Sample records for prototype auditory midbrain

  1. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.

    PubMed

    Woolley, Sarah M N; Portfors, Christine V

    2013-11-01

    The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl’s Auditory Forebrain

    PubMed Central

    2017-01-01

    Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698

  3. Tonic effects of the dopaminergic ventral midbrain on the auditory cortex of awake macaque monkeys.

    PubMed

    Huang, Ying; Mylius, Judith; Scheich, Henning; Brosch, Michael

    2016-03-01

    This study shows that ongoing electrical stimulation of the dopaminergic ventral midbrain can modify neuronal activity in the auditory cortex of awake primates for several seconds. This was reflected in a decrease of the spontaneous firing and in a bidirectional modification of the power of auditory evoked potentials. We consider that both effects are due to an increase in the dopamine tone in auditory cortex induced by the electrical stimulation. Thus, the dopaminergic ventral midbrain may contribute to the tonic activity in auditory cortex that has been proposed to be involved in associating events of auditory tasks (Brosch et al. Hear Res 271:66-73, 2011) and may modulate the signal-to-noise ratio of the responses to auditory stimuli.

  4. Representation of particle motion in the auditory midbrain of a developing anuran.

    PubMed

    Simmons, Andrea Megela

    2015-07-01

    In bullfrog tadpoles, a "deaf period" of lessened responsiveness to the pressure component of sounds, evident during the end of the late larval period, has been identified in the auditory midbrain. But coding of underwater particle motion in the vestibular medulla remains stable over all of larval development, with no evidence of a "deaf period." Neural coding of particle motion in the auditory midbrain was assessed to determine if a "deaf period" for this mode of stimulation exists in this brain area in spite of its absence from the vestibular medulla. Recording sites throughout the developing laminar and medial principal nuclei show relatively stable thresholds to z-axis particle motion, up until the "deaf period." Thresholds then begin to increase from this point up through the rest of metamorphic climax, and significantly fewer responsive sites can be located. The representation of particle motion in the auditory midbrain is less robust during later compared to earlier larval stages, overlapping with but also extending beyond the restricted "deaf period" for pressure stimulation. The decreased functional representation of particle motion in the auditory midbrain throughout metamorphic climax may reflect ongoing neural reorganization required to mediate the transition from underwater to amphibious life.

  5. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.

  6. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Rapid Effects of Hearing Song on Catecholaminergic Activity in the Songbird Auditory Pathway

    PubMed Central

    Matragrano, Lisa L.; Beaulieu, Michaël; Phillip, Jessica O.; Rae, Ali I.; Sanford, Sara E.; Sockman, Keith W.; Maney, Donna L.

    2012-01-01

    Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses. PMID:22724011

  8. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise.

    PubMed

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang; Liao, Xiao-Mei

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  9. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    PubMed Central

    Cheng, Liang; Wang, Shao-Hui; Peng, Kang

    2017-01-01

    Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons. PMID:28589040

  10. Encoding of natural and artificial stimuli in the auditory midbrain

    NASA Astrophysics Data System (ADS)

    Lyzwa, Dominika

    How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.

  11. Evidence of degraded representation of speech in noise, in the aging midbrain and cortex

    PubMed Central

    Simon, Jonathan Z.; Anderson, Samira

    2016-01-01

    Humans have a remarkable ability to track and understand speech in unfavorable conditions, such as in background noise, but speech understanding in noise does deteriorate with age. Results from several studies have shown that in younger adults, low-frequency auditory cortical activity reliably synchronizes to the speech envelope, even when the background noise is considerably louder than the speech signal. However, cortical speech processing may be limited by age-related decreases in the precision of neural synchronization in the midbrain. To understand better the neural mechanisms contributing to impaired speech perception in older adults, we investigated how aging affects midbrain and cortical encoding of speech when presented in quiet and in the presence of a single-competing talker. Our results suggest that central auditory temporal processing deficits in older adults manifest in both the midbrain and in the cortex. Specifically, midbrain frequency following responses to a speech syllable are more degraded in noise in older adults than in younger adults. This suggests a failure of the midbrain auditory mechanisms needed to compensate for the presence of a competing talker. Similarly, in cortical responses, older adults show larger reductions than younger adults in their ability to encode the speech envelope when a competing talker is added. Interestingly, older adults showed an exaggerated cortical representation of speech in both quiet and noise conditions, suggesting a possible imbalance between inhibitory and excitatory processes, or diminished network connectivity that may impair their ability to encode speech efficiently. PMID:27535374

  12. Neural Processing of Target Distance by Echolocating Bats: Functional Roles of the Auditory Midbrain

    PubMed Central

    Wenstrup, Jeffrey J.; Portfors, Christine V.

    2011-01-01

    Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these “delay-tuned”, “FM-FM” response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target. PMID:21238485

  13. There's more than one way to scan a cat: imaging cat auditory cortex with high-field fMRI using continuous or sparse sampling.

    PubMed

    Hall, Amee J; Brown, Trecia A; Grahn, Jessica A; Gati, Joseph S; Nixon, Pam L; Hughes, Sarah M; Menon, Ravi S; Lomber, Stephen G

    2014-03-15

    When conducting auditory investigations using functional magnetic resonance imaging (fMRI), there are inherent potential confounds that need to be considered. Traditional continuous fMRI acquisition methods produce sounds >90 dB which compete with stimuli or produce neural activation masking evoked activity. Sparse scanning methods insert a period of reduced MRI-related noise, between image acquisitions, in which a stimulus can be presented without competition. In this study, we compared sparse and continuous scanning methods to identify the optimal approach to investigate acoustically evoked cortical, thalamic and midbrain activity in the cat. Using a 7 T magnet, we presented broadband noise, 10 kHz tones, or 0.5 kHz tones in a block design, interleaved with blocks in which no stimulus was presented. Continuous scanning resulted in larger clusters of activation and more peak voxels within the auditory cortex. However, no significant activation was observed within the thalamus. Also, there was no significant difference found, between continuous or sparse scanning, in activations of midbrain structures. Higher magnitude activations were identified in auditory cortex compared to the midbrain using both continuous and sparse scanning. These results indicate that continuous scanning is the preferred method for investigations of auditory cortex in the cat using fMRI. Also, choice of method for future investigations of midbrain activity should be driven by other experimental factors, such as stimulus intensity and task performance during scanning. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity.

    PubMed

    Carnell, Susan; Benson, Leora; Pantazatos, Spiro P; Hirsch, Joy; Geliebter, Allan

    2014-11-01

    The obesogenic environment is pervasive, yet only some people become obese. The aim was to investigate whether obese individuals show differential neural responses to visual and auditory food cues, independent of cue modality. Obese (BMI 29-41, n = 10) and lean (BMI 20-24, n = 10) females underwent fMRI scanning during presentation of auditory (spoken word) and visual (photograph) cues representing high-energy-density (ED) and low-ED foods. The effect of obesity on whole-brain activation, and on functional connectivity with the midbrain/VTA, was examined. Obese compared with lean women showed greater modality-independent activation of the midbrain/VTA and putamen in response to high-ED (vs. low-ED) cues, as well as relatively greater functional connectivity between the midbrain/VTA and cerebellum (P < 0.05 corrected). Heightened modality-independent responses to food cues within the midbrain/VTA and putamen, and altered functional connectivity between the midbrain/VTA and cerebellum, could contribute to excessive food intake in obese individuals. © 2014 The Obesity Society.

  15. Auditory and visual interactions between the superior and inferior colliculi in the ferret.

    PubMed

    Stitt, Iain; Galindo-Leon, Edgar; Pieper, Florian; Hollensteiner, Karl J; Engler, Gerhard; Engel, Andreas K

    2015-05-01

    The integration of visual and auditory spatial information is important for building an accurate perception of the external world, but the fundamental mechanisms governing such audiovisual interaction have only partially been resolved. The earliest interface between auditory and visual processing pathways is in the midbrain, where the superior (SC) and inferior colliculi (IC) are reciprocally connected in an audiovisual loop. Here, we investigate the mechanisms of audiovisual interaction in the midbrain by recording neural signals from the SC and IC simultaneously in anesthetized ferrets. Visual stimuli reliably produced band-limited phase locking of IC local field potentials (LFPs) in two distinct frequency bands: 6-10 and 15-30 Hz. These visual LFP responses co-localized with robust auditory responses that were characteristic of the IC. Imaginary coherence analysis confirmed that visual responses in the IC were not volume-conducted signals from the neighboring SC. Visual responses in the IC occurred later than retinally driven superficial SC layers and earlier than deep SC layers that receive indirect visual inputs, suggesting that retinal inputs do not drive visually evoked responses in the IC. In addition, SC and IC recording sites with overlapping visual spatial receptive fields displayed stronger functional connectivity than sites with separate receptive fields, indicating that visual spatial maps are aligned across both midbrain structures. Reciprocal coupling between the IC and SC therefore probably serves the dynamic integration of visual and auditory representations of space. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Accurate Sound Localization in Reverberant Environments is Mediated by Robust Encoding of Spatial Cues in the Auditory Midbrain

    PubMed Central

    Devore, Sasha; Ihlefeld, Antje; Hancock, Kenneth; Shinn-Cunningham, Barbara; Delgutte, Bertrand

    2009-01-01

    In reverberant environments, acoustic reflections interfere with the direct sound arriving at a listener’s ears, distorting the spatial cues for sound localization. Yet, human listeners have little difficulty localizing sounds in most settings. Because reverberant energy builds up over time, the source location is represented relatively faithfully during the early portion of a sound, but this representation becomes increasingly degraded later in the stimulus. We show that the directional sensitivity of single neurons in the auditory midbrain of anesthetized cats follows a similar time course, although onset dominance in temporal response patterns results in more robust directional sensitivity than expected, suggesting a simple mechanism for improving directional sensitivity in reverberation. In parallel behavioral experiments, we demonstrate that human lateralization judgments are consistent with predictions from a population rate model decoding the observed midbrain responses, suggesting a subcortical origin for robust sound localization in reverberant environments. PMID:19376072

  18. Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

    PubMed Central

    Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait

    2012-01-01

    This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917

  19. Auditory midbrain implant: a review.

    PubMed

    Lim, Hubert H; Lenarz, Minoo; Lenarz, Thomas

    2009-09-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented.

  20. A role for descending auditory cortical projections in songbird vocal learning

    PubMed Central

    Mandelblat-Cerf, Yael; Las, Liora; Denisenko, Natalia; Fee, Michale S

    2014-01-01

    Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets. DOI: http://dx.doi.org/10.7554/eLife.02152.001 PMID:24935934

  1. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing

    PubMed Central

    Schoppe, Oliver; King, Andrew J.; Schnupp, Jan W.H.; Harper, Nicol S.

    2016-01-01

    Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear–nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. SIGNIFICANCE STATEMENT An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no new free parameters. Incorporating the adaptive coding properties of neurons will likely improve receptive field models in other sensory modalities too. PMID:26758822

  2. Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons

    PubMed Central

    Schumacher, Joseph W.; Schneider, David M.

    2011-01-01

    The majority of sensory physiology experiments have used anesthesia to facilitate the recording of neural activity. Current techniques allow researchers to study sensory function in the context of varying behavioral states. To reconcile results across multiple behavioral and anesthetic states, it is important to consider how and to what extent anesthesia plays a role in shaping neural response properties. The role of anesthesia has been the subject of much debate, but the extent to which sensory coding properties are altered by anesthesia has yet to be fully defined. In this study we asked how urethane, an anesthetic commonly used for avian and mammalian sensory physiology, affects the coding of complex communication vocalizations (songs) and simple artificial stimuli in the songbird auditory midbrain. We measured spontaneous and song-driven spike rates, spectrotemporal receptive fields, and neural discriminability from responses to songs in single auditory midbrain neurons. In the same neurons, we recorded responses to pure tone stimuli ranging in frequency and intensity. Finally, we assessed the effect of urethane on population-level representations of birdsong. Results showed that intrinsic neural excitability is significantly depressed by urethane but that spectral tuning, single neuron discriminability, and population representations of song do not differ significantly between unanesthetized and anesthetized animals. PMID:21543752

  3. Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain.

    PubMed

    Ono, Munenori; Bishop, Deborah C; Oliver, Douglas L

    2016-02-12

    Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound.

  4. Social regulation of serotonin in the auditory midbrain

    PubMed Central

    Hall, Ian C.; Sell, Gabrielle L.; Hurley, Laura M .

    2011-01-01

    The neuromodulator serotonin regulates auditory processing and can increase within minutes in response to stimuli like broadband noise as well as non-auditory stressors. Little is known about the serotonergic response in the auditory system to more natural stimuli such as social interactions, however. Using carbon-fiber voltammetry, we measured extracellular serotonin in the auditory midbrain of resident male mice during encounters with a male intruder. Serotonin increased in the inferior colliculus (IC) over the course of a 15 minute interaction, but not when mice were separated with a perforated barrier. Several behaviors, including the amount of immobility and anogenital investigation performed by the resident, were correlated with the serotonergic response. Multiple intrinsic factors associated with individual mice also correlated with the serotonergic response. One of these was age: older mice had smaller serotonergic responses to the social interaction. In a second interaction, individual identity predicted serotonergic responses that were highly consistent with those in the first interaction, even when mice were paired with different intruders. Serotonin was also significantly elevated in the second social interaction relative to the first, suggesting a role for social experience. These findings show that during social interaction, serotonin in the IC is influenced by extrinsic factors such as the directness of social interaction and intrinsic factors including age, individual identity, and experience. PMID:21787041

  5. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    PubMed

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the auditory midbrain increases neural discrimination of complex vocalizations.

  6. Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain

    PubMed Central

    Ono, Munenori; Bishop, Deborah C.; Oliver, Douglas L.

    2016-01-01

    Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound. PMID:26867811

  7. Brain Activation Patterns in Response to Conspecific and Heterospecific Social Acoustic Signals in Female Plainfin Midshipman Fish, Porichthys notatus.

    PubMed

    Mohr, Robert A; Chang, Yiran; Bhandiwad, Ashwin A; Forlano, Paul M; Sisneros, Joseph A

    2018-01-01

    While the peripheral auditory system of fish has been well studied, less is known about how the fish's brain and central auditory system process complex social acoustic signals. The plainfin midshipman fish, Porichthys notatus, has become a good species for investigating the neural basis of acoustic communication because the production and reception of acoustic signals is paramount for this species' reproductive success. Nesting males produce long-duration advertisement calls that females detect and localize among the noise in the intertidal zone to successfully find mates and spawn. How female midshipman are able to discriminate male advertisement calls from environmental noise and other acoustic stimuli is unknown. Using the immediate early gene product cFos as a marker for neural activity, we quantified neural activation of the ascending auditory pathway in female midshipman exposed to conspecific advertisement calls, heterospecific white seabass calls, or ambient environment noise. We hypothesized that auditory hindbrain nuclei would be activated by general acoustic stimuli (ambient noise and other biotic acoustic stimuli) whereas auditory neurons in the midbrain and forebrain would be selectively activated by conspecific advertisement calls. We show that neural activation in two regions of the auditory hindbrain, i.e., the rostral intermediate division of the descending octaval nucleus and the ventral division of the secondary octaval nucleus, did not differ via cFos immunoreactive (cFos-ir) activity when exposed to different acoustic stimuli. In contrast, female midshipman exposed to conspecific advertisement calls showed greater cFos-ir in the nucleus centralis of the midbrain torus semicircularis compared to fish exposed only to ambient noise. No difference in cFos-ir was observed in the torus semicircularis of animals exposed to conspecific versus heterospecific calls. However, cFos-ir was greater in two forebrain structures that receive auditory input, i.e., the central posterior nucleus of the thalamus and the anterior tuberal hypothalamus, when exposed to conspecific calls versus either ambient noise or heterospecific calls. Our results suggest that higher-order neurons in the female midshipman midbrain torus semicircularis, thalamic central posterior nucleus, and hypothalamic anterior tuberal nucleus may be necessary for the discrimination of complex social acoustic signals. Furthermore, neurons in the central posterior and anterior tuberal nuclei are differentially activated by exposure to conspecific versus other acoustic stimuli. © 2018 S. Karger AG, Basel.

  8. Cortical modulation of auditory processing in the midbrain

    PubMed Central

    Bajo, Victoria M.; King, Andrew J.

    2013-01-01

    In addition to their ascending pathways that originate at the receptor cells, all sensory systems are characterized by extensive descending projections. Although the size of these connections often outweighs those that carry information in the ascending auditory pathway, we still have a relatively poor understanding of the role they play in sensory processing. In the auditory system one of the main corticofugal projections links layer V pyramidal neurons with the inferior colliculus (IC) in the midbrain. All auditory cortical fields contribute to this projection, with the primary areas providing the largest outputs to the IC. In addition to medium and large pyramidal cells in layer V, a variety of cell types in layer VI make a small contribution to the ipsilateral corticocollicular projection. Cortical neurons innervate the three IC subdivisions bilaterally, although the contralateral projection is relatively small. The dorsal and lateral cortices of the IC are the principal targets of corticocollicular axons, but input to the central nucleus has also been described in some studies and is distinctive in its laminar topographic organization. Focal electrical stimulation and inactivation studies have shown that the auditory cortex can modify almost every aspect of the response properties of IC neurons, including their sensitivity to sound frequency, intensity, and location. Along with other descending pathways in the auditory system, the corticocollicular projection appears to continually modulate the processing of acoustical signals at subcortical levels. In particular, there is growing evidence that these circuits play a critical role in the plasticity of neural processing that underlies the effects of learning and experience on auditory perception by enabling changes in cortical response properties to spread to subcortical nuclei. PMID:23316140

  9. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas

    PubMed Central

    Zhong, Ziwei; Henry, Kenneth S.; Heinz, Michael G.

    2014-01-01

    People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. PMID:24315815

  10. Developmental Experience Alters Information Coding in Auditory Midbrain and Forebrain Neurons

    PubMed Central

    Woolley, Sarah M. N.; Hauber, Mark E.; Theunissen, Frederic E.

    2010-01-01

    In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information, response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. Mutual information quantifies a response’s capacity to encode information about a stimulus. In midbrain and forebrain neurons, mutual information was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. Mutual information did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and mutual information were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. PMID:20039264

  11. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation.

    PubMed

    Ponnath, Abhilash; Hoke, Kim L; Farris, Hamilton E

    2013-04-01

    Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28% of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f=±16%). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45% of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.

  12. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  13. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation

    PubMed Central

    Ponnath, Abhilash; Hoke, Kim L.

    2013-01-01

    Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments. PMID:23344947

  14. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.

    PubMed

    Chambers, Anna R; Salazar, Juan J; Polley, Daniel B

    2016-01-01

    Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.

  15. Auditory Midbrain Implant: Research and Development Towards a Second Clinical Trial

    PubMed Central

    Lim, Hubert H.; Lenarz, Thomas

    2015-01-01

    The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients, which is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. Modifications to the AMI array design, stimulation strategy, and surgical approach have been made that are expected to improve hearing performance in the patients implanted with a two-shank array in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. PMID:25613994

  16. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain.

    PubMed

    Shen, Li; Zhao, Lingyun; Hong, Bo

    2015-01-01

    Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.

  17. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain

    PubMed Central

    Shen, Li; Zhao, Lingyun; Hong, Bo

    2015-01-01

    Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry. PMID:26483641

  18. Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates.

    PubMed

    Reser, David H; Rosa, Marcello

    2014-12-01

    Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

  19. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  20. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  1. Fetal Brain Behavior and Cognitive Development.

    ERIC Educational Resources Information Center

    Joseph, R.

    2000-01-01

    Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…

  2. Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents.

    PubMed

    Hsiao, Chun-Jen; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wu, Chung-Hsin; Jen, Philip Hung-Sun

    2016-08-17

    Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.

  3. Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue

    PubMed Central

    Zahorik, Pavel; Carney, Laurel H.; Bishop, Brian B.; Kuwada, Shigeyuki

    2015-01-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35–200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  4. Representation of Sound Categories in Auditory Cortical Maps

    ERIC Educational Resources Information Center

    Guenther, Frank H.; Nieto-Castanon, Alfonso; Ghosh, Satrajit S.; Tourville, Jason A.

    2004-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation…

  5. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex

    PubMed Central

    Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.

    2016-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594

  6. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain

    PubMed Central

    Neilans, Erikson G.; Abrams, Kristina S.; Idrobo, Fabio; Carney, Laurel H.

    2016-01-01

    Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16–512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608

  7. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.

  8. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.

    PubMed

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-07-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Midbrain adaptation may set the stage for the perception of musical beat

    PubMed Central

    2017-01-01

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. PMID:29118141

  10. Midbrain adaptation may set the stage for the perception of musical beat.

    PubMed

    Rajendran, Vani G; Harper, Nicol S; Garcia-Lazaro, Jose A; Lesica, Nicholas A; Schnupp, Jan W H

    2017-11-15

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. © 2017 The Authors.

  11. The auditory brain-stem response to complex sounds: a potential biomarker for guiding treatment of psychosis.

    PubMed

    Tarasenko, Melissa A; Swerdlow, Neal R; Makeig, Scott; Braff, David L; Light, Gregory A

    2014-01-01

    Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.

  12. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    PubMed

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  13. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation

    PubMed Central

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation. PMID:29520220

  14. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather than the caudal-medial ICC using the AMI may improve or elicit different types of hearing capabilities.

  15. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  16. Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons.

    PubMed

    He, Na; Kong, Lingzhi; Lin, Tao; Wang, Shaohui; Liu, Xiuping; Qi, Jiyao; Yan, Jun

    2017-11-01

    Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Neurophysiological findings relevant to echolocation in marine animals

    NASA Technical Reports Server (NTRS)

    Bullock, T. H.; Ridgway, S. H.

    1972-01-01

    A review of echolocation mechanisms in marine mammals, chiefly porpoises, is given. Data cover peripheral auditory and central neurophysiological specializations favorable to the analysis of echolocating clicks and their echoes. Conclusions show (1) signals are received from 50 up to at least 135 kHz, (2) sound is received through the mandible skin, and (3) the midbrain sites are insensitive to low frequencies (below 6 kHz).

  18. The Auditory Brain-Stem Response to Complex Sounds: A Potential Biomarker for Guiding Treatment of Psychosis

    PubMed Central

    Tarasenko, Melissa A.; Swerdlow, Neal R.; Makeig, Scott; Braff, David L.; Light, Gregory A.

    2014-01-01

    Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker – the auditory brain-stem response (ABR) to complex sounds (cABR) – that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions. PMID:25352811

  19. Involvement of the human midbrain and thalamus in auditory deviance detection.

    PubMed

    Cacciaglia, Raffaele; Escera, Carles; Slabu, Lavinia; Grimm, Sabine; Sanjuán, Ana; Ventura-Campos, Noelia; Ávila, César

    2015-02-01

    Prompt detection of unexpected changes in the sensory environment is critical for survival. In the auditory domain, the occurrence of a rare stimulus triggers a cascade of neurophysiological events spanning over multiple time-scales. Besides the role of the mismatch negativity (MMN), whose cortical generators are located in supratemporal areas, cumulative evidence suggests that violations of auditory regularities can be detected earlier and lower in the auditory hierarchy. Recent human scalp recordings have shown signatures of auditory mismatch responses at shorter latencies than those of the MMN. Moreover, animal single-unit recordings have demonstrated that rare stimulus changes cause a release from stimulus-specific adaptation in neurons of the primary auditory cortex, the medial geniculate body (MGB), and the inferior colliculus (IC). Although these data suggest that change detection is a pervasive property of the auditory system which may reside upstream cortical sites, direct evidence for the involvement of subcortical stages in the human auditory novelty system is lacking. Using event-related functional magnetic resonance imaging during a frequency oddball paradigm, we here report that auditory deviance detection occurs in the MGB and the IC of healthy human participants. By implementing a random condition controlling for neural refractoriness effects, we show that auditory change detection in these subcortical stations involves the encoding of statistical regularities from the acoustic input. These results provide the first direct evidence of the existence of multiple mismatch detectors nested at different levels along the human ascending auditory pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. I can see what you are saying: Auditory labels reduce visual search times.

    PubMed

    Cho, Kit W

    2016-10-01

    The present study explored the self-directed-speech effect, the finding that relative to silent reading of a label (e.g., DOG), saying it aloud reduces visual search reaction times (RTs) for locating a target picture among distractors. Experiment 1 examined whether this effect is due to a confound in the differences in the number of cues in self-directed speech (two) vs. silent reading (one) and tested whether self-articulation is required for the effect. The results showed that self-articulation is not required and that merely hearing the auditory label reduces visual search RTs relative to silent reading. This finding also rules out the number of cues confound. Experiment 2 examined whether hearing an auditory label activates more prototypical features of the label's referent and whether the auditory-label benefit is moderated by the target's imagery concordance (the degree to which the target picture matches the mental picture that is activated by a written label for the target). When the target imagery concordance was high, RTs following the presentation of a high prototypicality picture or auditory cue were comparable and shorter than RTs following a visual label or low prototypicality picture cue. However, when the target imagery concordance was low, RTs following an auditory cue were shorter than the comparable RTs following the picture cues and visual-label cue. The results suggest that an auditory label activates both prototypical and atypical features of a concept and can facilitate visual search RTs even when compared to picture primes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Three subdivisions of the auditory midbrain in chicks (Gallus gallus) identified by their afferent and commissural projections

    PubMed Central

    Wang, Yuan; Karten, Harvey J.

    2010-01-01

    The auditory midbrain is a site of convergence of multiple auditory channels from the brainstem. In birds, two separate ascending channels have been identified, through which time and intensity information is sent to nucleus mesencephalicus lateralis, pars dorsalis (MLd), the homologue of the central nucleus of mammalian inferior colliculus. Using in vivo anterograde and retrograde tracing techniques, the current study provides two lines of anatomical evidence supporting the presence of a third ascending channel to the chick MLd. First, three non-overlapping zones of MLd receive inputs from three distinct cell groups in the caudodorsal brainstem. The projections from nucleus angularis (NA) and nucleus laminaris (NL) are predominately contralateral and may correspond to the time and intensity channels. A rostromedial portion of MLd receives bilateral projections mainly from the Regio Intermedius, an interposed region of cells lying at a caudal level between NL and NA, as well as scattered neurons embedded in 8th nerve tract, and probably a very ventral region of NA. Second, the bilateral zones of MLd on two sides of the brain are reciprocally connected and do not interact with other zones of MLd via commissural connections. In contrast, the NL-recipient zone projects contralaterally upon the NA-recipient zone. The structural separation of the third pathway from the NA and NL projections suggests a third information-processing channel, in parallel with the time and intensity channels. Neurons in the third channel appear to process very low frequency information including infrasound, probably utilizing different mechanisms than that underlying higher frequency processing. PMID:20148439

  2. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience

    PubMed Central

    Hanson, Jessica L.; Hurley, Laura M.

    2014-01-01

    In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity. PMID:24198252

  3. Response Properties of Neighboring Neurons in the Auditory Midbrain for Pure-Tone Stimulation: A Tetrode Study

    PubMed Central

    Seshagiri, Chandran V.; Delgutte, Bertrand

    2007-01-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives. PMID:17671101

  4. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    PubMed

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  5. Theoretical Tinnitus Framework: A Neurofunctional Model.

    PubMed

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general personality biases toward evaluative conditioning combined with a cognitive-emotional negative appraisal of stimuli such as the case of people with present hypochondria. We acknowledge that the projected Neurofunctional Tinnitus Model does not cover all tinnitus variations and patients. To support our model, we present evidence from several studies using neuroimaging, electrophysiology, brain lesion, and behavioral techniques.

  6. Theoretical Tinnitus Framework: A Neurofunctional Model

    PubMed Central

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be associated with aversive stimuli similar to abnormal neural activity in generating the phantom sound. Cognitive and emotional reactions depend on general personality biases toward evaluative conditioning combined with a cognitive-emotional negative appraisal of stimuli such as the case of people with present hypochondria. We acknowledge that the projected Neurofunctional Tinnitus Model does not cover all tinnitus variations and patients. To support our model, we present evidence from several studies using neuroimaging, electrophysiology, brain lesion, and behavioral techniques. PMID:27594822

  7. Correspondence between evoked vocal responses and auditory thresholds in Pleurodema thaul (Amphibia; Leptodactylidae).

    PubMed

    Penna, Mario; Velásquez, Nelson; Solís, Rigoberto

    2008-04-01

    Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31-52 dB RMS SPL), measured at the subjects' position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18-39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41-51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7-2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39-47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.

  8. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    PubMed Central

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  9. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus

    PubMed Central

    Ito, Tetsufumi; Oliver, Douglas L.

    2012-01-01

    The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671

  10. Estradiol-dependent Modulation of Serotonergic Markers in Auditory Areas of a Seasonally Breeding Songbird

    PubMed Central

    Matragrano, Lisa L.; Sanford, Sara E.; Salvante, Katrina G.; Beaulieu, Michaël; Sockman, Keith W.; Maney, Donna L.

    2011-01-01

    Because no organism lives in an unchanging environment, sensory processes must remain plastic so that in any context, they emphasize the most relevant signals. As the behavioral relevance of sociosexual signals changes along with reproductive state, the perception of those signals is altered by reproductive hormones such as estradiol (E2). We showed previously that in white-throated sparrows, immediate early gene responses in the auditory pathway of females are selective for conspecific male song only when plasma E2 is elevated to breeding-typical levels. In this study, we looked for evidence that E2-dependent modulation of auditory responses is mediated by serotonergic systems. In female nonbreeding white-throated sparrows treated with E2, the density of fibers immunoreactive for serotonin transporter innervating the auditory midbrain and rostral auditory forebrain increased compared with controls. E2 treatment also increased the concentration of the serotonin metabolite 5-HIAA in the caudomedial mesopallium of the auditory forebrain. In a second experiment, females exposed to 30 min of conspecific male song had higher levels of 5-HIAA in the caudomedial nidopallium of the auditory forebrain than birds not exposed to song. Overall, we show that in this seasonal breeder, (1) serotonergic fibers innervate auditory areas; (2) the density of those fibers is higher in females with breeding-typical levels of E2 than in nonbreeding, untreated females; and (3) serotonin is released in the auditory forebrain within minutes in response to conspecific vocalizations. Our results are consistent with the hypothesis that E2 acts via serotonin systems to alter auditory processing. PMID:21942431

  11. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.

    PubMed

    Brown, Andrew D; Tollin, Daniel J

    2016-09-21

    In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.

  12. Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring.

    PubMed

    Nordeen, E J; Holtzman, D A; Nordeen, K W

    2009-08-01

    During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor's song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos, we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing: the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray, a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor again being more effective than a novel conspecific. As several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor's song could help to establish sensory representations that later guide motor sequence learning.

  13. Constructing Noise-Invariant Representations of Sound in the Auditory Pathway

    PubMed Central

    Rabinowitz, Neil C.; Willmore, Ben D. B.; King, Andrew J.; Schnupp, Jan W. H.

    2013-01-01

    Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain. PMID:24265596

  14. Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.

    PubMed

    Thakur, L; Anand, J P; Banerjee, P K

    2004-10-01

    The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.

  15. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant

    PubMed Central

    Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.

    2016-01-01

    Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants. PMID:27147659

  16. Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat

    PubMed Central

    2018-01-01

    Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat’s inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal’s instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task. PMID:29633711

  17. Human inferior colliculus activity relates to individual differences in spoken language learning.

    PubMed

    Chandrasekaran, Bharath; Kraus, Nina; Wong, Patrick C M

    2012-03-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural "sharpening" models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models.

  18. Intralaminar stimulation of the inferior colliculus facilitates frequency-specific activation in the auditory cortex

    NASA Astrophysics Data System (ADS)

    Allitt, B. J.; Benjaminsen, C.; Morgan, S. J.; Paolini, A. G.

    2013-08-01

    Objective. Auditory midbrain implants (AMI) provide inadequate frequency discrimination for open set speech perception. AMIs that can take advantage of the tonotopic laminar of the midbrain may be able to better deliver frequency specific perception and lead to enhanced performance. Stimulation strategies that best elicit frequency specific activity need to be identified. This research examined the characteristic frequency (CF) relationship between regions of the auditory cortex (AC), in response to stimulated regions of the inferior colliculus (IC), comparing monopolar, and intralaminar bipolar electrical stimulation. Approach. Electrical stimulation using multi-channel micro-electrode arrays in the IC was used to elicit AC responses in anaesthetized male hooded Wistar rats. The rate of activity in AC regions with CFs within 3 kHz (CF-aligned) and unaligned CFs was used to assess the frequency specificity of responses. Main results. Both monopolar and bipolar IC stimulation led to CF-aligned neural activity in the AC. Altering the distance between the stimulation and reference electrodes in the IC led to changes in both threshold and dynamic range, with bipolar stimulation with 400 µm spacing evoking the lowest AC threshold and widest dynamic range. At saturation, bipolar stimulation elicited a significantly higher mean spike count in the AC at CF-aligned areas than at CF-unaligned areas when electrode spacing was 400 µm or less. Bipolar stimulation using electrode spacing of 400 µm or less also elicited a higher rate of elicited activity in the AC in both CF-aligned and CF-unaligned regions than monopolar stimulation. When electrodes were spaced 600 µm apart no benefit over monopolar stimulation was observed. Furthermore, monopolar stimulation of the external cortex of the IC resulted in more localized frequency responses than bipolar stimulation when stimulation and reference sites were 200 µm apart. Significance. These findings have implications for the future development of AMI, as a bipolar stimulation strategy may improve the ability of implant users to discriminate between frequencies.

  19. Compensatory Effort Parallels Midbrain Deactivation during Mental Fatigue: An fMRI Study

    PubMed Central

    Nakagawa, Seishu; Sugiura, Motoaki; Akitsuki, Yuko; Hosseini, S. M. Hadi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Yokoyama, Ryoichi; Takeuchi, Hikaru; Kawashima, Ryuta

    2013-01-01

    Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Pre[PreE– PostE]) may reflect suppression of the negative feedback system that normally triggers recuperative rest to maintain homeostasis. PMID:23457592

  20. What the Toadfish Ear Tells the Toadfish Brain About Sound.

    PubMed

    Edds-Walton, Peggy L

    2016-01-01

    Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.

  1. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  2. Monoaminergic integration of diet and social signals in the brains of juvenile spadefoot toads.

    PubMed

    Burmeister, Sabrina S; Rodriguez Moncalvo, Verónica G; Pfennig, Karin S

    2017-09-01

    Social behavior often includes the production of species-specific signals (e.g. mating calls or visual displays) that evoke context-dependent behavioral responses from conspecifics. Monoamines are important neuromodulators that have been implicated in context-dependent social behavior, yet we know little about the development of monoaminergic systems and whether they mediate the effects of early life experiences on adult behavior. We examined the effects of diet and social signals on monoamines early in development in the plains spadefoot toad ( Spea bombifrons ), a species in which diet affects the developmental emergence of species recognition and body condition affects the expression of adult mating preferences. To do so, we manipulated the diet of juveniles for 6 weeks following metamorphosis and collected their brains 40 min following the presentation of either a conspecific or a heterospecific call. We measured levels of monoamines and their metabolites using high pressure liquid chromatography from tissue punches of the auditory midbrain (i.e. torus semicircularis), hypothalamus and preoptic area. We found that call type affected dopamine and noradrenaline signaling in the auditory midbrain and that diet affected dopamine and serotonin in the hypothalamus. In the preoptic area, we detected an interaction between diet and call type, indicating that diet modulates how the preoptic area integrates social information. Our results suggest that the responsiveness of monoamine systems varies across the brain and highlight preoptic dopamine and noradrenaline as candidates for mediating effects of early diet experience on later expression of social preferences. © 2017. Published by The Company of Biologists Ltd.

  3. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  4. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation

    PubMed Central

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J.; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M.; Lenarz, Thomas; Lim, Hubert H.

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763

  5. A Description of a Prototype System at NTID which Merges Computer Assisted Instruction and Instructional Television.

    ERIC Educational Resources Information Center

    vonFeldt, James R.

    The development of a prototype system is described which merges the strengths of computer assisted instruction, data gathering, interactive learning, individualized instruction, and the motion in color, and audio features of television. Creation of the prototype system will allow testing of both TV and interactive CAI/TV strategies in auditory and…

  6. Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies.

    PubMed

    Zhang, Jinsheng

    2013-01-01

    Brain stimulation is an important method used to modulate neural activity and suppress tinnitus. Several auditory and non-auditory brain regions have been targeted for stimulation. This paper reviews recent progress on auditory cortex (AC) stimulation to suppress tinnitus and its underlying neural mechanisms and stimulation strategies. At the same time, the author provides his opinions and hypotheses on both animal and human models. The author also proposes a medial geniculate body (MGB)-thalamic reticular nucleus (TRN)-Gating mechanism to reflect tinnitus-related neural information coming from upstream and downstream projection structures. The upstream structures include the lower auditory brainstem and midbrain structures. The downstream structures include the AC and certain limbic centers. Both upstream and downstream information is involved in a dynamic gating mechanism in the MGB together with the TRN. When abnormal gating occurs at the thalamic level, the spilled-out information interacts with the AC to generate tinnitus. The tinnitus signals at the MGB-TRN-Gating may be modulated by different forms of stimulations including brain stimulation. Each stimulation acts as a gain modulator to control the level of tinnitus signals at the MGB-TRN-Gate. This hypothesis may explain why different types of stimulation can induce tinnitus suppression. Depending on the tinnitus etiology, MGB-TRN-Gating may be different in levels and dynamics, which cause variability in tinnitus suppression induced by different gain controllers. This may explain why the induced suppression of tinnitus by one type of stimulation varies across individual patients. Copyright © 2012. Published by Elsevier B.V.

  7. [Perception and selectivity of sound duration in the central auditory midbrain].

    PubMed

    Wang, Xin; Li, An-An; Wu, Fei-Jian

    2010-08-25

    Sound duration plays important role in acoustic communication. Information of acoustic signal is mainly encoded in the amplitude and frequency spectrum of different durations. Duration selective neurons exist in the central auditory system including inferior colliculus (IC) of frog, bat, mouse and chinchilla, etc., and they are important in signal recognition and feature detection. Two generally accepted models, which are "coincidence detector model" and "anti-coincidence detector model", have been raised to explain the mechanism of neural selective responses to sound durations based on the study of IC neurons in bats. Although they are different in details, they both emphasize the importance of synaptic integration of excitatory and inhibitory inputs, and are able to explain the responses of most duration-selective neurons. However, both of the hypotheses need to be improved since other sound parameters, such as spectral pattern, amplitude and repetition rate, could affect the duration selectivity of the neurons. The dynamic changes of sound parameters are believed to enable the animal to effectively perform recognition of behavior related acoustic signals. Under free field sound stimulation, we analyzed the neural responses in the IC and auditory cortex of mouse and bat to sounds with different duration, frequency and amplitude, using intracellular or extracellular recording techniques. Based on our work and previous studies, this article reviews the properties of duration selectivity in central auditory system and discusses the mechanisms of duration selectivity and the effect of other sound parameters on the duration coding of auditory neurons.

  8. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  9. Human inferior colliculus activity relates to individual differences in spoken language learning

    PubMed Central

    Chandrasekaran, Bharath; Kraus, Nina

    2012-01-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural “sharpening” models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models. PMID:22131377

  10. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-09-01

    The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Acoustic trauma triggers upregulation of serotonin receptor genes

    PubMed Central

    Smith, Adam R.; Kwon, Jae Hyun; Navarro, Marco; Hurley, Laura M.

    2014-01-01

    Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 hours. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes.. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes. PMID:24997228

  12. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm.

    PubMed

    Nozaradan, Sylvie; Schönwiesner, Marc; Keller, Peter E; Lenc, Tomas; Lehmann, Alexandre

    2018-02-01

    The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older lower-level properties of brainstem auditory neurons, as suggested by recent recordings from rodent midbrain. We addressed this question by taking advantage of a new method to simultaneously record human EEG activity originating from cortical and lower-level sources, in the form of slow (< 20 Hz) and fast (> 150 Hz) responses to auditory rhythms. Cortical responses showed increased amplitudes at meter-related frequencies compared to meter-unrelated frequencies, regardless of the prominence of the meter-related frequencies in the modulation spectrum of the rhythmic inputs. In contrast, frequency-following responses showed increased amplitudes at meter-related frequencies only in rhythms with prominent meter-related frequencies in the input but not for a more complex rhythm requiring more endogenous generation of the meter. This interaction with rhythm complexity suggests that the selective enhancement of meter-related frequencies does not fully rely on subcortical auditory properties, but is critically shaped at the cortical level, possibly through functional connections between the auditory cortex and other, movement-related, brain structures. This process of temporal selection would thus enable endogenous and motor entrainment to emerge with substantial flexibility and invariance with respect to the rhythmic input in humans in contrast with non-human animals. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine

    PubMed Central

    Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.

    2014-01-01

    Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742

  14. Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions

    PubMed Central

    Intskirveli, Irakli

    2017-01-01

    Abstract Nicotine enhances sensory and cognitive processing via actions at nicotinic acetylcholine receptors (nAChRs), yet the precise circuit- and systems-level mechanisms remain unclear. In sensory cortex, nicotinic modulation of receptive fields (RFs) provides a model to probe mechanisms by which nAChRs regulate cortical circuits. Here, we examine RF modulation in mouse primary auditory cortex (A1) using a novel electrophysiological approach: current-source density (CSD) analysis of responses to tone-in-notched-noise (TINN) acoustic stimuli. TINN stimuli consist of a tone at the characteristic frequency (CF) of the recording site embedded within a white noise stimulus filtered to create a spectral “notch” of variable width centered on CF. Systemic nicotine (2.1 mg/kg) enhanced responses to the CF tone and to narrow-notch stimuli, yet reduced the response to wider-notch stimuli, indicating increased response gain within a narrowed RF. Subsequent manipulations showed that modulation of cortical RFs by systemic nicotine reflected effects at several levels in the auditory pathway: nicotine suppressed responses in the auditory midbrain and thalamus, with suppression increasing with spectral distance from CF so that RFs became narrower, and facilitated responses in the thalamocortical pathway, while nicotinic actions within A1 further contributed to both suppression and facilitation. Thus, multiple effects of systemic nicotine integrate along the ascending auditory pathway. These actions at nAChRs in cortical and subcortical circuits, which mimic effects of auditory attention, likely contribute to nicotinic enhancement of sensory and cognitive processing. PMID:28660244

  15. Systemic Nicotine Increases Gain and Narrows Receptive Fields in A1 via Integrated Cortical and Subcortical Actions.

    PubMed

    Askew, Caitlin; Intskirveli, Irakli; Metherate, Raju

    2017-01-01

    Nicotine enhances sensory and cognitive processing via actions at nicotinic acetylcholine receptors (nAChRs), yet the precise circuit- and systems-level mechanisms remain unclear. In sensory cortex, nicotinic modulation of receptive fields (RFs) provides a model to probe mechanisms by which nAChRs regulate cortical circuits. Here, we examine RF modulation in mouse primary auditory cortex (A1) using a novel electrophysiological approach: current-source density (CSD) analysis of responses to tone-in-notched-noise (TINN) acoustic stimuli. TINN stimuli consist of a tone at the characteristic frequency (CF) of the recording site embedded within a white noise stimulus filtered to create a spectral "notch" of variable width centered on CF. Systemic nicotine (2.1 mg/kg) enhanced responses to the CF tone and to narrow-notch stimuli, yet reduced the response to wider-notch stimuli, indicating increased response gain within a narrowed RF. Subsequent manipulations showed that modulation of cortical RFs by systemic nicotine reflected effects at several levels in the auditory pathway: nicotine suppressed responses in the auditory midbrain and thalamus, with suppression increasing with spectral distance from CF so that RFs became narrower, and facilitated responses in the thalamocortical pathway, while nicotinic actions within A1 further contributed to both suppression and facilitation. Thus, multiple effects of systemic nicotine integrate along the ascending auditory pathway. These actions at nAChRs in cortical and subcortical circuits, which mimic effects of auditory attention, likely contribute to nicotinic enhancement of sensory and cognitive processing.

  16. Inter-subject synchronization of brain responses during natural music listening

    PubMed Central

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  17. Extrinsic Embryonic Sensory Stimulation Alters Multimodal Behavior and Cellular Activation

    PubMed Central

    Markham, Rebecca G.; Shimizu, Toru; Lickliter, Robert

    2009-01-01

    Embryonic vision is generated and maintained by spontaneous neuronal activation patterns, yet extrinsic stimulation also sculpts sensory development. Because the sensory and motor systems are interconnected in embryogenesis, how extrinsic sensory activation guides multimodal differentiation is an important topic. Further, it is unknown whether extrinsic stimulation experienced near sensory sensitivity onset contributes to persistent brain changes, ultimately affecting postnatal behavior. To determine the effects of extrinsic stimulation on multimodal development, we delivered auditory stimulation to bobwhite quail groups during early, middle, or late embryogenesis, and then tested postnatal behavioral responsiveness to auditory or visual cues. Auditory preference tendencies were more consistently toward the conspecific stimulus for animals stimulated during late embryogenesis. Groups stimulated during middle or late embryogenesis showed altered postnatal species-typical visual responsiveness, demonstrating a persistent multimodal effect. We also examined whether auditory-related brain regions are receptive to extrinsic input during middle embryogenesis by measuring postnatal cellular activation. Stimulated birds showed a greater number of ZENK-immunopositive cells per unit volume of brain tissue in deep optic tectum, a midbrain region strongly implicated in multimodal function. We observed similar results in the medial and caudomedial nidopallia in the telencephalon. There were no ZENK differences between groups in inferior colliculus or in caudolateral nidopallium, avian analog to prefrontal cortex. To our knowledge, these are the first results linking extrinsic stimulation delivered so early in embryogenesis to changes in postnatal multimodal behavior and cellular activation. The potential role of competitive interactions between the sensory and motor systems is discussed. PMID:18777564

  18. Testing resonating vector strength: Auditory system, electric fish, and noise

    NASA Astrophysics Data System (ADS)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  19. The Recognizability and Localizability of Auditory Alarms: Setting Global Medical Device Standards.

