimeter observations around young stellar objects, however makes a simple interpretation of the emission complicated. Depending on the wavelength, the disk or the envelope could dominate emission from a star. In addition, the discovery of planets around other stars has made understanding the disks in their own right quite important. Many star formation models predict disks should form naturally as the star is forming. In many cases, the information we derive about disk properties depends implicitly on the assumed envelope properties. How to understand the two components and their interaction with each other is a key problem of current star formation.
Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology
NASA Technical Reports Server (NTRS)
Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.
2008-01-01
Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) < 3M(sub J), an orbital semimajor axis a(sub pl) > 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean-motion resonances with Fom b; these empty resonances are akin to the Kirkwood gaps opened by Jupiter. The belt contains at least 3M(sub Earth) of solids that are grinding down to dust, their velocity dispersions stirred so strongly by Fom b that collisions are destructive. Such a large mass in solids is consistent with Fom b having formed in situ.
Modeling collisions in circumstellar debris disks
NASA Astrophysics Data System (ADS)
Nesvold, Erika
2015-10-01
Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. I investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. I also find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ˜1--10MJup. I apply my model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and beta Pictoris. Finally, to show how SMACK can be used to analyze a single debris disk in detail, I present a new model of the beta Pictoris disk and planet system that, for the first time, combines simulations of the colliding planetesimals and the dynamics of the dust grains, allowing me to model features and asymmetries in both submillimeter and scattered light images of the disk. I combine a 100,000 superparticle SMACK simulation with N-body integrations of the dust produced by the simulated collisions. I find that secular perturbations of the planet's measured inclination and eccentricity can explain the observed warp and planetesimal ring, while collisions between planetesimals shape the disk by eroding close-in material. The complex 3D structure of the disk due to the perturbations from the planet creates an azimuthally asymmetric spatial distribution of collisions, which could contribute to the observed azimuthal clump of CO gas seen with ALMA. My simulations of the small dust grains produced by collisions demonstrate that the "birth ring" approximation for beta Pictoris fails to account for the ˜54% of dust mass produced outside of the planetesimal ring. I also reproduce the gross morphology of high-resolution scattered light images of the disk, including the two-disk "x"-pattern seen in scattered light, which has not been replicated by previous dust dynamics models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Joel D.; Yang, Yao-Lun; II, Neal J. Evans
2016-03-15
We present the COPS-DIGIT-FOOSH (CDF) Herschel spectroscopy data product archive, and related ancillary data products, along with data fidelity assessments, and a user-created archive in collaboration with the Herschel-PACS and SPIRE ICC groups. Our products include datacubes, contour maps, automated line fitting results, and best 1D spectra products for all protostellar and disk sources observed with PACS in RangeScan mode for two observing programs: the DIGIT Open Time Key Program (KPOT-nevans-1 and SDP-nevans-1; PI: N. Evans), and the FOOSH Open Time Program (OT1-jgreen02-2; PI: J. Green). In addition, we provide our best SPIRE-FTS spectroscopic products for the COPS Open Time Program (OT2-jgreen02-6;more » PI: J. Green) and FOOSH sources. We include details of data processing, descriptions of output products, and tests of their reliability for user applications. We identify the parts of the data set to be used with caution. The resulting absolute flux calibration has improved in almost all cases. Compared to previous reductions, the resulting rotational temperatures and numbers of CO molecules have changed substantially in some sources. On average, however, the rotational temperatures have not changed substantially (<2%), but the number of warm (T{sub rot} ∼ 300 K) CO molecules has increased by about 18%.« less
NASA Astrophysics Data System (ADS)
Green, Joel D.; Yang, Yao-Lun; Evans, Neal J., II; Karska, Agata; Herczeg, Gregory; van Dishoeck, Ewine F.; Lee, Jeong-Eun; Larson, Rebecca L.; Bouwman, Jeroen
2016-03-01
We present the COPS-DIGIT-FOOSH (CDF) Herschel spectroscopy data product archive, and related ancillary data products, along with data fidelity assessments, and a user-created archive in collaboration with the Herschel-PACS and SPIRE ICC groups. Our products include datacubes, contour maps, automated line fitting results, and best 1D spectra products for all protostellar and disk sources observed with PACS in RangeScan mode for two observing programs: the DIGIT Open Time Key Program (KPOT_nevans1 and SDP_nevans_1; PI: N. Evans), and the FOOSH Open Time Program (OT1_jgreen02_2; PI: J. Green). In addition, we provide our best SPIRE-FTS spectroscopic products for the COPS Open Time Program (OT2_jgreen02_6; PI: J. Green) and FOOSH sources. We include details of data processing, descriptions of output products, and tests of their reliability for user applications. We identify the parts of the data set to be used with caution. The resulting absolute flux calibration has improved in almost all cases. Compared to previous reductions, the resulting rotational temperatures and numbers of CO molecules have changed substantially in some sources. On average, however, the rotational temperatures have not changed substantially (<2%), but the number of warm (Trot ∼ 300 K) CO molecules has increased by about 18%.
Origins Space Telescope: Interstellar Medium, Milky Way, and Nearby Galaxies
NASA Astrophysics Data System (ADS)
Battersby, Cara; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.This presentation will provide a summary of the science case related to the Interstellar Medium (ISM), the Milky Way, and Nearby Galaxies. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multi-phase ISM; connecting physics at all scales, from galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei (AGN) over cosmic time and trace the trail of water from interstellar clouds, to protoplanetary disks, to Earth itself in order to understand the abundance and availability of water for habitable planets.
YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.
The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample ismore » newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.« less
Thin disk lasers: history and prospects
NASA Astrophysics Data System (ADS)
Speiser, Jochen
2016-04-01
During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.
Atlas of low-mass young stellar object disks from mid-infrared interferometry
NASA Astrophysics Data System (ADS)
Varga, J.; Ábrahám, P.; Ratzka, Th.; Menu, J.; Gabányi, K.; Kóspál, Á.; van Boekel, R.; Mosoni, L.; Henning, Th.
We present our approach of visibility modeling of disks around low-mass (< 2 M ⊙) young stellar objects (YSOs). We compiled an atlas based on mid-infrared interferometric observations from the MIDI instrument at the VLTI. We use three different models to fit the data. These models allow us to determine overall sizes (and the extent of the inner gaps) of the modeled circumstellar disks.
Milky Way's thick and thin disk: Is there a distinct thick disk?
NASA Astrophysics Data System (ADS)
Kawata, D.; Chiappini, C.
2016-09-01
This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besançon and Galaxia, chemical evolution models, extended distribution functions method, chemodynamics in the cosmological context, and self-consistent cosmological simulations) illustrated how important is to have all these parallel approaches. All approaches have their advantages and shortcomings (also discussed), and different approaches are useful to address specific points that might help us answering the more general question above.
Grand-design Spiral Arms in a Young Forming Circumstellar Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomida, Kengo; Lin, Chia Hui; Machida, Masahiro N.
We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstablemore » again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.« less
Database Reorganization in Parallel Disk Arrays with I/O Service Stealing
NASA Technical Reports Server (NTRS)
Zabback, Peter; Onyuksel, Ibrahim; Scheuermann, Peter; Weikum, Gerhard
1996-01-01
We present a model for data reorganization in parallel disk systems that is geared towards load balancing in an environment with periodic access patterns. Data reorganization is performed by disk cooling, i.e. migrating files or extents from the hottest disks to the coldest ones. We develop an approximate queueing model for determining the effective arrival rates of cooling requests and discuss its use in assessing the costs versus benefits of cooling.
Disks around merging binary black holes: From GW150914 to supermassive black holes
NASA Astrophysics Data System (ADS)
Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.
2018-02-01
We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.
A simple tandem disk model for a cross-wind machine
NASA Astrophysics Data System (ADS)
Healey, J. V.
The relative power coefficients, area expansion ratio, and crosswind forces for a crosswind tubine, e.g., the Darrieus, were examined with a tandem-disk, single-streamtube model. The upwind disk is assumed to be rectangular and the downwind disk is modeled as filling the wake of the upwind disk. Velocity and force triangles are devised for the factors operating at each blade. Attention was given to the NACA 0012 and 0018, and Go 735 and 420 airfoils as blades, with Reynolds number just under 500,000. The 0018 was found to be the best airfoil, followed by the 0012, the 735, and, very far behind in terms of the power coefficient, the 420. The forces on the two disks were calculated to be equal at low tip speed ratios with symmetrical airfoil, while the Go cambered profiles yielded negative values upwind in the same conditions.
Modeling of a diode-pumped thin-disk cesium vapor laser
NASA Astrophysics Data System (ADS)
An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You
2018-03-01
A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.
Observational constraints on black hole accretion disks
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1994-01-01
We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.
Tuan Dao, Tien
2017-03-01
Knowledge of spinal loads in neighboring disks after interbody fusion plays an important role in the clinical decision of this treatment as well as in the elucidation of its effect. However, controversial findings are still noted in the literature. Moreover, there are no existing models for efficient prediction of intervertebral disk stresses within annulus fibrosus (AF) and nucleus pulposus (NP) regions. In this present study, a new hybrid rigid-deformable modeling workflow was established to quantify the mechanical stress behaviors within AF and NP regions of the L1-2, L2-3, and L4-5 disks after interbody fusion at L3-4 level. The changes in spinal loads were compared with results of the intact model without interbody fusion. The fusion outcomes revealed maximal stress changes (10%) in AF region of L1-2 disk and in NP region of L2-3 disk. The minimal stress change (1%) is noted at the NP region of the L1-2 disk. The validation of simulation outcomes of fused and intact lumbar spine models against those of other computational models and in vivo measurements showed good agreements. Thus, this present study may be used as a novel design guideline for a specific implant and surgical scenario of the lumbar spine disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcos, C.; Kanaan, S.; Curé, M.
