NASA Technical Reports Server (NTRS)
Swanson, T. D.; Mccabe, M. E., Jr.; Grote, M. G.
1987-01-01
The design, fabrication, and testing of full-scale prototype units of a two-phase mounting plate (TPMP), which will be used in a two-phase ammonia-based thermal control system for a large spacecraft, are described. The mounting plate uses an evaporator design in which liquid is mechanically pumped through porous feed tubes within the plate. The prototype TPMPs were tested with ammonia at heat loads over 3000 W (3.2 W/sq cm) and local heat fluxes of up to 4 W/sq cm. Calculated total heat transfer coefficients from these tests were between 0.8 and 1.0 W/sq cm per C. This represents a better than twenty-fold improvement over comparable single-phase heat transfer coefficients. Design diagrams are included.
A novel high temperature superconducting magnetic flux pump for MRI magnets
NASA Astrophysics Data System (ADS)
Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan
2010-10-01
This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.
Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer
NASA Astrophysics Data System (ADS)
Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.
2008-12-01
Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and sonic anemometer at a 10 Hz rate. Data were processed using EdiRe software following standard FluxNet methodology, including stationarity tests, frequency response, and Webb- Pearman-Leuning density terms. Further details are provided in the extended conference paper at: ftp://ftp.licor.com/public/GBurba/AGU LI- 7700 Paper-2008.pdf
CRBR pump water test experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, M.E.; Huber, K.A.
1983-01-01
The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.
Darrieus wind-turbine and pump performance for low-lift irrigation pumping
NASA Astrophysics Data System (ADS)
Hagen, L. J.; Sharif, M.
1981-10-01
In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.
Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.
1989-08-22
A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.
Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.
1989-01-01
A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.
Design and Test of Wendelstein 7-X Water-Cooled Divertor Scraper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boscary, J.; Greuner, Henri; Ehrke, Gunnar
Heat load calculations have indicated the possible overloading of the ends of the water-cooled divertor facing the pumping gap beyond their technological limit. The intention of the scraper is the interception of some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper is divided into six modules of four plasma facing components (PFCs); each module has four PFCs hydraulically connected in series by two water boxes (inlet and outlet). A full-scale prototype of one module has been manufactured. Development activities have been carried out to connect the water boxes to the cooling pipesmore » of the PFCs by tungsten inert gas internal orbital welding. This prototype was successfully tested in the GLADIS facility with 17 MW/m2 for 500 cycles. The results of these activities have confirmed the possible technological basis for a fabrication of the water-cooled scraper.« less
Prototype continuous flow ventricular assist device supported on magnetic bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-06-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.
NASA Astrophysics Data System (ADS)
Nieratschker, Willi
1989-12-01
An investigation of the thermodynamical and mechanical conditions for extending the flow rate range in the direction of low flow rates with regard to the delivery of liquefied gases at high operating pressures is presented. For low flow rates, the especially critical cavitation problem connected with the pumping of liquefied gases becomes more acute, since with decreasing volume the ratio of heat losses to the hydraulic power becomes ever more unfavorable. A first prototype is designed, produced and investigated to evaluate design-related heat loss and piston seal problems. An approach to the solution is indicated for both problem areas with the application of a new and patented pump principle, and through investigation of a second prototype modified in several respects. By reducing the pump mass when designing the second pump prototype, the nonstationary cooling phase is greatly shortened, so that intermittent pump operation becomes possible when the pump is housed external to the storage tank.
Development of a Prototype Water Pump for Future Space Suit Applications
NASA Technical Reports Server (NTRS)
Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis
2009-01-01
NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.
Development of a Prototype Water Pump for Future Space Suit Applications
NASA Technical Reports Server (NTRS)
Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis
2008-01-01
NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.
Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, D.; Cooper, P.; Biswas, C.
1983-01-01
This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to themore » selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.« less
Prototype Continuous Flow Ventricular Assist Device Supported on Magnetic Bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-05-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells. © 1996 International Society for Artificial Organs.
An ultimate, compact, seal-less centrifugal ventricular assist device: Baylor C-Gyro pump.
Ohara, Y; Makinouchi, K; Orime, Y; Tasai, K; Naito, K; Mizuguchi, K; Shimono, T; Damm, G; Glueck, J; Takatani, S
1994-01-01
We have developed a compact, seal-less, all-purpose centrifugal pump, the Baylor C-Gyro pump, which is intended as a long-term ventricular assist device (VAD) as well as a cardiopulmonary bypass pump. In attaining this goal, we began with eliminating the shaft seals by adopting a pivot bearing system at the impeller shaft. In addition, a ring magnet encased in the bottom of the impeller was coupled magnetically to a driver magnet placed outside the pump housing (C1 Prototype). This first model yielded satisfactory performance in vitro with a flow rate of 8 L/min against 250 mm Hg at 2,400 rpm, and an index of hemolysis (IH) of 0.0083 g/100 L using bovine blood. In the second model, the C1 Eccentric Inlet Port Model, the inlet bearing support bar in the prototype were eliminated without reducing the prototype's performance. These designs for antithrombogenicity are being tested by the first in vivo experiment, which has lasted for more than 2 weeks.
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.
A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment
NASA Technical Reports Server (NTRS)
Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.
1992-01-01
A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.
Atherton, D L; Davies, R
1979-10-01
Transformer-rectifier flux pumps using thermally switched Nb(3)Sn cryotrons are being investigated as a loss make-up device for the proposed isochorically operated (sealed) superconducting magnets for the Canadian Maglev vehicle. High currents (1000 A) were obtained in an experimental flux pump using inductive current transfer and operating at 2 Hz.
Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F
2011-05-01
A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A finite element calculation of flux pumping
NASA Astrophysics Data System (ADS)
Campbell, A. M.
2017-12-01
A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.
Coronagraphic Notch Filter for Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Cohen, David; Stirbl, Robert
2004-01-01
A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are formed off axis - that is, away from the occulting spot - so that they become refocused onto the final image plane.
Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1991-01-01
This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.
Yuhki, A; Nogawa, M; Takatani, S
2000-06-01
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.
Prototype of Self-Sensing Magnetic Bearing for Liquid Nitrogen Pump
NASA Astrophysics Data System (ADS)
Eguchi, Seiji; Komori, Mochimitsu; Okuhata, Taro
Recently, pumps used in extremely low temperature such as 77K are found to be necessary. They are expected to use for rocket engines and hydrogen stations for fueled vehicles. Generally, conventional magnetic bearings do not work in the extremely low temperature. Therefore, we have studied magnitic bearings for these pumps. Self-sensing technique is tried to apply to magnetic bearings. If self-sensing magnetic bearings were made, we could apply the self-sensing magnetic bearing to liquid nitrogen pumps. In this paper, we propose a prototype self-sensing magnetic bearing and study the static and dynamic characteristics. The dynamic characteristics in the air and in liquid nitrogen are also discussed.
Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D.
Lasnier, C J; Allen, S L; Ellis, R E; Fenstermacher, M E; McLean, A G; Meyer, W H; Morris, K; Seppala, L G; Crabtree, K; Van Zeeland, M A
2014-11-01
An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.
Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D
Lasnier, Charles J.; Allen, Steve L.; Ellis, Ronald E.; ...
2014-08-26
An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in divertedmore » and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. As a result, demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.« less
Subjective and objective analysis of three water pump systems carried by forest firefighters.
Moser, Daniel J; Graham, Ryan B; Stevenson, Joan M; Costigan, Patrick A
2014-01-01
The Mark 3 (M3) water power pump is an integral piece of wildfire fighting equipment. However, it is provided to fire stations without a carrying harness. The currently-used carrying harness is very uncomfortable, especially when carrying the pumps considerable distance in a forest to reach a water source. The purpose of this study was to advise the Ontario Ministry of Natural Resources on the selection of a new M3 load carriage system. Twenty Fire Rangers wore the three systems (Original, Prototype, and Modified) through a circuit of tasks representative of their working environment. Subjective and objective approaches were combined to assess and rank the M3 carriage systems. Subjective visual analogue scale ratings were obtained for ease of loading/unloading, comfort, system stability, and overall performance. Tri-axial accelerometers were mounted on each pump and at the sternum of each participant to determine relative pump-carrier accelerations. Overall, the Prototype was ranked as the best system; it resulted in the lowest relative pump-carrier accelerations on 10 out of 15 objective measures, and also received a first place ranking on all subjective measures. It was recommended that the Prototype be implemented as the M3 carriage system for fire suppression teams.
Passamani, Lucas Z; Bertolazi, Amanda A; Ramos, Alessandro C; Santa-Catarina, Claudete; Thelen, Jay J; Silveira, Vanildo
2018-06-22
Somatic embryogenesis is an important biological process in several plant species, including sugarcane. Proteomics approaches have shown that H + pumps are differentially regulated during somatic embryogenesis; however, the relationship between H + flux and embryogenic competence is still unclear. This work aimed to elucidate the association between extracellular H + flux and somatic embryo maturation in sugarcane. We performed a microsomal proteomics analysis and analyzed changes in extracellular H + flux and H + pump (P-H + -ATPase, V-H + -ATPase and H + -PPase) activity in embryogenic and non-embryogenic callus. A total of 657 proteins were identified, 16 of which were H + pumps. We observed that P-H + -ATPase and H + -PPase were more abundant in embryogenic callus. Compared with non-embryogenic callus, embryogenic callus showed higher H + influx, especially on maturation day 14, as well as higher H+ pump activity (mainly P-H+-ATPase and H+-PPase activity). H+-PPase appears to be the major H + pump in embryogenic callus during somatic embryo formation, functioning in both vacuole acidification and PPi homeostasis. These results provide evidence for an association between higher H + pump protein abundance and, consequently, higher H + flux and embryogenic competence acquisition in the callus of sugarcane, allowing for optimization of the somatic embryo conversion process by modulating the activities of these H + pumps.
Time-to-burnout data for a prototypical ITER divertor tube during a simulated loss of flow accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, T.D.; Watson, R.D.; McDonald, J.M.
The Loss of Flow Accident (LOFA) is a serious safety concern for the International Thermonuclear Experimental Reactor (ITER) as it has been suggested that greater than 100 seconds are necessary to safely shutdown the plasma when ITER is operating at full power. In this experiment, the thermal response of a prototypical ITER divertor tube during a simulated LOFA was studied. The divertor tube was fabricated from oxygen-free high-conductivity copper to have a square geometry with a circular coolant channel. The coolant channel inner diameter was 0.77 cm, the heated length was 4.0 cm, and the heated width was 1.6 cm.more » The mockup did not feature any flow enhancement techniques, i.e., swirl tape, helical coils, or internal fins. One-sided surface heating of the mockup was accomplished through the use of the 30 kW Sandia Electron Beam Test System. After reaching steady state temperatures in the mockup, as determined by two Type-K thermocouples installed 0.5 mm beneath the heated surface, the coolant pump was manually tripped off and the coolant flow allowed to naturally coast down. Electron beam heating continued after the pump trip until the divertor tube`s heated surface exhibited the high temperature transient normally indicative of rapidly approaching burnout. Experimental data showed that time-to-burnout increases proportionally with increasing inlet velocity and decreases proportionally with increasing incident heat flux.« less
Space nuclear system thermoelectric NaK pump development
NASA Technical Reports Server (NTRS)
Johnson, J. L.
1973-01-01
The engineering, design, fabrication, and test history of the dual-throat thermoelectric NaK development pump is summarized, along with the engineering and design status of a similar prototype pump intended for use on the 5-kwe reactor thermoelectric system. The history of dc pump development and testing on previous programs is also summarized.
Simulation of pump-turbine prototype fast mode transition for grid stability support
NASA Astrophysics Data System (ADS)
Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.
2017-04-01
The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.
Theoretical and experimental studies of a magnetically actuated valveless micropump
NASA Astrophysics Data System (ADS)
Ashouri, Majid; Behshad Shafii, Mohammad; Moosavi, Ali
2017-01-01
This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µl min-1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s-1. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.
Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep Singh
The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.
Testing of a heat pump clothes dryer. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, D.; Dieckmann, J.; Mallory, D.
1995-05-01
The integration of a heat pump heat source into a clothes dryer has been investigated by several U.S. and foreign appliance developers and manufacturers but no commercial or residential heat pump clothes dryers are currently available in North America. The objectives of this effort were to: (1) Evaluate a heat pump dryer prototype relative to residential dryer performance tests. (2) Quantify the product limitations. (3) Suggest design changes that would reduce the impact of the limitations or that have a positive impact on the benefits. (4) Position the product relative to utility DSM/IRP opportunities (e.g., reduced connected load, or energymore » conservation). (5) Develop preliminary cost data The program evaluated the performance of a prototype closed-cycle heat pump clothes dryer designed and built by the Nyle Corporation. The prototype design goals were: (1) Drying times equivalent to a conventional electric clothes dryer. (2) 60% reduction in energy consumption. (3) Effective lint removal (to prevent coil fouling). (4) Cool-down mode performance similar to conventional dryer. (5) 20 lb load capacity. (6) Low temperature dry for reduced clothes wrinkle. Test results indicated that the closed-cycle heat pump met some of the above mentioned goals but it fell short with respect to energy savings and dry time. Performance improvement recommendations were developed for the closed-cycle dryer approach. In addition, the closed-cycle design potential was compared to an open-cycle heat pump dryer configuration.« less
Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2007-04-01
The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.
Low-Cost Gas Heat Pump for Building Space Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrabrant, Michael; Keinath, Christopher
2016-10-11
Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation, which will allow for improved load matching. In addition, the energy savings analysis showed that a house in Albany, NY, Chicago, IL and Minneapolis, MN would save roughly 32, 28.5 and 36.5 MBtu annually when compared to a 100% efficient boiler, respectively. The gas absorption heat pump achieves this performance by using high grade heat from the combustion of natural gas in combination with low grade heat extracted from the ambient to produce medium grade heat suitable for space and water heating. Expected product features include conventional outdoor installation practices, 4:1 modulation, and reasonable economic payback. These factors position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions for residential space heating.« less
Kriegel, Anne; Andrés, Zaida; Medzihradszky, Anna; Krüger, Falco; Scholl, Stefan; Delang, Simon; Patir-Nebioglu, M Görkem; Gute, Gezahegn; Yang, Haibing; Murphy, Angus S; Peer, Wendy Ann; Pfeiffer, Anne; Krebs, Melanie; Lohmann, Jan U; Schumacher, Karin
2015-12-01
The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH. © 2015 American Society of Plant Biologists. All rights reserved.
Fluid circulating pump operated by same incident solar energy which heats energy collection fluid
NASA Technical Reports Server (NTRS)
Collins, E. R.
1980-01-01
The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.
Baxter, Van D.; Munk, Jeffrey D.
2017-11-08
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Munk, Jeffrey D.
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
NASA Technical Reports Server (NTRS)
1976-01-01
Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.
In order to ensure that the pumps are successful when installed for the community, working prototypes were tested, analyzed, and modified. The chief concerns of our functional analysis were the flow rate of the pump, the stability/durability of the system, total pumping head, ...
Heart Pump Design for Cleveland Clinic Foundation
NASA Technical Reports Server (NTRS)
2005-01-01
Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.
Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source
NASA Technical Reports Server (NTRS)
Jeong, Seong-Il; Didion, Jeffrey
2004-01-01
The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.
Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.
Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie
2017-09-01
Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.
Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Baxter, Van D.; Abdelaziz, Omar
2017-03-01
This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.
A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.
Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé
2006-01-01
Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.
Jahanmir, Said; Hunsberger, Andrew Z; Heshmat, Hooshang; Tomaszewski, Michael J; Walton, James F; Weiss, William J; Lukic, Branka; Pae, William E; Zapanta, Conrad M; Khalapyan, Tigran Z
2008-05-01
The MiTiHeart (MiTiHeart Corporation, Gaithersburg, MD, USA) left ventricular assist device (LVAD), a third-generation blood pump, is being developed for destination therapy for adult heart failure patients of small to medium frame that are not being served by present pulsatile devices. The pump design is based on a novel, patented, hybrid passive/active magnetic bearing system with backup hydrodynamic thrust bearing and exhibits low power loss, low vibration, and low hemolysis. Performance of the titanium alloy prototype was evaluated in a series of in vitro tests with blood analogue to map out the performance envelop of the pump. The LVAD prototype was implanted in a calf animal model, and the in vivo pump performance was evaluated. The animal's native heart imparted a strong pulsatility to the flow rate. These tests confirmed the efficacy of the MiTiHeart LVAD design and confirmed that the pulsatility does not adversely affect the pump performance.
Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania
2015-01-01
Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383
NASA Astrophysics Data System (ADS)
Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico
2016-04-01
Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014 and 1.7 % in 2015, in the range of IPCC ones. The instrumentation was working almost permanently during these two years. The proximity sensors fitted on the chambers allowed showing that the chambers were functioning normally for about 90% of the time. A cross-comparison carried out in September 2015 with the "mobile IPNOA prototype"; a high-sensibility transportable instrument (previously validated), allowed showing a good agreement between the 2 instrumentations.
Flux pumping for non-insulated and metal-insulated HTS coils
NASA Astrophysics Data System (ADS)
Ma, Jun; Geng, Jianzhao; Coombs, T. A.
2018-01-01
High-temperature superconducting (HTS) coils wound from coated conductors without turn-to-turn insulation (non-insulated (NI) coils) have been proven with excellent electrical and thermal performances. However, the slow charging of NI coils has been a long-lasting problem. In this work, we explore using a transformer-rectifier HTS flux pump to charge an NI coil and a metal-insulated coil. The charging performance comparison is made between different coils. Comprehensive study is done to thoroughly understand the electrical-magnetic transience in charging these coils. We will show that the low-voltage high-current flux pump is especially suitable for charging NI coils with very low characteristic resistance.
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
NASA Astrophysics Data System (ADS)
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams
2017-07-01
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; ...
2017-04-28
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less
Are Ducted Mini-Splits Worth It?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.
Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less
Investigation of PVdF active diaphragms for synthetic jets
NASA Astrophysics Data System (ADS)
Bailo, Kelly C.; Brei, Diann E.; Calkins, Frederick T.
2000-06-01
Current research has shown that aircraft can gain significant aerodynamic performance benefits by employing active flow control (AFC). One of the enabling technologies of AFC is the synthetic jet. Synthetic jets, also known as zero-net-mass flux actuators, act as bi-directional pumps injecting high momentum air into the local aerodynamic flow. Previous work has concentrated on high frequency synthetic jets based on piezoelectric active diaphragms such as Thunder actuators. Low frequency synthetic jets present a unique challenge requiring large displacements, which current technology has difficulty meeting. Boeing is investigating novel shaped low frequency synthetic jets that can modify the flow over fixed aircraft wings. This paper present the initial study of two promising active diaphragm concepts: a crescent shape and an opposing bender shape. These active diaphragms were numerically modeled utilizing the general-purpose finite element code ABAQUS. Using the ABAQUS results, the dynamic volume change within each jet was calculated and incorporated into an analytical linear Bernoulli model to predict the velocities and pressures at the nozzle. Simulations were performed to determine trends to assist in selection of prototype configurations. Prototypes of both diaphragm concepts were constructed from polyvinylidene fluoride and experimentally tested at Boeing with promising results.
Liquid-Metal Pump Technologies for Nuclear Surface Power
NASA Technical Reports Server (NTRS)
Polzin, K. A.
2007-01-01
Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.
The development of a cryogenic over-pressure pump
NASA Astrophysics Data System (ADS)
Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Garcia, J.; Lathrop, A.; Ruiz, F.
2014-01-01
A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL).
A Case Study of Two NRL Pump Prototypes
1996-01-01
n messages messages ACK Pump Low High ACK MA buffer Figure 1. The simpli ed Pump architecture The Pump (see...I C A T I O N S Y S T E M S E R VICES Application Soft wa re Figure 4. STOP security ring structure The security kernel provides basic system...A D Y PUMP_TIMEOUT M O V _ A V G RECORD_AVAILABLE Ack A c k Ac k or N ac k Ack or Nack Legend IPC msg FIFO msg Data msg Process Object FIFO
Initial in vitro testing of a paediatric continuous-flow total artificial heart.
Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader
2018-06-01
Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.
Underground physics and the barometric pumping effect observed for thermal neutron flux underground
NASA Astrophysics Data System (ADS)
Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.
2017-05-01
It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.
Galbán-Malagón, Cristóbal; Berrojalbiz, Naiara; Ojeda, María-José; Dachs, Jordi
2012-05-29
Semivolatile persistent organic pollutants have the potential to reach remote environments, such as the Arctic Ocean, through atmospheric transport and deposition. Here we show that this transport of polychlorinated biphenyls to the Arctic Ocean is strongly retarded by the oceanic biological pump. A simultaneous sampling of atmospheric, seawater and plankton samples was performed in July 2007 in the Greenland Current and Atlantic sector of the Arctic Ocean. The atmospheric concentrations declined during atmospheric transport over the Greenland Current with estimated half-lives of 1-4 days. These short half-lives can be explained by the high air-to-water net diffusive flux, which is similar in magnitude to the estimated settling fluxes in the water column. Therefore, the decrease of atmospheric concentrations is due to sequestration of atmospheric polychlorinated biphenyls by enhanced air-water diffusive fluxes driven by phytoplankton uptake and organic carbon settling fluxes (biological pump).
NASA Astrophysics Data System (ADS)
Wang, Pao-Lien
1992-09-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1992-01-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
Water Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.
NASA Astrophysics Data System (ADS)
Li, Yung-Hui; Hu, Chia-Ming; Tsai, Ming-Lun
2017-10-01
Laser Doppler Flowmetry (LDF), a non-invasive microcirculation measurement equipment, is designed to be used in measuring microcirculation and perfusion in the skin. LDF is very applicable to healthcare. However, the cost of commercial LDF prevents its prevalence and popularity. In this paper, continuing previous researches, a LDF prototype was built from the combination of the off-the-shelf electronic components. The raw signals acquired from the proposed LDF prototype is validated to be relevant to the microcirculation flux. Furthermore, we would like to verify the consistency between the signals measured from both model, and find an implicit transformation rule to transform the LDF prototype signals. For the purpose of verification and calibration of the LDF prototype signal feature, we first collected a parallel database consisting of flux signals measured by commercial and prototype LDF at the same time. Second, we extract signals with specific frequency of normalized signals as features and use these features to establish a model to allow us to map signals measured by LDF prototype to the commercial model. The result of the experiment showed that after we used the linear regression models to calibrate physiological feature, the correlation coefficient reached nearly 0.9999, which is close to a perfect positive correlation. The overall evaluation results showed that the proposed method can verify and ensure the validity of the LDF prototype. Through the proposed transformation, the flux signals measured by the proposed LDF prototype can successfully be transformed to its parallel form as if it is measured by commercial LDF.
Electromagnetic Pumps for Liquid Metal-Fed Electric Thrusters
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.
2007-01-01
Prototype designs of two separate pumps for use in electric propulsion systems with liquid lithium and bismuth propellants are presented. Both pumps are required to operate at elevated temperatures, and the lithium pump must additionally withstand the corrosive nature of the propellant. Compatibility of the pump materials and seals with lithium and bismuth were demonstrated through proof-of-concept experiments followed by post-experiment visual inspections. The pressure rise produced by the bismuth pump was found to be linear with input current and ranged from 0-9 kPa for corresponding input current levels of 0-30 A, showing good quantitative agreement with theoretical analysis.
Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump
Dall’Olmo, Giorgio; Dingle, James; Polimene, Luca; Brewin, Robert J.W.; Claustre, Hervé
2016-01-01
The “mesopelagic” is the region of the ocean between about 100 and 1000 m that harbours one of the largest ecosystems and fish stocks on the planet1,2. This vastly unexplored ecosystem is believed to be mostly sustained by chemical energy, in the form of fast-sinking particulate organic carbon, supplied by the biological carbon pump3. Yet, this supply appears insufficient to match mesopelagic metabolic demands4–6. The mixed-layer pump is a physically-driven biogeochemical process7–11 that could further contribute to meet these energetic requirements. However, little is known about the magnitude and spatial distribution of this process at the global scale. Here we show that the mixed-layer pump supplies an important seasonal flux of organic carbon to the mesopelagic. By combining mixed-layer depths from Argo floats with satellite retrievals of particulate organic carbon, we estimate that this pump exports a global flux of about 0.3 Pg C yr−1 (range 0.1 – 0.5 Pg C yr−1). In high-latitude regions where mixed-layers are deep, this flux is on average 23%, but can be greater than 100% of the carbon supplied by fast sinking particles. Our results imply that a relatively large flux of organic carbon is missing from current energy budgets of the mesopelagic. PMID:27857779
CO2 flux through a Wyoming seasonal snowpack: Diffusional and pressure pumping effects
William Massman; Richard Sommerfeld; Karl Zeller; Ted Hehn; Laura Hudnell; Shannon Rochelle
1995-01-01
The movement of trace gases through porous media results from a combination of molecular diffusion and natural convection forced by turbulent atmospheric pressure pumping. This study presents observational and modeling results of an experiment to estimate the C02 flux through a seasonal snowpack in the Rocky Mountains of southern Wyoming, USA. Profiles of C02 mole...
Kang, Tong Mook; Markin, Vladislav S.; Hilgemann, Donald W.
2003-01-01
We have used ion-selective electrodes (ISEs) to quantify ion fluxes across giant membrane patches by measuring and simulating ion gradients on both membrane sides. Experimental conditions are selected with low concentrations of the ions detected on the membrane side being monitored. For detection from the cytoplasmic (bath) side, the patch pipette is oscillated laterally in front of an ISE. For detection on the extracellular (pipette) side, ISEs are fabricated from flexible quartz capillary tubing (tip diameters, 2–3 microns), and an ISE is positioned carefully within the patch pipette with the tip at a controlled distance from the mouth of the patch pipette. Transport activity is then manipulated by solution changes on the cytoplasmic side. Ion fluxes can be quantified by simulating the ion gradients with appropriate diffusion models. For extracellular (intrapatch pipette) recordings, ion diffusion coefficients can be determined from the time courses of concentration changes. The sensitivity and utility of the methods are demonstrated with cardiac membrane patches by measuring (a) potassium fluxes via ion channels, valinomycin, and Na/K pumps; (b) calcium fluxes mediated by Na/Ca exchangers; (c) sodium fluxes mediated by gramicidin and Na/K pumps; and (d) proton fluxes mediated by an unknown electrogenic mechanism. The potassium flux-to-current ratio for the Na/K pump is approximately twice that determined for potassium channels and valinomycin, as expected for a 3Na/2K pump stoichiometery (i.e., 2K/charge moved). For valinomycin-mediated potassium currents and gramicidin-mediated sodium currents, the ion fluxes calculated from diffusion models are typically 10–15% smaller than expected from the membrane currents. As presently implemented, the ISE methods allow reliable detection of calcium and proton fluxes equivalent to monovalent cation currents <1 pA in magnitude, and they allow detection of sodium and potassium fluxes equivalent to <5 pA currents. The capability to monitor ion fluxes, independent of membrane currents, should facilitate studies of both electrogenic and electroneutral ion–coupled transporters in giant patches. PMID:12668735
Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic
Jónasdóttir, Sigrún Huld; Visser, André W.; Richardson, Katherine; Heath, Michael R.
2015-01-01
Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material (“biological pump”) is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal “lipid pump,” which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a “lipid shunt,” and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic. PMID:26338976
NASA Technical Reports Server (NTRS)
Walker, D.; Fischbach, D.; Tetreault, R.
1996-01-01
The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.
NASA Astrophysics Data System (ADS)
De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.
2017-02-01
In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.
Modification of ocean-estuary salt fluxes by density-driven advection of a headland eddy
NASA Astrophysics Data System (ADS)
Fram, J. P.; Stacey, M. T.
2005-05-01
Scalar exchange between San Francisco Bay and the coastal ocean is examined using shipboard observations made across the Golden Gate Channel. Ocean-estuary exchange is often described as a combination of two independent types of mechanisms: density-driven exchange such as gravitational circulation and tidal asymmetries such as tidal trapping. In this study we found that exchange is also governed by an interaction between these mechanisms. Tidally trapped eddies created in shallow shoals are mixed into the main channel earlier in the tidal cycle during the rainy season because the eddies are pushed seaward by gravitational circulation. This interaction increases the tidally averaged dispersive salt flux into the bay. The study consists of experiments during each of three 'seasons': winter/spring runoff (March 2002), summer upwelling (July 2003), and fall relaxation (October 2002). Within each experiment, transects across the channel were repeated approximately every 12 minutes for 25 hours during both spring tide and the following neap tide. Velocity was measured from a boat-mounted ADCP. Scalar concentrations were measured from a tow-yoed SeaSciences Acrobat. Salinity exchange over each spring-neap cycle is quantified with harmonic analysis. Harmonic results are decomposed into flux mechanisms using temporal and spatial correlations. The temporal correlation of cross-sectional averaged salinity and velocity (tidal pumping flux) is the largest part of the dispersive flux of salinity into the bay. From the tidal pumping portion of the dispersive flux, it is shown that there is less exchange than was found in earlier studies. Furthermore, tidal pumping flux scales strongly with flow due to density-driven movement of tidally trapped eddies and density-driven increases in ebb-flood frictional phasing. Complex bathymetry makes salinity exchange scale differently with flow than would be expected from simple tidal pumping and gravitational circulation models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Soumitra; Nandy, Dibyendu
At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting formore » the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.« less
An implantable centrifugal blood pump for long term circulatory support.
Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P
1997-01-01
A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.
Design of Nano Screw Pump for Water Transport and its Mechanisms
Wang, LiYa; Wu, HengAn; Wang, FengChao
2017-01-01
Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898
Liquid Metal Pump Technologies for Nuclear Surface Power
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2007-01-01
Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.
Heavy Lift Helicopter - Prototype Technical Summary
1980-04-01
in an inte- grated design. The following paragraphs discuss the swash - plate actuator servo loops and provide details...instrumentation in the prototype aircraft. Development testing of the flight control module in conjunc- tion with the transmission-driven pump and the reservoir was...PFCS employed cockpit controllers and force-feel actuation developed in the ATC
Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D
2013-09-01
We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.
Design of a pulsatile DC electromagnetic blood pump for ECMO.
Liu, Jingjing; Ge, Bin; Lu, Tong
2017-08-09
Extracorporeal membrane oxygenation (ECMO) has developed rapidly and becomes a significant treatment for emergency. Current blood pumps for ECMO have different disadvantages. To design a pulsatile DC electromagnetic blood pump for ECMO. The design is presented with a driving principle which the rectilinear reciprocation of a magnet inside energized solenoids is implemented, and with a structure of solenoids with compensation coils. Furthermore, a prototype was constructed and the performance indexes of it were measured with the experimental evaluations, where the acceleration experiment was performed without any loads, and the flows were measured in the ranges of preload and afterload are 5 to 30 mmHg and 50 to 80 mmHg respectively when the frequency of the motion is 80 beats per minute. The electromagnetic force is greater than 1.4 N when the DC reaches 2.7 A and the flow of the prototype is greater than 3.0 L/min except the differences between the preload and the afterload are greater than or equal to 70 mmHg. The design of the blood pump for ECMO meets the theoretical and clinical requirements.
A Linear Electromagnetic Piston Pump
NASA Astrophysics Data System (ADS)
Hogan, Paul H.
Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.