    PubMed

    Edworthy, Judy; Reid, Scott; McDougall, Siné; Edworthy, Jonathan; Hall, Stephanie; Bennett, Danielle; Khan, James; Pye, Ellen

    2017-11-01

    Objective Four sets of eight audible alarms matching the functions specified in IEC 60601-1-8 were designed using known principles from auditory cognition with the intention that they would be more recognizable and localizable than those currently specified in the standard. Background The audible alarms associated with IEC 60601-1-8, a global medical device standard, are known to be difficult to learn and retain, and there have been many calls to update them. There are known principles of design and cognition that might form the basis of more readily recognizable alarms. There is also scope for improvement in the localizability of the existing alarms. Method Four alternative sets of alarms matched to the functions specified in IEC 60601-1-8 were tested for recognizability and localizability and compared with the alarms currently specified in the standard. Results With a single exception, all prototype sets of alarms outperformed the current IEC set on both recognizability and localizability. Within the prototype sets, auditory icons were the most easily recognized, but the other sets, using word rhythms and simple acoustic metaphors, were also more easily recognized than the current alarms. With the exception of one set, all prototype sets were also easier to localize. Conclusion Known auditory cognition and perception principles were successfully applied to an existing audible alarm problem. Application This work constitutes the first (benchmarking) phase of replacing the alarms currently specified in the standard. The design principles used for each set demonstrate the relative ease with which different alarm types can be recognized and localized.

  20. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice.

    PubMed

    Keesom, Sarah M; Morningstar, Mitchell D; Sandlain, Rebecca; Wise, Bradley M; Hurley, Laura M

    2018-05-12

    Early-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system. However, the influence of isolation on serotonergic input to the auditory system remains underexplored. Here, we assess whether 4 weeks of post-weaning individual housing alters serotonergic fiber density in the inferior colliculus (IC), an auditory midbrain nucleus in which serotonin alters auditory-evoked activity. Individually housed male and female mice were compared to conspecifics housed socially in groups of three. Serotonergic projections were subsequently visualized with an antibody to the serotonin transporter, which labels serotonergic fibers with relatively high selectivity. Fiber densities were estimated in the three major subregions of the IC using line-scan intensity analysis. Individually housed female mice showed a significantly reduced fiber density relative to socially housed females, which was accompanied by a lower body weight in individually housed females. In contrast, social isolation did not affect serotonergic fiber density in the IC of males. This finding suggests that sensitivity of the serotonergic system to social isolation is sex-dependent, which could be due to a sex difference in the effect of isolation on psychosocial stress. Since serotonin availability depends on social context, this finding further suggests that social isolation can alter the acute social regulation of auditory processing. Copyright © 2018. Published by Elsevier B.V.

  1. Inter-subject synchronization of brain responses during natural music listening.

    PubMed

    Abrams, Daniel A; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J; Menon, Vinod

    2013-05-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum.

    PubMed

    Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan

    2018-02-15

    The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.

  3. Three-dimensional brain reconstruction of in vivo electrode tracks for neuroscience and neural prosthetic applications

    PubMed Central

    Markovitz, Craig D.; Tang, Tien T.; Edge, David P.; Lim, Hubert H.

    2012-01-01

    The brain is a densely interconnected network that relies on populations of neurons within and across multiple nuclei to code for features leading to perception and action. However, the neurophysiology field is still dominated by the characterization of individual neurons, rather than simultaneous recordings across multiple regions, without consistent spatial reconstruction of their locations for comparisons across studies. There are sophisticated histological and imaging techniques for performing brain reconstructions. However, what is needed is a method that is relatively easy and inexpensive to implement in a typical neurophysiology lab and provides consistent identification of electrode locations to make it widely used for pooling data across studies and research groups. This paper presents our initial development of such an approach for reconstructing electrode tracks and site locations within the guinea pig inferior colliculus (IC) to identify its functional organization for frequency coding relevant for a new auditory midbrain implant (AMI). Encouragingly, the spatial error associated with different individuals reconstructing electrode tracks for the same midbrain was less than 65 μm, corresponding to an error of ~1.5% relative to the entire IC structure (~4–5 mm diameter sphere). Furthermore, the reconstructed frequency laminae of the IC were consistently aligned across three sampled midbrains, demonstrating the ability to use our method to combine location data across animals. Hopefully, through further improvements in our reconstruction method, it can be used as a standard protocol across neurophysiology labs to characterize neural data not only within the IC but also within other brain regions to help bridge the gap between cellular activity and network function. Clinically, correlating function with location within and across multiple brain regions can guide optimal placement of electrodes for the growing field of neural prosthetics. PMID:22754502

  4. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.

    PubMed

    Heeringa, A N; van Dijk, P

    2014-06-01

    Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Neuronal adaptation, novelty detection and regularity encoding in audition

    PubMed Central

    Malmierca, Manuel S.; Sanchez-Vives, Maria V.; Escera, Carles; Bendixen, Alexandra

    2014-01-01

    The ability to detect unexpected stimuli in the acoustic environment and determine their behavioral relevance to plan an appropriate reaction is critical for survival. This perspective article brings together several viewpoints and discusses current advances in understanding the mechanisms the auditory system implements to extract relevant information from incoming inputs and to identify unexpected events. This extraordinary sensitivity relies on the capacity to codify acoustic regularities, and is based on encoding properties that are present as early as the auditory midbrain. We review state-of-the-art studies on the processing of stimulus changes using non-invasive methods to record the summed electrical potentials in humans, and those that examine single-neuron responses in animal models. Human data will be based on mismatch negativity (MMN) and enhanced middle latency responses (MLR). Animal data will be based on the activity of single neurons at the cortical and subcortical levels, relating selective responses to novel stimuli to the MMN and to stimulus-specific neural adaptation (SSA). Theoretical models of the neural mechanisms that could create SSA and novelty responses will also be discussed. PMID:25009474

  6. En1 directs superior olivary complex neuron positioning, survival, and expression of FoxP1.

    PubMed

    Altieri, Stefanie C; Jalabi, Walid; Zhao, Tianna; Romito-DiGiacomo, Rita R; Maricich, Stephen M

    2015-12-01

    Little is known about the genetic pathways and transcription factors that control development and maturation of central auditory neurons. En1, a gene expressed by a subset of developing and mature superior olivary complex (SOC) cells, encodes a homeodomain transcription factor important for neuronal development in the midbrain, cerebellum, hindbrain and spinal cord. Using genetic fate-mapping techniques, we show that all En1-lineal cells in the SOC are neurons and that these neurons are glycinergic, cholinergic and GABAergic in neurotransmitter phenotype. En1 deletion does not interfere with specification or neural fate of these cells, but does cause aberrant positioning and subsequent death of all En1-lineal SOC neurons by early postnatal ages. En1-null cells also fail to express the transcription factor FoxP1, suggesting that FoxP1 lies downstream of En1. Our data define important roles for En1 in the development and maturation of a diverse group of brainstem auditory neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Putting it in Context: Linking Auditory Processing with Social Behavior Circuits in the Vertebrate Brain.

    PubMed

    Petersen, Christopher L; Hurley, Laura M

    2017-10-01

    Context is critical to the adaptive value of communication. Sensory systems such as the auditory system represent an important juncture at which information on physiological state or social valence can be added to communicative information. However, the neural pathways that convey context to the auditory system are not well understood. The serotonergic system offers an excellent model to address these types of questions. Serotonin fluctuates in the mouse inferior colliculus (IC), an auditory midbrain region important for species-specific vocalizations, during specific social and non-social contexts. Furthermore, serotonin is an indicator of the valence of event-based changes within individual social interactions. We propose a model in which the brain's social behavior network serves as an afferent effector of the serotonergic dorsal raphe nucleus in order to gate contextual release of serotonin in the IC. Specifically, discrete vasopressinergic nuclei within the hypothalamus and extended amygdala that project to the dorsal raphe are functionally engaged during contexts in which serotonin fluctuates in the IC. Since serotonin strongly influences the responses of IC neurons to social vocalizations, this pathway could serve as a feedback loop whereby integrative social centers modulate their own sources of input. The end result of this feedback would be to produce a process that is geared, from sensory input to motor output, toward responding appropriately to a dynamic external world. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo

    PubMed Central

    Hirai, Yasuharu; Nishino, Eri

    2015-01-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  9. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo.

    PubMed

    Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori

    2015-06-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.

  10. Plasticity in the adult human auditory brainstem following short-term linguistic training

    PubMed Central

    Song, Judy H.; Skoe, Erika; Wong, Patrick C. M.; Kraus, Nina

    2009-01-01

    Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain, and can be elicited pre-attentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch-tracking were then derived from the FFR signals. We found increased accuracy in pitch-tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood, but they also demonstrate the specificity of this contribution (i.e., changes in encoding only occurs in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed. PMID:18370594

  11. Structural and functional abnormalities of the motor system in developmental stuttering

    PubMed Central

    Watkins, Kate E.; Smith, Stephen M.; Davis, Steve; Howell, Peter

    2007-01-01

    Summary Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl’s gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production. PMID:17928317

  12. Structural and functional abnormalities of the motor system in developmental stuttering.

    PubMed

    Watkins, Kate E; Smith, Stephen M; Davis, Steve; Howell, Peter

    2008-01-01

    Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl's gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily to disruption in the cortical and subcortical neural systems supporting the selection, initiation and execution of motor sequences necessary for fluent speech production.

  13. Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.

    PubMed

    Singheiser, Martin; Ferger, Roland; von Campenhausen, Mark; Wagner, Hermann

    2012-02-01

    During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Human Exploration of Enclosed Spaces through Echolocation.

    PubMed

    Flanagin, Virginia L; Schörnich, Sven; Schranner, Michael; Hummel, Nadine; Wallmeier, Ludwig; Wahlberg, Magnus; Stephan, Thomas; Wiegrebe, Lutz

    2017-02-08

    Some blind humans have developed echolocation, as a method of navigation in space. Echolocation is a truly active sense because subjects analyze echoes of dedicated, self-generated sounds to assess space around them. Using a special virtual space technique, we assess how humans perceive enclosed spaces through echolocation, thereby revealing the interplay between sensory and vocal-motor neural activity while humans perform this task. Sighted subjects were trained to detect small changes in virtual-room size analyzing real-time generated echoes of their vocalizations. Individual differences in performance were related to the type and number of vocalizations produced. We then asked subjects to estimate virtual-room size with either active or passive sounds while measuring their brain activity with fMRI. Subjects were better at estimating room size when actively vocalizing. This was reflected in the hemodynamic activity of vocal-motor cortices, even after individual motor and sensory components were removed. Activity in these areas also varied with perceived room size, although the vocal-motor output was unchanged. In addition, thalamic and auditory-midbrain activity was correlated with perceived room size; a likely result of top-down auditory pathways for human echolocation, comparable with those described in echolocating bats. Our data provide evidence that human echolocation is supported by active sensing, both behaviorally and in terms of brain activity. The neural sensory-motor coupling complements the fundamental acoustic motor-sensory coupling via the environment in echolocation. SIGNIFICANCE STATEMENT Passive listening is the predominant method for examining brain activity during echolocation, the auditory analysis of self-generated sounds. We show that sighted humans perform better when they actively vocalize than during passive listening. Correspondingly, vocal motor and cerebellar activity is greater during active echolocation than vocalization alone. Motor and subcortical auditory brain activity covaries with the auditory percept, although motor output is unchanged. Our results reveal behaviorally relevant neural sensory-motor coupling during echolocation. Copyright © 2017 the authors 0270-6474/17/371614-14$15.00/0.

  15. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    PubMed

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.

  16. Dynamic plasticity in coupled avian midbrain maps

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder Singh

    2004-12-01

    Internal mapping of the external environment is carried out using the receptive fields of topographic neurons in the brain, and in a normal barn owl the aural and visual subcortical maps are aligned from early experiences. However, instantaneous misalignment of the aural and visual stimuli has been observed to result in adaptive behavior, manifested by functional and anatomical changes of the auditory processing system. Using methods of information theory and statistical mechanics a model of the adaptive dynamics of the aural receptive field is presented and analyzed. The dynamics is determined by maximizing the mutual information between the neural output and the weighted sensory neural inputs, admixed with noise, subject to biophysical constraints. The reduced costs of neural rewiring, as in the case of young barn owls, reveal two qualitatively different types of receptive field adaptation depending on the magnitude of the audiovisual misalignment. By letting the misalignment increase with time, it is shown that the ability to adapt can be increased even when neural rewiring costs are high, in agreement with recent experimental reports of the increased plasticity of the auditory space map in adult barn owls due to incremental learning. Finally, a critical speed of misalignment is identified, demarcating the crossover from adaptive to nonadaptive behavior.

  17. Underwater hearing in the loggerhead turtle (Caretta caretta): a comparison of behavioral and auditory evoked potential audiograms.

    PubMed

    Martin, Kelly J; Alessi, Sarah C; Gaspard, Joseph C; Tucker, Anton D; Bauer, Gordon B; Mann, David A

    2012-09-01

    The purpose of this study was to compare underwater behavioral and auditory evoked potential (AEP) audiograms in a single captive adult loggerhead sea turtle (Caretta caretta). The behavioral audiogram was collected using a go/no-go response procedure and a modified staircase method of threshold determination. AEP thresholds were measured using subdermal electrodes placed beneath the frontoparietal scale, dorsal to the midbrain. Both methods showed the loggerhead sea turtle to have low frequency hearing with best sensitivity between 100 and 400 Hz. AEP testing yielded thresholds from 100 to 1131 Hz with best sensitivity at 200 and 400 Hz (110 dB re. 1 μPa). Behavioral testing using 2 s tonal stimuli yielded underwater thresholds from 50 to 800 Hz with best sensitivity at 100 Hz (98 dB re. 1 μPa). Behavioral thresholds averaged 8 dB lower than AEP thresholds from 100 to 400 Hz and 5 dB higher at 800 Hz. The results suggest that AEP testing can be a good alternative to measuring a behavioral audiogram with wild or untrained marine turtles and when time is a crucial factor.

  18. A lateralized functional auditory network is involved in anuran sexual selection.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-12-01

    Right ear advantage (REA) exists in many land vertebrates in which the right ear and left hemisphere preferentially process conspecific acoustic stimuli such as those related to sexual selection. Although ecological and neural mechanisms for sexual selection have been widely studied, the brain networks involved are still poorly understood. In this study we used multi-channel electroencephalographic data in combination with Granger causal connectivity analysis to demonstrate, for the first time, that auditory neural network interconnecting the left and right midbrain and forebrain function asymmetrically in the Emei music frog (Babina daunchina), an anuran species which exhibits REA. The results showed the network was lateralized. Ascending connections between the mesencephalon and telencephalon were stronger in the left side while descending ones were stronger in the right, which matched with the REA in this species and implied that inhibition from the forebrainmay induce REA partly. Connections from the telencephalon to ipsilateral mesencephalon in response to white noise were the highest in the non-reproductive stage while those to advertisement calls were the highest in reproductive stage, implying the attention resources and living strategy shift when entered the reproductive season. Finally, these connection changes were sexually dimorphic, revealing sex differences in reproductive roles.

  19. Acquired hearing loss and brain plasticity.

    PubMed

    Eggermont, Jos J

    2017-01-01

    Acquired hearing loss results in an imbalance of the cochlear output across frequency. Central auditory system homeostatic processes responding to this result in frequency specific gain changes consequent to the emerging imbalance between excitation and inhibition. Several consequences thereof are increased spontaneous firing rates, increased neural synchrony, and (in adults) potentially restricted to the auditory thalamus and cortex a reorganization of tonotopic areas. It does not seem to matter much whether the hearing loss is acquired neonatally or in adulthood. In humans, no clear evidence of tonotopic map changes with hearing loss has so far been provided, but frequency specific gain changes are well documented. Unilateral hearing loss in addition makes brain activity across hemispheres more symmetrical and more synchronous. Molecular studies indicate that in the brainstem, after 2-5 days post trauma, the glutamatergic activity is reduced, whereas glycinergic and GABAergic activity is largely unchanged. At 2 months post trauma, excitatory activity remains decreased but the inhibitory one is significantly increased. In contrast protein assays related to inhibitory transmission are all decreased or unchanged in the brainstem, midbrain and auditory cortex. Comparison of neurophysiological data with the molecular findings during a time-line of changes following noise trauma suggests that increases in spontaneous firing rates are related to decreases in inhibition, and not to increases in excitation. Because noise-induced hearing loss in cats resulted in a loss of cortical temporal processing capabilities, this may also underlie speech understanding in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.

    PubMed

    Recio-Spinoso, Alberto; Joris, Philip X

    2014-02-01

    Besides the rapid fluctuations in pressure that constitute the "fine structure" of a sound stimulus, slower fluctuations in the sound's envelope represent an important temporal feature. At various stages in the auditory system, neurons exhibit tuning to envelope frequency and have been described as modulation filters. We examine such tuning in the ventral nucleus of the lateral lemniscus (VNLL) of the pentobarbital-anesthetized cat. The VNLL is a large but poorly accessible auditory structure that provides a massive inhibitory input to the inferior colliculus. We test whether envelope filtering effectively applies to the envelope spectrum when multiple envelope components are simultaneously present. We find two broad classes of response with often complementary properties. The firing rate of onset neurons is tuned to a band of modulation frequencies, over which they also synchronize strongly to the envelope waveform. Although most sustained neurons show little firing rate dependence on modulation frequency, some of them are weakly tuned. The latter neurons are usually band-pass or low-pass tuned in synchronization, and a reverse-correlation approach demonstrates that their modulation tuning is preserved to nonperiodic, noisy envelope modulations of a tonal carrier. Modulation tuning to this type of stimulus is weaker for onset neurons. In response to broadband noise, sustained and onset neurons tend to filter out envelope components over a frequency range consistent with their modulation tuning to periodically modulated tones. The results support a role for VNLL in providing temporal reference signals to the auditory midbrain.

  1. Neuromelanin imaging and midbrain volumetry in progressive supranuclear palsy and Parkinson's disease.

    PubMed

    Taniguchi, Daisuke; Hatano, Taku; Kamagata, Koji; Okuzumi, Ayami; Oji, Yutaka; Mori, Akio; Hori, Masaaki; Aoki, Shigeki; Hattori, Nobutaka

    2018-05-14

    Background Nigral degeneration patterns differ between PSP and PD. However, the relationship between nigral degeneration and midbrain atrophy in PSP remains unclear. Objective We analyzed differences and relationships between nigral degeneration and midbrain atrophy in PSP and PD. Methods Neuromelanin-sensitive MRI and midbrain volumetry were performed in 11 PSP patients, 24 PD patients, and 10 controls to measure the neuromelanin-sensitive SNpc area and midbrain volume. Results The neuromelanin-sensitive SNpc area and midbrain volume were significantly smaller in PSP patients compared with PD patients and controls. Motor deficits were inversely correlated with neuromelanin-sensitive SNpc area in PD, but not PSP patients. There was no significant correlation between neuromelanin-sensitive SNpc area and midbrain volume in either disease group. Midbrain volumetry discriminated PSP from PD. Diagnostic accuracy was improved when neuromelanin-sensitive MRI analysis was added. Conclusions Neuromelanin-sensitive MRI and midbrain volumetry may reflect the clinical and pathological characteristics of PSP and PD. Combining neuromelanin-sensitive MRI and midbrain volumetry may be useful for differentiating PSP from PD. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  2. Neurotransmitter involvement in development and maintenance of the auditory space map in the guinea pig superior colliculus.

    PubMed

    Ingham, N J; Thornton, S K; McCrossan, D; Withington, D J

    1998-12-01

    Neurotransmitter involvement in development and maintenance of the auditory space map in the guinea pig superior colliculus. J. Neurophysiol. 80: 2941-2953, 1998. The mammalian superior colliculus (SC) is a complex area of the midbrain in terms of anatomy, physiology, and neurochemistry. The SC bears representations of the major sensory modalites integrated with a motor output system. It is implicated with saccade generation, in behavioral responses to novel sensory stimuli and receives innervation from diverse regions of the brain using many neurotransmitter classes. Ethylene-vinyl acetate copolymer (Elvax-40W polymer) was used here to deliver chronically neurotransmitter receptor antagonists to the SC of the guinea pig to investigate the potential role played by the major neurotransmitter systems in the collicular representation of auditory space. Slices of polymer containing different drugs were implanted onto the SC of guinea pigs before the development of the SC azimuthal auditory space map, at approximately 20 days after birth (DAB). A further group of animals was exposed to aminophosphonopentanoic acid (AP5) at approximately 250 DAB. Azimuthal spatial tuning properties of deep layer multiunits of anesthetized guinea pigs were examined approximately 20 days after implantation of the Elvax polymer. Broadband noise bursts were presented to the animals under anechoic, free-field conditions. Neuronal responses were used to construct polar plots representative of the auditory spatial multiunit receptive fields (MURFs). Animals exposed to control polymer could develop a map of auditory space in the SC comparable with that seen in unimplanted normal animals. Exposure of the SC of young animals to AP5, 6-cyano-7-nitroquinoxaline-2,3-dione, or atropine, resulted in a reduction in the proportion of spatially tuned responses with an increase in the proportion of broadly tuned responses and a degradation in topographic order. Thus N-methyl--aspartate (NMDA) and non-NMDA glutamate receptors and muscarinic acetylcholine receptors appear to play vital roles in the development of the SC auditory space map. A group of animals exposed to AP5 beginning at approximately 250 DAB produced results very similar to those obtained in the young group exposed to AP5. Thus NMDA glutamate receptors also seem to be involved in the maintenance of the SC representation of auditory space in the adult guinea pig. Exposure of the SC of young guinea pigs to gamma-aminobutyric acid (GABA) receptor blocking agents produced some but not total disruption of the spatial tuning of auditory MURFs. Receptive fields were large compared with controls, but a significant degree of topographical organization was maintained. GABA receptors may play a role in the development of fine tuning and sharpening of auditory spatial responses in the SC but not necessarily in the generation of topographical order of the these responses.

  3. Pathological Laughter as a Symptom of Midbrain Infarction

    PubMed Central

    Dabby, Ron; Watemberg, Nathan; Lampl, Yair; Eilam, Anda; Rapaport, Abraham; Sadeh, Menachem

    2004-01-01

    Pathological laughter is an uncommon symptom usually caused by bilateral, diffuse cerebral lesions. It has rarely been reported in association with isolated cerebral lesions. Midbrain involvement causing pathological laughter is extremely unusual. We describe three patients who developed pathological laughter after midbrain and pontine-midbrain infarction. In two patients a small infarction in the left paramedian midbrain was detected, whereas the third one sustained a massive bilateral pontine infarction extending to the midbrain. Laughter heralded stroke by one day in one patient and occurred as a delayed phenomenon three months after stroke in another. Pathological laughter ceased within a few days in two patients and was still present at a two year follow-up in the patient with delayed-onset laughter. Pathological laughter can herald midbrain infarction or follow stroke either shortly after onset of symptoms or as a delayed phenomenon. Furthermore, small unilateral midbrain infarctions can cause this rare complication. PMID:15706050

  4. Sonification Prototype for Space Physics

    NASA Astrophysics Data System (ADS)

    Candey, R. M.; Schertenleib, A. M.; Diaz Merced, W. L.

    2005-12-01

    As an alternative and adjunct to visual displays, auditory exploration of data via sonification (data controlled sound) and audification (audible playback of data samples) is promising for complex or rapidly/temporally changing visualizations, for data exploration of large datasets (particularly multi-dimensional datasets), and for exploring datasets in frequency rather than spatial dimensions (see also International Conferences on Auditory Display ). Besides improving data exploration and analysis for most researchers, the use of sound is especially valuable as an assistive technology for visually-impaired people and can make science and math more exciting for high school and college students. Only recently have the hardware and software come together to make a cross-platform open-source sonification tool feasible. We have developed a prototype sonification data analysis tool using the JavaSound API and NASA GSFC's ViSBARD software . Wanda Diaz Merced, a blind astrophysicist from Puerto Rico, is instrumental in advising on and testing the tool.

  5. Distribution of androgen receptor mRNA expression in vocal, auditory, and neuroendocrine circuits in a teleost fish.

    PubMed

    Forlano, Paul M; Marchaterre, Margaret; Deitcher, David L; Bass, Andrew H

    2010-02-15

    Across all major vertebrate groups, androgen receptors (ARs) have been identified in neural circuits that shape reproductive-related behaviors, including vocalization. The vocal control network of teleost fishes presents an archetypal example of how a vertebrate nervous system produces social, context-dependent sounds. We cloned a partial cDNA of AR that was used to generate specific probes to localize AR expression throughout the central nervous system of the vocal plainfin midshipman fish (Porichthys notatus). In the forebrain, AR mRNA is abundant in proposed homologs of the mammalian striatum and amygdala, and in anterior and posterior parvocellular and magnocellular nuclei of the preoptic area, nucleus preglomerulosus, and posterior, ventral and anterior tuberal nuclei of the hypothalamus. Many of these nuclei are part of the known vocal and auditory circuitry in midshipman. The midbrain periaqueductal gray, an essential link between forebrain and hindbrain vocal circuitry, and the lateral line recipient nucleus medialis in the rostral hindbrain also express abundant AR mRNA. In the caudal hindbrain-spinal vocal circuit, high AR mRNA is found in the vocal prepacemaker nucleus and along the dorsal periphery of the vocal motor nucleus congruent with the known pattern of expression of aromatase-containing glial cells. Additionally, abundant AR mRNA expression is shown for the first time in the inner ear of a vertebrate. The distribution of AR mRNA strongly supports the role of androgens as modulators of behaviorally defined vocal, auditory, and neuroendocrine circuits in teleost fish and vertebrates in general. 2009 Wiley-Liss, Inc.

  6. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    USDA-ARS?s Scientific Manuscript database

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  7. Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana).

    PubMed

    Horowitz, Seth S; Simmons, Andrea Megela

    2010-01-01

    In the bullfrog (Rana catesbeiana), the process of metamorphosis culminates in the appearance of new visual and visuomotor behaviors reflective of the emergence of binocular vision and visually-guided prey capture behaviors as the animal transitions to life on land. Using several different neuroanatomical tracers, we examined the substrates that may underlie these behavioral changes by tracing the afferent and efferent connectivity of the midbrain optic tectum across metamorphic development. Intratectal, tectotoral, tectotegmental, tectobulbar, and tecto-thalamic tracts exhibit similar trajectories of neurobiotin fiber label across the developmental span from early larval tadpoles to adults. Developmental variability was apparent primarily in intensity and distribution of cell and puncta label in target nuclei. Combined injections of cholera toxin subunit β and Phaseolus vulgaris leucoagglutinin consistently label cell bodies, puncta, or fiber segments bilaterally in midbrain targets including the pretectal gray, laminar nucleus of the torus semicircularis, and the nucleus of the medial longitudinal fasciculus. Developmentally stable label was observed bilaterally in medullary targets including the medial vestibular nucleus, lateral vestibular nucleus, and reticular gray, and in forebrain targets including the posterior and ventromedial nuclei of the thalamus. The nucleus isthmi, cerebellum, lateral line nuclei, medial septum, ventral striatum, and medial pallium show more developmentally variable patterns of connectivity. Our results suggest that even during larval development, the optic tectum contains substrates for integration of visual with auditory, vestibular, and somatosensory cues, as well as for guidance of motivated behaviors. Copyright © 2011 S. Karger AG, Basel.

  8. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem

    PubMed Central

    Wallace, Matthew M.; Harris, J. Aaron; Brubaker, Donald Q.; Klotz, Caitlyn A.; Gabriele, Mark L.

    2016-01-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. PMID:26906676

  9. Visual-auditory integration for visual search: a behavioral study in barn owls

    PubMed Central

    Hazan, Yael; Kra, Yonatan; Yarin, Inna; Wagner, Hermann; Gutfreund, Yoram

    2015-01-01

    Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls’ heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam’s video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target. PMID:25762905

  10. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.

    PubMed

    Wallace, Matthew M; Harris, J Aaron; Brubaker, Donald Q; Klotz, Caitlyn A; Gabriele, Mark L

    2016-05-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    NASA Astrophysics Data System (ADS)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.

  12. A heel-strike real-time auditory feedback device to promote motor learning in children who have cerebral palsy: a pilot study to test device accuracy and feasibility to use a music and dance-based learning paradigm.

    PubMed

    Pitale, Jaswandi Tushar; Bolte, John H

    2018-01-01

    Cerebral palsy (CP) is a developmental disorder of movement and posture that occurs due to damage to the developing nervous system. As part of therapy, wearable sensors that trigger interactive feedback may provide multi-sensory guidance and motivation. A prototype of a heel-strike real-time feedback system has been developed which records the number of heel strikes during gait and indicates successful heel contact through real-time auditory feedback. The first aim of this feasibility study was to test the prototype accuracy.Since the end user for this device is a child, the device should be esthetically appealing and sufficiently motivating for children to perform repetitive challenging therapeutic movements. The second aim of this study was to collect feedback from the subjects with regard to the device usability and understand if the bell sound used as feedback used was motivating enough for children to continue using the prototype. This would help us in developing the next generation of the device. The prototype was tested with typically developing children and children who have CP. The accuracy in detecting heel strikes was calculated. As part of the study, the subjects were also asked questions to test the device compliance and acceptability of the musical beats with the pediatric population. The device accuracy in identifying heel strikes is 97.44% (95% CI 96.31, 98.88%). The subjects did not show any hesitation to put on the device and the sound feedback motivated them to move. Based on this pilot study, a minimum age limit of 5 years is appropriate and the intervention study should be conducted for no more than 30 min per week. The pilot study showed that a main study can be conducted to test auditory feedback as an intervention to promote motor learning in children who have cerebral palsy. No adverse event or safety issues were reported in the feasibility study.

  13. The Effects of a Midbrain Glioma on Memory and Other Functions: A Longitudinal Single Case Study

    ERIC Educational Resources Information Center

    Weddell, Rodger A.

    2008-01-01

    Our understanding of the effects of midbrain damage on cognition is largely based on animal studies, though there have been occasional investigations of the effects of human midbrain lesions on cognition. This investigation of a rare case of a glioma initially confined to the dorsal midbrain explores the effects of disease progression on IQ,…

  14. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-04

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A molecular level prototype for mechanoelectrical transducer in mammalian hair cells

    PubMed Central

    Park, Jinkyoung

    2013-01-01

    The mechanoelectrical transducer (MET) is a crucial component of mammalian auditory system. The gating mechanism of the MET channel remains a puzzling issue, though there are many speculations, due to the lack of essential molecular building blocks. To understand the working principle of mammalian MET, we propose a molecular level prototype which constitutes a charged blocker, a realistic ion channel and its surrounding membrane. To validate the proposed prototype, we make use of a well-established ion channel theory, the Poisson-Nernst-Planck equations, for three-dimensional (3D) numerical simulations. A wide variety of model parameters, including bulk ion concentration, applied external voltage, blocker charge and blocker displacement, are explored to understand the basic function of the proposed MET prototype. We show that our prototype prediction of channel open probability in response to blocker relative displacement is in a remarkable accordance with experimental observation of rat cochlea outer hair cells. Our results appear to suggest that tip links which connect hair bundles gate MET channels. PMID:23625048

  16. Robustness of cortical and subcortical processing in the presence of natural masking sounds.

    PubMed

    Beetz, M Jerome; García-Rosales, Francisco; Kössl, Manfred; Hechavarría, Julio C

    2018-05-01

    Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.

  17. SoundView: an auditory guidance system based on environment understanding for the visually impaired people.

    PubMed

    Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-01-01

    Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.

  18. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    PubMed

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (p<0.05). However, the absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from 'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application. © 2013 Elsevier Inc. All rights reserved.

  19. [Effects of perinatal exposure to bisphenol A inducing dopaminergic neuronal cell to apoptosis happening in midbrain of male rat offspring].

    PubMed

    Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong

    2006-07-01

    To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.

  20. VMAT2-Mediated Neurotransmission from Midbrain Leptin Receptor Neurons in Feeding Regulation

    PubMed Central

    Lu, Yungang; Xu, Pingwen; Isingrini, Elsa; Xu, Yong

    2017-01-01

    Abstract Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unclear. Here, we showed that midbrain LepR neurons overlap with a subset of dopaminergic, GABAergic and glutamatergic neurons. Specific removal of vesicular monoamine transporter 2 (VMAT2) in midbrain LepR neurons (KO mice) disrupted DA accumulation in vesicles, but failed to cause a significant change in the evoked release of either glutamate or GABA to downstream neurons. While KO mice showed no differences on chow, they presented a reduced high-fat diet (HFD) intake and resisted to HFD-induced obesity. Specific activation of midbrain LepR neurons promoted VMAT2-dependent feeding on chow and HFD. When tested with an intermittent access to HFD where first 2.5-h HFD eating (binge-like) and 24-h HFD feeding were measured, KO mice exhibited more binge-like, but less 24-h HFD feeding. Interestingly, leptin inhibited 24-h HFD feeding in controls but not in KO mice. Thus, VMAT2-mediated neurotransmission from midbrain LepR neurons contributes to both binge-like eating and HFD feeding regulation. PMID:28560316

  1. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo.

    PubMed

    Prakash, Nilima; Brodski, Claude; Naserke, Thorsten; Puelles, Eduardo; Gogoi, Robindra; Hall, Anita; Panhuysen, Markus; Echevarria, Diego; Sussel, Lori; Weisenhorn, Daniela M Vogt; Martinez, Salvador; Arenas, Ernest; Simeone, Antonio; Wurst, Wolfgang

    2006-01-01

    Midbrain neurons synthesizing the neurotransmitter dopamine play a central role in the modulation of different brain functions and are associated with major neurological and psychiatric disorders. Despite the importance of these cells, the molecular mechanisms controlling their development are still poorly understood. The secreted glycoprotein Wnt1 is expressed in close vicinity to developing midbrain dopaminergic neurons. Here, we show that Wnt1 regulates the genetic network, including Otx2 and Nkx2-2, that is required for the establishment of the midbrain dopaminergic progenitor domain during embryonic development. In addition, Wnt1 is required for the terminal differentiation of midbrain dopaminergic neurons at later stages of embryogenesis. These results identify Wnt1 as a key molecule in the development of midbrain dopaminergic neurons in vivo. They also suggest the Wnt1-controlled signaling pathway as a promising target for new therapeutic strategies in the treatment of Parkinson's disease.

  2. Oxygen Tension Within the Neurogenic Niche Regulates Dopaminergic Neurogenesis in the Developing Midbrain

    PubMed Central

    Wagenführ, Lisa; Meyer, Anne Karen; Marrone, Lara

    2016-01-01

    Oxygen tension is an important factor controlling stem cell proliferation and maintenance in various stem cell populations with a particular relevance in midbrain dopaminergic progenitors. Further studies have shown that the oxygen-dependent transcription factor hypoxia-inducible factor 1α (HIF-1α) is involved in these processes. However, all available studies on oxygen effects in dopaminergic neuroprogenitors were performed in vitro and thus it remains unclear whether tissue oxygen tension in the embryonic midbrain is also relevant for the regulation of dopaminergic neurogenesis in vivo. We thus dissect here the effects of oxygen tension in combination with HIF-1α conditional knockout on dopaminergic neurogenesis by using a novel experimental design allowing for the control of oxygen tension within the microenvironment of the neurogenic niche of the murine fetal midbrain in vivo. The microenvironment of the midbrain dopaminergic neurogenic niche was detected as hypoxic with oxygen tensions below 1.1%. Maternal oxygen treatment of 10%, 21%, and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal midbrain oxygenation. Fetal midbrain hypoxia hampered the generation of dopaminergic neurons and is accompanied with restricted fetal midbrain development. In contrast, induced hyperoxia stimulated proliferation and differentiation of dopaminergic progenitors during early and late embryogenesis. Oxygen effects were not directly mediated through HIF-1α signaling. These data—in agreement with in vitro data—indicate that oxygen is a crucial regulator of developmental dopaminergic neurogenesis. Our study provides the initial framework for future studies on molecular mechanisms mediating oxygen regulation of dopaminergic neurogenesis within the fetal midbrain as its natural environment. PMID:26577812

  3. Structural and functional neural correlates of music perception.

    PubMed

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  4. Segregated fronto‐cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors

    PubMed Central

    Savage, Michael Anthony; McQuade, Richard

    2017-01-01

    Abstract The orchestration of orienting behaviors requires the interaction of many cortical and subcortical areas, for example the superior colliculus (SC), as well as prefrontal areas responsible for top–down control. Orienting involves different behaviors, such as approach and avoidance. In the rat, these behaviors are at least partially mapped onto different SC subdomains, the lateral (SCl) and medial (SCm), respectively. To delineate the circuitry involved in the two types of orienting behavior in mice, we injected retrograde tracer into the intermediate and deep layers of the SCm and SCl, and thereby determined the main input structures to these subdomains. Overall the SCm receives larger numbers of afferents compared to the SCl. The prefrontal cingulate area (Cg), visual, oculomotor, and auditory areas provide strong input to the SCm, while prefrontal motor area 2 (M2), and somatosensory areas provide strong input to the SCl. The prefrontal areas Cg and M2 in turn connect to different cortical and subcortical areas, as determined by anterograde tract tracing. Even though connectivity pattern often overlap, our labeling approaches identified segregated neural circuits involving SCm, Cg, secondary visual cortices, auditory areas, and the dysgranular retrospenial cortex likely to be involved in avoidance behaviors. Conversely, SCl, M2, somatosensory cortex, and the granular retrospenial cortex comprise a network likely involved in approach/appetitive behaviors. PMID:28177526

  5. Multichannel spatial auditory display for speech communications

    NASA Technical Reports Server (NTRS)

    Begault, D. R.; Erbe, T.; Wenzel, E. M. (Principal Investigator)

    1994-01-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degrees azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degrees azimuth positions.

  6. Multi-channel spatial auditory display for speech communications

    NASA Astrophysics Data System (ADS)

    Begault, Durand; Erbe, Tom

    1993-10-01

    A spatial auditory display for multiple speech communications was developed at NASA-Ames Research Center. Input is spatialized by use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four letter call signs used by launch personnel at NASA, against diotic speech babble. Spatial positions at 30 deg azimuth increments were evaluated. The results from eight subjects showed a maximal intelligibility improvement of about 6 to 7 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.

  7. Multichannel spatial auditory display for speech communications.

    PubMed

    Begault, D R; Erbe, T

    1994-10-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degrees azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degrees azimuth positions.

  8. Multichannel Spatial Auditory Display for Speed Communications

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Erbe, Tom

    1994-01-01

    A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplifiedhead-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four-letter call signs used by launch personnel at NASA against diotic speech babble. Spatial positions at 30 degree azimuth increments were evaluated. The results from eight subjects showed a maximum intelligibility improvement of about 6-7 dB when the signal was spatialized to 60 or 90 degree azimuth positions.

  9. Multi-channel spatial auditory display for speech communications

    NASA Technical Reports Server (NTRS)

    Begault, Durand; Erbe, Tom

    1993-01-01

    A spatial auditory display for multiple speech communications was developed at NASA-Ames Research Center. Input is spatialized by use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four letter call signs used by launch personnel at NASA, against diotic speech babble. Spatial positions at 30 deg azimuth increments were evaluated. The results from eight subjects showed a maximal intelligibility improvement of about 6 to 7 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.

  10. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.

    PubMed

    Paul, Brandon T; Bruce, Ian C; Roberts, Larry E

    2017-02-01

    Damage to auditory nerve fibers that expresses with suprathreshold sounds but is hidden from the audiogram has been proposed to underlie deficits in temporal coding ability observed among individuals with otherwise normal hearing, and to be present in individuals experiencing chronic tinnitus with clinically normal audiograms. We tested whether these individuals may have hidden synaptic losses on auditory nerve fibers with low spontaneous rates of firing (low-SR fibers) that are important for coding suprathreshold sounds in noise while high-SR fibers determining threshold responses in quiet remain relatively unaffected. Tinnitus and control subjects were required to detect the presence of amplitude modulation (AM) in a 5 kHz, suprathreshold tone (a frequency in the tinnitus frequency region of the tinnitus subjects, whose audiometric thresholds were normal to 12 kHz). The AM tone was embedded within background noise intended to degrade the contribution of high-SR fibers, such that AM coding was preferentially reliant on low-SR fibers. We also recorded by electroencephalography the "envelope following response" (EFR, generated in the auditory midbrain) to a 5 kHz, 85 Hz AM tone presented in the same background noise, and also in quiet (both low-SR and high-SR fibers contributing to AM coding in the latter condition). Control subjects with EFRs that were comparatively resistant to the addition of background noise had better AM detection thresholds than controls whose EFRs were more affected by noise. Simulated auditory nerve responses to our stimulus conditions using a well-established peripheral model suggested that low-SR fibers were better preserved in the former cases. Tinnitus subjects had worse AM detection thresholds and reduced EFRs overall compared to controls. Simulated auditory nerve responses found that in addition to severe low-SR fiber loss, a degree of high-SR fiber loss that would not be expected to affect audiometric thresholds was needed to explain the results in tinnitus subjects. The results indicate that hidden hearing loss could be sufficient to account for impaired temporal coding in individuals with normal audiograms as well as for cases of tinnitus without audiometric hearing loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone

    PubMed Central

    Radcliffe, Pheona M.; Sterling, Carol R.; Tank, A. William

    2009-01-01

    Repeated nicotine administration induces tyrosine hydroxylase (TH) mRNA in rat midbrain. In this study we investigate the mechanisms responsible for this response using two models of midbrain dopamine neurons, rat ventral midbrain slice explant cultures and mouse MN9D cells. In both models nicotine stimulates TH gene transcription rate in a dose-dependent manner. However, this stimulation is short-lived, lasting for 1 hr, but less than 3 hr, and is not sufficient to induce TH mRNA or TH protein. Nicotine elevates circulating glucocorticoids, which induce TH expression in some model systems. We tested the hypothesis that the effect of nicotine on midbrain TH mRNA is mediated by the glucocorticoid receptor. When rats are administered the glucocorticoid receptor antagonist mifepristone, the induction of TH mRNA by nicotine in both substantia nigra and ventral tegmentum is inhibited. Furthermore, the glucocorticoid receptor agonist dexamethasone stimulates TH gene transcription for sustained periods of time in both midbrain slices and MN9D cells, leading to induction of TH mRNA and TH protein. Our results are consistent with the hypothesis that nicotine induces TH mRNA in midbrain by elevating glucocorticoids, which then act on glucocorticoid receptors in dopamine neurons leading to transcriptional activation of the TH gene. PMID:19476543

  12. Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.

    PubMed

    Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra

    2017-08-01

    The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone. Copyright © 2017 the American Physiological Society.

  13. Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafish no isthmus/pax2.1 mutants.

    PubMed

    Scholpp, Steffen; Brand, Michael

    2003-11-01

    Initial anterior-posterior patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs already during gastrulation, in response to signals patterning the gastrula embryo. After the initial establishment, further development within each brain part is thought to proceed largely independently of the others. However, mechanisms should exist that ensure proper delineation of brain subdivisions also at later stages; such mechanisms are, however, poorly understood. In zebrafish no isthmus mutant embryos, inactivation of the pax2.1 gene leads to a failure of the midbrain and isthmus primordium to develop normally from the gastrula stage onward (Lun and Brand [1998] Development 125:3049-3062). Here, we report that, after the initially correct establishment during gastrulation stages, the neighbouring forebrain primordium and, partially, the hindbrain primordium expand into the misspecified midbrain territory in no isthmus mutant embryos. The expansion is particularly evident for the posterior part of the diencephalon and less so for the first rhombomeric segment, the territories immediately abutting the midbrain/isthmus primordium. The nucleus of the posterior commissure is expanded in size, and marker genes of the forebrain and rhombomere 1 expand progressively into the misspecified midbrain primordium, eventually resulting in respecification of the midbrain primordium. We therefore suggest that the genetic program controlled by Pax2.1 is not only involved in initiating but also in maintaining the identity of midbrain and isthmus cells to prevent them from assuming a forebrain or hindbrain fate. Copyright 2003 Wiley-Liss, Inc.

  14. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    ERIC Educational Resources Information Center

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  15. Specification of posterior midbrain region in zebrafish neuroepithelium.

    PubMed

    Miyagawa, T; Amanuma, H; Kuroiwa, A; Takeda, H

    1996-04-01

    The developing vertebrate nervous system displays a pronounced anterior-posterior (A-P) pattern, but the mechanism that generates this pattern is poorly understood. We examined through cell-transplantation experiments, when and how the cells in the zebrafish posterior midbrain acquire regional specificity along the A-P axis as shown by pax[b] gene expression. Labelled donor cells from the presumptive midbrain region at various stages were transplanted into more anterior part of unlabelled host embryos of the same developmental stage, and the expression of pax[b] in the donor cells were examined by in situ hybridization. The results indicated that, in the cells from the presumptive midbrain region, expression of pax[b] was determined as early as the 55%-epiboly (6.5 h, early gastrulation) when the underlying hypoblastic layer reached the presumptive midbrain region. We also found that when transplanted heterotopically, anterior, but not posterior, hypoblast cells induced expression of pax[b] in the overlying ectoderm. Expression of a midbrain specific gene is determined during early gastrulation and the hypoblastic layer plays an important role in this determination process.

