Sample records for prototype liquid multifuel

  1. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  2. An experimental investigation of hybrid kerosene burner configurations for TPV applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, K.L.; Rose, M.F.; Burkhalter, J.E.

    1995-01-05

    A key element in thermophotovoltaic power generation is the development of a compact and efficient configuration for the thermal source and emitter. In the present work, a hybrid configuration was investigated which was composed of a liquid fueled diffusion type burner utilizing the emitting or mantle structure as the combustion chamber. The prototype burner operates on kerosene at fuel flow rates up to 1.0 kg/hr. Fuel is atomized using an 78 kHz ultrasonic nozzle with multifuel capabilities. Combustion is stabilized and heat transfer is enhanced via forced recirculation interior to the mantle structures. These structures range in size from 600more » to 1200 cm{sup 3} and are porous in nature. This paper presents an introduction to issues specific to the use of small scale liquid fueled burners for TPV applications, and burner performance data for a series of configurations, in terms of combustor surface temperature distribution, maximum mass loading and efficiency. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

  3. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  4. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  5. A review of Curtiss-Wright rotary engine developments with respect to general aviation potential

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1979-01-01

    Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.

  6. UKRAINIAN MULTI-FUEL REBURN DEMO

    EPA Science Inventory

    This research demonstrates a multi-fuel reburning system to allow the use of natural gas, fuel oil, or pulverized coal as the reburn fuel on a 300 MW wall-fired, we-bottom boiler in the Ukraine. The ability to use more than one fuel is critical to the success of reburning as a N...

  7. High-Performance Multi-Fuel AMTEC Power System

    DTIC Science & Technology

    2000-12-01

    AMTEC technology has demonstrated thermal to electric conversion efficiencies and power densities which make it an attractive option for meso-scaic...power generation. This report details development of an integrated, logistics-fueled, 500 W AMTEC power supply. The development targeted 2O% AMTEC ...cylindrical multi-tube/single cell AMTEC configuration with effective management of alkali metal flow; scaling down and integrating a multi-fuel micro-combustor

  8. Multifuel evaluation of rich/quench/lean combustor

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Novick, A. S.; Troth, D. L.

    1982-01-01

    The fuel flexible combustor technology was developed for application to the Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel-bound nitrogen (FBN), control of NOx can be effected through a staged combustor with a rich initial combustion zone. A rich/quench/lean variable geometry combustor utilizes the technology presented to achieve low NOx from alternate fuels containing FBN. The results focus on emissions and durability for multifuel operation.

  9. Development of a Multifuel Individual/Squad Stove

    DTIC Science & Technology

    1990-02-01

    1 . Final Letter Report, Fix Verification Test of the MISS, U.S. Army CRTC , April 1989. m. Health Hazard Assessment, 4 April 1989, enclosed. n...CIVIL, 1 \\48ABIpPTR TECHNICAL REPORT __...__AD _ NATICK/TR-90/020 ceq DEVELOPMENT OF A00 O MULTIFUEL o INDIVIDUAL/SQUAD STOVE N I O BY DONALD W...NUMBERS PROGRAM PROJECT ITASK ~ WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. D5i48 24 1 146 TITLE (Include Security Classification) D 2 Development of a

  10. Reduced detonation kinetics and detonation structure in one- and multi-fuel gaseous mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.; Trotsyuk, A. V.; Vasil'ev, A. A.

    2017-10-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one-fuel (CH4/air) and (ii) multi-fuel gaseous mixtures (CH4/H2/air and CH4/CO/air) are developed for the first time. The models for multi-fuel mixtures are proposed for the first time. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier’s principle. Constants of the models have a clear physical meaning. Advantages of the kinetic model for detonation combustion of methane has been demonstrated via numerical calculations of a two-dimensional structure of the detonation wave in a stoichiometric and fuel-rich methane-air mixtures and stoichiometric methane-oxygen mixture. The dominant size of the detonation cell, determines in calculations, is in good agreement with all known experimental data.

  11. Analysis and test of insulated components for rotary engine

    NASA Technical Reports Server (NTRS)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  12. Multifuel evaluation of rich/quench/lean combustor

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.; Notardonato, J.

    1982-01-01

    Test results on the RQL low NO(x) industrial gas turbine engine are reported. The air-staged combustor comprises an initial rich burning zone, followed by a quench zone, and a lean reaction and dilution zone. The combustor was tested as part of the DoE/NASA program to define the technology for developing a durable, low-emission gas turbine combustor capable of operation with minimally processed petroleum residual, synthetic, or low/mid-heating value gaseous fuels. The properties of three liquid and two gaseous fuels burned in the combustor trials are detailed. The combustor featured air staging, variable geometry, and generative/convective cooling. The lean/rich mixtures could be varied in zones simultaneously or separately while maintaining a specified pressure drop. Low NO(x) and smoke emissions were produced with each fuel burned, while high combustor efficiencies were obtained.

  13. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  14. Reduced chemical kinetic model of detonation combustion of one- and multi-fuel gaseous mixtures with air

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.

    2018-03-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one hydrocarbon fuel CnHm (for example, methane, propane, cyclohexane etc.) and (ii) multi-fuel gaseous mixtures (∑aiCniHmi) (for example, mixture of methane and propane, synthesis gas, benzene and kerosene) are presented for the first time. The models can be used for any stoichiometry, including fuel/fuels-rich mixtures, when reaction products contain molecules of carbon. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier's principle. Constants of the models have a clear physical meaning. The models can be used for calculation thermodynamic parameters of the mixture in a state of chemical equilibrium.

  15. 40 CFR 86.1801-12 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1801-12 Applicability. (a) Applicability. Except as otherwise... passenger vehicles, and Otto-cycle complete heavy-duty vehicles, including multi-fueled, alternative fueled... Otto-cycle heavy-duty vehicles. (c) Optional applicability. (1) [Reserved] (2) A manufacturer may...

  16. Military markets for solar thermal electric power systems

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.

    1980-01-01

    The Department of Defense maintains an inventory of over 1,800 MW of engine-generators 15 KW and larger, with an estimated procurement rate of over 140 MW/year. Nearly the entire requirement could be met by advanced heat engines of the types being developed as point-focussing, distributed receiver power plants. A conceptual system consisting of a heat engine which efficiently burns liquid fossil or synthetic fuels, with a 'solarization kit' for conversion to hybrid solar operation could meet existing DOD requirements for new systems which are quieter, lighter, and multi-fueled. An estimated 24 percent (33 MW/year) or more could operationally benefit from the solar option. Baseline cost projections indicate levelized energy cost goals of 210 to 120 mills/KWh (15 to 1000 KW systems). Fuel cost escalation is the major factor affecting the value of the solar option. A baseline calculation for fuel at $0.59/gal in spring, 1979, escalating at 8 percent above general inflation indicates a value of $2700/KWe for a solarization kit.

  17. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  18. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  19. Multifuel industrial steam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesko, J.E.

    An inefficient, unreliable steam generation and distribution system at the Red River Army Depot (Texarkana, Tex.), a major industrial facility of the federal government, was replaced with a modern, multifuel-burning steam plant. In the new plant, steam is generated by three high-pressure field-erected boilers burning 100 percent coal, 100 percent refuse, or any combination of the two, while maintaining particulate emissions, SO{sub 2} concentration, and NO{sub x} and chlorine levels at or better than clean air standards. The plant, which has been in operation since 1986, is now part of the Army's Energy/Environment Showcase for demonstrating innovative technology to publicmore » and private operators. When the project began, the Red River depot faced several operational problems. Existing No. 2 oil- and gas- fired boilers in three separate boiler plants were inefficient, unreliable, and difficult to maintain. Extra boilers often had to be leased to provide for needed capacity. In addition, the facility had large quantities of waste to dispose of.« less

  20. Emergency Fuels Technology

    DTIC Science & Technology

    1982-06-01

    starting and running in multifuel engines. D. FEF for Ground Turbine Engines Operation of the simple-cycle, gas-turbine engine is based on the Brayton or...MR R LAYNE) CAMERON STATION WASHINGTON DC 20362 ALEXANDRIA VA 22314 CDR CDR DAVID TAYLOR NAVAL SHIP R&D CTR MARINE CORPS LOGISTICS SUPPORT CODE 2830

  1. EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES

    EPA Science Inventory

    A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

  2. The Stirling Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.

  3. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)

    1982-01-01

    Activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, and computer code development are summarized.

  4. 40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Durability demonstration procedures for evaporative emissions. This section applies to gasoline-, methanol... constituents. (iv) For flexible-fueled, dual-fueled, multi-fueled, ethanol-fueled and methanol-fueled vehicles... obtained under §§ 86.1845-01, 86.1846-01, 86.1847-01 or from other sources shall be used by the...

  5. 40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Durability demonstration procedures for evaporative emissions. This section applies to gasoline-, methanol... constituents. (iv) For flexible-fueled, dual-fueled, multi-fueled, ethanol-fueled and methanol-fueled vehicles... obtained under §§ 86.1845-01, 86.1846-01, 86.1847-01 or from other sources shall be used by the...

  6. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910

  7. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE PAGES

    Montanari, David; Adamowski, Mark; Hahn, Alan; ...

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  8. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    USDA-ARS?s Scientific Manuscript database

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  9. Spray Modelling for Multifuel Engines.

    DTIC Science & Technology

    1982-07-01

    representation of equation 44. 191 Fig.36 Comparison of calculated and experimental values of 192 Sauter mean diameter. IIIIII~ i ii .. ... .. .I...fuel and the effect of various parameters have been determined experimentally. Gene- ralized expressions have been determined for the calculation of...average properties of velocity, pressure temperature and chemical species concentration. Elkotb 118 used this theory in the calculation of the flow field

  10. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  11. 40 CFR 86.1811-09 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Diurnal Plus Hot Soak Evaporative Emission Standards: Non-Gasoline Portion of Multi-Fueled Vehicles Model...) Evaporative emission in-use standards. (1) For LDVs and LLDTs certified prior to the 2012 model year, the Tier... the 2011 model year must meet the Tier 2 LDV/LLDT evaporative emission standards (Table S04-3) in-use...

  12. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  13. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  14. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  15. Development of a Prototype Military Field Space Heater

    DTIC Science & Technology

    1983-04-01

    COMBUSTION HEATERS TENT HEATERS LIQUID FUELS LIQUID FUEL BURNERS 2&< ABSTRACT rCamrtbmum «o rarerem ataT» ft namteaamry mod Identity by block...M1941 heater. This prototype features a large triple stage burner obtained from Holland that uses staged combustion to achieve clean burning with...M1941. This Dutch burner features staged combustion , which results in complete and very clean burning of diesel fuel. This report covers fabrication and

  16. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  17. Multifuel rotary aircraft engine

    NASA Technical Reports Server (NTRS)

    Jones, C.; Berkowitz, M.

    1980-01-01

    The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowdy, M.; Burke, A.; Schneider, H.

    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements.

  19. Deployable Fuel Cell Power Generator - Multi-Fuel Processor

    DTIC Science & Technology

    2009-02-01

    and the system operating pressure, while the separation efficiency depends on the evaporator design. Desulfurizer – A flow-through gas -solid or gas ...meeting the Executive Order (EO) 13423 and the Energy Policy Act of 2005 to improve energy efficiency and reduce greenhouse gas emissions 3 percent...use available fuel such as natural gas (methane) or propane. The ability to reform multitude of fuels can accelerate the introduction of more

  20. First scientific application of the membrane cryostat technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, David; Adamowski, Mark; Baller, Bruce R.

    2014-01-29

    We report on the design, fabrication, performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with IHI Corporation (IHI). Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon, and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation and using only a controlled gaseous argon purge; to demonstrate that we canmore » achieve and maintain the purity requirements of the liquid argon during filling, purification, and maintenance mode using mole sieve and copper filters from the Liquid Argon Purity Demonstrator (LAPD) R and D project. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion oxygen equivalent. This paper gives the requirements, design, construction, and performance of the LBNE membrane cryostat prototype, with experience and results important to the development of the LBNE detector.« less

  1. The development of a cryogenic over-pressure pump

    NASA Astrophysics Data System (ADS)

    Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Garcia, J.; Lathrop, A.; Ruiz, F.

    2014-01-01

    A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL).

  2. Cold Helium Pressurization for Liquid Oxygen / Liquid Methane Propulsion Systems: Fully-Integrated Initial Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.

  3. Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)

    NASA Astrophysics Data System (ADS)

    Balducci, A.; Jeong, S. S.; Kim, G. T.; Passerini, S.; Winter, M.; Schmuck, M.; Appetecchi, G. B.; Marcilla, R.; Mecerreyes, D.; Barsukov, V.; Khomenko, V.; Cantero, I.; De Meatza, I.; Holzapfel, M.; Tran, N.