The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {submore » ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.« less
Spectral and Structure Modeling of Low and High Mass Young Stars Using a Radiative Trasnfer Code
NASA Astrophysics Data System (ADS)
Robson Rocha, Will; Pilling, Sergio
The spectroscopy data from space telescopes (ISO, Spitzer, Herchel) shows that in addition to dust grains (e.g. silicates), there is also the presence of the frozen molecular species (astrophysical ices, such as H _{2}O, CO, CO _{2}, CH _{3}OH) in the circumstellar environments. In this work we present a study of the modeling of low and high mass young stellar objects (YSOs), where we highlight the importance in the use of the astrophysical ices processed by the radiation (UV, cosmic rays) comes from stars in formation process. This is important to characterize the physicochemical evolution of the ices distributed by the protostellar disk and its envelope in some situations. To perform this analysis, we gathered (i) observational data from Infrared Space Observatory (ISO) related with low mass protostar Elias29 and high mass protostar W33A, (ii) absorbance experimental data in the infrared spectral range used to determinate the optical constants of the materials observed around this objects and (iii) a powerful radiative transfer code to simulate the astrophysical environment (RADMC-3D, Dullemond et al, 2012). Briefly, the radiative transfer calculation of the YSOs was done employing the RADMC-3D code. The model outputs were the spectral energy distribution and theoretical images in different wavelengths of the studied objects. The functionality of this code is based on the Monte Carlo methodology in addition to Mie theory for interaction among radiation and matter. The observational data from different space telescopes was used as reference for comparison with the modeled data. The optical constants in the infrared, used as input in the models, were calculated directly from absorbance data obtained in the laboratory of both unprocessed and processed simulated interstellar samples by using NKABS code (Rocha & Pilling 2014). We show from this study that some absorption bands in the infrared, observed in the spectrum of Elias29 and W33A can arises after the ices around the protostars were processed by the radiation comes from central object. In addition, we were able also to compare the observational data for this two objects with those obtained in the modeling. Authors would like to thanks the agencies FAPESP (JP#2009/18304-0 and PHD#2013/07657-5).
GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang-Condell, Hannah; Turner, Neal J.
2013-07-20
We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffsmore » it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in the inner {approx}0.''5 of the disk can be explained with a planet if mass is greater than 0.5 Jupiter mass.« less
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan (Principal Investigator)
1996-01-01
We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.
Heating the Primordial Soup: X-raying the Circumstellar Disk of RY Lupi
NASA Astrophysics Data System (ADS)
Principe, David
2015-09-01
X-ray irradiation of circumstellar disks plays a vital role in their chemical evolution yet few high resolution X-ray observations exist characterizing both the disk-illuminating radiation field and the soft energy spectrum absorbed by the disk. We propose HETG spectroscopic observations of RY Lupi, a rare example of a nearly edge-on, actively accreting star-disk system within 150 pc. We aim to take advantage of its unique viewing geometry with the goals of (a) determining the intrinsic X-ray spectrum of the central pre-MS star so as to establish whether its X-ray emission can be attributed to accretion shocks or coronal emission, and (b) model the spectrum of X-rays absorbed by its gaseous disk. These results will serve as essential input to models of irradiated, planet-forming disks.
SYNTHETIC OBSERVATIONS OF MAGNETIC FIELDS IN PROTOSTELLAR CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joyce W. Y.; Hull, Charles L. H.; Offner, Stella S. R., E-mail: chat.hull@cfa.harvard.edu, E-mail: jwyl1g12@soton.ac.uk
The role of magnetic fields in the early stages of star formation is not well constrained. In order to discriminate between different star formation models, we analyze 3D magnetohydrodynamic simulations of low-mass cores and explore the correlation between magnetic field orientation and outflow orientation over time. We produce synthetic observations of dust polarization at resolutions comparable to millimeter-wave dust polarization maps observed by the Combined Array for Research in Millimeter-wave Astronomy and compare these with 2D visualizations of projected magnetic field and column density. Cumulative distribution functions of the projected angle between the magnetic field and outflow show different degreesmore » of alignment in simulations with differing mass-to-flux ratios. The distribution function for the less magnetized core agrees with observations finding random alignment between outflow and field orientations, while the more magnetized core exhibits stronger alignment. We find that fractional polarization increases when the system is viewed such that the magnetic field is close to the plane of the sky, and the values of fractional polarization are consistent with observational measurements. The simulation outflow, which reflects the underlying angular momentum of the accreted gas, changes direction significantly over over the first ∼0.1 Myr of evolution. This movement could lead to the observed random alignment between outflows and the magnetic fields in protostellar cores.« less
Dynamics of circumstellar disks. III. The case of GG Tau A
Nelson, Andrew F.; Marzari, Francesco
2016-08-11
Here, we present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from amore » measure of the radiation intercepted by the disk at its photosphere.« less
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.
2017-05-01
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
Secular Evolution in Disk Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John
2013-10-01
Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to divide bulges into two types that correlate differently with their BHs. I review environmental secular evolution -- the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, `red and dead' S0 and spheroidal (`Sph') galaxies. I show that Sph galaxies such as NGC205 and Draco are not the low-luminosity end of the structural sequence (the `fundamental plane') of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters~with~the disks of S0 galaxies. They are bulgeless S0s. S+Im -->S0+Sph transformation involves a variety of internal (supernova-driven baryon ejection) and environmental processes (e.g., ram-pressure gas stripping, harassment, and starvation). Finally, I summarise how hierarchical clustering and secular processes can be combined into a consistent and comprehensive picture of galaxy evolution.
Magnetic field amplification via protostellar disc dynamos
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Koldoba, A. V.; Wasserman, I.
2018-06-01
We numerically investigate the generation of a magnetic field in a protostellar disc via an αΩ-dynamo and the resulting magnetohydrodynamic (MHD) driven outflows. We find that for small values of the dimensionless dynamo parameter αd, the poloidal field grows exponentially at a rate σ ∝ Ω _K √{α _d}, before saturating to a value ∝ √{α _d}. The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of the order of 10^{-9} M_{⊙} yr^{-1} for T Tauri stars. This suggests that αΩ-dynamos may be responsible for generating magnetic fields strong enough to launch observed outflows.
Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.
Albertazzi, B; Ciardi, A; Nakatsutsumi, M; Vinci, T; Béard, J; Bonito, R; Billette, J; Borghesi, M; Burkley, Z; Chen, S N; Cowan, T E; Herrmannsdörfer, T; Higginson, D P; Kroll, F; Pikuz, S A; Naughton, K; Romagnani, L; Riconda, C; Revet, G; Riquier, R; Schlenvoigt, H-P; Skobelev, I Yu; Faenov, A Ya; Soloviev, A; Huarte-Espinosa, M; Frank, A; Portugall, O; Pépin, H; Fuchs, J
2014-10-17
Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154. Copyright © 2014, American Association for the Advancement of Science.
The matter-neutrino resonance around thick disks
NASA Astrophysics Data System (ADS)
Deaton, Michael
2016-03-01
We are studying neutrino flavor transformations in typical neutron star merger environments. Here a dominance of νe over νe fluxes introduces transformation behaviors qualitatively different from those seen in supernovae. Discovered in thin disk models, the matter neutrino resonance (MNR) may behave differently around thick disks, or not appear at all. I'll present what we have learned about the MNR using a phenomenological model motivated by hydrodynamical simulations of post-merger disks. JINA-CEE.
Stability and Evolution of Supernova Fallback Disks
NASA Astrophysics Data System (ADS)
Menou, Kristen; Perna, Rosalba; Hernquist, Lars
2001-10-01
We show that thin accretion disks made of carbon or oxygen are subject to the same thermal ionization instability as hydrogen and helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 103 to 104 yr), compact in size (a few 109 to 1011 cm) and generally accreting at sub-Eddington rates (M~a few 1014-1018 g s-1). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets at ~1011 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because its remnant disk has a rather large initial angular momentum, which allows it to spread beyond the Roche limit before becoming neutral. The early super-Eddington phase of accretion is a source of uncertainty for the disk evolution models presented here.
Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters
NASA Astrophysics Data System (ADS)
Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.
2018-04-01
Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.
An Earth with affinities to Enstatite Chondrites
NASA Astrophysics Data System (ADS)
McDonough, W. F.