Development of a photo-voltaic pumping system using a brushless D.C. motor and helical rotor pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langridge, D.; Lawrance, W.; Wichert, B.
1996-12-31
A PV pumping system based on a brushless d.c. motor and helical rotor pump has been designed, simulated and a prototype constructed. The paper describes the operation of the system and the development of component models for the array, the brushless d.c. motor and helical rotor pump. Simulation results and subsequent test results for the complete system are included. Efficiencies of between 30 and 50% for the system (excluding the array) have been achieved over a range of loads and operating conditions for 4 x 1 and 4 x 2 array configurations. 9 refs., 10 figs., 2 tabs.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-01-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes
NASA Astrophysics Data System (ADS)
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.
2016-05-01
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.
Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R
2016-05-19
A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.
Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.
2000-01-01
An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.
High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy
2013-12-20
This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified for high-temperature operation. In parallel with the design and fabrication of the subscale prototype ESP system, a subscale test facility consisting of a high-temperature-high-pressure flow loop was designed, fabricated, and installed at GE Global Research in Niskayuna, NY. A test plan for the prototype system was also established. The original plan of testing the prototype hardware in the flow loop was delayed until a future date.« less
A Thermally Actuated Flux Pump for Energizing YBCO Pucks
2016-05-01
transmitted through the thermal magnetic material sweeping magnetic field lines into the superconducting puck. We used YBCO as the superconductor with...of the YBCO sweeping vortices into the superconductor . These vortices would gradually accumulate in the superconductor . Successes have been reported...superconducting flux pump,” PHYSICA C, vol. 468, pp. 153-159, 2008. [2] T. A. Coombs, Z. Hong, Y. Yan and C. D. Rawlings, “ Superconductors : The
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun
2016-11-01
The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.
Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi
2015-02-21
We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.
NASA Astrophysics Data System (ADS)
Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.
2015-06-01
An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model describing steady-state radial and vertical flows in a two-zone aquifer. Hydraulic parameters in these two zones can be different but are assumed homogeneous in each zone. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the aquifer domain in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the constant-flux pumping have good accuracy if satisfying the criterion.
Borecký, J; Maia, I G; Costa, A D; Jezek, P; Chaimovich, H; de Andrade, P B; Vercesi, A E; Arruda, P
2001-09-14
The Arabidopsis thaliana uncoupling protein (UCP) gene was expressed in Escherichia coli and isolated protein reconstituted into liposomes. Linoleic acid-induced H+ fluxes were sensitive to purine nucleotide inhibition with an apparent K(i) (in mM) of 0.8 (GDP), 0.85 (ATP), 0.98 (GTP), and 1.41 (ADP); the inhibition was pH-dependent. Kinetics of AtPUMP1-mediated H+ fluxes were determined for lauric, myristic, palmitic, oleic, linoleic, and linolenic acids. Properties of recombinant AtPUMP1 indicate that it represents a plant counterpart of animal UCP2 or UCP3. This work brings the functional and genetic approaches together for the first time, providing strong support that AtPUMP1 is truly an UCP.
NASA Astrophysics Data System (ADS)
Tian, Wugang; Hu, Jiafei; Pan, Mengchun; Chen, Dixiang; Zhao, Jianqiang
2013-03-01
1/f noise is one of the main noise sources of magnetoresistive (MR) sensors, which can cause intrinsic detection limit at low frequency. To suppress this noise, the solution of flux concentration and vertical motion modulation (VMM) has been proposed. Magnetic hysteresis in MR sensors is another problem, which degrades their response linearity and detection ability. To reduce this impact, the method of pulse magnetization and magnetic compensation field with integrated planar coils has been introduced. A flux concentration and VMM based magnetoresistive prototype sensor with integrated planar coils was fabricated using microelectromechanical-system technology. The response linearity of the prototype sensors is improved from 0.8% to 0.12%. The noise level is reduced near to the thermal noise level, and the low-frequency detection ability of the prototype sensor is enhanced with a factor of more than 80.
Long-term in vivo left ventricular assist device study with a titanium centrifugal pump.
Ohtsuka, G; Nakata, K; Yoshikawa, M; Mueller, J; Takano, T; Yamane, S; Gronau, N; Glueck, J; Takami, Y; Sueoka, A; Letsou, G; Schima, H; Schmallegger, H; Wolner, E; Koyanagi, H; Fujisawa, A; Baldwin, J C; Nosé, Y
1998-01-01
A totally implantable centrifugal artificial heart has been developed. The plastic prototype, Gyro PI 601, passed 2 day hemodynamic tests as a functional total artificial heart, 2 week screening tests for antithrombogenicity, and 1 month system feasibility. Based on these results, a metallic prototype, Gyro PI 702, was subjected to in vivo left ventricular assist device (LVAD) studies. The pump system employed the Gyro PI 702, which has the same inner dimensions and the same characteristics as the Gyro PI 601, including an eccentric inlet port, a double pivot bearing system, and a magnet coupling system. The PI 702 is driven with the Vienna DC brushless motor actuator. For the in vivo LVAD study, the pump actuator package was implanted in the preperitoneal space in two calves, from the left ventricular apex to the descending aorta. Case 1 achieved greater than 9 month survival without any complications, at an average flow rate of 6.6 L/min with 10.2 W input power. Case 2 was killed early due to the excessive growth of the calf, which caused functional obstruction of the inlet port. There was no blood clot inside the pump. During these periods, neither case exhibited any physiologic abnormalities. The PI 702 pump gives excellent results as a long-term implantable LVAD.
Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis
2009-01-01
A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.
Medical Device Plug-and-Play Interoperability Standards and Technology Leadership
2012-10-01
External Network Pump Adapter PulseOx Adapter • MD MP3 cart is a platform for the development of smart pump control algorithms • It includes...delivery with bounded latency Medical Device Mobile PnP Prototype Platform (MD MP3 ) • Got MDCF code to run on the BeagleBoard development boards we are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, A.; Bjorholm, T.; Harris, J.
The Wendelstein 7-X stellarator is in final stages of commissioning, and will begin operation in late 2015. In the first phase, the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current will evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A highmore » heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several U.S. fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). As a result, this paper presents an overview of all of these activities and their current status.« less
Overview of design and analysis activities for the W7-X scraper element
Lumsdaine, A.; Bjorholm, T.; Harris, J.; ...
2016-08-18
The Wendelstein 7-X stellarator is in final stages of commissioning, and will begin operation in late 2015. In the first phase, the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current will evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A highmore » heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several U.S. fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). As a result, this paper presents an overview of all of these activities and their current status.« less
Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Strumberger, E.; Ferraro, N.
2017-10-01
A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q ≈1 , thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m =1 ,n =1 ) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β is sufficiently high to provide the necessary drive for the (m =1 ,n =1 ) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.
Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations
Krebs, I.; Jardin, S. C.; Gunter, S.; ...
2017-09-27
A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q≈1, thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m=1,n=1) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β is sufficiently high to provide the necessary drive for the (m=1,n=1) instability that generates the dynamo loop voltage. In conclusion, the necessary amount of dynamomore » loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.« less
Long-term animal experiments with an intraventricular axial flow blood pump.
Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H
1997-01-01
A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.
Realization of compact, passively-cooled, high-flux photovoltaic prototypes
NASA Astrophysics Data System (ADS)
Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland
2005-08-01
The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.
Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær
2000-01-01
A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2–4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241–251), computations predict that 60–80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model generates pseudo-solvent drag. The associated flux-ratio equation is derived. PMID:10919860
Quantification of the lithogenic carbon pump following a dust deposition event
NASA Astrophysics Data System (ADS)
Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.
2013-08-01
Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to affine the "ballast hypothesis". In the framework of the DUNE project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7 fold higher POC flux as compared to the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. At the scale of a dust deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles through an aggregation process. Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this "lithogenic carbon pump" could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.
An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system).
Yamazaki, K; Litwak, P; Tagusari, O; Mori, T; Kono, K; Kameneva, M; Watach, M; Gordon, L; Miyagishima, M; Tomioka, J; Umezu, M; Outa, E; Antaki, J F; Kormos, R L; Koyanagi, H; Griffith, B P
1998-06-01
A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).
Prototyping phase of the high heat flux scraper element of Wendelstein 7-X
Boscary, Jean; Greuner, Henri; Ehrke, G.; ...
2016-03-24
The water-cooled high heat flux scraper element aims to reduce excessive heat loads on the target element ends of the actively cooled divertor of Wendelstein 7-X. Its purpose is to intercept some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper element has 24 identical plasma facing components (PFCs) divided into 6 modules. One module has 4 PFCs hydraulically connected in series by 2 water boxes. A PFC, 247 mm long and 28 mm wide, has 13 monoblocks made of CFC NB31 bonded by hot isostatic pressing onto a CuCrZr cooling tube equippedmore » with a copper twisted tape. 4 full-scale prototypes of PFCs have been successfully tested in the GLADIS facility up to 20 MW/m 2. The difference observed between measured and calculated surface temperatures is probably due to the inhomogeneity of CFC properties. The design of the water box prototypes has been detailed to allow the junction between the cooling pipe of the PFCs and the water boxes by internal orbital welding. In conclusion, the prototypes are presently under fabrication.« less
Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?
Kjelstrup, Signe; de Meis, Leopoldo; Bedeaux, Dick; Simon, Jean-Marc
2008-11-01
We calculate, using the first law of thermodynamics, the membrane heat fluxes during active transport of Ca(2+) in the Ca(2+)-ATPase in leaky and intact vesicles, during ATP hydrolysis or synthesis conditions. The results show that the vesicle interior may cool down during hydrolysis and Ca(2+)-uptake, and heat up during ATP synthesis and Ca(2+)-efflux. The heat flux varies with the SERCA isoform. Electroneutral processes and rapid equilibration of water were assumed. The results are consistent with the second law of thermodynamics for the overall processes. The expression for the heat flux and experimental data, show that important contributions come from the enthalpy of hydrolysis for the medium in question, and from proton transport between the vesicle interior and exterior. The analysis give quantitative support to earlier proposals that certain, but not all, Ca(2+)-ATPases, not only act as Ca(2+)-pumps, but also as heat pumps. It can thus help explain why SERCA 1 type enzymes dominate in tissues where thermal regulation is important, while SERCA 2 type enzymes, with their lower activity and better ability to use the energy from the reaction to pump ions, dominate in tissues where this is not an issue.
Long-term in vivo left ventricular assist device study for 284 days with Gyro PI pump.
Ohtsuka, G; Nakata, K; Yoshikawa, M; Takano, T; Glueck, J; Sankai, Y; Takami, Y; Mueller, J; Sueoka, A; Letsou, G; Schima, H; Schmallegger, H; Wolner, E; Koyanagi, H; Fujisawa, A; Baldwin, J C; Nosé, Y
1999-06-01
A totally implantable centrifugal artificial heart has been developed. The plastic prototype, the Gyro PI 601, passed 2 day hemodynamic tests as a functional total artificial heart (TAH), 2 week screening tests for anti-thrombogenecity, and a 1 month system feasibility study. Based upon these results, a metallic prototype, the Gyro PI 700 series, was subjected to long-term in vivo left ventricular assist device (LVAD) studies of over 1 month. The Gyro PI 700 series has the same inner dimension and same characteristics of the Gyro PI 601 such as an eccentric inlet port, a double pivot bearing system, and a magnet coupling system. The PI metallic pump is also driven with the Vienna DC brushless motor actuator like the PI 601. The pump-actuator package was implanted in 3 calves in the preperitoneal space, bypassing from the left ventricular (LV) apex to the descending aorta. Case 1 achieved a 284 day survival. Case 2 was euthanized early at 72 postoperative days as a result of the functional obstruction of the inlet port due to the excessive growth of the calf. There was no blood clot inside the pumps of either case. Case 3 is on-going (22 days on July 24, 1998). During these periods, all cases showed no physiological abnormalities. In conclusion, the PI 700 series pump has excellent results as a long-term implantable LVAD.
Maturing Pump Technology for EVA Applications in a Collaborative Environment
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian
2012-01-01
The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.
Temporal integration of soil N2O fluxes: validation of IPNOA station automatic chamber prototype.
Laville, P; Bosco, S; Volpi, I; Virgili, G; Neri, S; Continanza, D; Bonari, E
2017-09-04
The assessment of nitrous oxide (N 2 O) fluxes from agricultural soil surfaces still poses a major challenge to the scientific community. The evaluations of integrated soil fluxes of N 2 O are difficult owing to their lower emissions when compared with CO 2 . These emissions are also sporadic as environmental conditions act as a limiting factor. A station prototype was developed to integrate annual N 2 O and CO 2 emissions using an automatic chamber technique and infrared spectrometers within the LIFE project (IPNOA: LIFE11 ENV/IT/00032). It was installed from June 2014 to October 2015 in an experimental maize field in Tuscany. The detection limits for the fluxes were evaluated up to 1.6 ng N-N 2 O m 2 s -1 and 0.3 μg C-CO 2 m 2 s -1 . A cross-comparison carried out in September 2015 with the "mobile IPNOA prototype"; a high-sensibility transportable instrument already validated provided evidence of very similar values and highlighted flux assessment limitations according to the gas analyzers used. The permanent monitoring device showed that temporal distribution of N 2 O fluxes can be very large and discontinuous over short periods of less than 10 days and that N 2 O fluxes were below the detection limit of the instrumentation during approximately 70% of the measurement time. The N 2 O emission factors were estimated to 1.9% in 2014 and 1.7% in 2015, within the range of IPCC assessments.
Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements
NASA Astrophysics Data System (ADS)
Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.
2013-06-01
Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.
Replumbing of the Biological Pump caused by Millennial Climate Variability
NASA Astrophysics Data System (ADS)
Galbraith, E.; Sarmiento, J.
2008-12-01
It has been hypothesized that millennial-timescale variability in the biological pump was a critical instigator of glacial-interglacial cycles. However, even in the absence of changes in ecosystem function (e.g. due to iron fertilization), determining the mechanisms by which physical climate variability alters the biological pump is not simple. Changes in upper ocean circulation and deep water formation have previously been shown to alter both the downward flux of organic matter and the mass of respired carbon in the ocean interior, often in non- intuitive ways. For example, a reduced upward flux of nutrients at the global scale will decrease the global rate of export production, but it could either increase or decrease the respired carbon content of the ocean interior, depending on where the reduced upward flux of nutrients occurs. Furthermore, viable candidates for physical climate forcing are numerous, including changes in the westerly winds, changes in the depth of the thermocline, and changes in the formation rate of North Atlantic Deep Water, among others. We use a simple, prognostic, light-and temperature-dependent model of biogeochemical cycling within a state-of-the- art global coupled ocean-atmosphere model to examine the response of the biological pump to changes in the coupled Earth system over multiple centuries. The biogeochemical model explicitly distinguishes respired carbon from preformed and saturation carbon, allowing the activity of the biological pump to be clearly quantified. Changes are forced in the model by altering the background climate state, and by manipulating the flux of freshwater to the North Atlantic region. We show how these changes in the physical state of the coupled ocean-atmosphere system impact the distribution and mass of respired carbon in the ocean interior, and the relationship these changes bear to global patterns of export production via the redistribution of nutrients.
NASA Astrophysics Data System (ADS)
Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu
2018-05-01
Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.
Sims Prototype System 2 test results: Engineering analysis
NASA Technical Reports Server (NTRS)
1978-01-01
The testing, problems encountered, and the results and conclusions obtained from tests performed on the IBM Prototype System, 2, solar hot water system, at the Marshall Space Flight Center Solar Test Facility was described. System 2 is a liquid, non draining solar energy system for supplying domestic hot water to single residences. The system consists of collectors, storage tank, heat exchanger, pumps and associated plumbing and controls.
Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin
2015-10-01
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com
2015-10-15
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less
Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.
2015-09-30
Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input tomore » the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test house been better insulated (more like the house used for the savings predictions noted above) and the IHP system nominal capacity been a bit lower that the energy savings estimate would have been closer to 45% or more (similar to the analytical prediction for the cold climate location of Chicago).« less
NASA Astrophysics Data System (ADS)
Taufiq, Ahmad; Hosono, Takahiro; Ide, Kiyoshi; Kagabu, Makoto; Iskandar, Irwan; Effendi, Agus J.; Hutasoit, Lambok M.; Shimada, Jun
2017-12-01
In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio (R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.
NASA Astrophysics Data System (ADS)
Taufiq, Ahmad; Hosono, Takahiro; Ide, Kiyoshi; Kagabu, Makoto; Iskandar, Irwan; Effendi, Agus J.; Hutasoit, Lambok M.; Shimada, Jun
2018-06-01
In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio ( R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.
Transmission of electrons inside the cryogenic pumps of ITER injector.
Veltri, P; Sartori, E
2016-02-01
Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.
The effect of surface wettability on the performance of a piezoelectric membrane pump
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Yang, Zhigang; Liu, Yong; Shen, Yanhu; Chen, Song; Yu, Jianqun
2018-04-01
In this paper, we studied the effect of surface wettability on the bubble tolerance of a piezoelectric membrane pump, by applying the super-hydrophilic or super-hydrophobic surface to the key elements on the pump. Wettability for the flow passage surface has a direct influence on the air bubbles flowing in the fluid. Based on the existing research results, we first analyzed the relationship between the flow passage surface of the piezoelectric pump and the bubbles in the fluid. Then we made three prototypes where pump chamber walls and valve plate surfaces were given different wettability treatments. After the output performance test, results demonstrate that giving super-hydrophilic treatment on the surface of key elements can improve the bubble tolerance of piezoelectric pump; in contrast, giving super-hydrophobic treatment will reduce the bubble tolerance.
Diesel-fired self-pumping water heater
NASA Astrophysics Data System (ADS)
Gertsmann, Joseph
1994-07-01
The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.
NASA Astrophysics Data System (ADS)
Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.
2014-02-01
Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to refine the "ballast hypothesis". In the framework of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient, low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7-fold higher POC flux than the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. On the scale of a dust-deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles (through aggregation and most probably sorption processes). Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this lithogenic carbon pump could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.
Advanced Concepts in Josephson Junction Reflection Amplifiers
NASA Astrophysics Data System (ADS)
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti
2014-06-01
Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.
Effect of radiator position and mass flux on the dryer room heat transfer rate
NASA Astrophysics Data System (ADS)
Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.
A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.
Evidence for impact ionization in vanadium dioxide
Holleman, Joshua; Bishop, Michael M.; Garcia, Carlos; ...
2016-10-17
Pump-probe optical spectroscopy was used to investigate charge carrier multiplication via impact ionization in the M 1 insulating phase of VO 2. By comparing the transient reflectivities of the film when pumped at less than and then more than twice the band-gap energy, we observed an enhancement of the ultrafast response with the higher energy pump color while the film was still transiently in the insulating phase. We additionally identified multiple timescales within the charge dynamics and analyzed how these changed when the pump and probe wavelengths were varied. This experiment provided evidence that impact ionization acts efficiently as amore » carrier multiplication process in this prototypical strongly-correlated insulator.« less
Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction
Hu, Sanbao
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, Michael; Wu, Qiao
2015-04-30
This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embeddedmore » in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.« less
Air Conditioning Overflow Sensor
NASA Technical Reports Server (NTRS)
1996-01-01
The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.
Design and performance of vacuum system for high heat flux test facility
NASA Astrophysics Data System (ADS)
Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.
2017-04-01
High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.
NASA Technical Reports Server (NTRS)
Shiner, Christopher S.
1986-01-01
Research is directed toward the design and synthesis of new media for solar-pumped I* lasers. Since the most effective existing lasants are perfluoroalkyl iodides, a strategy was proposed for the development of improved materials of this type with absorption maxima at 300 nm. Absorption spectra were synthesized and measured for prototypical species containing iodine bound to boron, iron, and cobalt.
Scalable Loading of a Two-Dimensional Trapped-Ion Array
2015-11-25
ion -trap array based on two crossed photo-ionization laser beams . With the use of a continuous flux of pre-cooled neutral...push laser Atomic beam Dierential pumping tube Push laser 2D-MOT 50 K Shield 4 K Shield 4 K stage Trap chip MOT laser Ion To ion pump 5s2 1S0 461...conducted a series of Ramsey experiments on a single trapped ion in the presence and absence of neu- tral atom flux as well as each of the PI laser
Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C
2017-07-13
Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
Numerical study of vortex rope during load rejection of a prototype pump-turbine
NASA Astrophysics Data System (ADS)
Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.
2012-11-01
A transient process of load rejection of a prototype pump-turbine was studied by three dimensional, unsteady simulations, as well as steady calculations.Dynamic mesh (DM) method and remeshing method were used to simulate the rotation of guide vanes and runner. The rotational speed of the runner was predicted by fluid couplingmethod. Both the transient calculation and steady calculation were performed based on turbulence model. Results show that steady calculation results have large error in the prediction of the external characteristics of the transient process. The runaway speed can reach 1.15 times the initial rotational speed during the transient process. The vortex rope occurs before the pump-turbine runs at zero moment point. Vortex rope has the same rotating direction with the runner. The vortex rope is separated into two parts as the flow rate decreases to 0. Pressure level decreases during the whole transient process.The transient simulation result were also compared and verified by experimental results. This computational method could be used in the fault diagnosis of transient operation, as well as the optimization of a transient process.
Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.
Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira
2010-08-01
To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of the prototype MagLev BP.
Custom Unit Pump Design and Testing for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.
Transmission of electrons inside the cryogenic pumps of ITER injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Sartori, E.
2016-02-15
Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particlemore » trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.« less
Development of the sonic pump levitation
NASA Technical Reports Server (NTRS)
Dunn, S. A.
1984-01-01
A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping.
Why coronal flux tubes have axially invariant cross-section
NASA Astrophysics Data System (ADS)
Bellan, Paul
2001-10-01
We present here a model that not only explains the long-standing mystery^1 of why solar coronal flux tubes tend towards having axially invariant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. l ^1 J. A. Klimchuk, Solar Phys. 193, 53 (2000)
Why coronal flux tubes have axially invariant cross-section
NASA Astrophysics Data System (ADS)
Bellan, P. M.
2001-12-01
We present here a model that not only explains the long-standing mystery of why solar coronal flux tubes tend towards having axially in-variant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. [1]J. A. Klimchuk, Solar Phys. 193, 53 (2000)
Recent progress in the development of Terumo implantable left ventricular assist system.
Nojiri, C; Kijima, T; Maekawa, J; Horiuchi, K; Kido, T; Sugiyama, T; Mori, T; Sugiura, N; Asada, T; Shimane, H; Ozaki, T; Suzuki, M; Akamatsu, T; Akutsu, T
1999-01-01
The research group of the Terumo Corporation, the NTN Corporation, and Setsunan University (T. Akamatsu) has been developing an implantable left ventricular assist system (ILVAS) featuring a centrifugal blood pump with a magnetically suspended impeller (MSCP). The impeller of the MSCP is suspended by a magnetic bearing, providing contact-free rotation of the impeller inside the pump housing. Thus the MSCP is expected to provide years of long-term durability. Ex vivo chronic sheep experiments using the extracorporeal model (Model I) demonstrated long-term durability, nonthrombogenicity, and a low hemolysis rate (plasma free Hb <6 mg/dl) for more than 2 years. The prototype implantable model (Model II; 196 ml, 400 g) was evaluated ex vivo in 2 sheep and intrathoracically implanted in a small sheep (45 kg). These experiments were terminated at 70, 79, and 17 days, respectively, because of blood leakage through the connector system within the housing of Model II. There was no thrombus formation on the retrieved pump surfaces. A new connector system was introduced to the Model II pump (modified Model II), and the pump was intrathoracically implanted in a sheep. Pump flow rate was maintained at 3-7 L/min at 1700-1800 rpm. The temperature elevation on the surfaces of the motor and the electromagnet inside the pump casing was kept less than 6 degrees C. The temperature of the tissue adjacent to the pump casing became normal 10 days postoperatively. The sheep survived for more than 5 months without any sign of mechanical failure or thromboembolic complication. In vitro real-time endurance tests of motor bearings made of stainless steel and silicone nitride have been conducted for more than 1 year without any sign of bearing wear. The next prototype system (Model III), with an implantable controller and a new MSCP with reduced input power, has been developed with a view toward a totally implantable LVAS.
All-sky brightness monitoring of light pollution with astronomical methods.
Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar
2010-06-01
This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.
Electromagnetic Pumps for Conductive-Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado
2005-01-01
Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.
Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreevy, J.; Barton, R.; Housinger, T.
1986-03-05
Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10/sup -4/M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R),more » H flux (J/sup H/) and Cl flux (J/sup Cl/ with /sup 36/Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10/sup -5/M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa.« less
Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Zhang, Y.; Pleva, Ed
2010-01-01
Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuuminsulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less
Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwenterly, S W; Zhang, Y.; Pleva, E. F.
Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less
Radiance limits of ceramic phosphors under high excitation fluxes
NASA Astrophysics Data System (ADS)
Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim
2013-09-01
Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.
Pottosin, Igor; Velarde-Buendía, Ana María; Bose, Jayakumar; Fuglsang, Anja T; Shabala, Sergey
2014-06-01
Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Early in vivo experience with the pediatric continuous-flow total artificial heart.
Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Kuban, Barry D; Gao, Shengqiang; Dessoffy, Raymond; Fukamachi, Kiyotaka
2018-03-30
Heart transplantation in infants and children is an accepted therapy for end-stage heart failure, but donor organ availability is low and always uncertain. Mechanical circulatory support is another standard option, but there is a lack of intracorporeal devices due to size and functional range. The purpose of this study was to evaluate the in vivo performance of our initial prototype of a pediatric continuous-flow total artificial heart (P-CFTAH), comprising a dual pump with one motor and one rotating assembly, supported by a hydrodynamic bearing. In acute studies, the P-CFTAH was implanted in 4 lambs (average weight: 28.7 ± 2.3 kg) via a median sternotomy under cardiopulmonary bypass. Pulmonary and systemic pump performance parameters were recorded. The experiments showed good anatomical fit and easy implantation, with an average aortic cross-clamp time of 98 ± 18 minutes. Baseline hemodynamics were stable in all 4 animals (pump speed: 3.4 ± 0.2 krpm; pump flow: 2.1 ± 0.9 liters/min; power: 3.0 ± 0.8 W; arterial pressure: 68 ± 10 mm Hg; left and right atrial pressures: 6 ± 1 mm Hg, for both). Any differences between left and right atrial pressures were maintained within the intended limit of ±5 mm Hg over a wide range of ratios of systemic-to-pulmonary vascular resistance (0.7 to 12), with and without pump-speed modulation. Pump-speed modulation was successfully performed to create arterial pulsation. This initial P-CFTAH prototype met the proposed requirements for self-regulation, performance, and pulse modulation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Lu, Fang-Min
2017-01-01
Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when cytoplasmic Na rises and suppresses pump activity when cytoplasmic Na declines. PMID:28606910
Development and numerical analysis of low specific speed mixed-flow pump
NASA Astrophysics Data System (ADS)
Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.
2012-11-01
With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.
NASA Astrophysics Data System (ADS)
Zheng, L.; Weisberg, R. H.
2016-02-01
A 3D, numerical circulation model, with high resolution (20 m) at important mass conveyances (inlets and rivers etc.), is developed to estimate the bulk residence time and diagnose the salt balances and salt fluxes for Tampa Bay estuary. These analyses are justified via quantitative comparisons between the simulation and observations of sea level, velocity and salinity. The non-tidal circulation is the primary agent for the flushing of Tampa Bay. Tides alone have a minor effect. Exceptions pertain to within a tidal excursion from the bay mouth and regions with multiple inlets where different tide phases aid in flushing. The fully 3D salt flux divergences (SFD) and fluxes vary spatially throughout the estuary. On experimental duration (three month) average, the total advective SFD is balanced primarily by the vertical diffusive SFD, except near the bottom of the channel where the horizontal diffusive SFD is also important. Instantaneously, the local rate of salinity change is controlled primarily by the advective SFD, with a secondary contribution by the vertical diffusive SFD everywhere and the horizontal diffusive SFD near the channel bottom. After decomposing the advective salt fluxes and their divergences into mean quantity and tidal pumping, the horizontal and vertical advective SFDs by the mean quantities are large and counterbalance, with their sum being a small but significant residual. The horizontal and vertical advective SFDs by tidal pumping are relatively small (when compared with the mean quantities) and counterbalance; but, when summed, their residual is comparable in magnitude to that by the mean quantities. So whereas the salt fluxes by tidal pumping are secondary importance to the salt fluxes by the mean quantities, their total flux divergences are of comparable importance. The salt flux 3D components vary along the Tampa Bay axis, and these findings may be typical of coastal plain estuaries given their geometrical complexities.
Prototype solar heating and combined heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Designs were completed, hardware was received, and hardware was shipped to two sites. A change was made in the heat pump working fluid. Problem investigation of shroud coatings for the collector received emphasis.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.
2016-06-01
Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.
Design and Synthesis of Nonequilibrium Systems.
Cheng, Chuyang; McGonigal, Paul R; Stoddart, J Fraser; Astumian, R Dean
2015-09-22
The active transport of ions and molecules across cell membranes is essential to creating the concentration gradients that sustain life in all living organisms, be they bacteria, fungi, plants, animals or Homo sapiens. Nature uses active transport everywhere for everything. Molecular biologists have long been attracted to the study of active transport and continue to this day to investigate and elucidate the tertiary structures of the complex motor proteins that sustain it, while physicists, interested in nonequilibrium statistical mechanics, have developed theoretical models to describe the driven ratcheting motions that are crucial to its function. The increasingly detailed understanding that contemporary science has acquired relating to active transport, however, has yet to lead to the design and construction of artificial molecular motors capable of employing ratchet-driven motions that can also perform work against concentration gradients. Mechanically interlocked molecules (MIMs) in the form of pseudo- and semirotaxanes are showing some encouraging signs in meeting these goals. This review summarizes recent progress in making artificial molecular motors that can perform work by "pumping" tetracationic rings into high-energy states. The launching pad is a bistable [2]rotaxane whose dumbbell component contains two electron-donating recognition sites, one, a tetrathiafulvalene (TTF) unit, which interacts more strongly with the ring component, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), containing two electron-accepting bipyridinium units, than does the other 1,5-dioxynaphthalene (DNP) unit. Switching can be induced electrochemically by oxidizing the TTF unit to a TTF(•+) radical cation, whereupon Coulombic repulsion takes care of moving the ring to the DNP unit. Reduction of the radical cation resets the switch. Molecular switches operate at, or close to, equilibrium. Any work done during one switching event is undone during the reset. Molecular motors, on the other hand, rely on a flux of energy, and a ratchet mechanism to make periodic changes to the potential energy surface of a system in order to move molecules uphill to higher energy states. Forging a path from molecular switches to motors involved designing a molecular pump prototype. An asymmetric dumbbell with a 2-isopropylphenyl (neutral) end and a 3,5-dimethylpyridinium (charged) end with a DNP recognition site to entice CBPQT(4+) rings out of solution exhibits relative unidirectional movement of the rings with respect to the dumbbell. Redox chemistry does the trick. During the oxidative cycle, the rings enter the dumbbell by passing over the neutral end onto the recognition site; in the reduction cycle, much of the recognition is lost and the rings find their way back into solution by leaving the dumbbell from the charged end. This on-one-end, off-the-other process can be repeated over and over again using light as the energy source in the presence of a photosensitizer and a compound that shuttles electrons back and forth. Although this prototype demonstrates ratchet-driven translational motion, no work is done. A ring enters the dumbbell from one end and leaves from the other end. Another deficiency of the prototype is the fact that, although the recognition site is muted on reduction, it retains some attraction for the ring. What if the recognition site was attractive initially and then became repulsive? This question was answered by turning to radical chemistry and employing the known stabilization behavior of a bipyridinium radical cation and the bisradical dication, generated on reduction of the CBPQT(4+) ring, to pluck rings out of solution and thread them over the charged end of the pump portion of a semidumbbell. On subsequent oxidation, the pump is primed and the rings pass through a one-way door, given a little thermal energy, onto a collecting-chain where they find themselves accumulating where they would rather not be present. In this manner, an artificial molecular pump mimics the pumping machinery commonplace in biological systems. Looking beyond this state-of-the-art artificial molecular pump, we discuss, from a theoretical standpoint, the measures that would need to be taken in order to render its operation autonomous.
Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipenko, M.; Ripani, M.; Ricco, G.
2015-07-01
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based onmore » conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)« less
Proton pumping accompanies calcification in foraminifera.
Toyofuku, Takashi; Matsuo, Miki Y; de Nooijer, Lennart Jan; Nagai, Yukiko; Kawada, Sachiko; Fujita, Kazuhiko; Reichart, Gert-Jan; Nomaki, Hidetaka; Tsuchiya, Masashi; Sakaguchi, Hide; Kitazato, Hiroshi
2017-01-27
Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO 2 levels. We furthermore show that a V-type H + ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO 2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO 2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.
Proton pumping accompanies calcification in foraminifera
NASA Astrophysics Data System (ADS)
Toyofuku, Takashi; Matsuo, Miki Y.; de Nooijer, Lennart Jan; Nagai, Yukiko; Kawada, Sachiko; Fujita, Kazuhiko; Reichart, Gert-Jan; Nomaki, Hidetaka; Tsuchiya, Masashi; Sakaguchi, Hide; Kitazato, Hiroshi
2017-01-01
Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO2 levels. We furthermore show that a V-type H+ ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.
Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions
Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...
Lyophilization for Water Recovery III, System Design
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Reinhard, Martin; Fisher, John; Flynn, Michael
2005-01-01
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground- based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Prototype solar heating and cooling systems, including potable hot water
NASA Technical Reports Server (NTRS)
Bloomquist, D.; Oonk, R. L.
1977-01-01
Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.
Nishimura, K; Park, C H; Akamatsu, T; Yamada, T; Ban, T
1996-01-01
To overcome problems with the shaft seal in conventional centrifugal pumps, the authors have been developing a magnetically suspended centrifugal pump (MSCP) that operates as a valveless, sealless, and bearingless pump. The prototype of the MSCP was modified with respect to size of the volute diffuser and impeller blade profiles. A hemolysis test in vitro using a new version of the MSCP was performed in comparison with a commercially available centrifugal pump. The test circuit for the hemolysis test comprised a blood reservoir, a pump, and polyvinyl tubes, and was filled with fresh heparinized bovine blood. The pumping conditions were a flow rate of 5 L/min and a pump head afterload of 100 mmHg. The index of hemolysis in the MSCP was significantly lower than that in the Biomedicus pump (0.0035 +/- 0.0025 versus 0.0097 +/- 0.0056 g/100 L, p < 0.05). Reduction in the platelet count during pumping also was lower in the MSCP compared with the Biomedicus pump at both 6 hrs and 12 hrs of pumping (p < 0.01). This MSCP may be advantageous for extended use of assist devices, not only from the theoretical point of view, but in a practical sense after the results of the current hemolysis test.
Song, Xinwei; Wood, Houston G; Olsen, Don
2004-04-01
The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.
Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.
1999-01-01
Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.
1999-01-01
Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.
Increase of economy of torque flow pump with high specific speed
NASA Astrophysics Data System (ADS)
Gusak, A. G.; Krishtop, I. V.; German, V. F.; Baga, V. N.
2017-08-01
Torque flow pumps are widely spread types of energy machines, which are used in majority of modern branches of industry for pumping of dirty media. The main task of researchers of torque flow pumps is increase of such pumps effectiveness for higher feed. Hydraulic losses for torque flow pumps are caused by working process of such pumps and are inevitable. Decrease of losses can be obtained by means of optimization of hydraulic flow part geometry. Modern approach to design of pump outlet introduces new constructive solutions which can increase economy of torque flow pumps. The aim of this research is increase of economy of torque flow pumps by means of application of spatial outlet and investigation of its geometry on pump characteristics. Analytical and numerical methods of liquid flow research for hydraulic flow part of torque flow pump were used in this paper. Moreover, influence of hydraulic flow part geometry of different designs of “Turo” type torque flow pumps outlets on pump characteristics was investigated. Numerical research enabled to study process of energy transfer of torque flow pump and evaluate influence of geometrical dimensions of spatial spiral outlet on its characteristics. Besides numerical research confirmed introduced regularity of peripheral velocity distribution in outlet. Velocity moment distribution in outlet was obtained during implementation of numerical research. Implemented bench tests of torque flow pump prototypes enabled to obtain real characteristics of pump and confirm effectiveness of spatial geometry of outlet application for such pump.
The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo
S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
Development of a jet pump-assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1977-01-01
The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.
Phase transition kinetics in DIET of vanadium pentoxide. I. Experimental results
NASA Astrophysics Data System (ADS)
Ai, R.; Fan, H.-J.; Marks, L. D.
1993-01-01
Experimental results of the kinetics of phase transformation in vanadium pentoxide during surface loss of oxygen from electron irradiation are described. Phase transformations under three different regimes were examined: (a) low flux; (b) intermediate flux and (c) high flux. Different phase transformation routes were observed under different fluxes. In a companion paper, numerical calculations are presented demonstrating that these results are due to a mixed interface/diffusion controlled phase transition pumped by surface oxygen loss.
Bock, Eduardo; Antunes, Pedro; Leao, Tarcisio; Uebelhart, Beatriz; Fonseca, Jeison; Leme, Juliana; Utiyama, Bruno; da Silva, Cibele; Cavalheiro, Andre; Filho, Diolino Santos; Dinkhuysen, Jarbas; Biscegli, Jose; Andrade, Aron; Arruda, Celso
2011-05-01
An implantable centrifugal blood pump has been developed with original features for a left ventricular assist device. This pump is part of a multicenter and international study with the objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations and wear evaluation in bearing system were performed followed by prototyping and in vitro tests. In addition, previous blood tests for assessment of normalized index of hemolysis show results of 0.0054±2.46 × 10⁻³ mg/100 L. An electromechanical actuator was tested in order to define the best motor topology and controller configuration. Three different topologies of brushless direct current motor (BLDCM) were analyzed. An electronic driver was tested in different situations, and the BLDCM had its mechanical properties tested in a dynamometer. Prior to evaluation of performance during in vivo animal studies, anatomical studies were necessary to achieve the best configuration and cannulation for left ventricular assistance. The results were considered satisfactory, and the next step is to test the performance of the device in vivo. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.
2015-03-01
An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping (CFP) in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model including two steady-state flow equations with different hydraulic parameters for the skin and formation zones. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the boundary in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow component due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the CFP have good accuracy if satisfying the criterion.
High-frequency pressure variations in the vicinity of a surface CO2 flux chamber
Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice
2003-01-01
We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...
Self pressuring HTP feed systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J.
1999-10-14
Hydrogen peroxide tanks can be pressurized with decomposed HTP (high test hydrogen peroxide) originating in the tank itself. In rocketry, this offers the advantage of eliminating bulky and heavy inert gas storage. Several prototype self-pressurizing HTP systems have recently been designed and tested. Both a differential piston tank and a small gas-driven pump have been tried to obtain the pressure boost needed for flow through a gas generator and back to the tank. Results include terrestrial maneuvering tests of a prototype microsatellite, including warm gas attitude control jets.
Enhanced role of eddies in the Arctic marine biological pump
Watanabe, Eiji; Onodera, Jonaotaro; Harada, Naomi; Honda, Makio C.; Kimoto, Katsunori; Kikuchi, Takashi; Nishino, Shigeto; Matsuno, Kohei; Yamaguchi, Atsushi; Ishida, Akio; Kishi, Michio J.
2014-01-01
The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans. PMID:24862402
A closed form solution for constant flux pumping in a well under partial penetration condition
NASA Astrophysics Data System (ADS)
Yang, Shaw-Yang; Yeh, Hund-Der; Chiu, Pin-Yuan
2006-05-01
An analytical model for the constant flux pumping test is developed in a radial confined aquifer system with a partially penetrating well. The Laplace domain solution is derived by the application of the Laplace transforms with respect to time and the finite Fourier cosine transforms with respect to the vertical coordinates. A time domain solution is obtained using the inverse Laplace transforms, convolution theorem, and Bromwich integral method. The effect of partial penetration is apparent if the test well is completed with a short screen. An aquifer thickness 100 times larger than the screen length of the well can be considered as infinite. This solution can be used to investigate the effects of screen length and location on the drawdown distribution in a radial confined aquifer system and to produce type curves for the estimation of aquifer parameters with field pumping drawdown data.
FIELD MEASUREMENTS OF CONTAMINANT FLUX BY INTEGRAL PUMPING TESTS (SAN FRANCISCO, CA)
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of flux measurements before and af...
A compact centrifugal blood pump for extracorporeal circulation: design and performance.
Tanaka, S; Yamamoto, S; Yamakoshi, K; Kamiya, A
1987-08-01
A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.
A Passively-Suspended Tesla Pump Left Ventricular Assist Device
Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson
2009-01-01
The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799
Gambill, W.R.; Greene, N.D.
1960-08-30
A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.
Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.
Apell, H J; Marcus, M M; Anner, B M; Oetliker, H; Läuger, P
1985-01-01
A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Jardin, Stephen C.; Guenter, Sibylle; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika; Ferraro, Nate
2017-10-01
3D nonlinear MHD simulations of tokamak plasmas have been performed in toroidal geometry by means of the high-order finite element code M3D-C1. The simulations are set up such that the safety factor on axis (q0) is driven towards values below unity. As reported in and the resulting asymptotic states either exhibit sawtooth-like reconnection cycling or they are sawtooth-free. In the latter cases, a self-regulating magnetic flux pumping mechanism, mainly provided by a saturated quasi-interchange instability via a dynamo effect, redistributes the central current density so that the central safety factor profile is flat and q0 1 . Sawtoothing is prevented if β is sufficiently high to allow for the necessary amount of flux pumping to counterbalance the tendency of the current density profile to centrally peak. We present the results of 3D nonlinear simulations based on specific types of experimental discharges and analyze their asymptotic behavior. A set of cases is presented where aspects of the current ramp-up phase of Hybrid ASDEX Upgrade discharges are mimicked. Another set of simulations is based on low-qedge discharges in DIII-D.
NASA Astrophysics Data System (ADS)
Wang, Wei; Coombs, Tim
2018-04-01
We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Development of a pump-turbine runner based on multiobjective optimization
NASA Astrophysics Data System (ADS)
Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.
2014-03-01
As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.
Development of a Self-contained Heat Rejection Module (SHRM), phase 1
NASA Technical Reports Server (NTRS)
Fleming, M. L.
1976-01-01
The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.
Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System
NASA Technical Reports Server (NTRS)
Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.
2008-01-01
Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.
Atteia, Olivier; Höhener, Patrick
2010-08-15
Volatilization of toxic organic contaminants from groundwater to the soil surface is often considered an important pathway in risk analysis. Most of the risk models use simplified linear solutions that may overpredict the volatile flux. Although complex numerical models have been developed, their use is restricted to experienced users and for sites where field data are known in great detail. We present here a novel semianalytical model running on a spreadsheet that simulates the volatilization flux and vertical concentration profile in a soil based on the Van Genuchten functions. These widely used functions describe precisely the gas and water saturations and movement in the capillary fringe. The analytical model shows a good accuracy over several orders of magnitude when compared to a numerical model and laboratory data. The effect of barometric pumping is also included in the semianalytical formulation, although the model predicts that barometric pumping is often negligible. A sensitivity study predicts significant fluxes in sandy vadose zones and much smaller fluxes in other soils. Fluxes are linked to the dimensionless Henry's law constant H for H < 0.2 and increase by approximately 20% when temperature increases from 5 to 25 degrees C.
General well function for pumping from a confined, leaky, or unconfined aquifer
NASA Astrophysics Data System (ADS)
Perina, Tomas; Lee, Tien-Chang
2006-02-01
A general well function for groundwater flow toward an extraction well with non-uniform radial flux along the screen and finite-thickness skin, partially penetrating an unconfined, leaky-boundary flux, or confined aquifer is derived via the Laplace and generalized finite Fourier transforms. The mixed boundary condition at the well face is solved as the discretized Fredholm integral equation. The general well function reduces to a uniform radial flux solution as a special case. In the Laplace domain, the relation between the drawdown in the extraction well and flowrate is linear and the formulations for specified flowrate or specified drawdown pumping are interchangeable. The deviation in drawdown of the uniform from non-uniform radial flux solutions depends on the relative positions of the extraction and observation well screens, aquifer properties, and time of observation. In an unconfined aquifer the maximum deviation occurs during the period of delayed drawdown when the effect of vertical flow is most apparent. The skin and wellbore storage in an observation well are included as model parameters. A separate solution is developed for a fully penetrating well with the radial flux being a continuous function of depth.
Vapor compression distillation module
NASA Technical Reports Server (NTRS)
Nuccio, P. P.
1975-01-01
A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.
NASA Astrophysics Data System (ADS)
Ambrosino, F.; Anastasio, A.; Bross, A.; Béné, S.; Boivin, P.; Bonechi, L.; Cârloganu, C.; Ciaranfi, R.; Cimmino, L.; Combaret, Ch.; D'Alessandro, R.; Durand, S.; Fehr, F.; Français, V.; Garufi, F.; Gailler, L.; Labazuy, Ph.; Laktineh, I.; Lénat, J.-F.; Masone, V.; Miallier, D.; Mirabito, L.; Morel, L.; Mori, N.; Niess, V.; Noli, P.; Pla-Dalmau, A.; Portal, A.; Rubinov, P.; Saracino, G.; Scarlini, E.; Strolin, P.; Vulpescu, B.
2015-11-01
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy threshold of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m-2 d-1 deg-2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m-2 d-1 deg-2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. The MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.
Ambrosino, F.; Anastasio, A.; Bross, A.; ...
2015-11-14
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m 2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy thresholdmore » of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m –2 d –1 deg –2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m –2 d –1 deg –2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. As a result, the MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosino, F.; Anastasio, A.; Bross, A.
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m 2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy thresholdmore » of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m –2 d –1 deg –2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m –2 d –1 deg –2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. As a result, the MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.« less
The putative drug efflux systems of the Bacillus cereus group
Elbourne, Liam D. H.; Vörös, Aniko; Kroeger, Jasmin K.; Simm, Roger; Tourasse, Nicolas J.; Finke, Sarah; Henderson, Peter J. F.; Økstad, Ole Andreas; Paulsen, Ian T.; Kolstø, Anne-Brit
2017-01-01
The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70–80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current knowledge of the small molecule efflux pumps encoded by the B. cereus group and suggest the likely functions of numerous uncharacterised pumps. PMID:28472044
Electric control of the heat flux through electrophononic effects
NASA Astrophysics Data System (ADS)
Seijas-Bellido, Juan Antonio; Aramberri, Hugo; Íñiguez, Jorge; Rurali, Riccardo
2018-05-01
We demonstrate a fully electric control of the heat flux, which can be continuously modulated by an externally applied electric field in PbTiO3, a prototypical ferroelectric perovskite, revealing the mechanisms by which experimentally accessible fields can be used to tune the thermal conductivity by as much as 50% at room temperature.
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2014 CFR
2014-01-01
... recognition and readability. Trim size dimensions for all labels shall be as follows: width must be between 51.... Specific sizes and faces to be used are indicated on the prototype labels. No hyphenation should be used in...
Simulation of sodium pumps for nuclear power plants. Technical report 1 Oct 80-1 May 81
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boadu, H.O.
1981-05-01
A single-phase pump model for analysis of transients in sodium cooled fast breeder nuclear power plants has been presented, where homologous characteristic curves are used to predict the behavior of the pump during operating transients. The pump model has been incorporated into BRENDA and FFTF; two system cases to simulate Clinch River Breeder Reactor Plant (CRBRP) and the Fast Flux Test Facility (FFTF) respectively. Two simulation test results for BRENDA which is one loop representation of a three loop plant have been presented. They are: (1) Primary pump coastdown to natural circulation coupled with scram failure, and (2) 10 percentmore » deviation of primary speed with plant controllers incorporated.« less
Multi-Function Gas Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Vineyard, Edward Allan
2015-11-01
The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibrationmore » reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.« less
A fermentation-powered thermopneumatic pump for biomedical applications.
Ochoa, Manuel; Ziaie, Babak
2012-10-21
We present a microorganism-powered thermopneumatic pump that utilizes temperature-dependent slow-kinetics gas (carbon dioxide) generating fermentation of yeast as a pressure source. The pump consists of stacked layers of polydimethylsiloxane (PDMS) and a silicon substrate that form a drug reservoir, and a yeast-solution-filled working chamber. The pump operates by the displacement of a drug due to the generation of gas produced via yeast fermentation carried out at skin temperatures. The robustness of yeast allows for long shelf life under extreme environmental conditions (50 °C, >250 MPa, 5-8% humidity). The generation of carbon dioxide is a linear function of time for a given temperature, thus allowing for a controlled volume displacement. A polymeric prototype (dimensions 15 mm × 15 mm × 10 mm) with a slow flow rate of <0.23 μL min(-1) and maximum backpressure of 5.86 kPa capable of continuously pumping for over two hours is presented and characterized.
Oilwell Power Controller (OPC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participatingmore » in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.« less
NASA Technical Reports Server (NTRS)
Liebert, B. E.
1986-01-01
A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.
Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.; ...
2016-10-21
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less
Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano
2017-03-01
A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.
Recent progress on monolithic fiber amplifiers for next generation of gravitational wave detectors
NASA Astrophysics Data System (ADS)
Wellmann, Felix; Booker, Phillip; Hochheim, Sven; Theeg, Thomas; de Varona, Omar; Fittkau, Willy; Overmeyer, Ludger; Steinke, Michael; Weßels, Peter; Neumann, Jörg; Kracht, Dietmar
2018-02-01
Single-frequency fiber amplifiers in MOPA configuration operating at 1064 nm (Yb3+) and around 1550 nm (Er3+ or Er3+:Yb3+) are promising candidates to fulfill the challenging requirements of laser sources of the next generation of interferometric gravitational wave detectors (GWDs). Most probably, the next generation of GWDs is going to operate not only at 1064 nm but also at 1550 nm to cover a broader range of frequencies in which gravitational waves are detectable. We developed an engineering fiber amplifier prototype at 1064 nm emitting 215 W of linearly-polarized light in the TEM00 mode. The system consists of three modules: the seed source, the pre-amplifier, and the main amplifier. The modular design ensures reliable long-term operation, decreases system complexity and simplifies repairing and maintenance procedures. It also allows for the future integration of upgraded fiber amplifier systems without excessive downtimes. We also developed and characterized a fiber amplifier prototype at around 1550 nm that emits 100 W of linearly-polarized light in the TEM00 mode. This prototype uses an Er3+:Yb3+ codoped fiber that is pumped off-resonant at 940 nm. The off-resonant pumping scheme improves the Yb3+-to-Er3+ energy transfer and prevents excessive generation of Yb3+-ASE.
CSPonD demonstrative project: Start-up process of a 25 kW prototype
NASA Astrophysics Data System (ADS)
Gil, Antoni; Grange, Benjamin; Perez, Victor G.; Tetreault-Friend, Melanie; Codd, Daniel S.; Calvet, Nicolas; Slocum, Alexander S.
2017-06-01
The current concept of commercial concentrated solar power (CSP) plants, based on the concept of a solar field, receiver, storage and power block, experienced significant growth in the past decades. The power block is the most well know part of the plant, while solar field depends on the receiver technology. The dominant receiver technologies are parabolic troughs and central towers. Most thermal energy storage (TES) relies on two tanks of molten salts, one hot and one cold serviced by pumps and piping systems. In spite of the technical development level achieved by these systems, efficiency is limited, mainly caused by thermal losses in piping, parasitic losses due to electric tracing and pumping and receiver limitations. In order to mitigate the these issues, a new concept called Concentrated Solar Power on Demand (CSPonD), was developed, consisting of a direct absorption Solar Salt CSP receiver which simultaneously acts as TES tank. Currently, in the frame of the flagship collaborative project between the Masdar Institute (UAE) and the Massachusetts Institute of Technology (USA) a 25 kW demonstrative prototype is in its final building phase at the Masdar Institute Solar Platform. The present paper, explains the demonstration prototype based on the CSPonD concept, with emphasis on the planned start-up process for the facility.
Magnetic refrigeration using flux compression in superconductors
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.
1990-01-01
The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.
Preliminary Design of Critical Function Monitoring System of PGSFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-07-01
A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system, flow rate of active residual heat removal system, and temperatures of air heat exchanger temperature of residual heat removal systems. The alarm legs are composed of two legs of a 'passive residual heat removal system not cooling' and 'active residual heat removal system not cooling'. - Sodium water reaction mitigation: The variables are intermediate heat transfer system(IHTS) pressure, pressure and temperature and level of sodium dump tank, the status of rupture disk, hydrogen concentration in IHTS and direct variable of sodium-water-reaction measure. The alarm leg consists of high IHTS pressure, the status of sodium water reaction mitigation system and the indication of direct measure. - Radiation control: The variables are radiation of PHTS, radiation of IHTS, and radiation of containment purge. The alarm leg is composed of high radiation of PHTS and IHTS, and containment purge system. - Containment condition: The variables are containment pressure, containment isolation status, and sodium fire. The alarm leg consists of high containment pressure, status of containment isolation and status of sodium fire. (authors)« less
Progress toward hydrogen peroxide micropulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J C; Dittman, M D; Ledebuhr, A G
1999-07-08
A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.
Recent results of the pulsed optically pumped rubidium clock
NASA Astrophysics Data System (ADS)
Levi, F.; Micalizio, S.; Godone, A.; Calosso, C.; Bertacco, E.
2017-11-01
A laboratory prototype of a pulsed optically pumped (POP) clock based on a rubidium cell with buffer gas is described. This clock has shown very interesting physical and metrological features, such as negligible light-shift, strongly reduced cavity-pulling and very good frequency stability. In this regard, an Allan deviation of σy(τ) = 1.2 τ-1/2 for measurement times up to τ = 105 s has been measured. These results confirm the interesting perspectives of such a frequency standard and make it very attractive for several technological applications, such as radionavigation.
Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA
Cheng, Shanbao; Olles, Mark W.; Burger, Aaron F.; Day, Steven W.
2011-01-01
In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers’ initial assumption about the function of this HMB. PMID:22065892
Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.
Cheng, Shanbao; Olles, Mark W; Burger, Aaron F; Day, Steven W
2011-10-01
In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers' initial assumption about the function of this HMB.
Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period
NASA Astrophysics Data System (ADS)
Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Zhou, Zhao-Zhong
2017-05-01
Transient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor-stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Wells, D.
2000-01-01
Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.
Development of a prototype two-phase thermal bus system for Space Station
NASA Technical Reports Server (NTRS)
Myron, D. L.; Parish, R. C.
1987-01-01
This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.
Jiang, C Y; Tong, X; Brown, D R; Culbertson, H; Graves-Brook, M K; Hagen, M E; Kadron, B; Lee, W T; Robertson, J L; Winn, B
2013-06-01
The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60° horizontal and 15° vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized (3)He filling station based on the spin exchange optical pumping method. It is designed to supply polarized (3)He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the (3)He pressure with respect to the scattered neutron energies. The depolarized (3)He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.
Manufacturing and testing of a prototypical divertor vertical target for ITER
NASA Astrophysics Data System (ADS)
Merola, M.; Plöchl, L.; Chappuis, Ph; Escourbiac, F.; Grattarola, M.; Smid, I.; Tivey, R.; Vieider, G.
2000-12-01
After an extensive R&D activity, a medium-scale divertor vertical target prototype has been manufactured by the EU Home Team. This component contains all the main features of the corresponding ITER divertor design and consists of two units with one cooling channel each, assembled together and having an overall length and width of about 600 and 50 mm, respectively. The upper part of the prototype has a tungsten macro-brush armour, whereas the lower part is covered by CFC monoblocks. A number of joining techniques were required to manufacture this component as well as an appreciable effort in the development of suitable non-destructive testing methods. The component was high heat flux tested in FE200 electron beam facility at Le Creusot, France. It endured 100 cycles at 5 MW/m 2, 1000 cycles at 10 MW/m 2 and more then 1000 cycles at 15-20 MW/m 2. The final critical heat flux test reached a value in excess of 30 MW/m 2.
Soler, L I; Boix, A; Lauroba, J; Colom, H; Domenech, J
2012-10-01
Alprazolam, a benzodiazepine widely used for the treatment of psychiatric disorders, has been aimed to be formulated in a transdermal delivery system (TDS) prototype. A series of TDS prototypes dosed in all cases at 0.35 mg·cm(-2) of alprazolam were prepared as a monolithic drug in adhesive matrix using acrylic pressure-sensitive adhesives (PSA) of acrylate vinyl acetate (Duro-tack(®)). The effects of several permeation enhancers as azone, transcutol, propylene glycol, dodecyl alcohol, decyl alcohol, diethanolamine, N-methyl pyrrolidone and lauric acid were studied. Prototypes have been characterized based on adhesion parameters (peel adhesion and shear adhesion), in vitro human skin permeation and in vitro drug release according to European Pharmacopoeia for the selected prototype. Best results show that a combination of permeation enhancers from different chemical groups is able to provide almost a 33 fold increase in the transdermal alprazolam flux of an aqueous saturated dispersion (from 0.054 ± 0.019 to 1.76 ± 0.21 μg h.cm(-2)). Based on these in vitro flux data, a predictive simulation of the achievable plasmatic levels was performed assuming a constant systemic infusion of drug. In summary, it is possible to obtain a prototype of a TDS of alprazolam with adequate adhesive properties (peel adhesion and shear adhesion) and able to predict sustained therapeutic plasmatic levels.
Diode pumped, regenerative Nd:YAG ring amplifier for space application
NASA Technical Reports Server (NTRS)
Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.
Intermediate-Size Inducer Pump design report. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, T.J.
1979-06-15
This report summarizes the mechanical, structural, and hydrodynamic design of the Intermediate-Size Inducer Pump (ISIP). The design was performed under Atomics International's DOE Base Technology Program by the Atomics International and Rocketdyne Divisions of Rockwell International. The pump was designed to utilize the FFTF prototype pump frame as a test vehicle to test the inducer, impeller, and diffuser plus necessary adapter hardware under simulated Large Scale Liquid Metal Fast Breeder Reactor service conditions. The report describes the design requirements including the purpose and objectives, and discusses those design efforts and considerations made to meet the requirements. Included in the reportmore » are appendices showing calculative methods and results. Also included are overall assembly and layout drawings plus some details used as illustrations for discussion of the design results and the results of water tests performed on a model of the inducer.« less
Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K
2008-05-01
Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-05-01
We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.
Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, Rajesh
1992-08-01
The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensionalmore » (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.« less
Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature
1991-03-01
boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling
NASA Astrophysics Data System (ADS)
Cisternas-Novoa, C.; Le Moigne, F. A. C.; Roa, J.; Wagner, H.; Engel, A.
2016-02-01
The downward flux of organic matter (OM) from the euphotic zone is critical to understand the biogeochemistry cycles in the ocean. Local changes in stratification, nutrient inputs, community structure and oxygen concentrations potentially affect the magnitude of OM flux. The Baltic Sea is a unique environment with strong natural gradients of primary productivity, nutrients and O2 concentrations. The genuine effect of oxygen minimum deficiency on the fate of sinking OM and the efficiency of the biologic carbon pump has yet to be clarified. Previous work suggested that under oxygen deficiency, nitrogen rich amino acids are preferentially utilized causing nitrogen loss from the water column (van Mooy et al., 2002, Kalvelage et al 2013). Here, we investigate how different oxygen conditions and surface productivity affect sinking particles flux and particles composition in the central Baltic Sea. Sinking OM was collected in June 2015 using surface-tethered free-drifting traps in the Gotland and Landsort deeps. Sinking particles were collected for a period of 48 and 24 hours at four depths from below the mixed layer and down to hypoxic deep waters (40, 60, 110 and 180 m). Fluxes of POC, PON, POP and amino acids were estimated. We will discuss the effect of low oxygen levels on the biological carbon pump associated with fluxes of OM and sinking particles.
Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.
Noh, Minkyun; Gruber, Wolfgang; Trumper, David L
2017-10-01
We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.
Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.
2010-01-01
Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.
Particle and Power Exhaust in EAST
NASA Astrophysics Data System (ADS)
Wang, Liang; Ding, Fang; Yu, Yaowei; Gan, Kaifu; Liang, Yunfeng; Xu, Guosheng; Xiao, Bingjia; Sun, Youwen; Luo, Guangnan; Gong, Xianzu; Hu, Jiansheng; Li, Jiangang; Wan, Baonian; Maingi, Rajesh; Guo, Houyang; Garofalo, Andrea; EAST Team
2017-10-01
A total power injection up to 0.3GJ has been achieved in EAST long pulse USN operation with ITER-like water-cooling W-monoblock divertor, which has steady-state power exhaust capability of 10 MWm-2. The peak temperature of W target saturated at t = 12 s to the value T 500oC and a heat flux 3MWm-2was maintained. Great efforts to reduce heat flux and accommodate particle exhaust simultaneously have been made towards long pulse of 102s time scale. By exploiting the observation of Pfirsch-Schlüter flow direction in the SOL, the Bt direction with Bx ∇B away from the W divertor (more particles favor outer target in USN) was adopted along with optimizing the strike point location near the pumping slot, to facilitate particle and impurity exhaust with the top cryo-pump. By tailoring the 3D divertor footprint through edge magnetic topology change, the heat load was dispersed widely and thus peak heat flux and W sputtering was well controlled. Active feedback control of total radiative power with neon seeding was achieved within frad = 17-35%, exhibiting further potential for heat flux reduction with divertor and edge radiation. Other heat flux handling techniques, including quasi snowflake configuration, will also be presented.
The culmination of an inverse cascade: Mean flow and fluctuations
NASA Astrophysics Data System (ADS)
Frishman, Anna
2017-12-01
Two dimensional turbulence has a remarkable tendency to self-organize into large, coherent structures, forming a mean flow. The purpose of this paper is to elucidate how these structures are sustained and what determines them and the fluctuations around them. A recent theory for the mean flow will be reviewed. The theory assumes that turbulence is excited by a forcing supported on small scales and uses a linear shear model to relate the turbulent momentum flux to the mean shear rate. Extending the theory, it will be shown here that the relation between the momentum flux and mean shear is valid, and the momentum flux is non-zero, for both an isotropic forcing and an anisotropic forcing, independent of the dissipation mechanism at small scales. This conclusion requires taking into account that the linear shear model is an approximation to the real system. The proportionality between the momentum flux and the inverse of the shear can then be inferred most simply on dimensional grounds. Moreover, for a homogeneous pumping, the proportionality constant can be determined by symmetry considerations, recovering the result of the original theory. The regime of applicability of the theory, its compatibility with observations from simulations, a formula for the momentum flux for an inhomogeneous pumping, and results for the statistics of fluctuations will also be discussed.