    This manuscript presents the work carried out within the European project ILLIBATT, which was dedicated to the development of green, safe and high performance ionic liquids-based lithium batteries. Different types of ionic liquids-based electrolytes were developed in the project, based on different ionic liquids and polymers. Using these electrolytes, the performance of several anodic and cathodic materials has been tested and promising results have been obtained. Also, electrodes were formulated using water soluble binders. Using these innovative components, lithium-ion and lithium-metal battery prototypes (0.7-0.8 Ah) have been assembled and cycled between 100% and 0% SOC. The results of these tests showed that such ionic liquids-based prototypes are able to display high capacity, high coulombic efficiency and high cycle life. Moreover, safety tests showed that the introduction of these alternative electrolytes positively contribute to the safety of the batteries.

  4. Prototype of Self-Sensing Magnetic Bearing for Liquid Nitrogen Pump

    NASA Astrophysics Data System (ADS)

    Eguchi, Seiji; Komori, Mochimitsu; Okuhata, Taro

    Recently, pumps used in extremely low temperature such as 77K are found to be necessary. They are expected to use for rocket engines and hydrogen stations for fueled vehicles. Generally, conventional magnetic bearings do not work in the extremely low temperature. Therefore, we have studied magnitic bearings for these pumps. Self-sensing technique is tried to apply to magnetic bearings. If self-sensing magnetic bearings were made, we could apply the self-sensing magnetic bearing to liquid nitrogen pumps. In this paper, we propose a prototype self-sensing magnetic bearing and study the static and dynamic characteristics. The dynamic characteristics in the air and in liquid nitrogen are also discussed.

  5. Copper-palladium core-shell as an anode in a multi-fuel membraneless nanofluidic fuel cell: toward a new era of small energy conversion devices.

    PubMed

    Maya-Cornejo, J; Ortiz-Ortega, E; Álvarez-Contreras, L; Arjona, N; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2015-02-14

    A membraneless nanofluidic fuel cell with flow-through electrodes that works with several fuels (individually or mixed): methanol, ethanol, glycerol and ethylene-glycol in alkaline media is presented. For this application, an efficient Cu@Pd electrocatalyst was synthesized and tested, resulting outstanding performance until now reported, opening the possibility of power nano-devices for multi-uses purposes, regardless of fuel re-charge employed.

  6. Analyzing the Effect of Multi-fuel and Practical Constraints on Realistic Economic Load Dispatch using Novel Two-stage PSO

    NASA Astrophysics Data System (ADS)

    Chintalapudi, V. S.; Sirigiri, Sivanagaraju

    2017-04-01

    In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.

  7. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  8. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  9. MONITOIRNG OF A CONTROLLED DNAPL SPILL USING A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    The U. S. Geological Survey (USGS) utilized their prototype dielectric logging tool to monitor a controlled Dense Non-Aqueous Phase Liquid (DNAPL) spill into a large tank located at the University of California Richmond Field Station (RFS) containing multiple sand and clayey sand...

  10. Automotive technology status and projections. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.

    1978-01-01

    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements.

  11. Alternative general-aircraft engines

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  12. Design of a Very Large Pulse Tube Cryocooler for HTS Cable Application

    NASA Astrophysics Data System (ADS)

    Tanchon, J.; Ercolani, E.; Trollier, T.; Ravex, A.; Poncet, J. M.

    2006-04-01

    The needs for large cooling powers are more and more increasing together with the increase of superconductor capabilities. Within the framework of an High Voltage HTS cable project (LIPA project funded by the DOE with American Superconductor AMSC, Nexans, LIPA and Air Liquide as consortium partners), the Technologies & Innovation Department of Air Liquide with the partnership of the CEA/SBT are currently developing a prototype of a Very Large Pulse Tube Cooler (VLPTC). This prototype is traditionally based on an In-Line pulse tube configuration, making use of an inertance and a buffer volume as phase shifter. The expected performances are 280W heat lift at 65K with a 300K rejection temperature. The cold head prototype has been manufactured and preliminary tests have been carried out with a 8 kW flexure bearing Stirling Technology Corporation STC linear compressor. One of the objectives of this prototype is to compete the Gifford-MacMahon coolers in term of cooling capacity while offering the advantage of the high frequency Pulse Tube in term of high lifetime, reliability and reduced exported vibrations.

  13. Liquid-fuel valve with precise throttling control

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Porter, R. N.; Riebling, R. W.

    1971-01-01

    Prototype liquid-fuel valve performs on-off and throttling functions in vacuum without component cold-welding or excessive leakage. Valve design enables simple and rapid disassembly and parts replacement and operates with short working stroke, providing maximum throttling sensitivity commensurate with good control.

  14. Study on a liquid-moderator-based neutron spectrometer for BNCT-Development and experimental test of the prototype spectrometer

    NASA Astrophysics Data System (ADS)

    Tamaki, S.; Sato, F.; Murata, I.

    2017-10-01

    Boron neutron capture therapy (BNCT) is known to be an effective radiation cancer therapy that requires neutron irradiation. A neutron field generated by an accelerator-based neutron source has various energy spectra, and it is necessary to evaluate the neutron spectrum in the treatment field. However, the method used to measure the neutron spectrum in the treatment field is not well established, and many researchers are making efforts to improve the spectrometers used. In the present study, we developed a prototype of a new neutron spectrometer that can measure the neutron spectra more accurately and precisely. The spectrometer is based on the same theory as that of the Bonner sphere spectrometer, and it uses a liquid moderator and an absorber. By carrying out an experimental test of the developed spectrometer, we finally revealed the problems and necessary conditions of the prototype detector.

  15. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  16. Miniaturized protein separation using a liquid chromatography column on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Yang, Yongmo; Chae, Junseok

    2008-12-01

    We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.

  17. LENS: Prototyping Program

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek

    2013-04-01

    The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.

  18. A superconducting levitation vehicle prototype

    NASA Astrophysics Data System (ADS)

    Stephan, R. M.; Nicolsky, R.; Neves, M. A.; Ferreira, A. C.; de Andrade, R.; Cruz Moreira, M. A.; Rosário, M. A.; Machado, O. J.

    2004-08-01

    This paper presents a small scale MAGLEV vehicle prototype which is under development at UFRJ. The levitation is done by Y-Ba-Cu-O superconducting blocks refrigerated by liquid nitrogen in the presence of Nd-Fe-B magnets. A long primary linear synchronous motor gives the traction. Design considerations and experimental results show the characteristics and performance of this system.

  19. Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids.

    PubMed

    Calixto, Sergio; Bruce, Neil C; Rosete-Aguilar, Martha

    2016-01-11

    We describe a simple and versatile optical sensing device for measuring refractive index of liquids. The sensor consists of a sinusoidal relief grating in a glass cell. Device calibration is done by pouring in the cell different liquids of known refractive indices. Each time a liquid is poured first order intensity is measured. The fabrication process and testing of the prototype device is described. An application in the measurement of temperature is also presented.

  20. Combustion of anaerobically digested humus as a fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayhanian, M.; Jenkins, B.M.; Baxter, L.L.

    Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.

  1. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    NASA Astrophysics Data System (ADS)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  2. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  3. Project Morpheus testing

    NASA Image and Video Library

    2012-06-25

    A frame grab from a mounted video camera on the E-3 Test Stand at Stennis Space Center documents testing of the new Project Morpheus engine. The new liquid methane, liquid oxygen engine will power the Morpheus prototype lander, which could one day evolve to carry cargo safely to the moon, asteroids or Mars surfaces.

  4. Effects of Fuel and Nozzle Characteristics on Micro Gas Turbine System: A Review

    NASA Astrophysics Data System (ADS)

    Akasha Hashim, Muhammad; Khalid, Amir; Salleh, Hamidon; Sunar, Norshuhaila Mohamed

    2017-08-01

    For many decades, gas turbines have been used widely in the internal combustion engine industry. Due to the deficiency of fossil fuel and the concern of global warming, the used of bio-gas have been recognized as one of most clean fuels in the application of engine to improve performance of lean combustion and minimize the production of NOX and PM. This review paper is to understand the combustion performance using dual-fuel nozzle for a micro gas turbine that was basically designed as a natural gas fuelled engine, the nozzle characteristics of the micro gas turbine has been modelled and the effect of multi-fuel used were investigated. The used of biogas (hydrogen) as substitute for liquid fuel (methane) at constant fuel injection velocity, the flame temperature is increased, but the fuel low rate reduced. Applying the blended fuel at constant fuel rate will increased the flame temperature as the hydrogen percentages increased. Micro gas turbines which shows the uniformity of the flow distribution that can be improved without the increase of the pressure drop by applying the variable nozzle diameters into the fuel supply nozzle design. It also identifies the combustion efficiency, better fuel mixing in combustion chamber using duel fuel nozzle with the largest potential for the future. This paper can also be used as a reference source that summarizes the research and development activities on micro gas turbines.

  5. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    NASA Astrophysics Data System (ADS)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  6. A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)

    2001-01-01

    The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.

  7. Designs and test results for three new rotational sensors

    USGS Publications Warehouse

    Jedlicka, P.; Kozak, J.T.; Evans, J.R.; Hutt, C.R.

    2012-01-01

    We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

  8. Designs and test results for three new rotational sensors

    NASA Astrophysics Data System (ADS)

    Jedlička, P.; Kozák, J. T.; Evans, J. R.; Hutt, C. R.

    2012-10-01

    We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

  9. No Heat Spray Drying Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetz, Charles

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. Inmore » short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.« less

  10. Construction and test of a fine-grained liquid argon preshower prototype

    NASA Astrophysics Data System (ADS)

    Davis, R. A.; Gingrich, D. M.; Pinfold, J. L.; Rodning, N. L.; Boos, E.; Zhautykov, B. O.; Aubert, B.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Colas, J.; Eynard, G.; Jezequel, S.; Leflour, T.; Linossier, O.; Nicoleau, S.; Rival, F.; Sauvage, G.; Thion, J.; VanDenPlas, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y. P.; Chmeissani, M.; Fernandez, E.; Garrido, Ll.; Martinez, M.; Padilla, C.; Gordon, H. A.; Radeka, V.; Rahm, D.; Stephani, D.; Baisin, L.; Berset, J. C.; Chevalley, J. L.; Gianotti, F.; Gildemeister, O.; Marin, C. P.; Nessi, M.; Poggioli, L.; Richter, W.; Vuillemin, V.; Baze, J. M.; Gosset, L.; Lavocat, P.; Lottin, J. P.; Mansoulié, B.; Meyer, J. P.; Renardy, J. F.; Schwindling, J.; Teiger, J.; Collot, J.; de Saintignon, P.; Dzahini, D.; Hostachy, J. Y.; Hoummada, A.; Laborie, G.; Mahout, G.; Hervas, L.; Chekhtman, A.; Cousinou, M. C.; Dargent, P.; Dinkespiller, B.; Etienne, F.; Fassnacht, P.; Fouchez, D.; Martin, L.; Miotto, A.; Monnier, E.; Nagy, E.; Olivetto, C.; Tisserant, S.; Battistoni, G.; Camin, D. V.; Cavalli, D.; Costa, G.; Cozzi, L.; Fedyakin, N.; Ferrari, A.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Sala, P.; Beaudoin, G.; Depommier, P.; León-Florián, E.; Leroy, C.; Roy, P.; Augé, E.; Chase, R.; Chollet, J. C.; de La Taille, C.; Fayard, L.; Fournier, D.; Hrisoho, A.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Schaffer, A.; Seguin-Moreau, N.; Serin, L.; Tisserand, V.; Vichou, I.; Canton, B.; David, J.; Genat, J. F.; Imbault, D.; Le Dortz, O.; Savoy-Navarro, A.; Schwemling, P.; Eek, L. O.; Lund-Jensen, B.; Söderqvist, J.; Lefebvre, M.; Robertson, S.; RD3 Collaboration

    1997-02-01

    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5 × 10 -3 was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9° in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150 GeV the space resolution for electrons is better than 250 μm in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50 GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider.

  11. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  12. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory; Quinn, Gregory; Strange, Jeremy

    2012-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.

  13. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  14. Prototype Slide Stainer

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The prototype slide staining system capable of performing both one-component Wright's staining of blood smears and eight-step Gram staining of heat fixed slides of microorganisms is described. Attention was given to liquid containment, waste handling, absence of contamination from previous staining, and stability of the staining reagents. The unit is self-contained, capable of independent operation under one- or zero-g conditions, and compatible with Skylab A.

  15. Sims Prototype System 2 test results: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The testing, problems encountered, and the results and conclusions obtained from tests performed on the IBM Prototype System, 2, solar hot water system, at the Marshall Space Flight Center Solar Test Facility was described. System 2 is a liquid, non draining solar energy system for supplying domestic hot water to single residences. The system consists of collectors, storage tank, heat exchanger, pumps and associated plumbing and controls.