2015-12-01
The Enstatite chondrite model for the Earth, as envisaged by Marc Javoy and colleagues, has strengths and weaknesses. The overwhelming evidence against layered mantle scenarios makes the existing enstatite Earth models unacceptable. Increasingly, stable and radiogenic isotope data for the Earth and the range of chondrites find that many (but not all) isotopic ratios are shared between the Earth and enstatite chondrites. This significant amount of overlap in isotope space compels one to reconsider the enstatite chondrite model for the Earth. During early solar system formation (circa +1 Ma) radial inward migration of the Jupiter and Saturn in the disk (e.g., Grand Tack model) would fully disrupted an asteroid belt, resulting in mixing and redistribution of preexisting components, while much later after the disk is gone (e.g., +100 Ma) gravitational scattering by these planets may have transported small bodies from the outer reaches of the solar system inward towards the rocky planets (Nice model). Astromineralogy reveals variations in the proportion of olivine to pyroxene in accretion disks, some with inner disk regions being richer in olivine relative to the disk wide composition, while other disks show the abundance of olivine is greater in the outer (vs the inner) part of the circumstellar disk, with differences in disk mineralogy being relating to type of star (e.g., T Tauri vs Herbig Ae/Be stars). The inner disk regions (a few AU) show higher abundances of large grains and generally higher crystallinity as compared to outer disk regions, suggesting grain growth occurs more rapidly in the inner disk regions. Recent results from geoneutrino measurements are most consistent with geochemical models that predict 20 TW of radiogenic power, less so with existing enstatite Earth models predicting less power in the planet. At 1 AU the Earth accreted a greater proportion of olivine to pyroxene (i.e., Mg/Si of pyrolite) than that available to the known enstatite chondrite parent body. The Earth accreted early in a reduced state, perhaps to the point of differentiating silicides into the core. Later accreted material was increasingly more oxidized. Stirring and mixing in the early solar system created opportunities for the Earth and enstatite chondrites to share some, but not all chemical and isotopic characteristics.
Nonlinear vibration analysis of bladed disks with dry friction dampers
NASA Astrophysics Data System (ADS)
Ciğeroğlu, Ender; Özgüven, H. Nevzat
2006-08-01
In this work, a new model is proposed for the vibration analysis of turbine blades with dry friction dampers. The aim of the study is to develop a multiblade model that is accurate and yet easy to be analyzed so that it can be used efficiently in the design of friction dampers. The suggested nonlinear model for a bladed disk assembly includes all the blades with blade to blade and/or blade to cover plate dry friction dampers. An important feature of the model is that both macro-slip and micro-slip models are used in representing dry friction dampers. The model is simple to be analyzed as it is the case in macro-slip model, and yet it includes the features of more realistic micro-slip model. The nonlinear multidegree-of-freedom (mdof) model of bladed disk system is analyzed in frequency domain by applying a quasi-linearization technique, which transforms the nonlinear differential equations into a set of nonlinear algebraic equations. The solution method employed reduces the computational effort drastically compared to time solution methods for nonlinear systems, which makes it possible to obtain a more realistic model by the inclusion of all blades around the disk, disk itself and all friction dampers since in general system parameters are not identical throughout the geometry. The validation of the method is demonstrated by comparing the results obtained in this study with those given in literature and also with results obtained by time domain analysis. In the case studies presented the effect of friction damper parameters on vibration characteristics of tuned and mistuned bladed disk systems is studied by using a 20 blade system. It is shown that the method presented can be used to find the optimum friction damper values in a bladed disk assembly.
NASA Astrophysics Data System (ADS)
Menu, J.; van Boekel, R.; Henning, Th.; Leinert, Ch.; Waelkens, C.; Waters, L. B. F. M.
2015-09-01
Context. The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Our understanding of the evolution of these disks is rapidly changing. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. Aims: The different groups of objects can be expected to have different structural signatures in high-angular-resolution data, related to gaps, dust settling, and flaring. We aim to use such data to gain new insight into disk structure and evolution. Methods: Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We modeled the large set of observations with simple geometric models and compared the characteristic sizes among the different objects. A population of radiative-transfer models was synthesized for interpreting the mid-infrared signatures. Results: Objects with similar luminosities show very different disk sizes in the mid-infrared. This may point to an intrinsic diversity or could also hint at different evolutionary stages of the disks. Restricting this to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional (i.e., they have gaps). We find that several group II objects have mid-infrared sizes and colors that overlap with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Conclusions: Flat disks with gaps are most likely descendants of flat disks without gaps. Potentially related to the formation of massive bodies, gaps may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks or some of them may evolve further into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk. Appendices A and B are available in electronic form at http://www.aanda.org
SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks
NASA Technical Reports Server (NTRS)
Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret
2013-01-01
We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Rao, K.; Kaza, V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbufans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
NASA Astrophysics Data System (ADS)
Wu, Lin
2018-05-01
In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.
Optimization of a fiber optic flexible disk microphone
NASA Astrophysics Data System (ADS)
Zhang, Gang; Yu, Benli; Wang, Hui; Liu, Fei; Peng, Jun; Wu, Xuqiang
2011-11-01
An optimized design of a fiber optic flexible disk microphone is presented and verified experimentally. The phase sensitivity of optical fiber microphone (both the ideal model with a simply supported disk (SSD) and the model with a clamped disk (CLD)) is analyzed by utilizing theory of plates and shells. The results show that the microphones have an optimum length of the sensing arm when inner radius of the fiber coils, radius and Poisson's radio of the flexible disk have been determined. Under a typical condition depicted in this paper, an optimum phase sensitivity for SSD model of 27.72 rad/Pa (-91.14 dB re 1 rad/μPa) and an optimum phase sensitivity for CLD model of 3.18 rad/Pa (-109.95 dB re 1 rad/μPa), can be achieved in theory. Several sample microphones are fabricated and tested. The experimental results are basically consistent with the theoretical analysis.
Modeling Jupiter's current disc - Pioneer 10 outbound
NASA Astrophysics Data System (ADS)
Jones, D. E.; Melville, J. G.; Blake, M. L.
1980-07-01
A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Wagoner, Robert V.
1992-01-01
A scalar potential is used to derive a single partial differential equation governing the oscillation of a disk. The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall into two main classes which are analogous to the p-modes and g-modes in the sun. Specifically, the eigenfunctions and eigenfrequencies of isothermal disks are computed, and the way in which these results can be generalized to other disk models is indicated. The (assumed) relatively small rates of growth or damping of the modes due to various mechanisms, in particular gravitational radiation reaction and parameterized models of viscosity are also computed. It is found that for certain parameters the p-modes are unstable to gravitational radiation reaction (CFS instability), while both the p-modes and g-modes are unstable to viscosity unless highly anisotropic viscosity models are considered.
Modeling of the heat distribution in the intervertebral disk.
Persson, Johan; Hansen, Eskil; Lidgren, Lars; McCarthy, Ian
2005-05-01
The heat transfer equation was used to model the heat distribution in an intervertebral disk during ultrasound (US) exposure. The influence of thermal and acoustic parameters was studied to get a quantitative understanding of the heat transfer in the system. Heating of collagen to 65 degrees C or above will lead to denaturation and is believed to stabilize and contract the outer part of the disk in a herniated disk. In our model, the US intensity was approximated by a Gaussian distribution and nonlinear propagation was excluded. The effect of self-heating and cooling of the transducer was also studied. The simulations were performed using the finite element method. From this model, it can be concluded that it is possible to heat parts of the disk to treatment temperature using a focused 5-mm diameter US probe. The physical constraints on the piezocrystal set the limit of the size of the treatment volume.
An Observational Test for Shock-induced Crystallization of Cometary Silicates
NASA Technical Reports Server (NTRS)
Nuth, J. A.; Johnson, N. M.
2003-01-01
Crystalline silicates have been observed in comets and in protostellar nebulae, and there are currently at least two explanations for their formation: thermal annealing in the inner nebula, followed by transport to the regions of cometary formation and in-situ shock processing of amorphous grains at 5 - 10 AU in the Solar Nebula. The tests suggested to date to validate these models have not yet been carried out: some of these tests require a longterm commitment to observe both the dust and gas compositions in a large number of comets. Here we suggest a simpler test.
Apocenter Glow in Eccentric Debris Disks: Implications for Fomalhaut and Epsilon Eridani
NASA Technical Reports Server (NTRS)
Pan, Margaret; Nesvold, Erika R.; Kuchner, Marc J.
2016-01-01
Debris disks often take the form of eccentric rings with azimuthal asymmetries in surface brightness. Such disks are often described as showing pericenter glow, an enhancement of the disk brightness in regions nearest the central star. At long wavelengths, however, the disk apocenters should appear brighter than their pericenters: in the long-wavelength limit, we find that the apocenter pericenter flux ratio scales as 1 + e for disk eccentricity e. We produce new models of this apocenter glow to explore its causes and wavelength dependence and study its potential as a probe of dust grain properties. Based on our models, we argue that several far-infrared and (sub)millimeter images of the Fomalhaut and Epsilon Eridani debris rings obtained with Herschel, JCMT, SHARC II, ALMA, and ATCA should be reinterpreted as suggestions or examples of apocenter glow. This reinterpretation yields new constraints on the disks dust grain properties and size distributions.
Exact general relativistic disks with magnetic fields
NASA Astrophysics Data System (ADS)
Letelier, Patricio S.
1999-11-01
The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.
A guide to the use of the pressure disk rotor model as implemented in INS3D-UP
NASA Technical Reports Server (NTRS)
Chaffin, Mark S.