Use of case-based reasoning to enhance intensive management of patients on insulin pump therapy.
Schwartz, Frank L; Shubrook, Jay H; Marling, Cynthia R
2008-07-01
This study was conducted to develop case-based decision support software to improve glucose control in patients with type 1 diabetes mellitus (T1DM) on insulin pump therapy. While the benefits of good glucose control are well known, achieving and maintaining good glucose control remains a difficult task. Case-based decision support software may assist by recalling past problems in glucose control and their associated therapeutic adjustments. Twenty patients with T1DM on insulin pumps were enrolled in a 6-week study. Subjects performed self-glucose monitoring and provided daily logs via the Internet, tracking insulin dosages, work, sleep, exercise, meals, stress, illness, menstrual cycles, infusion set changes, pump problems, hypoglycemic episodes, and other events. Subjects wore a continuous glucose monitoring system at weeks 1, 3, and 6. Clinical data were interpreted by physicians, who explained the relationship between life events and observed glucose patterns as well as treatment rationales to knowledge engineers. Knowledge engineers built a prototypical system that contained cases of problems in glucose control together with their associated solutions. Twelve patients completed the study. Fifty cases of clinical problems and solutions were developed and stored in a case base. The prototypical system detected 12 distinct types of clinical problems. It displayed the stored problems that are most similar to the problems detected, and offered learned solutions as decision support to the physician. This software can screen large volumes of clinical data and glucose levels from patients with T1DM, identify clinical problems, and offer solutions. It has potential application in managing all forms of diabetes.
Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump
NASA Astrophysics Data System (ADS)
Song, Yulong; Ye, Zuliang; Cao, Feng
2017-08-01
In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.
NASA Astrophysics Data System (ADS)
Nodder, S.; Chiswell, S.; Northcote, L.
2016-02-01
One of the key aspects of the global carbon cycle is the efficiency and spatio-temporal variability of the biological pump. In this paper, the annual cycles of particle fluxes, derived from moored sediment trap data collected from 2000-12 in subtropical (STW) and subantarctic waters (SAW), east of New Zealand, are presented. These observations are the most comprehensive export flux time-series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near-synchronous with elevated fluxes of bio-siliceous, carbonate and organic carbon-rich materials to the deep ocean, probably facilitated by diatom sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW occurs from subsurface chlorophyll accumulations that are not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Particle fluxes in STW are similar to that of other mesotrophic to oligotrophic waters ( 6-7 mgC m-2 d-1), whereas export from SAW is below global averages ( 3 mgC m-2 d-1), and is characterized by carbonate-dominated and prominent bio-siliceous deposition.
Cation activation of the pig kidney sodium pump: transmembrane allosteric effects of sodium.
Karlish, S J; Stein, W D
1985-01-01
We have studied activation by Na or Rb ions of different transport modes of the Na-K pump, using phospholipid vesicles reconstituted with pig kidney Na-K-ATPase. The shape of the activation curves, sigmoid or quasi-hyperbolic, depends on the nature of the cation at the opposite surface and not on the specific mode of transport. ATP-dependent Na uptake into K-containing vesicles (Na-K exchange) is activated by cytoplasmic Na along a highly sigmoid curve in the absence of extracellular Na (Hill number, nH = 1.9). Activation displays progressively less-sigmoid curves as extracellular Na is raised to 150 mM (nH = 1.2). The maximal rate of the Na-K exchange is not affected. Na is not transported from the extracellular face by the pump in the presence of excess extracellular K, and the transmembrane effects of the extracellular Na are therefore 'allosteric' in nature. ATP-dependent Na-Na exchange (Lee & Blostein, 1980) and classical ATP-plus-ADP-dependent Na-Na exchange are activated by cytoplasmic Na along hyperbolic curves. ATP-dependent Na uptake into Tris-containing vesicles is activated by cytoplasmic Na along a somewhat sigmoidal curve. (ATP + Pi)-dependent Rb-Rb exchange is activated by cytoplasmic and extracellular Rb along strictly hyperbolic curves. The same applies for Rb-Rb exchange in the presence or absence of ATP or Pi alone. The presence of a high concentration of extracellular Na together with extracellular Rb induces a sigmoidal activation by cytoplasmic Rb of (ATP + Pi)-dependent Rb-Rb exchange (nH = 1.45) but does not affect the maximal rate of exchange. Slow passive Rb fluxes through the pump observed in the absence of other pump ligands (see Karlish & Stein, 1982 alpha) are activated by cytoplasmic Rb along a strictly hyperbolic curve with extracellular Rb, nH = 1.0 (Rb-Rb exchange), along a strongly sigmoid curve with extracellular Na, nH = 1.5 (Rb-Na exchange), and along less-sigmoid curves with extracellular Tris, nH = 1.24 (net Rb flux) or extracellular Li, nH = 1.2 (Rb-Li exchange). Activation of the passive Rb fluxes by extracellular Rb is hyperbolic in the presence of cytoplasmic Rb, Li or Tris but is sigmoid in the presence of cytoplasmic Na (nH = 1.36). Inhibition by cytoplasmic Na of passive Rb fluxes from the cytoplasmic to the extracellular face of the pump depends on the nature of the cation at the extracellular surface.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2582111
Microwave photon generation in a doubly tunable superconducting resonator
NASA Astrophysics Data System (ADS)
Svensson, I.-M.; Pierre, M.; Simoen, M.; Wustmann, W.; Krantz, P.; Bengtsson, A.; Johansson, G.; Bylander, J.; Shumeiko, V.; Delsing, P.
2018-03-01
We have created a doubly tunable resonator, with the intention to simulate relativistic motion of the resonator boundaries in real space. Our device is a superconducting coplanar-waveguide microwave resonator, with fundamental resonant frequency ω 1 /(2π) ~ 5 GHz. Both of its ends are terminated to ground via dc-SQUIDs, which serve as magnetic-flux-controlled inductances. Applying a flux to either SQUID allows the tuning of ω 1 /(2π) by approximately 700 MHz. Using two separate on-chip magnetic-flux lines, we modulate the SQUIDs with two tones of equal frequency, close to 2ω 1. We observe photon generation, at ω 1, above a certain pump amplitude threshold. By varying the relative phase of the two pumps we are able to control this threshold, in good agreement with a theoretical model. At the same time, some of our observations deviate from the theoretical predictions, which we attribute to parasitic couplings resulting in current driving of the SQUIDs.
Installation package for the Solaron solar subsystem
NASA Technical Reports Server (NTRS)
1979-01-01
Information that is intended to be a guide for installation, operation, and maintenance of the various solar subsystems is presented. The subsystems consist of the following: collectors, storage, transport (air handler) and controller for heat pump and peak storage. Two prototype residential systems were installed at Akron, Ohio, and Duffield, Virginia.
NASA Technical Reports Server (NTRS)
Stysley, Paul R.; Coyle, D. Barry; Kay, Richard B.; Frederickson, Robert; Poulios, Demetrios; Blair, Bryan; Scott, Stan; Arnold, Ed
2011-01-01
We update the status of a diode-pumped, Nd:YAG oscillator that is the prototype laser for NASA's DESDynI mission. After completing TRL-6 testing, this laser has fired over 5.5 billion shots in lifetesting.
NASA Astrophysics Data System (ADS)
Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.
2013-09-01
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
Thermal control extravehicular life support system
NASA Technical Reports Server (NTRS)
1975-01-01
The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.
Theory of a peristaltic pump for fermionic quantum fluids
NASA Astrophysics Data System (ADS)
Romeo, F.; Citro, R.
2018-05-01
Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.
Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump
NASA Astrophysics Data System (ADS)
Turner, Jefferson T.
2015-01-01
The 'biological pump' is the process by which photosynthetically-produced organic matter in the ocean descends from the surface layer to depth by a combination of sinking particles, advection or vertical mixing of dissolved organic matter, and transport by animals. Particulate organic matter that is exported downward from the euphotic zone is composed of combinations of fecal pellets from zooplankton and fish, organic aggregates known as 'marine snow' and phytodetritus from sinking phytoplankton. Previous reviews by Turner and Ferrante (1979) and Turner (2002) focused on publications that appeared through late 2001. Since that time, studies of the biological pump have continued, and there have been >300 papers on vertical export flux using sediment traps, large-volume filtration systems and other techniques from throughout the global ocean. This review will focus primarily on recent studies that have appeared since 2001. Major topics covered in this review are (1) an overview of the biological pump, and its efficiency and variability, and the role of dissolved organic carbon in the biological pump; (2) zooplankton fecal pellets, including the contribution of zooplankton fecal pellets to export flux, epipelagic retention of zooplankton fecal pellets due to zooplankton activities, zooplankton vertical migration and fecal pellet repackaging, microbial ecology of fecal pellets, sinking velocities of fecal pellets and aggregates, ballasting of sinking particles by mineral contents, phytoplankton cysts, intact cells and harmful algae toxins in fecal pellets, importance of fecal pellets from various types of zooplankton, and the role of zooplankton fecal pellets in picoplankton export; (3) marine snow, including the origins, abundance, and distributions of marine snow, particles and organisms associated with marine snow, consumption and fragmentation of marine snow by animals, pathogens associated with marine snow; (4) phytodetritus, including pulsed export of phytodetritus, phytodetritus from Phaeocystis spp., picoplankton in phytodetritus, the summer export pulse (SEP) of phytodetritus in the subtropical North Pacific, benthic community responses to phytodetritus; (5) other components of the biological pump, including fish fecal pellets and fish-mediated export, sinking carcasses of animals and macrophytes, feces from marine mammals, transparent exopolymer particles (TEP); (6) the biological pump and climate, including origins of the biological pump, the biological pump and glacial/interglacial cycles, the biological pump and contemporary climate variations, and the biological pump and anthropogenic climate change. The review concludes with potential future modifications in the biological pump due to climate change.
Design and Testing of a Lyophilizer for Water Recovery from Solid Waste
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Fisher, John; Flynn, Michael
2005-01-01
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.
Non-adiabatic pumping in an oscillating-piston model
NASA Astrophysics Data System (ADS)
Chuchem, Maya; Dittrich, Thomas; Cohen, Doron
2012-05-01
We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.
Initial results from a prototype whole-body photon-counting computed tomography system.
Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H
X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .
Initial results from a prototype whole-body photon-counting computed tomography system
NASA Astrophysics Data System (ADS)
Yu, Z.; Leng, S.; Jorgensen, S. M.; Li, Z.; Gutjahr, R.; Chen, B.; Duan, X.; Halaweish, A. F.; Yu, L.; Ritman, E. L.; McCollough, C. H.
2015-03-01
X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×1011 photons per cm2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Enrique Arrieta
2014-01-01
The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactionsmore » with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 10 20 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70 +0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.« less
Designing and commissioning of a prototype double Laue monochromator at CHESS
NASA Astrophysics Data System (ADS)
Ko, J. Y. Peter; Oswald, Benjamin B.; Savino, James J.; Pauling, Alan K.; Lyndaker, Aaron; Revesz, Peter; Miller, Matthew P.; Brock, Joel D.
2014-03-01
High-energy X-rays are efficiently focused sagittally by a set of asymmetric Laue (transmission) crystals. We designed, built and commissioned a prototype double Laue monochromator ((111) reflection in Si(100)) optimized for high-energy X-rays (30-60 keV). Here, we report our design of novel prototype sagittal bender and highlight results from recent characterization experiments. The design of the bender combines the tuneable bending control afforded by previous leaf-spring designs with the stability and small size of a four-bar bender. The prototype monochromator focuses a 25 mm-wide white beam incident on the first monochromator crystal to a monochromatized 0.6 mm beam waist in the experimental station. Compared to the flux in the same focal spot with the Bragg crystal (without focusing), the prototype Laue monochromator delivered 85 times more at 30 keV.
Development of a prototype magnetically suspended rotor ventricular assist device.
Bearnson, G B; Maslen, E H; Olsen, D B; Allaire, P E; Khanwilkar, P S; Long, J W; Kim, H C
1996-01-01
A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump.
Venturi Air-Jet Vacuum Ejector For Sampling Air
NASA Technical Reports Server (NTRS)
Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.
1990-01-01
Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.
Laser Diode Pumped Solid State Lasers
1987-01-01
Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to
Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser
1991-12-31
Lasers - Donald Prosnitz 4.1.2 Millimeter and Submillimeter Lasers - Victor L Granatstein, Robert K. Parker, and Phillip A. Sprangle 4.2 X-Ray Lasers...Camacho SECTION 4: OTHER LASERS 4.1 Free-Electron Lasers .............................................. .. 515 William B. Colson and Donald Prosnitz 4.2...fluxes to pump the inversions, exceeding even those available from nuclear explosions , and to require neutron moderators having virtually infinite
Branched GAX cycle gas fired heat pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, D.C.; Anand, G.; Papar, R.A.
1996-12-31
GAX absorption heat pump cycles are characterized by the Generator Absorber Heat eXchange (GAX) between the high temperature end of the absorber and the low temperature end of the generator. The improved thermodynamic performance of the basic GAX cycle coupled with its mechanical simplicity has attracted substantial interest in using this cycle for gas-cooling. However, to be competitive in a cooling dominated market, the cycle has to achieve high cooling performance and also low installed cost. The Branched GAX (BGAX) cycle promises higher cooling performance using similar components as the basic GAX cycle and an additional solution pump. By increasingmore » the solution flow rate at the hot end of the absorber, the BGAX cycle makes more complete use of the temperature overlap. As a result, less external heat is supplied and higher COPs are obtained. A breadboard prototype of the BGAX cycle has been developed and is now operating. A novel thermosyphon cooled absorber eliminates the need for the outdoor hydronic loop, and reduces cost by 10%. Other component improvements yield another 10% cost reduction. The breadboard prototype has operated for more than 200 hours. Gas cooling COP = 0.87 has been consistently achieved at 30.6 C (87 F) ambient conditions. At the 35 C (95 F) ambient capacity rating condition, a cooling load of 4.5 refrigeration tons was achieved at a cycle COP = 0.95.« less
NASA Astrophysics Data System (ADS)
Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer
2013-06-01
The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.
A heat budget for the Stratus mooring in the southeast Pacific
NASA Astrophysics Data System (ADS)
Holte, J.; Straneo, F.; Weller, R. A.; Farrar, J. T.
2012-12-01
The surface layer of the southeast Pacific Ocean (SEP) requires an input of fresh, cold water to balance evaporation and heat gain from incoming solar radiation. Numerous processes contribute to closing the SEP's upper-ocean heat budget, including gyre circulation, Ekman transport and pumping, vertical mixing, and horizontal eddy heat flux divergence. However, there is little consensus on which processes are most important, as many modeling and observational studies have reported conflicting results. To examine how the SEP maintains relatively cool surface temperatures despite such strong surface forcing, we calculate a heat budget for the upper 250 m of the Stratus mooring. The Stratus mooring, deployed at 85(^o)W 20(^o)S since 2000, is in the center of the stratus cloud region. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at approximately 15 to 20 depth levels. Our heat budget covers 2004 - 2010. The net air-sea heat flux over this period is 32 W m(^{-2}), approximately 2/3 of the flux over earlier periods. We use Argo profiles, relatively abundant in the region since 2004, to calculate horizontal temperature gradients. These gradients, coupled with the mooring velocity record, are used to estimate the advective heat flux. We find that the cool advective heat flux largely compensates the air-sea heat flux at the mooring; in our calculation this term includes the mean gyre circulation, horizontal Ekman transport, and some contribution from eddies. The passage of numerous eddies is evident in the mooring velocity record, but with the available data we cannot separate the eddy heat flux divergence from the mean heat advection. Vertical mixing and Ekman pumping across the base of the layer are both small.
Experiment neutrino-4 on searching for a sterile neutrino with multisection detector model
NASA Astrophysics Data System (ADS)
Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Polyushkin, A. O.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.
2017-02-01
A laboratory for searching for oscillations of reactor antineutrinos has been created based on the SM-3 reactor in order to approach the problem of the possible existence of a sterile neutrino. The multisection detector prototype with a liquid scintillator volume of 350 L was installed in mid-2015. This detector can move inside the passive shield in a range of 6-11 m from the active core of the reactor. The antineutrino flux was measured for the first time at these short distances from the active core of the reactor by the movable detector. The measurements with the multisection detector prototype demonstrated that it is possible to measure the antineutrino flux from the reactor in the complicated conditions of cosmic background on the Earth's surface.
Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector
NASA Astrophysics Data System (ADS)
Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.
2017-09-01
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.
Method for optical pumping of thin laser media at high average power
Zapata, Luis E [Livermore, CA; Beach, Raymond J [Livermore, CA; Honea, Eric C [Sunol, CA; Payne, Stephen A [Castro Valley, CA
2004-07-13
A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.
Application of nuclear pumped laser to an optical self-powered neutron detector
NASA Astrophysics Data System (ADS)
Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.
1996-05-01
A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.
NASA Astrophysics Data System (ADS)
Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.
2016-11-01
The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that PFe export fluxes can be driven by the lithogenic pool of particles, especially over the Plateau where such inputs from the sediments are important. Finally, for the Plateau and the PF meander, the comparison between PFe export and the particulate PFe stock integrated over the mixed layer depth revealed an efficient PFe export out of the mixed layer at these sites. Export efficiencies (i.e. the ratio between export and uptake) exhibit a very efficient silica pump especially at the HNLC reference station where heavily silicified diatoms were present. On the contrary, the increase with depth of the C:N ratio and the low nitrogen export efficiencies support the idea of a strong remineralization and nitrification activity.
The Secret Lives of Cepheids: δ Cep—The Prototype of a New Class of Pulsating X-Ray Variable Stars
NASA Astrophysics Data System (ADS)
Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Cuntz, Manfred; Remage Evans, Nancy; Neilson, Hilding R.; Fawzy, Diaa E.
2017-03-01
From our Secret Lives of Cepheids program, the prototype Classical Cepheid, δ Cep, is found to be an X-ray source with periodic pulsation-modulated X-ray variations. This finding complements our earlier reported phase-dependent FUV-UV emissions of the star that increase ˜10-20 times with highest fluxes at ˜ 0.90{--}0.95φ , just prior to maximum brightness. Previously δ Cep was found as potentially X-ray variable, using XMM-Newton observations. Additional phase-constrained data were secured with Chandra near X-ray emission peak, to determine if the emission and variability were pulsation-phase-specific to δ Cep and not transient or due to a possible coronally active, cool companion. The Chandra data were combined with prior XMM-Newton observations, and were found to very closely match the previously observed X-ray behavior. From the combined data set, a ˜4 increase in X-ray flux is measured, reaching a peak {L}{{X}} = 1.7 × 1029 erg s-1 near 0.45ϕ. The precise X-ray flux phasing with the star’s pulsation indicates that the emissions arise from the Cepheid and not from a companion. However, it is puzzling that the maximum X-ray flux occurs ˜0.5ϕ (˜3 days) later than the FUV-UV maximum. There are several other potential Cepheid X-ray detections with properties similar to δ Cep, and comparable X-ray variability is indicated for two other Cepheids: β Dor and V473 Lyr. X-ray generating mechanisms in δ Cep and other Cepheids are discussed. If additional Cepheids are confirmed to show phased X-ray variations, then δ Cep will be the prototype of a new class of pulsation-induced X-ray variables.
Shallow Horizontal GCHP Effectiveness in Arid Climate Soils
NASA Astrophysics Data System (ADS)
North, Timothy James
Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.
Custom Unit Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis
2010-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.
A model of insulin delivery by a controlled release micropump.
Allen, D G; Sefton, M V
1986-01-01
A model has been developed to describe the delivery of insulin from a controlled release micropump (CRM). Basal delivery was provided by diffusion due to a concentration difference driving force across the CRM. This was modelled by considering the CRM to be a series of one-dimensional steady-state diffusion resistances. This delivery model was used to size prototypes and identify the piston, foam and the pump outlet as the controlling resistances to basal insulin transport. Augmented delivery by the CRM was achieved by repeated compression of a foam disk by a mild steel piston which was driven by a solenoid (tested voltage range 0-173 V DC; 5 msec "on" time; frequency 20-40 min-1). The increased delivery was attributed to the combination of mixing inside the pump barrel and displacement of barrel contents into the downstream reservoir. This action was approximated by a three-compartment model, which considered the CRM to consist of a well-mixed upstream reservoir and pump barrel (with a downstream reservoir) separated by two resistances: a constant upstream membrane resistance, (KmAm)-1, and a variable downstream mixing rate resistance, (Qd)-1. A least squares fit of the model to experimental data showed Qd to increase with the cube of the force on the piston and linearly with the compression frequency. In agreement with experimental results, the model predicted the upstream membrane to be rate controlling only at augmented pump resistances close to the value (KmAm)-1. These models were used to design an improved prototype (VIII) which is now being evaluated in vivo in pancreatectomized dogs for its efficacy in restoring and sustaining normoglycemia.
Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification
NASA Technical Reports Server (NTRS)
Fejer, J. A.; Graham, K. N.
1974-01-01
Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.
Integrated Liquid Bismuth Propellant Feed System
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.
2006-01-01
A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbak, S. C.; Reichle, D. R.; Shriner, C. R.
1981-01-01
This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner)more » has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.« less
Wind-assist irrigation and electrical-power generation
NASA Astrophysics Data System (ADS)
Nelson, V.; Starcher, K.
1982-07-01
A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.
Heat Pump Clothes Dryer Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo
A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model tomore » simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.« less
High flux solar energy transformation
Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.
High flux solar energy transformation
Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.
NASA Astrophysics Data System (ADS)
Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad
2010-05-01
Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses <10W of power, and can easily be run on solar panel, or with small portable generator, while present technologies require 300-1500 Watts of the grid power. The proposed extremely low-power technology would allows placing methane Eddy Covariance stations in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power. This could significantly expand the Eddy Covariance CH4 flux measurements coverage, and possibly, significantly improve the budget estimates of world CH4 emissions and budget. Various prototypes of the LI-7700 were field-tested for three seasons at the remote site in middle of Everglades National Park (Florida, USA) using solar panels, at three stationary and several mobile sites during three seasons at remote Arctic wetlands near Barrow (Alaska, USA), in the tropical mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the ranges reported in the literature for a number of wetlands in North America, including the Everglades wetlands. Diurnal patterns were similar to those measured by closed-path sensors. The LI-7700 open-path analyzer is a valuable tool for measuring long-term eddy fluxes of methane due to the good frequency response and undisturbed in-situ sampling. It enables long-term deployment of permanent, portable or mobile CH4 flux stations at remote locations with high CH4 production, because it can be powered by a solar panels or a small generator. Authors appreciate help and support provided by the LI-COR Engineering Team, Barrow Arctic Science Consortium (BASC), and numerous colleagues involved in measurements, logistics, and maintenance of the experimental field sites. This project was supported by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) program of the Department of Energy (DOE), Grant Number DE-FG02-05ER84283.
Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D
2008-01-01
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
Prototype sampling system for measuring workplace protection factors for gases and vapors.
Groves, William A; Reynolds, Stephen J
2003-05-01
A prototype sampling system for measuring respirator workplace protection factors (WPFs) was developed. Methods for measuring the concentration of contaminants inside respirators have previously been described; however, these studies have typically involved continuous sampling of aerosols. Our work focuses on developing an intermittent sampling system designed to measure the concentration of gases and vapors during inspiration. This approach addresses two potential problems associated with continuous sampling: biased results due to lower contaminant concentrations and high humidity in exhaled air. The system consists of a pressure transducer circuit designed to activate a pair of personal sampling pumps during inspiration based on differential pressure inside the respirator. One pump draws air from inside the respirator while the second samples the ambient air. Solid granular adsorbent tubes are used to trap the contaminants, making the approach applicable to a large number of gases and vapors. Laboratory testing was performed using a respirator mounted on a headform connected to a breathing machine producing a sinusoidal flow pattern with an average flow rate of 20 L/min and a period of 3 seconds. The sampling system was adjusted to activate the pumps when the pressure inside the respirator was less than -0.1 inch H(2)O. Quantitative fit-tests using human subjects were conducted to evaluate the effect of the sampling system on respirator performance. A total of 299 fit-tests were completed for two different types of respirators (half- and full-facepiece) from two different manufacturers (MSA and North). Statistical tests showed no significant differences between mean fit factors for respirators equipped with the sampling system versus unmodified respirators. Field testing of the prototype sampling system was performed in livestock production facilities and estimates of WPFs for ammonia were obtained. Results demonstrate the feasibility of this approach and will be used in developing improved instrumentation for measuring WPFs.
Mid-infrared 1 W hollow-core fiber gas laser source.
Xu, Mengrong; Yu, Fei; Knight, Jonathan
2017-10-15
We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.
Thermal lens elimination by gradient-reduced zone coupling of optical beams
Page, Ralph H.; Beach, Raymond J.
2000-01-01
A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.
Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.
Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y
2003-10-01
A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.
A portable lidar using a diode-pumped YAG laser
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.
1992-01-01
A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.
Development of a Gravity-Insensitive Heat Pump for Lunar Applications
NASA Technical Reports Server (NTRS)
Cole, Gregory S.; Scaringe, Robert P.; Grzyll, Lawrence R.; Ewert, Michael K.
2006-01-01
Mainstream Engineering Corporation is developing a gravity-insensitive system that will allow a vapor-compression-cycle heat pump to be used in both microgravity (10(exp -6)g) and lunar (10(exp -6)g) environments. System capacity is 5 kW to 15 kW at design refrigerant operating conditions of 4.44 C and 60 C evaporating and condensing temperatures, respectively. The current program, performed for NASA Johnson Space Center (JSC) and presented in this paper, includes compressor performance analysis, detailed system design, and thermal analysis. Future efforts, including prototype fabrication, integration of a solar power source and controls, ground-testing, and flight-testing support, are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensch, M.
2010-02-03
In this paper the prospects of terahertz (THz) pulses generated at 4th generation X-ray light sources are presented on the example of recent results from a prototype set-up at the soft X-ray FEL FLASH. It is shown, that the THz pulses from the relativistic ultra short electron bunches have unique properties, that at FLASH are utilized for novel THz pump X-ray probe experiments with a robust few fs resolution. Based on these experiences it is discussed, how future facilities can benefit from implementation of similar or further improved instrumentation.
Performance of hemodialysis with novel medium cut-off dialyzers
Lyko, Raphael; Nilsson, Lars-Göran; Beck, Werner; Amdahl, Michael; Lechner, Petra; Schneider, Andreas; Wanner, Christoph; Rosenkranz, Alexander R.; Krieter, Detlef H.
2017-01-01
Background. Compared to high-flux dialysis membranes, novel medium cut-off (MCO) membranes show greater permeability for larger middle molecules. Methods. In two prospective, open-label, controlled, randomized, crossover pilot studies, 39 prevalent hemodialysis (HD) patients were studied in four dialysis treatments as follows: study 1, three MCO prototype dialyzers (AA, BB and CC with increasing permeability) and one high-flux dialyzer in HD; and study 2, two MCO prototype dialyzers (AA and BB) in HD and high-flux dialyzers in HD and hemodiafiltration (HDF). Primary outcome was lambda free light chain (λFLC) overall clearance. Secondary outcomes included overall clearances and pre-to-post-reduction ratios of middle and small molecules, and safety of MCO HD treatments. Results. MCO HD provided greater λFLC overall clearance [least square mean (standard error)] as follows: study 1: MCO AA 8.5 (0.54), MCO BB 11.3 (0.51), MCO CC 15.0 (0.53) versus high-flux HD 3.6 (0.51) mL/min; study 2: MCO AA 10.0 (0.58), MCO BB 12.5 (0.57) versus high-flux HD 4.4 (0.57) and HDF 6.2 (0.58) mL/min. Differences between MCO and high-flux dialyzers were consistently significant in mixed model analysis (each P < 0.001). Reduction ratios of λFLC were greater for MCO. Clearances of α1-microglobulin, complement factor D, kappa FLC (κFLC) and myoglobin were generally greater with MCO than with high-flux HD and similar to or greater than clearances with HDF. Albumin loss was moderate with MCO, but greater than with high-flux HD and HDF. Conclusions. MCO HD removes a wide range of middle molecules more effectively than high-flux HD and even exceeds the performance of high-volume HDF for large solutes, particularly λFLC. PMID:27587605
NASA Astrophysics Data System (ADS)
Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.
2016-05-01
We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
This research examines the vibration and thermal characteristics of double-sided flux concentrating Transverse Flux Machines (TFM), designed for direct drive application. Two TFM prototypes with different stator cores, one with Quasi U-Core and the other with E-Core, has been used for the study. 3D Finite Element Analysis (FEA) has been carried out to determine the no-load and with load performance of the TFMs along with their fluctuating axial electromagnetic force densities acting on the stator teeth. The deformation response of the stator cores was observed in the static structural analysis. Thermal analysis for the TFM was performed through FEA basedmore » on copper and iron losses in the machine to examine the temperature rise in different parts of the machine structure. Acceleration and noise measurements were experimentally obtained to characterize the vibrational performance of the prototypes.« less
Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre
2016-01-01
The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398
Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre
2016-05-20
The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.
NASA Astrophysics Data System (ADS)
Quintero Noda, C.; Kato, Y.; Katsukawa, Y.; Oba, T.; de la Cruz Rodríguez, J.; Carlsson, M.; Shimizu, T.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.
2017-11-01
In this publication, we continue the work started in Quintero Noda et al., examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically doppler shifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5 per cent of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field, and we estimate the field strength using the weak-field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process, which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works, demonstrating the capabilities and limitations of the 850-nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.
Someya, Takeshi; Kobayashi, Mariko; Waguri, Satoshi; Ushiyama, Tomohiro; Nagaoka, Eiki; Hijikata, Wataru; Shinshi, Tadahiko; Arai, Hirokuni; Takatani, Setsuo
2009-09-01
MedTech Dispo, a disposable maglev centrifugal blood pump with two degrees of freedom magnetic suspension and radial magnetic coupling rotation, has been developed for 1-month extracorporeal circulatory support. As the first stage of a two-stage in vivo evaluation, 2-week evaluation of a prototype MedTech Dispo was conducted. In in vitro study, the pump could produce 5 L/min against 800 mm Hg and the normalized index of hemolysis was 0.0054 +/- 0.0008 g/100 L. In in vivo study, the pump, with its blood-contacting surface coated with biocompatible 2-methacryloyloxyethyl phosphorylcholine polymer, was implanted in seven calves in left heart bypass. Pump performance was stable with a mean flow of 4.49 +/- 0.38 L/min at a mean speed of 2072.1 +/- 64.5 rpm. The maglev control revealed its stability in rotor position during normal activity by the calves. During 2 weeks of operation in two calves which survived the intended study period, no thrombus formation was seen inside the pump and levels of plasma free hemoglobin were maintained below 4 mg/dL. Although further experiments are required, the pump demonstrated the potential for sufficient and reliable performance and biocompatibility in meeting the requirements for cardiopulmonary bypass and 1-week circulatory support.