  16. Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications.

    PubMed

    Newcombe, Virginia F J; Williams, Guy B; Scoffings, Daniel; Cross, Justin; Carpenter, T Adrian; Pickard, John D; Menon, David K

    2010-05-01

    An improved in vivo understanding of variations in neuropathology in the vegetative state (VS) may aid diagnosis, improve prognostication and help refine the selection of patients for particular treatment regimes. The authors have used diffusion tensor imaging (DTI) to characterise the extent and location of white matter loss in VS secondary to traumatic brain injury (TBI) and ischaemic-hypoxic injury. Twelve patients with VS (seven TBI, five ischaemic/hypoxic injuries) underwent MRI including DTI at a minimum of 3 months postinjury. Mean apparent diffusion coefficient, fractional anisotropy and eigenvalues were obtained for whole-brain grey and white matter, the pons, thalamus, ventral midbrain, dorsal midbrain and the corpus callosum. DTI measures of supratentorial damage were compared with a summed measure from the JFK modified Coma Recovery Scale (CRS-R) and with a three-point scale of functional magnetic resonance imaging (fMRI) response to an auditory paradigm to assess whether residual integrity of supratentorial white matter connectivity correlated with cortical processing. Conventional radiological approaches did not detect lesions in regions where quantitative DTI demonstrated abnormalities. There was evidence of marked, broadly similar, abnormalities in the supratentorial grey- and white-matter compartments from both aetiologies. In contrast, discordant findings were found in the infratentorial compartment, with DTI abnormalities in the brainstem confined to the TBI group. Supratentorial DTI abnormalities correlated with the CRS-R as well as responses to an fMRI paradigm that detected convert cognitive processing. DTI may help to characterise differences in patients in VS. These findings may have implications for response to therapies, and should be taken into account in trials of interventions aimed at arousal in VS.

  17. Midbrain-Driven Emotion and Reward Processing in Alcoholism

    PubMed Central

    Müller-Oehring, E M; Jung, Y-C; Sullivan, E V; Hawkes, W C; Pfefferbaum, A; Schulte, T

    2013-01-01

    Alcohol dependence is associated with impaired control over emotionally motivated actions, possibly associated with abnormalities in the frontoparietal executive control network and midbrain nodes of the reward network associated with automatic attention. To identify differences in the neural response to alcohol-related word stimuli, 26 chronic alcoholics (ALC) and 26 healthy controls (CTL) performed an alcohol-emotion Stroop Match-to-Sample task during functional MR imaging. Stroop contrasts were modeled for color-word incongruency (eg, word RED printed in green) and for alcohol (eg, BEER), positive (eg, HAPPY) and negative (eg, MAD) emotional word content relative to congruent word conditions (eg, word RED printed in red). During color-Stroop processing, ALC and CTL showed similar left dorsolateral prefrontal activation, and CTL, but not ALC, deactivated posterior cingulate cortex/cuneus. An interaction revealed a dissociation between alcohol-word and color-word Stroop processing: ALC activated midbrain and parahippocampal regions more than CTL when processing alcohol-word relative to color-word conditions. In ALC, the midbrain region was also invoked by negative emotional Stroop words thereby showing significant overlap of this midbrain activation for alcohol-related and negative emotional processing. Enhanced midbrain activation to alcohol-related words suggests neuroadaptation of dopaminergic midbrain systems. We speculate that such tuning is normally associated with behavioral conditioning to optimize responses but here contributed to automatic bias to alcohol-related stimuli. PMID:23615665

  18. Midbrain-driven emotion and reward processing in alcoholism.

    PubMed

    Müller-Oehring, E M; Jung, Y-C; Sullivan, E V; Hawkes, W C; Pfefferbaum, A; Schulte, T

    2013-09-01

    Alcohol dependence is associated with impaired control over emotionally motivated actions, possibly associated with abnormalities in the frontoparietal executive control network and midbrain nodes of the reward network associated with automatic attention. To identify differences in the neural response to alcohol-related word stimuli, 26 chronic alcoholics (ALC) and 26 healthy controls (CTL) performed an alcohol-emotion Stroop Match-to-Sample task during functional MR imaging. Stroop contrasts were modeled for color-word incongruency (eg, word RED printed in green) and for alcohol (eg, BEER), positive (eg, HAPPY) and negative (eg, MAD) emotional word content relative to congruent word conditions (eg, word RED printed in red). During color-Stroop processing, ALC and CTL showed similar left dorsolateral prefrontal activation, and CTL, but not ALC, deactivated posterior cingulate cortex/cuneus. An interaction revealed a dissociation between alcohol-word and color-word Stroop processing: ALC activated midbrain and parahippocampal regions more than CTL when processing alcohol-word relative to color-word conditions. In ALC, the midbrain region was also invoked by negative emotional Stroop words thereby showing significant overlap of this midbrain activation for alcohol-related and negative emotional processing. Enhanced midbrain activation to alcohol-related words suggests neuroadaptation of dopaminergic midbrain systems. We speculate that such tuning is normally associated with behavioral conditioning to optimize responses but here contributed to automatic bias to alcohol-related stimuli.

  19. Activation of Midbrain Structures by Associative Novelty and the Formation of Explicit Memory in Humans

    ERIC Educational Resources Information Center

    Schott, Bjorn H.; Sellner, Daniela B.; Lauer, Corinna-J.; Habib, Reza; Frey, Julietta U.; Guderian, Sebastian; Heinze, Hans-Jochen; Duzel, Emrah

    2004-01-01

    Recent evidence suggests a close functional relationship between memory formation in the hippocampus and dopaminergic neuromodulation originating in the ventral tegmental area and medial substantia nigra of the midbrain. Here we report midbrain activation in two functional MRI studies of visual memory in healthy young adults. In the first study,…

  20. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    ERIC Educational Resources Information Center

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  1. Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users.

    PubMed

    Morales, A M; Kohno, M; Robertson, C L; Dean, A C; Mandelkern, M A; London, E D

    2015-06-01

    Dysfunction of the mesocorticolimbic system has a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, P<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum and thalamus (P<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance-use disorders.

  2. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    PubMed

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  3. Gray-Matter Volume, Midbrain Dopamine D2/D3 Receptors and Drug Craving in Methamphetamine Users

    PubMed Central

    Morales, Angelica A.; Kohno, Milky; Robertson, Chelsea L.; Dean, Andy C.; Mandelkern, Mark A.; London, Edythe D.

    2015-01-01

    Dysfunction of the mesocorticolimbic system plays a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [18F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, p<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum, and thalamus (p<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance use disorders. PMID:25896164

  4. Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain

    PubMed Central

    Purves-Tyson, T D; Owens, S J; Rothmond, D A; Halliday, G M; Double, K L; Stevens, J; McCrossin, T; Shannon Weickert, C

    2017-01-01

    The dopamine hypothesis of schizophrenia posits that increased subcortical dopamine underpins psychosis. In vivo imaging studies indicate an increased presynaptic dopamine synthesis capacity in striatal terminals and cell bodies in the midbrain in schizophrenia; however, measures of the dopamine-synthesising enzyme, tyrosine hydroxylase (TH), have not identified consistent changes. We hypothesise that dopamine dysregulation in schizophrenia could result from changes in expression of dopamine synthesis enzymes, receptors, transporters or catabolic enzymes. Gene expression of 12 dopamine-related molecules was examined in post-mortem midbrain (28 antipsychotic-treated schizophrenia cases/29 controls) using quantitative PCR. TH and the synaptic dopamine transporter (DAT) proteins were examined in post-mortem midbrain (26 antipsychotic-treated schizophrenia cases per 27 controls) using immunoblotting. TH and aromatic acid decarboxylase (AADC) mRNA and TH protein were unchanged in the midbrain in schizophrenia compared with controls. Dopamine receptor D2 short, vesicular monoamine transporter (VMAT2) and DAT mRNAs were significantly decreased in schizophrenia, with no change in DRD3 mRNA, DRD3nf mRNA and DAT protein between diagnostic groups. However, DAT protein was significantly increased in putatively treatment-resistant cases of schizophrenia compared to putatively treatment-responsive cases. Midbrain monoamine oxidase A (MAOA) mRNA was increased, whereas MAOB and catechol-O-methyl transferase mRNAs were unchanged in schizophrenia. We conclude that, whereas some mRNA changes are consistent with increased dopamine action (decreased DAT mRNA), others suggest reduced dopamine action (increased MAOA mRNA) in the midbrain in schizophrenia. Here, we identify a molecular signature of dopamine dysregulation in the midbrain in schizophrenia that mainly includes gene expression changes of molecules involved in dopamine synthesis and in regulating the time course of dopamine action. PMID:28094812

  5. The sonar aperture and its neural representation in bats.

    PubMed

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  6. Auditory Localization Performance with Asymmetric Integrated Eye and Ear Protection

    DTIC Science & Technology

    2018-03-01

    prototypes. The AIEEP is a tactical communications and protection system (TCAPS) that also provides eye protection. Participants used a laser pointer...difference cues ......... 3 Fig. 3 Loudspeaker configuration in the dome room: Method 2 testing incorporates 36 loudspeakers spaced at even intervals of 10...attenuation capabilities and electronic limiters that suppress transmission of impulsive and high -level steady-state noise. In addition, the manufacturer

  7. Identification and characterisation of midbrain nuclei using optimised functional magnetic resonance imaging

    PubMed Central

    Limbrick-Oldfield, Eve H.; Brooks, Jonathan C.W.; Wise, Richard J.S.; Padormo, Francesco; Hajnal, Jo V.; Beckmann, Christian F.; Ungless, Mark A.

    2012-01-01

    Localising activity in the human midbrain with conventional functional MRI (fMRI) is challenging because the midbrain nuclei are small and located in an area that is prone to physiological artefacts. Here we present a replicable and automated method to improve the detection and localisation of midbrain fMRI signals. We designed a visual fMRI task that was predicted would activate the superior colliculi (SC) bilaterally. A limited number of coronal slices were scanned, orientated along the long axis of the brainstem, whilst simultaneously recording cardiac and respiratory traces. A novel anatomical registration pathway was used to optimise the localisation of the small midbrain nuclei in stereotactic space. Two additional structural scans were used to improve registration between functional and structural T1-weighted images: an echo-planar image (EPI) that matched the functional data but had whole-brain coverage, and a whole-brain T2-weighted image. This pathway was compared to conventional registration pathways, and was shown to significantly improve midbrain registration. To reduce the physiological artefacts in the functional data, we estimated and removed structured noise using a modified version of a previously described physiological noise model (PNM). Whereas a conventional analysis revealed only unilateral SC activity, the PNM analysis revealed the predicted bilateral activity. We demonstrate that these methods improve the measurement of a biologically plausible fMRI signal. Moreover they could be used to investigate the function of other midbrain nuclei. PMID:21867762

  8. The representation of sound localization cues in the barn owl's inferior colliculus

    PubMed Central

    Singheiser, Martin; Gutfreund, Yoram; Wagner, Hermann

    2012-01-01

    The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation. PMID:22798945

  9. Influence of Oxygen Tension on Dopaminergic Differentiation of Human Fetal Stem Cells of Midbrain and Forebrain Origin

    PubMed Central

    Krabbe, Christina; Bak, Sara Thornby; Jensen, Pia; von Linstow, Christian; Martínez Serrano, Alberto; Hansen, Claus; Meyer, Morten

    2014-01-01

    Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1±0.5 and 17.1±0.4 (P<0.001); forebrain: 1.9±0.4 and 3.9±0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs. PMID:24788190

  10. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease.

    PubMed

    Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza

    2014-10-01

    Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Auditory Modeling for Noisy Speech Recognition.

    DTIC Science & Technology

    2000-01-01

    multiple platforms including PCs, workstations, and DSPs. A prototype version of the SOS process was tested on the Japanese Hiragana language with good...judgment among linguists. American English has 48 phonetic sounds in the ARPABET representation. Hiragana , the Japanese phonetic language, has only 20... Japanese Hiragana ," H.L. Pfister, FL 95, 1995. "State Recognition for Noisy Dynamic Systems," H.L. Pfister, Tech 2005, Chicago, 1995. "Experiences

  12. The value of midbrain morphology in predicting prognosis in chronic disorders of consciousness: A preliminary ultrasound study.

    PubMed

    Chillura, Antonino; Naro, Antonino; Micchia, Katia; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-09-15

    Transcranial sonography (TCS) of the brainstem is currently used to support the clinical diagnosis of movement disorders. The aim of the study was to assess the usefulness of midbrain TCS in assessing outcome in patients with Chronic Disorders of Consciousness (DOC). Eleven patients with Minimally Conscious State (MCS) and Unresponsive Wakefulness Syndrome (UWS) were included in the study. We measured the area and echogenicity of the midbrain by encoding and digitally analyzing the corresponding images from the orbitomeatal plane, the morphology of brain parenchyma from the thalamic and cella media plane, and the intracranial circulation. All the patients showed an increase of pulsatility index and numerous morphological alterations on all the scan planes. In particular, we found a loss of the characteristic butterfly-shape of the midbrain, which appeared hypoechoic in the UWS but not in the MCS patients. After six months, the patients were clinically assessed by using Glasgow Outcome Scale Extended (GOSE). We found that a higher increase in GOSE scoring at follow-up was correlated with larger area and higher echogenicity of the midbrain at baseline. The present study suggests that TCS data of the midbrain may support clinical assessment of patients with chronic DOC to estimate their outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids

    PubMed Central

    Kalinina, Tatyana S.; Bulygina, Veta V.; Lanshakov, Dmitry A.; Babluk, Ekaterina V.

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons. PMID:26624017

  14. A novel role for FOXA2 and SHH in organizing midbrain signaling centers.

    PubMed

    Bayly, Roy D; Brown, Charmaine Y; Agarwala, Seema

    2012-09-01

    The floor plate (FP) is a midline signaling center, known to direct ventral cell fates and axon guidance in the neural tube. The recent identification of midbrain FP as a source of dopaminergic neurons has renewed interest in its specification and organization, which remain poorly understood. In this study, we have examined the chick midbrain and spinal FP and show that both can be partitioned into medial (MFP) and lateral (LFP) subdivisions. Although Hedgehog (HH) signaling is necessary and sufficient for LFP specification, it is not sufficient for MFP induction. By contrast, the transcription factor FOXA2 can execute the full midbrain and spinal cord FP program via HH-independent and dependent mechanisms. Interestingly, although HH-independent FOXA2 activity is necessary and sufficient for inducing MFP-specific gene expression (e.g., LMX1B, BMP7), it cannot confer ventral identity to midline cells without also turning on Sonic hedgehog (SHH). We also note that the signaling centers of the midbrain, the FP, roof plate (RP) and the midbrain-hindbrain boundary (MHB) are physically contiguous, with each expressing LMX1B and BMP7. Possibly as a result, SHH or FOXA2 misexpression can transform the MHB into FP and also suppress RP induction. Conversely, HH or FOXA2 knockdown expands the endogenous RP and transforms the MFP into a RP and/or MHB fate. Finally, combined HH blockade and FOXA2 misexpression in ventral midbrain induces LMX1B expression, which triggers the specification of the RP, rather than the MFP. Thus we identify HH-independent and dependent roles for FOXA2 in specifying the FP. In addition, we elucidate for the first time, a novel role for SHH in determining whether a midbrain signaling center will become the FP, MHB or RP. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Specificity and impact of adrenergic projections to the midbrain dopamine system

    PubMed Central

    Mejias-Aponte, Carlos A.

    2016-01-01

    Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson’s disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. PMID:26820641

  16. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation.

    PubMed

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao; Chen, Hsueh-Chih

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC-dlPFC and midbrain-dmPFC for HJs and functional coupling of the vmPFC-midbrain and amygdala-midbrain-NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor.

  17. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries

    PubMed Central

    Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B.; Waskiewicz, Andrew Jan

    2007-01-01

    Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro, and that this interaction is required for both the eng2a overexpression phenotype and Engrailed’s role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube. PMID:16959235

  18. Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries.

    PubMed

    Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B; Waskiewicz, Andrew Jan

    2007-01-15

    Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro and that this interaction is required for both the eng2a overexpression phenotype and Engrailed's role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube.

  19. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS.

    PubMed

    Garcia-Rill, Edgar; Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James

    2011-10-01

    One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40-60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30-60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep-wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.

  20. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications

    PubMed Central

    Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James

    2011-01-01

    One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40–60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30–60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep–wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models. PMID:20936418

  1. L-type calcium channels refine the neural population code of sound level

    PubMed Central

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  2. Neuronal periodicity detection as a basis for the perception of consonance: a mathematical model of tonal fusion.

    PubMed

    Ebeling, Martin

    2008-10-01

    A mathematical model is presented here to explain the sensation of consonance and dissonance on the basis of neuronal coding and the properties of a neuronal periodicity detection mechanism. This mathematical model makes use of physiological data from a neuronal model of periodicity analysis in the midbrain, whose operation can be described mathematically by autocorrelation functions with regard to time windows. Musical intervals produce regular firing patterns in the auditory nerve that depend on the vibration ratio of the two tones. The mathematical model makes it possible to define a measure for the degree of these regularities for each vibration ratio. It turns out that this measure value is in line with the degree of tonal fusion as described by Stumpf [Tonpsychologie (Psychology of Tones) (Knuf, Hilversum), reprinted 1965]. This finding makes it probable that tonal fusion is a consequence of certain properties of the neuronal periodicity detection mechanism. Together with strong roughness resulting from interval tones with fundamentals close together or close to the octave, this neuronal mechanism may be regarded as the basis of consonance and dissonance.

  3. The intralaminar thalamus—an expressway linking visual stimuli to circuits determining agency and action selection

    PubMed Central

    Fisher, Simon D.; Reynolds, John N. J.

    2014-01-01

    Anatomical investigations have revealed connections between the intralaminar thalamic nuclei and areas such as the superior colliculus (SC) that receive short latency input from visual and auditory primary sensory areas. The intralaminar nuclei in turn project to the major input nucleus of the basal ganglia, the striatum, providing this nucleus with a source of subcortical excitatory input. Together with a converging input from the cerebral cortex, and a neuromodulatory dopaminergic input from the midbrain, the components previously found necessary for reinforcement learning in the basal ganglia are present. With this intralaminar sensory input, the basal ganglia are thought to play a primary role in determining what aspect of an organism’s own behavior has caused salient environmental changes. Additionally, subcortical loops through thalamic and basal ganglia nuclei are proposed to play a critical role in action selection. In this mini review we will consider the anatomical and physiological evidence underlying the existence of these circuits. We will propose how the circuits interact to modulate basal ganglia output and solve common behavioral learning problems of agency determination and action selection. PMID:24765070

  4. Progestin Concentrations Are Increased following Paced Mating in Midbrain, Hippocampus, Diencephalon, and Cortex of Rats in Behavioral Estrus, but Only in Midbrain of Diestrous Rats

    PubMed Central

    Frye, Cheryl A.; Rhodes, Madeline E.

    2013-01-01

    Background The progesterone (P4 ) metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), acts in the midbrain ventral tegmental area (VTA) to modulate the intensity and duration of lordosis. 3α,5α-THP can also have anti-anxiety and anti-stress effects in part through actions in the hippocampus. Separate reports indicate that manipulating 3α,5α-THP levels in the VTA or hippocampus respectively can influence lordosis and affective behavior. 3α,5α-THP levels can also be altered by behavioral experiences, such as mating or swim stress. Whether endogenous levels of 3α,5α-THP modulate and/or are increased in response to affective and/or reproductively-relevant behaviors was investigated. Methods In Experiment 1, rats in behavioral estrus or diestrus were individually tested sequentially in the open field, elevated plus maze, partner preference, social interaction, and paced mating tasks and levels of 17 β-estradiol (E2), P4, dihydroprogesterone (DHP), and 3α,5α-THP in serum, midbrain, hippocampus, diencephalon, and cortex were examined. In Experiments 2 and 3, rats in behavioral estrus or diestrus, were individually tested in the battery indicated above, with, or without, paced mating and tissues were collected immediately after testing for later assessment of endocrine measures. Results In Experiment 1, behavioral estrous, compared to diestrous, rats demonstrated more exploratory, anti-anxiety, social, and reproductive behaviors, and had higher levels of E2 and progestins in serum, midbrain, hippocampus, diencephalon, and cortex. In Experiment 2, in midbrain and hippocampus, levels of 3α,5α-THP and its precursor DHP were increased among rats in behavioral estrus that were mated. In diencephalon, and cortex, DHP levels were increased by mating. In Experiment 3, in midbrain, levels of 3α,5α-THP and its precursor DHP were increased among diestrous rats that were tested in the behavioral battery with mating as compared to those tested in the behavioral battery without mating. Conclusions Increased levels of 3α,5α-THP in behavioral estrus versus diestrous rats are associated with enhanced exploratory, anti-anxiety, social, and reproductive behaviors. Rats in behavioral estrus that are mated have further increases in 3α,5α-THP and/or DHP levels in midbrain, hippocampus, diencephalon, and cortex than do non-mated rats in behavioral estrus, whereas diestrous rats only show 3α,5α-THP increases in midbrain in response to behavioral testing that included mating. PMID:17028418

  5. Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger.

    PubMed

    Nolan-Poupart, Sarah; Veldhuizen, Maria G; Geha, Paul; Small, Dana M

    2013-01-01

    There is now widespread agreement that individual variation in the neural circuits representing the reinforcing properties of foods may be associated with risk for overeating and obesity. What is currently unknown is how and whether brain response to a food is related to immediate subsequent intake of that food. Here we used functional magnetic resonance imaging (fMRI) to test whether response to a palatable milkshake is associated with subsequent ad libitum milkshake consumption. We predicted that enhanced responses in key reward regions (insula, striatum, midbrain, medial orbitofrontal cortex) and decreased responses in regions implicated in self-control (lateral prefrontal and lateral orbitofrontal cortex) would be associated with greater intake. We found a significant positive association between response to milkshake in the periaqueductal gray region of the midbrain and ad libitum milkshake intake. Although strong bilateral insular responses were observed during consumption of the milkshake this response did not correlate with subsequent intake. The associations observed in the midbrain and orbitofrontal cortex were uninfluenced by ratings of hunger, which were near neutral. We conclude that midbrain response to a palatable food is related to eating in the absence of hunger. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Scalable metadata environments (MDE): artistically impelled immersive environments for large-scale data exploration

    NASA Astrophysics Data System (ADS)

    West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram

    2014-02-01

    Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.

  7. Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation.

    PubMed

    Buckles, Gerri R; Thorpe, Christopher J; Ramel, Marie-Christine; Lekven, Arne C

    2004-05-01

    Wnt signaling is known to be required for the normal development of the vertebrate midbrain and hindbrain, but genetic loss of function analyses in the mouse and zebrafish yield differing results regarding the relative importance of specific Wnt loci. In the zebrafish, Wnt1 and Wnt10b functionally overlap in their control of gene expression in the ventral midbrain-hindbrain boundary (MHB), but they are not required for the formation of the MHB constriction. Whether other wnt loci are involved in zebrafish MHB development is unclear, although the expression of at least two wnts, wnt3a and wnt8b, is maintained in wnt1/wnt10b mutants. In order to address the role of wnt3a in zebrafish, we have isolated a full length cDNA and examined its expression and function via knockdown by morpholino antisense oligonucleotide (MO)-mediated knockdown. The expression pattern of wnt3a appears to be evolutionarily conserved between zebrafish and mouse, and MO knockdown shows that Wnt3a, while not uniquely required for MHB development, is required in the absence of Wnt1 and Wnt10b for the formation of the MHB constriction. In zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b, the expression of engrailed orthologs, pax2a and fgf8 is not maintained after mid-somitogenesis. In contrast to acerebellar and no isthmus mutants, in which midbrain and hindbrain cells acquire new fates but cell number is not significantly affected until late in embryogenesis, zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b undergo extensive apoptosis in the midbrain and cerebellum anlagen beginning in mid-somitogenesis, which results in the absence of a significant portion of the midbrain and cerebellum. Thus, the requirement for Wnt signaling in forming the MHB constriction is evolutionarily conserved in vertebrates and it is possible in zebrafish to dissect the relative impact of multiple Wnt loci in midbrain and hindbrain development.

  8. Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, D.; Tomasi, D.; Volkow, N.D.

    Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and thismore » was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.« less

  9. Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval

    PubMed Central

    Wolosin, Sasha M.; Zeithamova, Dagmar; Preston, Alison R.

    2012-01-01

    Emerging evidence suggests that motivation enhances episodic memory formation through interactions between medial temporal lobe (MTL) structures and dopaminergic midbrain. In addition, recent theories propose that motivation specifically facilitates hippocampal associative binding processes, resulting in more detailed memories that are readily reinstated from partial input. Here, we used high-resolution functional magnetic resonance imaging to determine how motivation influences associative encoding and retrieval processes within human MTL subregions and dopaminergic midbrain. Participants intentionally encoded object associations under varying conditions of reward and performed a retrieval task during which studied associations were cued from partial input. Behaviorally, cued recall performance was superior for high-value relative to low-value associations; however, participants differed in the degree to which rewards influenced memory. The magnitude of behavioral reward modulation was associated with reward-related activation changes in dentate gyrus/CA2,3 during encoding and enhanced functional connectivity between dentate gyrus/CA2,3 and dopaminergic midbrain during both the encoding and retrieval phases of the task. These findings suggests that within the hippocampus, reward-based motivation specifically enhances dentate gyrus/CA2,3 associative encoding mechanisms through interactions with dopaminergic midbrain. Furthermore, within parahippocampal cortex and dopaminergic midbrain regions, activation associated with successful memory formation was modulated by reward across the group. During the retrieval phase, we also observed enhanced activation in hippocampus and dopaminergic midbrain for high-value associations that occurred in the absence of any explicit cues to reward. Collectively, these findings shed light on fundamental mechanisms through which reward impacts associative memory formation and retrieval through facilitation of MTL and VTA/SN processing. PMID:22524296

  10. The capture and recreation of 3D auditory scenes

    NASA Astrophysics Data System (ADS)

    Li, Zhiyun

    The main goal of this research is to develop the theory and implement practical tools (in both software and hardware) for the capture and recreation of 3D auditory scenes. Our research is expected to have applications in virtual reality, telepresence, film, music, video games, auditory user interfaces, and sound-based surveillance. The first part of our research is concerned with sound capture via a spherical microphone array. The advantage of this array is that it can be steered into any 3D directions digitally with the same beampattern. We develop design methodologies to achieve flexible microphone layouts, optimal beampattern approximation and robustness constraint. We also design novel hemispherical and circular microphone array layouts for more spatially constrained auditory scenes. Using the captured audio, we then propose a unified and simple approach for recreating them by exploring the reciprocity principle that is satisfied between the two processes. Our approach makes the system easy to build, and practical. Using this approach, we can capture the 3D sound field by a spherical microphone array and recreate it using a spherical loudspeaker array, and ensure that the recreated sound field matches the recorded field up to a high order of spherical harmonics. For some regular or semi-regular microphone layouts, we design an efficient parallel implementation of the multi-directional spherical beamformer by using the rotational symmetries of the beampattern and of the spherical microphone array. This can be implemented in either software or hardware and easily adapted for other regular or semi-regular layouts of microphones. In addition, we extend this approach for headphone-based system. Design examples and simulation results are presented to verify our algorithms. Prototypes are built and tested in real-world auditory scenes.

  11. Obstructive sleep apnea is associated with altered midbrain chemical concentrations.

    PubMed

    Macey, Paul M; Sarma, Manoj K; Prasad, Janani P; Ogren, Jennifer A; Aysola, Ravi; Harper, Ronald M; Thomas, M Albert

    2017-11-05

    Obstructive sleep apnea (OSA) is accompanied by altered structure and function in cortical, limbic, brainstem, and cerebellar regions. The midbrain is relatively unexamined, but contains many integrative nuclei which mediate physiological functions that are disrupted in OSA. We therefore assessed the chemistry of the midbrain in OSA in this exploratory study. We used a recently developed accelerated 2D magnetic resonance spectroscopy (2D-MRS) technique, compressed sensing-based 4D echo-planar J-resolved spectroscopic imaging (4D-EP-JRESI), to measure metabolites in the midbrain of 14 OSA (mean age±SD:54.6±10.6years; AHI:35.0±19.4; SAO 2 min:83±7%) and 26 healthy control (50.7±8.5years) subjects. High-resolution T1-weighted scans allowed voxel localization. MRS data were processed with custom MATLAB-based software, and metabolite ratios calculated with respect to the creatine peak using a prior knowledge fitting (ProFit) algorithm. The midbrain in OSA showed decreased N-acetylaspartate (NAA; OSA:1.24±0.43, Control:1.47±0.41; p=0.03; independent samples t-test), a marker of neuronal viability. Increased levels in OSA over control subjects appeared in glutamate (Glu; OSA:1.23±0.57, Control:0.98±0.33; p=0.03), ascorbate (Asc; OSA:0.56±0.28, Control:0.42±0.20; (50.7±8.5years; p=0.03), and myo-inositol (mI; OSA:0.96±0.48, Control:0.72±0.35; p=0.03). No differences between groups appeared in γ-aminobutyric acid (GABA) or taurine. The midbrain in OSA patients shows decreased NAA, indicating neuronal injury or dysfunction. Higher Glu levels may reflect excitotoxic processes and astrocyte activation, and higher mI is also consistent with glial activation. Higher Asc levels may result from oxidative stress induced by intermittent hypoxia in OSA. Additionally, Asc and Glu are involved with glutamatergic processes, which are likely upregulated in the midbrain nuclei of OSA patients. The altered metabolite levels help explain dysfunction and structural deficits in the midbrain of OSA patients. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure

    PubMed Central

    Sulaiman, Siti Amrah

    2017-01-01

    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ (p < 0.05). The lungs of animals from group PQ showed significantly decreased activity of superoxide dismutase and glutathione-S-transferase. Treatment with Tualang honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung. PMID:28127418

  13. Development and function of the midbrain dopamine system: what we know and what we need to.

    PubMed

    Bissonette, G B; Roesch, M R

    2016-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure.

    PubMed

    Tang, Suk Peng; Kuttulebbai Nainamohamed Salam, Sirajudeen; Jaafar, Hasnan; Gan, Siew Hua; Muzaimi, Mustapha; Sulaiman, Siti Amrah

    2017-01-01

    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ ( p < 0.05). The lungs of animals from group PQ showed significantly decreased activity of superoxide dismutase and glutathione-S-transferase. Treatment with Tualang honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung.

  15. Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus.

    PubMed

    Akimov, Alexander G; Egorova, Marina A; Ehret, Günter

    2017-02-01

    Selectivity for processing of species-specific vocalizations and communication sounds has often been associated with the auditory cortex. The midbrain inferior colliculus, however, is the first center in the auditory pathways of mammals integrating acoustic information processed in separate nuclei and channels in the brainstem and, therefore, could significantly contribute to enhance the perception of species' communication sounds. Here, we used natural wriggling calls of mouse pups, which communicate need for maternal care to adult females, and further 15 synthesized sounds to test the hypothesis that neurons in the central nucleus of the inferior colliculus of adult females optimize their response rates for reproduction of the three main harmonics (formants) of wriggling calls. The results confirmed the hypothesis showing that average response rates, as recorded extracellularly from single units, were highest and spectral facilitation most effective for both onset and offset responses to the call and call models with three resolved frequencies according to critical bands in perception. In addition, the general on- and/or off-response enhancement in almost half the investigated 122 neurons favors not only perception of single calls but also of vocalization rhythm. In summary, our study provides strong evidence that critical-band resolved frequency components within a communication sound increase the probability of its perception by boosting the signal-to-noise ratio of neural response rates within the inferior colliculus for at least 20% (our criterion for facilitation). These mechanisms, including enhancement of rhythm coding, are generally favorable to processing of other animal and human vocalizations, including formants of speech sounds. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray.

    PubMed

    Dampney, Roger

    2018-01-01

    The midbrain periaqueductal gray (PAG) plays a major role in generating different types of behavioral responses to emotional stressors. This review focuses on the role of the dorsolateral (dl) portion of the PAG, which on the basis of anatomical and functional studies, appears to have a unique and distinctive role in generating behavioral, cardiovascular and respiratory responses to real and perceived emotional stressors. In particular, the dlPAG, but not other parts of the PAG, receives direct inputs from the primary auditory cortex and from the secondary visual cortex. In addition, there are strong direct inputs to the dlPAG, but not other parts of the PAG, from regions within the medial prefrontal cortex that in primates correspond to cortical areas 10 m, 25 and 32. I first summarise the evidence that the inputs to the dlPAG arising from visual, auditory and olfactory signals trigger defensive behavioral responses supported by appropriate cardiovascular and respiratory effects, when such signals indicate the presence of a real external threat, such as the presence of a predator. I then consider the functional roles of the direct inputs from the medial prefrontal cortex, and propose the hypothesis that these inputs are activated by perceived threats, that are generated as a consequence of complex cognitive processes. I further propose that the inputs from areas 10 m, 25 and 32 are activated under different circumstances. The input from cortical area 10 m is of special interest, because this cortical area exists only in primates and is much larger in the brain of humans than in all other primates.

  17. Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles

    PubMed Central

    Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631

  18. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.

  19. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray

    PubMed Central

    Dampney, Roger

    2018-01-01

    The midbrain periaqueductal gray (PAG) plays a major role in generating different types of behavioral responses to emotional stressors. This review focuses on the role of the dorsolateral (dl) portion of the PAG, which on the basis of anatomical and functional studies, appears to have a unique and distinctive role in generating behavioral, cardiovascular and respiratory responses to real and perceived emotional stressors. In particular, the dlPAG, but not other parts of the PAG, receives direct inputs from the primary auditory cortex and from the secondary visual cortex. In addition, there are strong direct inputs to the dlPAG, but not other parts of the PAG, from regions within the medial prefrontal cortex that in primates correspond to cortical areas 10 m, 25 and 32. I first summarise the evidence that the inputs to the dlPAG arising from visual, auditory and olfactory signals trigger defensive behavioral responses supported by appropriate cardiovascular and respiratory effects, when such signals indicate the presence of a real external threat, such as the presence of a predator. I then consider the functional roles of the direct inputs from the medial prefrontal cortex, and propose the hypothesis that these inputs are activated by perceived threats, that are generated as a consequence of complex cognitive processes. I further propose that the inputs from areas 10 m, 25 and 32 are activated under different circumstances. The input from cortical area 10 m is of special interest, because this cortical area exists only in primates and is much larger in the brain of humans than in all other primates. PMID:29881334

  20. L-type calcium channels refine the neural population code of sound level.

    PubMed

    Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana

    2016-12-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.

  1. Enhanced midbrain response at 6-month follow-up in cocaine addiction, association with reduced drug-related choice: Midbrain in drug choice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, Scott J.; Tomasi, Dardo; Woicik, Patricia A.

    Drug addiction is characterized by dysregulated dopamine neurotransmission. Although dopamine functioning appears to partially recover with abstinence, the specific regions that recover and potential impact on drug seeking remain to be determined. Here we used functional magnetic resonance imaging (fMRI) to study an ecologically valid sample of 15 treatment-seeking cocaine addicted individuals at baseline and 6-month follow-up. At both study sessions, we collected fMRI scans during performance of a drug Stroop task, clinical self-report measures of addiction severity and behavioral measures of cocaine seeking (simulated cocaine choice); actual drug use in between the two study sessions was also monitored. Atmore » 6-month follow-up (compared with baseline), we predicted functional enhancement of dopaminergically innervated brain regions, relevant to the behavioral responsiveness toward salient stimuli. Consistent with predictions, whole-brain analyses revealed responses in the midbrain (encompassing the ventral tegmental area/substantia nigra complex) and thalamus (encompassing the mediodorsal nucleus) that were higher (and more positively correlated) at follow-up than baseline. Increased midbrain activity from baseline to follow-up correlated with reduced simulated cocaine choice, indicating that heightened midbrain activations in this context may be marking lower approach motivation for cocaine. Normalization of midbrain function at follow-up was also suggested by exploratory comparisons with active cocaine users and healthy controls (who were assessed only at baseline). Enhanced self-control at follow-up was suggested by a trend for the commonly hypoactive dorsal anterior cingulate cortex to increase response during a drug-related context. Together, these results suggest that fMRI could be useful in sensitively tracking follow-up outcomes in drug addiction.« less

  2. Graded levels of FGF protein span the midbrain and can instruct graded induction and repression of neural mapping labels

    PubMed Central

    Chen, Yao; Mohammadi, Moosa; Flanagan, John G.

    2009-01-01

    Summary Graded guidance labels are widely used in neural map formation, but it is not well understood which potential strategy leads to their graded expression. In midbrain tectal map development, FGFs can induce an entire midbrain, but their protein distribution is unclear, nor is it known whether they may act instructively to produce graded gene expression. Using a receptor-alkaline phosphatase fusion probe, we find a long-range posterior>anterior FGF protein gradient spanning the midbrain. Heparan sulfate proteoglycan (HSPG) is required for this gradient. To test whether graded FGF concentrations can instruct graded gene expression, a quantitative tectal explant assay was developed. Engrailed-2 and ephrin-As, normally in posterior>anterior tectal gradients, showed graded upregulation. Moreover, EphAs, normally in anterior>posterior countergradients, showed coordinately graded downregulation. These results provide a mechanism to establish graded mapping labels, and more generally provide a developmental strategy to coordinately induce a structure and pattern its cell properties in gradients. PMID:19555646

  3. By Changing Dimensionality, Sequential Culturing of Midbrain Cells, rather than Two-Dimensional Culture, Generates a Neuron-Glia Ratio Closer to in vivo Adult Midbrain.

    PubMed

    Ganapathy, Kavina; Sowmithra, Sowmithra; Bhonde, Ramesh; Datta, Indrani

    2016-07-16

    The neuron-glia ratio is of prime importance for maintaining the physiological homeostasis of neuronal and glial cells, and especially crucial for dopaminergic neurons because a reduction in glial density has been reported in postmortem reports of brains affected by Parkinson's disease. We thus aimed at developing an in vitro midbrain culture which would replicate a similar neuron-glia ratio to that in in vivo adult midbrain while containing a similar number of dopaminergic neurons. A sequential culture technique was adopted to achieve this. Neural progenitors (NPs) were generated by the hanging-drop method and propagated as 3D neurospheres followed by the derivation of outgrowth from these neurospheres on a chosen extracellular matrix. The highest proliferation was observed in neurospheres from day in vitro (DIV) 5 through MTT and FACS analysis of Ki67 expression. FACS analysis using annexin/propidium iodide showed an increase in the apoptotic population from DIV 8. DIV 5 neurospheres were therefore selected for deriving the differentiated outgrowth of midbrain on a poly-L-lysine-coated surface. Quantitative RT-PCR showed comparable gene expressions of the mature neuronal marker β-tubulin III, glial marker GFAP and dopaminergic marker tyrosine hydroxylase (TH) as compared to in vivo adult rat midbrain. The FACS analysis showed a similar neuron-glia ratio obtained by the sequential culture in comparison to adult rat midbrain. The yield of β-tubulin III and TH was distinctly higher in the sequential culture in comparison to 2D culture, which showed a higher yield of GFAP immunopositive cells. Functional characterization indicated that both the constitutive and inducible (KCl and ATP) release of dopamine was distinctly higher in the sequential culture than the 2D culture. Thus, the sequential culture technique succeeded in the initial enrichment of NPs in 3D neurospheres, which in turn resulted in an optimal attainment of the neuron-glia ratio on outgrowth culture from these neurospheres. © 2016 S. Karger AG, Basel.

  4. Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons

    PubMed Central

    2010-01-01

    Background Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the indentified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. Methods In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. Results Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies. PMID:20716345

  5. Retinal input to efferent target amacrine cells in the avian retina

    PubMed Central

    Lindstrom, Sarah H.; Azizi, Nason; Weller, Cynthia; Wilson, Martin

    2012-01-01

    The bird visual system includes a substantial projection, of unknown function, from a midbrain nucleus to the contralateral retina. Every centrifugal, or efferent, neuron originating in the midbrain nucleus makes synaptic contact with the soma of a single, unique amacrine cell, the target cell (TC). By labeling efferent neurons in the midbrain we have been able to identify their terminals in retinal slices and make patch clamp recordings from TCs. TCs generate Na+ based action potentials triggered by spontaneous EPSPs originating from multiple classes of presynaptic neurons. Exogenously applied glutamate elicited inward currents having the mixed pharmacology of NMDA, kainate and inward rectifying AMPA receptors. Exogenously applied GABA elicited currents entirely suppressed by GABAzine, and therefore mediated by GABAA receptors. Immunohistochemistry showed the vesicular glutamate transporter, vGluT2, to be present in the characteristic synaptic boutons of efferent terminals, whereas the GABA synthetic enzyme, GAD, was present in much smaller processes of intrinsic retinal neurons. Extracellular recording showed that exogenously applied GABA was directly excitatory to TCs and, consistent with this, NKCC, the Cl− transporter often associated with excitatory GABAergic synapses, was identified in TCs by antibody staining. The presence of excitatory retinal input to TCs implies that TCs are not merely slaves to their midbrain input; instead, their output reflects local retinal activity and descending input from the midbrain. PMID:20650017

  6. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson’s Disease

    PubMed Central

    Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J. A.; Vlcek, Bianca; Bimpisidis, Zisis; Lagerström, Malin C.; Konradsson-Geuken, Åsa; Wallén-Mackenzie, Åsa

    2016-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders. PMID:27762319

  7. Apoptotic natural cell death in developing primate dopamine midbrain neurons occurs during a restricted period in the second trimester of gestation

    PubMed Central

    Morrow, Bret A.; Roth, Robert H.; Redmond, D. Eugene; Sladek, John R.; Elsworth, John D.

    2012-01-01

    Natural cell death (NCD) by apoptosis is a normal developmental event in most neuronal populations, and is a determinant of the eventual size of a population. We decided to examine the timing and extent of NCD of the midbrain dopamine system in a primate species, as dopamine deficiency or excess has been implicated in several disorders. Genetic or environmental differences may alter the extent of NCD and predispose individuals to neurological or psychiatric diseases. In developing rats, NCD in the midbrain dopamine system has been observed to start at the end of gestation and peak in the postnatal period. In fetal monkey brains, apoptosis in midbrain DA neurons was identified histologically by chromatin clumping in tyrosine hydroxylase-positive cells, and confirmed by TUNEL and active caspase-3 staining. A distinct peak of NCD occurred at about E80, midway through gestation in this species. We estimate that at least 50% of the population may be lost in this process. In other brains we determined biochemically that the onset of apoptosis coincides with the time of greatest rate of increase of striatal DA concentration. Thus, marked apoptotic NCD occurs in the primate midbrain dopamine system half-way through gestation, and appears to be associated with the rapid developmental increase in striatal dopamine innervation. PMID:17313945

  8. Changes in dopamine transporter expression in the midbrain following traumatic brain injury: an immunohistochemical and in situ hybridization study in a mouse model.

    PubMed

    Shimada, Ryo; Abe, Keiichi; Furutani, Rui; Kibayashi, Kazuhiko

    2014-03-01

    An association has been suggested between trauma and neurological degenerative diseases. Magnetic resonance imaging has revealed that traumatic brain injury (TBI) can cause primary lesions in the midbrain including the substantia nigra (SN). Dopamine transporter (DAT) is mainly expressed in the SN, ventral tegmental area (VTA), and retrorubral field (RRF) of the ventral midbrain. Previous western blot studies have examined DAT levels in the rat frontal cortex and striatum after a controlled cortical impact (CCI); however, no study has comprehensively examined DAT expression in the midbrain following TBI in an animal model. We used immunohistochemistry and in situ hybridization to examine the time-dependent changes in the expression of DAT in the midbrain during the first 14 days after TBI in a mouse CCI model. The expression of DAT protein in the RRF on the side ipsilateral to the site of injury decreased in 14 days after injury. Dopamine transporter mRNA expression in the RRF on the ipsilateral side decreased in 1, 7, and 14 days and increased in 4 days after injury. These findings indicated that TBI induced changes in DAT expression in the RRF. Because the DAT pumps dopamine (DA) out of the synapse back into the cytosol and maintains DA homeostasis, the decreased expression of DAT after TBI may result in decreased DA neurotransmission in the brain.

  9. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.

    PubMed

    Pallesen, Karen Johanne; Bailey, Christopher J; Brattico, Elvira; Gjedde, Albert; Palva, J Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz) alpha (8-14 Hz), beta- (14-30 Hz) and gamma- (30-80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.

  10. Holmes Tremor Secondary to a Stabbing Lesion in the Midbrain.

    PubMed

    Cury, Rubens Gisbert; Barbosa, Egberto Reis; Freitas, Christian; de Souza Godoy, Luis Filipe; Paiva, Wellingson Silva

    2017-01-01

    The development of Holmes tremor (HT) after a direct lesion of the midbrain has rarely been reported in the literature, although several etiologies have been linked with HT, such as stroke, brainstem tumors, multiple sclerosis, head trauma, or infections. A 31-year-old male, having been stabbed in the right eye, presented with a rest and action tremor in the left upper limb associated with left hemiparesis with corresponding post-contrast volumetric magnetic resonance imaging T1 with sagittal oblique reformation showing the knife trajectory reaching the right midbrain. Despite the rarity of the etiology of HT in the present case, clinicians working with persons with brain injuries should be aware of this type of situation.