1995-01-01
This is a guide for the use of the pressure disk rotor model that has been placed in the incompressible Navier-Stokes code INS3D-UP. The pressure disk rotor model approximates a helicopter rotor or propeller in a time averaged manner and is intended to simulate the effect of a rotor in forward flight on the fuselage or the effect of a propeller on other aerodynamic components. The model uses a modified actuator disk that allows the pressure jump across the disk to vary with radius and azimuth. The cyclic and collective blade pitch angles needed to achieve a specified thrust coefficient and zero moment about the hub are predicted. The method has been validated with experimentally measured mean induced inflow velocities as well as surface pressures on a generic fuselage. Overset grids, sometimes referred to as Chimera grids, are used to simplify the grid generation process. The pressure disk model is applied to a cylindrical grid which is embedded in the grid or grids used for the rest of the configuration. This document will outline the development of the method, and present input and results for a sample case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Machida, Masahiro N.; Inutsuka, Shu-ichiro, E-mail: matsu@hosei.ac.jp
2017-04-10
We investigate the formation of circumstellar disks and outflows subsequent to the collapse of molecular cloud cores with the magnetic field and turbulence. Numerical simulations are performed by using an adaptive mesh refinement to follow the evolution up to ∼1000 years after the formation of a protostar. In the simulations, circumstellar disks are formed around the protostars; those in magnetized models are considerably smaller than those in nonmagnetized models, but their size increases with time. The models with stronger magnetic fields tend to produce smaller disks. During evolution in the magnetized models, the mass ratios of a disk to amore » protostar is approximately constant at ∼1%–10%. The circumstellar disks are aligned according to their angular momentum, and the outflows accelerate along the magnetic field on the 10–100 au scale; this produces a disk that is misaligned with the outflow. The outflows are classified into two types: a magnetocentrifugal wind and a spiral flow. In the latter, because of the geometry, the axis of rotation is misaligned with the magnetic field. The magnetic field has an internal structure in the cloud cores, which also causes misalignment between the outflows and the magnetic field on the scale of the cloud core. The distribution of the angular momentum vectors in a core also has a non-monotonic internal structure. This should create a time-dependent accretion of angular momenta onto the circumstellar disk. Therefore, the circumstellar disks are expected to change their orientation as well as their sizes in the long-term evolutions.« less
THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoadley, K.; France, K.; McJunkin, M.
2015-10-10
Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less
NASA Technical Reports Server (NTRS)
Currie, Thayne; Sicilia-Aguilar, Auora
2011-01-01
We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
NASA Astrophysics Data System (ADS)
Currie, Thayne; Sicilia-Aguilar, Aurora
2011-05-01
We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.
A Cavity of Large Grains in the Disk around the Group II Herbig Ae/Be Star HD 142666
NASA Astrophysics Data System (ADS)
Rubinstein, A. E.; Macías, E.; Espaillat, C. C.; Zhang, K.; Calvet, N.; Robinson, C.
2018-06-01
Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, and were initially thought to be flared and flat disks, respectively. Several Group I sources have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in the disks of Group II sources. We analyzed the disk around the Group II source, HD 142666, using irradiated accretion disk modeling of the broadband spectral energy distribution along with the 1.3 mm spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model reproduces the available data, predicting a high degree of dust settling in the disk, which is consistent with the Group II classification of HD 142666. In addition, the observed visibilities and synthesized image could only be reproduced when including a depletion of large grains out to ∼ 16 au in our disk model, although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk. These results may suggest that some disks around Group II HAeBe stars have cavities of large grains as well. Further ALMA observations of Group II sources are needed to discern how commonly cavities occur in this class of objects, as well as to reveal their possible origins.
Outward transport of high-temperature materials around the midplane of the solar nebula.
Ciesla, Fred J
2007-10-26
The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Andrew F.; Marzari, Francesco
Here, we present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from amore » measure of the radiation intercepted by the disk at its photosphere.« less
The Disk of 48 Lib Revealed by NPOI
NASA Astrophysics Data System (ADS)
Lembryk, Ludwik; Tycner, C.; Sigut, A.; Zavala, R. T.
2013-01-01
We present a study of the disk around the Be star 48 Lib, where NLTE numerical disk models are being compared to the spectral and interferometric data to constrain the physical properties of the inner disk structure. The computational models are generated using the BEDISK code, which accounts for heating and cooling of various atoms in the disk and assumes solar chemical composition. A large set of self-consistent disk models produced with the BEDISK code is in turn used to generate synthetic spectra and images assuming a wide range of inclination angles using the BERAY code. The aim of this project is to constrain the physical properties as well as the inclination angles using both spectroscopic and interferometric data. The interferometric data were obtained using the Naval Precision Optical Interferometer (NPOI), with the focus on Hydrogen Balmer-alpha emission, which is the strongest emission line present due to the circumstellar structure. Because 48 Lib shows clear asymmetric spectral lines, we discuss how we model the asymmetric peaks of the Halpha line by combining two models computed with different density structures. The corresponding synthetic images of these combined density structures are then Fourier transformed and compared to the interferometric data. This numerical strategy has the potential to easily model the commonly observed variation of the ratio of the violet-to-red (V/R ratio) emission peaks and constrain the long-term variability associated with the disk of 48 Lib as well as other emission-line stars that show similar variability.
NASA Astrophysics Data System (ADS)
Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien
2016-08-01
We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.
We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the innermore » rim. We then use a semi-analytical physical model to also find that the very widely used “star + inner dust rim + flared disk” class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at “transition disk”-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.« less
Herschel survey and modelling of externally-illuminated photoevaporating protoplanetary disks.
Champion, J; Berné, O; Vicente, S; Kamp, I; Le Petit, F; Gusdorf, A; Joblin, C; Goicoechea, J R
2017-08-01
Protoplanetary disks undergo substantial mass-loss by photoevaporation, a mechanism which is crucial to their dynamical evolution. However, the processes regulating the gas energetics have not been well constrained by observations so far. We aim at studying the processes involved in disk photoevaporation when it is driven by far-UV photons (i.e. 6 < E < 13.6 eV). We present a unique Herschel survey and new ALMA observations of four externally-illuminated photoevaporating disks (a.k.a. proplyds). For the analysis of these data, we developed a 1D model of the photodissociation region (PDR) of a proplyd, based on the Meudon PDR code and we computed the far infrared line emission. With this model, we successfully reproduce most of the observations and derive key physical parameters, i.e. densities at the disk surface of about 10 6 cm -3 and local gas temperatures of about 1000 K. Our modelling suggests that all studied disks are found in a transitional regime resulting from the interplay between several heating and cooling processes that we identify. These differ from those dominating in classical PDRs i.e. grain photo-electric effect and cooling by [OI] and [CII] FIR lines. This specific energetic regime is associated to an equilibrium dynamical point of the photoevaporation flow: the mass-loss rate is self-regulated to keep the envelope column density at a value that maintains the temperature at the disk surface around 1000 K. From the physical parameters derived from our best-fit models, we estimate mass-loss rates - of the order of 10 -7 M ⊙ /yr - that are in agreement with earlier spectroscopic observation of ionised gas tracers. This holds only if we assume photoevaporation in the supercritical regime where the evaporation flow is launched from the disk surface at sound speed. We have identified the energetic regime regulating FUV-photoevaporation in proplyds. This regime could be implemented into models of the dynamical evolution of protoplanetary disks.
NASA Astrophysics Data System (ADS)
Richert, Alexander J. W.; Lyra, Wladimir; Kuchner, Marc J.
2018-03-01
In optically thin disks, dust grains are photoelectrically stripped of electrons by starlight, heating nearby gas and possibly creating a dust clumping instability—the photoelectric instability (PeI)—that significantly alters global disk structure. In the current work, we use the Pencil Code to perform the first numerical models of the PeI that include stellar radiation pressure on dust grains in order to explore the parameter regime in which the instability operates. In some models with low gas and dust surface densities, we see a variety of dust structures, including sharp concentric rings. In the most gas- and dust-rich models, nonaxisymmetric clumps, arcs, and spiral arms emerge that represent dust surface density enhancements of factors of ∼5–20. In one high gas surface density model, we include a large, low-order gas viscosity and find that it observably smooths the structures that form in the gas and dust, suggesting that resolved images of a given disk may be useful for deriving constraints on the effective viscosity of its gas. Our models show that radiation pressure does not preclude the formation of complex structure from the PeI, but the qualitative manifestation of the PeI depends strongly on the parameters of the system. The PeI may provide an explanation for unusual disk morphologies, such as the moving blobs of the AU Mic disk, the asymmetric dust distribution of the 49 Ceti disk, and the rings and arcs found in the HD 141569A disk.
Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES
NASA Astrophysics Data System (ADS)
Ertel, S.; Marshall, J. P.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Eiroa, C.; Mora, A.; del Burgo, C.; Montesinos, B.; Bryden, G.; Danchi, W.; Kirchschlager, F.; Liseau, R.; Maldonado, J.; Pilbratt, G. L.; Schüppler, Ch.; Thébault, Ph.; White, G. J.; Wolf, S.
2014-01-01
Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims: Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods: We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results: A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions: The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigut, T. A. A.; Tycner, C.; Jansen, B.