Reduced efficiency of biological pump in the western tropical Pacific
NASA Astrophysics Data System (ADS)
Kim, D.
2016-02-01
The western Pacific warm pool (WPWP) area has recently extended, which may influence considerably the marine ecosystems in the tropical Pacific. Here, we show the long-term trends in particle fluxes associated with the marine ecosystem changes in WPWP area. Total mass and biogenic fluxes have an annually decreasing trend from 2009 to 2014, which is mainly derived by the decrease in the biomass of N2 fixing cyanobacteria during summer. In the western tropical Pacific, the decrease in the biomass of N2 fixing cyanobacteria is attributed to the decrease of phosphate concentration associated with the shoaling of the winter mixed layer depth. The efficiency of biological pump has recently reduced in the western tropical Pacific, which might suppress the oceanic sequestration of atmospheric CO2 and thereby accelerate the global warming in the future.
Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
Zhang, Juntao; Koert, Andrew; Gellman, Barry; Gempp, Thomas M; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J
2007-01-01
A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.
NASA Astrophysics Data System (ADS)
Rosas, Alexandre; Van den Broeck, Christian; Lindenberg, Katja
2018-06-01
The stochastic thermodynamic analysis of a time-periodic single particle pump sequentially exposed to three thermochemical reservoirs is presented. The analysis provides explicit results for flux, thermodynamic force, entropy production, work, and heat. These results apply near equilibrium as well as far from equilibrium. In the linear response regime, a different type of Onsager-Casimir symmetry is uncovered. The Onsager matrix becomes symmetric in the limit of zero dissipation.
Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.
Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman
2015-12-20
In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.
Large-scale breeder reactor prototype mechanical pump conceptual design study, hot leg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Due to the extensive nature of this study, the report is presented as a series of small reports. The complete design analysis is placed in a separate section. The drawings and tabulations are in the back portion of the report. Other topics are enumerated and located as shown in the table of contents.
Solar energy system performance evaluation: Seasonal report for IBM System 2, Togus, Maine
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system, SIMS Prototype System 2, was designed to supply domestic hot water to single family residences. The system consists of flat plate collectors, silicone working fluid, storage tanks, pumps, heat exchanger, controls, and associated plumbing. The long term field performance of the installed system was analyzed and the results are described.
“A System for Automatically Maintaining Pressure in a Commercial Truck Tire”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, John
2017-07-07
Under-inflated tires significantly reduce a vehicle’s fuel efficiency by increasing rolling resistance (drag force). The Air Maintenance Technology (“AMT”) system developed through this project replenishes lost air and maintains optimal tire cavity pressure whenever the tire is rolling in service, thus improving overall fuel economy by reducing the tire’s rolling resistance. The system consists of an inlet air filter, an air pump driven by tire deformation during rotation, and a pressure regulating device. Pressurized air in the tire cavity naturally escapes by diffusion through the tire and wheel, leaks in tire seating, and through the filler valve and its seating.more » As a result, tires require constant maintenance to replenish lost air. Since manual tire inflation maintenance is both labor intensive and time consuming, it is frequently overlooked or ignored. By automating the maintenance of optimal tire pressure, the tire’s contribution to the vehicle’s overall fuel economy can be maximized. The work was divided into three phases. The objectives of Phase 1, Planning and Initial Design, resulted in an effective project plan and to create a baseline design. The objectives for Phase 2, Design and Process Optimization, were: to identify finalized design for the pump, regulator and filter components; identify a process to build prototype tires; assemble prototype tires; test prototype tires and document results. The objectives of Phase 3, Design Release and Industrialization, were to finalize system tire assembly, perform release testing and industrialize the assembly process.« less
Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis
2008-01-01
With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.
Pteropods are Undervalued Contributors to Aragonite Flux in Tropical Gyres
NASA Astrophysics Data System (ADS)
Pebody, C. A.; Lampitt, R. S.
2016-02-01
Pteropods are a large component of the animals routinely caught in sediment traps at 3000m at the NOG observatory in the North Atlantic Oligotrophic Gyre and at the SOG observatory in the South Atlantic Oligotrophic Gyre. Sediment traps have been used to collect downward settling material at NOG and SOG since 2008. Pteropods have been identified and removed from the samples during processing in line with best practice. Some of these animals maybe opportunistic swimmers, but some are most definitely broken and should be considered as a component of the downward particle flux. Samples from both locations demonstrate a sustained and sometimes seasonal flux of pteropods to the deep ocean interior. In gyre regions with low levels of particle flux compared to temperate regions, the additional mostly inorganic material supplied in the form of pteropod shells represents a large proportional increase. Our data set from both northern and southern Atlantic gyres demonstrates due consideration should be given to the importance of pteropod flux and the contribution this makes to the biological carbon pump. These observatories at 23°N 41°W and 18°S 25°W, are part of the FixO3 open observatory network and are supported by NOC and NERC. Analysis of the first three years of each observatory are now yielding new insight on these large and poorly sampled areas of the open ocean. Key words: pteropods; aragonite; sediment traps; NOG SOG; FixO3; biological carbon pump; biogeochemical cycles; Tropical Atlantic Gyres.
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1972-01-01
Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
Benthic Flux Sampling Device, Prototype Design, Development, and Evaluation
1993-08-01
collaboration with Clare Reimers and Matt Christianson at Scripps Institution of Oceanography. Trace metal chemistry was performed by John Andrews and...realistic levels for coastal and inshore sediments using a sample period of 2-4 days. The resulting flux rates will be useful in evaluating the risks...suffi= for detecting release rates at significant levels . Operation Depth. A depth capability of 50 m is sufficient to perform studies in most U.S. bays
High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes
Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.
2013-01-01
We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263
Two-phase flow in the cooling circuit of a cryogenic rocket engine
NASA Astrophysics Data System (ADS)
Preclik, D.
1992-07-01
Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less
Experimental investigations of helium cryotrapping by argon frost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mack, A.; Perinic, D.; Murdoch, D.
1992-03-01
At the Karlsruhe Nuclear Research Centre (KfK) cryopumping techniques are being investigated by which the gaseous exhausts from the NET/ITER reactor can be pumped out during the burn-and dwell-times. Cryosorption and cryotrapping are techniques which are suitable for this task. It is the target of the investigations to test the techniques under NET/ITER conditions and to determine optimum design data for a prototype. They involve measurement of the pumping speed as a function of the gas composition, gas flow and loading condition of the pump surfaces. The following parameters are subjected to variations: Ar/He ratio, specific helium volume flow rate,more » cryosurface temperature, process gas composition, impurities in argon trapping gas, three-stage operation and two-stage operation. This paper is a description of the experiments on argon trapping techniques started in 1990. Eleven tests as well as the results derived from them are described.« less
2016-01-01
neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr
Quasi-passive heat sink for high-power laser diodes
NASA Astrophysics Data System (ADS)
Vetrovec, John
2009-02-01
We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.
Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F
2014-12-21
Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.
A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y
2003-07-01
Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics.
Harthcock, Colin; Jahanbekam, Abdolreza; Eskelsen, Jeremy R; Lee, David Y
2016-11-01
We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen.
The role of diatom resting spores in pelagic-benthic coupling in the Southern Ocean
NASA Astrophysics Data System (ADS)
Rembauville, Mathieu; Blain, Stéphane; Manno, Clara; Tarling, Geraint; Thompson, Anu; Wolff, George; Salter, Ian
2018-05-01
Natural iron fertilization downstream of Southern Ocean island plateaus supports large phytoplankton blooms and promotes carbon export from the mixed layer. In addition to sequestering atmospheric CO2, the biological carbon pump also supplies organic matter (OM) to deep-ocean ecosystems. Although the total flux of OM arriving at the seafloor sets the energy input to the system, the chemical nature of OM is also of significance. However, a quantitative framework linking ecological flux vectors to OM composition is currently lacking. In the present study we report the lipid composition of export fluxes collected by five moored sediment traps deployed in contrasting productivity regimes of Southern Ocean island systems (Kerguelen, Crozet and South Georgia) and compile them with quantitative data on diatom and faecal pellet fluxes. At the three naturally iron-fertilized sites, the relative contribution of labile lipids (mono- and polyunsaturated fatty acids, unsaturated fatty alcohols) is 2-4 times higher than at low productivity sites. There is a strong attenuation of labile components as a function of depth, irrespective of productivity. The three island systems also display regional characteristics in lipid export. An enrichment of zooplankton dietary sterols, such as C27Δ5, at South Georgia is consistent with high zooplankton and krill biomass in the region and the importance of faecal pellets to particulate organic carbon (POC) flux. There is a strong association of diatom resting spore fluxes that dominate productive flux regimes with energy-rich unsaturated fatty acids. At the Kerguelen Plateau we provide a statistical framework to link seasonal variation in ecological flux vectors and lipid composition over a complete annual cycle. Our analyses demonstrate that ecological processes in the upper ocean, e.g. resting spore formation and grazing, not only impact the magnitude and stoichiometry of the Southern Ocean biological pump, but also regulate the composition of exported OM and the nature of pelagic-benthic coupling.
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.
2013-01-01
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L
2013-11-05
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).
NASA Astrophysics Data System (ADS)
Bering, E. A.; Olsen, C.; Longmier, B.; Ballenger, M.; Giambusso, M.; Carter, M.; Cassady, L.; Chang Diaz, F.; Glover, T.; McCaskill, G.; Squire, J.
2011-12-01
This paper will describe the laboratory application of the lessons learned from the study of wave particle interactions in the auroral upward current region to the industrial development problem of electric spacecraft propulsion. The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR°) has been developed by using the results of space plasma experiments in laboratory plasma studies that will ultimately enable further space exploration. VASIMR° is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power. The VASIMR° uses a helicon discharge to generate plasma. The plasma is leaked though a strong magnetic mirror to the second stage. In this stage, this plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 0.5-0.7 MHz waves with up to 170 kW of power. The single pass ion cyclotron heating (ICH) produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR°. Results from high power Helicon only and Helicon with ICH experiments are presented from the VX-200 using argon propellant. A two-axis translation stage has been used to survey the spatial structure of plasma parameters, momentum flux and magnetic perturbations in the VX-200 exhaust plume. These recent measurements were made within a new 150 cubic meter cryo-pumped vacuum chamber and are presented in the context of plasma detachment. For the first time, the thruster efficiency and thrust of a high-power VASIMR° prototype have been measured with the thruster installed inside a vacuum chamber with sufficient volume and pumping to simulate the vacuum conditions of space. Using an ion flux probe array and a plasma momentum flux sensor (PMFS), the exhaust of the VX-200 engine was characterized as a function of the coupled RF power and as a function of the radial and axial position within the exhaust plume. The ionization cost of argon propellant was determined to be 87 eV for optimized values of RF power and propellant flow rate. Recent results at 200 kW coupled RF power have shown a thruster efficiency of 72% at a specific impulse of 5000 s and a thrust of 5.7 N.
Electronic cooling using thermoelectric devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu; Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854
2015-05-18
Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, andmore » one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.« less
Design and test of a pumped two-phase mounting plate. [for spacecraft thermal control systems
NASA Technical Reports Server (NTRS)
Grote, M. G.; Swanson, T. D.
1985-01-01
The design, fabrication, and testing of the full-scale development unit of a pumped two-phase mounting plate (TPMP) used in advanced two-phase spacecraft thermal control systems are described. The mounting plate is tested with R-11 in the evaporator mode for total heat loads of over 3000 watts and local heat fluxes over 4 W/sq cm, and in the condenser mode with condenser loads from 60 to 400 watts and inlet qualities from 8 to 94 percent. The calculated heat-transfer coefficients are between 0.66 and 1.0 W/sq cm/C and are nearly independent of the flow rate and heat load except at very low heat loads. It is shown that the TPMP can be run with inlet conditions down to 22 C subcooling without any significant gradients in the plate and that it performs well with nonuniform heat fluxes.
Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator
NASA Astrophysics Data System (ADS)
Mueller, B. W.; Miller, F. K.
2016-10-01
A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.
Glyantsev, Sergey P; Tchantchaleishvili, Vakhtang; Bockeria, Leo A
2016-01-01
The world's first implantable total artificial heart was designed by Vladimir Demikhov as a fourth year biology student in Voronezh, Soviet Union, in 1937. As a prototype of his device, Demikhov must have used an apparatus for extracorporeal blood circulation invented by Sergei Bryukhonenko of Moscow. The device was the size of a dog's native heart and consisted of two diaphragm pumps brought into motion by an electric motor. A dog with an implanted device lived for 2.5 hours. In addition to having the prototype, the preconditions for Demikhov's artificial heart creation were his manual dexterity, expertise in animal physiology, and his mechanistic worldview.
Portable atomic frequency standard based on coherent population trapping
NASA Astrophysics Data System (ADS)
Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming
2015-05-01
In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.
Monolithic microfabricated valves and pumps by multilayer soft lithography.
Unger, M A; Chou, H P; Thorsen, T; Scherer, A; Quake, S R
2000-04-07
Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are retained.
Next Generation Electromagnetic Pump Analysis Tools (PLM DOC-0005-2188). Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stregy, Seth; Dasilva, Ana; Yilmaz, Serkan
2015-10-29
This report provides the broad historical review of EM Pump development and details of MATRIX development under this project. This report summarizes the efforts made to modernize the legacy performance models used in previous EM Pump designs and the improvements made to the analysis tools. This report provides information on Tasks 1, 3, and 4 of the entire project. The research for Task 4 builds upon Task 1: Update EM Pump Databank and Task 3: Modernize the Existing EM Pump Analysis Model, which are summarized within this report. Where research for Task 2: Insulation Materials Development and Evaluation identified parametersmore » applicable to the analysis model with Task 4, the analysis code was updated, and analyses were made for additional materials. The important design variables for the manufacture and operation of an EM Pump that the model improvement can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development of the next-generation EM Pump analysis tools during this two-year program provides information in three broad areas: Status of analysis model development; Improvements made to older simulations; and Comparison to experimental data.« less
Structures for handling high heat fluxes
NASA Astrophysics Data System (ADS)
Watson, R. D.
1990-12-01
The divertor is reconized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes > 5 MW/m 2. High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2. Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components.
Ground heat flux and power sources of low-enthalpy geothermal systems
NASA Astrophysics Data System (ADS)
Bayer, Peter; Blum, Philipp; Rivera, Jaime A.
2015-04-01
Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.
Tidal variability in benthic silicic acid fluxes and microphytobenthos uptake in intertidal sediment
NASA Astrophysics Data System (ADS)
Leynaert, Aude; Longphuirt, Sorcha Ní; An, Soonmo; Lim, Jae-Hyun; Claquin, Pascal; Grall, Jacques; Kwon, Bong Oh; Koh, Chul Hwan
2011-11-01
Silicic acid (DSi) benthic fluxes play a major role in the benthic-pelagic coupling of coastal ecosystems. They can sustain microphytobenthos (MPB) development at the water-sediment interface and support pelagic diatoms when river DSi inputs decrease. DSi benthic fluxes have been studied at the seasonal scale but little is known about their dial variations. This study measured the amplitude of such variations in an intertidal area over an entire tidal cycle by following the alteration of DSi pore water concentrations at regular intervals over the flood/ebb period. Furthermore we independently estimated the potential DSi uptake by benthic diatoms and compared it to the variations of DSi pore water concentrations and fluxes. The microphytobenthos DSi demand was estimated from primary production measurements on cells extracted from the sediment. There were large changes in DSi pore water concentration and a prominent effect of tidal pumping: the DSi flushed out from the sediment at rising tide, occurs in a very short period of time, but plays a far more important role in fueling the ecosystem (800 μmol-Si m -2 d -1), than diffusive fluxes occurring throughout the rest of the tidal cycle (2 μmol-Si m -2 d -1). This process is not, to our knowledge, currently considered when describing the DSi cycling of intertidal sediments. Moreover, there was a large potential MPB requirement for DSi (812 μmol-Si m -2 d -1), similar to the advective flow periodically pumped by the incoming tide, and largely exceeded benthic diffusive fluxes. However, this DSi uptake by benthic diatoms is almost undetectable given the variation of DSi concentration profiles within the sediment.
HTS flux concentrator for non-invasive sensing of charged particle beams
NASA Astrophysics Data System (ADS)
Hao, L.; Gallop, J. C.; Macfarlane, J. C.; Carr, C.; Donaldson, G. B.
2001-12-01
The principle of the superconducting cryogenic current comparator (CCC) is applied to the non-invasive sensing of charged-particle beams (ions, electrons). With the use of HTS components it is feasible to envisage applications, for example, in precision mass spectrometry and real-time monitoring of ion-beam implantation currents. Recent simulations and experimental measurements of the flux concentration ratio, frequency response and linearity of a prototype HTS-CCC operating at 77 K are described.
Technical Breakthroughs in the Wearable Artificial Kidney (WAK)
Macy, Alexandra S.; Beizai, Masoud; Ezon, Carlos; Golper, Thomas A.
2009-01-01
Background: The wearable artificial kidney (WAK) has been a holy grail in kidney failure for decades. Described herein are the breakthroughs that made possible the creation of the WAK V1.0 and its advanced versions V 1.1 and 1.2. Design: The battery-powered WAK pump has a double channel pulsatile counter phase flow. This study clarifies the role of pulsatile blood and dialysate flow, a high-flux membrane with a larger surface area, and the optimization of the dialysate pH. Flows and clearances from the WAK pump were compared with conventional pumps and with gravity steady flow. Results: Raising dialysate pH to 7.4 increased adsorption of ammonia. Clearances were higher with pulsatile flow as compared with steady flow. The light WAK pump, geometrically suitable for wearability, delivered the same clearances as larger and heavier pumps that cannot be battery operated. Beta2 microglobulin (β2M) was removed from human blood in vitro. Activated charcoal adsorbed most β2M in the dialysate. The WAK V1.0 delivered an effective creatinine clearance of 18.5 ± 3.2 ml/min and the WAK V1.1 27.0 ± 4.0 ml/min in uremic pigs. Conclusions: Half-cycle differences between blood and dialysate, alternating transmembrane pressures (TMP), higher amplitude pulsations, and a push-pull flow increased convective transport. This creates a yet undescribed type of hemodiafiltration. Further improvements were achieved with a larger surface area high-flux dialyzer and a higher dialysate pH. The data suggest that the WAK might be an efficient way of providing daily dialysis and optimizing end stage renal disease (ESRD) treatment. PMID:19696219
Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.
Hofmann, Matthias; Schellnhuber, Hans-Joachim
2009-03-03
Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.
Characterization of a multimode coplanar waveguide parametric amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas
2015-10-21
We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.
Self energized air core superconducting (SEAC) motor
NASA Astrophysics Data System (ADS)
Hilal, M. A.; Huang, X.; Lloyd, J. D.; Crapo, A. D.
1991-03-01
The SEAC motor described utilizes superconductive windings both for the stator and the rotor and operates the same way as a conventional motor by supplying power to the stator. The rotor of a simple SEAC motor has a small and a large winding and two switches. The axes of the two rotor windings are normal to each other. The rotor is initially stationary, and the windings are exposed to the rotating stator field. Flux pumping is employed to charge the rotor windings. As the field rotates by 180 deg from being parallel to the axis of the small winding of the rotor, a switch connected in series with the windings automatically opens, allowing the magnetic flux to penetrate the winding. The switch is closed during most of the other half of the cycle. The flux trapped in the small winding is partially transferred to the larger rotor winding by opening another switch, which results in series connection of the two windings. This results in charging the large winding and in accelerating the rotor to reach the rotating field angular velocity. Current decay will not take place, since it will automatically trigger flux pumping and recharging of the windings. The use of superconductive windings will also make it feasible to operate at high magnetic field, thus eliminating the need for using iron laminations to magnetically link the rotor and the stator windings.
NASA Astrophysics Data System (ADS)
Karak, Bidya Binay; Cameron, Robert
2016-11-01
The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.
Design and modeling of a light powered biomimicry micropump
NASA Astrophysics Data System (ADS)
Sze, Tsun-kay Jackie; Liu, Jin; Dutta, Prashanta
2015-06-01
The design of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. In this work, a novel micropump concept is introduced utilizing bacteriorhodopsin and sugar transporter proteins. The micropump utilizes light energy to activate the transporter proteins, which create an osmotic pressure gradient and drive the fluid flow. The capability of the bio inspired micropump is demonstrated using a quasi 1D numerical model, where the contributions of bacteriorhodopsin and sugar transporter proteins are taken care of by appropriate flux boundary conditions in the flow channel. Proton flux created by the bacteriorhodopsin proteins is compared with experimental results to obtain the appropriate working conditions of the proteins. To identify the pumping capability, we also investigate the influences of several key parameters, such as the membrane fraction of transporter proteins, membrane proton permeability and the presence of light. Our results show that there is a wide bacteriorhodopsin membrane fraction range (from 0.2 to 10%) at which fluid flow stays nearly at its maximum value. Numerical results also indicate that lipid membranes with low proton permeability can effectively control the light source as a method to turn on/off fluid flow. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. In comparison with existing micropumps, this pump generates higher pressures than mechanical pumps. It can produce peak fluid flow and shutoff head comparable to other non-mechanical pumps.
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
NASA Astrophysics Data System (ADS)
Roques, C.; Bour, O.; Aquilina, L.; Longuevergne, L.; Dewandel, B.; Hochreutener, R.; Schroetter, J.; Labasque, T.; Lavenant, N.
2012-12-01
Hard-rock aquifers constitute in general a limited groundwater resource whose upper part is particularly sensitive to anthropogenic activities. Locally, some high production aquifers can be encountered, typically near regional tectonic discontinuities which may constitute preferential flow paths. However, this kind of aquifer, in particular their interactions with sub-surface, is often very difficult to characterize. We investigated the hydrogeological functioning of a deep vertical conductive fractured zone, focusing on the interactions between hydrologic compartments, thanks to a multidisciplinary approach and a variety of field experiments. A specific field site located in north east of French Brittany, in crystalline bedrock, was selected because of high measured yields during drilling (100 m3/h), essentially related to permeable fractures at 120 m depth and deeper. Three deep boreholes 80 to 250 deep were drilled at relatively short distances (typically 30 meters); one of them has been cored for detailed geological information. Shallower boreholes were also drilled (7 to 20 m deep) to characterize the upper weathered compartment and the hydraulic connections with the deep compartment. The system was characterized both in natural conditions and during a 9-week large scale pumping test carried out at a pumping rate of 45 m3/h. To describe the hydraulic properties and the functioning of the deep hydraulic structure, we used a multidisciplinary approach: (a) well head variations and traditional pumping test interpretations, (b) high-resolution flow loggings to identify fracture connectivity, (c) tracer tests to estimate transfer times and groundwater fluxes between main compartments and (d) multi-parameters fluid logging, geochemistry and groundwater dating to identify water origin and mixing processes between different reservoirs. The geometry of the main permeable structure has been identified combining geological information and hydraulic interpretations. It shows a clear compartmentalization of the aquifer with a strong spatial heterogeneity in permeability. Although using a packer to force the pumping to be deeper than 80 meters, a very fast reaction of the upper aquifer during pumping with clear leaky effects was observed. Heat-Pulse Flowmeter logs also show the interconnections between compartments. During the pumping, we also monitored a high decrease of groundwater ages of the water pumped. Combination of all these methods allowed the flow connections between compartments to be identified and the fluxes between the different compartments to be quantified. We show in particular how the deep groundwater resource is strongly dependent of shallower compartments. Identifying flow properties and origin of water in a deep aquifer is an important issue to optimize the management of such groundwater resources. In particular the estimation of the groundwater capacity, and also to predict groundwater quality changes are essential. This study allows quantifying fluxes between compartments both in natural and pumping conditions. Such a characterization is crucial to assess the sustainability of deep hard-rock aquifers for groundwater supply.
NASA Astrophysics Data System (ADS)
Johnston, C. D.; Davis, G. B.; Bastow, T.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R.; Rhodes, S.
2011-12-01
Measures of the source mass and depletion characteristics of recalcitrant dense non-aqueous phase liquid (DNAPL) contaminants are critical elements for assessing performance of remediation efforts. This is in addition to understanding the relationships between source mass depletion and changes to dissolved contaminant concentration and mass flux in groundwater. Here we present results of applying analytical source-depletion concepts to pumping from within the DNAPL source zone of a 10-m thick heterogeneous layered aquifer to estimate the original source mass and characterise the time trajectory of source depletion and mass flux in groundwater. The multi-component, reactive DNAPL source consisted of the brominated solvent tetrabromoethane (TBA) and its transformation products (mostly tribromoethene - TriBE). Coring and multi-level groundwater sampling indicated the DNAPL to be mainly in lower-permeability layers, suggesting the source had already undergone appreciable depletion. Four simplified source dissolution models (exponential, power function, error function and rational mass) were able to describe the concentration history of the total molar concentration of brominated organics in extracted groundwater during 285 days of pumping. Approximately 152 kg of brominated compounds were extracted. The lack of significant kinetic mass transfer limitations in pumped concentrations was notable. This was despite the heterogeneous layering in the aquifer and distribution of DNAPL. There was little to choose between the model fits to pumped concentration time series. The variance of groundwater velocities in the aquifer determined during a partitioning inter-well tracer test (PITT) were used to parameterise the models. However, the models were found to be relatively insensitive to this parameter. All models indicated an initial source mass around 250 kg which compared favourably to an estimate of 220 kg derived from the PITT. The extrapolated concentrations from the dissolution models diverged, showing disparate approaches to possible remediation objectives. However, it also showed that an appreciable proportion of the source would need to be removed to discriminate between the models. This may limit the utility of such modelling early in the history of a DNAPL source. A further limitation is the simplified approach of analysing the combined parent/daughter compounds with different solubilities as a total molar concentration. Although the fitted results gave confidence to this approach, there were appreciable changes in relative abundance. The dissolution and partitioning processes are discussed in relation to the lower-solubility TBA becoming dominant in pumped groundwater over time, despite its known rapid transformation to TriBE. These processes are also related to the architecture of the depleting source as revealed by multi-level groundwater sampling under reversed pumping/injection conditions.
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.
Cao, Yu; Chen, Min; Tang, Dehua; Yan, Hongli; Ding, Xiwei; Zhou, Fan; Zhang, Mingming; Xu, Guifang; Zhang, Weijie; Zhang, Shu; Zhuge, Yuzheng; Wang, Lei; Zou, Xiaoping
2018-05-22
Proton pump inhibitors (PPIs) play a role in antitumor activity, with studies showing specialized impacts of PPIs on cancer cell apoptosis, metastasis, and autophagy. In this study, we demonstrated that pantoprazole (PPI) increased autophagosomes formation and affected autophagic flux depending on the pH conditions. PPI specifically elevated SQSTM1 protein levels by increasing SQSTM1 transcription via NFE2L2 activation independent of the specific effect of PPI on autophagic flux. Via decreasing proteasome subunits expression, PPI significantly impaired the function of the proteasome, accompanied by the accumulation of undegraded poly-ubiquitinated proteins. Notably, PPI-induced autophagy functioned as a downstream response of proteasome inhibition by PPI, while suppressing protein synthesis abrogated autophagy. Blocking autophagic flux in neutral pH condition or further impairing proteasome function with proteasome inhibitors, significantly aggravated PPI cytotoxicity by worsening protein degradation ability. Interestingly, under conditions of mitochondrial stress, PPI showed significant synergism when combined with Bcl-2 inhibitors. Taken together, these findings provide a new understanding of the impact of PPIs on cancer cells' biological processes and highlight the potential to develop more efficient and effective combination therapies.
Magnetic microscopic imaging with an optically pumped magnetometer and flux guides
Kim, Young Jin; Savukov, Igor Mykhaylovich; Huang, Jen -Huang; ...
2017-01-23
Here, by combining an optically pumped magnetometer (OPM) with flux guides (FGs) and by installing a sample platform on automated translation stages, we have implemented an ultra-sensitive FG-OPM scanning magnetic imaging system that is capable of detecting magnetic fields of ~20 pT with spatial resolution better than 300 μm (expected to reach ~10 pT sensitivity and ~100 μm spatial resolution with optimized FGs). As a demonstration of one possible application of the FG-OPM device, we conducted magnetic imaging of micron-size magnetic particles. Magnetic imaging of such particles, including nano-particles and clusters, is very important for many fields, especially for medicalmore » cancer diagnostics and biophysics applications. For rapid, precise magnetic imaging, we constructed an automatic scanning system, which holds and moves a target sample containing magnetic particles at a given stand-off distance from the FG tips. We show that the device was able to produce clear microscopic magnetic images of 10 μm-size magnetic particles. In addition, we also numerically investigated how the magnetic flux from a target sample at a given stand-off distance is transmitted to the OPM vapor cell.« less
INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemareddy, P., E-mail: vemareddy@iiap.res.in
We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity fluxmore » has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.« less
Onodera, Akira; Yayama, Katsutoshi; Morosawa, Hideto; Ishii, Yukina; Tsutsumi, Yasuo; Kawai, Yuichi
2017-03-01
Several studies have reported that amorphous nano-silica particles (nano-SPs) modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70) increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER) calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge.
A microscale turbine driven by diffusive mass flux.
Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke
2015-10-07
An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales.
Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod
The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.
How Cells Can Control Their Size by Pumping Ions.
Kay, Alan R
2017-01-01
The ability of all cells to set and regulate their size is a fundamental aspect of cellular physiology. It has been known for sometime but not widely so, that size stability in animal cells is dependent upon the operation of the sodium pump, through the so-called pump-leak mechanism (Tosteson and Hoffman, 1960). Impermeant molecules in cells establish an unstable osmotic condition, the Donnan effect, which is counteracted by the operation of the sodium pump, creating an asymmetry in the distribution of Na + and K + staving off water inundation. In this paper, which is in part a tutorial, I show how to model quantitatively the ion and water fluxes in a cell that determine the cell volume and membrane potential. The movement of water and ions is constrained by both osmotic and charge balance, and is driven by ion and voltage gradients and active ion transport. Transforming these constraints and forces into a set of coupled differential equations allows us to model how the ion distributions, volume and voltage change with time. I introduce an analytical solution to these equations that clarifies the influence of ion conductances, pump rates and water permeability in this multidimensional system. I show that the number of impermeant ions ( x ) and their average charge have a powerful influence on the distribution of ions and voltage in a cell. Moreover, I demonstrate that in a cell where the operation of active ion transport eliminates an osmotic gradient, the size of the cell is directly proportional to x . In addition, I use graphics to reveal how the physico-chemical constraints and chemical forces interact with one another in apportioning ions inside the cell. The form of model used here is applicable to all membrane systems, including mitochondria and bacteria, and I show how pumps other than the sodium pump can be used to stabilize cells. Cell biologists may think of electrophysiology as the exclusive domain of neuroscience, however the electrical effects of ion fluxes need to become an intimate part of cell biology if we are to understand a fundamental process like cell size regulation.
Xanthan gum recovery from fermentation broth using ultrafiltration: Kinetics and process evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Y.M.; Yang, S.T.; Min, D.B.