  16. EIA publications directory 1994

    NASA Astrophysics Data System (ADS)

    1995-07-01

    Enacted in 1977, the Department of Energy (DOE) Organization Act established the Energy Information Administration (EIA) as the Department's independent statistical and analytical agency, with a mandate to collect and publish data and prepare analyses on energy production, consumption, prices, resources, and projections of energy supply and demand. This edition of the EIA Publications Directory contains titles and abstracts of periodicals and one-time reports produced by EIA from January through December 1994. The body of the Directory contains citations and abstracts arranged by broad subject categories: metadata, coal, oil and gas, nuclear, electricity, renewable energy/alternative fuels, multifuel, end-use consumption, models, and forecasts.

  17. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1977-01-01

    The ideal cycle, its application to a practical machine, and the specific advantages of high efficiency, low emissions, multi-fuel capability, and low noise of the stirling engine are discussed. Certain portions of the Stirling engine must operate continuously at high temperature. Ceramics offer the potential of cost reduction and efficiency improvement for advanced engine applications. Potential applications for ceramics in Stirling engines, and some of the special problems pertinent to using ceramics in the Stirling engine are described. The research and technology program in ceramics which is planned to support the development of advanced Stirling engines is outlined.

  18. Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT

    NASA Astrophysics Data System (ADS)

    Gaison, Jeremy; Prospect Collaboration

    2016-09-01

    PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.

  19. Evolution of a phase separated gravity independent bioreactor

    NASA Technical Reports Server (NTRS)

    Villeneuve, Peter E.; Dunlop, Eric H.

    1992-01-01

    The evolution of a phase-separated gravity-independent bioreactor is described. The initial prototype, a zero head-space manifold silicone membrane based reactor, maintained large diffusional resistances. Obtaining oxygen transfer rates needed to support carbon-recycling aerobic microbes is impossible if large resistances are maintained. Next generation designs (Mark I and II) mimic heat exchanger design to promote turbulence at the tubing-liquid interface, thereby reducing liquid and gas side diffusional resistances. While oxygen transfer rates increased by a factor of ten, liquid channeling prevented further increases. To overcome these problems, a Mark III reactor was developed which maintains inverted phases, i.e., media flows inside the silicone tubing, oxygen gas is applied external to the tubing. This enhances design through changes in gas side driving force concentration and liquid side turbulence levels. Combining an applied external pressure of 4 atm with increased Reynolds numbers resulted in oxygen transfer intensities of 232 mmol O2/l per hr (1000 times greater than the first prototype and comparable to a conventional fermenter). A 1.0 liter Mark III reactor can potentially deliver oxygen supplies necessary to support cell cultures needed to recycle a 10-astronaut carbon load continuously.

  20. Rapid prototyping of solar-powered, battery-operated, atmospheric-pressure, sugar-cube size microplasma on hybrid, 3D chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Karanassios, V.

    2012-06-01

    A solar-powered, battery-operated, atmospheric-pressure, self-igniting microplasma the size of a sugar-cube developed on a hybrid, 3d-chip is described. Rapid prototyping of the 3d-chip; some fundamental aspects and a brief characterization of its background spectral emission using a portable, fiber-optic spectrometer are discussed.

  1. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    DOE PAGES

    Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...

    2017-01-05

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less

  2. Development and Prototyping of the PROSPECT Antineutrino Detector

    NASA Astrophysics Data System (ADS)

    Commeford, Kelley; Prospect Collaboration

    2017-01-01

    The PROSPECT experiment will make the most precise measurement of the 235U reactor antineutrino spectrum as well as search for sterile neutrinos using a segmented Li-loaded liquid scintillator neutrino detector. Several prototype detectors of increasing size, complexity, and fidelity have been constructed and tested as part of the PROSPECT detector development program. The challenges to overcome include the efficient rejection of cosmogenic background and collection of optical photons in a compact volume. Design choices regarding segment structure and layout, calibration source deployment, and optical collection methods are discussed. Results from the most recent multi-segment prototype, PROSPECT-50, will also be shown.

  3. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  4. Lyophilization for Water Recovery III, System Design

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Reinhard, Martin; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground- based human testing. This paper describes the prototype design and presents results of functional and performance tests.

  5. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses

    PubMed Central

    Han, Jeong In

    2013-01-01

    IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV) were developed using a flexible liquid crystal (FLC) lens. The FLC lens was made on a polycarbonate (PC) substrate using conventional liquid crystal display (LCD) processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.

  6. Solid versus Liquid Particle Sampling Efficiency of Three Personal Aerosol Samplers when Facing the Wind

    PubMed Central

    Koehler, Kirsten A.; Anthony, T. Renee; Van Dyke, Michael

    2016-01-01

    The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min−1 of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies through screened inlets and that particle bounce, for solid particles, is an important determinant of aspiration and sampling efficiencies for samplers with screened inlets. PMID:21965462

  7. Development of a Self-contained Heat Rejection Module (SHRM), phase 1

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1976-01-01

    The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.

  8. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  9. An optical sensor for detecting the contact location of a gas-liquid interface on a body.

    PubMed

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (L(s)) and a resolution of 0.01L(s) can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall.

  10. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  11. Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    NASA Astrophysics Data System (ADS)

    Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.

    2018-02-01

    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.

  12. Coherent Vortices in Strongly Coupled Liquids

    NASA Astrophysics Data System (ADS)

    Ashwin, J.; Ganesh, R.

    2011-04-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  13. Development Of The Prototype Space Non-Foam Membrane Bioreactor

    NASA Astrophysics Data System (ADS)

    Guo, S.; Xi, W.; Liu, X.

    The essential method of making Controlled Ecological Life Support System (CELSS) operate and regenerate efficiently, is to transform and utilize the recycleable materials in the system rapidly. Currently, it is generally recognized that the fundamental way of achieving the goal is to utilize micro-biotechnology. Exactly based on this thinking, a Groundbased Prototype of Space Waste-treating-microbially Facility(GPSWF) was developed in our laboratory, with the purpose of transforming biologically-degradeable waste including inedible plant biomass into plant nutrient solution for attaining future regenerated utilization of materials in the space environment. The facility holds the automatic measurement and control systems of temperature, pH and dissolved oxygen (DO) in treated solution, and the systems of non-foam membrane oxygen provision and post-treated liquid collection. The experimental results showed that the facility could maintain a stable operating state; the pH and DO in the liquid were controlled automatically and precisely; the oxygen in the liquid was non-foamedly provided by membrane technology; the plant inedible biomass could be completely degraded by three species of microbes selected; the decreasing rates of total organic carbon(TOC) and chemical oxygen demand(COD) reached to 92.1% and 95.5% respectively; the post-treated liquid could be automatically drained and collected; the plants could grow almost normally when the post-treated liquid was used as nutrient liquid. Therefore, it can be concluded that the facility possesses a reasonably-designed structure, and its working principle is nearly able to meet the condition of space microgravity environment. So it's hopeful to be applied in space for biological degradation of materials after further improvement.

  14. First Results from the DUNE 35-ton Prototype using Cosmics

    NASA Astrophysics Data System (ADS)

    Insler, Jonathan; DUNE Collaboration

    2016-03-01

    The 35-ton prototype for the Deep Underground Neutrino Experiment (DUNE) Far Detector is a single-phase liquid argon time projection chamber (LAr-TPC) integrated detector that will take cosmics data for a two month run beginning in February 2016. The 35-ton prototype will characterize DUNE's Far Detector technology performance and provide a sample of real data for DUNE reconstruction algorithms. The 35-ton prototype has two drift volumes of lengths 2.23 m and 0.23 m on either side of its anode plane assembly (APA) and makes use of wire planes with wrapped wires and a photon detection system (PDS) utilizing photon detection panels read out by silicon photomultipliers (SiPMs). Data from the 35-ton LAr detector are expected to provide rich information on scintillation light and charged particle tracks. We present a preliminary analysis of cosmics data taken with the 35-ton detector with a focus on stopping muons.

  15. Energy Harvesting with a Liquid-Metal Microfluidic Influence Machine

    NASA Astrophysics Data System (ADS)

    Conner, Christopher; de Visser, Tim; Loessberg, Joshua; Sherman, Sam; Smith, Andrew; Ma, Shuo; Napoli, Maria Teresa; Pennathur, Sumita; Weld, David

    2018-04-01

    We describe and demonstrate an alternative energy-harvesting technology based on a microfluidic realization of a Wimshurst influence machine. The prototype device converts the mechanical energy of a pressure-driven flow into electrical energy, using a multiphase system composed of droplets of liquid mercury surrounded by insulating oil. Electrostatic induction between adjacent metal droplets drives charge through external electrode paths, resulting in continuous charge amplification and collection. We demonstrate a power output of 4 nW from the initial prototype and present calculations suggesting that straightforward device optimization could increase the power output by more than 3 orders of magnitude. At that level, the power efficiency of this energy-harvesting mechanism, limited by viscous dissipation, could exceed 90%. The microfluidic context enables straightforward scaling and parallelization, as well as hydraulic matching to a variety of ambient mechanical energy sources, such as human locomotion.

  16. Electrochemical disinfection of repeatedly recycled blackwater in a free-standing, additive-free toilet.

    PubMed

    Hawkins, Brian T; Sellgren, Katelyn L; Klem, Ethan J D; Piascik, Jeffrey R; Stoner, Brian R

    2017-11-01

    Decentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field.

  17. Photon Detector System Timing Performance in the DUNE 35-ton Prototype Liquid Argon Time Projection Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.L.; et al.

    The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less

  18. Low-Cost Rapid Prototyping of Liquid Crystal Polymer Based Magnetic Microactuators for Glaucoma Drainage Devices

    PubMed Central

    Park, Hyunsu; John, Simon; Lee, Hyowon

    2017-01-01

    Glaucoma is one of the leading causes of blindness in the world. Although there is no cure for glaucoma, pharmaceutical or surgical interventions are known to delay the progression of this debilitating disease. In recent years, implantation of glaucoma drainage devices (GDD) have increased due to their ability to manage IOP better than other therapeutic approaches. However, only 50% of the implanted devices remain functional after 5 years often due to biofouling. Here, we report our latest progress towards developing self-clearing GDDs using integrated magnetic microactuators. Our hypothesis is that these magnetic microdevices can provide local mechanical perturbations to prophylactically remove biological accumulation. To reduce the cost and increase the throughput of fabrication, we utilize a maskless photolithography setup and commercially available liquid crystal polymer foils to create prototype devices. The mechanical response of the devices is reported and compared with the theoretical values. PMID:28269212

  19. Low-cost rapid prototyping of liquid crystal polymer based magnetic microactuators for glaucoma drainage devices.

    PubMed

    Hyunsu Park; John, Simon; Hyowon Lee

    2016-08-01

    Glaucoma is one of the leading causes of blindness in the world. Although there is no cure for glaucoma, pharmaceutical or surgical interventions are known to delay the progression of this debilitating disease. In recent years, implantation of glaucoma drainage devices (GDD) have increased due to their ability to manage IOP better than other therapeutic approaches. However, only 50% of the implanted devices remain functional after 5 years often due to biofouling. Here, we report our latest progress towards developing self-clearing GDDs using integrated magnetic microactuators. Our hypothesis is that these magnetic microdevices can provide local mechanical perturbations to prophylactically remove biological accumulation. To reduce the cost and increase the throughput of fabrication, we utilize a maskless photolithography setup and commercially available liquid crystal polymer foils to create prototype devices. The mechanical response of the devices is reported and compared with the theoretical values.

  20. Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U

    DOE PAGES

    Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.; ...

    2016-09-03

    In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less

  1. Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.

    In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less

  2. Development of a Very Dense Liquid Cooled Compute Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Phillip N.; Lipp, Robert J.

    2013-12-10

    The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.

  3. A Survey of Plasmas and Their Applications

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Grabbe, C. (Editor)

    2006-01-01

    Plasmas are everywhere and relevant to everyone. We bath in a sea of photons, quanta of electromagnetic radiation, whose sources (natural and artificial) are dominantly plasma-based (stars, fluorescent lights, arc lamps.. .). Plasma surface modification and materials processing contribute increasingly to a wide array of modern artifacts; e.g., tiny plasma discharge elements constitute the pixel arrays of plasma televisions and plasma processing provides roughly one-third of the steps to produce semiconductors, essential elements of our networking and computing infrastructure. Finally, plasmas are central to many cutting edge technologies with high potential (compact high-energy particle accelerators; plasma-enhanced waste processors; high tolerance surface preparation and multifuel preprocessors for transportation systems; fusion for energy production).