Omicron Aquarii is a late-type, Be shell star with a stable and nearly symmetric Hα emission line. We combine Hα interferometric observations obtained with the Navy Precision Optical Interferometer covering 2007 through 2014 with Hα spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of o Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of 75° ± 3° with a position angle on the sky of 110° ± 8° measured East from North. From the best-fit disk density model, we find that 90% ofmore » the Hα emission arises from within 9.5 stellar radii, and the mass associated with this Hα disk is ∼1.8 × 10{sup −10} of the stellar mass, and that the associated angular momentum, assuming Keplerian rotation for the disk, is ∼1.6 × 10{sup −8} of the total stellar angular momentum. The occurrence of a central quasi-emission feature in Mg ii λ4481 is also predicted by this best-fit disk model and the computed profile compares successfully with observations from 1999. To obtain consistency between the Hα line profile modeling and the other constraints, it was necessary in the profile fitting to weight the line core (emission peaks and central depression) more heavily than the line wings, which were not well reproduced by our models. This may reflect the limitation of assuming a single power law for the disk's variation in equatorial density. The best-fit disk density model for o Aqr predicts that Hα is near its maximum strength as a function of disk density, and hence the Hα equivalent width and line profile change only weakly in response to large (factor of ∼5) changes in the disk density. This may in part explain the remarkable observed stability of o Aqr's Hα emission line profile.« less
Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P
2005-09-01
Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.
Ion- and dust-acoustic instabilities in dusty plasmas
NASA Technical Reports Server (NTRS)
Rosenberg, M.
1993-01-01
Dust ion-acoustic and dust-acoustic instabilities in dusty plasmas are investigated using a standard Vlasov approach. Possible applications of these instabilities to various cosmic environments, including protostellar clouds and planetary rings, are briefly discussed.
NASA Astrophysics Data System (ADS)
Hoadley, Keri; France, Kevin
2015-01-01
Probing the surviving molecular gas within the inner regions of protoplanetary disks (PPDs) around T Tauri stars (1 - 10 Myr) provides insight into the conditions in which planet formation and migration occurs while the gas disk is still present. We model observed far ultraviolet (FUV) molecular hydrogen (H₂) fluorescent emission lines that originate within the inner regions (< 10 AU) of 9 well-studied Classic T Tauri stars, using the Hubble Space Telescope Cosmic Origins Spectrograph (COS), to explore the physical structure of the molecular disk at different PPD dust evolutionary stages. We created a 2D radiative transfer model that estimates the density and temperature distributions of warm, inner radial H₂ (T > 1500 K) with a set of 6 free parameters and produces a data cube of expected emission line profiles that describe the physical structure of the inner molecular disk atmosphere. By comparing the modeled emission lines with COS H₂ fluorescence emission features, we estimate the physical structure of the molecular disk atmosphere for each target with the set of free parameters that best replicate the observed lines. First results suggest that, for all dust evolutionary stages of disks considered, ground-state H₂ populations are described by a roughly constant temperature T(H₂) = 2500 +/- 1000 K. Possible evolution of the density structure of the H₂ atmosphere between intact and depleting dust disks may be distinguishable, but large errors in the inferred best-fit parameter sets prevent us from making this conclusion. Further improvements to the modeling framework and statistical comparison in determining the best-fit model-to-data parameter sets are ongoing, beginning with improvements to the radiative transfer model and use of up-to-date HI Lyman α absorption optical depths (see McJunkin in posters) to better estimate disk structural parameters. Once improvements are implemented, we will investigate the possible presence of a molecular wind component in the observed H₂ fluorescence features by determining blue-shifted flux residuals in the data after best-fit model-to-data comparisons are complete.
Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data
NASA Technical Reports Server (NTRS)
Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.
2013-01-01
HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected
Internal and environmental secular evolution of disk galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John
2015-03-01
This Special Session is devoted to the secular evolution of disk galaxies. Here `secular' means `slow' i.e., evolution on time scales that are generally much longer than the galaxy crossing or rotation time. Internal and environmentally driven evolution both are covered. I am indebted to Albert Bosma for reminding me at the 2011 Canary Islands Winter School on Secular Evolution that our subject first appeared in print in a comment made by Ivan King (1977) in his introductory talk at the Yale University meeting on The Evolution of Galaxies and Stellar Populations: `John Kormendy would like us to consider the possibility that a galaxy can interact with itself.. . . I'm not at all convinced, but John can show you some interesting pictures.' Two of the earliest papers that followed were Kormendy (1979a, b); the first discusses the interaction of galaxy components with each other, and the second studies these phenomena in the context of a morphological survey of barred galaxies. The earliest modeling paper that we still use regularly is Combes & Sanders (1981), which introduces the now well known idea that box-shaped bulges in edge-on galaxies are side-on, vertically thickened bars. It is gratifying to see how this subject has grown since that time. Hundreds of papers have been written, and the topic features prominently at many meetings (e.g., Block et al. 2004; Falcoń-Barroso & Knapen 2012, and this Special Session). My talk here introduces both internal and environmental secular evolution; a brief abstract follows. My Canary Islands Winter School review covers both subjects in more detail (Kormendy 2012). Kormendy & Kennicutt (2004) is a comprehensive review of internal secular evolution, and Kormendy & Bender (2012) covers environmental evolution. Both of these subject make significant progress at this meeting. Secular evolution happens because self-gravitating systems evolve toward the most tightly bound configuration that is reachable by the evolution processes that are available to them. They do this by spreading - the inner parts shrink while the outer parts expand. Significant changes happen only if some process efficiently transports energy or angular momentum outward. The consequences are very general: evolution by spreading happens in stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks. This meeting is about disk galaxies, so the evolution most often involves the redistribution of angular momentum. We now have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the center. Numerical simulations reproduce observed morphologies very well. Gas that is transported to small radii reaches high densities that are seen in CO observations. Star formation rates measured (e.g.) in the mid-infrared show that many barred and oval galaxies grow, on timescales of a few Gyr, dense central `pseudobulges' that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). Our resulting picture of secular evolution accounts for the richness observed in morphological classification schemes such as those of de Vaucouleurs (1959) and Sandage (1961). State-of-the art morphology discussions include the de Vaucouleurs Atlas of Galaxies (Buta et al. 2007) and Buta (2012, 2013). Pseudobulges as disk-grown alternatives to merger-built classical bulges are important because they impact many aspects of our understanding of galaxy evolution. For example, they are observed to contain supermassive black holes (BHs), but they do not show the well known, tight correlations between BH mass and host properties (Kormendy et al. 2011). We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions σ with respect to the Faber-Jackson correlation between σ and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. None of the above classification criteria are 100% reliable. Published disagreements on (pseudo)bulge classifications usually result from the use of diffferent criteria. It is very important to use as many classification criteria as possible. When two or more criteria are used, the probability of misclassification becomes very small. I also review environmental secular evolution - the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, `red and dead' S0 and spheroidal (`Sph') galaxies. I show that Sph galaxies such as NGC 205 and Draco are not the low-luminosity end of the structural sequence (the `fundamental plane') of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters with the disks of S0 galaxies. They are bulgeless S0s. S+Im -> S0+Sph transformation involves a variety of internal (supernova-driven baryon ejection) and environmental processes (e.g., ram-pressure gas stripping, harassment, and starvation). Improved evidence for galaxy transformation is presented in several papers at this meeting.
Disks around stars and the growth of planetary systems.
Greaves, Jane S
2005-01-07
Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.
Probing the dusty disk around the Herbig Ae star MWC 480
NASA Astrophysics Data System (ADS)
Hamidouche, M.; Looney, L. W.; Shaw, J.
2004-12-01
It is already quite evident that some Herbig AeBe stars are surrounded by circumstellar dusty disk (e.g. Fuente et al 2003, Natta et al. 2004). We present sub-arcsecond resolution observations at λ = 1mm of dust continuum emission from circumstellar structures around the Herbig AeBe star MWC 480. We have detected a disk-like structure around the star. This is the first well resolved Herbig Ae disk at 1.3 mm. We deduced from the best fit Gaussian a FWHM of 100 AU. We deduce a disk mass of ˜ 0.017 M⊙ assuming optically thin emission. We focus the discussion upon the morphology of the disk and use models to infer the physical parameters (e.g. the density profile). In addition, we discuss a new method with which to fit the numerical model to interferometric data of circumstellar structures around Herbig AeBe stars and T Tauri stars. This method allows us to compare complete Fourier dataset to the Model.
NASA Astrophysics Data System (ADS)
Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.
2018-06-01
Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.
NASA Astrophysics Data System (ADS)
Starkey, David; Agn Storm Team
2015-01-01
Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.
NASA Technical Reports Server (NTRS)
Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.;
2012-01-01
We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.
Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33
NASA Astrophysics Data System (ADS)
Mineikis, T.; Vansevičius, V.
We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Sicilia-Aguilar, Aurora
We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less
Angular Distribution of the X-ray Reflection in Accretion Disks
NASA Astrophysics Data System (ADS)
Garcia, Javier; Dauser, T.; Lohfink, A. M.; Kallman, T. R.; McClintock, J. E.; Steiner, J. F.; Brenneman, L.; Wilms, J.; Reynolds, C. S.; Tombesi, F.