  11. The First Call Note Plays a Crucial Role in Frog Vocal Communication.

    PubMed

    Yue, Xizi; Fan, Yanzhu; Xue, Fei; Brauth, Steven E; Tang, Yezhong; Fang, Guangzhan

    2017-08-31

    Vocal Communication plays a crucial role in survival and reproductive success in most amphibian species. Although amphibian communication sounds are often complex consisting of many temporal features, we know little about the biological significance of each temporal component. The present study examined the biological significance of notes of the male advertisement calls of the Emei music frog (Babina daunchina) using the optimized electroencephalogram (EEG) paradigm of mismatch negativity (MMN). Music frog calls generally contain four to six notes separated approximately by 150 millisecond intervals. A standard stimulus (white noise) and five deviant stimuli (five notes from one advertisement call) were played back to each subject while simultaneously recording multi-channel EEG signals. The results showed that the MMN amplitude for the first call note was significantly larger than for that of the others. Moreover, the MMN amplitudes evoked from the left forebrain and midbrain were typically larger than those from the right counterpart. These results are consistent with the ideas that the first call note conveys more information than the others for auditory recognition and that there is left-hemisphere dominance for processing information derived from conspecific calls in frogs.

  12. FoxP2 Expression in a Highly Vocal Teleost Fish with Comparisons to Tetrapods.

    PubMed

    Pengra, Ian G G; Marchaterre, Margaret A; Bass, Andrew H

    2018-04-19

    Motivated by studies of speech deficits in humans, several studies over the past two decades have investigated the potential role of a forkhead domain transcription factor, FoxP2, in the central control of acoustic signaling/vocalization among vertebrates. Comparative neuroanatomical studies that mainly include mammalian and avian species have mapped the distribution of FoxP2 expression in multiple brain regions that imply a greater functional significance beyond vocalization that might be shared broadly across vertebrate lineages. To date, reports for teleost fish have been limited in number and scope to nonvocal species. Here, we map the neuroanatomical distribution of FoxP2 mRNA expression in a highly vocal teleost, the plainfin midshipman (Porichthys notatus). We report an extensive overlap between FoxP2 expression and vocal, auditory, and steroid-signaling systems with robust expression at multiple sites in the telencephalon, the preoptic area, the diencephalon, and the midbrain. Label was far more restricted in the hindbrain though robust in one region of the reticular formation. A comparison with other teleosts and tetrapods suggests an evolutionarily conserved FoxP2 phenotype important to vocal-acoustic and, more broadly, sensorimotor function among vertebrates. © 2018 S. Karger AG, Basel.

  13. Lesions of the lateral habenula facilitate active avoidance learning and threat extinction.

    PubMed

    Song, Mihee; Jo, Yong Sang; Lee, Yeon-Kyung; Choi, June-Seek

    2017-02-01

    The lateral habenula (LHb) is an epithalamic brain structure that provides strong projections to midbrain monoaminergic systems that are involved in motivation, emotion, and reinforcement learning. LHb neurons are known to convey information about aversive outcomes and negative prediction errors, suggesting a role in learning from aversive events. To test this idea, we examined the effects of electrolytic lesions of the LHb on signaled two-way active avoidance learning in which rats were trained to avoid an unconditioned stimulus (US) by taking a proactive shuttling response to an auditory conditioned stimulus (CS). The lesioned animals learned the avoidance response significantly faster than the control groups. In a separate experiment, we also investigated whether the LHb contributes to Pavlovian threat (fear) conditioning and extinction. Following paired presentations of the CS and the US, LHb-lesioned animals showed normal acquisition of conditioned response (CR) measured with freezing. However, extinction of the CR in the subsequent CS-only session was significantly faster. The enhanced performance in avoidance learning and in threat extinction jointly suggests that the LHb normally plays an inhibitory role in learning driven by absence of aversive outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Electrical stimulation or MK-801 in the inferior colliculus improve motor deficits in MPTP-treated mice.

    PubMed

    Melo-Thomas, L; Gil-Martínez, A L; Cuenca, L; Estrada, C; Gonzalez-Cuello, A; Schwarting, R K; Herrero, M T

    2018-03-01

    The inferior colliculus (IC) is an important midbrain relay station for the integration of descending and ascending auditory information. Additionally, the IC has been implicated in processing sensorimotor responses. Glutamatergic and GABAergic manipulations in the IC can improve motor deficits as demonstrated by the animal model of haloperidol-induced catalepsy. However, how the IC influences motor function remains unclear. We investigated the effects of either intracollicular deep brain stimulation (DBS) or microinjection of the glutamatergic antagonist MK-801 or the agonist NMDA in C57BL/6J mice chronically treated with saline or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). After DBS or microinjections, the mice were submitted to rotarod and open field tests, respectively. DBS in the IC was effective to increase the time spent on the rotarod in MPTP-treated mice. After unilateral microinjection of MK-801, but not NMDA, MPTP-treated mice increased the distance travelled in the open field (p < 0.05). In conclusion, intracollicular DBS or MK-801 microinjection can improve motor performance in parkinsonian mice suggesting the IC as a new and non-conventional therapeutic target in motor impairment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ebf2 is required for development of dopamine neurons in the midbrain periaqueductal gray matter of mouse.

    PubMed

    Yang, Qiaoqiao; Liu, Shuxi; Yin, Min; Yin, Yanqing; Zhou, Guomin; Zhou, Jiawei

    2015-11-01

    Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During the prenatal period, the majority of PAG DA neurons was distributed in the intermediate and caudal regions of the PAG. In the postnatal brain, ∼50% of PAG DA neurons were preferentially located in the caudal portion of the PAG. Moreover, transcription factor early B-cell factor 2 (Ebf2) was transiently expressed in a subset of DA neurons in embryonic ventral mesencephalon. Functional analysis revealed that loss of Ebf2 in vivo caused a marked reduction in the number of DA neurons in the midbrain PAG but not in the substantia nigra and ventral tegmental area. Thus, Ebf2 is identified as a novel and important regulator selectively required for midbrain PAG DA neuron development. © 2015 Wiley Periodicals, Inc.

  16. Childhood trauma, midbrain activation and psychotic symptoms in borderline personality disorder

    PubMed Central

    Nicol, K; Pope, M; Romaniuk, L; Hall, J

    2015-01-01

    Childhood trauma is believed to contribute to the development of borderline personality disorder (BPD), however the mechanism by which childhood trauma increases risk for specific symptoms of the disorder is not well understood. Here, we explore the relationship between childhood trauma, brain activation in response to emotional stimuli and psychotic symptoms in BPD. Twenty individuals with a diagnosis of BPD and 16 healthy controls were recruited to undergo a functional MRI scan, during which they viewed images of faces expressing the emotion of fear. Participants also completed the childhood trauma questionnaire (CTQ) and a structured clinical interview. Between-group differences in brain activation to fearful faces were limited to decreased activation in the BPD group in the right cuneus. However, within the BPD group, there was a significant positive correlation between physical abuse scores on the CTQ and BOLD signal in the midbrain, pulvinar and medial frontal gyrus to fearful (versus neutral) faces. In addition there was a significant correlation between midbrain activation and reported psychotic symptoms in the BPD group (P<0.05). These results show that physical abuse in childhood is, in individuals with BPD, associated with significantly increased activation of a network of brain regions including the midbrain in response to emotional stimuli. Sustained differences in the response of the midbrain to emotional stimuli in individuals with BPD who suffered childhood physical abuse may underlie the vulnerability of these patients to developing psychotic symptoms. PMID:25942040

  17. Anatomic location and somatotopic arrangement of the corticospinal tract at the cerebral peduncle in the human brain.

    PubMed

    Kwon, H G; Hong, J H; Jang, S H

    2011-12-01

    Little is known about the detailed anatomic location and somatotopic arrangement at the CP. Using DTT with FSL tools, we conducted an investigation of the anatomic location and somatotopic arrangement of the CST at the CP in the human brain. We recruited 43 healthy volunteers for this study. DTI was obtained by using 1.5T, and CSTs for the hand and leg were obtained by using the FSL tool. The somatotopic location of the CST was evaluated as the highest probabilistic location at the upper and lower midbrain. The posterior boundary was determined as the line between the interpeduncular fossa and the lateral sulcus; we then drew a rectangle on the basis of the boundary of the CP. In the mediolateral direction, the highest probabilistic locations for the hand and leg were an average of 60.46% and 69.98% from the medial boundary at the upper midbrain level and 53.44% and 62.76% at the lower midbrain level, respectively. As for the anteroposterior direction, the highest probabilistic locations for the hand and leg were an average of 28.26% and 32.03% from the anterior boundary at the upper midbrain level and 30.19% and 33.59% at the lower midbrain level, respectively. We found that the hand somatotopy for the CST is located at the middle portion of the CP and the leg somatotopy is located lateral to the hand somatotopy.

  18. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans.

    PubMed

    Zald, David H; Cowan, Ronald L; Riccardi, Patrizia; Baldwin, Ronald M; Ansari, M Sib; Li, Rui; Shelby, Evan S; Smith, Clarence E; McHugo, Maureen; Kessler, Robert M

    2008-12-31

    Novelty-seeking personality traits are a major risk factor for the development of drug abuse and other unsafe behaviors. Rodent models of temperament indicate that high novelty responding is associated with decreased inhibitory autoreceptor control of midbrain dopamine neurons. It has been speculated that individual differences in dopamine functioning also underlie the personality trait of novelty seeking in humans. However, differences in the dopamine system of rodents and humans, as well as the methods for assessing novelty responding/seeking across species leave unclear to what extent the animal models inform our understanding of human personality. In the present study we examined the correlation between novelty-seeking traits in humans and D(2)-like (D(2)/D(3)) receptor availability in the substantia nigra/ventral tegmental area. Based on the rodent literature we predicted that novelty seeking would be characterized by lowered levels of D(2)-like (auto)receptor availability in the midbrain. Thirty-four healthy adults (18 men, 16 women) completed the Tridimensional Personality Questionnaire-Novelty-Seeking Scale and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Novelty-Seeking personality traits were inversely associated with D(2)-like receptor availability in the ventral midbrain, an effect that remained significant after controlling for age. We speculate that the lower midbrain (auto)receptor availability seen in high novelty seekers leads to accentuated dopaminergic responses to novelty and other conditions that induce dopamine release.

  19. Midbrain dopamine receptor availability is inversely associated with novelty seeking traits in humans

    PubMed Central

    Zald, David H.; Cowan, Ronald L.; Riccardi, Patrizia; Baldwin, Ronald M.; Ansari, M. Sib; Li, Rui; Shelby, Evan S.; Smith, Clarence E.; McHugo, Maureen; Kessler, Robert M.

    2009-01-01

    Novelty seeking personality traits are a major risk factor for the development of drug abuse and other unsafe behaviors. Rodent models of temperament indicate that high novelty responding is associated with decreased inhibitory autoreceptor control of midbrain dopamine neurons. It has been speculated that individual differences in dopamine functioning also underlie the personality trait of novelty seeking in humans. However, differences in the dopamine system of rodents and humans, as well as the methods for assessing novelty responding/seeking across species leave unclear to what extent the animal models inform our understanding of human personality. In the present study we examined the correlation between novelty seeking traits in humans and D2-like (D2/D3) receptor availability in the substantia nigra/ventral tegmental area. Based on the rodent literature we predicted that novelty seeking would be characterized by lowered levels of D2-like (auto)receptor availability in the midbrain. 34 healthy adults (18 men, 16 women) completed the Tridimensional Personality Questionnaire-Novelty Seeking Scale and PET scanning with the D2/D3 ligand [18F]fallypride. Novelty seeking personality traits were inversely associated with D2-like receptor availability in the ventral midbrain, an effect that remained significant after controlling for age. We speculate that the lower midbrain (auto)receptor availability seen in high novelty seekers leads to accentuated dopaminergic responses to novelty and other conditions that induce DA release. PMID:19118170

  20. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward

    PubMed Central

    Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng

    2016-01-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here, menthol alone exerts several neurobiological changes. We are among the first to show that menthol, by itself, increases the number of nicotinic acetylcholine receptors (nAChRs) in the mouse brain. It does so at a dose that matches nicotine in its ability to increase nAChR number. At this same dose, menthol also alters midbrain dopamine neuron function and prevents nicotine reward-related behavior. Together, our data show that menthol is more than an “inert” flavor additive and is able to change the function of midbrain dopamine neurons that are part of the mesolimbic reward pathway. PMID:26961950

  1. [Role of the midbrain reticular formation in hormonal supply to the body in conditions of chronic emotional stress].

    PubMed

    Amiragova, M G; Arakhangel'skaia, M I

    1983-08-01

    Chronic animal experiments were made to study the endocrine and electroencephalographic responses of the cortico-subcortical structures to stress before and after coagulation of the midbrain reticular formation. The operation entailed dramatic changes in both the bioelectrical responses and thyroid and adrenal responses, which were found to be differentiated.

  2. Holmes Tremor Secondary to a Stabbing Lesion in the Midbrain

    PubMed Central

    Cury, Rubens Gisbert; Barbosa, Egberto Reis; Freitas, Christian; de Souza Godoy, Luis Filipe; Paiva, Wellingson Silva

    2017-01-01

    Background The development of Holmes tremor (HT) after a direct lesion of the midbrain has rarely been reported in the literature, although several etiologies have been linked with HT, such as stroke, brainstem tumors, multiple sclerosis, head trauma, or infections. Phenomenology Shown A 31-year-old male, having been stabbed in the right eye, presented with a rest and action tremor in the left upper limb associated with left hemiparesis with corresponding post-contrast volumetric magnetic resonance imaging T1 with sagittal oblique reformation showing the knife trajectory reaching the right midbrain. Educational Value Despite the rarity of the etiology of HT in the present case, clinicians working with persons with brain injuries should be aware of this type of situation. PMID:29226021

  3. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise

    PubMed Central

    Pallesen, Karen Johanne; Bailey, Christopher J.; Brattico, Elvira; Gjedde, Albert; Palva, J. Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4–8 Hz) alpha (8–14 Hz), beta- (14–30 Hz) and gamma- (30–80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality. PMID:26291324

  4. Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation.

    PubMed

    Woitek, Ramona; Prayer, Daniela; Weber, Michael; Amann, Gabriele; Seidl, Rainer; Bettelheim, Dieter; Schöpf, Veronika; Brugger, Peter C; Furtner, Julia; Asenbaum, Ulrika; Kasprian, Gregor

    2016-05-01

    This prenatal MRI study evaluated the potential of diffusion tensor imaging (DTI) metrics to identify changes in the midbrain of fetuses with Chiari II malformations compared to fetuses with mild ventriculomegaly, hydrocephalus and normal CNS development. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated from a region of interest (ROI) in the midbrain of 46 fetuses with normal CNS, 15 with Chiari II malformations, eight with hydrocephalus and 12 with mild ventriculomegaly. Fetuses with different diagnoses were compared group-wise after age-matching. Axial T2W-FSE sequences and single-shot echo planar DTI sequences (16 non-collinear diffusion gradient-encoding directions, b-values of 0 and 700 s/mm(2), 1.5 Tesla) were evaluated retrospectively. In Chiari II malformations, FA was significantly higher than in age-matched fetuses with a normal CNS (p = .003), while ADC was not significantly different. No differences in DTI metrics between normal controls and fetuses with hydrocephalus or vetriculomegaly were detected. DTI can detect and quantify parenchymal alterations of the fetal midbrain in Chiari II malformations. Therefore, in cases of enlarged fetal ventricles, FA of the fetal midbrain may contribute to the differentiation between Chiari II malformation and other entities. • FA in the fetal midbrain is elevated in Chiari II malformations. • FA is not elevated in hydrocephalus and mild ventriculomegaly without Chiari II. • Measuring FA may help distinguish different causes for enlarged ventricles prenatally. • Elevated FA may aid in the diagnosis of open neural tube defects. • Elevated FA might contribute to stratification for prenatal surgery in Chiari II.

  5. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. The Significance of Brain Transcranial Sonography in Burning Mouth Syndrome: a Pilot Study.

    PubMed

    Zavoreo, Iris; Vučićević, Vanja; Boras; Zadravec, Dijana; Bašić, Vanja; Kes; Ciliga, Dubravka; Gabrić, Dragana

    2017-03-01

    Burning mouth syndrome (BMS) is a chronic disorder which is affecting mostly postmenopausal women and is characterized by burning symptoms in the oral cavity on the clinically healthy oral mucosa. Also, the results of previous studies suggested a possible role of peripheral and/or central neurological disturbances in these patients. The aim of this study was to analyze patients with burning mouth syndrome using transcranial sonography. By use of transcranial sonography of the brain parenchyma, substantia nigra , midbrain raphe and brain nucleus were evaluated in 20 patients with BMS (64.7±12.3 years) and 20 controls with chronic pain in the lumbosacral region (61.5±15). Statistical analysis was performed by use of Student t test with significance set at p<0.05. The results of this study have shown hypoechogenicity of the substantia nigra and midbrain raphe as well as hyperechogenicity of the brain nucleus in BMS patients (p<0,05) as compared to controls. Altered transcranial sonography findings of the brain parenchyma , midbrain raphe and brain nucl eus in patients with burning mouth syndrome might reflect central disturbances within this syndrome. Burning Mouth Syndrome; Transcranial Sonography; substantia nigra; Midbrain Raphe Nuclei; Red Nucleus.

  7. UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson's disease brains.

    PubMed

    Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit

    2011-01-01

    Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.

  8. Prospect theory does not describe the feedback-related negativity value function.

    PubMed

    Sambrook, Thomas D; Roser, Matthew; Goslin, Jeremy

    2012-12-01

    Humans handle uncertainty poorly. Prospect theory accounts for this with a value function in which possible losses are overweighted compared to possible gains, and the marginal utility of rewards decreases with size. fMRI studies have explored the neural basis of this value function. A separate body of research claims that prediction errors are calculated by midbrain dopamine neurons. We investigated whether the prospect theoretic effects shown in behavioral and fMRI studies were present in midbrain prediction error coding by using the feedback-related negativity, an ERP component believed to reflect midbrain prediction errors. Participants' stated satisfaction with outcomes followed prospect theory but their feedback-related negativity did not, instead showing no effect of marginal utility and greater sensitivity to potential gains than losses. Copyright © 2012 Society for Psychophysiological Research.

  9. Informational landscapes in art, science, and evolution.

    PubMed

    Cohen, Irun R

    2006-07-01

    An informational landscape refers to an array of information related to a particular theme or function. The Internet is an example of an informational landscape designed by humans for purposes of communication. Once it exists, however, any informational landscape may be exploited to serve a new purpose. Listening Post is the name of a dynamic multimedia work of art that exploits the informational landscape of the Internet to produce a visual and auditory environment. Here, I use Listening Post as a prototypic example for considering the creative role of informational landscapes in the processes that beget evolution and science.

  10. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-09

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. Copyright © 2016 the authors 0270-6474/16/362957-18$15.00/0.

  11. Quantitative Susceptibility Mapping of the Midbrain in Parkinson’s Disease

    PubMed Central

    Du, Guangwei; Liu, Tian; Lewis, Mechelle M.; Kong, Lan; Wang, Yi; Connor, James; Mailman, Richard B.; Huang, Xuemei

    2017-01-01

    Background Parkinson’s disease (PD) is marked pathologically by dopamine neuron loss and iron overload in the substantia nigra pars compacta. Midbrain iron content is reported to be increased in PD based on magnetic resonance imaging (MRI) R2* changes. Because quantitative susceptibility mapping is a novel MRI approach to measure iron content, we compared it with R2* for assessing midbrain changes in PD. Methods Quantitative susceptibility mapping and R2* maps were obtained from 47 PD patients and 47 healthy controls. Midbrain susceptibility and R2* values were analyzed by using both voxel-based and region-of-interest approaches in normalized space, and analyzed along with clinical data, including disease duration, Unified Parkinson’s Disease Rating Scale (UPDRS) I, II, and III sub-scores, and levodopa-equivalent daily dosage. All studies were done while PD patients were “on drug.” Results Compared with controls, PD patients showed significantly increased susceptibility values in both right (cluster size = 106 mm3) and left (164 mm3) midbrain, located ventrolateral to the red nucleus that corresponded to the substantia nigra pars compacta. Susceptibility values in this region were correlated significantly with disease duration, UPDRS II, and levodopa-equivalent daily dosage. Conversely, R2* was increased significantly only in a much smaller region (62 mm3) of the left lateral substantia nigra pars compacta and was not significantly correlated with clinical parameters. Conclusion The use of quantitative susceptibility mapping demonstrated marked nigral changes that correlated with clinical PD status more sensitively than R2*. These data suggest that quantitative susceptibility mapping may be a superior imaging biomarker to R2* for estimating brain iron levels in PD. PMID:26362242

  12. Engaging in paced mating, but neither exploratory, anti-anxiety, nor social behavior, increases 5α-reduced progestin concentrations in midbrain, hippocampus, striatum, and cortex

    PubMed Central

    Frye, Cheryl A; Paris, Jason J; Rhodes, Madeline E

    2010-01-01

    Sequential actions of 17β-estradiol (E2) and progesterone (P4) in the hypothalamus and the P4 metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), in the midbrain ventral tegmental area (VTA) respectively mediate the initiation and intensity of lordosis of female rats and mayalso modulate anxiety and social behaviors, through actions in these, and/or other brain regions. Biosynthesis of E2, P4, and 3α,5α-THP can also occur in brain, independent of peripheral gland secretion, in response to environmental/behavioral stimuli. The extent to which engaging in tasks related to reproductive behaviors and/or mating increased E2 or progestin concentrations in brain was investigated. In Experiment 1, proestrous rats were randomly assigned to be tested in individual tasks, including the open field, elevated plus maze, partner preference, social interaction, or no test control, in conjunction with paced mating or no mating. Engaging in paced mating, but not other behaviors, significantly increased dihydroprogesterone (DHP) and 3α,5α-THP levels in midbrain, hippocampus, striatum, and cortex. In Experiment 2, proestrous rats were tested in the combinations of the above tasks (open field and elevated plus maze, partner preference, and social interaction) with or without paced mating. As in Experiment 1, only engaging in paced mating increased DHP and 3α,5α-THP concentrations in midbrain, hippocampus, striatum, and cortex. Thus, paced mating enhances concentrations of 5α-reduced progestins in brain areas associated with reproduction (midbrain), as well as exploration/anxiety (hippocampus and striatum) and social behavior (cortex). PMID:17379660

  13. Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function

    PubMed Central

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-01-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972

  14. A Sensitive Membrane-Targeted Biosensor for Monitoring Changes in Intracellular Chloride in Neuronal Processes

    PubMed Central

    Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.

    2012-01-01

    Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 =  41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078

  15. Amphetamine self-administration attenuates dopamine D2 autoreceptor function.

    PubMed

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-07-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.

  16. LIN28A enhances the therapeutic potential of cultured neural stem cells in a Parkinson's disease model.

    PubMed

    Rhee, Yong-Hee; Kim, Tae-Ho; Jo, A-Young; Chang, Mi-Yoon; Park, Chang-Hwan; Kim, Sang-Mi; Song, Jae-Jin; Oh, Sang-Min; Yi, Sang-Hoon; Kim, Hyeon Ho; You, Bo-Hyun; Nam, Jin-Wu; Lee, Sang-Hun

    2016-10-01

    The original properties of tissue-specific stem cells, regardless of their tissue origins, are inevitably altered during in vitro culturing, lessening the clinical and research utility of stem cell cultures. Specifically, neural stem cells derived from the ventral midbrain lose their dopamine neurogenic potential, ventral midbrain-specific phenotypes, and repair capacity during in vitro cell expansion, all of which are critical concerns in using the cultured neural stem cells in therapeutic approaches for Parkinson's disease. In this study, we observed that the culture-dependent changes of neural stem cells derived from the ventral midbrain coincided with loss of RNA-binding protein LIN28A expression. When LIN28A expression was forced and sustained during neural stem cell expansion using an inducible expression-vector system, loss of dopamine neurogenic potential and midbrain phenotypes after long-term culturing was blocked. Furthermore, dopamine neurons that differentiated from neural stem cells exhibited remarkable survival and resistance against toxic insults. The observed effects were not due to a direct action of LIN28A on the differentiated dopamine neurons, but rather its action on precursor neural stem cells as exogene expression was switched off in the differentiating/differentiated cultures. Remarkable and reproducible behavioural recovery was shown in all Parkinson's disease rats grafted with neural stem cells expanded with LIN28A expression, along with extensive engraftment of dopamine neurons expressing mature neuronal and midbrain-specific markers. These findings suggest that LIN28A expression during stem cell expansion could be used to prepare therapeutically competent donor cells. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation

    PubMed Central

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC–dlPFC and midbrain–dmPFC for HJs and functional coupling of the vmPFC–midbrain and amygdala–midbrain–NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor. PMID:27840604

  18. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans

    PubMed Central

    Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306

  19. Strategies to improve electrode positioning and safety in cochlear implants.

    PubMed

    Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M

    1999-03-01

    An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.

  20. Fusion interfaces for tactical environments: An application of virtual reality technology

    NASA Technical Reports Server (NTRS)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  1. Microsurgical laser Doppler probe for simultaneous intraoperative monitoring of cochlear blood flow and electrocochleography from the round window

    NASA Astrophysics Data System (ADS)

    Abiy, Lidet; Telischi, Fred; Parel, Jean-Marie A.; Manns, Fabrice; Saettele, Ralph; Morawski, Krzysztof; Ozdamar, Ozcan; Borgos, John; Delgado, Rafael; Miskiel, Edward; Yavuz, Erdem

    2003-06-01

    The aim of this project is the development of a microsurgical laser Doppler (LD) probe that simultaneously monitors blood flow and Electrocochleography (ECochG) from the round window of the ear. The device will prevent neurosensory hearing loss during acoustic neuroma surgery by preventing damage to the internal auditory nerve and to the cochlear blood flow supply. A commercially available 0.5 mm diameter Laser-Doppler velocimetry probe (LaserFlo, Vasamedics) was modified to integrate an ECochG electrode. A tube for suction and irrigation was incorporated into a sheath of the probe shaft, to facilitate cleaning of the round window (RW) and allow drug delivery to the round window membrane. The prototype microprobe was calibrated on a single vessel model and tested in vivo in a rabbit model. Preliminary results indicate that the microprobe was able to measure changes in cochlear blood flow (CBF) and ECochG potentials from the round window of rabbits in vivo. The microprobe is suitable for monitoring cochlear blood flow and auditory cochlear potentials during human surgery.

  2. ENCODING OF TEMPORAL FEATURES OF AUDITORY STIMULI IN THE MEDIAL NUCLEUS OF THE TRAPEZOID BODY AND SUPERIOR PARAOLIVARY NUCLEUS OF THE RAT

    PubMed Central

    Kadner, Alexander; Berrebi, Albert S.

    2008-01-01

    Neurons in the superior paraolivary nucleus (SPON) respond to the offset of pure tones with a brief burst of spikes. Medial nucleus of the trapezoid body (MNTB) neurons, which inhibit the SPON, produce a sustained pure tone response followed by an offset response characterized by a period of suppressed spontaneous activity. This MNTB offset response is duration dependent and critical to the formation of SPON offset spikes (Kadner et al., 2006; Kulesza, Jr. et al., 2007). Here we examine the temporal resolution of the MNTB/SPON circuit by assessing its capability to i) detect gaps in tones, and ii) synchronize to sinusoidally amplitude modulated (SAM) tones. Gap detection was tested by presenting two identical pure tone markers interrupted by gaps ranging from 0–25 ms duration. SPON neurons responded to the offset of the leading marker even when the two markers were separated only by their ramps (i.e., a 0 ms gap); longer gap durations elicited progressively larger responses. MNTB neurons produced an offset response at gap durations of 2 ms or longer, with a subset of neurons responding to 0 ms gaps. SAM tone stimuli used the unit’s characteristic frequency as a carrier, and modulation rates ranged from 40–1160 Hz. MNTB neurons synchronized to modulation rates up to ~1 KHz, whereas spiking of SPON neurons decreased sharply at modulation rates ≥ 400 Hz. Modulation transfer functions based on spike count were all-pass for MNTB neurons and low-pass for SPON neurons; the modulation transfer functions based on vector strength were low-pass for both nuclei, with a steeper cut-off for SPON neurons. Thus, the MNTB/SPON circuit encodes episodes of low stimulus energy, such as gaps in pure tones and troughs in amplitude modulated tones. The output of this circuit consists of brief SPON spiking episodes; their potential effects on the auditory midbrain and forebrain are discussed. PMID:18155850

  3. Recovery cycle times of inferior colliculus neurons in the awake bat measured with spike counts and latencies

    PubMed Central

    Sayegh, Riziq; Aubie, Brandon; Fazel-Pour, Siavosh; Faure, Paul A.

    2012-01-01

    Neural responses in the mammalian auditory midbrain (inferior colliculus; IC) arise from complex interactions of synaptic excitation, inhibition, and intrinsic properties of the cell. Temporally selective duration-tuned neurons (DTNs) in the IC are hypothesized to arise through the convergence of excitatory and inhibitory synaptic inputs offset in time. Synaptic inhibition can be inferred from extracellular recordings by presenting pairs of pulses (paired tone stimulation) and comparing the evoked responses of the cell to each pulse. We obtained single unit recordings from the IC of the awake big brown bat (Eptesicus fuscus) and used paired tone stimulation to measure the recovery cycle times of DTNs and non-temporally selective auditory neurons. By systematically varying the interpulse interval (IPI) of the paired tone stimulus, we determined the minimum IPI required for a neuron's spike count or its spike latency (first- or last-spike latency) in response to the second tone to recover to within ≥50% of the cell's baseline count or to within 1 SD of it's baseline latency in response to the first tone. Recovery times of shortpass DTNs were significantly shorter than those of bandpass DTNs, and recovery times of bandpass DTNs were longer than allpass neurons not selective for stimulus duration. Recovery times measured with spike counts were positively correlated with those measured with spike latencies. Recovery times were also correlated with first-spike latency (FSL). These findings, combined with previous studies on duration tuning in the IC, suggest that persistent inhibition is a defining characteristic of DTNs. Herein, we discuss measuring recovery times of neurons with spike counts and latencies. We also highlight how persistent inhibition could determine neural recovery times and serve as a potential mechanism underlying the precedence effect in humans. Finally, we explore implications of recovery times for DTNs in the context of bat hearing and echolocation. PMID:22933992

  4. Weak reward source memory in depression reflects blunted activation of VTA/SN and parahippocampus

    PubMed Central

    Dobbins, Ian G.; Pizzagalli, Diego A.

    2014-01-01

    Reward responses in the medial temporal lobes and dopaminergic midbrain boost episodic memory formation in healthy adults, and weak memory for emotionally positive material in depression suggests this mechanism may be dysfunctional in major depressive disorder (MDD). To test this hypothesis, we performed a study in which unmedicated adults with MDD and healthy controls encoded drawings paired with reward or zero tokens during functional magnetic resonance imaging. In a recognition test, participants judged whether drawings were previously associated with the reward token (‘reward source’) or the zero token (‘zero source’). Unlike controls, depressed participants failed to show better memory for drawings from the reward source vs the zero source. Consistent with predictions, controls also showed a stronger encoding response to reward tokens vs zero tokens in the right parahippocampus and dopaminergic midbrain, whereas the MDD group showed the opposite pattern—stronger responses to zero vs reward tokens—in these regions. Differential activation of the dopaminergic midbrain by reward vs zero tokens was positively correlated with the reward source memory advantage in controls, but not depressed participants. These data suggest that weaker memory for positive material in depression reflects blunted encoding responses in the dopaminergic midbrain and medial temporal lobes. PMID:24078019

  5. The Significance of Brain Transcranial Sonography in Burning Mouth Syndrome: a Pilot Study

    PubMed Central

    Zavoreo, Iris; Vučićević, Vanja; Zadravec, Dijana; Bašić, Vanja; Kes; Ciliga, Dubravka; Gabrić, Dragana

    2017-01-01

    Objective Burning mouth syndrome (BMS) is a chronic disorder which is affecting mostly postmenopausal women and is characterized by burning symptoms in the oral cavity on the clinically healthy oral mucosa. Also, the results of previous studies suggested a possible role of peripheral and/or central neurological disturbances in these patients. The aim of this study was to analyze patients with burning mouth syndrome using transcranial sonography. Methods By use of transcranial sonography of the brain parenchyma, substantia nigra, midbrain raphe and brain nucleus were evaluated in 20 patients with BMS (64.7±12.3 years) and 20 controls with chronic pain in the lumbosacral region (61.5±15). Statistical analysis was performed by use of Student t test with significance set at p<0.05. Results The results of this study have shown hypoechogenicity of the substantia nigra and midbrain raphe as well as hyperechogenicity of the brain nucleus in BMS patients (p<0,05) as compared to controls. Conclusions Altered transcranial sonography findings of the brain parenchyma, midbrain raphe and brain nucleus in patients with burning mouth syndrome might reflect central disturbances within this syndrome. Key words Burning Mouth Syndrome; Transcranial Sonography; substantia nigra; Midbrain Raphe Nuclei; Red Nucleus PMID:28740270

  6. The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain.

    PubMed

    Lipska, Barbara K; Lerman, Daniel N; Khaing, Zin Z; Weinberger, Daniel R

    2003-12-01

    The neonatal ventral hippocampal lesion in the rat has been used as a model of schizophrenia, a human disorder associated with changes in markers of dopamine and gamma-aminobutyric acid (GABA) circuits in various regions of the brain. We investigated whether alterations in mRNA markers related to the activity of midbrain dopaminergic and GABAergic neurons are associated with this model. We used in situ hybridization histochemistry to assess expression of mRNAs for dopamine transporter (DAT), tyrosine hydroxylase (TH) and glutamate decarboxylase-67 (GAD67) in the midbrain of adult rats with neonatal and adult ibotenic acid lesions of the ventral hippocampus. Neonatally lesioned rats showed in adulthood significantly reduced expression of DAT mRNA in the substantia nigra and the ventral tegmental area but no changes in the expression of TH and GAD67 mRNAs in these midbrain regions. Adult lesioned rats showed no changes in the expression of any of these genes. As the neonatal ventral hippocampal lesion reproduces many aspects of schizophrenia and is used as an animal model of this disorder, these results suggest that the reduction in DAT mRNA could result from developmental neuropathology in the ventral hippocampus and may thus represent a molecular substrate of the disease process.

  7. Midbrain interaction with the hypothalamus in expression of aggressive behavior in cats.

    PubMed

    Romaniuk, A; Golebiewski, H

    1977-01-01

    The effects of injections of M- and N-cholinergic blocking agents into the antero-medial hypothalamus (HM) and the midbrain central gray (GC) on the aggressive behavior of cats, evoked by microinjections of carbachol into those areas, were investigated in chronic experiments. The influence of pharmacological suppression of the M-cholinergic system in HM on the carbachol-induced aggression response from GC and vice versa was also studied. In the experiments a quantitative method was applied for measuring the specific vocalization - growling, which is a characteristic of aggressive behavior. In the HM and GC areas of the cat the N- and the M-cholinergic systems participated in the control of aggressive behavior, but the M-component dominated in the process. The suppression of M-cholinergic system in GC prevented the appearance of aggressive behavior evoked by injections of carbachol into HM, and the M-cholinergic blockade in HM reduced (by 90 percent) the aggression response evoked by the injections of carbachol into GC. It is concluded that a concurrent action of the hypothalamic and the midbrain cholinergic systems is necessary for the appearance of a fully expressed aggressive behavior. The hypothalamus and the midbrain are probably links of the same functional circuit, and that the control of aggressive behavior is based on a circulatory action between these structures.

  8. The neural correlates of priming emotion and reward systems for conflict processing in alcoholics.

    PubMed

    Schulte, T; Jung, Y-C; Sullivan, E V; Pfefferbaum, A; Serventi, M; Müller-Oehring, E M

    2017-12-01

    Emotional dysregulation in alcoholism (ALC) may result from disturbed inhibitory mechanisms. We therefore tested emotion and alcohol cue reactivity and inhibitory processes using negative priming. To test the neural correlates of cue reactivity and negative priming, 26 ALC and 26 age-matched controls underwent functional MRI performing a Stroop color match-to-sample task. In cue reactivity trials, task-irrelevant emotion and alcohol-related pictures were interspersed between color samples and color words. In negative priming trials, pictures primed the semantic content of an alcohol or emotion Stroop word. Behaviorally, both groups showed response facilitation to picture cue trials and response inhibition to primed trials. For cue reactivity to emotion and alcohol pictures, ALC showed midbrain-limbic activation. By contrast, controls activated frontoparietal executive control regions. Greater midbrain-hippocampal activation in ALC correlated with higher amounts of lifetime alcohol consumption and higher anxiety. With negative priming, ALC exhibited frontal cortical but not midbrain-hippocampal activation, similar to the pattern observed in controls. Higher frontal activation to alcohol-priming correlated with less craving and to emotion-priming with fewer depressive symptoms. The findings suggest that neurofunctional systems in ALC can be primed to deal with upcoming emotion- and alcohol-related conflict and can overcome the prepotent midbrain-limbic cue reactivity response.

  9. Creation of a 3D printed temporal bone model from clinical CT data.

    PubMed

    Cohen, Joss; Reyes, Samuel A

    2015-01-01

    Generate and describe the process of creating a 3D printed, rapid prototype temporal bone model from clinical quality CT images. We describe a technique to create an accurate, alterable, and reproducible rapid prototype temporal bone model using freely available software to segment clinical CT data and generate three different 3D models composed of ABS plastic. Each model was evaluated based on the appearance and size of anatomical structures and response to surgical drilling. Mastoid air cells had retained scaffolding material in the initial versions. This required modifying the model to allow drainage of the scaffolding material. External auditory canal dimensions were similar to those measured from the clinical data. Malleus, incus, oval window, round window, promontory, horizontal semicircular canal, and mastoid segment of the facial nerve canal were identified in all models. The stapes was only partially formed in two models and absent in the third. Qualitative feel of the ABS plastic was softer than bone. The pate produced by drilling was similar to bone dust when appropriate irrigation was used. We present a rapid prototype temporal bone model made based on clinical CT data using 3D printing technology. The model can be made quickly and inexpensively enough to have potential applications for educational training. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neuronal Control of Mammalian Vocalization, with Special Reference to the Squirrel Monkey

    NASA Astrophysics Data System (ADS)

    Jürgens, Uwe

    Squirrel monkey vocalization can be considered as a suitable model for the study in humans of the neurobiological basis of nonverbal emotional vocal utterances, such as laughing, crying, and groaning. Evaluation of electrical and chemical brain stimulation data, lesioning studies, single-neurone recordings, and neuroanatomical tracing work leads to the following conclusions: The periaqueductal gray and laterally bordering tegmentum of the midbrain represent a crucial area for the production of vocalization. This area collects the various vocalization-triggering stimuli, such as auditory, visual, and somatosensory input from diverse sensory-processing structures, motivation-controlling input from some limbic structures, and volitional impulses from the anterior cingulate cortex. Destruction of this area causes mutism. It is still under dispute whether the periaqueductal region harbors the vocal pattern generator or merely couples vocalization-triggering information to motor-coordinating structures further downward in the brainstem. The periaqueductal region is connected with the phonatory motoneuron pools indirectly via one or several interneurons. The nucleus retroambiguus represents a crucial relay station for the laryngeal and expiratory component of vocalization. The articulatory component reaches the orofacial motoneuron pools via the parvocellular reticular formation. Essential proprioceptive feedback from the larynx and lungs enter the vocal-controlling network via the solitary tract nucleus.

  11. Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development.

    PubMed

    Simmons, Andrea Megela; Flores, Victoria

    2012-04-01

    In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole's dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40-200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole's vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient "deaf period" of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories.

  12. Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development

    PubMed Central

    Flores, Victoria

    2012-01-01

    In their shallow-water habitats, bullfrog (Rana catesbeiana) tadpoles are exposed to both underwater and airborne sources of acoustic stimulation. We probed the representation of underwater particle motion throughout the tadpole’s dorsal medulla to determine its spatial extent over larval life. Using neurobiotin-filled micropipettes, we recorded neural activity to z-axis particle motion (frequencies of 40–200 Hz) in the medial vestibular nucleus, lateral vestibular nucleus, dorsal medullary nucleus (DMN), and along the dorsal arcuate pathway. Sensitivity was comparable in the medial and lateral vestibular nuclei, with estimated thresholds between 0.016 and 12.5 μm displacement. Neither best responding frequency nor estimated threshold varied significantly over larval stage. Transport of neurobiotin from active recording sites was also stable over development. The DMN responded poorly to z-axis particle motion, but did respond to low-frequency pressure stimulation. These data suggest that particle motion is represented widely and stably in the tadpole’s vestibular medulla. This is in marked contrast to the representation of pressure stimulation in the auditory midbrain, where a transient “deaf period” of non-responsiveness and decreased connectivity occurs immediately prior to metamorphic climax. We suggest that, in bullfrogs, sensitivity to particle motion and to pressure follows different developmental trajectories. PMID:22198742

  13. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model123

    PubMed Central

    Dong, Junzi; Colburn, H. Steven

    2016-01-01

    In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem. PMID:26866056

  14. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat.

    PubMed

    Goodale, M A; Murison, R C

    1975-05-02

    The effects of bilateral removal of the superior colliculus or visual cortex on visually guided locomotor movements in rats performing a brightness discrimination task were investigated directly with the use of cine film. Rats with collicular lesions showed patterns of locomotion comparable to or more efficient than those of normal animals when approaching one of 5 small doors located at one end of a large open area. In contrast, animals with large but incomplete lesions of visual cortex were distinctly impaired in their visual control of approach responses to the same stimuli. On the other hand, rats with collicular damage showed no orienting reflex or evidence of distraction in the same task when novel visual or auditory stimuli were presented. However, both normal and visual-decorticate rats showed various components of the orienting reflex and disturbance in task performance when the same novel stimuli were presented. These results suggest that although the superior colliculus does not appear to be essential to the visual control of locomotor orientation, this midbrain structure might participate in the mediation of shifts in visual fixation and attention. Visual cortex, while contributing to visuospatial guidance of locomotor movements, might not play a significant role in the control and integration of the orienting reflex.

  15. Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model(1,2,3).

    PubMed

    Dong, Junzi; Colburn, H Steven; Sen, Kamal

    2016-01-01

    In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.

  16. Preferred Tempo and Low-Audio-Frequency Bias Emerge From Simulated Sub-cortical Processing of Sounds With a Musical Beat

    PubMed Central

    Zuk, Nathaniel J.; Carney, Laurel H.; Lalor, Edmund C.

    2018-01-01

    Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification. PMID:29896080

  17. A biologically plausible computational model for auditory object recognition.

    PubMed

    Larson, Eric; Billimoria, Cyrus P; Sen, Kamal

    2009-01-01

    Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli. Multiple groups have developed spike similarity or dissimilarity metrics to quantify the differences between spike trains. Using a nearest-neighbor approach the spike similarity metrics can be used to classify the stimuli into groups used to evoke the spike trains. The nearest prototype spike train to the tested spike train can then be used to identify the stimulus. However, how biological circuits might perform such computations remains unclear. Elucidating this question would facilitate the experimental search for such circuits in biological systems, as well as the design of artificial circuits that can perform such computations. Here we present a biologically plausible model for discrimination inspired by a spike distance metric using a network of integrate-and-fire model neurons coupled to a decision network. We then apply this model to the birdsong system in the context of song discrimination and recognition. We show that the model circuit is effective at recognizing individual songs, based on experimental input data from field L, the avian primary auditory cortex analog. We also compare the performance and robustness of this model to two alternative models of song discrimination: a model based on coincidence detection and a model based on firing rate.

  18. Neural pathways from thalamus associated with regulation of aggressive behavior.

    PubMed

    Bandler, R J; Flynn, J P

    1974-01-11

    Small electrolytic lesions were made through electrodes in the thalamus of cats at sites where electrical stimulation elicited attack on a rat. Staining by modified Nauta reduced silver methods revealed that significant degeneration passed caudally from the lesions and entered the midbrain dorsal central gray region. Electrical stimulation of this dorsal midbrain region elicited attack on a rat, and destruction of this region suppressed the attack elicited by thalamic stimulation.

  19. Cholinergic Mesopontine Signals Govern Locomotion and Reward Through Dissociable Midbrain Pathways

    PubMed Central

    Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B.; Chan, Ken; McKinney, Sheri L.; Yang, Bin; Gradinaru, Viviana

    2016-01-01

    The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons, however although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197

  20. Reward and aversion in a heterogeneous midbrain dopamine system.

    PubMed

    Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C

    2014-01-01

    The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Pure-tone Audiometer

    NASA Astrophysics Data System (ADS)

    Kapul, A. A.; Zubova, E. I.; Torgaev, S. N.; Drobchik, V. V.

    2017-08-01

    The research focuses on a pure-tone audiometer designing. The relevance of the study is proved by high incidence of an auditory analyser in older people and children. At first, the article provides information about subjective and objective audiometry methods. Secondly, we offer block-diagram and basic-circuit arrangement of device. We decided to base on STM32F407VG microcontroller and use digital pot in the function of attenuator. Third, we implemented microcontroller and PC connection. C programming language is used for microcontroller’s program and PC’s interface. Fourthly, we created the pure-tone audiometer prototype. In the future, we will implement the objective method ASSR in addition to pure-tone audiometry.