1995-12-01
Ultrafiltration of xanthan gum solution as an alternative method to alcohol precipitation for xanthan gum recovery from dilute fermentation broth was studied. A polysulfone membrane (with 500,000 MWCO) hollow fiber (106 mil fiber diameter) tubular cartridge was used to concentrate xanthan broth from less than 3 (w/v) % to {approximately}13.5 (w/v) %, with the xanthan recovery yield of {approximately}95 % or higher. During ultrafiltration, the filtrate flux was one order of magnitude lower for xanthan broth than for water, However, the flux remained almost constant for xanthan concentrations up to {approximately}8%. It was then reduced dramatically as the xanthan concentrationmore » increased beyond 8%. The reduced filtrate flux was caused by the reduced pumping (shear) rate and higher viscosities at higher xanthan concentrations. At constant xanthan concentration, the filtrate flux remained almost unchanged for the entire period studied, suggesting that the process is not subject to membrane fouling. In general, the filtrate flux decreased with increasing the xanthan concentration and increased with increasing the pumping (shear) rate and the trans-membrane pressure difference. Changing the solution pH had a slight effect on the viscosity of xanthan solution, but did not affect the filtration performance. Even under high-shear-rate conditions, ultrafiltration did not give any adverse effects on the rheological properties and molecular weight of the xanthan polymer. Thus, ultra filtration can be used to concentrate xanthan broth from fermentation by a factor of four or higher and to reduce the subsequent alcohol recovery costs by at least 75 %.« less
NASA Astrophysics Data System (ADS)
Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie
2017-02-01
Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.
Solar pumped lasers: Work in progress at the University of Chicago
NASA Astrophysics Data System (ADS)
Winston, Roland
Of the variety of solar energy conversion schemes that have been explored, the conversion of solar flux to coherent laser radiation is relatively new. Solar flux at sufficiently high concentrations to overcome threshold for the really important laser materials has not been available. This technological inhibition has recently been overcome through the application of nonimaging optics through the demonstration of concentration levels of 84,000 suns at the University of Chicago in a refractive medium (sapphire) and of over 20,000 suns in air at the Solar Energy Research Institute High Flux Facility. A thermodynamic overview is presented of solar lasers including solid state lasers and dye lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.
Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of themore » ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.« less
An evaluation of a zero-heat-flux cutaneous thermometer in cardiac surgical patients.
Eshraghi, Yashar; Nasr, Vivian; Parra-Sanchez, Ivan; Van Duren, Albert; Botham, Mark; Santoscoy, Thomas; Sessler, Daniel I
2014-09-01
Although core temperature can be measured invasively, there are currently no widely available, reliable, noninvasive thermometers for its measurement. We thus compared a prototype zero-heat-flux thermometer with simultaneous measurements from a pulmonary artery catheter. Specifically, we tested the hypothesis that zero-heat-flux temperatures are sufficiently accurate for routine clinical use. Core temperature was measured from the thermistor of a standard pulmonary artery catheter and with a prototype zero-heat-flux deep-tissue thermometer in 105 patients having nonemergent cardiac surgery. Zero-heat-flux probes were positioned on the lateral forehead and lateral neck. Skin surface temperature probes were attached to the forehead just adjacent to the zero-heat-flux probe. Temperatures were recorded at 1-minute intervals, excluding the period of cardiopulmonary bypass, and for the first 4 postoperative hours. Zero-heat-flux and pulmonary artery temperatures were compared with bias analysis; differences exceeding 0.5°C were considered to be potentially clinically important. The mean duration in the operating room was 279 ± 75 minutes, and the mean cross-clamp time was 118 ± 50 minutes. All subjects were monitored for an additional 4 hours in the intensive care unit. The average overall difference between forehead zero-heat-flux and pulmonary artery temperatures (i.e., forehead minus pulmonary artery) was -0.23°C (95% limits of agreement of ±0.82); 78% of the differences were ≤0.5°C. The average intraoperative temperature difference was -0.08°C (95% limits of agreement of ±0.88); 84% of the differences were ≤0.5°C. The average postoperative difference was -0.32°C (95% limits of agreement of ±0.75); 84% of the differences were ≤0.5°C. Bias and precision values for neck site were similar to the forehead values. Uncorrected forehead skin temperature showed an increasing negative bias as core temperature decreased. Core temperature can be noninvasively measured using the zero-heat-flux method. Bias was small, but precision was slightly worse than our designated 0.5°C limits compared with measurements from a pulmonary artery catheter.
The pumping oxygenator: design criteria and first in vitro results.
Fiore, G B; Costantino, M L; Fumero, R; Montevecchi, F M
2000-10-01
A new project is presented, the pumping oxygenator, functionally integrating pulsatile pumping and blood oxygenation in a single device. Solid, semipermeable silicone membranes allow gas exchange and simultaneously transfer energy from pressurized gas to blood thanks to their distensibility and to inlet and outlet 1-way valves. Two small-sized (1 m2 exchange surface area) prototypes were designed, constructed, hydraulically characterized, and subjected to gas transfer evaluation tests. Blood flow rates (Q(b)) up to 1,250 ml/min were obtained with 30 mm Hg static preload and 130 mm Hg afterload with 0.7 m upstream and 2.1 m downstream 3/8 inch pipes. Physiological oxygen transfer (VO2 = 5 ml/dl, ml of transferred O2/dl of treated blood) was delivered at Q(b) < 900 ml/min, about 4 ml/dl at Q(b) = 1,250 ml/min. VO2 also was significantly increased by increasing percent systolic time. CO2 transfer decreased regularly with increasing Q(b) from VCO2 = 4.8 ml/dl at Q(b) = 400 ml/min to VCO 2 = 2.1 ml/dl at Q(b) = 1,250 ml/min. The results confirm the possibility of integrating oxygenation and pulsatile pumping. The pumping oxygenator represents a promising project deserving further improvements.
Progress on the PT-1 Prototype Plasmoid Thruster
NASA Technical Reports Server (NTRS)
Eskridge, Richard H.; Martin, Adam K.
2007-01-01
The design and construction of a plasmoid thruster prototype is described. This thruster operates by expelling inductively formed plasmoids at high velocities. These plasmoids are field reversed configuration plasmas which are formed by reversing a magnetic flux frozen in an ionized gas inside a theta-pinch coil. The pinch coil is a unique multi-turn, multi-lead design chosen for optimization of inductance and field uniformity. A table-top bread-board demonstrator has been built at MSFC, and will be delivered to Radiance Technologies Inc. for further testing at the Auburn Space Power Institute.
Joiner, C H; Lauf, P K
1978-01-01
1. Erythrocytes were treated with nystatin to alter internal Na (Nai) and K (Ki) composition. Although the rates of K pumping and [3H]ouabain binding were altered dramatically, the relationship between glycoside binding and K pump inhibition was unaffected. 2. Human cells with high Nai and low Ki exhibited an increased rate of ouabain binding as compared to high Ki, low Nai cells; this paralleled the stimulated K pump activity of high Nai cells. 3. At constant Ki, increasing internal Na stimulated K pump and ouabain binding rates concomitantly. 4. At low Nai, increasing Ki inhibited both K pumping and ouabain binding. However, at high Nai, increasing Ki from 4 to 44 mM stimulated the rate of glycoside binding, parallel to its effect of increasing the rate of active K influx. 5. Anti-L, an isoantibody to low K (LK) sheep red cells, increased the rate of ouabain binding via its stimulation of K pump turnover. Since the latter effect is the result of affinity changes at the internal cation activation site(s) of the pump (Lauf, Rasmusen, Hoffman, Dunham, Cook, Parmelee & Tosteson, 1970), the antibody's effect on ouabain binding reflected the positive correlation between the rates of K pump turnover and glycoside binding. 6. These data provide the first evidence in intact cells for the occurrence of a Nai-induced conformational change in the Na/K pump during its normal operational cycle. PMID:722574
Vereninov, Igor A.; Yurinskaya, Valentina E.; Model, Michael A.; Vereninov, Alexey A.
2016-01-01
Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1–10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential. PMID:27159324
NASA Astrophysics Data System (ADS)
Stone, J.; Steinberg, D. K.
2016-02-01
The effects of predation on carbon export in planktonic food webs are poorly known, but likely play a key role in the biological pump. Gelatinous zooplankton (GZ) dominate the zooplankton community in the Chesapeake Bay during summer months, exerting considerable top-down control on the planktonic food web. The medusa Chrysaora quinquecirrha preys upon the ctenophore Mnemiopsis leidyi, which in turn is a major predator of the omnivorous copepod Acartia tonsa. This trophic cascade is known to significantly affect copepod abundance in Chesapeake Bay, but the resulting changes to particulate organic carbon (POC) flux are unknown. We hypothesized that additions or exclusions of GZ predators would result in changes in both total POC flux and the composition of exported particles (e.g., phytoplankton aggregates, fecal pellets). We conducted mesocosm experiments in the York River tributary of Chesapeake Bay during summer and fall, 2015 to quantify the cascading effects of GZ blooms on POC flux. The mesocosms contained a natural assemblage of phytoplankton and microzooplankton, and A. tonsa copepods, and received one of four treatments of GZ: 1) a control with no GZ added, 2) addition of ctenophores, 3) addition of medusae, and 4) addition of both ctenophores and medusae. POC flux from each mesocosm was measured over multiple 2-day experimental runs and grazing rates of GZ on each other and on copepods were calculated. There were no significant differences in total POC flux between treatments, but the composition of both the final zooplankton assemblage and exported organic matter differed between treatments. As a result of grazing on copepods by ctenophores, treatments which included GZ had lower final copepod abundances and a corresponding decrease in flux of copepod fecal pellets. We discuss how this change in composition of exported material as a result of cascading trophic interactions may affect the efficiency of the biological pump and benthic processes.
Shu, Longfei; Laurila, Anssi; Räsänen, Katja
2015-01-01
Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453
NASA Astrophysics Data System (ADS)
Prod'homme, Thibaut; Verhoeve, P.; Kohley, R.; Short, A.; Boudin, N.
2014-07-01
The science objectives of space missions using CCDs to carry out accurate astronomical measurements are put at risk by the radiation-induced increase in charge transfer inefficiency (CTI) that results from trapping sites in the CCD silicon lattice. A variety of techniques are used to obtain CTI values and derive trap parameters, however they often differ in results. To identify and understand these differences, we take advantage of an on-going comprehensive characterisation of an irradiated Euclid prototype CCD including the following techniques: X-ray, trap pumping, flat field extended pixel edge response and first pixel response. We proceed to a comparative analysis of the obtained results.
Optimised design for a 1 kJ diode-pumped solid-state laser system
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Ertel, Klaus; Banerjee, Saumyabrata; Phillips, P. Jonathan; Hernandez-Gomez, Cristina; Collier, John L.
2011-06-01
A conceptual design for a kJ-class diode-pumped solid-state laser (DPSSL) system based on cryogenic gas-cooled multislab ceramic Yb:YAG amplifier technology has been developed at the STFC as a building block towards a MJ-class source for inertial fusion energy (IFE) projects such as HiPER. In this paper, we present an overview of an amplifier design optimised for efficient generation of 1 kJ nanosecond pulses at 10 Hz repetition rate. In order to confirm the viability of this technology, a prototype version of this amplifier scaled to deliver 10 J at 10 Hz, DiPOLE, is under development at the Central Laser Facility. A progress update on the status of this system is also presented.
Final Technical Report for EE0006091: H2Pump Hydrogen Recycling System Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda
The objective of this project is to demonstrate the product readiness and to quantify the benefits and customer value proposition of H2Pump’s Hydrogen Recycling System (HRS-100™) by installing and analyzing the operation of multiple prototype 100-kg per day systems in real world customer locations. The data gathered will be used to measure reliability, demonstrate the value proposition to customers, and validate our business model. H2Pump will install, track and report multiple field demonstration systems in industrial heat treating and semi-conductor applications. The customer demonstrations will be used to develop case studies and showcase the benefits of the technology to drivemore » market adoption.« less
Output characteristics of a series three-port axial piston pump
NASA Astrophysics Data System (ADS)
Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei
2012-05-01
Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made. The basic characteristics, such as the pressure, flow and noise of the pumps under different rotation speeds, are measured on the test bench. The test results verify the correctness of the principle. The proposed research lays a theoretical foundation for the further development of a new pump-controlled cylinder system.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
NASA Astrophysics Data System (ADS)
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krahn, John; Reed, Claude; Loewen, Eric
Final Technical Report: Electromagnetic Pump Insulation Materials Development and Testing (Report # DOEGEHB00613) summarizes the information gathered from the analysis of the 160 m3/min EM Pump insulation that was tested in 2000-2002 and additional evaluations of new resilient, engineered insulation system evaluated and tested at both GRC and ANL. This report provides information on Tasks 1 and 2 of the entire project. This report also provides information in three broad areas: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps. The research for Task 2 builds upon Task 1: Update EM Pumpmore » Databank, which is summarized within this report. Where research for Task 3 and 4 Next-Generation EM Pump Analysis Tools identified parameters or analysis model that benefits Task 2 research, those items are noted within this report. The important design variables for the manufacture and operation of an EM Pump that the insulation research can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development summary of the Electromagnetic Pump Insulation Materials Development and Testing was completed to include: Historical and current data; Conclusions based on test data; and Insulation specifications for use in EM Pumps.« less
Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiles, R.H.
2005-10-07
In a conventional permanent magnet (PM) machine, the air-gap flux produced by the PM is fixed. It is difficult to enhance the air-gap flux density due to limitations of the PM in a series-magnetic circuit. However, the air-gap flux density can be weakened by using power electronic field weakening to the limit of demagnetization of the PMs. This paper presents the test results of controlling the PM air-gap flux density through the use of a stationary brushless excitation coil in a reluctance interior permanent magnet with brushless field excitation (RIPM-BFE) motor. Through the use of this technology the air-gap fluxmore » density can be either enhanced or weakened. There is no concern with demagnetizing the PMs during field weakening. The leakage flux of the excitation coil through the PMs is blocked. The prototype motor built on this principle confirms the concept of flux enhancement and weakening through the use of excitation coils.« less
NASA Astrophysics Data System (ADS)
Yoshimura, H.
1983-08-01
The case of the solar magnetic cycle is investigated as a prototype of the dynamo processes involved in the generation of magnetic fields in astrophysics. Magnetohydrodynamic (MHD) equations are solved using a numerical method with a prescribed velocity field in order follow the movement and deformation. It is shown that a simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the sun. These main flux tubes of the solar cycle are the progenitors of small-scale flux ropes of the solar activity. These findings indicate that magnetic fields can be generated by fluid motions and that MHD equations have a new type of oscillatory solution. It is shown that the solar cycle can be identified with one of these oscillatory solutions. It is proposed that the formation of magnetic flux tubes by streaming plasma flows is a universal mechanism of flux tube formation in astrophysics.
Sze, Heven; Chanroj, Salil
2018-04-24
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network (TGN) is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the TGN or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane, contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis thaliana genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet the presence of distinct residues suggests some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Tillman, Fred D; Smith, James A
2004-11-01
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlin, R. W.
1979-07-10
Tens of millions of the world's poorest farmers currently subsist on small farms below two hectares in size. The increasing cost of animal irrigation coupled with decreasing farm size and the lack of a utility grid or acceptable alternate power sources is causing interest in the use of solar photovoltaics for these very small (subkilowatt) water pumping systems. The attractive combinations of system components (array, pump, motor, storage and controls) have been identified and their interactions characterized in order to optimize overall system efficiency. Computer simulations as well as component tests were made of systems utilizing flat-plate and low-concentration arrays,more » direct-coupled and electronic-impedance-matching controls, fixed and incremental (once or twice a day) tracking, dc and ac motors, and positive-displacement, centrifugal and vertical turbine pumps. The results of these analyses and tests are presented, including water volume pumped as a function of time of day and year, for the locations of Orissa, India and Cairo, Egypt. Finally, a description and operational data are given for a prototype unit that was developed as a result of the previous analyses and tests.« less
DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser.
Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; De Vido, Mariastefania; Smith, Jodie M; Butcher, Thomas J; Hernandez-Gomez, Cristina; Greenhalgh, R Justin S; Collier, John L
2015-07-27
The Diode Pumped Optical Laser for Experiments (DiPOLE) project at the Central Laser Facility aims to develop a scalable, efficient high pulse energy diode pumped laser amplifier system based on cryogenic gas cooled, multi-slab ceramic Yb:YAG technology. We present recent results obtained from a scaled down prototype laser system designed for operation at 10 Hz pulse repetition rate. At 140 K, the system generated 10.8 J of energy in a 10 ns pulse at 1029.5 nm when pumped by 48 J of diode energy at 940 nm, corresponding to an optical to optical conversion efficiency of 22.5%. To our knowledge, this represents the highest pulse energy obtained from a cryo cooled Yb laser to date and the highest efficiency achieved by a multi-Joule diode pumped solid state laser system. Additionally, we demonstrated shot-to-shot energy stability of 0.85% rms for the system operated at 7 J, 10 Hz during several runs lasting up to 6 hours, with more than 50 hours in total. We also demonstrated pulse shaping capability and report on beam, wavefront and focal spot quality.
Dual-stroke heat pump field performance
NASA Astrophysics Data System (ADS)
Veyo, S. E.
1984-11-01
Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.
A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer
Cobo, Angelica; Sheybani, Roya; Tu, Heidi; Meng, Ellis
2016-01-01
We present an implantable micropump with a miniature form factor and completely wireless operation that enables chronic drug administration intended for evaluation and development of cancer therapies in freely moving small research animals such as rodents. The low power electrolysis actuator avoids the need for heavy implantable batteries. The infusion system features a class E inductive powering system that provides on-demand activation of the pump as well as remote adjustment of the delivery regimen without animal handling. Micropump performance was demonstrated using a model anti-cancer application in which daily doses of 30 μL were supplied for several weeks with less than 6% variation in flow rate within a single pump and less than 8% variation across different pumps. Pumping under different back pressure, viscosity, and temperature conditions were investigated; parameters were chosen so as to mimic in vivo conditions. In benchtop tests under simulated in vivo conditions, micropumps provided consistent and reliable performance over a period of 30 days with less than 4% flow rate variation. The demonstrated prototype has potential to provide a practical solution for remote chronic administration of drugs to ambulatory small animals for research as well as drug discovery and development applications. PMID:26855476
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Cameron, Robert, E-mail: bkarak@ucar.edu
The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial inmore » the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.« less
Enhancement of pumped current in quantum dots
NASA Astrophysics Data System (ADS)
Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro
A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Lee, J. H.; Pinkston, W. T.
1977-01-01
The first direct nuclear pumped laser using the He-2-(n,p) H-3 reaction is reported. Lasing took place on the 1.79 microns Ar I transition in a mixture of He-3-Ar at approximately 600 Torr total pressure. It was found that the electrically pulsed afterglow He-Ar laser had the same concentration profile as the nuclear pumped laser. As a result, nuclear lasing was also achieved in He-3-Xe (2.027 micron) and He-3-Kr (2.52 micron). Scaling of laser output with both thermal flux and total pressure as well as minority concentration has been completed. A peak output (He-3-Ar) of 3.7 watts has been achieved at a total pressure of 4 atm. Direct nuclear pumping of He-3-Ne has also been achieved. Nuclear pumping of a He-3-NF3 mixture was attempted, lasing in FI at approximately 7000 A, without success, although the potential lasing transitions appeared in spontaneous emission. Both NF3 and 238UF6 appear to quench spontaneous emission when they constitute more than 1% of the gas mixture.
NASA Astrophysics Data System (ADS)
Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.
2012-04-01
A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.
Miller, M E; Mariani, L E; Gonçalves-Carralves, M L Sztejnberg; Skumanic, M; Thorp, S I
2004-11-01
A novel system to determine thermal neutron flux in real time during NCT treatments was developed in the National Atomic Energy Commission of Argentina. The system is based on a special self-powered detector that can be implanted in patients owing to its small size and biocompatibility. High voltage is not required to operate this kind of detectors, which is a considerable advantage in terms of medical uses. By choosing the appropriate materials, it was possible to obtain a prototype with thermal neutron sensitivity providing for an adequate signal level in typical NCT thermal fluxes. It was also possible to minimize gamma response in order to neglect its contribution.
Diamond X-ray Photodiode for White and Monochromatic SR beams
Keister, Jeffrey W.; Smedley, John; Muller, Erik M.; Bohon, Jen; Héroux, Annie
2011-01-01
High purity, single crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for x-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high flux and high speed applications are described. PMID:21822344
Loree, H M; Bourque, K; Gernes, D B; Richardson, J S; Poirier, V L; Barletta, N; Fleischli, A; Foiera, G; Gempp, T M; Schoeb, R; Litwak, K N; Akimoto, T; Kameneva, M; Watach, M J; Litwak, P
2001-05-01
A compact implantable centrifugal left ventricular assist device (LVAD) (HeartMate III) featuring a magnetically levitated impeller is under development. The goal of our ongoing work is to demonstrate feasibility, low hemolysis, and low thrombogenicity of the titanium pump in chronic bovine in vivo studies. The LVAD is based on so-called bearingless motor technology and combines pump rotor, drive, and magnetic bearing functions in a single unit. The impeller is rotated (theta z) and levitated with both active (X, Y) and passive (Z, theta x, theta y) suspension. Six prototype systems have been built featuring an implantable titanium pump (69 mm diameter, 30 mm height) with textured blood contacting surfaces and extracorporeal electronics. The pumps were implanted in 9 calves (< or = 100 kg at implant) that were anticoagulated with Coumadin (2.5 < or = INR < or = 4.0) throughout the studies. Six studies were electively terminated (at 27-61 days), 1 study was terminated after the development of severe pneumonia and lung atelectasis (at 27 days) another study was terminated after cardiac arrest (at 2 days) while a final study is ongoing (at approximately 100 days). Mean pump flows ranged from 2 to 7 L/min, except for brief periods of exercise at 6 to 9 L/min. Plasma free hemoglobin ranged from 4 to 10 mg/dl. All measured biochemical indicators of end organ function remained within normal range. The pumps have met performance requirements in all 9 implants with acceptable hemolysis and no mechanical failures.
Chen, Zhiyuan; Law, Man-Kay; Mak, Pui-In; Martins, Rui P
2017-02-01
In this paper, an ultra-compact single-chip solar energy harvesting IC using on-chip solar cell for biomedical implant applications is presented. By employing an on-chip charge pump with parallel connected photodiodes, a 3.5 × efficiency improvement can be achieved when compared with the conventional stacked photodiode approach to boost the harvested voltage while preserving a single-chip solution. A photodiode-assisted dual startup circuit (PDSC) is also proposed to improve the area efficiency and increase the startup speed by 77%. By employing an auxiliary charge pump (AQP) using zero threshold voltage (ZVT) devices in parallel with the main charge pump, a low startup voltage of 0.25 V is obtained while minimizing the reversion loss. A 4 V in gate drive voltage is utilized to reduce the conduction loss. Systematic charge pump and solar cell area optimization is also introduced to improve the energy harvesting efficiency. The proposed system is implemented in a standard 0.18- [Formula: see text] CMOS technology and occupies an active area of 1.54 [Formula: see text]. Measurement results show that the on-chip charge pump can achieve a maximum efficiency of 67%. With an incident power of 1.22 [Formula: see text] from a halogen light source, the proposed energy harvesting IC can deliver an output power of 1.65 [Formula: see text] at 64% charge pump efficiency. The chip prototype is also verified using in-vitro experiment.
Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions
NASA Astrophysics Data System (ADS)
Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.
2016-09-01
To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.
Mass fluxes of organic pollutants between groundwater, streambed sediments and surface water
NASA Astrophysics Data System (ADS)
Schirmer, Mario; Kalbus, Edda; Schmidt, Christian
2010-05-01
Rivers and groundwater are commonly hydraulically connected and thus also pollutants migrate between one and the other. Particularly in small lowland streams, pollutant transport by discharging groundwater can deteriorate the surface water quality. Moreover, in urban and industrial areas streambed sediments are often polluted with a variety of organic and inorganic substances. For planning measures to improve surface water quality or to mitigate pollutant migration, it is an essential prerequisite to understand pollutant pathways and mass fluxes between the stream, the streambed sediment and the connected aquifer. We present methodological approaches and results of a study conducted at a small man-made stream located in the industrial area of Bitterfeld-Wolfen, Germany. This site is characterized by a diffuse groundwater contamination with a variety of aliphatic and aromatic organic substances. The underlying approach of this study was to quantify the mass fluxes between the aquifer, the streambed and the stream by combining high-resolution with integral monitoring approaches. Magnitudes and pattern of water fluxes were obtained by mapping streambed temperatures. The method was applied to a reach of 280 m in length. The mass fluxes from the aquifer towards the stream were estimated by combining the water fluxes with representative, average pollutant concentrations. The concentrations were obtained from an integral pumping test with four simultaneously pumped wells operated for the period of five days. For monochlorobenzene (MCB), the main groundwater pollutant at the site, the resulting average mass flux from the aquifer towards the stream was estimated to 724 µg/m²/d. Mass flux calculations with average aqueous concentrations of MCB in the streambed were found to be higher than those originating from the aquifer. Consequently, the streambed sediments represent a secondary pollutant source for the surface water. Pollutant concentrations in the streambed were lower at locations with high groundwater discharge and vice versa. Hence, the spatial heterogeneity of water fluxes must be considered when mass fluxes between surface water and streambed sediments are assessed. River restoration could improve the structural state of rivers and may thus result in an enhanced biodegradation of organic pollutants in the streambed. However, before any physical measure is applied a profound knowledge of pollutant concentration and pathways is required in order to avoid mobilization of sediment-bound pollutants.
Development of a Portable Muon Witness System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.
2011-01-01
Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons.more » These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with associated electronics to measure energy depositions in coincidence in the two paddles. For this particular application of the prototype, the measurements performed concentrated on a broad investigation of the dependence of the muon flux on depth underground. These tests were conducted inside at Building 3420/1307 and underground at Building 3425 at the Pacific Northwest National Laboratory. The second half of this report analyzes modifications to the electronics of the BLCRD to make this detector portable. Among other modifications, a battery powered version of these electronics is proposed for the final Muon Witness design.« less
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2011-02-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2010-11-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
Integrated Seawater Sampler and Data Acquisition System Prototype
1993-04-01
circuitry. The sample bags, initially sealed in a chemically clean environment , were opened by pumping the water out of the tray, thus forcing water into...the water sample containers from materials having low metals content. Control of the sample transfer environment through the use of Class-100 clean... environment . CTD designers also intended their underwater units and deck terminals to be connected directly together providing AC grounding appropriate to
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
Kinetic contribution to extracellular Na+/K+ selectivity in the Na+/K+ pump.
Vleeskens, Elizabeth; Clarke, Ronald J
2018-05-01
The sodium potassium pump (Na + ,K + -ATPase) shows a high selectivity for K + over Na + binding from the extracellular medium. To understand the K + selectivity in the presence of a high concentration of competing Na + ions requires consideration of more than just ion binding affinities. Here, equilibrium-based calculations of the extracellular occupation of the Na + ,K + -ATPase transport sites by Na + and K + are compared to fluxes through Na + and K + transport pathways. The results show that, under physiological conditions, there is a 332-fold selectivity for pumping of K + from the extracellular medium into the cytoplasm relative to Na + , whereas equilibrium calculations alone predict only a 7.5-fold selectivity for K + . Thus, kinetic effects make a major contribution to the determination of extracellular K + selectivity.
Cryogenic cooling for high power laser amplifiers
NASA Astrophysics Data System (ADS)
Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.
2013-11-01
Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.
Joiner, C H; Platt, O S; Lux, S E
1986-01-01
The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation. PMID:2430999
Joiner, C H; Platt, O S; Lux, S E
1986-12-01
The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.
Direct Effects on the Membrane Potential due to "Pumps" that Transfer No Net Charge
Schwartz, Tobias L.
1971-01-01
The effects of active ionic transport are included in the derivation of a general expression for the zero current membrane potential. It is demonstrated that an active transport system that transfers no net charge (nonrheogenic) may, nevertheless, directly alter the membrane potential. This effect depends upon the exchange of matter within the membrane between the active and passive diffusion regimes. Furthermore, in the presence of such exchange, the transmembrane active fluxes measured by the usual techniques and the local pumped fluxes are not identical. Several common uses of the term “electrogenic pump” are thus shown to be inconsistent with each other. These inconsistencies persist when the derivation is extended to produce a Goldman equation modified to account for active transport; however, that equation is shown to be limited by less narrow constraints on membrane heterogeneity and internal electric field than those previously required. In particular, it is applicable to idealized mosaic membranes limited by these requirements. PMID:5113004
Barkla, Bronwyn J; Hirschi, Kendal D
2008-01-01
Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport. PMID:19841670
Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae.
Thomas, John H; Weiss, Nigel O; Tobias, Steven M; Brummell, Nicholas H
2002-11-28
The structure of a sunspot is determined by the local interaction between magnetic fields and convection near the Sun's surface. The dark central umbra is surrounded by a filamentary penumbra, whose complicated fine structure has only recently been revealed by high-resolution observations. The penumbral magnetic field has an intricate and unexpected interlocking-comb structure and some field lines, with associated outflows of gas, dive back down below the solar surface at the outer edge of the spot. These field lines might be expected to float quickly back to the surface because of magnetic buoyancy, but they remain submerged. Here we show that the field lines are kept submerged outside the spot by turbulent, compressible convection, which is dominated by strong, coherent, descending plumes. Moreover, this downward pumping of magnetic flux explains the origin of the interlocking-comb structure of the penumbral magnetic field, and the behaviour of other magnetic features near the sunspot.
Non-contact method for characterization of small size thermoelectric modules.
Manno, Michael; Yang, Bao; Bar-Cohen, Avram
2015-08-01
Conventional techniques for characterization of thermoelectric performance require bringing measurement equipment into direct contact with the thermoelectric device, which is increasingly error prone as device size decreases. Therefore, the novel work presented here describes a non-contact technique, capable of accurately measuring the maximum ΔT and maximum heat pumping of mini to micro sized thin film thermoelectric coolers. The non-contact characterization method eliminates the measurement errors associated with using thermocouples and traditional heat flux sensors to test small samples and large heat fluxes. Using the non-contact approach, an infrared camera, rather than thermocouples, measures the temperature of the hot and cold sides of the device to determine the device ΔT and a laser is used to heat to the cold side of the thermoelectric module to characterize its heat pumping capacity. As a demonstration of the general applicability of the non-contact characterization technique, testing of a thin film thermoelectric module is presented and the results agree well with those published in the literature.
NASA Astrophysics Data System (ADS)
Subha Anand, S.; Rengarajan, R.; Sarma, V. V. S. S.; Sudheer, A. K.; Bhushan, R.; Singh, S. K.
2017-05-01
The northern Indian Ocean is globally significant for its seasonally reversing winds, upwelled nutrients, high biological production, and expanding oxygen minimum zones. The region acts as sink and source for atmospheric CO2. However, the efficiency of the biological carbon pump to sequester atmospheric CO2 and export particulate organic carbon from the surface is not well known. To quantify the upper ocean carbon export flux and to estimate the efficiency of biological carbon pump in the Bay of Bengal and the Indian Ocean, seawater profiles of total 234Th were measured from surface to 300 m depth at 13 stations from 19.9°N to 25.3°S in a transect along 87°E, during spring intermonsoon period (March-April 2014). Results showed enhanced in situ primary production in the equatorial Indian Ocean and the central Bay of Bengal and varied from 13.2 to 173.8 mmol C m-2 d-1. POC export flux in this region varied from 0 to 7.7 mmol C m-2 d-1. Though high carbon export flux was found in the equatorial region, remineralization of organic carbon in the surface and subsurface waters considerably reduced organic carbon export in the Bay of Bengal. Annually recurring anticyclonic eddies enhanced organic carbon utilization and heterotrophy. Oxygen minimum zone developed due to stratification and poor ventilation was intensified by subsurface remineralization. 234Th-based carbon export fluxes were not comparable with empirical statistical model estimates based on primary production and temperature. Region-specific refinement of model parameters is required to accurately predict POC export fluxes.