  4. Development of Air Supply System for Gas Turbine Combustor Test Rig

    NASA Astrophysics Data System (ADS)

    Kamarudin, Norhaimi Izlan; Hanafi, Muhammad; Mantari, Asril Rajo; Jaafar, Mohammad Nazri Mohd

    2010-06-01

    Complete combustion process occurs when the air and fuel burns at their stoichiometric ratio, which determines the appropriate amount of air needed to be supplied to the combustion chamber. Thus, designing an appropriate air supply system is important, especially for multi-fuel combustion. Each type of fuel has different molecular properties and structures which influence the stoichiometric ratio. Therefore, the designed air supply system must be operable for different types of fuels. Basically, the design of the air supply system is at atmospheric pressure. It is important that the air which enters the combustion chamber is stable and straight. From the calculation, the maximum required mass flow rate of air is 0.1468kg/s.

  5. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  6. Ultrathin zoom lens system based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Wang, Qiong-Hua

    2015-07-01

    In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.

  7. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  8. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    NASA Technical Reports Server (NTRS)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  9. Annular folded electrowetting liquid lens.

    PubMed

    Li, Lei; Liu, Chao; Ren, Hongwen; Deng, Huan; Wang, Qiong-Hua

    2015-05-01

    We report an annular folded electrowetting liquid lens. The front surface of the lens is coated with a circular reflection film, while the back surface of the lens is coated with a ring-shaped reflection film. This approach allows the lens to get optical power from the liquid-liquid interface three times so that the optical power is tripled. An analysis of the properties of the annular folded electrowetting liquid lens is presented along with the design, fabrication, and testing of a prototype. Our results show that the optical power of the proposed liquid lens can be enhanced from ∼20.1 to ∼50.2  m(-1) in comparison with that of the conventional liquid lens (aperture ∼3.9  mm). It can reduce the operating voltage by ∼10  V to reach the same diopter as a conventional liquid lens. Our liquid lens has the advantages of compact structure, light weight, and improved optical resolution.

  10. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics.

    PubMed

    Han, Yu Long; Liu, Hao; Ouyang, Cheng; Lu, Tian Jian; Xu, Feng

    2015-07-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded.

  11. Zero liquid carryover whole-body shower vortex liquid/gas separator

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and evaluation of a liquid/gas vortex type separator design eliminating liquid and semi-liquid (suds) carryover into air recirculating system were described. Consideration was given to a number of soaps other than the "Miranol JEM" which was the low sudsing soap used in previous test runs of the space shower. Analysis of test parameters and prototype testing resulted in a revised separator configuration and a better understanding of the suds generating mechanism in the wastewater collection system. The final design of the new separator provides for a wider choice of soaps without leading to the problem of "carryover". Furthermore, no changes in separator-to-shower interfaces were required. The new separator was retrofitted on the "space shower" and satisfactorily demonstrated in one-g testing.

  12. Laser-powered thermoelectric generators operating at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Harutyunyan, S. R.; Vardanyan, V. H.; Kuzanyan, A. S.; Nikoghosyan, V. R.; Kunii, S.; Winzer, K.; Wood, K. S.; Gulian, A. M.

    2005-11-01

    A thermoelectric generator, operating in a cryostat at liquid helium temperatures, is described. Energy to the generator is supplied via an external laser beam. For this prototype device the associated heat load at permanent operation is comparable with the heat load associated with power delivery via metallic wires. Estimates indicate that still better performance can be enabled with existing thermoelectric materials, thereby far exceeding efficiency of traditional cryostat wiring. We used a prototype generator to produce electric power for measuring critical currents in Nb3Sn-films at 4K.

  13. A prototype of a portable TDCR system at ENEA.

    PubMed

    Capogni, Marco; De Felice, Pierino

    2014-11-01

    A prototype of a portable liquid scintillation counting system based on the Triple-to-Double Coincidence Ratio (TDCR) technique was developed at ENEA-INMRI in the framework of the European Metrofission project. The new device equipped with the CAEN digitizers was tested for the activity measurements of pure β-emitters ((99)Tc and (63)Ni). The list-mode data recorded by the digitizers were analyzed by software implemented in the CERN ROOT environment, which allows the application of pulse shape discrimination using the new device. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 1300099

    NASA Image and Video Library

    2013-02-22

    DURING HIS FEB. 22 VISIT TO THE NATIONAL CENTER FOR ADVANCED MANUFACTURING RAPID PROTOTYPING FACILITY AT NASA'S MARSHALL SPACE FLIGHT CENTER, NASA ADMINISTRATOR CHARLES BOLDEN, CENTER, TALKS WITH FRANK LEDBETTER, RIGHT, CHIEF OF THE NONMETALLIC MATERIALS AND MANUFACTURING DIVISION AT MARSHALL, ABOUT THE USE OF 3-D PRINTING AND PROTOTYPING TECHNOLOGY TO CREATE PARTS FOR THE SPACE LAUNCH SYSTEM. ALSO PARTICIPATING IN THE TOUR ARE, FROM BACK RIGHT, MARSHALL CENTER DIRECTOR PATRICK SCHEUERMANN; SHERRY KITTREDGE, DEPUTY MANAGER OF THE SLS LIQUID ENGINES OFFICE; MARSHALL FLIGHT SYSTEMS DESIGN ENGINEER ROB BLACK; AND JOHN VICKERS, MANAGER OF THE NATIONAL CENTER FOR ADVANCED MANUFACTURING.

  15. 35t Prototype Detector for Experiment at Long Base Line Neutrino Facility (ELBNF) Far Detector

    NASA Astrophysics Data System (ADS)

    Santucci, Gabriel; Elbnf Collaboration

    2015-04-01

    The 35ton prototype detector is a Liquid Argon Time Projection Chamber (LAr TPC) utilizing a membrane cryostat. It serves as a prototype for testing technology proposed for the ELBNF far detector. The construction of the prototype is an essential part of the ELBNF project due to the large amount of new technologies introduced for the far detector. In early 2014, it was shown that the membrane cryostat technology was able to reach and maintain the required LAr purity and an electron lifetime of 2.5 ms was achieved. The goals for the next phase include the installation of a fully functional TPC using the novel designs for the ELBNF far detector as much as possible. This includes the installation of the cold electronics, scintillation photon detectors and multiple Anode Plane Arrays with wrapped wires. In this talk I will review the status of the 35t prototype detector and describe what has been accomplished during 2014 and early 2015, including the commissioning phase and the early stages of data taking from cosmic-rays.

  16. Ground Vehicle Power and Mobility Overview

    DTIC Science & Technology

    2007-05-30

    Program Li-Ion Phosphate (LFP) Cathode Materials Large Format Li-Ion Prismatic Cells and Modules with Integrated Liquid Cooling Integrated Prototype...using porous graphitic material3 4 5 8 5 6 60 W-hr/kg 80-120 W/kg Low Cycle Life LFP cathode Safer Less energetic materials ~ ~ Power Cell 85-120...Thermal Runaway Study Zebra Battery NaNiCl2 (FY08 ATO) Advanced Lead Acid LiFePO4 Cathode Prismatic Lithium-ion batteries and Integrated Liquid Cooling

  17. Self-Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery.

    PubMed

    Wu, Feng; Chen, Nan; Chen, Renjie; Zhu, Qizhen; Tan, Guoqiang; Li, Li

    2016-01-01

    The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator-based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable "nanogelator" that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid-like apparent ionic conductivity of 2.93 × 10 -3 S cm -1 at room temperature. The results show that the nanogelator, which possess self-regulating ability, is able to immobilize imidazolium-, pyrrolidinium-, or piperidinium-based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti-nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes.

  18. Optical memory development. Volume 1: prototype memory system

    NASA Technical Reports Server (NTRS)

    Cosentino, L. S.; Mezrich, R. S.; Nagle, E. M.; Stewart, W. C.; Wendt, F. S.

    1972-01-01

    The design, development, and implementation of a prototype, partially populated, million bit read-write holographic memory system using state-of-the-art components are described. The system employs an argon ion laser, acoustooptic beam deflectors, a holographic beam splitter (hololens), a nematic liquid crystal page composer, a photoconductor-thermoplastic erasable storage medium, a silicon P-I-N photodiode array, with lenses and electronics of both conventional and custom design. Operation of the prototype memory system was successfully demonstrated. Careful attention is given to the analysis from which the design criteria were developed. Specifications for the major components are listed, along with the details of their construction and performance. The primary conclusion resulting from this program is that the basic principles of read-write holographic memory system are well understood and are reducible to practice.

  19. The CAPTAIN liquid argon neutrino experiment

    DOE PAGES

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  20. Enhancing acoustic signal quality by rapidly switching between pulse-echo and through-transmission using diplexers

    NASA Astrophysics Data System (ADS)

    Valencia, Juan D.; Diaz, Aaron A.; Tucker, Brian J.

    2008-03-01

    The increase of terrorism and its global impact has made the screening of the contents of liquid-filled containers a necessity. The ability to evaluate the contents of a container rapidly and accurately is a critical tool in maintaining global safety and security. Due to the immense quantities and large variety of containers shipped worldwide, there is a need for a technology that enables rapid and effective ways of conducting non-intrusive container inspections. Such inspections can be performed utilizing "through-transmission" or "pulse-echo" acoustic techniques, in combination with multiple frequency excitation pulses or waveforms. The challenge is combining and switching between the different acoustic techniques without distorting the excitation pulse or waveform, degrading or adding noise to the receive signal; while maintaining a portable, low-power, low-cost, and easy to use system. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype relies on an advanced diplexer circuit capable of rapidly switching between both "through-transmission" and "pulse-echo" detection modes. This type of detection requires the prototype to isolate the pulsing circuitry from the receiving circuitry to prevent damage and reduce noise. The results of this work demonstrate that an advanced diplexer circuit can be effective; however, some bandwidth issues exist. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device as applied to several types of liquid-filled containers. Results of work conducted in the laboratory will be presented and future measurement platform enhancements will be discussed.

  1. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  2. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics

    PubMed Central

    Long Han, Yu; Liu, Hao; Ouyang, Cheng; Jian Lu, Tian; Xu, Feng

    2015-01-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded. PMID:26129723

  3. Mobile Robot for Exploring Cold Liquid/Solid Environments

    NASA Technical Reports Server (NTRS)

    Bergh, Charles; Zimmerman, Wayne

    2006-01-01

    The Planetary Autonomous Amphibious Robotic Vehicle (PAARV), now at the prototype stage of development, was originally intended for use in acquiring and analyzing samples of solid, liquid, and gaseous materials in cold environments on the shores and surfaces, and at shallow depths below the surfaces, of lakes and oceans on remote planets. The PAARV also could be adapted for use on Earth in similar exploration of cold environments in and near Arctic and Antarctic oceans and glacial and sub-glacial lakes.

  4. Imaging spectrometer using a liquid crystal tunable filter

    NASA Astrophysics Data System (ADS)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  5. Design and performance evaluation of a cryogenic condenser for an in-pile experiment

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Crum, R. J.; Hsu, Y.

    1972-01-01

    An apparatus was designed to enable in-pile irradiation of materials in liquid hydrogen at cryogenic temperatures. One of the principal components of this apparatus was a horizontal tube condenser. The performance of the condenser was evaluated by running a liquid-nitrogen prototype of the apparatus at heat loads comparable to or greater than those expected during the irradiation. The test showed that the condenser was capable of handling the design heat load and that the design procedure was sound.