  2. Isolated Medial Rectus Nuclear Palsy as a Rare Presentation of Midbrain Infarction.

    PubMed

    Al-Sofiani, Mohammed; Lee Kwen, Peterkin

    2015-10-08

    Diplopia is a common subjective complaint that can be the first manifestation of a serious pathology. Here, we report a rare case of midbrain infarction involving the lateral subnucleus of the oculomotor nuclear complex presenting as diplopia, with no other stroke manifestations. An 83-year-old right-handed white man with past medical history of diabetes mellitus, hypertension, dyslipidemia, and coronary artery disease presented to the emergency department (ED) with diplopia and unsteadiness. Two days prior to admission, the patient woke up with constant horizontal diplopia and unsteadiness, which limited his daily activities and led to a fall at home. He denied any weakness, clumsiness, nausea, vomiting, photophobia, fever, or chills. Ocular exam showed a disconjugate gaze at rest, weakness of the left medial rectus muscle, impaired convergence test, and bilateral 3-mm reactive pupils. The diplopia resolved by closing either eye. The remaining extraocular muscles and other cranial nerves were normal. There was no nystagmus, ptosis, or visual field deficit. Sensation, muscle tone, and strength were normal in all extremities. Magnetic resonance imaging (MRI) of the brain revealed a tiny focus of restricted diffusion in the left posterior lateral midbrain. A thorough history and physical examination is essential to diagnose and manage diplopia. Isolated extraocular palsy is usually thought to be caused by orbital lesions or muscular diseases. Here, we report a case of midbrain infarction manifested as isolated medial rectus palsy.

  3. Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate

    PubMed Central

    Sebastian, Waldy San; Kells, Adrian P; Bringas, John; Samaranch, Lluis; Hadaczek, Piotr; Ciesielska, Agnieszka; Macayan, Michael J; Pivirotto, Phillip J; Forsayeth, John; Osborne, Sheryl; Wright, J Fraser; Green, Foad; Heller, Gregory; Bankiewicz, Krystof S

    2014-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC) in AADC-deficient children. Unfortunately, patients presented only modest amelioration of motor symptoms, which authors acknowledged could be due to insufficient transduction of putamen. We hypothesize that, with the development of a highly accurate MRI-guided cannula placement technology, a more effective approach might be to target the affected mid-brain neurons directly. Transduction of AADC-deficient dopaminergic neurons in the substantia nigra and ventral tegmental area with locally infused AAV2-hAADC would be expected to lead to restoration of normal dopamine levels in affected children. The objective of this study was to assess the long-term safety and tolerability of bilateral AAV2-hAADC MRI-guided pressurized infusion into the mid-brain of nonhuman primates. Animals received either vehicle, low or high AAV2-hAADC vector dose and were euthanized 1, 3, or 9 months after surgery. Our data indicate that effective mid-brain transduction was achieved without untoward effects. PMID:25541617

  4. spiel ohne grenzen/pou2 is required during establishment of the zebrafish midbrain-hindbrain boundary organizer.

    PubMed

    Belting, H G; Hauptmann, G; Meyer, D; Abdelilah-Seyfried, S; Chitnis, A; Eschbach, C; Söll, I; Thisse, C; Thisse, B; Artinger, K B; Lunde, K; Driever, W

    2001-11-01

    The vertebrate midbrain-hindbrain boundary (MHB) organizes patterning and neuronal differentiation in the midbrain and anterior hindbrain. Formation of this organizing center involves multiple steps, including positioning of the MHB within the neural plate, establishment of the organizer and maintenance of its regional identity and signaling activities. Juxtaposition of the Otx2 and Gbx2 expression domains positions the MHB. How the positional information is translated into activation of Pax2, Wnt1 and Fgf8 expression during MHB establishment remains unclear. In zebrafish spiel ohne grenzen (spg) mutants, the MHB is not established, neither isthmus nor cerebellum form, the midbrain is reduced in size and patterning abnormalities develop within the hindbrain. In spg mutants, despite apparently normal expression of otx2, gbx1 and fgf8 during late gastrula stages, the initial expression of pax2.1, wnt1 and eng2, as well as later expression of fgf8 in the MHB primordium are reduced. We show that spg mutants have lesions in pou2, which encodes a POU-domain transcription factor. Maternal pou2 transcripts are distributed evenly in the blastula, and zygotic expression domains include the midbrain and hindbrain primordia during late gastrulation. Microinjection of pou2 mRNA can rescue pax2.1 and wnt1 expression in the MHB of spg/pou2 mutants without inducing ectopic expression. This indicates an essential but permissive role for pou2 during MHB establishment. pou2 is expressed normally in noi/pax2.1 and ace/fgf8 zebrafish mutants, which also form no MHB. Thus, expression of pou2 does not depend on fgf8 and pax2.1. Our data suggest that pou2 is required for the establishment of the normal expression domains of wnt1 and pax2.1 in the MHB primordium.

  5. Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling.

    PubMed

    Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung; Robinson, G Eric; Fontelonga, Tatiana; Kim, Kyung-Tai; Song, Mi-Ryoung; Mastick, Grant S

    2016-10-22

    Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.

  6. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys.

    PubMed

    Masilamoni, Gunasingh Jeyaraj; Groover, Olivia; Smith, Yoland

    2017-04-01

    There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease.

    PubMed

    Levesque, Shannon; Surace, Michael J; McDonald, Jacob; Block, Michelle L

    2011-08-24

    Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m³) by inhalation over 6 months. DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m³ significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m³ and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m³) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m³ exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain.

  8. Isolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation

    PubMed Central

    Doi, Daisuke; Samata, Bumpei; Katsukawa, Mitsuko; Kikuchi, Tetsuhiro; Morizane, Asuka; Ono, Yuichi; Sekiguchi, Kiyotoshi; Nakagawa, Masato; Parmar, Malin; Takahashi, Jun

    2014-01-01

    Summary Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson’s disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN. We induced DA neurons using scalable culture conditions on human laminin fragment, and the sorted CORIN+ cells expressed the midbrain DA progenitor markers, FOXA2 and LMX1A. When transplanted into 6-OHDA-lesioned rats, the CORIN+ cells survived and differentiated into midbrain DA neurons in vivo, resulting in significant improvement of the motor behavior, without tumor formation. In particular, the CORIN+ cells in a NURR1+ cell-dominant stage exhibited the best survival and function as DA neurons. Our method is a favorable strategy in terms of scalability, safety, and efficiency and may be advantageous for clinical application. PMID:24672756

  9. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    PubMed

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-02

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction. Copyright © 2015, American Association for the Advancement of Science.

  10. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration

    PubMed Central

    Stevens, Daniel A.; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A.; Dawson, Valina L.; Shin, Joo-Ho; Dawson, Ted M.

    2015-01-01

    Mutations in parkin lead to early-onset autosomal recessive Parkinson’s disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α–dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925

  11. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  12. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  13. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors.

    PubMed

    Luo, Yan-Jia; Li, Ya-Dong; Wang, Lu; Yang, Su-Rong; Yuan, Xiang-Shan; Wang, Juan; Cherasse, Yoan; Lazarus, Michael; Chen, Jiang-Fan; Qu, Wei-Min; Huang, Zhi-Li

    2018-04-20

    Nucleus accumbens (NAc) is involved in behaviors that depend on heightened wakefulness, but its impact on arousal remains unclear. Here, we demonstrate that NAc dopamine D 1 receptor (D 1 R)-expressing neurons are essential for behavioral arousal. Using in vivo fiber photometry in mice, we find arousal-dependent increases in population activity of NAc D 1 R neurons. Optogenetic activation of NAc D 1 R neurons induces immediate transitions from non-rapid eye movement sleep to wakefulness, and chemogenetic stimulation prolongs arousal, with decreased food intake. Patch-clamp, tracing, immunohistochemistry, and electron microscopy reveal that NAc D 1 R neurons project to the midbrain and lateral hypothalamus, and might disinhibit midbrain dopamine neurons and lateral hypothalamus orexin neurons. Photoactivation of terminals in the midbrain and lateral hypothalamus is sufficient to induce wakefulness. Silencing of NAc D 1 R neurons suppresses arousal, with increased nest-building behaviors. Collectively, our data indicate that NAc D 1 R neuron circuits are essential for the induction and maintenance of wakefulness.

  14. The rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons, selectively encodes aversive stimuli and promotes behavioral inhibition

    PubMed Central

    Jhou, Thomas C.; Fields, Howard L.; Baxter, Mark G.; Saper, Clifford B.; Holland, Peter C.

    2009-01-01

    Summary Separate studies have implicated the lateral habenula (LHb) or amygdala-related regions in processing aversive stimuli, but their relationships to each other and to appetitive motivational systems are poorly understood. We show that neurons in the recently identified GABAergic rostromedial tegmental nucleus (RMTg), which receive a major LHb input, project heavily to midbrain dopamine neurons, and show phasic activations and/or Fos induction after aversive stimuli (footshocks, shock-predictive cues, food deprivation, or reward omission) and inhibitions after rewards or reward-predictive stimuli. RMTg lesions markedly reduce passive fear behaviors (freezing, open-arm avoidance) dependent on the extended amygdala, periaqueductal gray, or septum, all regions that project directly to the RMTg. In contrast, RMTg lesions spare or enhance active fear responses (treading, escape) in these same paradigms. These findings suggest that aversive inputs from widespread brain regions and stimulus modalities converge onto the RMTg, which opposes reward and motor-activating functions of midbrain dopamine neurons PMID:19285474

  15. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability

    PubMed Central

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-01-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates. PMID:28401925

  16. Selective updating of working memory content modulates meso-cortico-striatal activity.

    PubMed

    Murty, Vishnu P; Sambataro, Fabio; Radulescu, Eugenia; Altamura, Mario; Iudicello, Jennifer; Zoltick, Bradley; Weinberger, Daniel R; Goldberg, Terry E; Mattay, Venkata S

    2011-08-01

    Accumulating evidence from non-human primates and computational modeling suggests that dopaminergic signals arising from the midbrain (substantia nigra/ventral tegmental area) mediate striatal gating of the prefrontal cortex during the selective updating of working memory. Using event-related functional magnetic resonance imaging, we explored the neural mechanisms underlying the selective updating of information stored in working memory. Participants were scanned during a novel working memory task that parses the neurophysiology underlying working memory maintenance, overwriting, and selective updating. Analyses revealed a functionally coupled network consisting of a midbrain region encompassing the substantia nigra/ventral tegmental area, caudate, and dorsolateral prefrontal cortex that was selectively engaged during working memory updating compared to the overwriting and maintenance of working memory content. Further analysis revealed differential midbrain-dorsolateral prefrontal interactions during selective updating between low-performing and high-performing individuals. These findings highlight the role of this meso-cortico-striatal circuitry during the selective updating of working memory in humans, which complements previous research in behavioral neuroscience and computational modeling. Published by Elsevier Inc.

  17. Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and Somatosensory Microcircuitry

    PubMed Central

    Sadovsky, Alexander J.

    2013-01-01

    Mapping the flow of activity through neocortical microcircuits provides key insights into the underlying circuit architecture. Using a comparative analysis we determined the extent to which the dynamics of microcircuits in mouse primary somatosensory barrel field (S1BF) and auditory (A1) neocortex generalize. We imaged the simultaneous dynamics of up to 1126 neurons spanning multiple columns and layers using high-speed multiphoton imaging. The temporal progression and reliability of reactivation of circuit events in both regions suggested common underlying cortical design features. We used circuit activity flow to generate functional connectivity maps, or graphs, to test the microcircuit hypothesis within a functional framework. S1BF and A1 present a useful test of the postulate as both regions map sensory input anatomically, but each area appears organized according to different design principles. We projected the functional topologies into anatomical space and found benchmarks of organization that had been previously described using physiology and anatomical methods, consistent with a close mapping between anatomy and functional dynamics. By comparing graphs representing activity flow we found that each region is similarly organized as highlighted by hallmarks of small world, scale free, and hierarchical modular topologies. Models of prototypical functional circuits from each area of cortex were sufficient to recapitulate experimentally observed circuit activity. Convergence to common behavior by these models was accomplished using preferential attachment to scale from an auditory up to a somatosensory circuit. These functional data imply that the microcircuit hypothesis be framed as scalable principles of neocortical circuit design. PMID:23986241

  18. Information fusion via isocortex-based Area 37 modeling

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.

  19. Functional Organization and Dynamic Activity in the Superior Colliculus of the Echolocating Bat, Eptesicus fuscus.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2018-01-03

    Sensory-guided behaviors require the transformation of sensory information into task-specific motor commands. Prior research on sensorimotor integration has emphasized visuomotor processes in the context of simplified orienting movements in controlled laboratory tasks rather than an animal's more complete, natural behavioral repertoire. Here, we conducted a series of neural recording experiments in the midbrain superior colliculus (SC) of echolocating bats engaged in a sonar target-tracking task that invoked dynamic active sensing behaviors. We hypothesized that SC activity in freely behaving animals would reveal dynamic shifts in neural firing patterns within and across sensory, sensorimotor, and premotor layers. We recorded neural activity in the SC of freely echolocating bats (three females and one male) and replicated the general trends reported in other species with sensory responses in the dorsal divisions and premotor activity in ventral divisions of the SC. However, within this coarse functional organization, we discovered that sensory and motor neurons are comingled within layers throughout the volume of the bat SC. In addition, as the bat increased pulse rate adaptively to increase resolution of the target location with closing distance, the activity of sensory and vocal premotor neurons changed such that auditory response times decreased, and vocal premotor lead times shortened. This finding demonstrates that SC activity can be modified dynamically in concert with adaptive behaviors and suggests that an integrated functional organization within SC laminae supports rapid and local integration of sensory and motor signals for natural, adaptive behaviors. SIGNIFICANCE STATEMENT Natural sensory-guided behaviors involve the rapid integration of information from the environment to direct flexible motor actions. The vast majority of research on sensorimotor integration has used artificial stimuli and simplified behaviors, leaving open questions about nervous system function in the context of natural tasks. Our work investigated mechanisms of dynamic sensorimotor feedback control by analyzing patterns of neural activity in the midbrain superior colliculus (SC) of an echolocating bat tracking and intercepting moving prey. Recordings revealed that sensory and motor neurons comingle within laminae of the SC to support rapid sensorimotor integration. Further, we discovered that neural activity in the bat SC changes with dynamic adaptations in the animal's echolocation behavior. Copyright © 2018 the authors 0270-6474/18/380245-12$15.00/0.

  20. Midbrain stimulation-evoked lumbar spinal activity in the adult decerebrate mouse.

    PubMed

    Stecina, Katinka

    2017-08-15

    Genetic techniques rendering murine models a popular choice for neuroscience research has led to important insights on neural networks controlling locomotor function. Using genetically altered mouse models for in vivo, electrophysiological studies in the adult state could validate key principles of locomotor network organization that have been described in neonatal, in vitro preparations. The experimental model presented here describes a decerebrate, in vivo adult mouse preparation in which focal, electrical midbrain stimulation was combined with monitoring lumbar neural activity and motor output after pre-collicular decerebration and neuromuscular blockade. Lumbar cord dorsum potentials (in 9/10 animals) and motoneuron output (in 3/5 animals) including fictive locomotion, was achieved by focal midbrain stimulation. The stimulation electrode locations could be reconstructed (in 6/7 animals) thereby allowing anatomical identification of the stimulated supraspinal regions. This preparation allows for concomitant recording or stimulation in the spinal cord and in the mid/hindbrain of adult mice. It differs from other methods used in the past with adult mice as it does not require pharmacological manipulation of neural excitability in order to generate motor output. Midbrain stimulation can consistently be used for inducing lumbar neural activity in adult mice under neuromuscular blockade. This model is suited for examination of brain-spinal connectivity and it may benefit a wide range of fields depending on the features of the genetically modified mouse models used in combination with the presented methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of long-term stress on H3Ser10 histone phosphorylation in neuronal nuclei of the sensorimotor cortex and midbrain reticular formation in rats with different nervous system excitability.

    PubMed

    Pavlova, M B; Dyuzhikova, N A; Shiryaeva, N V; Savenko, Yu N; Vaido, A I

    2013-07-01

    The effects of long-term mental and pain stress on H3Ser10 histone phosphorylation in neurons of the the sensorimotor corex and midbrain reticular formation were studied 24 h, 2 weeks, and 2 months after exposure of rats differing by the nervous system excitability. Rats with high excitability threshold exhibited higher basal level of H3Ser10 histone phosphorylation in the midbrain reticular formation neurons than rats with low excitability threshold. The sensorimotor cortical neurons of the two strains did not differ by this parameter. Stress led to a significant increase in the counts of immunopositive neuronal nuclei in rats with low excitability threshold: the parameter increased significantly in the sensorimotor cortex 24 h after exposure and normalized in 2 weeks after neurotization. In the midbrain reticular formation of this rat strain stress stimulated H3Ser10 histone phosphorylation after 24 h and after 2 weeks; the parameter normalized after neurotization in 2 months. Hence, genetically determined level of the nervous system excitability was essential for the basal level of neuron phosphorylation and for the time course of this process after long-term exposure to mental and pain stress, depending on the brain structure. A probable relationship between H3Ser10 histone phosphorylation process and liability to obsessive compulsive mental disorders in humans was discussed.

  2. Focal atrophy in Dementia with Lewy Bodies on MRI: a distinct pattern from Alzheimer's disease

    PubMed Central

    Whitwell, Jennifer L; Weigand, Stephen D; Shiung, Maria M; Boeve, Bradley F; Ferman, Tanis J; Smith, Glenn E; Knopman, David S; Petersen, Ronald C; Benarroch, Eduardo E; Josephs, Keith A; Jack, Clifford R

    2009-01-01

    SUMMARY Dementia with Lewy Bodies (DLB) is the second most common cause of degenerative dementia after Alzheimer's disease (AD). However, unlike in AD the patterns of cerebral atrophy associated with DLB have not been well established. The aim of this study was to identify a signature pattern of cerebral atrophy in DLB and to compare it to the pattern found in AD. Seventy-two patients that fulfilled clinical criteria for probable DLB were age and gender-matched to 72 patients with probable AD and 72 controls. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the DLB and AD groups, relative to controls, after correction for multiple comparisons (p<0.05). Study specific templates and prior probability maps were used to avoid normalization and segmentation bias. Region-of-interest (ROI) analyses were also performed comparing loss of the midbrain, substantia innominata (SI), temporoparietal cortex and hippocampus between the groups. The DLB group showed very little cortical involvement on VBM with regional grey matter loss observed primarily in the dorsal midbrain, SI and hypothalamus. In comparison, the AD group showed a widespread pattern of grey matter loss involving the temporoparietal association cortices and the medial temporal lobes. The SI and dorsal midbrain were involved in AD however they were not identified as a cluster of loss discrete from uninvolved surrounding areas, as observed in the DLB group. On direct comparison between the two groups, the AD group showed greater loss in the medial temporal lobe and inferior temporal regions than the DLB group. The ROI analysis showed reduced SI and midbrain grey matter in both the AD and DLB groups. The SI grey matter was reduced more in AD than DLB, yet the midbrain was reduced more in DLB than AD. The hippocampus and temporoparietal cortex showed significantly greater loss in the AD group compared to the DLB group. A pattern of relatively focused atrophy of the midbrain, hypothalamus and SI, with a relative sparing of the hippocampus and temporoparietal cortex, is therefore suggestive of DLB and may aid in the differentiation of DLB from AD. These findings support recent pathological studies showing an ascending pattern of Lewy Body progression from brainstem to basal areas of the brain. Damage to this network of structures in DLB may affect a number of different neurotransmitter systems which in turn may contribute to a number of the core clinical features of DLB. PMID:17267521

  3. Three cases of communication syringomyelia secondary to midbrain gliomas.

    PubMed Central

    Williams, B; Timperley, W R

    1977-01-01

    Three cases of midbrain gliomas are descrbied clinically and pathologically. In each case high pressure symptoms were followed by visual disturbance and the onset of syringomyelia symptoms before death. All the patients had hydrocephalus. In one case with concomitant syringobulbia, the syrinx appeared to due to CSF communicating with the cord cavity through the tissues of the brain stem. In the other cases the communication between the CSF pathways and the syrinx was at the usual site, through the central canal at the obex. Images PMID:845611

  4. An overview of health effects on noise

    NASA Astrophysics Data System (ADS)

    Osada, Y.

    1988-12-01

    Although noise can damage the inner ear and cause other pathological changes, its most common negative effects are non-somatic, such as a perception of noisiness and disturbance of daily activities. According to the definition of health by WHO, this should be considered as a health hazard. These health effects of noise can be classified into the following three categories: (I) hearing loss, perception of noisiness and masking are produced along the auditory pathway and are thus direct and specific effects of noise; (II) interference with performance, rest and sleep, a feeling of discomfort and some physiological effects are produced as indirect and non-specific effects via reticular formation of the midbrain; (III) annoyance is not merely a feeling of unpleasantness but the feeling of being bothered or troubled, and includes the development of a particular attitude toward the noise source. Individual or group behavioral responses will be evoked when annoyance develops. Annoyance and behavioral response are integrated and composite effects. The health effects of noise are modified by many factors related to both the noise and the individual. Noise level, frequency spectrum, duration and impulsiveness modify the effects. Sex, age, health status and mental character also have an influence on the effects. Direct effects of noise are most dependent on the physical nature of the noise and least dependent on human factors. Indirect effects are more dependent, and integrated effects most dependent, on human factors.

  5. Assessing visual requirements for social context-dependent activation of the songbird song system

    PubMed Central

    Hara, Erina; Kubikova, Lubica; Hessler, Neal A.; Jarvis, Erich D.

    2008-01-01

    Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present. PMID:18826930

  6. Hypnagogic and hypnopompic hallucinations during sleep paralysis: neurological and cultural construction of the night-mare.

    PubMed

    Cheyne, J A; Rueffer, S D; Newby-Clark, I R

    1999-09-01

    Hypnagogic and hypnopompic experiences (HHEs) accompanying sleep paralysis (SP) are often cited as sources of accounts of supernatural nocturnal assaults and paranormal experiences. Descriptions of such experiences are remarkably consistent across time and cultures and consistent also with known mechanisms of REM states. A three-factor structural model of HHEs based on their relations both to cultural narratives and REM neurophysiology is developed and tested with several large samples. One factor, labeled Intruder, consisting of sensed presence, fear, and auditory and visual hallucinations, is conjectured to originate in a hypervigilant state initiated in the midbrain. Another factor, Incubus, comprising pressure on the chest, breathing difficulties, and pain, is attributed to effects of hyperpolarization of motoneurons on perceptions of respiration. These two factors have in common an implied alien "other" consistent with occult narratives identified in numerous contemporary and historical cultures. A third factor, labeled Unusual Bodily Experiences, consisting of floating/flying sensations, out-of-body experiences, and feelings of bliss, is related to physically impossible experiences generated by conflicts of endogenous and exogenous activation related to body position, orientation, and movement. Implications of this last factor for understanding of orientational primacy in self-consciousness are considered. Central features of the model developed here are consistent with recent work on hallucinations associated with hypnosis and schizophrenia. Copyright 1999 Academic Press.

  7. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease

    PubMed Central

    2011-01-01

    Background Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. Objective We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Methods Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m3) by inhalation over 6 months. Results DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m3 significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m3 and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m3) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m3 exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Conclusions Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain. PMID:21864400

  8. nNOS expression in the brain of rats after burn and the effect of the ACE inhibitor captopril.

    PubMed

    Demiralay, Ebru; Saglam, Ibrahim Yaman; Ozdamar, Emine Nur; Sehirli, Ahmet Ozer; Sener, Goksel; Saglam, Esra

    2013-08-01

    To investigate the role of endogenous neuronal nitric oxide synthase (nNOS) on brain injury after burn and the effects of the captopril. Wistar albino rats (200-250 g) were exposed on the dorsal surface to 90°C (burn) or 25°C (sham) water for 10 s. The ACE group was treated with intraperitoneal 10 mg/kg captopril immediately after burn and this treatment was repeated twice daily. At the end of the 24 h brain samples were taken. nNOS was studied in brain areas by immunohistochemistry. There was no difference between the cerebellar and hypothalamic areas the nNOS expression of all groups. nNOS expression increased in the frontal cortex, striatum and midbrain in the burn group compared to the control group. In the frontal cortex, nNOS expression significantly decreased after ACE inhibitor treatment (p<0.05). The striatal nNOS of the ACE group significantly increased when compared to the control group (p=0.001). In the midbrain of the animals, nNOS decreased in the ACE group. Hippocampal nNOS expression did not change after burn and significantly increased after ACE inhibitor therapy (p<0.05). Our data showed that the pathophysiological events following burn appear to be related to an acute inflammatory reaction which is associated with nNOS in the frontal cortex, striatum and midbrain, and captopril treatment abrogates the nNOS response in the frontal cortex and midbrain. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  9. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development

    PubMed Central

    Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael

    2017-01-01

    The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development. PMID:28713249

  10. From Threat to Fear: The neural organization of defensive fear systems in humans

    PubMed Central

    Mobbs, Dean; Marchant, Jennifer L; Hassabis, Demis; Seymour, Ben; Tan, Geoffrey; Gray, Marcus; Petrovic, Predrag; Dolan, Raymond J.; Frith, Christopher D.

    2009-01-01

    Post-encounter and circa-strike defensive contexts represent two adaptive responses to potential and imminent danger. In the context of a predator, the post-encounter reflects the initial detection of the potential threat, whilst the circa-strike is associated with direct predatory attack. We used fMRI to investigate the neural organization of anticipation and avoidance of artificial predators with high or low probability of capturing the subject across analogous post-encounter and circa-strike contexts of threat. Consistent with defense systems models, post-encounter threat elicited activity in forebrain areas including subgenual anterior cingulate cortex (sgACC), hippocampus and amygdala. Conversely, active avoidance during circa-strike threat increased activity in mid-dorsal ACC and midbrain areas. During the circa-strike condition, subjects showed increased coupling between the midbrain and mid-dorsal ACC and decreased coupling with the sgACC, amygdala and hippocampus. Greater activity was observed in the right pregenual ACC for high compared to low probability of capture during circa-strike threat. This region showed decreased coupling with the amygdala, insula and ventromedial prefrontal cortex. Finally, we found that locomotor errors correlated with subjective reports of panic for the high compared to low probability of capture during the circa-strike threat and these panic-related locomotor errors were correlated with midbrain activity. These findings support models suggesting that higher forebrain areas are involved in early threat responses, including the assignment and control of fear, whereas as imminent danger results in fast, likely “hard-wired”, defensive reactions mediated by the midbrain. PMID:19793982

  11. Midbrain functional connectivity and ventral striatal dopamine D2-type receptors: Link to impulsivity in methamphetamine users

    PubMed Central

    Kohno, Milky; Okita, Kyoji; Morales, Angelica M.; Robertson, Chelsea; Dean, Andy C.; Ghahremani, Dara G.; Sabb, Fred; Mandelkern, Mark A.; Bilder, Robert M.; London, Edythe D.

    2015-01-01

    Stimulant use disorders are associated with deficits in striatal dopamine receptor availability, abnormalities in mesocorticolimbic resting-state functional connectivity (RSFC), and impulsivity. In methamphetamine-dependent research participants, impulsivity is correlated negatively with striatal D2-type receptor availability, and mesocorticolimbic RSFC is stronger than in controls. The extent to which these features of methamphetamine dependence are interrelated, however, is unknown. This question was addressed in two studies. In Study 1, 19 methamphetamine-dependent and 26 healthy control subjects underwent [18F]fallypride positron emission tomography to measure ventral striatal dopamine D2-type receptor availability, indexed by binding potential (BPND), and functional magnetic resonance imaging (fMRI) to assess mesocorticolimbic RSFC, using a midbrain seed. In Study 2, an independent sample of 20 methamphetamine-dependent and 18 control subjects completed the Barratt Impulsiveness Scale in addition to fMRI. Study 1 showed a significant group by ventral striatal BPND interaction effect on RSFC, reflecting a negative relationship between ventral striatal BPND and RSFC between midbrain and striatum, orbitofrontal cortex, and insula in methamphetamine-dependent participants but a positive relationship in the control group. In Study 2, an interaction of group with RSFC on impulsivity was observed. Methamphetamine-dependent participants users exhibited a positive relationship of midbrain RSFC to the left ventral striatum with cognitive impulsivity, whereas a negative relationship was observed in healthy controls. The results indicate that ventral striatal D2-type receptor signaling may affect system-level activity within the mesocorticolimbic system, providing a functional link that may help explain high impulsivity in methamphetamine-dependent individuals. PMID:26830141

  12. Intrinsic functional connectivity alterations in progressive supranuclear palsy: Differential effects in frontal cortex, motor, and midbrain networks.

    PubMed

    Rosskopf, Johannes; Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Uttner, Ingo; Ludolph, Albert C; Pinkhardt, Elmar; Juengling, Freimut D; Kassubek, Jan

    2017-07-01

    The topography of functional network changes in progressive supranuclear palsy can be mapped by intrinsic functional connectivity MRI. The objective of this study was to study functional connectivity and its clinical and behavioral correlates in dedicated networks comprising the cognition-related default mode and the motor and midbrain functional networks in patients with PSP. Whole-brain-based "resting-state" functional MRI and high-resolution T1-weighted magnetic resonance imaging data together with neuropsychological and video-oculographic data from 34 PSP patients (22 with Richardson subtype and 12 with parkinsonian subtype) and 35 matched healthy controls were subjected to network-based functional connectivity and voxel-based morphometry analysis. After correction for global patterns of brain atrophy, the group comparison between PSP patients and controls revealed significantly decreased functional connectivity (P < 0.05, corrected) in the prefrontal cortex, which was significantly correlated with cognitive performance (P = 0.006). Of note, midbrain network connectivity in PSP patients showed increased connectivity with the thalamus, on the one hand, whereas, on the other hand, lower functional connectivity within the midbrain was significantly correlated with vertical gaze impairment, as quantified by video-oculography (P = 0.004). PSP Richardson subtype showed significantly increased functional motor network connectivity with the medial prefrontal gyrus. PSP-associated neurodegeneration was attributed to both decreased and increased functional connectivity. Decreasing functional connectivity was associated with worse behavioral performance (ie, dementia severity and gaze palsy), whereas the pattern of increased functional connectivity may be a potential adaptive mechanism. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  13. Intrinsic Properties Guide Proximal Abducens and Oculomotor Nerve Outgrowth in Avian Embryos

    PubMed Central

    Lance-Jones, Cynthia; Shah, Veeral; Noden, Drew M.; Sours, Emily

    2012-01-01

    Proper movement of the vertebrate eye requires the formation of precisely patterned axonal connections linking cranial somatic motoneurons, located at defined positions in the ventral midbrain and hindbrain, with extraocular muscles. The aim of this research was to assess the relative contributions of intrinsic, population-specific properties and extrinsic, outgrowth site-specific cues during the early stages of abducens and oculomotor nerve development in avian embryos. This was accomplished by surgically transposing midbrain and caudal hindbrain segments, which had been pre-labeled by electroporation with an EGFP construct. Graft-derived EGFP+ oculomotor axons entering a hindbrain microenvironment often mimicked an abducens initial pathway and coursed cranially. Similarly, some EGFP+ abducens axons entering a midbrain microenvironment mimicked an oculomotor initial pathway and coursed ventrally. Many but not all of these axons subsequently projected to extraocular muscles that they would not normally innervate. Strikingly, EGFP+ axons also took initial paths atypical for their new location. Upon exiting from a hindbrain position, most EGFP+ oculomotor axons actually coursed ventrally and joined host branchiomotor nerves, whose neurons share molecular features with oculomotor neurons. Similarly, upon exiting from a midbrain position, some EGFP+ abducens axons turned caudally, elongated parallel to the brainstem, and contacted the lateral rectus muscle, their originally correct target. These data reveal an interplay between intrinsic properties that are unique to oculomotor and abducens populations and shared ability to recognize and respond to extrinsic directional cues. The former play a prominent role in initial pathway choices, whereas the latter appear more instructive during subsequent directional choices. PMID:21739615

  14. Tectonigral Projections in the Primate: A Pathway for Pre-Attentive Sensory Input to Midbrain Dopaminergic Neurons

    PubMed Central

    May, Paul J.; McHaffie, John G.; Stanford, Terrence R.; Jiang, Huai; Costello, M. Gabriela; Coizet, Veronique; Hayes, Lauren M.; Haber, Suzanne N.; Redgrave, Peter

    2010-01-01

    Much of the evidence linking the short-latency phasic signaling of midbrain dopaminergic neurons with reward-prediction errors used in learning and habit formation comes from recording the visual responses of monkey dopaminergic neurons. However, the information encoded by dopaminergic neuron activity is constrained by the qualities of the afferent visual signals made available to these cells. Recent evidence from rats and cats indicates the primary source of this visual input originates subcortically, via a direct tectonigral projection. The present anatomical study sought to establish whether a direct tectonigral projection is a significant feature of the primate brain. Injections of anterograde tracers into the superior colliculus of macaque monkeys labelled terminal arbors throughout the substantia nigra, with the densest terminations in the dorsal tier. Labelled boutons were found in close association (possibly indicative of synaptic contact) with ventral midbrain neurons staining positively for the dopaminergic marker tyrosine hydroxylase. Injections of retrograde tracer confined to the macaque substantia nigra retrogradely labelled small to medium sized neurons in the intermediate and deep layers of the superior colliculus. Together, these data indicate that a direct tectonigral projection is also a feature of the monkey brain, and therefore likely to have been conserved throughout mammalian evolution. Insofar as the superior colliculus is configured to detect unpredicted, biologically salient, sensory events, it may be safer to regard the phasic responses of midbrain dopaminergic neurons as ‘sensory prediction errors’ rather than ‘reward prediction errors’, in which case, dopamine-based theories of reinforcement learning will require revision. PMID:19175405

  15. Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men.

    PubMed

    Schulte, Tilman; Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf

    2012-02-01

    Alcohol dependence is associated with inhibitory control deficits, possibly related to abnormalities in frontoparietal cortical and midbrain function and connectivity. We examined functional connectivity and microstructural fiber integrity between frontoparietal and midbrain structures using a Stroop Match-to-Sample task with functional magnetic resonance imaging and diffusion tensor imaging in 18 alcoholic and 17 control subjects. Manipulation of color cues and response repetition sequences modulated cognitive demands during Stroop conflict. Despite similar lateral frontoparietal activity and functional connectivity in alcoholic and control subjects when processing conflict, control subjects deactivated the posterior cingulate cortex (PCC), whereas alcoholic subjects did not. Posterior cingulum fiber integrity predicted the degree of PCC deactivation in control but not alcoholic subjects. Also, PCC activity was modulated by executive control demands: activated during response switching and deactivated during response repetition. Alcoholics showed the opposite pattern: activation during repetition and deactivation during switching. Here, in alcoholic subjects, greater deviations from the normal PCC activity correlated with higher amounts of lifetime alcohol consumption. A functional dissociation of brain network connectivity between the groups further showed that control subjects exhibited greater corticocortical connectivity among middle cingulate, posterior cingulate, and medial prefrontal cortices than alcoholic subjects. In contrast, alcoholic subjects exhibited greater midbrain-orbitofrontal cortical network connectivity than control subjects. Degree of microstructural fiber integrity predicted robustness of functional connectivity. Thus, even subtle compromise of microstructural connectivity in alcoholism can influence modulation of functional connectivity and underlie alcohol-related cognitive impairment. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Parallel Coding of First- and Second-Order Stimulus Attributes by Midbrain Electrosensory Neurons

    PubMed Central

    McGillivray, Patrick; Vonderschen, Katrin; Fortune, Eric S.; Chacron, Maurice J.

    2015-01-01

    Natural stimuli often have time-varying first-order (i.e., mean) and second-order (i.e., variance) attributes that each carry critical information for perception and can vary independently over orders of magnitude. Experiments have shown that sensory systems continuously adapt their responses based on changes in each of these attributes. This adaptation creates ambiguity in the neural code as multiple stimuli may elicit the same neural response. While parallel processing of first- and second-order attributes by separate neural pathways is sufficient to remove this ambiguity, the existence of such pathways and the neural circuits that mediate their emergence have not been uncovered to date. We recorded the responses of midbrain electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus to stimuli with first- and second-order attributes that varied independently in time. We found three distinct groups of midbrain neurons: the first group responded to both first- and second-order attributes, the second group responded selectively to first-order attributes, and the last group responded selectively to second-order attributes. In contrast, all afferent hindbrain neurons responded to both first- and second-order attributes. Using computational analyses, we show how inputs from a heterogeneous population of ON- and OFF-type afferent neurons are combined to give rise to response selectivity to either first- or second-order stimulus attributes in midbrain neurons. Our study thus uncovers, for the first time, generic and widely applicable mechanisms by which parallel processing of first- and second-order stimulus attributes emerges in the brain. PMID:22514313

  17. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development.

    PubMed

    Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael

    2017-01-01

    The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a . The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.

  18. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    PubMed

    Aumentado-Armstrong, Tristan; Metzen, Michael G; Sproule, Michael K J; Chacron, Maurice J

    2015-10-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  19. Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys.

    PubMed

    Kanaan, Nicholas M; Kordower, Jeffrey H; Collier, Timothy J

    2010-06-01

    Aging remains the strongest risk factor for developing Parkinson's disease (PD), and there is selective vulnerability in midbrain dopamine (DA) neuron degeneration in PD. By tracking normal aging-related changes with an emphasis on regional specificity, factors involved in selective vulnerability and resistance to degeneration can be studied. Towards this end, we sought to determine whether age-related changes in microglia and astrocytes in rhesus monkeys are region-specific, suggestive of involvement in regional differences in vulnerability to degeneration that may be relevant to PD pathogenesis. Gliosis in midbrain DA subregions was measured by estimating glia number using unbiased stereology, assessing fluorescence intensity for proteins upregulated during activation, and rating morphology. With normal aging, microglia exhibited increased staining intensity and a shift to more activated morphologies preferentially in the vulnerable substantia nigra-ventral tier (vtSN). Astrocytes did not exhibit age-related changes consistent with an involvement in regional vulnerability in any measure. Our results suggest advancing age is associated with chronic mild inflammation in the vtSN, which may render these DA neurons more vulnerable to degeneration. Copyright 2008 Elsevier Inc. All rights reserved.

  20. Dopamine Induces Oscillatory Activities in Human Midbrain Neurons with Parkin Mutations.

    PubMed

    Zhong, Ping; Hu, Zhixing; Jiang, Houbo; Yan, Zhen; Feng, Jian

    2017-05-02

    Locomotor symptoms in Parkinson's disease (PD) are accompanied by widespread oscillatory neuronal activities in basal ganglia. Here, we show that activation of dopamine D1-class receptors elicits a large rhythmic bursting of spontaneous excitatory postsynaptic currents (sEPSCs) in midbrain neurons differentiated from induced pluripotent stem cells (iPSCs) of PD patients with parkin mutations, but not normal subjects. Overexpression of wild-type parkin, but not its PD-causing mutant, abolishes the oscillatory activities in patient neurons. Dopamine induces a delayed enhancement in the amplitude of spontaneous, but not miniature, EPSCs, thus increasing quantal content. The results suggest that presynaptic regulation of glutamatergic transmission by dopamine D1-class receptors is significantly potentiated by parkin mutations. The aberrant dopaminergic regulation of presynaptic glutamatergic transmission in patient-specific iPSC-derived midbrain neurons provides a mechanistic clue to PD pathophysiology, and it demonstrates the usefulness of this model system in understanding how mutations of parkin cause movement symptoms in Parkinson's disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Inhibiting effects of rhynchophylline on methamphetamine-dependent zebrafish are related with the expression of tyrosine hydroxylase (TH).

    PubMed

    Zhu, Chen; Liu, Wei; Luo, Chaohua; Liu, Yi; Li, Chan; Fang, Miao; Lin, Yingbo; Ou, Jinying; Chen, Minting; Zhu, Daoqi; Yung, Ken Kin-Lam; Mo, Zhixian

    2017-03-01

    In this study, to study the effect of rhynchophylline on TH in midbrain of methamphetamine-induced conditioned place preference (CPP) adult zebrafish, place preference adult zebrafish models were established by methamphetamine (40μg/g) and the expression of TH was observed by immunohistochemistry technique and Western blot. Ketamine (150μg/g), high dose of rhynchophylline (100μg/g) group can significantly reduce the place preference; immunohistochemistry results showed that the number of TH-positive neurons in midbrain was increased in the methamphetamine model group, whereas less TH-positive neurons were found in the ketamine group and high dosage rhynchophylline group. Western blot results showed that the expression of TH protein was significantly increased in the model group, whereas less expression was found in the ketamine group, high dosage rhynchophylline group. Our data pointed out that TH plays an important role in the formation of methamphetamine-induced place preference in adult zebrafish. Rhynchophylline reversed the expression of TH in the midbrain demonstrates the potential effect of mediates methamphetamine induced rewarding effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop.

    PubMed

    Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2016-09-20

    Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic-potentially reward-related-signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain.

  3. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop

    PubMed Central

    Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2016-01-01

    Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic—potentially reward-related—signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain. DOI: http://dx.doi.org/10.7554/eLife.17441.001 PMID:27644419

  4. Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons

    PubMed Central

    Berthet, Amandine; Margolis, Elyssa B.; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S.; Ahmad, Jawad; Edwards, Robert H.; Sesaki, Hiromi; Huang, Eric J.

    2014-01-01

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics—mitochondrial fission—in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate–putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. PMID:25339743

  5. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.

    PubMed

    Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken

    2014-10-22

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. Copyright © 2014 the authors 0270-6474/14/3414304-14$15.00/0.

  6. Investigations in mechanisms and strategies to enhance hearing with cochlear implants

    NASA Astrophysics Data System (ADS)

    Churchill, Tyler H.

    Cochlear implants (CIs) produce hearing sensations by stimulating the auditory nerve (AN) with current pulses whose amplitudes are modulated by filtered acoustic temporal envelopes. While this technology has provided hearing for multitudinous CI recipients, even bilaterally-implanted listeners have more difficulty understanding speech in noise and localizing sounds than normal hearing (NH) listeners. Three studies reported here have explored ways to improve electric hearing abilities. Vocoders are often used to simulate CIs for NH listeners. Study 1 was a psychoacoustic vocoder study examining the effects of harmonic carrier phase dispersion and simulated CI current spread on speech intelligibility in noise. Results showed that simulated current spread was detrimental to speech understanding and that speech vocoded with carriers whose components' starting phases were equal was the least intelligible. Cross-correlogram analyses of AN model simulations confirmed that carrier component phase dispersion resulted in better neural envelope representation. Localization abilities rely on binaural processing mechanisms in the brainstem and mid-brain that are not fully understood. In Study 2, several potential mechanisms were evaluated based on the ability of metrics extracted from stereo AN simulations to predict azimuthal locations. Results suggest that unique across-frequency patterns of binaural cross-correlation may provide a strong cue set for lateralization and that interaural level differences alone cannot explain NH sensitivity to lateral position. While it is known that many bilateral CI users are sensitive to interaural time differences (ITDs) in low-rate pulsatile stimulation, most contemporary CI processing strategies use high-rate, constant-rate pulse trains. In Study 3, we examined the effects of pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition by bilateral CI listeners. Results showed that listeners were able to use low-rate pulse timing cues presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli even when mixed with high rates on other electrodes. These results have contributed to a better understanding of those aspects of the auditory system that support speech understanding and binaural hearing, suggested vocoder parameters that may simulate aspects of electric hearing, and shown that redundant, low-rate pulse timing supports improved spatial hearing for bilateral CI listeners.

  7. Feasibility of a real-time hand hygiene notification machine learning system in outpatient clinics.

    PubMed

    Geilleit, R; Hen, Z Q; Chong, C Y; Loh, A P; Pang, N L; Peterson, G M; Ng, K C; Huis, A; de Korne, D F

    2018-04-09

    Various technologies have been developed to improve hand hygiene (HH) compliance in inpatient settings; however, little is known about the feasibility of machine learning technology for this purpose in outpatient clinics. To assess the effectiveness, user experiences, and costs of implementing a real-time HH notification machine learning system in outpatient clinics. In our mixed methods study, a multi-disciplinary team co-created an infrared guided sensor system to automatically notify clinicians to perform HH just before first patient contact. Notification technology effects were measured by comparing HH compliance at baseline (without notifications) with real-time auditory notifications that continued till HH was performed (intervention I) or notifications lasting 15 s (intervention II). User experiences were collected during daily briefings and semi-structured interviews. Costs of implementation of the system were calculated and compared to the current observational auditing programme. Average baseline HH performance before first patient contact was 53.8%. With real-time auditory notifications that continued till HH was performed, overall HH performance increased to 100% (P < 0.001). With auditory notifications of a maximum duration of 15 s, HH performance was 80.4% (P < 0.001). Users emphasized the relevance of real-time notification and contributed to technical feasibility improvements that were implemented in the prototype. Annual running costs for the machine learning system were estimated to be 46% lower than the observational auditing programme. Machine learning technology that enables real-time HH notification provides a promising cost-effective approach to both improving and monitoring HH, and deserves further development in outpatient settings. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. A variant of WEBINO syndrome after top of the basilar artery stroke.

    PubMed

    Sierra-Hidalgo, Fernando; Moreno-Ramos, Teresa; Villarejo, Alberto; Martín-Gil, Leticia; de Pablo-Fernández, Eduardo; Correas-Callero, Elisa; Ramos, Ana; Benito-León, Julián

    2010-11-01

    Wall-eyed bilateral internuclear ophthalmoplegia (WEBINO) is an uncommon neuro-ophthalmologic syndrome consisting of both eyes primary position exotropia and bilateral internuclear ophthalmoplegia. It is thought to be caused by medial midbrain lesions involving both bilateral medial longitudinal fasciculi and medial rectus subnuclei. We report the clinical and neuroimaging findings of a WEBINO syndrome associated to bilateral ptosis, non-reactive mydriasis and complete vertical gaze palsy in a 55-year-old man who suffered a top of the basilar artery stroke causing tegmental midbrain infarction. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Using synthetic biology to interface with physical micro and nano-sized sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanson, Russell; Fuller, Jason; Cheng, Andrew

    2017-05-01

    This talk will discuss the current goals and efforts of point of care and personal health monitoring systems: what they can do now and what is in the works. These interfaces can be used in a precision medicine context—making diagnoses and getting the right drugs to the right patients at the right time. Many of the same sensors and engineering are being prototyped now for neural interfaces and recording devices with applications in visual, auditory, and motor cortex, allowing basic research along with preliminary applications in actuation and sensing. While miniaturization and electronics development using established manufacturing protocols can provide the current engineering foundations, novel biochemical ligands and molecular detectors can provide the needed flexibility for next-generation devices.