NASA Astrophysics Data System (ADS)
Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.
2017-10-01
Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.
NASA Astrophysics Data System (ADS)
Kafle, N.; Owen, L. W.; Caneses, J. F.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.
2018-05-01
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory is a linear plasma device that combines a helicon plasma source with additional microwave and radio frequency heating to deliver high plasma heat and particle fluxes to a target. Double Langmuir probes and Thomson scattering are being used to measure local electron temperature and density at various radial and axial locations. A recently constructed Mach-double probe provides the added capability of simultaneously measuring electron temperatures ( T e), electron densities ( n e), and Mach numbers (M). With this diagnostic, it is possible to infer the plasma flow, particle flux, and heat flux at different locations along the plasma column in Proto-MPEX. Preliminary results show Mach numbers of 0.5 (towards the dump plate) and 1.0 (towards the target plate) downstream from the helicon source, and a stagnation point (no flow) near the source for the case where the peak magnetic field was 1.3 T. Measurements of particle flow and ne and Te profiles are discussed. The extensive coverage provided by these diagnostics permits data-constrained B2.5-Eirene modeling of the entire plasma column, and comparison with results of modeling in the high-density helicon plasmas will be presented.
Lamination effects on a 3D model of the magnetic core of power transformers
NASA Astrophysics Data System (ADS)
Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan
2017-12-01
In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.
Fabrication of Thin Film Heat Flux Sensors
NASA Technical Reports Server (NTRS)
Will, Herbert A.
1992-01-01
Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.
A high flux source of swift oxygen atoms
NASA Technical Reports Server (NTRS)
Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.
1987-01-01
A source of swift oxygen atoms is described which has several unique features. A high current ion beam is produced by a microwave discharge, accelerated to 10 keV and the mass selected by a modified Du Pont 21-110 mass spectrometer. The O(+) beam exciting the mass spectrometer is focused into a rectangular shape with an energy spread of less than 1 eV. The next section of the machine decelerates the ion beam into a counterpropagating electron beam in order to minimize space charge effects. After deceleration, the ion beam intersects at 90 deg, a neutral oxygen atom beam, which via resonant charge exchange produces a mixture of O(+) and O. Any remaining O(+) are swept out of the beam by an electric field and differentially pumped away while the desired O beam, collimated by slits, impinges on the target. In situ monitoring of the target surface is done by X-ray photoelectron or Auger spectroscopy. Faraday cups provide flux measurements in the ion sections while the neutral flux is determined by a special torsion balance or by a quadrupole mass spectrometer specially adapted for swift atoms. While the vacuum from the source through the mass spectrometer is maintained by diffusion pumps, the rest of the machine is UHV.
High-brightness-solar-pumped Nd:YAG laser design
NASA Astrophysics Data System (ADS)
Lando, Mordechai; Jenkins, David G.; Bernstein, Hana; O'Gallagher, Joseph J.; Winston, Roland; Lewandowski, Allan
1995-06-01
We have designed a Nd:YAG laser to be pumped by the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory. Based on the unique features of the HFSF, the design objectives are high brightness and superior efficiency in primary mirror area utilization. The HFSF has a primary mirror of 11.5 m2 and a 1.85 f-number. With such a high f-number, the target is set off-axis and does not block incoming solar flux. Moreover, large f-number enables concentration which approaches the theoretical limit, and a two- dimensional non-imaging concentrator deposits the solar flux onto the internal part of a 10 mm diameter laser rod. For high brightness, we plan a wide low-loss fundamental mode and a laser rod aperture that suppresses high order modes. To get a fundamental mode, of up to a 2.5 mm waist, we have designed a convex-concave resonator, following well-known g1g2 equals 0.5 design for resonators with internal beam focusing. We have used the edge ray principle to design the concentrator, and ray traced the deposited power inside the laser rod. A 1.3% Nd doping level supports a maximal power deposition inside a 5 mm diameter.
Development of the prototype pneumatic transfer system for ITER neutron activation system.
Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L
2012-10-01
The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.
NASA Astrophysics Data System (ADS)
Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnston, J. R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.
2014-03-01
Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from GEANT4 simulations. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.
Cogging Torque Minimization in Transverse Flux Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
2017-02-16
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices
NASA Technical Reports Server (NTRS)
Faghri, Amir; Khrustalev, Dmitry
1996-01-01
Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, Robert C.; Quigley, Gerard P.
1996-01-01
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.
Oida, Takenori; Kobayashi, Tetsuo
2013-01-01
Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.
Electronics Thermal Management Using Advanced Hybrid Two-Phase Loop Technology
2007-07-08
high heat flux cooling systems [Kawaji and Chung, 2003; Estes and Mudawar , 1995]. The successful integration of mechanical pumps into the heat...1st International Conference on Microchannels and Minichannels, Rochester, New York, April 24~25, 2003. Estes, K. and Mudawar , I., “Comparison of
NASA Astrophysics Data System (ADS)
Eleiwi, Fadi; Laleg-Kirati, Taous Meriem
2018-06-01
An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.
Roques, Clément; Aquilina, Luc; Boisson, Alexandre; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Longuevergne, Laurent; Laurencelle, Marc; Dufresne, Alexis; de Dreuzy, Jean-Raynald; Pauwels, Hélène; Bour, Olivier
2018-04-01
We investigated the mixing and dynamic of denitrification processes induced by long-term pumping in the crystalline aquifer of Ploemeur (Brittany, France). Hydrological and geochemical parameters have been continuously recorded over 15 boreholes in 5km 2 on a 25-year period. This extensive spatial and temporal monitoring of conservative as well as reactive compounds is a key opportunity to identify aquifer-scale transport and reactive processes in crystalline aquifers. Time series analysis of the conservative elements recorded at the pumped well were used to determine mixing fractions from different compartments of the aquifer on the basis of a Principal Component Analysis approach coupled with an end-member mixing analysis. We could reveal that pumping thus induces a thorough reorganization of fluxes known as capture, favoring infiltration and vertical fluxes in the recharge zone, and upwelling of deep and distant water at long-term time scales. These mixing fractions were then used to quantify the extent of denitrification linked to pumping. Based on the results from batch experiments described in a companion paper, our computations revealed that i) autotrophic denitrification processes are dominant in this context where carbon sources are limited, that ii) nitrate reduction does not only come from the oxidation of pyrite as classically described in previous studies analyzing denitrification processes in similar contexts, and that iii) biotite plays a critical role in sustaining the nitrate reduction process. Both nitrate reduction, sulfate production as well as fluor release ratios support the hypothesis that biotite plays a key role of electron donor in this context. The batch-to-site similarities support biotite availability and the role by bacterial communities as key controls of nitrate removal in such crystalline aquifers. However, the long term data monitoring also indicates that mixing and reactive processes evolve extremely slowly at the scale of the decade. Copyright © 2017 Elsevier B.V. All rights reserved.
Circulation and Purification in the LUX-ZEPLIN System Test
NASA Astrophysics Data System (ADS)
Alsum, Shaun; Lz Collaboration
2016-03-01
LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Reed, Stephen; Dong, Peng; Downer, Michael C.
2010-11-01
We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index "bubble" in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the "bubble". Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the "bubble" from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporal Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.
NASA Astrophysics Data System (ADS)
Kitsara, Maria; Cirera, Josep Maria; Aller-Pellitero, Miguel; Sabaté, Neus; Punter, Jaume; Colomer-Farrarons, Jordi; Miribel-Català, Pere; del Campo, F. Javier
2015-06-01
The development of a low-cost multiparametric platform for enzymatic electrochemical biosensing that can be integrated in a disposable, energy autonomous analytical device is the target of the current work. We propose a technology to fabricate nano-electrodes and ultimately biosensors on flexible polymeric-based substrates (cyclo olefin polymer, and polyimide) using standard microfabrication (step and repeat lithography and lift-off) and rapid prototyping techniques (blade cutting). Our target is towards the fabrication of a miniaturized prototype that can work with small sample volumes in the range of 5-10μL without the need for external pumps for sample loading and handling. This device can be used for the simultaneous detection of metabolites such as glucose, cholesterol and triglycerides for the early diagnosis of diabetes.
DiPOLE: a scalable laser architecture for pumping multi-Hz PW systems
NASA Astrophysics Data System (ADS)
Ertel, Klaus; Banerjee, Saumyabrata; Mason, Paul D.; Phillips, P. Jonathan; Greenhalgh, R. Justin S.; Hernandez-Gomez, Cristina; Collier, John L.
2013-05-01
DiPOLE is a concept for a large aperture gas-cooled cryogenic multislab DPSSL amplifier based on ceramic Yb:YAG. It is designed to amplify ns-pulses at multi-Hz repetition rates and is scalable up the kJ-level. The concept was first tested on a small scale prototype which has so far produced 7.4 J at 10 Hz, with the aim of reaching 10 J at an optical-to-optical efficiency of 25 %. The design of an additional amplifier stage producing 100 J at 10 Hz is underway. When used to pump short-pulse Ti:S or OPCPA systems, PW peak power levels can be produced at repetition rates and efficiencies that lie orders of magnitude above what is achievable today.
Origin of the wide-angle hot H2 in DG Tauri. New insight from SINFONI spectro-imaging
NASA Astrophysics Data System (ADS)
Agra-Amboage, V.; Cabrit, S.; Dougados, C.; Kristensen, L. E.; Ibgui, L.; Reunanen, J.
2014-04-01
Context. The origin of protostellar jets remains a major open question in star formation. Magnetohydrodynamical (MHD) disc winds are an important mechanism to consider, because they would have a significant impact on planet formation and migration. Aims: We wish to test the origins proposed for the extended hot H2 at 2000 K around the atomic jet from the T Tauri star DG Tau, in order to constrain the wide-angle wind structure and the possible presence of an MHD disc wind in this prototypical source. Methods: We present spectro-imaging observations of the DG Tau jet in H2 1-0 S(1) with 0.̋ 12 angular resolution, obtained with SINFONI/VLT. Thanks to spatial deconvolution by the point spread function and to careful correction for wavelength calibration and for uneven slit illumination (to within a few km s-1), we performed a thorough analysis and modeled the morphology and kinematics. We also compared our results with studies in [Fe II], [O I], and FUV-pumped H2. Absolute flux calibration yields the H2 column/volume density and emission surface, and narrows down possible shock conditions. Results: The limb-brightened H2 1-0 S(1) emission in the blue lobe is strikingly similar to FUV-pumped H2 imaged 6 yr later, confirming that they trace the same hot gas and setting an upper limit <12 km s-1 on any expansion proper motion. The wide-angle rims are at lower blueshifts (between -5 and 0 km s-1) than probed by narrow long-slit spectra. We confirm that they extend to larger angle and to lower speed the onion-like velocity structure observed in optical atomic lines. The latter is shown to be steady over ≥4 yr but undetected in [Fe II] by SINFONI, probably due to strong iron depletion. The rim thickness ≤14 AU rules out excitation by C-type shocks, and J-type shock speeds are constrained to ≃10 km s-1. Conclusions: We find that explaining the H2 1-0 S(1) wide-angle emission with a shocked layer requires either a recent outburst (15 yr) into a pre-existing ambient outflow or an excessive wind mass flux. A slow photoevaporative wind from the dense irradiated disc surface and an MHD disc wind heated by ambipolar diffusion seem to be more promising and need to be modeled in more detail. Better observational constraints on proper motion and rim thickness would also be crucial for clarifying the origin of this structure.
Influence of different heating types on the pumping performance of a bubble pump
NASA Astrophysics Data System (ADS)
Bierling, Bernd; Schmid, Fabian; Spindler, Klaus
2017-11-01
This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.
The Design and Testing of the LSSIF Advanced Thermal Control System
NASA Technical Reports Server (NTRS)
Henson, Robert A.; Keller, John R.
1995-01-01
The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.
Development of a Very Dense Liquid Cooled Compute Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Phillip N.; Lipp, Robert J.
2013-12-10
The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal
NASA Astrophysics Data System (ADS)
Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site.
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.
Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site. Copyright © 2013 Elsevier B.V. All rights reserved.
Smith, James A.; Tisdale, Amy K.; Cho, H. Jean
1996-01-01
The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Regiane Degan; Borecky, Jiri; Colombi, Debora
Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H{sup +} efflux with K {sub m} of 56.36 {+-} 0.27 {mu}M and V {sub max} of 66.9 {mu}mol H{sup +} min{sup -1} (mg prot){sup -1}. LA-mediated H{sup +} fluxes were sensitive to ATP inhibition with K {sub i} of 2.61 {+-} 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP wasmore » also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism.« less
Indirect monitoring shot-to-shot shock waves strength reproducibility during pump-probe experiments
NASA Astrophysics Data System (ADS)
Pikuz, T. A.; Faenov, A. Ya.; Ozaki, N.; Hartley, N. J.; Albertazzi, B.; Matsuoka, T.; Takahashi, K.; Habara, H.; Tange, Y.; Matsuyama, S.; Yamauchi, K.; Ochante, R.; Sueda, K.; Sakata, O.; Sekine, T.; Sato, T.; Umeda, Y.; Inubushi, Y.; Yabuuchi, T.; Togashi, T.; Katayama, T.; Yabashi, M.; Harmand, M.; Morard, G.; Koenig, M.; Zhakhovsky, V.; Inogamov, N.; Safronova, A. S.; Stafford, A.; Skobelev, I. Yu.; Pikuz, S. A.; Okuchi, T.; Seto, Y.; Tanaka, K. A.; Ishikawa, T.; Kodama, R.
2016-07-01
We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ˜660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ˜2%, implying an accuracy in the derived electron plasma temperature of 5%-10% in pump-probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ˜ 0.5, the electron temperature follows Te ˜ Ilas2/3. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.
Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy
NASA Astrophysics Data System (ADS)
Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.
2011-04-01
A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.
Design, development and test of a capillary pump loop heat pipe
NASA Technical Reports Server (NTRS)
Kroliczek, E. J.; Ku, J.; Ollendorf, S.
1984-01-01
The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.
Modeling and Analysis of High Torque Density Transverse Flux Machines for Direct-Drive Applications
NASA Astrophysics Data System (ADS)
Hasan, Iftekhar
Commercially available permanent magnet synchronous machines (PMSM) typically use rare-earth-based permanent magnets (PM). However, volatility and uncertainty associated with the supply and cost of rare-earth magnets have caused a push for increased research into the development of non-rare-earth based PM machines and reluctance machines. Compared to other PMSM topologies, the Transverse Flux Machine (TFM) is a promising candidate to get higher torque densities at low speed for direct-drive applications, using non-rare-earth based PMs. The TFMs can be designed with a very small pole pitch which allows them to attain higher force density than conventional radial flux machines (RFM) and axial flux machines (AFM). This dissertation presents the modeling, electromagnetic design, vibration analysis, and prototype development of a novel non-rare-earth based PM-TFM for a direct-drive wind turbine application. The proposed TFM addresses the issues of low power factor, cogging torque, and torque ripple during the electromagnetic design phase. An improved Magnetic Equivalent Circuit (MEC) based analytical model was developed as an alternative to the time-consuming 3D Finite Element Analysis (FEA) for faster electromagnetic analysis of the TFM. The accuracy and reliability of the MEC model were verified, both with 3D-FEA and experimental results. The improved MEC model was integrated with a Particle Swarm Optimization (PSO) algorithm to further enhance the capability of the analytical tool for performing rigorous optimization of performance-sensitive machine design parameters to extract the highest torque density for rated speed. A novel concept of integrating the rotary transformer within the proposed TFM design was explored to completely eliminate the use of magnets from the TFM. While keeping the same machine envelope, and without changing the stator or rotor cores, the primary and secondary of a rotary transformer were embedded into the double-sided TFM. The proposed structure allowed for improved flux-weakening capabilities of the TFM for wide speed operations. The electromagnetic design feature of stator pole shaping was used to address the issue of cogging torque and torque ripple in 3-phase TFM. The slant-pole tooth-face in the stator showed significant improvements in cogging torque and torque ripple performance during the 3-phase FEA analysis of the TFM. A detailed structural analysis for the proposed TFM was done prior to the prototype development to validate the structural integrity of the TFM design at rated and maximum speed operation. Vibration performance of the TFM was investigated to determine the structural performance of the TFM under resonance. The prototype for the proposed TFM was developed at the Alternative Energy Laboratory of the University of Akron. The working prototype is a testament to the feasibility of developing and implementing the novel TFM design proposed in this research. Experiments were performed to validate the 3D-FEA electromagnetic and vibration performance result.
A miniaturized human-motion energy harvester using flux-guided magnet stacks
NASA Astrophysics Data System (ADS)
Halim, M. A.; Park, J. Y.
2016-11-01
We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm3) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm-3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration.
Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Garrabrant; Roger Stout; Paul Glanville
2013-01-21
For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs ofmore » 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.« less
Schlanstein, Peter C; Borchardt, Ralf; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta
2014-01-01
Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.
Renewable energy to develop adaptation strategies to the climate change conditions
NASA Astrophysics Data System (ADS)
Servadio, Pieranna; Bergonzoli, Simone
2013-04-01
Changes in land use and combustion of fossil fuels have been largest human impact on the global carbon cycle and without a complete accounting of net greenhouse-gas (GHG) fluxes, developing and evaluating adaptation strategies are not possible. The major source of GHG fluxes associated with crop production are soil N2O emissions, soil CO2 and methane (CH4) fluxes, and CO2 emission associated with agricultural inputs and farm equipment operation. This study points out the main principles which are at the base of solar energy use for sustainability of irrigated agriculture. Field tests were carried out in order to compare crop yield and solar pump plant performance, for the photovoltaic conversion of solar energy, connected to drip irrigation and sprinkler system plants during the irrigation season. The system mainly consists of the parts listed here: set of flat photovoltaic panels consisting of 150 panels for a total of 3000 W peak value once installed, connected in serial-parallel to obtain a 120 Vdc operating voltage rating. The panels utilize 36 serially connected single-crystal silicon cells providing a 12 V voltage rating. The serial connection of 10 panels generates the system's operating voltage rating (120 Vdc). The total 3000 W peak value power is obtained by connecting in parallel 15 serial-strings. When the circuit is open, the voltage at the ends of the panels can reach 210 Volts. The photovoltaic system supplies, through an inverter, a three-phase 1.6 kW canned pump located in the artesian well. The relevant hydraulic line connects this pump to the various utilities. The hydraulic capacity of the helium pump has been used during the irrigation season in order to meet the water needs of a corn crop. Therefore, along with the solar pump was used a dispersing wing type drip irrigation system with double chamber hosing (70 kPa operating pressure), with external holes spaced 0.3 m apart, 0.75 m distance between the wings, wing length 120 m and placed between the corn rows. During the irrigation tests for the autoclave pressure values already mentioned, we obtained an 80 l min-1 flow rate value with a 28 m head value measured by pressure gauge upstream from the electric pump. In these conditions and on sunny days a 26 m3 water body was obtained. From the agronomic point of view, the crop developed more than usual, did not undergo parasite attack nor lodging or cutting off of the steams during the biological cycle, and the development of weeds was limited. The grain production amounted to 10.5 t ha-1, 12.4 % higher with respect to the rain-irrigated parcels. Crop yield results showed better performance of the drip irrigation plant with respect to the sprinkler system. The photovoltaic system met design expectations and showed good reliability during the years of testing. The long-term tests showed that the photovoltaic system is capable of supplying a farm. The problem linked with combustion of fossil fuel will improve this system of energy supply to agricultural farms located in areas not reached by the power network both in Europe and in the sub Saharan countries where many plans are developing in last year pursuing also the scope of a drastic reduction of GHG fluxes. Acknowledgements This work was carried out under the auspices of the special project "Sceneries of adaptation of the Italian agriculture to the climatic changes" (AGROSCENARI) of the Agricultural Research Council, and Italian Ministry of the Agricultural and Forestry Politics.
Azevedo, A; Etchepare, R; Rubio, J
2017-05-01
Raw water clarification by flotation was studied by injecting air into a centrifugal multiphase pump to generate microbubbles (MBs) and nanobubbles (NBs). Measurements of gas dispersion parameters were performed and optimal conditions were obtained using a pump pressure of 4 bar. Values showed a bubble Sauter diameter of 75 μm, an air holdup of 1.2%, a bubble surface area flux of 34 s -1 and an NB concentration of 1 × 10 8 NBs mL -1 (measuring 220 nm). Then, a study compared flotation with bubbles formed with the multiphase pump (F-MP) to lamellar settling at the clarification stage of a water treatment plant (WTP), in Brazil. The F-MP showed a higher separation efficiency at high hydraulic loads (9-15 m h -1 ), even without the use of a polymer, reaching 2 NTU (10-25 NTU raw water feed), which was much lower than the technical goal of the WTP (5 NTU). The results and the technical aspects are discussed, and it is concluded that the employment of MBs and NBs with pumps widens new research lines and applications in modern flotation.
Hybrid macro-micro fluidics system for a chip-based biosensor
NASA Astrophysics Data System (ADS)
Tamanaha, C. R.; Whitman, L. J.; Colton, R. J.
2002-03-01
We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators. The microfluidics system includes channels, valveless diffuser-based pumps, and pinch-valves that are cast into a poly(dimethylsiloxane) (PDMS) membrane and packaged along with the sensor chip into a palm-sized plastic cartridge. The microfluidics are driven by pump and valve actuators contained in an external unit (with a volume ~30 cm3) that interfaces kinematically with the PDMS microelements on the cartridge. The pump actuator is a simple-lever, flexure-hinge displacement amplifier that increases the motion of a piezoelectric stack. The valve actuators are an array of cantilevers operated by shape memory alloy wires. All components can be fabricated without the need for complex lithography or micromachining, and can be used with fluids containing micron-sized particulates. Prototypes have been modeled and tested to ensure the delivery of microliter volumes of fluid and the even dispersion of reagents over the chip sensing elements. With this hybrid approach to the fluidics system, the biochemical assay benefits from the many advantages of microfluidics yet we avoid the complexity and unknown reliability of immature microactuator technologies.
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Markusic, T. E.; Stanojev, B. J.
2007-01-01
Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.
Particle protection capability of SEMI-compliant EUV-pod carriers
NASA Astrophysics Data System (ADS)
Huang, George; He, Long; Lystad, John; Kielbaso, Tom; Montgomery, Cecilia; Goodwin, Frank
2010-04-01
With the projected rollout of pre-production extreme ultraviolet lithography (EUVL) scanners in 2010, EUVL pilot line production will become a reality in wafer fabrication companies. Among EUVL infrastructure items that must be ready, EUV mask carriers remain critical. To keep non-pellicle EUV masks free from particle contamination, an EUV pod concept has been extensively studied. Early prototypes demonstrated nearly particle-free results at a 53 nm PSL equivalent inspection sensitivity during EUVL mask robotic handling, shipment, vacuum pump-purge, and storage. After the passage of SEMI E152, which specifies the EUV pod mechanical interfaces, standards-compliant EUV pod prototypes, including a production version inner pod and prototype outer pod, were built and tested. Their particle protection capability results are reported in this paper. A state-of-the-art blank defect inspection tool was used to quantify their defect protection capability during mask robotic handling, shipment, and storage tests. To ensure the availability of an EUV pod for 2010 pilot production, the progress and preliminary test results of pre-production EUV outer pods are reported as well.
Preliminary study of a gas burner-driven and ground-coupled heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.F.
1995-12-31
To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less
Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael
2011-10-01
Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota; ...
2018-02-28
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
High energy diode-pumped solid-state laser development at the Central Laser Facility
NASA Astrophysics Data System (ADS)
Mason, Paul D.; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Butcher, Thomas; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Hernandez-Gomez, Cristina; Edwards, Chris; Collier, John
2016-04-01
In this paper we review the development of high energy, nanosecond pulsed diode-pumped solid state lasers within the Central Laser Facility (CLF) based on cryogenic gas cooled multi-slab ceramic Yb:YAG amplifier technology. To date two 10J-scale systems, the DiPOLE prototype amplifier and an improved DIPOLE10 system, have been developed, and most recently a larger scale system, DiPOLE100, designed to produce 100 J pulses at up to 10 Hz. These systems have demonstrated amplification of 10 ns duration pulses at 1030 nm to energies in excess of 10 J at 10 Hz pulse repetition rate, and over 100 J at 1 Hz, with optical-to-optical conversion efficiencies of up to 27%. We present an overview of the cryo-amplifier concept and compare the design features of these three systems, including details of the amplifier designs, gain media, diode pump lasers and the cryogenic gas cooling systems. The most recent performance results from the three systems are presented along with future plans for high energy DPSSL development within the CLF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, Theodore M.; Marcus, Chris; Klepper, C Christopher
The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate themore » performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].« less
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
NASA Astrophysics Data System (ADS)
Lamborg, C. H.; Buesseler, K. O.; Valdes, J.; Bertrand, C. H.; Bidigare, R.; Manganini, S.; Pike, S.; Steinberg, D.; Trull, T.; Wilson, S.
2008-07-01
As part of the VERTIGO program, we collected and analyzed sinking particles using tethered and neutrally buoyant sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). This effort represented the first large-scale use of neutrally buoyant traps and represents a significant step forward in the study of the marine biological pump. In this paper, we present the results of mass, macronutrient, biominerals and phytoplankton pigment determinations made on these samples. The impact of a variety of potential collection biases were examined, including those from in-trap particle degradation, zooplankton swimmers and poisons. Though these factors have been observed to affect results in other programs, we found them to have relatively little impact on measured fluxes in this study. There was evidence, however, that the neutrally buoyant traps performed better than the tethered traps in terms of flux accuracy during one deployment, possibly because of improved large particle collection efficiency. Fluxes of material exhibited three different patterns through the mesopelagic: increasing, decreasing and constant with depth. Decreasing fluxes with depth were observed for all biogenic material formed in the euphotic zone. The attenuation of flux with depth was not the same for all components, however, with phytoplankton pigments exhibiting the greatest degradation with depth and particulate inorganic carbon the least. Organic carbon and nitrogen showed a very high correlation in these samples, with little evidence of different attenuation length scales. Increasing fluxes with depth were observed for particulate Ba at both sites and Al at K2. The increases in Ba are attributed to the formation of barite in degrading particles, while increasing Al at K2 was the result of lateral inputs from a continental shelf/slope. Constant fluxes with depth were observed for Al at ALOHA, where fluxes appeared to be in steady state with atmospheric dust deposition. The mesopelagic zone at K2 was observed to attenuate particle flux less than at ALOHA, and with a higher POC/PIC ("rain") ratio. These two factors combine to imply that the Subarctic province had a much more efficient biological pump than had the subtropical gyre during our occupations. This could be the result of either faster sinking particles, generated from grazing by large zooplankton, or inherently slower particle degradation rates.
Executive Summary Geotechnical Siting Investigations FY 81.
1981-11-30
and dolomites of Cambrian to Ordovician age, and 3) the Ely Springs, Laketown, Sevy and Simonson dolomites , and the Guilmette Formation of Ordovician to...deposits. o A test well in southern Coyote Spring Valley that penetrated fractured carbonate rock was pumped by Ertec for 30 days at a rate of 3400 gpm...tire type, tire pressure , and wheel load for the prototype MX missile transporter. 6.4.2.2 CBR Versus CPT Correlation Studies Field and laboratory
Takatani, Setsuo; Hoshi, Hideo; Tajima, Kennichi; Ohuchi, Katsuhiro; Nakamura, Makoto; Asama, Junichio; Shimshi, Tadahiko; Yoshikawa, Masaharu
2005-01-01
In this study, a seal-less, tiny centrifugal rotary blood pump was designed for low-flow circulatory support in children and infants. The design was targeted to yield a compact and priming volume of 5 ml with a flow rate of 0.5-4 l/min against a head pressure of 40-100 mm Hg. To meet the design requirements, the first prototype had an impeller diameter of 30 mm with six straight vanes. The impeller was supported with a needle-type hydrodynamic bearing and was driven with a six-pole radial magnetic driver. The external pump dimensions included a pump head height of 20 mm, diameter of 49 mm, and priming volume of 5 ml. The weight was 150 g, including the motor driver. In the mock circulatory loop, using fresh porcine blood, the pump yielded a flow of 0.5-4.0 l/min against a head pressure of 40-100 mm Hg at a rotational speed of 1800-4000 rpm using 1/4" inflow and outflow conduits. The maximum flow and head pressure of 5.25 l/min and 244 mm Hg, respectively, were obtained at a rotational speed of 4400 rpm. The maximum electrical-to-hydraulic efficiency occurred at a flow rate of 1.5-3.5 l/min and at a rotational speed of 2000-4400 rpm. The normalized index of hemolysis, which was evaluated using fresh porcine blood, was 0.0076 g/100 l with the impeller in the down-mode and a bearing clearance of 0.1 mm. Further refinement in the bearing and magnetic coupler are required to improve the hemolytic performance of the pump. The durability of the needle-type hydrodynamic bearing and antithrombotic performance of the pump will be performed before clinical applications. The tiny centrifugal blood pump meets the flow requirements necessary to support the circulation of pediatric patients.
NASA Astrophysics Data System (ADS)
Wang, Botao; Ünal, F. Nur; Eckardt, André
2018-06-01
The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, R.C.; Quigley, G.P.
1996-12-17
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Oehler, William; Dionne, Steve; Converse, David; Jennings, Mallory A.
2012-01-01
NASA s plans for Extravehicular Activity (EVA) portable life support systems for future exploration missions result in different design requirements than those which led to the combined fan / pump / separator in the current ISS Extravehicular Mobility Unit (EMU). To meet these new requirements, NASA contracted with Hamilton Sundstrand to provide two new prototype fans designed to meet anticipated future system requirements. Based on design trade studies, a high speed fan with mechanical bearing support of the rotating elements and a novel non-metallic barrier canned motor design was developed and implemented in the deliverable prototypes. The prototypes, which used two different bearing lubricants, have been extensively tested in both stand-alone and integrated system tests in NASA laboratories and proven to meet the anticipated performance requirements. Subsequently, they have been subjected to post test inspection and analysis in Hamilton Sundstrand laboratories to assess the effects of integrated operation and resultant exposure to vent loop contaminants. Results have confirmed expectations that one of the lubricants would be superior in this application and the prototype fans have been reassembled with new bearings with the superior lubricant. They have now been returned to the Johnson Space Center for further testing and maturation as part of NASA s PLSS 2.0 integrated test effort. This paper will discuss the test history of these units, resulting test data, the results of post test evaluation, and plans for further testing in the near future.
An implantable seal-less centrifugal pump with integrated double-disk motor.