2014-01-01
For the study of black holes, it is essential to have an accurate disk-reflection model with a proper treatment of the relativistic effects that occur near strong gravitational fields. These models are used to constrain the properties of the disk, including its inner radius, the degree of ionization of the gas, and the elemental abundances. Importantly, reflection models are the key to measuring black hole spin via the Fe-line method. However, most current reflection models only provide an angle-averaged solution for the flux reflected at the surface of the disk, which can systematically affect the inferred disk emission. We overcome this limitation by exploiting the full capabilities of our reflection code XILLVER. The solution of the reflected intensity of the radiation field is calculated for each photon energy, position in the slab, and viewing angle. We use this information to construct a grid of reflection models in which the inclination of the system is included as a free fitting parameter. Additionally, we directly connect the angle-resolved XILLVER model with the relativistic blurring code RELLINE to produce a self-consistent numerical model for to angular distribution of the reflected X-ray spectra from ionized accretion disks around black holes. The new model, RELCONV_XILL, is provided in the appropriate format to be used in combination with the commonly used fitting packages. An additional version of the new model, RELCONV_LP_XILL, which simulates the reflected spectra in a lampost scenario, is also supplied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsakos, Titos; Königl, Arieh
Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner andmore » outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.« less
Trajectories of Listeria-type motility in two dimensions
NASA Astrophysics Data System (ADS)
Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi
2012-12-01
Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.
Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA
NASA Astrophysics Data System (ADS)
Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Isella, Andrea; Ricci, Luca
2017-12-01
We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at submillimeter wavelengths. We fit power-law models to the dust surface density and CO J = 3–2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an {R}-1 dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to the higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be approximately three times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.
Circumstellar Disks Around Rapidly Rotating Be-type Stars
NASA Astrophysics Data System (ADS)
Touhami, Yamina
2012-01-01
Be stars are rapidly rotating B-type stars that eject large amounts of gaseous material into a circumstellar equatorial disk. The existence of this disk has been confirmed through the presence of several observational signatures such as the strong hydrogen emission lines, the IR flux excess, and the linear polarization detected from these systems. Here we report simultaneous near-IR interferometric and spectroscopic observations of circumstellar disks around Be stars obtained with the CHARA Array long baseline interferometer and the Mimir spectrograph at Lowell observatory. The goal of this project was to measure precise angular sizes and to characterize the fundamental geometrical and physical properties of the circumstellar disks. We were able to determine spatial extensions, inclinations, and position angles, as well as the gas density profile of the circumstellar disks using an elliptical Gaussian model and a physical thick disk model, and we show that the K-band interferometric angular sizes of the circumstellar disks are correlated with the H-alpha angular sizes. By combining the projected rotational velocity of the Be star with the disk inclination derived from interferometry, we provide estimates of the equatorial rotational velocities of these rapidly rotating Be stars.
Gravitational Instabilities in Disks with Radiative Cooling
NASA Astrophysics Data System (ADS)
Mejía, A. C.; Durisen, R. H.; Pickett, B. K.
Previous simulations of self-gravitating protoplanetary disks by our group have shown that, once developed, gravitational instabilities are enhanced by cooling the disk constantly during its evolution (Pickett et al. 2002). These earlier calculations included a very simple form of volumetric cooling which acted against the stabilizing effects of shock heating. The present work incorporates more realistic treatments of energy transport. The initial disk model extends from 2.3 to 40 AU, has a mass of 0.07 M⊙, and orbits a 0.5 M⊙ star. The models evolve for a period of over 2500 years, during which the structure of the disks is profoundly altered, transient clumps form in one case, but no permanent bound companion objects develop.
Blade loss transient dynamics analysis with flexible bladed disk
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.
1983-01-01
The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.
VizieR Online Data Catalog: MYStIX candidate protostars (Romine+, 2016)
NASA Astrophysics Data System (ADS)
Romine, G.; Feigelson, E. D.; Getman, K. V.; Kuhn, M. A.; Povich, M. S.
2017-04-01
The present study seeks protostars from the Massive Young Star-forming complex in Infrared and X-ray (MYStIX) survey catalogs. We combine objects with protostellar infrared SEDs and 4.5um excesses with X-ray sources exhibiting ultrahard spectra denoting very heavy obscuration. These criteria filter away nearly all of the older Class II-III stars and contaminant populations, but give very incomplete samples. The result is a list of 1109 protostellar candidates in 14 star-forming regions. See sections 1 and 2 for further explanations. The reliability of the catalog is strengthened because a large majority (86%) are found to be associated with dense cores seen in Herschel 500um maps that trace cold dust emission. However, the candidate list requires more detailed study for confirmation and cannot be viewed as an unbiased view of star formation in the clouds. (3 data files).
NASA Astrophysics Data System (ADS)
Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.
2009-09-01
We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
Computing the Polarimetric and Photometric Variability of Be Stars
NASA Astrophysics Data System (ADS)
Marr, K. C.; Jones, C. E.; Halonen, R. J.
2018-01-01
We investigate variations in the linear polarization as well as in the V-band and B-band color–magnitudes for classical Be star disks. We present two models: disks with enhanced disk density and disks that are tilted or warped from the stellar equatorial plane. In both cases, we predict variation in observable properties of the system as the disk rotates. We use a non-LTE radiative transfer code BEDISK (Sigut & Jones) in combination with a Monte Carlo routine that includes multiple scattering (Halonen et al.) to model classical Be star systems. We find that a disk with an enhanced density region that is one order of magnitude denser than the disk’s base density shows as much as ∼ 0.2 % variability in the polarization while the polarization position angle varies by ∼ 8^\\circ . The ΔV magnitude for the same system shows variations of up to ∼ 0.4 mag while the Δ(B–V) color varies by at most ∼ 0.01 mag. We find that disks tilted from the equatorial plane at small angles of ∼ 30^\\circ more strongly reflect the values of polarization and color–magnitudes reported in the literature than disks tilted at larger angles. For this model, the linear polarization varies by ∼ 0.3 % , the polarization position angle varies by ∼ 60^\\circ , the ΔV magnitude varies up to 0.35 mag, and the Δ(B–V) color varies by up to 0.1 mag. We find that the enhanced disk density models show ranges of polarization and color–magnitudes that are commensurate with what is reported in the literature for all sizes of the density-enhanced regions. From this, we cannot determine any preference for small or large density-enhanced regions.
A Circumstellar Disk around HD 169142 in the Mid-Infrared (N-Band)
NASA Astrophysics Data System (ADS)
Okamoto, Yoshiko Kataza; Kataza, Hirokazu; Honda, M.; Yamashita, T.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Fujiwara, H.; Sakon, I.; Fukagawa, M.; Momose, M.; Onaka, T.
2017-07-01
The Herbig Ae star HD 169142 is one of the objects that show complex structure, such as multiple (innermost, middle, and outer) disks, gaps, and unresolved sources. We made N-band (8-13 μm) observations of HD 169142 with the Cooled Mid-Infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The images are spatially resolved out to an ˜1″ radius in all the observed bands. We made a simple disk model composed of an unresolved central source (representing the innermost disk/halo) and the ring at a radius r ˜ 25 au (corresponding to the inner wall or edge of a middle disk at ˜25-40 au). The radial intensity profile within the central region (≲0.″3 or ≲ 40 au) is well reproduced by the model. Furthermore, we subtracted the model image from the observed one to search for additional structures. In the model-subtracted images, we found an unresolved west source separated by 17.0 ± 2.9 au in the direction of position angle 260° ± 5° from the original emission peak, which is supposed to correspond to the position of the central star, and a bright east arc located at r ˜ 60 au. The west source is different from the L‧-band unresolved source recently found in coronagraphic observations. It could be a structure related to planet formation in the disk, such as a circumplanetary disk or clumpy disk structure. The east arc corresponds to the inner wall or edge of the outer disk. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espaillat, C.; Andrews, S.; Qi, C.
Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We findmore » that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.« less
Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks
NASA Astrophysics Data System (ADS)
Kurfürst, P.; Feldmeier, A.; Krtička, J.
2018-06-01
Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Aims: We study the hydrodynamic and thermal structure of optically thick, dense parts of outflowing circumstellar disks that may be formed around various types of critically rotating massive stars, for example, Be stars, B[e] supergiant (sgB[e]) stars or Pop III stars. We calculate self-consistent time-dependent models of temperature and density structure in the disk's inner dense region that is strongly affected by irradiation from a rotationally oblate central star and by viscous heating. Methods: Using the method of short characteristics, we specify the optical depth of the disk along the line-of-sight from stellar poles. Within the optically thick dense region with an optical depth of τ > 2/3 we calculate the vertical disk thermal structure using the diffusion approximation while for the optically thin outer layers we assume a local thermodynamic equilibrium with the impinging stellar irradiation. For time-dependent hydrodynamic modeling, we use two of our own types of hydrodynamic codes: two-dimensional operator-split numerical code based on an explicit Eulerian finite volume scheme on a staggered grid, and unsplit code based on the Roe's method, both including full second-order Navier-Stokes shear viscosity. Results: Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than Ṁ ≳ 10-10 M⊙ yr-1. In the models of dense viscous disks with Ṁ > 10-8 M⊙ yr-1, the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions: The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.
Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions
Jin, Sheng; Li, Shengtai; Isella, Andrea; ...