  10. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.

    PubMed

    Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker

    2012-08-01

    Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.

  11. Semi-Immersive Virtual Turbine Engine Simulation System

    NASA Astrophysics Data System (ADS)

    Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea

    2018-05-01

    The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.

  12. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone.

    PubMed

    Khadrawy, Yasser A; Salem, Ahmed M; El-Shamy, Karima A; Ahmed, Emad K; Fadl, Nevein N; Hosny, Eman N

    2017-09-03

    The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na + /K + -ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na + /K + -ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.

  13. Striatal and midbrain connectivity with the hippocampus selectively boosts memory for contextual novelty

    PubMed Central

    Kafkas, Alexandros; Montaldi, Daniela

    2015-01-01

    The role of contextual expectation in processing familiar and novel stimuli was investigated in a series of experiments combining eye tracking, functional magnetic resonance imaging, and behavioral methods. An experimental paradigm emphasizing either familiarity or novelty detection at retrieval was used. The detection of unexpected familiar and novel stimuli, which were characterized by lower probability, engaged activity in midbrain and striatal structures. Specifically, detecting unexpected novel stimuli, relative to expected novel stimuli, produced greater activity in the substantia nigra/ventral tegmental area (SN/VTA), whereas the detection of unexpected familiar, relative to expected, familiar stimuli, elicited activity in the striatum/globus pallidus (GP). An effective connectivity analysis showed greater functional coupling between these two seed areas (GP and SN/VTA) and the hippocampus, for unexpected than for expected stimuli. Within this network of midbrain/striatal–hippocampal interactions two pathways are apparent; the direct SN–hippocampal pathway sensitive to unexpected novelty and the perirhinal–GP–hippocampal pathway sensitive to unexpected familiarity. In addition, increased eye fixations and pupil dilations also accompanied the detection of unexpected relative to expected familiar and novel stimuli, reflecting autonomic activity triggered by the functioning of these two pathways. Finally, subsequent memory for unexpected, relative to expected, familiar, and novel stimuli was characterized by enhanced recollection, but not familiarity, accuracy. Taken together, these findings suggest that a hippocampal–midbrain network, characterized by two distinct pathways, mediates encoding facilitation and most critically, that this facilitation is driven by contextual novelty, rather than by the absolute novelty of a stimulus. This contextually sensitive neural mechanism appears to elicit increased exploratory behavior, leading subsequently to greater recollection of the unexpected stimulus. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25708843

  14. Expression of dopamine D2 receptor and choline acetyltransferase mRNA in the dopamine deafferented rat caudate-putamen.

    PubMed

    Brené, S; Lindefors, N; Herrera-Marschitz, M; Persson, H

    1990-01-01

    In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarly, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudate-putamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.

  15. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    PubMed

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  16. Insights into the central pathways involved in the emetic and behavioural responses to exendin-4 in the ferret.

    PubMed

    Lu, Zengbing; Yeung, Chi-Kong; Lin, Ge; Yew, David T W; Andrews, P L R; Rudd, John A

    2017-01-01

    GLP-1 receptor agonists are utilised for the treatment of Type-2 diabetes but can be associated with undesirable effects of nausea and vomiting. To investigate the role of GLP-1 receptors in mechanisms of emesis, behaviours indicative of nausea (BIN) and food intake in the ferret. Exendin-4 (10 and 30nmol, i.c.v.) induced emesis, inhibited food intake, and increased the frequency of BIN. Increases in c-Fos in the brainstem, midbrain and forebrain occurred in animals exhibiting emesis; no activation of the brainstem occurred in animals not vomiting. Exendin-4 (10nmol, i.c.v.) when preceded by i.c.v. saline (15μl), was not emetic but induced BIN and inhibited food intake; exendin (9-39) (100nmol) reduced BIN only. c-Fos showed that consistent with the absence of emesis in saline/exendin-4 treated animals there was no increase in c-Fos in the brainstem, but it increased in midbrain and forebrain nuclei. Excepting the amygdala, exendin (9-39) was without efffect on the increases in c-Fos. Analysis of c-Fos data showed a positive linear relationship between midbrain and forebrain areas irrespective of the occurrence of emesis induced by exendin-4. In contrast, brainstem and midbrain c-Fos levels were positively correlated, but only in animals with emesis. The brainstem is critical for exendin-4-induced emesis but suppression of food intake and BIN involves more rostral brain sites. Exendin-4-induced BIN and c-Fos activation of the amygdala are sensitive to exendin (9-39), whereas the suppression of food intake is not implicating separate control mechanisms for emesis and BIN. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identification and validation of midbrain Kcnq4 regulation of heavy alcohol consumption in rodents.

    PubMed

    McGuier, Natalie S; Rinker, Jennifer A; Cannady, Reginald; Fulmer, Diana B; Jones, Sara R; Hoffman, Michaela; Mulholland, Patrick J

    2018-05-24

    Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode K V 7 channels influence alcohol intake and dependence. K V 7 channels are a class of slowly activating voltage-dependent K + channels that regulate neuronal excitability. Studies indicate that the K V 7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and K V 7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA K V 7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective K V 7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that K V 7.4 channels are a critical mediator of excessive alcohol drinking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice.

    PubMed

    Stroh, Matthew A; Winter, Michelle K; Swerdlow, Russell H; McCarson, Kenneth E; Zhu, Hao

    2016-08-01

    Iron dyshomeostasis has been implicated in many diseases, including a number of neurological conditions. Cytosolic NADH cytochrome b5 oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues and is capable of reducing ferric iron in vitro. We previously reported that global gene ablation of NCB5OR resulted in early-onset diabetes and altered iron homeostasis in mice. To further investigate the specific effects of NCB5OR deficiency on neural tissue without contributions from known phenotypes, we generated a conditional knockout (CKO) mouse that lacks NCB5OR only in the cerebellum and midbrain. Assessment of molecular markers in the cerebellum of CKO mice revealed changes in pathways associated with cellular and mitochondrial iron homeostasis. (59)Fe pulse-feeding experiments revealed cerebellum-specific increased or decreased uptake of iron by 7 and 16 weeks of age, respectively. Additionally, we characterized behavioral changes associated with loss of NCB5OR in the cerebellum and midbrain in the context of dietary iron deprivation-evoked generalized iron deficiency. Locomotor activity was reduced and complex motor task execution was altered in CKO mice treated with an iron deficient diet. A sucrose preference test revealed that the reward response was intact in CKO mice, but that iron deficient diet consumption altered sucrose preference in all mice. Detailed gait analysis revealed locomotor changes in CKO mice associated with dysfunctional proprioception and locomotor activation independent of dietary iron deficiency. Finally, we demonstrate that loss of NCB5OR in the cerebellum and midbrain exacerbated harmaline-induced tremor activity. Our findings suggest an essential role for NCB5OR in maintaining both iron homeostasis and the proper functioning of various locomotor pathways in the mouse cerebellum and midbrain.

  19. Comparison of brain serotonin transporter using [I-123]-ADAM between obese and non-obese young adults without an eating disorder

    PubMed Central

    Wu, Chih-Hsing; Chang, Chin-Sung; Yang, Yen Kuang; Shen, Lie-Hang; Yao, Wei-Jen

    2017-01-01

    Cerebral serotonin metabolism has an important but controversial role in obesity. However, it is not given enough attention in morbidly obese young adults. We used single photon emission computed tomography (SPECT) with [I-123]-labeled 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM) to investigate changes in serotonin transporter (SERT) availability in 10 morbidly obese young adults without an eating disorder (M/F = 5/5, body mass index (BMI): 40.3 ± 4.1 kg/m2, percentage of body fat (BF%): 46.0 ± 3.9%) and 10 age- and sex-matched non-obese controls (BMI: 20.3 ± 1.2 kg/m2, BF%: 20.6 ± 8.9%). All participants underwent SPECT at 10 min and 6 h after an injection of 200 MBq of [I-123]-ADAM. The SERT binding site (midbrain) was drawn with cerebellum normalization. The BF% and fat distribution were measured using dual-energy X-ray absorptiometry. The midbrain/cerebellum SERT binding ratios (2.49 ± 0.46 vs. 2.47 ± 0.47; p = 0.912) at 6 h were not significantly different between groups, nor was the distribution of the summed images at 10 min (1.36 ± 0.14 vs. 1.35 ± 0.11; p = 0.853). There were no significant correlations between midbrain/cerebellum SERT binding ratio and age, BMI, BF%, or fat distribution. No significant difference in SERT availability in the midbrain between morbidly obese and non-obese young adults without an eating disorder indicates an unmet need for investigating the role of cerebral serotonin in obesity. PMID:28182708

  20. Tyrosine hydroxylase down-regulation after loss of Abelson helper integration site 1 (AHI1) promotes depression via the circadian clock pathway in mice.

    PubMed

    Guo, Dongkai; Zhang, Shun; Sun, Hongyang; Xu, Xingyun; Hao, Zongbing; Mu, Chenchen; Xu, Xingshun; Wang, Guanghui; Ren, Haigang

    2018-04-06

    Abelson helper integration site 1 (AHI1) is associated with several neuropsychiatric and brain developmental disorders, such as schizophrenia, depression, autism, and Joubert syndrome. Ahi1 deficiency in mice leads to behaviors typical of depression. However, the mechanisms by which AHI1 regulates behavior remain to be elucidated. Here, we found that down-regulation of expression of the rate-limiting enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), in the midbrains of Ahi1- knockout (KO) mice is responsible for Ahi1 -deficiency-mediated depressive symptoms. We also found that Rev-Erbα, a TH transcriptional repressor and circadian regulator, is up-regulated in the Ahi1- KO mouse midbrains and Ahi1 -knockdown Neuro-2a cells. Moreover, brain and muscle Arnt-like protein 1 (BMAL1), the Rev-Erb α transcriptional regulator, is also increased in the Ahi1- KO mouse midbrains and Ahi1 -knockdown cells. Our results further revealed that AHI1 decreases BMAL1/Rev-Erbα expression by interacting with and repressing retinoic acid receptor-related orphan receptor α, a nuclear receptor and transcriptional regulator of circadian genes. Of note, Bmal1 deficiency reversed the reduction in TH expression induced by Ahi1 deficiency. Moreover, microinfusion of the Rev-Erbα inhibitor SR8278 into the ventral midbrain of Ahi1- KO mice significantly increased TH expression in the ventral tegmental area and improved their depressive symptoms. These findings provide a mechanistic explanation for a link between AHI1-related behaviors and the circadian clock pathway, indicating an involvement of circadian regulatory proteins in AHI1-regulated mood and behavior. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dorsal-to-Ventral Shift in Midbrain Dopaminergic Projections and Increased Thalamic/Raphe Serotonergic Function in Early Parkinson Disease.

    PubMed

    Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri

    2015-07-01

    Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain.

    PubMed

    Kitambi, Satish Srinivas; Hauptmann, Giselbert

    2007-02-01

    Mammalian Nr2e1 (Tailless, Mtll or Tlx) and Nr2e3 (photoreceptor-specific nuclear receptor, Pnr) are highly related orphan nuclear receptors, that are expressed in eye and forebrain-derived structures. In this study, we analyzed the developmental expression patterns of zebrafish nr2e1 and nr2e3. RT-PCR analysis showed that nr2e1 and nr2e3 are both expressed during embryonic and post-embryonic development. To examine the spatial distribution of nr2e1 and nr2e3 during development whole-mount in situ hybridization was performed. At tailbud stage, initial nr2e1 expression was localized to the rostral brain rudiment anterior to pax2.1 and eng2 expression at the prospective midbrain-hindbrain boundary. During subsequent stages, nr2e1 became widely expressed in fore- and midbrain primordia, eye and olfactory placodes. At 24hpf, strong nr2e1 expression was detected in telencephalon, hypothalamus, dorsal thalamus, pretectum, midbrain tectum, and retina. At 2dpf, the initially widespread nr2e1 expression became more restricted to distinct regions within the fore- and midbrain and to the retinal ciliary margin, the germinal zone which gives rise to retina and presumptive iris. Expression of nr2e3 was exclusively found in the developing retina and epiphysis. In both structures, nr2e3 expression was found in photoreceptor cells. The developmental expression profile of zebrafish nr2e1 and nr2e3 is consistent with evolutionary conserved functions in eye and rostral brain structures.

  3. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice

    PubMed Central

    Stroh, Matthew A.; Winter, Michelle K.; Swerdlow, Russell H.; McCarson, Kenneth E.; Zhu, Hao

    2018-01-01

    Iron dyshomeostasis has been implicated in many diseases, including a number of neurological conditions. Cytosolic NADH cytochrome b5 oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues and is capable of reducing ferric iron in vitro. We previously reported that global gene ablation of NCB5OR resulted in early-onset diabetes and altered iron homeostasis in mice. To further investigate the specific effects of NCB5OR deficiency on neural tissue without contributions from known phenotypes, we generated a conditional knockout (CKO) mouse that lacks NCB5OR only in the cerebellum and midbrain. Assessment of molecular markers in the cerebellum of CKO mice revealed changes in pathways associated with cellular and mitochondrial iron homeostasis. 59Fe pulse-feeding experiments revealed cerebellum-specific increased or decreased uptake of iron by 7 weeks and 16 weeks of age, respectively. Additionally, we characterized behavioral changes associated with loss of NCB5OR in the cerebellum and midbrain in the context of dietary iron deprivation-evoked generalized iron deficiency. Locomotor activity was reduced and complex motor task execution was altered in CKO mice treated with an iron deficient diet. A sucrose preference test revealed that the reward response was intact in CKO mice, but that iron deficient diet consumption altered sucrose preference in all mice. Detailed gait analysis revealed locomotor changes in CKO mice associated with dysfunctional proprioception and locomotor activation independent of dietary iron deficiency. Finally, we demonstrate that loss of NCB5OR in the cerebellum and midbrain exacerbated harmaline-induced tremor activity. Our findings suggest an essential role for NCB5OR in maintaining both iron homeostasis and the proper functioning of various locomotor pathways in the mouse cerebellum and midbrain. PMID:27188291

  4. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder.

    PubMed

    Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V

    2013-08-15

    Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Activation of Tyrosine Hydroxylase mRNA Translation by cAMP in Midbrain Dopaminergic Neurons

    PubMed Central

    Chen, Xiqun; Xu, Lu; Radcliffe, Pheona; Sun, Baoyong; Tank, A. William

    2009-01-01

    During prolonged stress or chronic treatment with neurotoxins, robust compensatory mechanisms occur which maintain sufficient levels of catecholamine neurotransmitters in terminal regions. One of these mechanisms is the up-regulation of tyrosine hydroxylase (TH), the enzyme that controls catecholamine biosynthesis. In neurons of the periphery and locus coeruleus, this up-regulation is associated with an initial induction of TH mRNA. In contrast, this induction either does not occur or is nominal in mesencephalic dopamine neurons. The reasons for this lack of compensatory TH mRNA induction remain obscure, because so little is known about the regulation of TH expression in these neurons. In this report we test whether activation of the cAMP signaling pathway regulates TH gene expression in two rodent models of midbrain dopamine neurons, ventral midbrain organotypic slice cultures and MN9D cells. Our results demonstrate that elevation of cAMP leads to induction of TH protein and TH activity in both model systems; however, TH mRNA levels are not up-regulated by cAMP. The induction of TH protein is the result of a novel post-transcriptional mechanism that activates TH mRNA translation. This translational activation is mediated by sequences within the 3′UTR of TH mRNA. Our results support a model in which cAMP induces or activates trans-factors that interact with the TH mRNA 3′UTR to increase TH protein synthesis. An understanding of this novel regulatory mechanism may help to explain the control of TH gene expression and consequently dopamine biosynthesis in midbrain neurons under different physiological and pathological conditions. PMID:18349104

  6. Discrimination of dementia with Lewy bodies from Alzheimer's disease using voxel-based morphometry of white matter by statistical parametric mapping 8 plus diffeomorphic anatomic registration through exponentiated Lie algebra.

    PubMed

    Nakatsuka, Tomoya; Imabayashi, Etsuko; Matsuda, Hiroshi; Sakakibara, Ryuji; Inaoka, Tsutomu; Terada, Hitoshi

    2013-05-01

    The purpose of this study was to identify brain atrophy specific for dementia with Lewy bodies (DLB) and to evaluate the discriminatory performance of this specific atrophy between DLB and Alzheimer's disease (AD). We retrospectively reviewed 60 DLB and 30 AD patients who had undergone 3D T1-weighted MRI. We randomly divided the DLB patients into two equal groups (A and B). First, we obtained a target volume of interest (VOI) for DLB-specific atrophy using correlation analysis of the percentage rate of significant whole white matter (WM) atrophy calculated using the Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD) based on statistical parametric mapping 8 (SPM8) plus diffeomorphic anatomic registration through exponentiated Lie algebra, with segmented WM images in group A. We then evaluated the usefulness of this target VOI for discriminating the remaining 30 DLB patients in group B from the 30 AD patients. Z score values in this target VOI obtained from VSRAD were used as the determinant in receiver operating characteristic (ROC) analysis. Specific target VOIs for DLB were determined in the right-side dominant dorsal midbrain, right-side dominant dorsal pons, and bilateral cerebellum. ROC analysis revealed that the target VOI limited to the midbrain exhibited the highest area under the ROC curves of 0.75. DLB patients showed specific atrophy in the midbrain, pons, and cerebellum. Midbrain atrophy demonstrated the highest power for discriminating DLB and AD. This approach may be useful for determining the contributions of DLB and AD pathologies to the dementia syndrome.

  7. K(v) channel interacting protein 3 expression and regulation by haloperidol in midbrain dopaminergic neurons.

    PubMed

    Duncan, Carlotta E; Schofield, Peter R; Weickert, Cynthia Shannon

    2009-12-22

    Antipsychotic drugs are the main treatment for schizophrenia, despite their adverse side effects and uncertain mode of action. Gene expression studies in the brains of rodents treated with antipsychotic drugs aim to uncover this mechanism and elucidate more specific targets for schizophrenia treatment. Previous expression profiling analyses showed that K(v) channel interacting protein 3 (KChIP3) was down-regulated in the mouse brain following treatment with multiple antipsychotic drugs. In this study, we used in situ hybridization to anatomically define the expression of KChIP3 mRNA in the mouse brain and to quantify its regulation by 7-day haloperidol treatment. We used immunohistochemistry to localize KChIP3 protein expression in the midbrain, dorsal and ventral striatum and the prefrontal cortex. We found KChIP3 mRNA throughout the grey matter of the brain, with high expression in the hippocampus, specific thalamic nuclei, deeper cortical layers and in the midbrain. KChIP3 mRNA was significantly down-regulated in the dorsal striatum and the ventral tegmental area following haloperidol treatment. KChIP3 protein is expressed in the neuropil in the cortex and striatum, as well as in the soma of deeper layer cortical and striatal neurons. This study, for the first time, also localized KChIP3 protein in the cell bodies and processes of dopaminergic neurons in the midbrain. These findings indicate that regulation of KChIP3, particularly in mesocortical dopamine neurons, may be part of the action of antipsychotic drugs and that prolonged and more specific targeting of ion channel subunits may enhance the therapeutic effects of antipsychotic drugs.

  8. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain.

    PubMed

    Krasnova, Irina N; Ladenheim, Bruce; Hodges, Amber B; Volkow, Nora D; Cadet, Jean Lud

    2011-04-25

    Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning.

  9. Neural substrates of defensive reactivity in two subtypes of specific phobia

    PubMed Central

    Hilbert, Kevin; Stolyar, Veronika; Maslowski, Nina I.; Beesdo-Baum, Katja; Wittchen, Hans-Ulrich

    2014-01-01

    Depending on threat proximity, different defensive behaviours are mediated by a descending neural network involving forebrain (distal threat) vs midbrain areas (proximal threat). Compared to healthy subjects, it can be assumed that phobics are characterized by shortened defensive distances on a behavioural and neural level. This study aimed at characterizing defensive reactivity in two subtypes of specific phobia [snake (SP) and dental phobics (DP)]. Using functional magnetic resonance imaging (fMRI), n = 39 subjects (13 healthy controls, HC; 13 SP; 13 DP) underwent an event-related fMRI task employing an anticipation (5–10 s) and immediate perception phase (phobic pictures and matched neutral stimuli; 1250 ms) to modulate defensive distance. Although no differential brain activity in any comparisons was observed in DP, areas associated with defensive behaviours (e.g. amygdala, hippocampus, midbrain) were activated in SP. Decreasing defensive distance in SP was characterized by a shift to midbrain activity. Present findings substantiate differences between phobia types in their physiological and neural organization that can be expanded to early stages of defensive behaviours. Findings may contribute to a better understanding of the dynamic organization of defensive reactivity in different types of phobic fear. PMID:24174207

  10. Zebrafish mab21l2 is specifically expressed in the presumptive eye and tectum from early somitogenesis onwards.

    PubMed

    Kudoh, T; Dawid, I B

    2001-11-01

    Random screening for tissue specific genes in zebrafish by in situ hybridization led us to isolate a gene which showed highly restricted expression in the developing eyes and midbrain at somitogenesis stages. This gene was very similar to mouse and human mab21l2. The characteristic expression pattern of mab21l2 facilitates a detailed description of the morphogenesis of the eyes and midbrain in the zebrafish. In the eye field, mab21l2 expression illustrates the transformation of the eye field to form two separate eyes in the anterior neural plate. Mab21l2 staining in the cyclopic mutants, cyc and oep, exhibited incomplete splitting of the eye primodium. In the midbrain, mab21l2 is expressed in the tectum, and its expression follows the expansion of the tectal region. In mutants affecting the mid-hindbrain boundary (MHB), mab21l2 expression is affected differentially. In the noi/pax2.1 mutant, mab21l2 is down-regulated and the size of the tectum remains small, whereas in the ace/fgf8 mutant, mab21l2 expression persists although the shape of the tectum is altered.

  11. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

    PubMed

    Ravindran, Ethiraj; Hu, Hao; Yuzwa, Scott A; Hernandez-Miranda, Luis R; Kraemer, Nadine; Ninnemann, Olaf; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Birchmeier, Carmen; Miller, Freda D; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2017-04-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

  12. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation

    PubMed Central

    Yuzwa, Scott A.; Hernandez-Miranda, Luis R.; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Miller, Freda D.; Hübner, Christoph; Kaindl, Angela M.

    2017-01-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder. PMID:28453519

  13. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  14. Chemogenetic Activation of Midbrain Dopamine Neurons Affects Attention, but not Impulsivity, in the Five-Choice Serial Reaction Time Task in Rats.

    PubMed

    Boekhoudt, Linde; Voets, Elisa S; Flores-Dourojeanni, Jacques P; Luijendijk, Mieneke Cm; Vanderschuren, Louk Jmj; Adan, Roger Ah

    2017-05-01

    Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviors have been associated with aberrant dopamine (DA) signaling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats. We found that activation of DA neurons in both the VTA and SNc impaired attention by increasing trial omissions. In addition, SNc DA neuron activation decreased attentional accuracy. Surprisingly, enhanced DA neuron activity did not affect impulsive action in this task. These results show that enhanced midbrain DA neuronal activity induces deficits in attentional performance, but not impulsivity. Furthermore, DA neurons in the VTA and SNc have different roles in regulating attention. These findings contribute to our understanding of the neural substrates underlying attention deficits and impulsivity, and provide valuable insights to improve treatment of these symptoms.

  15. Somatodendritic dopamine release: recent mechanistic insights

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.

    2015-01-01

    Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764

  16. Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function.

    PubMed

    Pfeffer, P L; Gerster, T; Lun, K; Brand, M; Busslinger, M

    1998-08-01

    The mammalian Pax2, Pax5 and Pax8 genes code for highly related transcription factors, which play important roles in embryonic development and organogenesis. Here we report the characterization of all members of the zebrafish Pax2/5/8 family. These genes have arisen by duplications before or at the onset of vertebrate evolution. Due to an additional genome amplification in the fish lineage, the zebrafish contains two Pax2 genes, the previously known Pax[b] gene (here renamed as Pax2.1) and a novel Pax2.2 gene. The zebrafish Pax2.1 gene most closely resembles the mammalian Pax2 gene in its expression pattern, as it is transcribed first in the midbrain-hindbrain boundary region, then in the optic stalk, otic system, pronephros and nephric ducts, and lastly in specific interneurons of the hindbrain and spinal cord. Pax2.2 differs from Pax2.1 by the absence of expression in the nephric system and by a delayed onset of transcription in other Pax2.1 expession domains. Pax8 is also expressed in the same domains as Pax2.1, but its transcription is already initiated during gastrulation in the primordia of the otic placode and pronephric anlage, thus identifying Pax8 as the earliest developmental marker of these structures. The zebrafish Pax5 gene, in contrast to its mouse orthologue, is transcribed in the otic system in addition to its prominent expression at the midbrain-hindbrain boundary. The no isthmus (noi) mutation is known to inactivate the Pax2.1 gene, thereby affecting the development of the midbrain-hindbrain boundary region, pronephric system, optic stalk and otic region. Although the different members of the Pax2/5/8 family may potentially compensate for the loss of Pax2.1 function, we demonstrate here that only the expression of the Pax2.2 gene remains unaffected in noi mutant embryos. The expression of Pax5 and Pax8 is either not initiated at the midbrain-hindbrain boundary or is later not maintained in other expression domains. Consequently, the noi mutation of zebrafish is equivalent to combined inactivation of the mouse Pax2 and Pax5 genes with regard to the loss of midbrain-hindbrain boundary development.

  17. The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis.

    PubMed

    Burgess, Shawn; Reim, Gerlinde; Chen, Wenbiao; Hopkins, Nancy; Brand, Michael

    2002-02-01

    In early embryonic development, the brain is divided into three main regions along the anteroposterior axis: the forebrain, midbrain and hindbrain. Through retroviral insertional mutagenesis and chemical mutagenesis experiments in zebrafish, we have isolated mutations that cause abnormal hindbrain organization and a failure of the midbrain-hindbrain boundary (MHB) to form, a region that acts as an organizer for the adjacent brain regions. The mutations fail to complement the spiel-ohne-grenzen (spg) mutation, which causes a similar phenotype, but for which the affected gene is unknown. We show through genetic mapping, cloning of the proviral insertion site and allele sequencing that spg mutations disrupt pou2, a gene encoding the Pou2 transcription factor. Based on chromosomal synteny, phylogenetic sequence comparison, and expression and functional data, we suggest that pou2 is the zebrafish ortholog of mouse Oct3/Oct4 and human POU5F1. For the mammalian genes, a function in brain development has so far not been described. In the absence of functional pou2, expression of markers for the midbrain, MHB and the hindbrain primordium (pax2.1, wnt1, krox20) are severely reduced, correlating with the neuroectoderm-specific expression phase of pou2. Injection of pou2 mRNA restores these defects in spg mutant embryos, but does not activate these markers ectopically, demonstrating a permissive role for pou2. Injections of pou2-morpholinos phenocopy the spg phenotype at low concentration, further proving that spg encodes pou2. Two observations suggest that pou2 has an additional earlier function: higher pou2-morpholino concentrations specifically cause a pre-gastrula arrest of cell division and morphogenesis, and expression of pou2 mRNA itself is reduced in spg-homozygous embryos at this stage. These experiments suggest two roles for pou2. Initially, Pou2 functions during early proliferation and morphogenesis of the blastomeres, similar to Oct3/4 in mammals during formation of the inner cell mass. During zebrafish brain formation, Pou2 then functions a second time to activate gene expression in the midbrain and hindbrain primordium, which is reflected at later stages in the specific lack in spg embryos of the MHB and associated defects in the mid- and hindbrain.

  18. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of β-catenin signaling within the SNpc. Conclusion These results defining a novel Wnt1/Fzd-1/β-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease. PMID:21752258

  19. Neurobiology of culturally common maternal responses to infant cry

    PubMed Central

    Bornstein, Marc H.; Rigo, Paola; Esposito, Gianluca; Swain, James E.; Suwalsky, Joan T. D.; Su, Xueyun; Du, Xiaoxia; Zhang, Kaihua; Cote, Linda R.; De Pisapia, Nicola; Venuti, Paola

    2017-01-01

    This report coordinates assessments of five types of behavioral responses in new mothers to their own infants’ cries with neurobiological responses in new mothers to their own infants’ cries and in experienced mothers and inexperienced nonmothers to infant cries and other emotional and control sounds. We found that 684 new primipara mothers in 11 countries (Argentina, Belgium, Brazil, Cameroon, France, Kenya, Israel, Italy, Japan, South Korea, and the United States) preferentially responded to their infants’ vocalizing distress by picking up and holding and by talking to their infants, as opposed to displaying affection, distracting, or nurturing. Complementary functional magnetic resonance imaging (fMRI) analyses of brain responses to their own infants’ cries in 43 new primipara US mothers revealed enhanced activity in concordant brain territories linked to the intention to move and to speak, to process auditory stimulation, and to caregive [supplementary motor area (SMA), inferior frontal regions, superior temporal regions, midbrain, and striatum]. Further, fMRI brain responses to infant cries in 50 Chinese and Italian mothers replicated, extended, and, through parcellation, refined the results. Brains of inexperienced nonmothers activated differently. Culturally common responses to own infant cry coupled with corresponding fMRI findings to own infant and to generic infant cries identified specific, common, and automatic caregiving reactions in mothers to infant vocal expressions of distress and point to their putative neurobiological bases. Candidate behaviors embedded in the nervous systems of human caregivers lie at the intersection of evolutionary biology and developmental cultural psychology. PMID:29078366

  20. Anatomy of the Temporal Lobe

    PubMed Central

    Kiernan, J. A.

    2012-01-01

    Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. Its major projections are to the septal area and prefrontal cortex, mediating emotional responses to sensory stimuli. The temporal lobe contains much subcortical white matter, with such named bundles as the anterior commissure, arcuate fasciculus, inferior longitudinal fasciculus and uncinate fasciculus, and Meyer's loop of the geniculocalcarine tract. This article also reviews arterial supply, venous drainage, and anatomical relations of the temporal lobe to adjacent intracranial and tympanic structures. PMID:22934160

  1. Reproductive Hormones Modify Reception of Species-Typical Communication Signals in a Female Anuran

    PubMed Central

    Lynch, Kathleen S.; Wilczynski, Walter

    2008-01-01

    In many vertebrates, the production and reception of species-typical courtship signals occurs when gonadotropin and gonadal hormone levels are elevated. These hormones may modify sensory processing in the signal receiver in a way that enhances behavioral responses to the signal. We examined this possibility in female túngara frogs (Physalaemus pustulosus) by treating them with either gonadotropin (which elevated estradiol) or saline and exposing them to either mate choruses or silence. Expression of an activity-dependent gene, egr-1, was quantified within two sub-nuclei of the auditory midbrain to investigate whether gonadotropin plus chorus exposure induced greater egr-1 induction than either of these stimuli alone. The laminar nucleus (LN), a sub-nucleus of the torus semicircularis that contains steroid receptors, exhibited elevated egr-1 induction in response to chorus exposure and gonadotropin treatment. Further analysis revealed that neither chorus exposure nor gonadotropin treatment alone elevated egr-1 expression in comparison to baseline levels whereas gonadotropin + chorus exposure did. This suggests that mate signals and hormones together produce an additive effect so that together they induce more egr-1 expression than either alone. Our previously published studies of female túngara frogs reveal that (1) gonadotropin-induced estradiol elevations also increase behavioral responses to male signals, and (2) reception of male signals elevates estradiol levels in the female. Here, we report data that reveal a novel mechanism by which males exploit female sensory processing to increase behavioral responses to their courtship signals. PMID:18032889

  2. A crossmodal role for audition in taste perception.

    PubMed

    Yan, Kimberly S; Dando, Robin

    2015-06-01

    Our sense of taste can be influenced by our other senses, with several groups having explored the effects of olfactory, visual, or tactile stimulation on what we perceive as taste. Research into multisensory, or crossmodal perception has rarely linked our sense of taste with that of audition. In our study, 48 participants in a crossover experiment sampled multiple concentrations of solutions of 5 prototypic tastants, during conditions with or without broad spectrum auditory stimulation, simulating that of airline cabin noise. Airline cabins are an unusual environment, in which food is consumed routinely under extreme noise conditions, often over 85 dB, and in which the perceived quality of food is often criticized. Participants rated the intensity of solutions representing varying concentrations of the 5 basic tastes on the general Labeled Magnitude Scale. No difference in intensity ratings was evident between the control and sound condition for salty, sour, or bitter tastes. Likewise, panelists did not perform differently during sound conditions when rating tactile, visual, or auditory stimulation, or in reaction time tests. Interestingly, sweet taste intensity was rated progressively lower, whereas the perception of umami taste was augmented during the experimental sound condition, to a progressively greater degree with increasing concentration. We postulate that this effect arises from mechanostimulation of the chorda tympani nerve, which transits directly across the tympanic membrane of the middle ear. (c) 2015 APA, all rights reserved).

  3. GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner

    PubMed Central

    Kotecki, Lydia; Hearing, Matthew; McCall, Nora M.; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C.; Munoz, Michaelanne B.; Xia, Zhilian; Slesinger, Paul A.; Weaver, C. David

    2015-01-01

    G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential. PMID:25948263

  4. Neural substrates of defensive reactivity in two subtypes of specific phobia.

    PubMed

    Lueken, Ulrike; Hilbert, Kevin; Stolyar, Veronika; Maslowski, Nina I; Beesdo-Baum, Katja; Wittchen, Hans-Ulrich

    2014-11-01

    Depending on threat proximity, different defensive behaviours are mediated by a descending neural network involving forebrain (distal threat) vs midbrain areas (proximal threat). Compared to healthy subjects, it can be assumed that phobics are characterized by shortened defensive distances on a behavioural and neural level. This study aimed at characterizing defensive reactivity in two subtypes of specific phobia [snake (SP) and dental phobics (DP)]. Using functional magnetic resonance imaging (fMRI), n = 39 subjects (13 healthy controls, HC; 13 SP; 13 DP) underwent an event-related fMRI task employing an anticipation (5-10 s) and immediate perception phase (phobic pictures and matched neutral stimuli; 1250 ms) to modulate defensive distance. Although no differential brain activity in any comparisons was observed in DP, areas associated with defensive behaviours (e.g. amygdala, hippocampus, midbrain) were activated in SP. Decreasing defensive distance in SP was characterized by a shift to midbrain activity. Present findings substantiate differences between phobia types in their physiological and neural organization that can be expanded to early stages of defensive behaviours. Findings may contribute to a better understanding of the dynamic organization of defensive reactivity in different types of phobic fear. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Tracking brain damage in progressive supranuclear palsy: a longitudinal MRI study.

    PubMed

    Agosta, Federica; Caso, Francesca; Ječmenica-Lukić, Milica; Petrović, Igor N; Valsasina, Paola; Meani, Alessandro; Copetti, Massimiliano; Kostić, Vladimir S; Filippi, Massimo

    2018-01-18

    In this prospective, longitudinal, multiparametric MRI study, we investigated clinical as well as brain grey matter and white matter (WM) regional changes in patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). Twenty-one patients with PSP-RS were evaluated at baseline relative to 36 healthy controls and after a mean follow-up of 1.4 years with clinical rating scales, neuropsychological tests and MRI scans. Relative to controls, patients with PSP-RS showed at baseline a typical pattern of brain damage, including midbrain atrophy, frontal cortical thinning and widespread WM involvement of the main infratentorial and supratentorial tracts that exceeded cortical damage. Longitudinal study showed that PSP-RS exhibited no further changes in cortical thinning, which remained relatively focal, while midbrain atrophy and WM damage significantly progressed. Corpus callosum and frontal WM tract changes correlated with the progression of both disease severity and behavioural dysfunction. This study demonstrated the feasibility of carrying out longitudinal diffusion tensor MRI in patients with PSP-RS and its sensitivity to identifying the progression of pathology. Longitudinal midbrain volume loss and WM changes are associated with PSP disease course. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    PubMed Central

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  7. Altered top-down and bottom-up processing of fear conditioning in panic disorder with agoraphobia.

    PubMed

    Lueken, U; Straube, B; Reinhardt, I; Maslowski, N I; Wittchen, H-U; Ströhle, A; Wittmann, A; Pfleiderer, B; Konrad, C; Ewert, A; Uhlmann, C; Arolt, V; Jansen, A; Kircher, T

    2014-01-01

    Although several neurophysiological models have been proposed for panic disorder with agoraphobia (PD/AG), there is limited evidence from functional magnetic resonance imaging (fMRI) studies on key neural networks in PD/AG. Fear conditioning has been proposed to represent a central pathway for the development and maintenance of this disorder; however, its neural substrates remain elusive. The present study aimed to investigate the neural correlates of fear conditioning in PD/AG patients. The blood oxygen level-dependent (BOLD) response was measured using fMRI during a fear conditioning task. Indicators of differential conditioning, simple conditioning and safety signal processing were investigated in 60 PD/AG patients and 60 matched healthy controls. Differential conditioning was associated with enhanced activation of the bilateral dorsal inferior frontal gyrus (IFG) whereas simple conditioning and safety signal processing were related to increased midbrain activation in PD/AG patients versus controls. Anxiety sensitivity was associated positively with the magnitude of midbrain activation. The results suggest changes in top-down and bottom-up processes during fear conditioning in PD/AG that can be interpreted within a neural framework of defensive reactions mediating threat through distal (forebrain) versus proximal (midbrain) brain structures. Evidence is accumulating that this network plays a key role in the aetiopathogenesis of panic disorder.

  8. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    PubMed

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  9. Hierarchical prediction errors in midbrain and septum during social learning.

    PubMed

    Diaconescu, Andreea O; Mathys, Christoph; Weber, Lilian A E; Kasper, Lars; Mauer, Jan; Stephan, Klaas E

    2017-04-01

    Social learning is fundamental to human interactions, yet its computational and physiological mechanisms are not well understood. One prominent open question concerns the role of neuromodulatory transmitters. We combined fMRI, computational modelling and genetics to address this question in two separate samples (N = 35, N = 47). Participants played a game requiring inference on an adviser's intentions whose motivation to help or mislead changed over time. Our analyses suggest that hierarchically structured belief updates about current advice validity and the adviser's trustworthiness, respectively, depend on different neuromodulatory systems. Low-level prediction errors (PEs) about advice accuracy not only activated regions known to support 'theory of mind', but also the dopaminergic midbrain. Furthermore, PE responses in ventral striatum were influenced by the Met/Val polymorphism of the Catechol-O-Methyltransferase (COMT) gene. By contrast, high-level PEs ('expected uncertainty') about the adviser's fidelity activated the cholinergic septum. These findings, replicated in both samples, have important implications: They suggest that social learning rests on hierarchically related PEs encoded by midbrain and septum activity, respectively, in the same manner as other forms of learning under volatility. Furthermore, these hierarchical PEs may be broadcast by dopaminergic and cholinergic projections to induce plasticity specifically in cortical areas known to represent beliefs about others. © The Author (2017). Published by Oxford University Press.

  10. Hierarchical prediction errors in midbrain and septum during social learning

    PubMed Central

    Mathys, Christoph; Weber, Lilian A. E.; Kasper, Lars; Mauer, Jan; Stephan, Klaas E.

    2017-01-01

    Abstract Social learning is fundamental to human interactions, yet its computational and physiological mechanisms are not well understood. One prominent open question concerns the role of neuromodulatory transmitters. We combined fMRI, computational modelling and genetics to address this question in two separate samples (N = 35, N = 47). Participants played a game requiring inference on an adviser’s intentions whose motivation to help or mislead changed over time. Our analyses suggest that hierarchically structured belief updates about current advice validity and the adviser’s trustworthiness, respectively, depend on different neuromodulatory systems. Low-level prediction errors (PEs) about advice accuracy not only activated regions known to support ‘theory of mind’, but also the dopaminergic midbrain. Furthermore, PE responses in ventral striatum were influenced by the Met/Val polymorphism of the Catechol-O-Methyltransferase (COMT) gene. By contrast, high-level PEs (‘expected uncertainty’) about the adviser’s fidelity activated the cholinergic septum. These findings, replicated in both samples, have important implications: They suggest that social learning rests on hierarchically related PEs encoded by midbrain and septum activity, respectively, in the same manner as other forms of learning under volatility. Furthermore, these hierarchical PEs may be broadcast by dopaminergic and cholinergic projections to induce plasticity specifically in cortical areas known to represent beliefs about others. PMID:28119508

  11. Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making.

    PubMed

    Groman, Stephanie M; Smith, Nathaniel J; Petrullli, J Ryan; Massi, Bart; Chen, Lihui; Ropchan, Jim; Huang, Yiyun; Lee, Daeyeol; Morris, Evan D; Taylor, Jane R

    2016-06-22

    Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes. Copyright © 2016 the authors 0270-6474/16/366732-10$15.00/0.

  12. Zebrafish aussicht mutant embryos exhibit widespread overexpression of ace (fgf8) and coincident defects in CNS development.

    PubMed

    Heisenberg, C P; Brennan, C; Wilson, S W

    1999-05-01

    During the development of the zebrafish nervous system both noi, a zebrafish pax2 homolog, and ace, a zebrafish fgf8 homolog, are required for development of the midbrain and cerebellum. Here we describe a dominant mutation, aussicht (aus), in which the expression of noi and ace is upregulated. In aus mutant embryos, ace is upregulated at many sites in the embryo, while noi expression is only upregulated in regions of the forebrain and midbrain which also express ace. Subsequent to the alterations in noi and ace expression, aus mutants exhibit defects in the differentiation of the forebrain, midbrain and eyes. Within the forebrain, the formation of the anterior and postoptic commissures is delayed and the expression of markers within the pretectal area is reduced. Within the midbrain, En and wnt1 expression is expanded. In heterozygous aus embryos, there is ectopic outgrowth of neural retina in the temporal half of the eyes, whereas in putative homozygous aus embryos, the ventral retina is reduced and the pigmented retinal epithelium is expanded towards the midline. The observation that aus mutant embryos exhibit widespread upregulation of ace raised the possibility that aus might represent an allele of the ace gene itself. However, by crossing carriers for both aus and ace, we were able to generate homozygous ace mutant embryos that also exhibited the aus phenotype. This indicated that aus is not tightly linked to ace and is unlikely to be a mutation directly affecting the ace locus. However, increased Ace activity may underly many aspects of the aus phenotype and we show that the upregulation of noi in the forebrain of aus mutants is partially dependent upon functional Ace activity. Conversely, increased ace expression in the forebrain of aus mutants is not dependent upon functional Noi activity. We conclude that aus represents a mutation involving a locus normally required for the regulation of ace expression during embryogenesis.

  13. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum.

    PubMed

    Tournier, Benjamin B; Tsartsalis, Stergios; Dimiziani, Andrea; Millet, Philippe; Ginovart, Nathalie

    2016-09-15

    This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. CT-angiography source images indicate less fatal outcome despite coma of patients in the Basilar Artery International Cooperation Study.

    PubMed

    Pallesen, Lars P; Khomenko, Andrei; Dzialowski, Imanuel; Barlinn, Jessica; Barlinn, Kristian; Zerna, Charlotte; van der Hoeven, Erik Jrj; Algra, Ale; Kapelle, L Jaap; Michel, Patrik; Bodechtel, Ulf; Demchuk, Andrew M; Schonewille, Wouter; Puetz, Volker

    2017-02-01

    Background Coma is associated with poor outcome in patients with basilar artery occlusion. Aims We sought to assess whether the posterior circulation Acute Stroke Prognosis Early CT Score and the Pons-Midbrain Index applied to CT angiography source images predict the outcome of comatose patients in the Basilar Artery International Cooperation Study. Methods Basilar Artery International Cooperation Study was a prospective, observational registry of patients with acute basilar artery occlusion with 48 recruiting centers worldwide. We applied posterior circulation Acute Stroke Prognosis Early CT Score and Pons-Midbrain Index to CT angiography source images of Basilar Artery International Cooperation Study patients who presented with coma. We calculated adjusted risk ratios to assess the association of dichotomized posterior circulation Acute Stroke Prognosis Early CT Score (≥8 vs. <8) and Pons-Midbrain Index (<3 vs. ≥3) with mortality and favourable outcome (modified Rankin Scale score 0-3) at one month. Results Of 619 patients in the Basilar Artery International Cooperation Study registry, CT angiography source images were available for review in 158 patients. Among these, 78 patients (49%) presented with coma. Compared to non-comatose patients, comatose patients were more likely to die (risk ratios 2.34; CI 95% 1.56-3.52) and less likely to have a favourable outcome (risk ratios 0.44; CI 95% 0.24-0.80). Among comatose patients, a Pons-Midbrain Index < 3 was related to reduced mortality (adjusted RR 0.66; 95% CI 0.46-0.96), but not to favourable outcome (adjusted RR 1.19; 95% CI 0.39-3.62). Posterior circulation Acute Stroke Prognosis Early CT Score dichotomized at ≥ 8 vs. <8 was not significantly associated with death (adjusted RR 0.70; 95% CI 0.46-1.05). Conclusion In comatose patients with basilar artery occlusion, the extent of brainstem ischemia appears to be related to mortality but not to favourable outcome.