  6. Design of a Functional Training Prototype for Neonatal Resuscitation

    PubMed Central

    Rajaraman, Sivaramakrishnan; Ganesan, Sona; Jayapal, Kavitha; Kannan, Sadhani

    2014-01-01

    Birth Asphyxia is considered to be one of the leading causes of neonatal mortality around the world. Asphyxiated neonates require skilled resuscitation to survive the neonatal period. The project aims to train health professionals in a basic newborn care using a prototype with an ultimate objective to have one person at every delivery trained in neonatal resuscitation. This prototype will be a user-friendly device with which one can get trained in performing neonatal resuscitation in resource-limited settings. The prototype consists of a Force Sensing Resistor (FSR) that measures the pressure applied and is interfaced with Arduino® which controls the Liquid Crystal Display (LCD) and Light Emitting Diode (LED) indication for pressure and compression counts. With the increase in population and absence of proper medical care, the need for neonatal resuscitation program is not well addressed. The proposed work aims at offering a promising solution for training health care individuals on resuscitating newborn babies under low resource settings. PMID:27417489

  7. Dose monitoring in Partial Liquid Ventilation by infrared measurement of expired perfluorochemicals.

    PubMed

    Mazzoni, M; Nugent, L; Klein, D; Hoffman, J; Sekins, K M; Flaim, S F

    1999-01-01

    Patients undergoing Partial Liquid Ventilation (PLV) with the perfluorochemical liquid perflubron (PFB) continuously evaporate the drug from the lung during ventilatory expiration. In this study, two infrared (IR) devices, a modified industrial analyzer ("experimental prototype") and a custom-designed device suitable for use in a clinical environment ("clinical prototype"), were calibrated and validated on the bench to measure a range of PFB concentrations (CPFB) in a gas stream. PFB loss from the lung (area under the CPFB-vs-time-curve) could be correlated during PLV simulation with changes in tidal volume, breathing rate, and variable CPFB-vs-time profiles. The two IR devices produced nearly identical measurements for the same CPFB standards (maximum deviation = 1.5%). The experimental IR prototype was tested in 17 anesthetized, paralyzed, and ventilated swine (42-53 kg) to quantify the total amount and rate of evaporate loss of PFB over 12 hours of PLV, both with and without periodic supplemental PFB doses. The residual PFB volumes in the animal lungs at the end of the study, as determined by a gravimetric postmortem lung method, were found to agree on average for all animals to within 10% of the residual PFB volume as predicted by the IR approach. Furthermore, the IR signal of CPFB does not appear to correlate with the absolute amount of PFB in the lungs, but may reflect the relative proportion of PFB-wetted airway and alveolar surface. The authors conclude that IR quantitation of PFB evaporative loss is acceptably accurate for extended periods of PLV and may be a useful tool in the clinic for PFB dose monitoring and maintenance, thereby helping to optimize PLV treatment.

  8. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  9. Assessment of advanced technologies for high performance single-engine business airplanes

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Holmes, B. J.

    1982-01-01

    The prospects for significantly increasing the fuel efficiency and mission capability of single engine business aircraft through the incorporation of advanced propulsion, aerodynamics and materials technologies are explored. It is found that turbine engines cannot match the fuel economy of the heavier rotary, diesel and advanced spark reciprocating engines. The rotary engine yields the lightest and smallest aircraft for a given mission requirement, and also offers greater simplicity and a multifuel capability. Great promise is also seen in the use of composite material primary structures in conjunction with laminar flow wing surfaces, a pusher propeller and conventional wing-tail configuration. This study was conducted with the General Aviation Synthesis Program, which can furnish the most accurate mission performance calculations yet obtained.

  10. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  11. Quantum spin liquids: a review.

    PubMed

    Savary, Lucile; Balents, Leon

    2017-01-01

    Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  12. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  13. Evaluation of 3D printed optofluidic smart glass prototypes.

    PubMed

    Wolfe, Daniel; Goossen, K W

    2018-01-22

    Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

  14. High performing actuation system for use with a louver array for satellite thermal control. [design and performance tests on prototype Bourdon spiral configuration

    NASA Technical Reports Server (NTRS)

    Reusser, P. U.; Coebergh, J. A. F.

    1973-01-01

    A high performing actuation system has been developed to drive one pair or a set of 9 pairs of louver blades. The system uses a Bourdon spiral as the driving member. The response time of the liquid expansion of the spiral system is in the order of three seconds. Besides performance tests, qualification tests have been carried out on a prototype system, demonstrating that the actuation system withstands normal launching conditions; projected operating life of 7 years with more than 7000 cycles can be expected.

  15. A High Resolution Liquid Xenon Imaging Telescope for 0.3-10 MeV Gamma Ray Astrophysics: Construction and Initial Balloon Flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1993-01-01

    The results achieved with a 3.5 liter liquid xenon time projection chamber (LXe-TPC) prototype during the first year include: the efficiency of detecting the primary scintillation light for event triggering has been measured to be higher than 85%; the charge response has been measured to be stable to within 0.1% for a period of time of about 30 hours; the electron lifetime has been measured to be in excess of 1.3 ms; the energy resolution has been measured to be consistent with previous results obtained with small volume chambers; X-Y gamma ray imaging has been demonstrated with a nondestructive orthogonal wires readout; Monte Carlo simulation results on detection efficiency, expected background count rate at balloon altitude, background reduction algorithms, telescope response to point-like and diffuse sources, and polarization sensitivity calculations; and work on a 10 liter LXe-TPC prototype and gas purification/recovery system.

  16. Electrochemical disinfection of repeatedly recycled blackwater in a free‐standing, additive‐free toilet

    PubMed Central

    Sellgren, Katelyn L.; Klem, Ethan J. D.; Piascik, Jeffrey R.; Stoner, Brian R.

    2017-01-01

    Abstract Decentralized, energy‐efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water‐ and energy‐scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field. PMID:29242713

  17. Integration of the Reconfigurable Self-Healing eDNA Architecture in an Embedded System

    NASA Technical Reports Server (NTRS)

    Boesen, Michael Reibel; Keymeulen, Didier; Madsen, Jan; Lu, Thomas; Chao, Tien-Hsin

    2011-01-01

    In this work we describe the first real world case study for the self-healing eDNA (electronic DNA) architecture by implementing the control and data processing of a Fourier Transform Spectrometer (FTS) on an eDNA prototype. For this purpose the eDNA prototype has been ported from a Xilinx Virtex 5 FPGA to an embedded system consisting of a PowerPC and a Xilinx Virtex 5 FPGA. The FTS instrument features a novel liquid crystal waveguide, which consequently eliminates all moving parts from the instrument. The addition of the eDNA architecture to do the control and data processing has resulted in a highly fault-tolerant FTS instrument. The case study has shown that the early stage prototype of the autonomous self-healing eDNA architecture is expensive in terms of execution time.

  18. Influence of the astrophysical requirements on dilution refrigerator design

    NASA Astrophysics Data System (ADS)

    Sirbi, Adriana; Pouilloux, Benjamin; Benoit, Alain; Lamarre, Jean-Michel

    1999-12-01

    A 300 K to 0.1 K space prototype is developed in cooperation with CRTBT, IAS Air Liquide and RAL, under CNES and ESA contracts, to demonstrate the feasibility of such a cooling system. The heart of the system is a 4 K to 0.1 K open cycle dilution refrigerator circulating 3He and 4He. All the tests are now completed. The design of this system is chosen like the nominal solution for PLANCK/HFI instrument. Since scientific requirements have changed, the design of the prototype has to be adjusted to receive the focal plane of HFI (High Frequency Instrument) instrument of PLANCK. The main goal is to optimise 3He consumption without degrading both mechanical and thermal performances. This paper presents the prototype architecture, the dilution refrigerator and the associated tests. The suitability to PLANCK mission is also assessed.

  19. Rapid Online Non-Enzymatic Protein Digestion Analysis with High Pressure Superheated ESI-MS

    NASA Astrophysics Data System (ADS)

    Chen, Lee Chuin; Kinoshita, Masato; Noda, Masato; Ninomiya, Satoshi; Hiraoka, Kenzo

    2015-07-01

    Recently, we reported a new ESI ion source that could electrospray the super-heated aqueous solution with liquid temperature much higher than the normal boiling point ( J. Am. Soc. Mass Spectrom. 25, 1862-1869). The boiling of liquid was prevented by pressurizing the ion source to a pressure greater than atmospheric pressure. The maximum operating pressure in our previous prototype was 11 atm, and the highest achievable temperature was 180°C. In this paper, a more compact prototype that can operate up to 27 atm and 250°C liquid temperatures is constructed, and reproducible MS acquisition can be extended to electrospray temperatures that have never before been tested. Here, we apply this super-heated ESI source to the rapid online protein digestion MS. The sample solution is rapidly heated when flowing through a heated ESI capillary, and the digestion products are ionized by ESI in situ when the solution emerges from the tip of the heated capillary. With weak acid such as formic acid as solution, the thermally accelerated digestion (acid hydrolysis) has the selective cleavage at the aspartate (Asp, D) residue sites. The residence time of liquid within the active heating region is about 20 s. The online operation eliminates the need to transfer the sample from the digestion reactor, and the output of the digestive reaction can be monitored and manipulated by the solution flow rate and heater temperature in a near real-time basis.

  20. Test of prototype liquid-water-content meter for aircraft use

    NASA Technical Reports Server (NTRS)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  1. Characterization and Evaluation of a Mass Efficient Heat Storage Device.

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2007-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a reentry or hypersonic vehicle to reduce thermal protection system requirements. The heat sponge consists of a liquid-vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat storage capacity of the liquid-vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over the temperature range of 660oR to 1160oR. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0 inch diameter hollow stainless steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat storage capacity calculated from measured temperature histories is compared to numerical predictions.

  2. Self‐Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery

    PubMed Central

    Wu, Feng; Chen, Nan; Zhu, Qizhen; Tan, Guoqiang; Li, Li

    2016-01-01

    The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator‐based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable “nanogelator” that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid‐like apparent ionic conductivity of 2.93 × 10−3 S cm−1 at room temperature. The results show that the nanogelator, which possess self‐regulating ability, is able to immobilize imidazolium‐, pyrrolidinium‐, or piperidinium‐based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti‐nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes. PMID:27774385

  3. JTEC panel on display technologies in Japan

    NASA Technical Reports Server (NTRS)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-01-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  4. Freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2000-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  5. Development of a high-resolution liquid xenon detector for gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    It has been shown here that liquid xenon is one of the most promising detector media for future gamma-ray detectors, owing to an excellent combination of physical properties. The feasibility of the construction of a high resolution liquid xenon detector as a gamma-ray detector for astrophysics has been demonstrated. Up to 3.5 liters of liquid xenon has been successfully purified and using both small and large volume prototypes, the charge and the energy resolution response of such detectors to gamma-rays, internal conversion electrons and alpha particles have been measured. The best energy resolution measured was 4.5 percent FWHM at 1 MeV. Cosmic ray tracks have been imaged using a 2-dimensional liquid xenon multiwire imaging chamber. The spatial resolution along the direction of the drifting electrons was 180 microns rms. Experiments have been performed to study the scintillation light in liquid xenon, as the prompt scintillation signal in the liquid is an electron-ion pair in liquid krypton was measured for the first time with a pulsed ionization chamber to be 18.4 plus or minus 0.3 eV.

  6. Microfluidic liquid-air dual-gradient chip for synergic effect bio-evaluation of air pollutant.

    PubMed

    Liu, Xian-Jun; Hu, Shan-Wen; Xu, Bi-Yi; Zhao, Ge; Li, Xiang; Xie, Fu-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-05-15

    In this paper, a novel prototype liquid-air dual gradient chip is introduced, which has paved the way for effective synergic effect bio-evaluation of air pollutant. The chip is composed of an array of the agarose liquid-air interfaces, top air gradient layer and bottom liquid gradient layer. The novel agarose liquid-air interface allows for non-biased exposure of cells to all the substances in the air and diffusive interactions with the liquid phase; while the dual liquid-air gradient provides powerful screening abilities, which well reduced errors, saved time and cost from repeated experiment. Coupling the two functions, the chip subsequently facilitates synergic effect evaluation of both liquid and air factors on cells. Here cigarette smoke was taken as the model air pollutant, and its strong synergic effects with inflammatory level of A549 lung cancer cells on their fate were successfully quantified for the first time. These results well testified that the proposed dual-gradient chip is powerful and indispensable for bio-evaluation of air pollutant. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  8. Experimental study on control performance of tuned liquid column dampers considering different excitation directions

    NASA Astrophysics Data System (ADS)

    Altunişik, Ahmet Can; Yetişken, Ali; Kahya, Volkan

    2018-03-01

    This paper gives experimental tests' results for the control performance of Tuned Liquid Column Dampers (TLCDs) installed on a prototype structure exposed to ground motions with different directions. The prototype structure designed in the laboratory consists of top and bottom plates with four columns. Finite element analyses and ambient vibration tests are first performed to extract the natural frequencies and mode shapes of the structure. Then, the damping ratio of the structure as well as the resonant frequency, head-loss coefficient, damping ratio, and water height-frequency diagram of the designed TLCD are obtained experimentally by the shaking table tests. To investigate the effect of TLCDs on the structural response, the prototype structure-TLCD coupled system is considered later, and its natural frequencies and related mode shapes are obtained numerically. The acceleration and displacement time-histories are obtained by the shaking table tests to evaluate its damping ratio. To consider different excitation directions, the measurements are repeated for the directions between 0° and 90° with 15° increment. It can be concluded from the study that TLCD causes to decrease the resonant frequency of the structure with increasing of the total mass. Damping ratio considerably increases with installing TLCD on the structure. This is more pronounced for the angles of 0°, 15°, 30° and 45°.