2016-02-09
In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M Jup at 13.1, 33.0, and 68.6 AU, respectively.more » Finally, implications for the planet formation as well as the limitations of this scenario are discussed.« less
Gas Mass Tracers in Protoplanetary Disks: CO is Still the Best
NASA Astrophysics Data System (ADS)
Molyarova, Tamara; Akimkin, Vitaly; Semenov, Dmitry; Henning, Thomas; Vasyunin, Anton; Wiebe, Dmitri
2017-11-01
Protoplanetary disk mass is a key parameter controlling the process of planetary system formation. CO molecular emission is often used as a tracer of gas mass in the disk. In this study, we consider the ability of CO to trace the gas mass over a wide range of disk structural parameters, and we search for chemical species that could possibly be used as alternative mass tracers to CO. Specifically, we apply detailed astrochemical modeling to a large set of models of protoplanetary disks around low-mass stars to select molecules with abundances correlated with the disk mass and being relatively insensitive to other disk properties. We do not consider sophisticated dust evolution models, restricting ourselves to the standard astrochemical assumption of 0.1 μm dust. We find that CO is indeed the best molecular tracer for total gas mass, despite the fact that it is not the main carbon carrier, provided reasonable assumptions about CO abundance in the disk are used. Typically, chemical reprocessing lowers the abundance of CO by a factor of 3, compared to the case where photodissociation and freeze-out are the only ways of CO depletion. On average, only 13% C atoms reside in gas-phase CO, albeit with variations from 2% to 30%. CO2, H2O, and H2CO can potentially serve as alternative mass tracers, with the latter two only applicable if disk structural parameters are known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.
The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focusmore » our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease with the luminosity, which may be suggestive of the disk's stirring level increasing toward earlier-type stars. The dust opacity index β ranges between zero and two, and the size distribution index q varies between three and five for all the disks in the sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, Luc; McConnachie, Alan W.; Trevor Mendel, J.
We perform two-dimensional, point-spread-function-convolved, bulge+disk decompositions in the g and r bandpasses on a sample of 1,123,718 galaxies from the Legacy area of the Sloan Digital Sky Survey Data Release Seven. Four different decomposition procedures are investigated which make improvements to sky background determinations and object deblending over the standard SDSS procedures that lead to more robust structural parameters and integrated galaxy magnitudes and colors, especially in crowded environments. We use a set of science-based quality assurance metrics, namely, the disk luminosity-size relation, the galaxy color-magnitude diagram, and the galaxy central (fiber) colors to show the robustness of our structuralmore » parameters. The best procedure utilizes simultaneous, two-bandpass decompositions. Bulge and disk photometric errors remain below 0.1 mag down to bulge and disk magnitudes of g {approx_equal} 19 and r {approx_equal} 18.5. We also use and compare three different galaxy fitting models: a pure Sersic model, an n{sub b} = 4 bulge + disk model, and a Sersic (free n{sub b}) bulge + disk model. The most appropriate model for a given galaxy is determined by the F-test probability. All three catalogs of measured structural parameters, rest-frame magnitudes, and colors are publicly released here. These catalogs should provide an extensive comparison set for a wide range of observational and theoretical studies of galaxies.« less
Transition disks: four candidates for ongoing giant planet formation in Ophiuchus
NASA Astrophysics Data System (ADS)
Orellana, M.; Cieza, L. A.; Schreiber, M. R.; Merín, B.; Brown, J. M.; Pellizza, L. J.; Romero, G. A.
2012-03-01
Among the large set of Spitzer-selected transitional disks that we have examined in the Ophiuchus molecular, four disks have been identified as (giant) planet-forming candidates based on the morphology of their spectral energy distributions (SEDs), their apparent lack of stellar companions, and evidence of accretion. Here we characterize the structures of these disks modeling their optical, infrared, and (sub)millimeter SEDs. We use the Monte Carlo radiative transfer package RADMC to construct a parametric model of the dust distribution in a flared disk with an inner cavity and calculate the temperature structure that is consistent with the density profile, when the disk is in thermal equilibrium with the irradiating star. For each object, we conducted a Bayesian exploration of the parameter space generating Monte Carlo Markov chains (MCMC) that allow the identification of the best-fit model parameters and to constrain their range of statistical confidence. Our calculations imply that evacuated cavities with radii ~2-8 AU are present that appear to have been carved by embedded giant planets. We found parameter values that are consistent with those previously given in the literature, indicating that there has been a mild degree of grain growth and dust settling, which deserves to be investigated with further modeling and follow-up observations. Resolved images with (sub)millimeter interferometers would be required to break some of the degeneracies of the models and more tightly constrain the physical properties of these fascinating disks.
Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium
NASA Technical Reports Server (NTRS)
Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.
Formation of Planetary Populations I: Metallicity & Envelope Opacity Effects
NASA Astrophysics Data System (ADS)
Alessi, Matthew; Pudritz, Ralph E.
2018-05-01
We present a comprehensive body of simulations of the formation of exoplanetary populations that incorporate the role of planet traps in slowing planetary migration. The traps we include in our model are the water ice line, the disk heat transition, and the dead zone outer edge. We reduce our model parameter set to two physical parameters: the opacity of the accreting planetary atmospheres (κenv) and a measure of the efficiency of planetary accretion after gap opening (fmax). We perform planet population synthesis calculations based on the initial observed distributions of host star and disk properties - their disk masses, lifetimes, and stellar metallicities. We find the frequency of giant planet formation scales with disk metallicity, in agreement with the observed Jovian planet frequency-metallicity relation. We consider both X-ray and cosmic ray disk ionization models, whose differing ionization rates lead to different dead zone trap locations. In both cases, Jovian planets form in our model out to 2-3 AU, with a distribution at smaller radii dependent on the disk ionization source and the setting of envelope opacity. We find that low values of κenv (0.001-0.002 cm2 g-1) and X-ray disk ionization are necessary to obtain a separation between hot Jupiters near 0.1 AU, and warm Jupiters outside 0.6 AU, a feature present in the data. Our model also produces a large number of super Earths, but the majority are outside of 2 AU. As our model assumes a constant dust to gas ratio, we suggest that radial dust evolution must be taken into account to reproduce the observed super Earth population.
The AU Microscopii Debris Disk: Multiwavelength Imaging and Modeling
NASA Astrophysics Data System (ADS)
Fitzgerald, Michael P.; Kalas, Paul G.; Duchêne, Gaspard; Pinte, Christophe; Graham, James R.
2007-11-01
Debris disks around main-sequence stars are produced by the destruction of unseen parent bodies. AU Microscopii (GJ 803) is a compelling object to study in the context of disk evolution across different spectral types, as it is an M dwarf whose nearly edge-on disk may be directly compared to that of its A5 V sibling β Pic. We resolve the disk from 8-60 AU in the near-IR JHK' bands at high resolution with the Keck II Telescope and adaptive optics, and develop a data reduction technique for the removal of the stellar point-spread function. We measure a blue color across the near-IR bands, and confirm the presence of substructure in the inner disk. Some of the structural features exhibit wavelength-dependent positions. Recent measurements of the scattered-light polarization indicate the presence of porous grains. The scattering properties of these porous grains have a strong effect on the inferred structure of the disk relative to the majority of previously modeled grain types. Complementing prior work, we use a Monte Carlo radiative transfer code to compare a relatively simple model of the distribution of porous grains to a broad data set, simultaneously fitting midplane surface brightness profiles and the spectral energy distribution. Our model confirms that the large-scale architecture of the disk is consistent with detailed models of steady state grain dynamics. A belt of parent bodies from 35-40 AU produces dust that is then swept outward by stellar wind and radiation. We infer the presence of very small grains in the region exterior to the belt, down to sizes of ~0.05 μm. These sizes are consistent with stellar mass-loss rates M˙*<<102 M˙solar
Hydrodynamical processes in planet-forming accretion disks
NASA Astrophysics Data System (ADS)
Lin, Min-Kai
Understanding the physics of accretion flows in circumstellar disk provides the foundation to any theory of planet formation. The last few years have witnessed dramatic a revision in the fundamental fluid dynamics of protoplanetary accretion disks. There is growing evidence that the key to answering some of the most pressing questions, such as the origin of disk turbulence, mass transport, and planetesimal formation, may lie within, and intimately linked to, purely hydrodynamical processes in protoplanetary disks. Recent studies, including those from the proposal team, have discovered and highlighted the significance of several new hydrodynamical instabilities in the planet-forming regions of these disks. These include, but not limited to: the vertical shear instability, active between 10 to 100 AU; the zombie vortex instability, operating in regions interior to about 1AU; and the convective over-stability at intermediate radii. Secondary Rossbywave and elliptic instabilities may also be triggered, feeding off the structures that emerge from the above primary instabilities. The result of these hydrodynamic processes range from small-scale turbulence that transports angular momentum, to large-scale vortices that concentrate dust particles and enhance planetesimal formation. Hydrodynamic processes pertain to a wide range of disk conditions, meaning that at least one of these processes are active at any given disk location and evolutionary epoch. This remains true even after planet formation, which affects their subsequent orbital evolution. Hydrodynamical processes also have direct observable consequences. For example, vortices have being invoked to explain recent ALMA images of asymmetric `dust-traps' in transition disks. Hydrodynamic activities thus play a crucial role at every stage of planet formation and disk evolution. We propose to develop theoretical models of the above hydrodynamic processes under physical disk conditions by properly accounting for disk thermodynamics, dust dynamics, disk self-gravity and three-dimensional effects. By including these effects, we go wellbeyond previous works based on idealized disk models. This effort is necessary to understand how these instabilities operate and interact in realistic protoplanetary disks. This will enable us to provide a unified picture of how various hydrodynamic activities fit together to drive global disk evolution. We will address key questions including the strength of the resulting hydrodynamic turbulence, the lifetime of large-scale vortices under realistic disk conditions, and their impact on the evolution of solids within the disk. Inclusion of these additional physics will likely uncover new, yet-unknown hydrodynamic processes. Our generalized models enables a direct link between theory and observations. For example, a self-consistent incorporation of dust dynamics into the theory of hydrodynamic instabilities is particularly important, since it is the dust component that is usually observed. We will also establish the connection between the properties of large-scale, observable structures such as vortices, to the underlying disk properties, such as disk mass, and vertical structure, which are difficult to infer directly from observations. We also propose to study, for the first time, the dynamical interaction between hydrodynamic turbulence and proto-planets, as well as the influence of largescale vortices on disk-planet interaction. This is necessary towards a realistic modeling of the orbital evolution of proto planets, and thus in predicting the final architecture of planetary systems. The proposal team's expertise and experience, ranging from mathematical analyses to state-of the-art numerical simulations in astrophysical fluid dynamics, provides a multi-method approach to these problems. This is necessary towards establishing a rigorous understanding of these fundamental hydrodynamical processes in protoplanetary accretion disks.