  15. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less

  16. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  17. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    PubMed Central

    O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo

    2016-01-01

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036

  18. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  19. Feasibility of and Design Parameters for a Computer-Based Attitudinal Research Information System

    DTIC Science & Technology

    1975-08-01

    Auditory Displays Auditory Evoked Potentials Auditory Feedback Auditory Hallucinations Auditory Localization Auditory Maski ng Auditory Neurons...surprising to hear these prob- lems e:qpressed once again and in the same old refrain. The Navy attitude surveyors were frustrated when they...Audiolcgy Audiometers Aud iometry Audiotapes Audiovisual Communications Media Audiovisual Instruction Auditory Cortex Auditory

  20. Retraction: Borroto-Escuela et al., The existence of FGFR1-5-HT1A receptor heterocomplexes in midbrain 5-HT neurons of the rat: relevance for neuroplasticity.

    PubMed

    2013-07-10

    The Journal of Neuroscience has received a report describing an investigation by the Karolinska Institutet, which found substantial data misrepresentation in the article "The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity" by Dasiel O. Borroto-Escuela, Wilber Romero-Fernandez, Mileidys Pérez-Alea, Manuel Narvaez, Alexander O. Tarakanov, Giuseppa Mudó , Luigi F. Agnati, Francisco Ciruela, Natale Belluardo, and Kjell Fuxe, which appeared on pages 6295-6303 of the May 2, 2012 issue. Because the results cannot be considered reliable, the editors of The Journal are retracting the paper.

  1. GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal.

    PubMed

    Bagley, Elena E; Gerke, Michelle B; Vaughan, Christopher W; Hack, Stephen P; Christie, MacDonald J

    2005-02-03

    Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was mediated by the GABA transporter-1 (GAT-1) and required activation of protein kinase A (PKA) for its expression. Inhibition of GAT-1 or PKA also prevented withdrawal-induced hyperexcitation of PAG neurons. Our findings indicate that GAT-1 currents can directly increase the action potential rates of neurons and that GAT-1 may be a target for therapy to alleviate opioid-withdrawal symptoms.

  2. Effects of analogues of substance P fragments on the MAO activity in rat brain.

    PubMed

    Turska, E; Lachowicz, L; Koziołkiewicz, W; Wasiak, T

    1985-01-01

    The influence in vitro of analogues of Sp5-11 and SP6-11 substance P fragments on the activity of monoamine oxidase (MAO) in homogenates and crude mitochondrial fractions of rat brain was examined. The rat brain was divided into: I--cerebral cortex, II--hippocampus, III--midbrain, IV--thalamus with hypothalamus, V--cerebellum and VI--medulla oblongata. The obtained results proved that the analogues of SP fragments inhibit selectively the activity of the enzyme in the homogenates of cerebral cortex, hippocampus, midbrain and cerebellum. In the crude mitochondrial fractions the applied analogues of SP fragments caused a slight increase of the enzyme activity. The most significant changes in the activity of MAO were observed in hippocampus homogenate fraction.

  3. Epilepsy and metaphors in literature.

    PubMed

    Wolf, Peter

    2016-04-01

    This topic has two different aspects: seizures and epilepsy used as metaphors and seizures described in metaphors. Whereas some metaphors are unique and have high literary value, others can be categorized in prototypical groups. These include sexual metaphors; metaphors of strong emotions, of life crises and breakdown, and also of exultation; religious metaphors; and metaphors of weakness which mostly belong to older literature. Writers with epilepsy, in their literary texts, rarely talk about seizures in metaphors. Authors who do this sometimes seem to use reports that they have received from afflicted persons. The most common metaphors for seizures belong to the realms of dreams and of strong sensory impressions (visual, auditory). More rarely, storm and whirlwind are used as literary metaphors for seizures. This article is part of a Special Issue entitled "Epilepsy, Art, and Creativity". Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    ERIC Educational Resources Information Center

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  5. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre-speech modulation is not directly related to limited auditory-motor adaptation; and in AWS, DAF paradoxically tends to normalize their otherwise limited pre-speech auditory modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dystrophic Serotonin Axons in Postmortem Brains from Young Autism Patients

    PubMed Central

    Azmitia, Efrain C.; Singh, Jorawer S.; Hou, Xiao P.; Wiegel, Jerzy

    2014-01-01

    Autism causes neuropathological changes in varied anatomical loci. A coherent neural mechanism to explain the spectrum of autistic symptomatology has not been proposed because most anatomical researchers focus on point-to-point functional neural systems (e.g. auditory, social networks) rather than considering global chemical neural systems. Serotonergic neurons have a global innervation pattern. Their cell bodies are found in the midbrain but they project their axons throughout the neural axis beginning in the fetal brain. This global system is implicated in autism by animal models and by biochemical, imaging, pharmacological, and genetics studies. However, no anatomical studies of the 5-HT innervation of autistic donors have been reported. Our review presents immunocytochemical evidence of an increase in 5-HT axons in post-mortem brain tissue from autism donors aged 2.8 to 29 years relative to controls. This increase is observed in the principle ascending fiber bundles of the medial and lateral forebrain bundles, and in the innervation density of the amygdala and the piriform, superior temporal, and parahippocampal cortices. In autistic donors eight years of age and up, several types of dystrophic 5-HT axons were seen in the termination fields. One class of these dystrophic axons, the thick heavily stained axons, was not seen in the brains of patients with neurodegenerative diseases. These findings provide morphological evidence for the involvement of serotonin neurons in the early etiology of autism, and suggest a diet therapy may be effective to blunt serotonin’s trophic actions during early brain development in children. PMID:21901837

  7. Dystrophic serotonin axons in postmortem brains from young autism patients.

    PubMed

    Azmitia, Efrain C; Singh, Jorawer S; Hou, Xiao P; Wegiel, Jerzy

    2011-10-01

    Autism causes neuropathological changes in varied anatomical loci. A coherent neural mechanism to explain the spectrum of autistic symptomatology has not been proposed because most anatomical researchers focus on point-to-point functional neural systems (e.g., auditory and social networks) rather than considering global chemical neural systems. Serotonergic neurons have a global innervation pattern. Disorders Research Program, AS073234, Program Project (JW). Their cell bodies are found in the midbrain but they project their axons throughout the neural axis beginning in the fetal brain. This global system is implicated in autism by animal models and by biochemical, imaging, pharmacological, and genetics studies. However, no anatomical studies of the 5-HT innervation of autistic donors have been reported. Our review presents immunocytochemical evidence of an increase in 5-HT axons in postmortem brain tissue from autism donors aged 2.8-29 years relative to controls. This increase is observed in the principle ascending fiber bundles of the medial and lateral forebrain bundles, and in the innervation density of the amygdala and the piriform, superior temporal, and parahippocampal cortices. In autistic donors 8 years of age and up, several types of dystrophic 5-HT axons were seen in the termination fields. One class of these dystrophic axons, the thick heavily stained axons, was not seen in the brains of patients with neurodegenerative diseases. These findings provide morphological evidence for the involvement of serotonin neurons in the early etiology of autism, and suggest new therapies may be effective to blunt serotonin's trophic actions during early brain development in children. Copyright © 2011 Wiley-Liss, Inc.

  8. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2015-05-15

    The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus

    PubMed Central

    Bandara, Suren B.; Eubig, Paul A.; Sadowski, Renee N.; Schantz, Susan L.

    2016-01-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. PMID:26543103

  10. Envelope contributions to the representation of interaural time difference in the forebrain of barn owls.

    PubMed

    Tellers, Philipp; Lehmann, Jessica; Führ, Hartmut; Wagner, Hermann

    2017-09-01

    Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl's auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit. NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species. Copyright © 2017 the American Physiological Society.

  11. Neural circuits underlying mother’s voice perception predict social communication abilities in children

    PubMed Central

    Abrams, Daniel A.; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M.; Baker, Amanda E.; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-01-01

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child’s life is mother's voice: Infants discriminate their mother’s voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother’s voice or whether this brain activity is related to children’s social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother’s voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother’s voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired. PMID:27185915

  12. Neural circuits underlying mother's voice perception predict social communication abilities in children.

    PubMed

    Abrams, Daniel A; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M; Baker, Amanda E; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-05-31

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child's life is mother's voice: Infants discriminate their mother's voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother's voice or whether this brain activity is related to children's social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother's voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother's voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired.

  13. Effect of background noise on neuronal coding of interaural level difference cues in rat inferior colliculus

    PubMed Central

    Mokri, Yasamin; Worland, Kate; Ford, Mark; Rajan, Ramesh

    2015-01-01

    Humans can accurately localize sounds even in unfavourable signal-to-noise conditions. To investigate the neural mechanisms underlying this, we studied the effect of background wide-band noise on neural sensitivity to variations in interaural level difference (ILD), the predominant cue for sound localization in azimuth for high-frequency sounds, at the characteristic frequency of cells in rat inferior colliculus (IC). Binaural noise at high levels generally resulted in suppression of responses (55.8%), but at lower levels resulted in enhancement (34.8%) as well as suppression (30.3%). When recording conditions permitted, we then examined if any binaural noise effects were related to selective noise effects at each of the two ears, which we interpreted in light of well-known differences in input type (excitation and inhibition) from each ear shaping particular forms of ILD sensitivity in the IC. At high signal-to-noise ratios (SNR), in most ILD functions (41%), the effect of background noise appeared to be due to effects on inputs from both ears, while for a large percentage (35.8%) appeared to be accounted for by effects on excitatory input. However, as SNR decreased, change in excitation became the dominant contributor to the change due to binaural background noise (63.6%). These novel findings shed light on the IC neural mechanisms for sound localization in the presence of continuous background noise. They also suggest that some effects of background noise on encoding of sound location reported to be emergent in upstream auditory areas can also be observed at the level of the midbrain. PMID:25865218

  14. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    PubMed

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  15. Differentiated Human Midbrain-Derived Neural Progenitor Cells Express Excitatory Strychnine-Sensitive Glycine Receptors Containing α2β Subunits

    PubMed Central

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Background Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson’s disease. While glutamate and GABAA receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Methodology/Principal Findings Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na+-K+-Cl− co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. Conclusions/Significance These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro. PMID:22606311

  16. Oxytocin modulates hemodynamic responses to monetary incentives in humans

    PubMed Central

    Mickey, Brian J.; Heffernan, Joseph; Heisel, Curtis; Peciña, Marta; Hsu, David T.; Zubieta, Jon-Kar; Love, Tiffany M.

    2016-01-01

    Oxytocin is a neuropeptide widely recognized for its role in regulating social and reproductive behavior. Increasing evidence from animal models suggests that oxytocin also modulates reward circuitry in non-social contexts, but evidence in humans is lacking. Here we examined the effects of oxytocin administration on reward circuit function in 18 healthy men as they performed a monetary incentive task. The blood oxygenation level dependent (BOLD) signal was measured using functional magnetic resonance imaging in the context of a randomized, double-blind, placebo-controlled, crossover trial of intranasal oxytocin. We found that oxytocin increases the BOLD signal in the midbrain (substantia nigra and ventral tegmental area) during the late phase of the hemodynamic response to incentive stimuli. Oxytocin’s effects on midbrain responses correlated positively with its effects on positive emotional state. We did not detect an effect of oxytocin on responses in the nucleus accumbens. Whole-brain analyses revealed that oxytocin attenuated medial prefrontal cortical deactivation specifically during anticipation of loss. Our findings demonstrate that intranasal administration of oxytocin modulates human midbrain and medial prefrontal function during motivated behavior. These findings suggest that endogenous oxytocin is a neurochemical mediator of reward behaviors in humans – even in a non-social context – and that the oxytocinergic system is a potential target of pharmacotherapy for psychiatric disorders that involve dysfunction of reward circuitry. PMID:27614896

  17. Perceptual load-dependent neural correlates of distractor interference inhibition.

    PubMed

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N

    2011-01-18

    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  18. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed

    PubMed Central

    2014-01-01

    Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease. PMID:24685177

  19. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    PubMed

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  20. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    PubMed

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  1. Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis

    PubMed Central

    Glimcher, Paul W.

    2011-01-01

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn. PMID:21389268

  2. Interlimb Coordination in Body-Weight Supported Locomotion: A Pilot Study

    PubMed Central

    Seiterle, Stefan; Susko, Tyler; Artemiadis, Panagiotis K.; Riener, Robert; Krebs, Hermano Igo

    2015-01-01

    Locomotion involves complex neural networks responsible for automatic and volitional actions. During locomotion, motor strategies can rapidly compensate for any obstruction or perturbation that could interfere with forward progression. In this pilot study, we examined the contribution of interlimb pathways for evoking muscle activation patterns in the contralateral limb when a unilateral perturbation was applied and in the case where body weight was externally supported. In particular, the latency of neuromuscular responses was measured, while the stimulus to afferent feedback was limited. The pilot experiment was conducted with six healthy young subjects. It employed the MIT-Skywalker (beta-prototype), a novel device intended for gait therapy. Subjects were asked to walk on the split-belt treadmill, while a fast unilateral perturbation was applied mid-stance by unexpectedly lowering one side of the split-treadmill walking surfaces. Subject's weight was externally supported via the body-weight support system consisting of an underneath bicycle seat and the torso was stabilized via a loosely fitted chest harness. Both the weight support and the chest harness limited the afferent feedback. The unilateral perturbations evoked changes in the electromyographic activity of the non-perturbed contralateral leg. The latency of all muscle responses exceeded 100 ms, which precludes the conjecture that spinal cord alone is responsible for the perturbation response. It suggests the role of supraspinal or midbrain level pathways at the inter-leg coordination during gait. PMID:25990210

  3. Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.

    PubMed

    Fukusumi, Yoshiyasu; Meier, Florian; Götz, Sebastian; Matheus, Friederike; Irmler, Martin; Beckervordersandforth, Ruth; Faus-Kessler, Theresa; Minina, Eleonora; Rauser, Benedict; Zhang, Jingzhong; Arenas, Ernest; Andersson, Elisabet; Niehrs, Christof; Beckers, Johannes; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-09-30

    Wingless-related MMTV integration site 1 (WNT1)/β-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/β-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/β-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a secreted modulator of WNT (Wingless-related MMTV integration site)/β-catenin signaling, is both necessary and sufficient for the proper differentiation and survival of a rostrolateral (parabrachial pigmented nucleus and dorsomedial substantia nigra pars compacta) mesodiencephalic dopaminergic neuron subset, using Dkk3 mutant mice and murine primary ventral midbrain and pluripotent stem cells. The progressive loss of these dopamine-producing mesodiencephalic neurons is a hallmark of human Parkinson's disease, which can up to now not be halted by clinical treatments of this disease. Thus, the soluble DKK3 protein might be a promising new agent for the improvement of current protocols for the directed differentiation of pluripotent and multipotent stem cells into mesodiencephalic dopaminergic neurons and for the promotion of their survival in situ. Copyright © 2015 the authors 0270-6474/15/3513386-17$15.00/0.

  4. Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain.

    PubMed

    Rastogi, R B; Singhal, R L

    1976-09-01

    In neonatal rats, administration of l-triiodothyronine (10 mug/100 g/day) for 30 days presented signs of hyperthyroidism which included accelerated development of a variety of physical and behavioral characteristics accompanying maturation. The spontaneous motor activity was increased by 69%. Exposure of developing rats to thyroid hormone significantly increased the endogenous concentration of striatal tyrosine and the activity of tyrosine hydroxylase as well as the levels of dopamine in several brain regions. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid, the chief metabolites of dopamine, was also increased and the magnitude of change was greater than the rise in dopamine. Despite increases in the activity of tyrosine hydroxylase and the availability of the substrate tyrosine, the steady-state levels of norepinephrine remained unaltered in various regions of brain except in cerebellum. Futhermore, neonatal hyperthyroidism significantly increased the levels of midbrain tryptophan and tryptophan hydroxylase activity but produced no change in 5-hydroxytryptamine levels of several discrete brain regions, except hypothalamus and cerebellum where its concentration was slightly decreased. However, the 5-hydroxyindoleacetic acid levels were enhanced in hypothalamus, ponsmedulla, midbrain, striatum and hippocampus. The elevated levels of 5-hydroxyindoleacetic acid did not seem to be due to increased intraneuronal deamination of 5-hydroxytryptamine since monoamine oxidase activity was not affected in cerebral cortex and midbrain of hyperthyroid rats. The data demonstrate that hyperthyroidism significantly increased the synthesis as well as the utilization of catecholamines and 5-hydroxytryptamine in maturing brain. Since the mature brain is known to respond differently to thyroid hormone action than does the developing brain, the effect of L-triiodothyronine treatment on various putative neurohumors also was examined in adult rats. Whereas administration of l-triiodothyronine (10 mug/100 g/day) for 30 days to 120-day-old rats increased the levels of tyrosine by 23% and of tryptophan by 43%, no appreciable change was noted in tryptophan hydroxylase activity. In contrast to neonatal hyperthyroidism, excess of thyroid hormone in adult rats failed to produce any change in motor activity and tended to decrease striatal tyrosine hydroxylase activity only slightly. The concentration of dopamine remained unchanged in all regions of the brain except in midbrain where it rose by 19%. Whereas norepinephrine concentration was altered in hypothalamus, pons-medulla and midbrain, the levels of 5-hydroxytryptamine and its metabolite, 5-hydroxyindoleacetic acid, were significantly decreased in striatum and cerebellum. Since dopaminergic and noradrenergic neurons are the critical components of the motor system, the possibility exists that elevated behavioral activity in young L-triiodothyronine-treated animals might be associated with increased turnover of catecholamines in neuronal tissue.

  5. Acquisition of Conditioning between Methamphetamine and Cues in Healthy Humans

    PubMed Central

    Mayo, Leah M.; de Wit, Harriet

    2016-01-01

    Environmental stimuli repeatedly paired with drugs of abuse can elicit conditioned responses that are thought to promote future drug seeking. We recently showed that healthy volunteers acquired conditioned responses to auditory and visual stimuli after just two pairings with methamphetamine (MA, 20 mg, oral). This study extended these findings by systematically varying the number of drug-stimuli pairings. We expected that more pairings would result in stronger conditioning. Three groups of healthy adults were randomly assigned to receive 1, 2 or 4 pairings (Groups P1, P2 and P4, Ns = 13, 16, 16, respectively) of an auditory-visual stimulus with MA, and another stimulus with placebo (PBO). Drug-cue pairings were administered in an alternating, counterbalanced order, under double-blind conditions, during 4 hr sessions. MA produced prototypic subjective effects (mood, ratings of drug effects) and alterations in physiology (heart rate, blood pressure). Although subjects did not exhibit increased behavioral preference for, or emotional reactivity to, the MA-paired cue after conditioning, they did exhibit an increase in attentional bias (initial gaze) toward the drug-paired stimulus. Further, subjects who had four pairings reported “liking” the MA-paired cue more than the PBO cue after conditioning. Thus, the number of drug-stimulus pairings, varying from one to four, had only modest effects on the strength of conditioned responses. Further studies investigating the parameters under which drug conditioning occurs will help to identify risk factors for developing drug abuse, and provide new treatment strategies. PMID:27548681

  6. Procedures for central auditory processing screening in schoolchildren.

    PubMed

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that allow the selection of as many hearing skills as possible, validated by comparison with the battery of tests used in the diagnosis. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Outline for Remediation of Problem Areas for Children with Learning Disabilities. Revised. = Bosquejo para la Correccion de Areas Problematicas para Ninos con Impedimientos del Aprendizaje.

    ERIC Educational Resources Information Center

    Bornstein, Joan L.

    The booklet outlines ways to help children with learning disabilities in specific subject areas. Characteristic behavior and remedial exercises are listed for seven areas of auditory problems: auditory reception, auditory association, auditory discrimination, auditory figure ground, auditory closure and sound blending, auditory memory, and grammar…

  8. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  9. Auditory Learning. Dimensions in Early Learning Series.

    ERIC Educational Resources Information Center

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  10. Motherhood and infant contact regulate neuroplasticity in the serotonergic midbrain dorsal raphe.

    PubMed

    Holschbach, M Allie; Lonstein, Joseph S

    2017-02-01

    The adult brain shows remarkable neuroplasticity in response to hormones and the socioemotional modifications that they influence. In females with reproductive and maternal experience, this neuroplasticity includes the birth and death of cells in several forebrain regions involved in maternal caregiving and postpartum affective state. Such plasticity in midbrain sites critical for these behavioral and emotional processes has never been examined, though. By visualizing bromodeoxyuridine (BrdU) to label mitotic cells, NeuroD for neuronal precursors, and TUNEL to identify dying cells, we found that the midbrain dorsal raphe nucleus (DR, the source of most ascending serotoninergic projections) exhibited significant neuroplasticity in response to motherhood. Specifically, BrdU analyses revealed that DR newborn cell survival (but not proliferation) was regulated by reproductive state, such that cells born early postpartum were less likely to survive 12 days to reach the late postpartum period compared to cells born during late pregnancy that survived 12 days to reach the early postpartum period. Many of the surviving cells in the DR were NeuN immunoreactive, suggesting a neuronal phenotype. Consistent with these findings, late postpartum rats had fewer NeuroD-immunoreactive DR cells than early postpartum rats. Maternal experience contributed to the late postpartum reduction in DR newborn cell survival because removing the litter at parturition increased cell survival as well as reduced cell death. Unlike cytogenesis in the maternal hippocampus, which is reduced by circulating glucocorticoids, DR newborn cell survival was unaffected by postpartum adrenalectomy. These effects of reproductive state and motherhood on DR plasticity were associated with concurrent changes in DR levels of serotonin's precursor, 5-HTP, and its metabolite, 5-HIAA. Our results demonstrate for the first time that cytogenesis occurs in the midbrain DR of any adult mammal, that DR plasticity is influenced by female reproductive state and maternal experience, and that this plasticity is accompanied by changes in DR serotonergic function. Because serotonin is critical for postpartum caregiving behaviors and maternal affective state, plasticity in the DR may contribute to the neurochemical changes necessary for successful motherhood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Virtually-augmented interfaces for tactical aircraft.

    PubMed

    Haas, M W

    1995-05-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.

  12. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495

  13. Inclusive Educative Technologies, for people with disabilities

    NASA Astrophysics Data System (ADS)

    Echenique, AM; Graffigna, JP; Pérez, E.; López, N.; Piccinini, D.; Fernández, H.; Garcés, A.

    2016-04-01

    The conventional educational environment imposes barriers to education for people with disabilities, limiting their rights, which is a non-discriminative education. In turn, hampers their access to other rights and creates huge obstacles to realize their potential and participate effectively in their communities. In this sense Assistive Technology provides alternative solutions, in order to compensate for a lost or diminished ability. Thus the necessary assistance is provided to perform tasks, including those related to education, improving the inclusion. In this paper some researches had been made in the Gabinete de TecnologiaMedica, in the Facultad de Ingenieria of the Universidad Nacional de San Juan in order to solve this problem. The researchers are classified by type of disability; sensory (visual and auditory) or motor. They have been designed, developed and experienced through various prototypes that have given satisfactory results. It had been published in national and international congresses of high relevance.

  14. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    PubMed

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  15. Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds

    PubMed Central

    Kubke, M. Fabiana; Massoglia, Dino P.; Carr, Catherine E.

    2012-01-01

    Increases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists. We show that bird species with different auditory specializations exhibit variation in the relative size of their hindbrain auditory nuclei. In the barn owl, an auditory specialist, the hind-brain auditory nuclei involved in the computation of sound location show hyperplasia. This hyperplasia was also found in songbirds, but not in non-auditory specialists. The hyperplasia of auditory nuclei was also not seen in birds with large body weight suggesting that the total number of cells is selected for in auditory specialists. In barn owls, differences observed in the relative size of the auditory nuclei might be attributed to modifications in neurogenesis and cell death. Thus, hyperplasia of circuits used for auditory computation accompanies auditory specialization in different orders of birds. PMID:14726625

  16. Magnetization transfer and adiabatic R 1ρ MRI in the brainstem of Parkinson's disease.

    PubMed

    Tuite, Paul J; Mangia, Silvia; Tyan, Andrew E; Lee, Michael K; Garwood, Michael; Michaeli, Shalom

    2012-06-01

    In addition to classic midbrain pathology, Parkinson's disease (PD) is accompanied by changes in pontine and medullary brainstem structures. These additional abnormalities may underlie non-motor features as well as play a role in motor disability. Using novel magnetic resonance imaging (MRI) methods based on rotating frame adiabatic R(1ρ) (i.e., measurements of longitudinal relaxation during adiabatic full passage pulses) and modified magnetization transfer (MT) MRI mapping, we sought to identify brainstem alterations in nine individuals with mild-moderate PD (off medication) and ten age-matched controls at 4 T. We discovered significant differences in MRI parameters between midbrain and medullary brainstem structures in control subjects as compared to PD patients. These findings support the presence of underlying functional/structural brainstem changes in mild-moderate PD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease.

    PubMed

    Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, Laurent

    2017-03-01

    Mouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCA A53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Transcription of fgf8 is regulated by activating and repressive cis-elements at the midbrain-hindbrain boundary in zebrafish embryos.

    PubMed

    Inoue, Fumitaka; Parvin, Mst Shahnaj; Yamasu, Kyo

    2008-04-15

    Fgf8 is expressed in the isthmic region of the developing brain, serving an organizing function in vertebrate embryos. We previously identified S4.2 downstream to the zebrafish fgf8 gene as a regulatory region that drives transcription in the anterior hindbrain. Here, we investigated the mechanism of fgf8 regulation by the S4.2 region during development. Reporter analyses in embryos revealed that S4.2 closely recapitulates fgf8 expression in the anteriormost hindbrain during somitogenesis. This region contains a sequence highly conserved in fgf8 of diverse vertebrates. Further analyses of S4.2 revealed a 342-bp core region composed of three subregions (#2, #3, and #4). Regions #3 and #4 drove expression broadly in the brain from the midbrain to r5 of the hindbrain, whereas a 28-bp sequence in #2 repressed ectopic expression in the midbrain and in r2 to r5. The enhancer function of S4.2 was absent in pax2a mutant embryos, while it was activated ectopically by pax2a misexpression in the hindbrain. We identified two sites in the core region that are bound by Pax2a in vitro and in vivo, the disruption of which abrogated the S4.2 activity. Thus, fgf8 expression in the anteriormost hindbrain involves activation and repression, with Pax2a as a pivotal regulator.

  19. Transcriptional repressor foxl1 regulates central nervous system development by suppressing shh expression in zebra fish.

    PubMed

    Nakada, Chisako; Satoh, Shinya; Tabata, Yoko; Arai, Ken-ichi; Watanabe, Sumiko

    2006-10-01

    We identified zebra fish forkhead transcription factor l1 (zfoxl1) as a gene strongly expressed in neural tissues such as midbrain, hindbrain, and the otic vesicle at the early embryonic stage. Loss of the function of zfoxl1 effected by morpholino antisense oligonucleotide resulted in defects in midbrain and eye development, and in that of formation of the pectoral fins. Interestingly, ectopic expression of shh in the midbrain and elevated pax2a expression in the optic stalk were observed in foxl1 MO-injected embryos. In contrast, expression of pax6a, which is negatively regulated by shh, was suppressed in the thalamus and pretectum regions, supporting the idea of augmentation of the shh signaling pathway by suppression of foxl1. Expression of zfoxl1-EnR (repressing) rather than zfoxl1-VP16 (activating) resulted in a phenotype similar to that induced by foxl1-mRNA, suggesting that foxl1 may act as a transcriptional repressor of shh in zebra fish embryos. Supporting this notion, foxl1 suppressed isolated 2.7-kb shh promoter activity in PC12 cells, and the minimal region of foxl1 required for its transcriptional repressor activity showed strong homology with the groucho binding motif, which is found in genes encoding various homeodomain proteins. In view of all of our data taken together, we propose zfoxl1 to be a novel regulator of neural development that acts by suppressing shh expression.

  20. Transcriptional Repressor foxl1 Regulates Central Nervous System Development by Suppressing shh Expression in Zebra Fish†

    PubMed Central

    Nakada, Chisako; Satoh, Shinya; Tabata, Yoko; Arai, Ken-ichi; Watanabe, Sumiko

    2006-01-01

    We identified zebra fish forkhead transcription factor l1 (zfoxl1) as a gene strongly expressed in neural tissues such as midbrain, hindbrain, and the otic vesicle at the early embryonic stage. Loss of the function of zfoxl1 effected by morpholino antisense oligonucleotide resulted in defects in midbrain and eye development, and in that of formation of the pectoral fins. Interestingly, ectopic expression of shh in the midbrain and elevated pax2a expression in the optic stalk were observed in foxl1 MO-injected embryos. In contrast, expression of pax6a, which is negatively regulated by shh, was suppressed in the thalamus and pretectum regions, supporting the idea of augmentation of the shh signaling pathway by suppression of foxl1. Expression of zfoxl1-EnR (repressing) rather than zfoxl1-VP16 (activating) resulted in a phenotype similar to that induced by foxl1-mRNA, suggesting that foxl1 may act as a transcriptional repressor of shh in zebra fish embryos. Supporting this notion, foxl1 suppressed isolated 2.7-kb shh promoter activity in PC12 cells, and the minimal region of foxl1 required for its transcriptional repressor activity showed strong homology with the groucho binding motif, which is found in genes encoding various homeodomain proteins. In view of all of our data taken together, we propose zfoxl1 to be a novel regulator of neural development that acts by suppressing shh expression. PMID:16980626

  1. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.

    PubMed

    Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco

    2011-02-01

    Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.

  2. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    PubMed

    Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  3. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    PubMed

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  4. Automated segmentation of midbrain structures with high iron content.

    PubMed

    Garzón, Benjamín; Sitnikov, Rouslan; Bäckman, Lars; Kalpouzos, Grégoria

    2018-04-15

    The substantia nigra (SN), the subthalamic nucleus (STN), and the red nucleus (RN) are midbrain structures of ample interest in many neuroimaging studies, which may benefit from the availability of automated segmentation methods. The high iron content of these structures awards them high contrast in quantitative susceptibility mapping (QSM) images. We present a novel segmentation method that leverages the information of these images to produce automated segmentations of the SN, STN, and RN. The algorithm builds a map of spatial priors for the structures by non-linearly registering a set of manually-traced training labels to the midbrain. The priors are used to inform a Gaussian mixture model of the image intensities, with smoothness constraints imposed to ensure anatomical plausibility. The method was validated on manual segmentations from a sample of 40 healthy younger and older subjects. Average Dice scores were 0.81 (0.05) for the SN, 0.66 (0.14) for the STN and 0.88 (0.04) for the RN in the left hemisphere, and similar values were obtained for the right hemisphere. In all structures, volumes of manual and automatically obtained segmentations were significantly correlated. The algorithm showed lower accuracy on R 2 * and T 2 -weighted Fluid Attenuated Inversion Recovery (FLAIR) images, which are also sensitive to iron content. To illustrate an application of the method, we show that the automated segmentations were comparable to the manual ones regarding detection of age-related differences to putative iron content. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens.

    PubMed

    Hassanpour, H; Khosravi Alekoohi, Z; Madreseh, S; Bahadoran, S; Nasiri, L

    2016-10-01

    Quantitative real-time PCR was carried out to evaluate gene expression of heat shock proteins (HSP) (HSP27, HSP56, HSP60, HSP70, HSP90 and ubiquitin) in the brain (hindbrain, midbrain, forebrain) of chickens with cold-induced pulmonary hypertension. The ratio of the right ventricle to the total ventricle (index of pulmonary hypertension in chickens) was increased in the cold-induced pulmonary hypertensive chickens at 42 d of age compared with control. The HSP genes were expressed in the three parts of the brain in the two experimental groups. In the hindbrain of cold-induced pulmonary hypertensive chickens, the relative gene expression of HSP27, HSP60, HSP70 and HSP90 was decreased while gene expression of HSP56 and ubiquitin was increased compared with controls. In the midbrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased compared with controls while HSP27 and HSP90 were decreased. In the forebrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased while the expression of the HSP27 gene was decreased compared with controls. It is concluded that overexpression of HSPs in the forebrain and midbrain probably delays the pathological process of cold stress whereas diminished expression of HSP genes in the hindbrain may affect the normal function of brain centres in this area to exacerbate pulmonary hypertension.

  6. The sleep-modulating peptide orexin-B protects midbrain dopamine neurons from degeneration, alone or in cooperation with nicotine.

    PubMed

    Guerreiro, Serge; Florence, Clélia; Rousseau, Erwann; Hamadat, Sabah; Hirsch, Etienne C; Michel, Patrick P

    2015-01-01

    To determine whether orexinergic hypothalamic peptides can influence the survival of brainstem dopamine (DA) neurons, we used a model system of rat midbrain cultures in which DA neurons degenerate spontaneously and progressively as they mature. We established that orexin (OX)-B provides partial but significant protection to spontaneously dying DA neurons, whereas the homologous peptide OXA has only marginal effects. Importantly, DA neurons rescued by OXB accumulated DA efficiently by active transport, suggesting that they were functional. G-protein-coupled OX1 and OX2 receptors were both present on DA neurons, but the protective effect of OXB was attributable solely to OX2 receptors; a selective inhibitor of this receptor subtype, N-ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA), suppressed this effect, whereas a selective agonist, [Ala(11), d-Leu(15)]OXB, reproduced it. Survival promotion by OXB required intracellular calcium mobilization via inositol-1,4,5-triphosphate and ryanodine receptors. Nicotine, a well known neuroprotective molecule for DA neurons, improved OXB-mediated rescue through the activation of α-bungarotoxin-sensitive (presumably α7) nicotinic receptors, although nicotine had no effect on its own. Altogether, our data suggest that the loss of hypothalamic orexinergic neurons that occurs in Parkinson's disease might confer an increased vulnerability to midbrain DA neurons in this disorder. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Expression of Glucose-Regulated Protein 78 and miR-199a in Rat Brain After Fatal Ligature Strangulation.

    PubMed

    Feng, Xueying; Zhang, Dongchuan; Gong, Qingjin; Zhang, Zhiyong; Quan, Li

    2017-03-01

    The roles of endoplasmic reticulum (ER) stress and microRNA in the brain tissue after fatal mechanical asphyxia have not been clearly elucidated. We examined the expression of glucose-regulated protein 78 (GRP78), the key regulator of unfolded protein response, and miR-199a in the brain tissues of rats subjected to fatal ligature strangulation to understand the roles of ER stress and microRNA in ligature strangulation. The expressions of GRP78 and miR-199a in rat cortex, hippocampi, and midbrain were measured by immunohistochemistry and Western blot analysis in a rat model of ligature strangulation. Furthermore, the levels of miR-199a-3p and miR-199a-5p were detected by real-time fluorescent quantitative polymerase chain reaction. Glucose-regulated protein 78 was highly expressed in the cortex and midbrain in the ligature strangulation group (P < 0.01) when compared with the control group. The expression of GRP78 in the hippocampi showed no significant difference between the 2 groups. miR-199a-3p in the cortex and midbrain was significantly down-regulated in the ligature strangulation group (P < 0.01). However, miR-199a-5p in each brain region showed no significant difference between the 2 groups. In conclusion, ER stress was involved in the physiological and pathological processes of ligature strangulation. Furthermore, upstream miR-199a may play an important regulatory role in mechanical asphyxia.

  8. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat

    PubMed Central

    Shepard, Paul D.

    2016-01-01

    The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience. PMID:27358317

  9. Perceptual Load-Dependent Neural Correlates of Distractor Interference Inhibition

    PubMed Central

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M.; Potenza, Marc N.

    2011-01-01

    Background The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. Methodology/Principal Findings We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Conclusions Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load. PMID:21267080

  10. Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé neurones and cranial motoneurones

    PubMed Central

    Norton, Will H.; Mangoli, Maryam; Lele, Zsolt; Pogoda, Hans-Martin; Diamond, Brianne; Mercurio, Sara; Russell, Claire; Teraoka, Hiroki; Stickney, Heather L.; Rauch, Gerd-Jörg; Heisenberg, Carl-Philipp; Houart, Corinne; Schilling, Thomas F.; Frohnhoefer, Hans-Georg; Rastegar, Sepand; Neumann, Carl J.; Gardiner, R. Mark; Strähle, Uwe; Geisler, Robert; Rees, Michelle; Talbot, William S.; Wilson, Stephen W.

    2009-01-01

    Summary In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphé nucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins. PMID:15677724

  11. Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé neurones and cranial motoneurones.

    PubMed

    Norton, Will H; Mangoli, Maryam; Lele, Zsolt; Pogoda, Hans-Martin; Diamond, Brianne; Mercurio, Sara; Russell, Claire; Teraoka, Hiroki; Stickney, Heather L; Rauch, Gerd-Jörg; Heisenberg, Carl-Philipp; Houart, Corinne; Schilling, Thomas F; Frohnhoefer, Hans-Georg; Rastegar, Sepand; Neumann, Carl J; Gardiner, R Mark; Strähle, Uwe; Geisler, Robert; Rees, Michelle; Talbot, William S; Wilson, Stephen W

    2005-02-01

    In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphenucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.

  12. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat.

    PubMed

    Brown, P Leon; Shepard, Paul D

    2016-09-01

    The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience. Copyright © 2016 the American Physiological Society.

  13. Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer.

    PubMed

    Pera, Edgar M; Kim, James I; Martinez, Sarah L; Brechner, Mariel; Li, Su Yu; Wessely, Oliver; De Robertis, E M

    2002-08-01

    Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.

  14. Relation of uptake and metabolism of (1,2,6,7-3H)testosterone to individual differences in sexual behavior in male guinea pigs.

    PubMed

    Harding, C F; Feder, H H

    1976-03-19

    Male guinea pigs were given 3 tests for sexual behavior. Animals that never ejaculated were classified as low activity (LA), animals that ejaculated on one test were classified as medium activity (MA), and animals that ejaculated on two or more tests were classified as high activity (HA). Subsequently, animals from each group were castrated and given an s.c. injection of 43 muCi of [1,2,6,7-3H]testosterone and were killed 0.5, 1, or 4 h after injection. There were no significant differences in uptake or metabolism of radioactive testosterone among LA, MA, and HA males in homogenates of anterior and posterior hypothalamus, cerebral cortex, midbrain, or seminal vesicle. Thus, differences in sexual behavior could not be attributed to differences in testosterone uptake in tissue homogenates. At the 1 h time interval (time of peak plasma radioactivity), radioactivity in the seminal vesicles of all males was primarily in the form of steroids with the chromatographic mobility of dihydrotestosterone. In all males, anterior and posterior hypothalamus contained a higher proportion of steroids with the mobility of testosterone than did midbrain, and midbrain contained more testosterone zone radioactivity than cerebral cortex at 1 h. The highest proportion of dihydrotestosterone zone radioactivity in neural tissues was found in anterior hypothalamus. These results are discussed in terms of androgenic mediation of sex behavior by the anterior hypothalamus in guinea pigs.

  15. Evolutionary constraint on Otx2 neuroectoderm enhancers-deep conservation from skate to mouse and unique divergence in teleost

    PubMed Central

    Kurokawa, Daisuke; Sakurai, Yusuke; Inoue, Ai; Nakayama, Rika; Takasaki, Nobuyoshi; Suda, Yoko; Miyake, Tsutomu; Amemiya, Chris T.; Aizawa, Shinichi

    2006-01-01

    Otx2 is a paired type homeobox gene that plays essential roles in each step and site of head development in vertebrates. In the mouse, Otx2 expression in the anterior neuroectoderm is regulated primarily by two distinct enhancers: anterior neuroectoderm (AN) and forebrain/midbrain (FM) enhancers at 92 kb and 75 kb 5′of the Otx2 locus, respectively. The AN enhancer has activity in the entire anterior neuroectoderm at headfold and early somite stages, whereas the FM enhancer is subsequently active in the future caudal forebrain and midbrain ectoderm. In tetrapods, both AN and FM enhancers are conserved, whereas the AN region is missing in teleosts, despite overt Otx2 expression in the anterior neuroectoderm. Here, we show that zebrafish and fugu FM regions drive expression not only in the forebrain and midbrain but also in the anterior neuroectoderm at headfold stage. The analysis of coelacanth and skate genomic Otx2 orthologues suggests that the utilization of the two enhancers, AN and FM, is an ancestral condition. In contrast, the AN enhancer has been specifically lost in the teleost lineage with a compensatory establishment of AN activity within the FM enhancer. Furthermore, the AN activity in the fish FM enhancer was established by recruiting upstream factors different from those that direct the tetrapod AN enhancer, yet zebrafish FM enhancer is active in both mouse and zebrafish anterior neuroectoderm at the headfold stage. PMID:17159156

  16. Auditory priming improves neural synchronization in auditory-motor entrainment.

    PubMed

    Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J

    2018-05-22

    Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions using rhythmic auditory stimulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  18. The what, where and how of auditory-object perception.

    PubMed

    Bizley, Jennifer K; Cohen, Yale E

    2013-10-01

    The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.

  19. The what, where and how of auditory-object perception

    PubMed Central

    Bizley, Jennifer K.; Cohen, Yale E.

    2014-01-01

    The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177

  20. Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets.

    PubMed

    Meredith, M Alex; Allman, Brian L

    2015-03-01

    The recent findings in several species that the primary auditory cortex processes non-auditory information have largely overlooked the possibility of somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior auditory field and primary auditory cortex) for tactile responsivity. Multiple single-unit recordings from anesthetised ferret cortex yielded histologically verified neurons (n = 311) tested with electronically controlled auditory, visual and tactile stimuli, and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in the core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in the auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing, and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity.

    PubMed

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Goto, Tetsu; Sanefuji, Wakako; Yamamoto, Tomoka; Sakai, Saeko; Uchida, Hiroyuki; Hirata, Masayuki; Mohri, Ikuko; Yorifuji, Shiro; Taniike, Masako

    2012-01-25

    The aim of this study was to investigate the differential responses of the primary auditory cortex to auditory stimuli in autistic spectrum disorder with or without auditory hypersensitivity. Auditory-evoked field values were obtained from 18 boys (nine with and nine without auditory hypersensitivity) with autistic spectrum disorder and 12 age-matched controls. Autistic disorder with hypersensitivity showed significantly more delayed M50/M100 peak latencies than autistic disorder without hypersensitivity or the control. M50 dipole moments in the hypersensitivity group were larger than those in the other two groups [corrected]. M50/M100 peak latencies were correlated with the severity of auditory hypersensitivity; furthermore, severe hypersensitivity induced more behavioral problems. This study indicates auditory hypersensitivity in autistic spectrum disorder as a characteristic response of the primary auditory cortex, possibly resulting from neurological immaturity or functional abnormalities in it. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  2. Selective impairment of auditory selective attention under concurrent cognitive load.

    PubMed

    Dittrich, Kerstin; Stahl, Christoph

    2012-06-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.

  3. Auditory hallucinations induced by trazodone

    PubMed Central

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  4. Transient human auditory cortex activation during volitional attention shifting

    PubMed Central

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues. PMID:28273110

  5. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    PubMed

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  6. McGurk illusion recalibrates subsequent auditory perception

    PubMed Central

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  7. Auditory Spatial Attention Representations in the Human Cerebral Cortex

    PubMed Central

    Kong, Lingqiang; Michalka, Samantha W.; Rosen, Maya L.; Sheremata, Summer L.; Swisher, Jascha D.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2014-01-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  8. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    PubMed

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

    PubMed Central

    Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.

    2014-01-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033

  10. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    PubMed Central

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  11. [Auditory training in workshops: group therapy option].

    PubMed

    Santos, Juliana Nunes; do Couto, Isabel Cristina Plais; Amorim, Raquel Martins da Costa

    2006-01-01

    auditory training in groups. to verify in a group of individuals with mental retardation the efficacy of auditory training in a workshop environment. METHOD a longitudinal prospective study with 13 mentally retarded individuals from the Associação de Pais e Amigos do Excepcional (APAE) of Congonhas divided in two groups: case (n=5) and control (n=8) and who were submitted to ten auditory training sessions after verifying the integrity of the peripheral auditory system through evoked otoacoustic emissions. Participants were evaluated using a specific protocol concerning the auditory abilities (sound localization, auditory identification, memory, sequencing, auditory discrimination and auditory comprehension) at the beginning and at the end of the project. Data (entering, processing and analyses) were analyzed by the Epi Info 6.04 software. the groups did not differ regarding aspects of age (mean = 23.6 years) and gender (40% male). In the first evaluation both groups presented similar performances. In the final evaluation an improvement in the auditory abilities was observed for the individuals in the case group. When comparing the mean number of correct answers obtained by both groups in the first and final evaluations, a statistically significant result was obtained for sound localization (p=0.02), auditory sequencing (p=0.006) and auditory discrimination (p=0.03). group auditory training demonstrated to be effective in individuals with mental retardation, observing an improvement in the auditory abilities. More studies, with a larger number of participants, are necessary in order to confirm the findings of the present research. These results will help public health professionals to reanalyze the theory models used for therapy, so that they can use specific methods according to individual needs, such as auditory training workshops.

  12. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  13. A Perceptuo-Cognitive-Motor Approach to the Special Child.

    ERIC Educational Resources Information Center

    Kornblum, Rena Beth

    A movement therapist reviews ways in which a perceptuo-cognitive approach can help handicapped children in learning and in social adjustment. She identifies specific auditory problems (hearing loss, sound-ground confusion, auditory discrimination, auditory localization, auditory memory, auditory sequencing), visual problems (visual acuity,…

  14. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  15. Evolving nonapeptide mechanisms of gregariousness and social diversity in birds.