  9. Prototype of an opto-capacitive probe for non-invasive sensing cerebrospinal fluid circulation

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu; Vihriälä, Erkki; Pedone, Matteo; Korhonen, Vesa; Surazynski, Lukasz; Wróbel, Maciej; Zienkiewicz, Aleksandra; Hakala, Jaakko; Sorvoja, Hannu; Lauri, Janne; Fabritius, Tapio; Jedrzejewska-Szczerska, Małgorzata; Kiviniemi, Vesa; Meglinski, Igor

    2017-03-01

    In brain studies, the function of the cerebrospinal fluid (CSF) awakes growing interest, particularly related to studies of the glymphatic system in the brain, which is connected with the complex system of lymphatic vessels responsible for cleaning the tissues. The CSF is a clear, colourless liquid including water (H2O) approximately with a concentration of 99 %. In addition, it contains electrolytes, amino acids, glucose, and other small molecules found in plasma. The CSF acts as a cushion behind the skull, providing basic mechanical as well as immunological protection to the brain. Disturbances of the CSF circulation have been linked to several brain related medical disorders, such as dementia. Our goal is to develop an in vivo method for the non-invasive measurement of cerebral blood flow and CSF circulation by exploiting optical and capacitive sensing techniques simultaneously. We introduce a prototype of a wearable probe that is aimed to be used for long-term brain monitoring purposes, especially focusing on studies of the glymphatic system. In this method, changes in cerebral blood flow, particularly oxy- and deoxyhaemoglobin, are measured simultaneously and analysed with the response gathered by the capacitive sensor in order to distinct the dynamics of the CSF circulation behind the skull. Presented prototype probe is tested by measuring liquid flows inside phantoms mimicking the CSF circulation.

  10. Method for freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2002-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  11. Water Pollution Detection by Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Goolsby, A. D.

    1971-01-01

    Measurement of the intensity of light reflected from various planar liquid surfaces has been performed. The results of this brief study show that the presence of a film of foreign material floating on a reference substrate is easily detected by reflectance measurement if the two liquids possess significantly different refractive indices, for example, oil (n = 1.40) and water (n = 1.33). Additional study of various optical configurations, and the building and testing of a prototype monitoring device revealed that the method is sufficiently practical for application to continuous water quality monitoring.

  12. Prototype instrument for noninvasive ultrasonic inspection and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  13. Design and Prototype of an Automated Column-Switching HPLC System for Radiometabolite Analysis.

    PubMed

    Vasdev, Neil; Collier, Thomas Lee

    2016-08-17

    Column-switching high performance liquid chromatography (HPLC) is extensively used for the critical analysis of radiolabeled ligands and their metabolites in plasma. However, the lack of streamlined apparatus and consequently varying protocols remain as a challenge among positron emission tomography laboratories. We report here the prototype apparatus and implementation of a fully automated and simplified column-switching procedure to allow for the easy and automated determination of radioligands and their metabolites in up to 5 mL of plasma. The system has been used with conventional UV and coincidence radiation detectors, as well as with a single quadrupole mass spectrometer.

  14. Development and Integration of the Janus Robotic Lander: A Liquid Oxygen-Liquid Methane Propulsion System Testbed

    NASA Astrophysics Data System (ADS)

    Ponce, Raul

    Initiatives have emerged with the goal of sending humans to other places in our solar system. New technologies are being developed that will allow for more efficient space systems to transport future astronauts. One of those technologies is the implementation of propulsion systems that use liquid oxygen and liquid methane (LO2-LCH4) as propellants. The benefits of a LO2-LCH4 propulsion system are plenty. One of the main advantages is the possibility of manufacturing the propellants at the destination body. A space vehicle which relies solely on liquid oxygen and liquid methane for its main propulsion and reaction control engines is necessary to exploit this advantage. At the University of Texas at El Paso (UTEP) MIRO Center for Space Exploration Technology Research (cSETR) such a vehicle is being developed. Janus is a robotic lander vehicle with the capability of vertical take-off and landing (VTOL) which integrates several LO2-LCH 4 systems that are being devised in-house. The vehicle will serve as a testbed for the parallel operation of these propulsion systems while being fed from common propellant tanks. The following work describes the efforts done at the cSETR to develop the first prototype of the vehicle as well as the plan to move forward in the design of the subsequent prototypes that will lead to a flight vehicle. In order to ensure an eventual smooth integration of the different subsystems that will form part of Janus, requirements were defined for each individual subsystem as well as the vehicle as a whole. Preliminary testing procedures and layouts have also been developed and will be discussed to detail in this text. Furthermore, the current endeavors in the design of each subsystem and the way that they interact with one another within the lander will be explained.

  15. A liquid crystal microlens array with aluminum and graphene electrodes for plenoptic imaging

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Tong, Qing; Luo, Jun; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    Currently, several semiconducting oxide materials such as typical indium tin oxide are widely used as the transparent conducting electrodes (TCEs) in liquid crystal microlens arrays. In this paper, we fabricate a liquid crystal microlens array using graphene rather than semiconducting oxides as the TCE. Common optical experiments are carried out to acquire the focusing features of the graphene-based liquid crystal microlens array (GLCMLA) driven electrically. The acquired optical fields show that the GLCMLA can converge incident collimating lights efficiently. The relationship between the focal length and the applied voltage signal is presented. Then the GLCMLA is deployed in a plenoptic camera prototype and the raw images are acquired so as to verify their imaging capability. Our experiments demonstrate that graphene has already presented a broad application prospect in the area of adaptive optics.

  16. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels.

    PubMed

    Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud

    2005-06-01

    We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).

  17. Safeguards Technology Development Program 1st Quarter FY 2018 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Manoj K.

    LLNL will evaluate the performance of a stilbene-based scintillation detector array for IAEA neutron multiplicity counting (NMC) applications. This effort will combine newly developed modeling methodologies and recently acquired high-efficiency stilbene detector units to quantitatively compare the prototype system performance with the conventional He-3 counters and liquid scintillator alternatives.

  18. Effect of fermentation media on the production, efficacy and storage stability of Metarhizium brunneum microsclerotia formulated as a prototype granule

    USDA-ARS?s Scientific Manuscript database

    New liquid fermentation techniques for the production of the bioinsecticidal fungus Metarhizium brunneum strain F-52 have resulted in the formation of microsclerotia (MS), a compact, melonized-hyphal structure capable of surviving desiccation and formulation as dry granules. When rehydrated, these M...

  19. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-01-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  20. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  1. Reconstruction and Analysis for the DUNE 35-ton Liquid Argon Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallbank, Michael James

    Neutrino physics is approaching the precision era, with current and future experiments aiming to perform highly accurate measurements of the parameters which govern the phenomenon of neutrino oscillations. The ultimate ambition with these results is to search for evidence of CP-violation in the lepton sector, currently hinted at in the world-leading analyses from present experiments, which may explain the dominance of matter over antimatter in the Universe. The Deep Underground Neutrino Experiment (DUNE) is a future long-baseline experiment based at Fermi National Accelerator Laboratory (FNAL), with a far detector at the Sanford Underground Research Facility (SURF) and a baseline ofmore » 1300 km. In order to make the required precision measurements, the far detector will consist of 40 kton liquid argon and an embedded time projection chamber. This promising technology is still in development and, since each detector module is around a factor 15 larger than any previous experiment employing this design, prototyping the detector and design choices is critical to the success of the experiment. The 35-ton experiment was constructed for this purpose and will be described in detail in this thesis. The outcomes of the 35-ton prototype are already influencing DUNE and, following the successes and lessons learned from the experiment, confidence can be taken forward to the next stage of the DUNE programme. The main oscillation signal at DUNE will be electron neutrino appearance from the muon neutrino beam. High-precision studies of these νe interactions requires advanced processing and event reconstruction techniques, particularly in the handling of showering particles such as electrons and photons. Novel methods developed for the purposes of shower reconstruction in liquid argon are presented with an aim to successfully develop a selection to use in a νe charged-current analysis, and a first-generation selection using the new techniques is presented.« less

  2. Feasibility Test of a Liquid Film Thickness Sensor on a Flexible Printed Circuit Board Using a Three-Electrode Conductance Method

    PubMed Central

    Lee, Kyu Byung; Kim, Jong Rok; Park, Goon Cherl; Cho, Hyoung Kyu

    2016-01-01

    Liquid film thickness measurements under temperature-varying conditions in a two-phase flow are of great importance to refining our understanding of two-phase flows. In order to overcome the limitations of the conventional electrical means of measuring the thickness of a liquid film, this study proposes a three-electrode conductance method, with the device fabricated on a flexible printed circuit board (FPCB). The three-electrode conductance method offers the advantage of applicability under conditions with varying temperatures in principle, while the FPCB has the advantage of usability on curved surfaces and in relatively high-temperature conditions in comparison with sensors based on a printed circuit board (PCB). Two types of prototype sensors were fabricated on an FPCB and the feasibility of both was confirmed in a calibration test conducted at different temperatures. With the calibrated sensor, liquid film thickness measurements were conducted via a falling liquid film flow experiment, and the working performance was tested. PMID:28036000

  3. Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films

    PubMed Central

    Mikheev, Evgeny; Hauser, Adam J.; Himmetoglu, Burak; Moreno, Nelson E.; Janotti, Anderson; Van de Walle, Chris G.; Stemmer, Susanne

    2015-01-01

    Resistances that exceed the Mott-Ioffe-Regel limit (known as bad metal behavior) and non-Fermi liquid behavior are ubiquitous features of the normal state of many strongly correlated materials. We establish the conditions that lead to bad metal and non-Fermi liquid phases in NdNiO3, which exhibits a prototype bandwidth-controlled metal-insulator transition. We show that resistance saturation is determined by the magnitude of Ni eg orbital splitting, which can be tuned by strain in epitaxial films, causing the appearance of bad metal behavior under certain conditions. The results shed light on the nature of a crossover to a non-Fermi liquid metal phase and provide a predictive criterion for Anderson localization. They elucidate a seemingly complex phase behavior as a function of film strain and confinement and provide guidelines for orbital engineering and novel devices. PMID:26601140

  4. Multifunctions - liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Bechteler, M.

    1980-12-01

    Large area liquid crystal displays up to 400 cm square were developed capable of displaying a large quantity of analog and digital information, such as required for car dashboards, communication systems, and data processing, while fulfilling the attendant requirements on view tilt angle and operating temperature range. Items incorporated were: low resistance conductive layers deposited by means of a sputtermachine, preshaped glasses and broken glassfibers, assuring perfect parallellism between glass plates, rubbed plastic layers for excellent electrooptical properties, and fluorescent plates for display illumination in bright sunlight as well as in dim light conditions. Prototypes are described for clock and automotive applications.

  5. Paraxial ray solution for liquid-filled variable focus lenses

    NASA Astrophysics Data System (ADS)

    Wang, Lihui; Oku, Hiromasa; Ishikawa, Masatoshi

    2017-12-01

    We propose a general solution for determining the cardinal points and effective focal length of a liquid-filled variable focus lens to aid in understanding the dynamic behavior of the lens when the focal length is changed. A prototype of a variable focus lens was fabricated and used to validate the solution. A simplified solution was also presented that can be used to quickly and conveniently calculate the performance of the lens. We expect that the proposed solutions will improve the design of optical systems that contain variable focus lenses, such as machine vision systems with zoom and focus functions.

  6. Cryogenic Autogenous Pressurization Testing for Robotic Refueling Mission 3

    NASA Technical Reports Server (NTRS)

    Boyle, R.; DiPirro, M.; Tuttle, J.; Francis, J.; Mustafi, S.; Li, X.; Barfknecht, P.; DeLee, C. H.; McGuire, J.

    2015-01-01

    A wick-heater system has been selected for use to pressurize the Source Dewar of the Robotic Refueling Mission Phase 3 on-orbit cryogen transfer experiment payload for the International Space Station. Experimental results of autogenous pressurization of liquid argon and liquid nitrogen using a prototype wick-heater system are presented. The wick-heater generates gas to increase the pressure in the tank while maintaining a low bulk fluid temperature. Pressurization experiments were performed in 2013 to characterize the performance of the wick heater. This paper describes the experimental setup, pressurization results, and analytical model correlations.

  7. Study to develop improved methods to detect leakage in fluid systems, phase 2

    NASA Technical Reports Server (NTRS)

    Janus, J. C.; Cimerman, I.

    1971-01-01

    An ultrasonic contact sensor engineering prototype leak detection system was developed and its capabilities under cryogenic operations demonstrated. The results from tests indicate that the transducer performed well on liquid hydrogen plumbing, that flow and valve actuation could be monitored, and that the phase change from gaseous to liquid hydrogen could be detected by the externally mounted transducers. Tests also demonstrate the ability of the system to detect internal leaks past valve seats and to function as a flow meter. Such a system demonstrates that it is not necessary to break into welded systems to locate internal leaks.