Schima, H; Schmallegger, H; Huber, L; Birgmann, I; Reindl, C; Schmidt, C; Roschal, K; Wieselthaler, G; Trubel, W; Losert, U
1995-07-01
Thrombus formation and sealing problems at the shaft as well as the compact and efficient design of the driving unit have been major difficulties in the construction of a long-term implantable centrifugal pump. To eliminate the problems of the seal, motor size, and efficiency, two major steps were taken by modifying the Vienna implantable centrifugal pump. First, a special driving unit was developed, in which the permanent magnets of the motor themselves are used for coupling the force into the rotor. Second, the rotor shaft in the pumping chamber was eliminated by adopting a concept recently presented by Ohara. The rotor is supported by 3 pins, which run on a carbon disk, whose concave shape leads to stabilization. The device has the following specifications: size: 65 mm (diameter) by 35 mm (height), 101 cm3; priming volume 30 cm3, 240 g; and a 6-pole brushless double disk DC motor. The required input power of the described prototype is 15 W at 150 mm Hg, 5 L/min (overall eta = 11%), and has an in vitro index of hemolysis (IH) of 0.0046 g/100 L. The test for in vitro thrombus growth exhibited far less thrombus formation in the new design than in designs with axles. In conclusion, the design of a special driving unit and the elimination of the axle led to the construction of a small pump with very low blood traumatization.
A Compact and Low Cost Electronic Nose for Aroma Detection
Macías, Miguel Macías; Agudo, J. Enrique; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo
2013-01-01
This article explains the development of a prototype of a portable and a very low-cost electronic nose based on an mbed microcontroller. Mbeds are a series of ARM microcontroller development boards designed for fast, flexible and rapid prototyping. The electronic nose is comprised of an mbed, an LCD display, two small pumps, two electro-valves and a sensor chamber with four TGS Figaro gas sensors. The performance of the electronic nose has been tested by measuring the ethanol content of wine synthetic matrices and special attention has been paid to the reproducibility and repeatability of the measurements taken on different days. Results show that the electronic nose with a neural network classifier is able to discriminate wine samples with 10, 12 and 14% V/V alcohol content with a classification error of less than 1%. PMID:23698265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhengyan; Zgadzaj, Rafal; Wang Xiaoming
2010-11-04
We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index 'bubble' in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the 'bubble'. Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the 'bubble' from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporalmore » Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.« less
Electron-Tunneling Magnetometer
NASA Technical Reports Server (NTRS)
Kaiser, William J.; Kenny, Thomas W.; Waltman, Steven B.
1993-01-01
Electron-tunneling magnetometer is conceptual solid-state device operating at room temperature, yet offers sensitivity comparable to state-of-art magnetometers such as flux gates, search coils, and optically pumped magnetometers, with greatly reduced volume, power consumption, electronics requirements, and manufacturing cost. Micromachined from silicon wafer, and uses tunneling displacement transducer to detect magnetic forces on cantilever-supported current loop.
Pressure pumping of carbon dioxide from soil
E. S. Takle; J. R. Brandle; R. A. Schmidt; R. Garcia; I. V. Litvina; G. Doyle; X. Zhou; Q. Hou; C. W. Rice; W. J. Massman
2000-01-01
Recent interest in atmospheric increases in carbon dioxide have heightened the need for improved accuracy in measurements of fluxes of carbon dioxide from soils. Diffusional movement has long been considered the dominant process by which trace gases move from the subsurface source to the surface, although there has been some indication that atmospheric pressure...
Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Sanzi, James L.; Jaworske, Donald A.
2012-01-01
Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.
Air Compressibility Effect on Bouwer and Rice Seepage Meter.
Peng, Xin; Zhan, Hongbin
2017-11-01
Measuring a disconnected streambed seepage flux using a seepage meter can give important streambed information and help understanding groundwater-surface water interaction. In this study, we provide a correction for calculating the seepage flux rate with the consideration of air compressibility inside the manometer of the Bouwer and Rice seepage meter. We notice that the effect of air compressibility in the manometer is considerably larger when more air is included in the manometer. We find that the relative error from neglecting air compressibility can be constrained within 5% if the manometer of the Bouwer and Rice seepage meter is shorter than 0.8 m and the experiment is done in a suction mode in which air is pumped out from the manometer before the start of measurement. For manometers longer than 0.8 m, the relative error will be larger than 5%. It may be over 10% if the manometer height is longer than 1.5 m and the experiment is done in a no-suction mode, in which air is not pumped out from the manometer before the start of measurement. © 2017, National Ground Water Association.
V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration.
Monteiro, Joana; Aires, Rita; Becker, Jörg D; Jacinto, António; Certal, Ana C; Rodríguez-León, Joaquín
2014-01-01
The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.
V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration
Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín
2014-01-01
The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205
Evaluation of heat and particle controllability on the JT-60SA divertor
NASA Astrophysics Data System (ADS)
Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.
Testing of Liquid Metal Components for Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise
2010-01-01
The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal efficiency of 28%. A baseline performance map was established for the pair of 1kW Stirling convertors. The performance data will then be used for design modification to the Stirling convertors. The ALIP tested at MSFC has no moving parts and no direct electrical connections to the liquid metal containing components. Pressure is developed by the interaction of the magnetic field produced by the stator and the current which flows as a result of the voltage induced in the liquid metal contained in the pump duct. Flow is controlled by variation of the voltage supplied to the pump windings. Under steady-state conditions, pump performance is measured for flow rates from 0.5-4.3 kg/s. The pressure rise developed by the pump to support these flow rates is roughly 5-65 kPa. The RMS input voltage (phase-to-phase voltage) ranges from 5-120 V, while the frequency can be varied arbitrarily up to 60 Hz. Performance is quantified at different loop temperature levels from 50 C up to 650 C, which is the peak operating temperature of the proposed AFSP reactor. The transient response of the pump is also evaluated to determine its behavior during startup and shut-down procedures.
Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.
2009-01-01
A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
Performance Testing of a Liquid Metal Pump for In-Space Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt
2011-01-01
Fission surface power (FSP) systems could be used to provide power on the surface of the moon, Mars, or other planets and moons of our solar system. Fission power systems could provide excellent performance at any location, including those near the poles or other permanently shaded regions, and offer the capability to provide on demand power at any time, even at large distances from the sun. Fission-based systems also offer the potential for outposts, crew and science instruments to operate in a power-rich environment. NASA has been exploring technologies with the goal of reducing the cost and technical risk of employing FSP systems. A reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system is also readily extensible for use on Mars, where it would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Detailed development of the FSP concept and the reference mission are documented in various other reports. The development discussed in this paper prepares the way for testing of the Technology Demonstration Unit (TDU), which is a 10 kWe end-to-end test of FSP technologies intended to raise the entire FSP system to technology readiness level (TRL) 6. The Early Flight Fission Test Facility (EFF-TF) was established by NASA s Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a nonnuclear test methodology. This includes fabrication and testing at both the module/component level and at near prototypic reactor components and configurations allowing for realistic thermal-hydraulic evaluations of systems. The liquid-metal pump associated with the FSP system must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National Laboratory (INL) was tasked with the modeling, design, and fabrication of an ALIP suitable for the FSP reference mission. A prototypic ALIP was fabricated under the direction of INL and shipped to MSFC for inclusion in the Technology Demonstration Unit (TDU), a quarter-scale end-to-end reactor simulator system that is scheduled for testing at NASA-GRC. Before inclusion in the TDU, the ALIP was tested in the ALIP test circuit (ATC), which is a rig developed and operated at MSFC for the specific purpose of providing accurate quantification of liquid metal pump performance. Data showing the pump performance curves (pressure, flowrate, and pump efficiency) are presented for various operating power levels, demonstrating the full performance envelope of the pump.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2007-10-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2008-03-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less
NASA Astrophysics Data System (ADS)
Vautier, Camille; Dulaiova, Henrietta
2017-04-01
Hawaiian coastal waters suffer from excess terrestrial nutrient loading, most of which comes from submarine groundwater discharge (SGD). This study quantifies and distinguishes the role of the fresh terrestrial and tidally pumped salt water components of SGD into the nearshore zone of two reefs on the island of Oahu: Maunalua Bay and Kāneohe Bay. The two components of SGD are characterized using isotopic techniques, and the study mainly focuses on the less understood recirculation component. A two-step approach is implemented: first, a conceptual model of groundwater circulation is established; second, nutrient fluxes associated with seawater recirculation are quantified. Groundwater circulation through the beach berm is quantified and characterized using 222Rn and 224Ra activity measurements. Nutrient fluxes are obtained by coupling nutrient concentration measurements and discharge estimates. The isotopic signatures inform us about the influence of the tidal cycle on groundwater circulation. 222Rn, 224Ra, and δ18O isotopes are used to derive apparent ages of the infiltrated seawater and allow us to quantify recirculation rates. The method is also complemented with the use of silicate concentration as tracers of the recirculation process. The trends in apparent ages observed in pore water in Maunalua match previously published conceptual groundwater circulation models and show a sequentially aging pore water circulation loop. However, the ages obtained in Kāneohe suggest a different tidal pumping dynamic that lacks a circulation loop, perhaps resulting from the absence of freshwater discharge. Derived nutrient fluxes show that the autochthonous production of inorganic nitrogen and phosphorus that occurs during seawater recirculation has a significant impact on nutrient cycles in the nearshore areas of the bays. This result suggests that seawater recirculation should be taken into account in biogeochemical studies of coastal areas.
NASA Astrophysics Data System (ADS)
Gloege, Lucas; McKinley, Galen A.; Mouw, Colleen B.; Ciochetto, Audrey B.
2017-07-01
The shunt of photosynthetically derived particulate organic carbon (POC) from the euphotic zone and deep remineralization comprises the basic mechanism of the "biological carbon pump." POC raining through the "twilight zone" (euphotic depth to 1 km) and "midnight zone" (1 km to 4 km) is remineralized back to inorganic form through respiration. Accurately modeling POC flux is critical for understanding the "biological pump" and its impacts on air-sea CO2 exchange and, ultimately, long-term ocean carbon sequestration. Yet commonly used parameterizations have not been tested quantitatively against global data sets using identical modeling frameworks. Here we use a single one-dimensional physical-biogeochemical modeling framework to assess three common POC flux parameterizations in capturing POC flux observations from moored sediment traps and thorium-234 depletion. The exponential decay, Martin curve, and ballast model are compared to data from 11 biogeochemical provinces distributed across the globe. In each province, the model captures satellite-based estimates of surface primary production within uncertainties. Goodness of fit is measured by how well the simulation captures the observations, quantified by bias and the root-mean-square error and displayed using "target diagrams." Comparisons are presented separately for the twilight zone and midnight zone. We find that the ballast hypothesis shows no improvement over a globally or regionally parameterized Martin curve. For all provinces taken together, Martin's b that best fits the data is [0.70, 0.98]; this finding reduces by at least a factor of 3 previous estimates of potential impacts on atmospheric pCO2 of uncertainty in POC export to a more modest range [-16 ppm, +12 ppm].
Activated-Carbon Sorbent With Integral Heat-Transfer Device
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Yavrouian, Andre
1996-01-01
Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.
Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance
2013-01-01
During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not involved their quantification in molar units. Determination of ATPase activity in homogenates and plasma membranes obtained from muscle has shown ouabain-suppressible stimulatory effects of Na+ and K+. PMID:24081980
Ouyang, Wen; Tchida, Colin
2017-05-02
Static torque, no load, constant speed, and sinusoidal oscillation test data for a 10hp, 300rpm magnetically-geared generator prototype using either an adjustable load bank for a fixed resistance or an output power converter.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Robinson, Richard D.; Wahlgren, Glenn M.; Linsky, Jeffrey L.; Brown, Alexander
1994-01-01
We present far-UV (1200-1930 A) observations of the prototypical red supergiant star alpha Ori, obtained with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). The observations, obtained in both low- (G140L) and medium- (G160/200M) resolution modes, unamibiguously confirm that the UV 'continuum' tentatively seen with (IUE) is in fact a true continuum and is not due to a blend of numerous faint emission features or scattering inside the IUE spectrograph. This continuum appears to originate in the chromospheric of the star at temperatures ranging from 3000-5000 K, and we argue that it is not related to previously reported putative companions or to bright spots on the stellar disk. Its stellar origin is further confirmed by overlying atomic and molecular absorptions from the chromosphere and circumstellar shell. The dominant structure in this spectral region is due to nine strong, broad absorption bands of the fourth-positive A-X system of CO, superposed on this continuum in the 1300-1600 A region. Modeling of this CO absorption indicates that it originates in the circumstellar shell in material characterized by T = 500 K, N(CO) = 1.0 x 10(exp 18) per sq cm, and V(sub turb) = 5.0 km per sec. The numerous chromospheric emission features are attributed mostly to fluorescent lines of Fe II and Cr II (both pumped by Lyman Alpha) and S I lines, plus a few lines of O I, C I, and Si II. The O I and C I UV 2 multiplets are very deficient in flux, compared to both the flux observed in lines originating from common upper levels but with markedly weaker intrinsic strength (i.e., O I UV 146 and C I UV 32) and to the UV 2 line fluxes seen in other cool, less luminous stars. This deficiency appears to be caused by strong self-absorption of these resonance lines in the circumstellar shell and/or upper chromosphere of alpha Ori. Atomic absorption features, primarily due to C I and Fe II are clearly seen in the G160M spectrum centered near 1655 A. These Fe II features are formed at temperatures that can occur only in the chromosphere of the star and are clearly not photospheric or circumstellar in origin.
NASA Astrophysics Data System (ADS)
Bohlin, R. C.; Gordon, K. D.; Rieke, G. H.; Ardila, D.; Carey, S.; Deustua, S.; Engelbracht, C.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Noriega-Crespo, A.; Su, K. Y. L.; Tremblay, P.-E.
2011-05-01
The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 μm band-4 fluxes of Rieke et al. are about 1.5% ± 2% higher than those of Reach et al. and are also in agreement with our 8 μm result.
NASA Astrophysics Data System (ADS)
Newton, Hayley; Walkup, Laura L.; Whiting, Nicholas; West, Linda; Carriere, James; Havermeyer, Frank; Ho, Lawrence; Morris, Peter; Goodson, Boyd M.; Barlow, Michael J.
2014-05-01
Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell.
NASA Astrophysics Data System (ADS)
Fernández-Torrijos, María; Marugán-Cruz, Carolina; Sobrino, Celia; Santana, Domingo
2017-06-01
In this work, a molten salt test loop to study the heat transfer process in external molten salt receivers is described. The experimental installation is formed by a cylindrical molten salt tank, a pump, a flow meter, and an induction heater to generate the heat flux, which is applied in a small rectangular region of the tube surface. In central tower plants, the external receiver pipe is considered to be under unilateral concentrated solar radiation, because only one side of the pipe receives high heat flux. The main advantage of using an induction heater is the control of heating in different areas of the tube. In order to measure the effects of a non-homogenous and unsteady heat flux on the wall temperature distribution a series of experiments have been carried out. 4 K-type thermocouples have been welded at different axial and azimuthal positions of the pipe to obtain the wall temperature distribution. Different temperature measurements have been made varying the heat flux and water velocity to study their effects on the heat transfer process.
NASA Astrophysics Data System (ADS)
Estapa, M. L.
2016-02-01
Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.
Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.
Pearce, J M; Anzalone, N C; Heldt, C L
2016-08-01
The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C. Keith; Shen, Bo; Shrestha, Som S.
This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less
5-kWe Free-piston Stirling Engine Convertor
NASA Technical Reports Server (NTRS)
Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.
2008-01-01
The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and transient response to temperature and load variations. Future activities may include testing at NASA GRC.
NASA Astrophysics Data System (ADS)
Didi, Abdessamad; Dadouch, Ahmed; Bencheikh, Mohamed; Jai, Otman
2017-09-01
The neutron activation analysis is a method of exclusively elemental analysis. Its implementation of irradiates the sample which can be analyzed by a high neutron flux, this method is widely used in developed countries with nuclear reactors or accelerators of particle. The purpose of this study is to develop a prototype to increase the neutron flux such as americium-beryllium and have the opportunity to produce radioisotopes. Americium-beryllium is a mobile source of neutron activity of 20 curie, and gives a thermal neutron flux of (1.8 ± 0.0007) × 106 n/cm2 s when using water as moderator, when using the paraffin, the thermal neutron flux increases to (2.2 ± 0.0008) × 106 n/cm2 s, in the case of adding two solid beryllium barriers, the distance between them is 24 cm, parallel and symmetrical about the source, the thermal flux is increased to (2.5 ± 0.0008) × 106 n/cm2 s and in the case of multi-source (6 sources), with-out barriers, increases to (1.17 ± 0.0008) × 107 n/cm2 s with a rate of increase equal to 4.3 and with the both barriers flux increased to (1.37 ± 0.0008) × 107 n/cm2 s.
Influence of magnet eddy current on magnetization characteristics of variable flux memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang
2018-05-01
In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.
NASA Astrophysics Data System (ADS)
Macfarlane, P. A.
2006-12-01
Students seldom have an opportunity to explore the issues related to the environmental impact of contamination on water resources. With NSF support we have developed the prototype Plume Busters, in which students take on the role of an environmental consultant. The software consists of an interactive, Java application and accompanying HTML linked pages. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by the spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The application simulates movement of a plume from a pipeline break through a shallow alluvial aquifer towards the river upstream from a municipal water supply intake. To locate the plume, the student places observation wells on a gridded map of the study area and the simulation returns the contaminant concentrations at those locations on the appropriate sample dates. Once the plume is located, the student is able to site pumping and injection wells on the map for aquifer remediation using a simple pump-and-treat technique. The simulation then computes the movement of particles to the pumping wells and returns the cumulative mass removed by the production remediation well. Plume Busters also provides teachers with a means to initiate student exploration of a wide range of environmental issues, including (1) source-water assessment and ground-water and wellhead protection zones, (2) the impact of human activities and technology on the hydrosphere and the biosphere, (3) the role of technology in the resolution of environmental issues (4) legal, social, political, and economic implications of environmental issues, and (5) risk assessment resulting from human activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb Aldrich; Lois Arena; Dianne Griffiths
2010-12-31
This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less
NASA Technical Reports Server (NTRS)
Reveley, W. F.; Nuccio, P. P.
1975-01-01
Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.
Micro sculpting technology using DPSSL
NASA Astrophysics Data System (ADS)
Chang, Won-Seok; Shin, Bosung; Kim, Jae-gu; Whang, Kyung-Hyun
2003-11-01
Multiple pulse laser ablation of polymer is performed with DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO4 laser (355 nm) in order to fabricate three-dimensional micro components. Here we considered mechanistic aspects of the interaction between UV laser and polymer to obtain optimum process conditions for maskless photomachining using DPSSL. The photo-physical and photochemical parameters such as laser wavelength and optical characteristics of polymers are investigated by experiments to reduce plume effect, which induce the re-deposited debris on the surface of substrate. In this study, LDST (laser direct sculpting technique) are developed to gain various three-dimensional shape with size less than 500 micrometer. Main process sequences are from rapid prototyping technology such as CAD/CAM modeling of products, machining path generation, layer-by-layer machining, and so on. This method can be applied to manufacture the prototype of micro device and the polymer mould for mass production without expensive mask fabrication.
An underwater optical wireless communication system based on LED source
NASA Astrophysics Data System (ADS)
Rao, Jionghui; Wei, Wei; Wang, Feng; Zhang, Xiaohui
2011-11-01
Compared with other communication methods, optical wireless communication (OWC) holds the merits of higher transmitting rate and sufficient secrecy. So it is an efficacious communicating measure for data transmitting between underwater carriers. However, due to the water attenuation and the transmitter & the receiver (TX/RX) collimation, this application is restrained in underwater mobile carriers. A prototype for underwater OWC was developed, in which a high-powered green LED array was used as the light source which partly raveled the TX/RX collimation out. A small pumped-multiple-tube (PMT) was used as the detector to increase the communicating range, and FPGA chips were employed to code and decode the communicating data. The data rate of the prototype approached to 4 Mb/s at 8.4m and 1 Mb/s at 22m where voice and Morse communications were achieved in a scope of 30 degree TX/RX angle.
NASA Astrophysics Data System (ADS)
Bergeard, Nicolas; Schaffert, Stefan; López-Flores, Víctor; Jaouen, Nicolas; Geilhufe, Jan; Günther, Christian M.; Schneider, Michael; Graves, Catherine; Wang, Tianhan; Wu, Benny; Scherz, Andreas; Baumier, Cédric; Delaunay, Renaud; Fortuna, Franck; Tortarolo, Marina; Tudu, Bharati; Krupin, Oleg; Minitti, Michael P.; Robinson, Joe; Schlotter, William F.; Turner, Joshua J.; Lüning, Jan; Eisebitt, Stefan; Boeglin, Christine
2015-02-01
The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.
Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messmer, Craig S.
2016-09-30
This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less
Transverse diode-pumped neodymium-doped yttrium vanadate laser of simple design
NASA Astrophysics Data System (ADS)
Agüero, Mónica B.; Hnilo, Alejandro A.; Kovalsky, Marcelo G.
2010-03-01
The design and performance of an all-solid-state Nd:YVO4 laser, transversely pumped by a single 20-W (at 808 nm) diode with no coupling optics, are presented. The prototype, which is devised to be the source of a micro-LIDAR station, is very simple, easy to align, compact, and stable. The key element is a roof prism as the end mirror of the laser cavity, which is used to symmetrize the effects of the thermal distortion and the inhomogeneity of the population inversion distribution. Typical numbers are 4.2-W cw with a slightly astigmatic (3:2) homogeneous spot and a divergence of 0.5 mrad. The protoype is also tested in the active Q-switching mode, providing pulses 50-ns full width at half maximum (FWHM) at 14 KHz, 3.5 W average. Frequency doubling external to the cavity in a nonoptimized configuration provides 700 mW at 532 nm.
Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.
Khanwilkar, P; Olsen, D; Bearnson, G; Allaire, P; Maslen, E; Flack, R; Long, J
1996-06-01
Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans.
The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A; Armstrong, P; Ault, E
Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontiummore » fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; ...
2018-03-12
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
NASA Astrophysics Data System (ADS)
Serrano, S.; de Gracia, A.; Pérez, G.; Cabeza, L. F.
2017-10-01
The building envelope has high potential to reduce the energy consumption of buildings according to the International Energy Agency (IEA) because it is involved along all the building process: design, construction, use, and end-of-life. The present study compares the thermal behavior of seven different building prototypes tested under Mediterranean climate: two of them were built with sustainable earth-based construction systems and the other five, with conventional brick construction systems. The tested earth-based construction systems consist of rammed earth walls and wooden green roofs, which have been adapted to contemporary requirements by reducing their thickness. In order to balance the thermal response, wooden insulation panels were placed in one of the earth prototypes. All building prototypes have the same inner dimensions and orientation, and they are fully monitored to register inner temperature and humidity, surface walls temperatures and temperatures inside walls. Furthermore, all building prototypes are equipped with a heat pump and an electricity meter to measure the electrical energy consumed to maintain a certain level of comfort. The experimentation was performed along a whole year by carrying out several experiments in free floating and controlled temperature conditions. This study aims at demonstrating that sustainable construction systems can behave similarly or even better than conventional ones under summer and winter conditions. Results show that thermal behavior is strongly penalized when rammed earth wall thickness is reduced. However, the addition of 6 cm of wooden insulation panels in the outer surface of the building prototype successfully improves the thermal response.
Young, H.W.; Lewis, R.E.; Backsen, R.L.
1979-01-01
The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho. The area has a rural population dependent on ground-water irrigation. Temperature of the ground water ranges from 15 C to more than 80 C. Ground water for irrigation is obtained from flowing and pumped wells. Discharge of thermal ground water from 104 irrigation wells and from 5 hot springs in 1978 was about 50,500 acre-feet. Convective heat flux from the geothermal system associated with this discharge was 4.97 x 10 to the 7th power calories per second. (Woodard-USGS)
Proton Probing using the T-Cubed Laser
NASA Astrophysics Data System (ADS)
Kordell, Peter; Campbell, Paul; Willingale, Louise; Maksimchuk, Anatoly; Krushelnick, Karl; Tubman, Eleanor; Woolsey, Nigel
2015-11-01
The University of Michigan's 20 TW, 400 fs pulse T-cubed laser can produce proton beams of up to 7.2 MeV through target normal sheeth acceleration. The proton flux at 4 MeV produces sufficient signal on Radiochromic Film for use as an ultrafast, electromagnetic field diagnostic. A two beam experiment has been set-up to enable co-timed, pump-probe relativistic intensity interactions. We present an evaluation of the flux, uniformity, energy and laminar flow of the proton probe for future use in imaging of a simple wire target interaction. This work was supported by the DOE (Grant No. DE-SC0012327).
Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates
NASA Astrophysics Data System (ADS)
Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo
2015-07-01
Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10 ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.
Li, Chao; Tao, Fei; Xu, Ping
2016-08-17
High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frerichs, H.; Schmitz, Oliver; Reiter, D.; ...
2014-02-04
The application of resonant magnetic perturbations (RMPs) results in a non-axisymmetric striation pattern of magnetic field lines from the plasma interior which intersect the divertor targets. The impact on related particle and heat fluxes is investigated by three dimensional computer simulations for two different recycling conditions (controlled via neutral gas pumping). It is demonstrated that a mismatch between the particle and heat flux striation pattern, as is repeatedly observed in ITER similar shape H-mode plasmas at DIII-D, can be reproduced by the simulations for high recycling conditions at the onset of partial detachment. Finally, these results indicate that a detailedmore » knowledge of the particle and energy balance is at least as important for realistic simulations as the consideration of a change in the magnetic field structure by plasma response effects.« less
Strophanthidin-sensitive sodium fluxes in metabolically poisoned frog skeletal muscle
1976-01-01
Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4- dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin- insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels. PMID:1086888
Fujimura, Takayasu; Uchi, Yukihiko; Fukuda, Makoto; Miyazaki, Miwa; Uezumi, Satoshi; Hiyoshi, Tatsuo
2004-01-01
Accumulated low molecular weight proteins in hemodialysis patients require a high-flux dialyzer. There have been several methods proposed for enhancing internal filtration, including narrowing the inside diameter of the hollow fibers, lengthening the fibers, and increasing the fiber density ratio. We tried to enhance the internal filtration by increasing the pressure drop in the dialysate compartment through increasing the fiber density ratio. If the fiber density ratio is too high, however, an irregular dialysate path may result, thus decreasing dialysis performance. Therefore, we took note of the shape of the inner housing and added a short taper structure, which improved the dialysate path dramatically. Consequently, we developed an internal filtration-enhanced dialyzer (APS-Prototype) to improve dialysis performance. The internal filtration rate in water (measured by Doppler ultrasound) was 13.2 l/session for the APS-Prototype and 5.3 l/session for the APS-15E. The amount of alpha1-microglobulin (alpha1-MG) in bovine plasma was 0.34 g for the APS-Prototype and 0.11 g for the APS-15E. In addition, the amount of alpha1-MG in vivo was 29.0% +/- 5.8% for the APS-Prototype, significantly higher than that for the APS-15E (13.6% +/- 1.9%). The desirable loss of albumin is 2-4 g in hemodiafiltration, and it was 3.92 +/- 1.03 g for the APS-Prototype. The prototype showed excellent solute removal performance with no clinical or engineering problems.
Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping
NASA Astrophysics Data System (ADS)
Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca
2017-11-01
Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).
Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Tosti, G; Darowski, M
2005-07-01
Merging numerical and physical models of the circulation makes it possible to develop a new class of circulatory models defined as hybrid. This solution reduces the costs, enhances the flexibility and opens the way to many applications ranging from research to education and heart assist devices testing. In the prototype described in this paper, a hydraulic model of systemic arterial tree is connected to a lumped parameters numerical model including pulmonary circulation and the remaining parts of systemic circulation. The hydraulic model consists of a characteristic resistance, of a silicon rubber tube to allow the insertion of an Intra-Aortic Balloon Pump (IABP) and of a lumped parameters compliance. Two electro-hydraulic interfaces, realized by means of gear pumps driven by DC motors, connect the numerical section with both terminals of the hydraulic section. The lumped parameters numerical model and the control system (including analog to digital and digital to analog converters)are developed in LabVIEW environment. The behavior of the model is analyzed by means of the ventricular pressure-volume loops and the time courses of arterial and ventricular pressures and flows in different circulatory conditions. A simulated pathological condition was set to test the IABP and verify the response of the system to this type of mechanical circulatory assistance. The results show that the model can represent hemodynamic relationships in different ventricular and circulatory conditions and is able to react to the IABP assistance.
Investigation of noise sources and propagation in external gear pumps
NASA Astrophysics Data System (ADS)
Opperwall, Timothy J.
Oil hydraulics is widely accepted as the best technology for transmitting power in many engineering applications due to its advantages in power density, control, layout flexibility, and efficiency. Due to these advantages, hydraulic systems are present in many different applications including construction, agriculture, aerospace, automotive, forestry, medical, and manufacturing, just to identify a few. Many of these applications involve the systems in close proximity to human operators and passengers where noise is one of the main constraints to the acceptance and spread of this technology. As a key component in power transfer, displacement machines can be major sources of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of applying fluid power systems to a wider range of applications, as well as improving the performance of current hydraulic systems. The present research aims to leverage previous efforts and develop new models and experimental techniques in the topic of noise generation caused by hydrostatic units. This requires challenging and surpassing current accepted methods in the understanding of noise in fluid power systems. This research seeks to expand on the previous experimental and modeling efforts by directly considering the effect that system and component design changes apply on the total sound power and the sound frequency components emitted from displacement machines and the attached lines. The case of external gear pumps is taken as reference for a new model to understand the generation and transmission of noise from the sources out to the environment. The lumped parameter model HYGESim (HYdraulic GEar machine Simulator) was expanded to investigate the dynamic forces on the solid bodies caused by the pump operation and to predict interactions with the attached system. Vibration and sound radiation were then predicted using a combined finite element and boundary element vibro-acoustic model as well as the influence of additional models for system components to better understand the essential problems of noise generation in hydraulic systems. This model is a step forward for the field due to the coupling of an advanced internal model of pump operation coupled to a detailed vibro-acoustic model. Several experimental studies were also completed in order to advance the current science. The first study validated the pump model in terms of outlet pressure ripple prediction through comparison to experimentally measured results for the reference pump as well as prototype pumps designed for low outlet pressure ripple. The second study focused on the air-borne noise through sound pressure and intensity measurements on reference and prototype pumps at steady-state operating conditions. A third study over a wide range of operating speeds and pressures was completed to explore the impact of operating condition and system design to greater detail through measuring noise and vibration in the working fluid, the system structures, and the air. Applying the knowledge gained through experimental and simulation studies has brought new advances in the understanding of the physics of noise generation and propagation in hydraulic components and systems. The focus of the combined simulation and modeling approach is to clearly understand the different contributions from noise sources and surpasses the previous methods that focus on the outlet pressure ripple alone as a source of noise. The application of the new modeling and experimental approach allows for new advances which directly contribute to advancing the science of noise in hydraulic applications and the design of new quieter hydrostatic units and hydraulic systems.
Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer
NASA Astrophysics Data System (ADS)
Klepper, C. C.; Biewer, T. M.; Marcus, C.; Andrew, P.; Gardner, W. L.; Graves, V. B.; Hughes, S.
2017-10-01
The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].
Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment
NASA Astrophysics Data System (ADS)
Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.
2014-01-01
We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.