Circumstellar Structure Properties of Young Stellar Objects: Envelopes, Bipolar Outflows, and Disks
NASA Astrophysics Data System (ADS)
Kwon, Woojin
2009-12-01
Physical properties of the three main structures in young stellar objects (YSOs), envelopes, bipolar outflows, and circumstellar disks, have been studied using radio interferometers: the Berkeley-Illinois-Maryland Association (BIMA) array and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). (1) Envelopes. Three Class 0 YSOs (L1448 IRS 2, L1448 IRS 3, and L1157) have been observed by CARMA at λ = 1.3 mm and 2.7 mm continuum. Through visibility modeling to fit the two wavelength continuum data simultaneously, we found that the dust opacity spectral index (β) of Class 0 YSOs is around unity, which implies that dust grains have significantly grown already at the earliest stage. In addition, we discussed the radial dependence of β detected in L1448 IRS 3B and also estimated the density distribution of the three targets. (2) Bipolar outflows. Polarimetric observations in the λ = 1.3 mm continuum and CO, as well as spectral line observations in 13CO and C18O have been carried out toward L1448 IRS 3, which has three Class 0 YSOs, using BIMA. We clearly identified two interacting bipolar outflows from the "binary system" of IRS 3A and 3B and estimated the velocity, inclination, and opening angle of the 3B bipolar outflow, using Bayesian inference. Also, we showed that the "binary system" can be bound gravitationally and we estimated the specific angular momentum, which is between those of binary stars and molecular cloud cores. In addition, we marginally detected linear polarizations at the center of IRS 3B (implying a toroidal magnetic field) in continuum and at the bipolar outflow region in CO. (3) Circumstellar disks. We present the results of 6 objects (CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau) in our T Tauri disk survey using CARMA. The data consist of λ = 1.3 mm and 2.7 mm continuum with an angular resolution up to 0.13". Through visibility modeling of two disk models (power-law disk with a Gaussian edge and viscous accretion disk) to fit the two wavelength data simultaneously in Bayesian inference, we constrained disk properties. In addition, we detected a dust lane at 100 AU radius of HL Tau, which is gravitationally unstable and can be fragmented. Besides, CI Tau and DL Tau appear to have a spiral pattern. Moreover, we found that more evolved disks have a shallower density gradient and that disks with a smaller β are less massive, which implies "hidden" masses in the cold midplane and/or in large grains. Finally, we found that the accretion disk model is preferred by HL Tau, which has a strong bipolar outflow and accretion, while the power-law disk model is preferred by DL Tau, which has experienced dust settlement and has weak accretion. This implies that the accretion disk model could be applied to disks only in a limited age range.
A Modification of the Levich Model to Flux at a Rotating Disk in the presence of Planktonic Bacteria
NASA Astrophysics Data System (ADS)
Jones, Akhenaton-Andrew; Buie, Cullen
2015-11-01
The Levich model of flow at a rotating disk describes convective mass transport to a disk when edge effects and wall effects can be neglected. It is used to interpret electrochemical reaction kinetics and electrochemical impedance of flow systems. The solution has been shown to be invalid for high densities (~ 1 % v/v) of inert, non-motile nano-sized particles (<0.1 μm) and macro-particles (>1.5 μm), yet little work has been done for motile bacteria and bacterial sized particles. The influence of planktonic bacteria on rotating disk experiments is crucial for the evaluation of electrochemically active biofilms. In this work, we show that the presence of bacteria creates significant deviation from the ideal Levich model not shared by inert particles. We also study the impact of dead (fixed) bacteria on deviation form the Levich model. This work has implications for studies of microbial induced corrosion, microbial adhesion, and antibiotic transport to adhered biofilms preformed in rotating disk systems.
Protoplanetary Formation and the FU Orionis Outburst
NASA Technical Reports Server (NTRS)
Bodenheimer, P. H.
1996-01-01
The following three publications which reference the above grant from the NASA Origins of Solar Systems program are attached and form the final technical report for this project. The research involved comparisons of the spectral energy distributions of FU Orionis objects with theoretical models and associated studies of the structure of the outbursting accretion disks, as well as related studies on the effects of magnetic fields in disks, which will lead in the future to models of FU Orionis outbursts which include the effects of magnetic fields. The project was renewed under a new grant NAGW-4456, entitled 'Effects of FU Orionis Outbursts on Protoplanetary Disks'. Work now being prepared for publication deals more specifically with the issue of the effects of the outbursts on protoplanetary formation. Models of the spectral energy distribution of FU Orionis stars. A simple model of a buoyant magnetic dynamo in accretion disks and a numerical study of magnetic buoyancy in an accretion disk have been submitted.
The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2005-01-01
The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
NASA Technical Reports Server (NTRS)
Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.;
2014-01-01
Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.
McConda, David B; Karnes, Jonathan M; Hamza, Therwa; Lindsey, Brock A
2016-07-01
Infection is a major cause of orthopedic implant failure. There are few studies assessing both tissue cell and bacterial adherence on common orthopedic implant materials in a co-culture environment. An in vitro co-culture model was created using K12 osteosarcoma cells and Staphylococcus aureus in a medium incubated over metal disks for 48 h. The results showed that, in the presence of S. aureus, there were fewer osteosarcoma cells attached to the disks for all substrata tested. There were significantly more osteosarcoma cells adhering to the cobalt chrome than the stainless steel and titanium disks. Overall, in the presence of osteosarcoma cells, there were more bacteria adhering to the disks for all the substrata tested, with significantly more bacteria adhering to the stainless steel disks compared to cobalt chrome and titanium disks. Scanning electron microscopy verified that osteosarcoma cells and bacteria were adherent to the metal disks after incubation for 48 h. Furthermore, the observation that more bacteria were in the co-culture than in the control sample suggests that the osteosarcoma cells serve as a nutrient source for the bacteria. Future models assessing the interaction of osteogenic cells with bacteria on a substratum would be improved if the model accounted for the role of the immune system in secondary bone healing.
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.
Interpretation of BM Orionis. [eclipsing binary model
NASA Technical Reports Server (NTRS)
Huang, S.-S.
1975-01-01
The entire light curve of the BM Ori system both inside and outside primary and secondary eclipses has been examined on the basis of two models for the disk around the secondary component: one with the luminous energy of the disk coming entirely from the secondary, and another with the luminous energy coming at least partly from the primary. It has been found that if the disk is highly opaque, as is suggested by the fitting of the light curve, there exist in the first model discrepancies between what has been derived from the luminosity consideration for the secondary component and what has been derived from the radius consideration. Hence the second model is accepted. Based on this model the nature of both component stars has been examined from a consideration of the luminosity and the dimensions of the disk.
NASA Astrophysics Data System (ADS)
Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben
2018-02-01
Efficient magnetic braking is a formidable obstacle to the formation of rotationally supported discs (RSDs) around protostars in magnetized dense cores. We have previously shown, through 2D (axisymmetric) non-ideal magnetohydrodynamic simulations, that removing very small grains (VSGs: ∼10 Å to few 100 Å) can greatly enhance ambipolar diffusion and enable the formation of RSDs. Here, we extend the simulations of disc formation enabled by VSG removal to 3D. We find that the key to this scenario of disc formation is that the drift velocity of the magnetic field almost cancels out the infall velocity of the neutrals in the 102-103 au scale 'pseudo-disc' where the field lines are most severely pinched and most of protostellar envelope mass infall occurs. As a result, the bulk neutral envelope matter can collapse without dragging much magnetic flux into the disc-forming region, which lowers the magnetic braking efficiency. We find that the initial discs enabled by VSG removal tend to be Toomre-unstable, which leads to the formation of prominent spiral structures that function as centrifugal barriers. The piling-up of infall material near the centrifugal barrier often produces dense fragments of tens of Jupiter masses, especially in cores that are not too strongly magnetized. Some fragments accrete on to the central stellar object, producing bursts in mass accretion rate. Others are longer lived, although whether they can survive for a long term to produce multiple systems remains to be ascertained. Our results highlight the importance of dust grain evolution in determining the formation and properties of protostellar discs and potentially multiple systems.