  8. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  9. Front-end electronics for the LZ experiment

    NASA Astrophysics Data System (ADS)

    Morad, James; LZ Collaboration

    2016-03-01

    LZ is a second generation direct dark matter detection experiment with 5.6 tonnes of liquid xenon active target, which will be instrumented as a two-phase time projection chamber (TPC). The peripheral xenon outside the active TPC (``skin'') will also be instrumented. In addition, there will be a liquid scintillator based outer veto surrounding the main cryostat. All of these systems will be read out using photomultiplier tubes. I will present the designs for front-end electronics for all these systems, which have been optimized for shaping times, gains, and low noise. Preliminary results from prototype boards will also be presented.

  10. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  11. Third-order nonlinear electro-optic measurements in the smectic-? phase

    NASA Astrophysics Data System (ADS)

    Nowicka, Kamila; Bielejewska, Natalia

    2018-02-01

    The chiral smectic subphase with three-layer structure, ?, is now of great interest from the point of view of device technologies such as multistate or symmetric switching. We report that the unique nonlinear electro-optic response can serve as precise mark of the phase transition into three-layer structure. The problem is illustrated with the first and third harmonic electro-optic spectra. Furthermore, the characteristic response of the helical liquid crystal phases correlated with particular collective modes using the Debye-type relaxation method for the well-known prototype liquid crystal material (MHPOBC) are presented.

  12. Prototype Focal-Plane-Array Optoelectronic Image Processor

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey

    1995-01-01

    Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.

  13. Prototyping an active neutron veto for SuperCDMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less

  14. Prototyping an Active Neutron Veto for SuperCDMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less

  15. Kerosene-Fuel Engine Testing Under Way

    NASA Image and Video Library

    2003-11-17

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  16. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, engineers and technicians hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. From left, are Todd Steinrock, chief, Fabrication and Development Branch, Prototype Development Lab; David McLaughlin, electrical engineering technician; Phil Stroda, mechanical engineering technician; Perry Dickey, lead electrical engineering technician; and Harold McAmis, lead mechanical engineering technician. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  17. Kerosene-Fuel Engine Testing Under Way

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Stennis Space Center engineers conducted a successful cold-flow test of an RS-84 engine component Sept. 24. The RS-84 is a reusable engine fueled by rocket propellant - a special blend of kerosene - designed to power future flight vehicles. Liquid oxygen was blown through the RS-84 subscale preburner to characterize the test facility's performance and the hardware's resistance. Engineers are now moving into the next phase, hot-fire testing, which is expected to continue into February 2004. The RS-84 engine prototype, developed by the Rocketdyne Propulsion and Power division of The Boeing Co. of Canoga Park, Calif., is one of two competing Rocket Engine Prototype technologies - a key element of NASA's Next Generation Launch Technology program.

  18. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    PubMed

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  19. Ultrasonic level sensors for liquids under high pressure

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  20. Compact Analyzer/Controller For Oxygen-Enrichment System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Singh, Jag J.; Sprinkle, Danny R.

    1990-01-01

    System controls hypersonic air-breathing engine tests. Compact analyzer/controller developed, built, and tested in small-scale wind tunnel prototype of the 8' HTT (High-Temperature Tunnel). Monitors level of oxygen and controls addition of liquid oxygen to enrich atmosphere for combustion. Ensures meaningful ground tests of hypersonic engines in range of speeds from mach 4 to mach 7.

  1. Assessment of Undiscovered Oil and Gas Resources of the East Greenland Rift Basins Province

    USGS Publications Warehouse

    Gautier, Donald L.

    2007-01-01

    Northeast Greenland is the prototype for the U.S. Geological Survey's Circum-Arctic Oil and Gas Resource Appraisal. Using a geology-based methodology, the USGS estimates the mean undiscovered, conventional petroleum resources in the province to be approximately 31,400 MBOE (million barrels of oil equivalent) of oil, gas, and natural gas liquids.

  2. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  3. Preliminary flight prototype waste collection subsystem. [performance of waste disposal system in weightless environment

    NASA Technical Reports Server (NTRS)

    Swider, J. E., Jr.

    1974-01-01

    The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.

  4. Development of a liquid lithium thin film for use as a heavy ion beam stripper.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momozaki, Y.; Nolen, J.; Reed, C.

    2009-04-01

    A series of experiments was performed to investigate the feasibility of a liquid lithium thin film for a charge stripper in a high-power heavy ion linac. Various preliminary experiments using simulants were first conducted to determine the film formation scheme, to investigate the film stability, and to obtain the design parameters for a liquid lithium thin film system. Based on the results from these preliminary studies, a prototypical, high pressure liquid lithium system was constructed to demonstrate liquid lithium thin film formation. This system was capable of driving liquid lithium at {approx}< 300 C and up to 13.9 MPa (2000more » psig) through a nozzle opening as large as 1 mm (40 mil) in diameter. This drive pressure corresponds to a Li velocity of >200 m/s. A thin lithium film of 9 mm in width at velocity of {approx}58 m/s was produced. Its thickness was estimated to be roughly {approx}< 13 {micro}m. High vacuum was maintained in the area of the film. This type of liquid metal thin film may also be used in other high power beam applications such as for intense X-ray or neutron sources.« less

  5. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  6. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  7. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis

    2008-01-01

    NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  8. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping.

    PubMed

    Mashiko, Toshihiro; Otani, Keisuke; Kawano, Ryutaro; Konno, Takehiko; Kaneko, Naoki; Ito, Yumiko; Watanabe, Eiju

    2015-03-01

    We developed a method for fabricating a three-dimensional hollow and elastic aneurysm model useful for surgical simulation and surgical training. In this article, we explain the hollow elastic model prototyping method and report on the effects of applying it to presurgical simulation and surgical training. A three-dimensional printer using acrylonitrile-butadiene-styrene as a modeling material was used to produce a vessel model. The prototype was then coated with liquid silicone. After the silicone had hardened, the acrylonitrile-butadiene-styrene was melted with xylene and removed, leaving an outer layer as a hollow elastic model. Simulations using the hollow elastic model were performed in 12 patients. In all patients, the clipping proceeded as scheduled. The surgeon's postoperative assessment was favorable in all cases. This method enables easy fabrication at low cost. Simulation using the hollow elastic model is thought to be useful for understanding of three-dimensional aneurysm structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.

    PubMed

    Ke, Kevin; Hasselbrink, Ernest F; Hunt, Alan J

    2005-08-15

    Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical intensity, using a femtosecond pulsed laser. No postexposure etching or bonding is required; the channel network (or almost any arbitrary-shaped cavity below the surface) is produced directly from "art-to-part". The key to this approach is to use very low energy, highly focused, pulses in the presence of liquid. Microbubbles that result from laser energy deposition gently expand and extrude machining debris from the channels. These bubbles are in a highly damped, low Reynolds number regime, implying that surface spalling due to bubble collapse is unimportant. We demonstrate rapid prototyping of three-dimensional "jumpers", mixers, and other key components of complex 3D microscale analysis systems in glass substrates.

  10. Initial Results from Radiometer and Polarized Radar-Based Icing Algorithms Compared to In-Situ Data

    NASA Technical Reports Server (NTRS)

    Serke, David; Reehorst, Andrew L.; King, Michael

    2015-01-01

    In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the 'NASA Icing Remote Sensing System', or NIRSS. The second algorithm is the 'Radar Icing Algorithm', or RadIA. In addition to these algorithms, which were derived from ground-based remote sensors, in-situ icing measurements of the profiles of super-cooled liquid water (SLW) collected with vibrating wire sondes attached to weather balloons produced a comprehensive database for comparison. Key fields from the SLW-sondes include air temperature, humidity and liquid water content, cataloged by time and 3-D location. This work gives an overview of the NIRSS and RadIA products and results are compared to in-situ SLW-sonde data from one icing case study. The location and quantity of super-cooled liquid as measured by the in-situ probes provide a measure of the utility of these prototype hazard-sensing algorithms.

  11. Study of a novel electromagnetic liquid argon calorimeter — the TGT

    NASA Astrophysics Data System (ADS)

    Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.

    1995-02-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.

  12. Electromagnetic Pumps for Liquid Metal-Fed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2007-01-01

    Prototype designs of two separate pumps for use in electric propulsion systems with liquid lithium and bismuth propellants are presented. Both pumps are required to operate at elevated temperatures, and the lithium pump must additionally withstand the corrosive nature of the propellant. Compatibility of the pump materials and seals with lithium and bismuth were demonstrated through proof-of-concept experiments followed by post-experiment visual inspections. The pressure rise produced by the bismuth pump was found to be linear with input current and ranged from 0-9 kPa for corresponding input current levels of 0-30 A, showing good quantitative agreement with theoretical analysis.

  13. Development of a prototype automatic controller for liquid cooling garment inlet temperature

    NASA Technical Reports Server (NTRS)

    Weaver, C. S.; Webbon, B. W.; Montgomery, L. D.

    1982-01-01

    The development of a computer control of a liquid cooled garment (LCG) inlet temperature is descirbed. An adaptive model of the LCG is used to predict the heat-removal rates for various inlet temperatures. An experimental system that contains a microcomputer was constructed. The LCG inlet and outlet temperatures and the heat exchanger outlet temperature form the inputs to the computer. The adaptive model prediction method of control is successful during tests where the inlet temperature is automatically chosen by the computer. It is concluded that the program can be implemented in a microprocessor of a size that is practical for a life support back-pack.

  14. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  15. Modular detector for deep underwater registration of muons and muon groups

    NASA Technical Reports Server (NTRS)

    Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.

    1985-01-01

    Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.

  16. A Thermal Physiological Comparison of Two HazMat Protective Ensembles With and Without Active Convective Cooling

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca; Carbo, Jorge; Luna, Bernadette; Webbon, Bruce W.

    1998-01-01

    Wearing impermeable garments for hazardous materials clean up can often present a health and safety problem for the wearer. Even short duration clean up activities can produce heat stress injuries in hazardous materials workers. It was hypothesized that an internal cooling system might increase worker productivity and decrease likelihood of heat stress injuries in typical HazMat operations. Two HazMat protective ensembles were compared during treadmill exercise. The different ensembles were created using two different suits: a Trelleborg VPS suit representative of current HazMat suits and a prototype suit developed by NASA engineers. The two life support systems used were a current technology Interspiro Spirolite breathing apparatus and a liquid air breathing system that also provided convective cooling. Twelve local members of a HazMat team served as test subjects. They were fully instrumented to allow a complete physiological comparison of their thermal responses to the different ensembles. Results showed that cooling from the liquid air system significantly decreased thermal stress. The results of the subjective evaluations of new design features in the prototype suit were also highly favorable. Incorporation of these new design features could lead to significant operational advantages in the future.

  17. BetaNMR Experiments on Liquid Samples

    NASA Astrophysics Data System (ADS)

    Gottberg, A.; Stachura, M.; Hemmingsen, L.; Macfarlane, W. A.; Bio-Beta-Nmr Collaboration; Collaps Collaboration

    2016-09-01

    In 2012 betaNMR spectroscopy was successfully applied on liquid samples; an achievement which opens new opportunities in the fields of chemistry and biochemistry. This project was motivated by the need for finding a new experimental approach to directly study biologically highly relevant metal ions, such as Mg(II), Cu(I), Ca(II), and Zn(II), which are silent in most spectroscopic techniques. The resonance spectrum recorded for Mg-31 implanted into an ionic liquid sample showed two resonances which originate from Mg ions occupying two different coordination geometries, illustrating that this technique can discriminate between different structures. This proof-of-principle result lays the foundation for studies of these metal ions at low concentrations and in environments of biological relevance where other methods are silent. The prototype chamber for bio-betaNMR allows for experiments not only on different samples such as: liquids, gels and solids, but also operates at different vacuum environments. In order to exploit the potential of betaNMR on liquid samples, tests with polarized beams of Mg-29 and Mg-31 have recently been performed at the ISAC facility at TRIUMF.

  18. Lithium-Metal Infused Trenches: Progress toward a Divertor Solution

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Fiflis, P.; Christenson, M.; Szott, M.; Xu, W.; Jung, S.; Morgan, T. W.; Kalathiparambil, K.

    2014-10-01

    The application of liquid metal, especially liquid lithium, as a plasma facing component (PFC) has the capacity to offer a strong alternative to solid PFCs by reducing damage concerns and enhancing plasma performance. The Liquid-Metal Infused Trenches (LiMIT) concept is a liquid metal divertor alternative which employs thermoelectric current from either plasma or external heating in tandem with the toroidal field to self-propel liquid lithium through a series of trenches. LiMIT has been tested in several devices, namely HT-7, the UIUC SLiDE and TELS facilities and Magnum PSI at heat fluxes of up to 3 MW/m-2. Results of these experiments, including velocity and temperature measurements, power handling considerations, and preliminary vapor shielding results will be discussed, focusing on the 117 shots performed at Magnum scanning magnetic fields and heat fluxes up to ~ 0.3 T and 3 MW/m-2. Concerns over tritium retention and MHD droplet ejection will additionally be addressed. LiMIT has also been proposed to function as a limiter on the EAST moveable limiter arm and tests have been performed with a prototype module inclined at various angles.