    PubMed

    Goodson, James L; Kelly, Aubrey M; Kingsbury, Marcy A

    2012-03-01

    Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Dynamic changes of rodent somatosensory barrel cortex are correlated with learning a novel conditioned stimulus.

    PubMed

    Long, John D; Carmena, Jose M

    2013-05-01

    The rodent somatosensory barrel cortex (S1bf) has proved a valuable model for studying neural plasticity in vivo. It has been observed that sensory deprivation or conditioning reorganizes sensory-driven activity within S1bf. These observations suggest a role for S1bf in somatosensory learning. This study evaluated the hypothesis that the response properties of extracellularly recorded neurons in S1bf would change as subjects learned to respond to stimulation of S1bf. Intracortical microstimulation (ICMS) of S1bf was used as a means for bypassing feedforward drive from the sensory periphery, midbrain, and thalamus while exciting local cortical networks. To separate the learning of this conditioned stimulus-conditioned response (CS-CR) from other elements of the task, we employed a cross-modal transfer schedule. Long-Evans rats were initially trained to respond to an auditory stimulus. All subjects were then implanted in both S1bfs with chronic microwire arrays for recording neural activity and delivering ICMS. Next, this association was transferred to ICMS of one hemisphere's S1bf. S1bf responded to ICMS with a brief increase in firing rate followed by a longer reduction in activity. We observed that the duration of reduced activity elicited by ICMS increased as the subjects began to respond correctly more often than expected by chance, and the magnitude of the initial positive response increased as they consolidated this CS-CR. Subsequent ICMS of the opposite S1bf revealed that this CS-CR did not generalize across hemispheres. These results suggest that a mechanism involving a single hemisphere's S1bf tunes cortical responses in concert with changes in rodent behavior during somatosensory learning.

  17. The Cytoarchitecture of the Inferior Colliculus Revisited

    PubMed Central

    Loftus, William C.; Malmierca, Manuel S.; Bishop, Deborah C.; Oliver, Douglas L.

    2008-01-01

    The inferior colliculus (IC) is the major component of the auditory midbrain and contains three major subdivisions: a central nucleus, a dorsal cortex, and a lateral cortex (LC). Discrepancies in the nomenclature and parcellation of the LC in the rat and cat seem to imply different, species-specific functions for this region. To establish a comparable parcellation of the LC for both rat and cat, we investigated the histochemistry and inputs of the LC. In both species, the deep lateral cortex is marked by a transition between the NADPH-d rich superficial cortex and a cytochrome oxidase rich central nucleus. In both species, focal injections of anterograde tracers in the cochlear nucleus at sites of known best frequency produced bands of labeled inputs in two different subdivisions of the IC. A medial band of axons terminated in the central nucleus, while shorter bands were located laterally and oriented nearly perpendicularly to the medial bands. In the rat, these lateral bands were located in the third, deepest layer of the lateral (external) cortex. In the cat, the bands were located in a region that was previously ascribed to the central nucleus, but now considered to belong to the third, deepest layer of the LC, the ventrolateral nucleus. In both species, the LC inputs had a tonotopic organization. In view of this parallel organization, we propose a common parcellation of the IC for rat and cat with a new nomenclature. The deep layer of the LC, previously referred to as layer 3 in the rat, is designated as the ‘ventrolateral nucleus’ of the LC, making it clear that this region is thought to be homologous with the ventrolateral nucleus in the cat. The similar organization of the LC implies that this subdivision of the IC has similar functions in cats and rats. PMID:18313229

  18. A biologically inspired model of bat echolocation in a cluttered environment with inputs designed from field Recordings

    NASA Astrophysics Data System (ADS)

    Loncich, Kristen Teczar

    Bat echolocation strategies and neural processing of acoustic information, with a focus on cluttered environments, is investigated in this study. How a bat processes the dense field of echoes received while navigating and foraging in the dark is not well understood. While several models have been developed to describe the mechanisms behind bat echolocation, most are based in mathematics rather than biology, and focus on either peripheral or neural processing---not exploring how these two levels of processing are vitally connected. Current echolocation models also do not use habitat specific acoustic input, or account for field observations of echolocation strategies. Here, a new approach to echolocation modeling is described capturing the full picture of echolocation from signal generation to a neural picture of the acoustic scene. A biologically inspired echolocation model is developed using field research measurements of the interpulse interval timing used by a frequency modulating (FM) bat in the wild, with a whole method approach to modeling echolocation including habitat specific acoustic inputs, a biologically accurate peripheral model of sound processing by the outer, middle, and inner ear, and finally a neural model incorporating established auditory pathways and neuron types with echolocation adaptations. Field recordings analyzed underscore bat sonar design differences observed in the laboratory and wild, and suggest a correlation between interpulse interval groupings and increased clutter. The scenario model provides habitat and behavior specific echoes and is a useful tool for both modeling and behavioral studies, and the peripheral and neural model show that spike-time information and echolocation specific neuron types can produce target localization in the midbrain.

  19. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus.

    PubMed

    Bandara, Suren B; Eubig, Paul A; Sadowski, Renee N; Schantz, Susan L

    2016-02-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Auditory Task Irrelevance: A Basis for Inattentional Deafness

    PubMed Central

    Scheer, Menja; Bülthoff, Heinrich H.; Chuang, Lewis L.

    2018-01-01

    Objective This study investigates the neural basis of inattentional deafness, which could result from task irrelevance in the auditory modality. Background Humans can fail to respond to auditory alarms under high workload situations. This failure, termed inattentional deafness, is often attributed to high workload in the visual modality, which reduces one’s capacity for information processing. Besides this, our capacity for processing auditory information could also be selectively diminished if there is no obvious task relevance in the auditory channel. This could be another contributing factor given the rarity of auditory warnings. Method Forty-eight participants performed a visuomotor tracking task while auditory stimuli were presented: a frequent pure tone, an infrequent pure tone, and infrequent environmental sounds. Participants were required either to respond to the presentation of the infrequent pure tone (auditory task-relevant) or not (auditory task-irrelevant). We recorded and compared the event-related potentials (ERPs) that were generated by environmental sounds, which were always task-irrelevant for both groups. These ERPs served as an index for our participants’ awareness of the task-irrelevant auditory scene. Results Manipulation of auditory task relevance influenced the brain’s response to task-irrelevant environmental sounds. Specifically, the late novelty-P3 to irrelevant environmental sounds, which underlies working memory updating, was found to be selectively enhanced by auditory task relevance independent of visuomotor workload. Conclusion Task irrelevance in the auditory modality selectively reduces our brain’s responses to unexpected and irrelevant sounds regardless of visuomotor workload. Application Presenting relevant auditory information more often could mitigate the risk of inattentional deafness. PMID:29578754

  1. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit

    PubMed Central

    Gruber, Matthias J.; Gelman, Bernard D.; Ranganath, Charan

    2014-01-01

    Summary People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day delayed memory tests, participants showed improved memory for information that they were curious about, and also for incidental material learned during states of high curiosity. FMRI results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity in order to create more effective learning experiences. PMID:25284006

  2. Regulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain.

    PubMed

    Hauptmann, G; Gerster, T

    2000-03-01

    To shed light on the organization of the rostral embryonic brain of a lower vertebrate, we have directly compared the expression patterns of dlx, fgf, hh, hlx, otx, pax, POU, winged helix and wnt gene family members in the fore- and midbrain of the zebrafish. We show that the analyzed genes are expressed in distinct transverse and longitudinal domains and share expression boundaries at stereotypic positions within the fore- and midbrain. Some of these shared expression boundaries coincide with morphological landmarks like the pathways of primary axon tracts. We identified a series of eight transverse diencephalic domains suggestive of neuromeric subdivisions within the rostral brain. In addition, we identified four molecularly distinct longitudinal subdivisions and provide evidence for a strong bending of the longitudinal rostral brain axis at the cephalic flexure. Our data suggest a strong conservation of early forebrain organization between lower and higher vertebrates.

  3. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    PubMed

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  4. [Pathophysiological aspects of the brain stem in closed head injuries (author's transl)].

    PubMed

    Lausberg, G

    1981-07-01

    In a case of severe head injury, there is a disturbance of the functional cycle between hypothalamus/mesencephalon and the cortex cerebri. In this article, the causes and the pathophysiological, functional disturbances of primary and secondary unconsciousness will be discussed. In a case of a posttraumatic intracranial hypertension, the following causes are to be considered: cerebral oedema, intracerebral haematomas and the so-called pneumatocephalus: the collection of air in the ventricle system when open head injuries of the base of the skull occur. The midbrain syndrome which is caused by the compression of the midbrain is characterized by the disturbed reaction of the pupils, convulsive seizures and vegetative dysregulation of respiration, circulation and temperature. When the above-mentioned syndrome persists, it can develop into bulbar syndrome. This is recognized through a severe functional disturbance, which can lead to central brain if the cause of the rise of intracranial pressure is not overcome within one hour.

  5. Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior.

    PubMed

    Hutchison, M A; Gu, X; Adrover, M F; Lee, M R; Hnasko, T S; Alvarez, V A; Lu, W

    2018-05-01

    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.

  6. Striatal dopamine neurotransmission: regulation of release and uptake

    PubMed Central

    Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.

    2016-01-01

    Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430

  7. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS)

    PubMed Central

    Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom sound perception and potentially serve as an objective measure of central neural pathology. PMID:28604786

  8. Enhancing Auditory Selective Attention Using a Visually Guided Hearing Aid.

    PubMed

    Kidd, Gerald

    2017-10-17

    Listeners with hearing loss, as well as many listeners with clinically normal hearing, often experience great difficulty segregating talkers in a multiple-talker sound field and selectively attending to the desired "target" talker while ignoring the speech from unwanted "masker" talkers and other sources of sound. This listening situation forms the classic "cocktail party problem" described by Cherry (1953) that has received a great deal of study over the past few decades. In this article, a new approach to improving sound source segregation and enhancing auditory selective attention is described. The conceptual design, current implementation, and results obtained to date are reviewed and discussed in this article. This approach, embodied in a prototype "visually guided hearing aid" (VGHA) currently used for research, employs acoustic beamforming steered by eye gaze as a means for improving the ability of listeners to segregate and attend to one sound source in the presence of competing sound sources. The results from several studies demonstrate that listeners with normal hearing are able to use an attention-based "spatial filter" operating primarily on binaural cues to selectively attend to one source among competing spatially distributed sources. Furthermore, listeners with sensorineural hearing loss generally are less able to use this spatial filter as effectively as are listeners with normal hearing especially in conditions high in "informational masking." The VGHA enhances auditory spatial attention for speech-on-speech masking and improves signal-to-noise ratio for conditions high in "energetic masking." Visual steering of the beamformer supports the coordinated actions of vision and audition in selective attention and facilitates following sound source transitions in complex listening situations. Both listeners with normal hearing and with sensorineural hearing loss may benefit from the acoustic beamforming implemented by the VGHA, especially for nearby sources in less reverberant sound fields. Moreover, guiding the beam using eye gaze can be an effective means of sound source enhancement for listening conditions where the target source changes frequently over time as often occurs during turn-taking in a conversation. http://cred.pubs.asha.org/article.aspx?articleid=2601621.

  9. Enhancing Auditory Selective Attention Using a Visually Guided Hearing Aid

    PubMed Central

    2017-01-01

    Purpose Listeners with hearing loss, as well as many listeners with clinically normal hearing, often experience great difficulty segregating talkers in a multiple-talker sound field and selectively attending to the desired “target” talker while ignoring the speech from unwanted “masker” talkers and other sources of sound. This listening situation forms the classic “cocktail party problem” described by Cherry (1953) that has received a great deal of study over the past few decades. In this article, a new approach to improving sound source segregation and enhancing auditory selective attention is described. The conceptual design, current implementation, and results obtained to date are reviewed and discussed in this article. Method This approach, embodied in a prototype “visually guided hearing aid” (VGHA) currently used for research, employs acoustic beamforming steered by eye gaze as a means for improving the ability of listeners to segregate and attend to one sound source in the presence of competing sound sources. Results The results from several studies demonstrate that listeners with normal hearing are able to use an attention-based “spatial filter” operating primarily on binaural cues to selectively attend to one source among competing spatially distributed sources. Furthermore, listeners with sensorineural hearing loss generally are less able to use this spatial filter as effectively as are listeners with normal hearing especially in conditions high in “informational masking.” The VGHA enhances auditory spatial attention for speech-on-speech masking and improves signal-to-noise ratio for conditions high in “energetic masking.” Visual steering of the beamformer supports the coordinated actions of vision and audition in selective attention and facilitates following sound source transitions in complex listening situations. Conclusions Both listeners with normal hearing and with sensorineural hearing loss may benefit from the acoustic beamforming implemented by the VGHA, especially for nearby sources in less reverberant sound fields. Moreover, guiding the beam using eye gaze can be an effective means of sound source enhancement for listening conditions where the target source changes frequently over time as often occurs during turn-taking in a conversation. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601621 PMID:29049603

  10. Auditory Processing of Older Adults with Probable Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Edwards, Jerri D.; Lister, Jennifer J.; Elias, Maya N.; Tetlow, Amber M.; Sardina, Angela L.; Sadeq, Nasreen A.; Brandino, Amanda D.; Bush, Aryn L. Harrison

    2017-01-01

    Purpose: Studies suggest that deficits in auditory processing predict cognitive decline and dementia, but those studies included limited measures of auditory processing. The purpose of this study was to compare older adults with and without probable mild cognitive impairment (MCI) across two domains of auditory processing (auditory performance in…

  11. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  12. Auditory motion-specific mechanisms in the primate brain

    PubMed Central

    Baumann, Simon; Dheerendra, Pradeep; Joly, Olivier; Hunter, David; Balezeau, Fabien; Sun, Li; Rees, Adrian; Petkov, Christopher I.; Thiele, Alexander; Griffiths, Timothy D.

    2017-01-01

    This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream. PMID:28472038

  13. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    PubMed

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  14. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  15. Audition dominates vision in duration perception irrespective of salience, attention, and temporal discriminability

    PubMed Central

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2014-01-01

    Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances. PMID:24806403

  16. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  17. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  18. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  19. Cortical Representations of Speech in a Multitalker Auditory Scene.

    PubMed

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.

  20. Arousal Rules: An Empirical Investigation into the Aesthetic Experience of Cross-Modal Perception with Emotional Visual Music

    PubMed Central

    Lee, Irene Eunyoung; Latchoumane, Charles-Francois V.; Jeong, Jaeseung

    2017-01-01

    Emotional visual music is a promising tool for the study of aesthetic perception in human psychology; however, the production of such stimuli and the mechanisms of auditory-visual emotion perception remain poorly understood. In Experiment 1, we suggested a literature-based, directive approach to emotional visual music design, and inspected the emotional meanings thereof using the self-rated psychometric and electroencephalographic (EEG) responses of the viewers. A two-dimensional (2D) approach to the assessment of emotion (the valence-arousal plane) with frontal alpha power asymmetry EEG (as a proposed index of valence) validated our visual music as an emotional stimulus. In Experiment 2, we used our synthetic stimuli to investigate possible underlying mechanisms of affective evaluation mechanisms in relation to audio and visual integration conditions between modalities (namely congruent, complementation, or incongruent combinations). In this experiment, we found that, when arousal information between auditory and visual modalities was contradictory [for example, active (+) on the audio channel but passive (−) on the video channel], the perceived emotion of cross-modal perception (visual music) followed the channel conveying the stronger arousal. Moreover, we found that an enhancement effect (heightened and compacted in subjects' emotional responses) in the aesthetic perception of visual music might occur when the two channels contained contradictory arousal information and positive congruency in valence and texture/control. To the best of our knowledge, this work is the first to propose a literature-based directive production of emotional visual music prototypes and the validations thereof for the study of cross-modally evoked aesthetic experiences in human subjects. PMID:28421007

  1. Arousal Rules: An Empirical Investigation into the Aesthetic Experience of Cross-Modal Perception with Emotional Visual Music.

    PubMed

    Lee, Irene Eunyoung; Latchoumane, Charles-Francois V; Jeong, Jaeseung

    2017-01-01

    Emotional visual music is a promising tool for the study of aesthetic perception in human psychology; however, the production of such stimuli and the mechanisms of auditory-visual emotion perception remain poorly understood. In Experiment 1, we suggested a literature-based, directive approach to emotional visual music design, and inspected the emotional meanings thereof using the self-rated psychometric and electroencephalographic (EEG) responses of the viewers. A two-dimensional (2D) approach to the assessment of emotion (the valence-arousal plane) with frontal alpha power asymmetry EEG (as a proposed index of valence) validated our visual music as an emotional stimulus. In Experiment 2, we used our synthetic stimuli to investigate possible underlying mechanisms of affective evaluation mechanisms in relation to audio and visual integration conditions between modalities (namely congruent, complementation, or incongruent combinations). In this experiment, we found that, when arousal information between auditory and visual modalities was contradictory [for example, active (+) on the audio channel but passive (-) on the video channel], the perceived emotion of cross-modal perception (visual music) followed the channel conveying the stronger arousal. Moreover, we found that an enhancement effect (heightened and compacted in subjects' emotional responses) in the aesthetic perception of visual music might occur when the two channels contained contradictory arousal information and positive congruency in valence and texture/control. To the best of our knowledge, this work is the first to propose a literature-based directive production of emotional visual music prototypes and the validations thereof for the study of cross-modally evoked aesthetic experiences in human subjects.

  2. Vertical diplopia and oscillopsia due to midbrain keyhole aqueduct syndrome associated with severe cough.

    PubMed

    Oh, Angela Jinsook; Lanzman, Bryan Alexander; Liao, Yaping Joyce

    2018-06-01

    Midline structural defects in the neural axis can give rise to neuro-ophthalmic symptoms. We report a rare case of keyhole aqueduct syndrome presenting after two years of severe cough due to gastroesophageal reflux disease. A 58-year-old woman with a 2-year history of daily, severe cough presented to the neuro-ophthalmology clinic with progressive diplopia and oscillopsia. Examination revealed a 1-2 Hz down-beating nystagmus in primary gaze that worsened with left, right, and down gazes. Gaze evoked nystagmus and mild paresis were also seen with up gaze. There was an incomitant left hypertropia due to skew deviation that worsened with right and up gazes and improved with down gaze. She also had a right-sided ptosis and a 3 mm anisocoria not due to cranial nerve 3 paresis or Horner's syndrome. Brain magnetic resonance imaging showed a 1.5 mm × 11.7 mm × 6 mm midline cleft in the ventral midbrain communicating with the cerebral aqueduct, consistent with keyhole aqueduct syndrome. Her nystagmus and diplopia improved with oral acetazolamide treatment, at high doses of 2500-3000 mg per day. We report the first case of midbrain keyhole aqueduct syndrome with ocular motor and other neuro-ophthalmic manifestations associated with severe cough. Although her cough was effectively treated and intracranial pressure measurement was normal, her ophthalmic symptoms continued to progress, which is common in previous cases reported. Treatment with acetazolamide led to significant improvement, supporting the use of acetazolamide in this rare condition.

  3. MRI-Based Measurement of Brain Stem Cross-Sectional Area in Relapsing-Remitting Multiple Sclerosis.

    PubMed

    Chivers, Tomos R; Constantinescu, Cris S; Tench, Christopher R

    2015-01-01

    To determine if patients with relapsing-remitting multiple sclerosis (RRMS) have a reduced brain stem cross-sectional area (CSA) compared to age- and sex-matched controls. The brain stem is a common site of involvement in MS. However, relatively few imaging studies have investigated brain stem atrophy. Brain magnetic resonance imaging (MRI) was performed on patients and controls using a 1.5T MRI scanner with a quadrature head coil. Three-dimensional magnetization-prepared rapid acquisition gradient-echo (MPRAGE) images with 128 contiguous slices, covering the whole brain and brain stem and a T2-weighted image with 3 mm transverse contiguous images were acquired. We measured the brain stem CSA at three sites, the midbrain, the pons, and the medulla oblongata in 35 RRMS patients and 35 controls using a semiautomated algorithm. CSA readings were normalized using the total external cranial volume to reduce normal population variance and increase statistical power. A significant CSA reduction was found in the midbrain (P ≤ .001), pons (P ≤ .001), and the medulla oblongata (P = .047) postnormalization. A CSA reduction of 9.3% was found in the midbrain, 8.7% in the pons, and 6.5% in the medulla oblongata. A significantly reduced, normalized brain stem CSA was detected in all areas of the brain stem of the RRMS patients, when compared to age- and gender-matched controls. Lack of detectable upper cervical cord atrophy in the same patients suggests some independence of the MS pathology in these regions. Copyright © 2015 by the American Society of Neuroimaging.

  4. Progression of brain atrophy in PSP and CBS over 6 months and 1 year.

    PubMed

    Dutt, Shubir; Binney, Richard J; Heuer, Hilary W; Luong, Phi; Attygalle, Suneth; Bhatt, Priyanka; Marx, Gabe A; Elofson, Jonathan; Tartaglia, Maria C; Litvan, Irene; McGinnis, Scott M; Dickerson, Bradford C; Kornak, John; Waltzman, Dana; Voltarelli, Lisa; Schuff, Norbert; Rabinovici, Gil D; Kramer, Joel H; Jack, Clifford R; Miller, Bruce L; Rosen, Howard J; Boxer, Adam L

    2016-11-08

    To examine the utility and reliability of volumetric MRI in measuring disease progression in the 4 repeat tauopathies, progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), to support clinical development of new tau-directed therapeutic agents. Six- and 12-month changes in regional MRI volumes and PSP Rating Scale scores were examined in 55 patients with PSP and 33 patients with CBS (78% amyloid PET negative) compared to 30 normal controls from a multicenter natural history study. Longitudinal voxel-based morphometric analyses identified patterns of volume loss, and region-of-interest analyses examined rates of volume loss in brainstem (midbrain, pons, superior cerebellar peduncle), cortical, and subcortical regions based on previously validated atlases. Results were compared to those in a replication cohort of 226 patients with PSP with MRI data from the AL-108-231 clinical trial. Patients with CBS exhibited greater baseline atrophy and greater longitudinal atrophy rates in cortical and basal ganglia regions than patients with PSP; however, midbrain and pontine atrophy rates were similar. Voxel-wise analyses showed distinct patterns of regional longitudinal atrophy in each group as compared to normal controls. The midbrain/pons volumetric ratio differed between diagnoses but remained stable over time. In both patient groups, brainstem atrophy rates were correlated with disease progression measured using the PSP Rating Scale. Volume loss is quantifiable over a period of 6 months in CBS and PSP. Future clinical trials may be able to combine CBS and PSP to measure therapeutic effects. © 2016 American Academy of Neurology.

  5. A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary.

    PubMed

    Lun, K; Brand, M

    1998-08-01

    Generation of cell diversity in the vertebrate central nervous system starts during gastrulation stages in the ectodermal germ layer and involves specialized cell groups, such as the organizer located at the midbrain-hindbrain boundary (MHB). Mutations in the zebrafish no isthmus (noi) gene alter development of the MHB, and affect the pax2.1 gene (formerly pax(zf-b)). Analysis of the structure of pax2.1 reveals at least 12 normal splice variants. The noi alleles can be arranged, by molecular and phenotypic criteria, into a series of five alleles of differing strength, ranging from a null allele to weak alleles. In keeping with a role in development of the MHB organizer, gene expression is already affected in the MHB primordium of the gastrula neural ectoderm in noi mutants. eng3 activation is completely and eng2 activation is strongly dependent on noi function. In contrast, onset of wnt1, fgf8 and her5 expression occurs normally in the null mutants, but is eliminated later on. Our observations suggest that three signaling pathways, involving pax2.1, wnt1 and fgf8, are activated independently in early anterior-posterior patterning of this area. In addition, analysis of the allelic series unexpectedly suggests that noi activity is also required during dorsal-ventral patterning of the MHB in somitogenesis stages, and possibly in a later eng expression phase. We propose that noi/pax2.1 participates in sequential signaling processes as a key integrator of midbrain-hindbrain boundary development.

  6. Neuroimaging somatosensory perception and masking.

    PubMed

    Meador, Kimford J; Revill, Kathleen Pirog; Epstein, Charles M; Sathian, K; Loring, David W; Rorden, Chris

    2017-01-08

    The specific cortical and subcortical regions involved in conscious perception and masking are uncertain. This study sought to identify brain areas involved in conscious perception of somatosensory stimuli during a masking task using functional magnetic resonance (fMRI) to contrast perceived vs. non-perceived targets. Electrical trains were delivered to the right index finger for targets and to the left index finger for masks. Target intensities were adjusted to compensate for threshold drift. Sham target trials were given in ~10% of the trials, and target stimuli without masks were delivered in one of the five runs (68 trials/run). When healthy dextral adult volunteers (n=15) perceived right hand targets, greater left- than right-cerebral activations were seen with similar patterns across the parietal cortex, thalamus, insula, claustrum, and midbrain. When targets were not perceived, left/right cerebral activations were similar overall. Directly comparing perceived vs. non-perceived stimuli with similar intensities in the masking task revealed predominate activations contralateral to masks. In contrast, activations were greater contralateral to perceived targets if no masks were given or if masks were given but target stimulus intensities were greater for perceived than non-perceived targets. The novel aspects of this study include: 1) imaging of cortical and subcortical activations in healthy humans related to somatosensory perception during a masking task, 2) activations in the human thalamus and midbrain related to perception of stimuli compared to matched non-perceived stimuli, and 3) similar left/right cerebral activation patterns across cortical, thalamic and midbrain structures suggesting interactions across all three levels during conscious perception in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modulation of the activity of midbrain central gray substance neurons by calcium channel agonists and antagonists in vitro.

    PubMed

    Yakhnitsa, V A; Pilyavskii, A I; Limansky, Y P; Bulgakova, N V

    1996-01-01

    Changes in the background impulse activity of midbrain central gray substance neurons have been studied on slice preparations from the rat midbrain upon application of calcium-free solution, an activator of calcium channels, BAY-K 8644 (10 nM), organic (verapamil, 40 microM; D600, 10 microM; nifedipine, 1-10 microM; amiloride, 1 microM) and inorganic (Co2+, 1.5 mM) calcium channel blockers. Besides BAY-K 8644, all the substances inhibited most of the neurons studied. Verapamil, BAY-K 8644 and Co2+ also revealed facilitatory effects. Facilitatory action of BAY-K was most effective in silent neurons and in those previously inhibited by amiloride. Latent period values of inhibition in calcium-free solution and upon application of organic and inorganic blockers have the following sequence: D600 > amiloride > verapamil > Co2+ > nifedipine > calcium-free solution. Maximum rise time had the following order: amiloride > D600 > nifedipine > verapamil > Co2+ > calcium-free solution. Complete suppression of the neuronal activity induced by amiloride lasted twice as long as that induced by calcium-free solution, Co2+ and nifedipine, and six times as long as verapamil-induced suppression. Preliminary application of calcium channel blockers reduced facilitatory and increased inhibitory effects of serotonin and substance P. Data obtained are discussed with the supposition in mind that inhibition of the function of calcium channels in central gray substance neurons could be one of the mechanisms underlying the analgesic effect of a series of neurotropic agents after their introduction into this structure.

  8. Subcortical Local Functional Hyperconnectivity in Cannabis Dependence.

    PubMed

    Manza, Peter; Tomasi, Dardo; Volkow, Nora D

    2018-03-01

    Cannabis abuse (CA) has been associated with psychopathology, including negative emotionality and higher risk of psychosis, particularly with early age of initiation. However, the mechanisms underlying this association are poorly understood. Because aberrant dopamine signaling is implicated in cannabis-associated psychopathology, we hypothesized that regular CA would be associated with altered resting-state functional connectivity in dopamine midbrain-striatal circuits. We examined resting-state brain activity of subcortical regions in 441 young adults from the Human Connectome Project, including 30 subjects with CA meeting DSM-IV criteria for dependence and 30 control subjects matched on age, sex, education, body mass index, anxiety, depression, and alcohol and tobacco usage. Across all subjects, local functional connectivity density hubs in subcortical regions were most prominent in ventral striatum, hippocampus, amygdala, dorsal midbrain, and posterior-ventral brainstem. As hypothesized, subjects with CA showed markedly increased local functional connectivity density relative to control subjects, not only in ventral striatum (where nucleus accumbens is located) and midbrain (where substantia nigra and ventral tegmental nuclei are located) but also in brainstem and lateral thalamus. These effects were observed in the absence of significant differences in subcortical volumes and were most pronounced in individuals who began cannabis use earliest in life and who reported high levels of negative emotionality. Together, these findings suggest that chronic CA is associated with changes in resting-state brain function, particularly in dopaminergic nuclei implicated in psychosis but that are also critical for habit formation and reward processing. These results shed light on neurobiological differences that may be relevant to psychopathology associated with cannabis use. Published by Elsevier Inc.

  9. Neural Correlates of Stress and Favorite-Food Cue Exposure in Adolescents: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Hommer, Rebecca E.; Seo, Dongju; Lacadie, Cheryl M.; Chaplin, Tara M.; Mayes, Linda C.; Sinha, Rajita; Potenza, Marc N.

    2012-01-01

    Adolescence is a critical period of neurodevelopment for stress and appetitive processing, as well as a time of increased vulnerability to stress and engagement in risky behaviors. The current study was conducted to examine brain activation patterns during stress and favorite-food-cue experiences relative to a neutral-relaxing condition in adolescents. Functional magnetic resonance imaging was employed using individualized script-driven guided imagery to compare brain responses to such experiences in 43 adolescents. Main effects of condition and gender were found, without a significant gender-by-condition interaction. Stress imagery, relative to neutral, was associated with activation in the caudate, thalamus, left hippocampus/parahippocampal gyrus, midbrain, left superior/middle temporal gyrus, and right posterior cerebellum. Appetitive imagery of favorite food was associated with caudate, thalamus, and midbrain activation compared to the neutral-relaxing condition. To understand neural correlates of anxiety and craving, subjective (self-reported) measures of stress-induced anxiety and favorite-food-cue-induced craving were correlated with brain activity during stress and appetitive food-cue conditions, respectively. High self-reported stress-induced anxiety was associated with hypoactivity in the striatum, thalamus, hippocampus and midbrain. Self-reported favorite-food-cue-induced craving was associated with blunted activity in cortical-striatal regions, including the right dorsal and ventral striatum, medial prefrontal cortex, motor cortex, and left anterior cingulate cortex. The current findings in adolescents indicate the activation of predominantly subcortical-striatal regions in the processing of stressful and appetitive experiences and link hypoactive striatal circuits to self-reported stress-induced anxiety and cue-induced favorite-food craving. PMID:22504779

  10. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.

    PubMed

    Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K

    2010-02-19

    Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.

  11. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson’s disease: Involvement of mitochondrial dysfunctions and oxidative stress

    PubMed Central

    Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer’s disease while its role in the occurrence of Parkinson’s disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia. PMID:28170429

  12. Electroacupuncture remediates glial dysfunction and ameliorates neurodegeneration in the astrocytic α-synuclein mutant mouse model.

    PubMed

    Deng, Jiahui; Lv, E; Yang, Jian; Gong, Xiaoli; Zhang, Wenzhong; Liang, Xibin; Wang, Jiazeng; Jia, Jun; Wang, Xiaomin

    2015-05-28

    The acupuncture or electroacupuncture (EA) shows the therapeutic effect on various neurodegenerative diseases. This effect was thought to be partially achieved by its ability to alleviate existing neuroinflammation and glial dysfunction. In this study, we systematically investigated the effect of EA on abnormal neurochemical changes and motor symptoms in a mouse neurodegenerative disease model. The transgenic mouse which expresses a mutant α-synuclein (α-syn) protein, A53T α-syn, in brain astrocytic cells was used. These mice exhibit extensive neuroinflammatory and motor phenotypes of neurodegenerative disorders. In this study, the effects of EA on these phenotypic changes were examined in these mice. EA improved the movement detected in multiple motor tests in A53T mutant mice. At the cellular level, EA significantly reduced the activation of microglia and prevented the loss of dopaminergic neurons in the midbrain and motor neurons in the spinal cord. At the molecular level, EA suppressed the abnormal elevation of proinflammatory factors (tumor necrosis factor-α and interleukin-1β) in the striatum and midbrain of A53T mice. In contrast, EA increased striatal and midbrain expression of a transcription factor, nuclear factor E2-related factor 2, and its downstream antioxidants (heme oxygenase-1 and glutamate-cysteine ligase modifier subunits). These results suggest that EA possesses the ability to ameliorate mutant α-syn-induced motor abnormalities. This ability may be due to that EA enhances both anti-inflammatory and antioxidant activities and suppresses aberrant glial activation in the diseased sites of brains.

  13. Cocaine cue-induced dopamine release in the human prefrontal cortex.

    PubMed

    Milella, Michele S; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-08-01

    Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms.

  14. Neural correlates of stress and favorite-food cue exposure in adolescents: a functional magnetic resonance imaging study.

    PubMed

    Hommer, Rebecca E; Seo, Dongju; Lacadie, Cheryl M; Chaplin, Tara M; Mayes, Linda C; Sinha, Rajita; Potenza, Marc N

    2013-10-01

    Adolescence is a critical period of neurodevelopment for stress and appetitive processing, as well as a time of increased vulnerability to stress and engagement in risky behaviors. This study was conducted to examine brain activation patterns during stress and favorite-food-cue experiences relative to a neutral-relaxing condition in adolescents. Functional magnetic resonance imaging was employed using individualized script-driven guided imagery to compare brain responses with such experiences in 43 adolescents. Main effects of condition and gender were found, without a significant gender-by-condition interaction. Stress imagery, relative to neutral, was associated with activation in the caudate, thalamus, left hippocampus/parahippocampal gyrus, midbrain, left superior/middle temporal gyrus, and right posterior cerebellum. Appetitive imagery of favorite food was associated with caudate, thalamus, and midbrain activation compared with the neutral-relaxing condition. To understand neural correlates of anxiety and craving, subjective (self-reported) measures of stress-induced anxiety and favorite-food-cue-induced craving were correlated with brain activity during stress and appetitive food-cue conditions, respectively. High self-reported stress-induced anxiety was associated with hypoactivity in the striatum, thalamus, hippocampus, and midbrain. Self-reported favorite-food-cue-induced craving was associated with blunted activity in cortical-striatal regions, including the right dorsal and ventral striatum, medial prefrontal cortex, motor cortex, and left anterior cingulate cortex. These findings in adolescents indicate the activation of predominantly subcortical-striatal regions in the processing of stressful and appetitive experiences and link hypoactive striatal circuits to self-reported stress-induced anxiety and cue-induced favorite-food craving. Copyright © 2012 Wiley Periodicals, Inc.

  15. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor.

    PubMed

    Kang, Kai-Hsiang; Liou, Horng-Hui; Hour, Mann-Jen; Liou, Houng-Chi; Fu, Wen-Mei

    2013-10-01

    Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    PubMed Central

    Cai, Shanqing; Beal, Deryk S.; Ghosh, Satrajit S.; Tiede, Mark K.; Guenther, Frank H.; Perkell, Joseph S.

    2012-01-01

    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (∼150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands. PMID:22911857

  17. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit

    PubMed Central

    Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.

    2016-01-01

    Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498

  18. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer’s disease syndromic spectrum. PMID:25468732

  19. Auditory, Visual, and Auditory-Visual Perception of Vowels by Hearing-Impaired Children.

    ERIC Educational Resources Information Center

    Hack, Zarita Caplan; Erber, Norman P.

    1982-01-01

    Vowels were presented through auditory, visual, and auditory-visual modalities to 18 hearing impaired children (12 to 15 years old) having good, intermediate, and poor auditory word recognition skills. All the groups had difficulty with acoustic information and visual information alone. The first two groups had only moderate difficulty identifying…

  20. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  1. LAMP: 100+ Systematic Exercise Lessons for Developing Linguistic Auditory Memory Patterns in Beginning Readers.

    ERIC Educational Resources Information Center

    Valett, Robert E.

    Research findings on auditory sequencing and auditory blending and fusion, auditory-visual integration, and language patterns are presented in support of the Linguistic Auditory Memory Patterns (LAMP) program. LAMP consists of 100 developmental lessons for young students with learning disabilities or language problems. The lessons are included in…

  2. Maturation of Visual and Auditory Temporal Processing in School-Aged Children

    ERIC Educational Resources Information Center

    Dawes, Piers; Bishop, Dorothy V. M.

    2008-01-01

    Purpose: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods: Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes…

  3. Auditory-Visual Speech Integration by Adults with and without Language-Learning Disabilities

    ERIC Educational Resources Information Center

    Norrix, Linda W.; Plante, Elena; Vance, Rebecca

    2006-01-01

    Auditory and auditory-visual (AV) speech perception skills were examined in adults with and without language-learning disabilities (LLD). The AV stimuli consisted of congruent consonant-vowel syllables (auditory and visual syllables matched in terms of syllable being produced) and incongruent McGurk syllables (auditory syllable differed from…

  4. Segregating the neural correlates of physical and perceived change in auditory input using the change deafness effect.

    PubMed

    Puschmann, Sebastian; Weerda, Riklef; Klump, Georg; Thiel, Christiane M

    2013-05-01

    Psychophysical experiments show that auditory change detection can be disturbed in situations in which listeners have to monitor complex auditory input. We made use of this change deafness effect to segregate the neural correlates of physical change in auditory input from brain responses related to conscious change perception in an fMRI experiment. Participants listened to two successively presented complex auditory scenes, which consisted of six auditory streams, and had to decide whether scenes were identical or whether the frequency of one stream was changed between presentations. Our results show that physical changes in auditory input, independent of successful change detection, are represented at the level of auditory cortex. Activations related to conscious change perception, independent of physical change, were found in the insula and the ACC. Moreover, our data provide evidence for significant effective connectivity between auditory cortex and the insula in the case of correctly detected auditory changes, but not for missed changes. This underlines the importance of the insula/anterior cingulate network for conscious change detection.

  5. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    PubMed

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  6. Does the Superior Colliculus Control Perceptual Sensitivity or Choice Bias during Attention? Evidence from a Multialternative Decision Framework

    PubMed Central

    Steinmetz, Nicholas A.; Moore, Tirin; Knudsen, Eric I.

    2017-01-01

    Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)—the central structure in the midbrain network—in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SC's contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or “sensitivity,” and those that alter the selective gating of sensory information or “choice bias.” Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention. SIGNIFICANCE STATEMENT Attention involves the selection of the most relevant information for differential sensory processing and decision making. While the mechanisms by which attention alters sensory encoding (sensitivity control) are well studied, the mechanisms by which attention alters decisional weighting of sensory evidence (choice-bias control) are poorly understood. Here, we introduce a model of multialternative decision making that distinguishes bias from sensitivity effects in attention tasks. With our model, we simulate experimental data from four seminal studies that microstimulated or inactivated a key attention-related midbrain structure, the superior colliculus (SC). We demonstrate that the experimental effects of SC manipulation are entirely consistent with the SC controlling attention by changing choice bias, thereby shedding new light on how the brain mediates attention. PMID:28100734

  7. Does the Superior Colliculus Control Perceptual Sensitivity or Choice Bias during Attention? Evidence from a Multialternative Decision Framework.

    PubMed

    Sridharan, Devarajan; Steinmetz, Nicholas A; Moore, Tirin; Knudsen, Eric I

    2017-01-18

    Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)-the central structure in the midbrain network-in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SC's contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or "sensitivity," and those that alter the selective gating of sensory information or "choice bias." Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention. Attention involves the selection of the most relevant information for differential sensory processing and decision making. While the mechanisms by which attention alters sensory encoding (sensitivity control) are well studied, the mechanisms by which attention alters decisional weighting of sensory evidence (choice-bias control) are poorly understood. Here, we introduce a model of multialternative decision making that distinguishes bias from sensitivity effects in attention tasks. With our model, we simulate experimental data from four seminal studies that microstimulated or inactivated a key attention-related midbrain structure, the superior colliculus (SC). We demonstrate that the experimental effects of SC manipulation are entirely consistent with the SC controlling attention by changing choice bias, thereby shedding new light on how the brain mediates attention. Copyright © 2017 the authors 0270-6474/17/370480-32$15.00/0.

  8. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra.

    PubMed

    Aumann, Tim D

    2016-04-01

    The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2) Imbalances in midbrain DA cause symptoms associated with several prominent brain and behavioral disorders such as schizophrenia, addiction, obsessive-compulsive disorder, depression, Parkinson's disease and attention-deficit and hyperactivity disorder. Midbrain DA neurotransmitter plasticity may therefore play a role in the etiology of these symptoms, and might also offer new treatment options. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Lumbee traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms.

    PubMed

    de Rus Jacquet, Aurélie; Timmers, Michael; Ma, Sin Ying; Thieme, Andrew; McCabe, George P; Vest, Jay Hansford C; Lila, Mary Ann; Rochet, Jean-Christophe

    2017-07-12

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta and the presence in surviving neurons of Lewy body inclusions enriched with aggregated forms of the presynaptic protein α-synuclein (aSyn). Although current therapies provide temporary symptomatic relief, they do not slow the underlying neurodegeneration in the midbrain. In this study, we analyzed contemporary herbal medicinal practices used by members of the Lumbee tribe to treat PD-related symptoms, in an effort to identify safe and effective herbal medicines to treat PD. The aims of this study were to (i) document medicinal plants used by Lumbee Indians to treat PD and PD-related symptoms, and (ii) characterize a subset of plant candidates in terms of their ability to alleviate neurotoxicity elicited by PD-related insults and their potential mechanisms of neuroprotection. Interviews of Lumbee healers and local people were carried out in Pembroke, North Carolina, and in surrounding towns. Plant samples were collected and prepared as water extracts for subsequent analysis. Extracts were characterized in terms of their ability to induce activation of the nuclear factor E2-related factor 2 (Nrf2) antioxidant response in cortical astrocytes. An extract prepared from Sambucus caerulea flowers (elderflower extract) was further examined for the ability to induce Nrf2-mediated transcription in induced pluripotent stem cell (iPSC)-derived astrocytes and primary midbrain cultures, to ameliorate mitochondrial dysfunction, and to alleviate rotenone- or aSyn-mediated neurotoxicity. The ethnopharmacological interviews resulted in the documentation of 32 medicinal plants used to treat PD-related symptoms and 40 plants used to treat other disorders. A polyphenol-rich extract prepared from elderflower activated the Nrf2-mediated antioxidant response in cortical astrocytes, iPSC-derived astrocytes, and primary midbrain cultures, apparently via the inhibition of Nrf2 degradation mediated by the ubiquitin proteasome system. Furthermore, the elderflower extract rescued mitochondrial functional deficits in a neuronal cell line and alleviated neurotoxicity elicited by rotenone and aSyn in primary midbrain cultures. These results highlight potential therapeutic benefits of botanical extracts used in traditional Lumbee medicine, and they provide insight into mechanisms by which an elderflower extract could suppress neurotoxicity elicited by environmental and genetic PD-related insults. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.

    PubMed

    Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C

    2017-02-15

    Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals. We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions associated with dopaminergic dysfunction, such as psychosis. Copyright © 2017 Diederen et al.

  11. Audiological and electrophysiological evaluation of children with acquired immunodeficiency syndrome (AIDS).

    PubMed

    Matas, Carla Gentile; Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Gonçalves, Isabela Crivellaro

    2006-08-01

    We examined the peripheral auditory system and the auditory brainstem pathway of children with Acquired Immunodeficiency Syndrome (AIDS). One hundred and one children, 51 with AIDS diagnosis and 50 normal children were evaluated. Audiological assessment included immittance measures, pure tone and speech audiometry and auditory brainstem response (ABR). The children with AIDS more frequently had abnormal results than did their matched controls, presenting either peripheral or auditory brainstem impairment. We suggest that AIDS be considered a risk factor for peripheral and/or auditory brainstem disorders. Further research should be carried out to investigate the auditory effects of HIV infection along the auditory pathway.

  12. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks.

    PubMed

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2015-03-01

    This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  14. Human Engineer’s Guide to Auditory Displays. Volume 2. Elements of Signal Reception and Resolution Affecting Auditory Displays.

    DTIC Science & Technology

    1984-08-01

    90de It noce..etrv wnd identify by block numberl .’-- This work reviews the areas of monaural and binaural signal detection, auditory discrimination And...AUDITORY DISPLAYS This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to...pertaining to the major areas of auditory processing in humans. The areas covered in the reviews presented here are monaural and binaural siqnal detection

  15. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  16. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition

    PubMed Central

    McLachlan, Neil M.; Wilson, Sarah J.

    2017-01-01

    The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850

  17. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    PubMed Central

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  18. The Role of Auditory Cues in the Spatial Knowledge of Blind Individuals

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Papadimitriou, Kimon; Koutsoklenis, Athanasios

    2012-01-01

    The study presented here sought to explore the role of auditory cues in the spatial knowledge of blind individuals by examining the relation between the perceived auditory cues and the landscape of a given area and by investigating how blind individuals use auditory cues to create cognitive maps. The findings reveal that several auditory cues…

  19. Enhanced Development of Auditory Change Detection in Musically Trained School-Aged Children: A Longitudinal Event-Related Potential Study

    ERIC Educational Resources Information Center

    Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; Ojala, Pauliina; Huotilainen, Minna

    2014-01-01

    Adult musicians show superior auditory discrimination skills when compared to non-musicians. The enhanced auditory skills of musicians are reflected in the augmented amplitudes of their auditory event-related potential (ERP) responses. In the current study, we investigated longitudinally the development of auditory discrimination skills in…

  20. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

Top