  19. Foam on troubled water: Capillary induced finite-time arrest of sloshing waves

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François

    2016-09-01

    Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.

  20. KSC-pa99dig02

    NASA Image and Video Library

    1999-02-17

    Various materials are ready for testing in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development

  1. KSC-pa99dig01

    NASA Image and Video Library

    1999-02-17

    Materials are being tested in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development

  2. Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic ‘liquid diode’

    PubMed Central

    Comanns, Philipp; Buchberger, Gerda; Buchsbaum, Andreas; Baumgartner, Richard; Kogler, Alexander; Bauer, Siegfried; Baumgartner, Werner

    2015-01-01

    Moisture-harvesting lizards such as the Texas horned lizard (Iguanidae: Phrynosoma cornutum) live in arid regions. Special skin adaptations enable them to access water sources such as moist sand and dew: their skin is capable of collecting and transporting water directionally by means of a capillary system between the scales. This fluid transport is passive, i.e. requires no external energy, and directs water preferentially towards the lizard's snout. We show that this phenomenon is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, we used these principles to develop a technical prototype design. Building upon the Young–Laplace equation, we derived a theoretical model for the local behaviour of the liquid in such capillaries. We present a global model for the penetration velocity validated by experimental data. Artificial surfaces designed in accordance with this model prevent liquid flow in one direction while sustaining it in the other. Such passive directional liquid transport could lead to process improvements and reduction of resources in many technical applications. PMID:26202685

  3. Electro-focusing liquid extractive surface analysis (EF-LESA) coupled to mass spectrometry.

    PubMed

    Brenton, A Gareth; Godfrey, A Ruth

    2014-04-01

    Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical "liquid tip", employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm(2). Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe's reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R(2) = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution.

  4. Electro-Focusing Liquid Extractive Surface Analysis (EF-LESA) Coupled to Mass Spectrometry

    PubMed Central

    2014-01-01

    Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical “liquid tip”, employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm2. Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe’s reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R2 = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution. PMID:24597530

  5. A microprocessor-controlled tracheal insufflation-assisted total liquid ventilation system.

    PubMed

    Parker, James Courtney; Sakla, Adel; Donovan, Francis M; Beam, David; Chekuri, Annu; Al-Khatib, Mohammad; Hamm, Charles R; Eyal, Fabien G

    2009-09-01

    A prototype time cycled, constant volume, closed circuit perfluorocarbon (PFC) total liquid ventilator system is described. The system utilizes microcontroller-driven display and master control boards, gear motor pumps, and three-way solenoid valves to direct flow. A constant tidal volume and functional residual capacity (FRC) are maintained with feedback control using end-expiratory and end-inspiratory stop-flow pressures. The system can also provide a unique continuous perfusion (bias flow, tracheal insufflation) through one lumen of a double-lumen endotracheal catheter to increase washout of dead space liquid. FRC and arterial blood gases were maintained during ventilation with Rimar 101 PFC over 2-3 h in normal piglets and piglets with simulated pulmonary edema induced by instillation of albumin solution. Addition of tracheal insufflation flow significantly improved the blood gases and enhanced clearance of instilled albumin solution during simulated edema.

  6. Supersonic Gas-Liquid Cleaning System

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  7. 3-D printing of liquid metals for stretchable and flexible conductors

    NASA Astrophysics Data System (ADS)

    Trlica, Chris; Parekh, Dishit Paresh; Panich, Lazar; Ladd, Collin; Dickey, Michael D.

    2014-06-01

    3-D printing is an emerging technology that has been used primarily on small scales for rapid prototyping, but which could also herald a wider movement towards decentralized, highly customizable manufacturing. Polymers are the most common materials to be 3-D printed today, but there is great demand for a way to easily print metals. Existing techniques for 3-D printing metals tend to be expensive and energy-intensive, and usually require high temperatures or pressures, making them incompatible with polymers, organics, soft materials, and biological materials. Here, we describe room temperature liquid metals as complements to polymers for 3-D printing applications. These metals enable the fabrication of soft, flexible, and stretchable devices. We survey potential room temperature liquid metal candidates and describe the benefits of gallium and its alloys for these purposes. We demonstrate the direct printing of a liquid gallium alloy in both 2-D and 3-D and highlight the structures and shapes that can be fabricated using these processes.

  8. Measuring the Neutron Cross Section and Detector Response from Interactions in Liquid Argon

    NASA Astrophysics Data System (ADS)

    Kamp, Nicholas; Collaboration, Captain

    2017-09-01

    The main objective of the CAPTAIN (Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos) program is to measure neutron and neutrino interactions in liquid argon. These results will be essential to the development of both short and long baseline neutrino experiments. The full CAPTAIN experiment involves a 10 ton liquid argon time projection chamber (LArTPC) that will take runs at a low-energy ( 10-50 MeV) stopped pion neutrino source. A two ton LArTPC, MiniCAPTAIN, will serve as a prototype for the full CAPTAIN detector. MiniCAPTAIN has been deployed to take data at the Los Alamos Neutron Science Center in late July. During this run, it will both test new LArTPC technologies and measure the cross section and detector response of neutron interactions in liquid argon. The results will be helpful in characterizing neutral current neutrino interactions and identifying background in future neutrino detection experiments. This poster gives an overview of these results and a status update on the CAPTAIN collaboration.

  9. LN2-free Operation of the MEG Liquid Xenon Calorimeter by using a High-power Pulse Tube Cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruyama, T.; Kasami, K.; Nishiguchi, H.

    2006-04-27

    A high-power coaxial pulse tube cryocooler, originally developed in KEK and technology-transferred to Iwatani Industrial Gases Corp (IIGC), has been installed in a large liquid xenon calorimeter to evaluate liquid nitrogen-free (LN2-free) operation of the rare {mu}-particle decay experiment (MEG). Features of this pulse tube cryocooler include the cold-end heat exchanger, designed with sufficient surface area to ensure high-power cooling, and a cylindrical regenerator placed inside the pulse tube giving compact design and ease of fabrication. This production-level cryocooler provides a cooling power of {approx}200 W at 165 K, using a 6 kW Gifford-McMahon (GM)-type compressor. The paper describes themore » detailed configuration of the cryocooler, and the results of the continuous LN2-free operation of the large prototype liquid xenon calorimeter, which ran for more than 40 days without problems.« less

  10. A flow reactor setup for photochemistry of biphasic gas/liquid reactions

    PubMed Central

    Schachtner, Josef; Bayer, Patrick

    2016-01-01

    Summary A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories. PMID:27829887

  11. Comparison of steady-state and transient CVS cycle emission of an automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Farrell, R. A.; Bolton, R. J.

    1983-01-01

    The Automotive Stirling Engine Development Program is to demonstrate a number of goals for a Stirling-powered vehicle. These goals are related to an achievement of specified maximum emission rates, a combined cycle fuel economy 30 percent better than a comparable internal-combustion engine-powered automobile, multifuel capability, competitive cost and reliability, and a meeting of Federal standards concerning noise and safety. The present investigation is concerned with efforts related to meeting the stringent emission goals. Attention is given to the initial development of a procedure for predicting transient CVS urban cycle gaseous emissions from steady-state engine data, taking into account the employment of the test data from the first-generation automotive Stirling engine. A large amount of steady-state data from three Mod I automotive Stirling engines were used to predict urban CVS cycle emissions for the Mod I Lerma vehicle.

  12. An overview of NASA intermittent combustion engine research

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectedly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts, the stratified-charge, multi-fuel rotary and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants. Previously announced in STAR as N84-24583

  13. Ignition improvement by injector arrangement in a multi-fuel combustor for micro gas turbine

    NASA Astrophysics Data System (ADS)

    Antoshkiv, O.; Poojitganont, T.; Jeansirisomboon, S.; Berg, H. P.

    2018-01-01

    The novel combustor design also has an impact on the ignitor arrangement. The conventional ignitor system cannot guarantee optimal ignition performance in the usual radial position. The difficult ignitability of gaseous fuels was the main challenge for the ignitor system improvement. One way to improve the ignition performance significantly is a torch ignitor system in which the gaseous fuel is directly mixed with a large amount of the combustor air. To reach this goal, the ignition process was investigated in detail. The micro gas turbine (MGT) ignition was optimised considering three main procedures: torch ignitor operation, burner ignition and flame propagation between the neighbour injectors. A successful final result of the chain of ignition procedures depends on multiple aspects of the combustor design. Performed development work shows an important step towards designing modern high-efficiency low-emission combustors.

  14. An overview of NASA intermittent combustion engine research

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants.

  15. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  16. A regulator for pressure-controlled total-liquid ventilation.

    PubMed

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  17. Improved OCT imaging of lung tissue using a prototype for total liquid ventilation

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Meissner, Sven; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is used for imaging subpleural alveoli in animal models to gain information about dynamic and morphological changes of lung tissue during mechanical ventilation. The quality of OCT images can be increased if the refraction index inside the alveoli is matched to the one of tissue via liquid-filling. Thereby, scattering loss can be decreased and higher penetration depth and tissue contrast can be achieved. Until now, images of liquid-filled lungs were acquired in isolated and fixated lungs only, so that an in vivo measurement situation is not present. To use the advantages of liquid-filling for in vivo imaging of small rodent lungs, it was necessary to develop a liquid ventilator. Perfluorodecalin, a perfluorocarbon, was selected as breathing fluid because of its refraction index being similar to the one of water and the high transport capacity for carbon dioxide and oxygen. The setup is characterized by two independent syringe pumps to insert and withdraw the fluid into and from the lung and a custom-made control program for volume- or pressure-controlled ventilation modes. The presented results demonstrate the liquid-filling verified by optical coherence tomography and intravital microscopy (IVM) and the advantages of liquid-filling to OCT imaging of subpleural alveoli.

  18. Metabolic profile of Kudiezi injection in rats by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zhang, Jingdan; Zhang, Xiaoxue; Zhao, Yangyang; Song, Aihua; Sun, Wei; Yin, Ran

    2018-02-01

    In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  20. Development of a Pebble-Bed Liquid-Nitrogen Evaporator/Superheater for the BRL 1/6th Scale Large Blast/Thermal Simulator Test Bed. Phase 1. Prototype Design and Analysis

    DTIC Science & Technology

    1991-08-01

    specifications are taken primarily from the 1983 version of the ASME Boiler and Pressure Vessel Code . Other design requirements were developea from standard safe...rules and practices of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to provide a safe and reliable system

  1. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  2. Addressing Future Technology Challenges Through Innovation and Investment

    DTIC Science & Technology

    2012-03-01

    27   Figure  5:   High   Altitude  LIDAR  Operations  Equipment...deployment of the High Altitude LIDAR Operations Experiment (HALOE) system to Operation Enduring Freedom (OEF). DARPA took a prototype sensor and put...High_Energy_Liquid_Laser_Area_Defense_System_(HELLADS).as px.   7 DARPA, “ High Altitude LIDAR Operations Experiment (HALOE) Information Briefing”, September 2011.   8 Taylor, John

  3. Pharmacokinetics of the prototype and hydrolyzed carboxylic forms of ginkgolides A, B, and K administered as a ginkgo diterpene lactones meglumine injection in beagle dogs.

    PubMed

    Wang, Shu-Yao; A, Ji-Ye; Fei, Fei; Geng, Jian-Liang; Peng, Ying; Ouyang, Bing-Chen; Wang, Pei; Jin, Xiao-Liang; Zhao, Yu-Qing; Wang, Jian-Kun; Geng, Ting; Li, Yan-Jing; Huang, Wen-Zhe; Wang, Zhen-Zhong; Xiao, Wei; Wang, Guang-Ji

    2017-10-01

    Ginkgo diterpene lactones meglumine injection (GDLI) is a commercially available product used for neuroprotection. However, the pharmacokinetic properties of the prototypes and hydrolyzed carboxylic forms of the primary components in GDLI, i.e., ginkgolide A (GA), ginkgolide B (GB), and ginkgolide K (GK), have never been fully evaluated in beagle dogs. In this work, a simple, sensitive, and reliable method based on ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) was developed, and the prototypes and total amounts of GA, GB, and GK were determined in beagle dog plasma. The plasma concentrations of the hydrolyzed carboxylic forms were calculated by subtracting the prototype concentrations from the total lactone concentrations. For the first time, the pharmacokinetics of GA, GB, and GK were fully assessed in three forms, i.e., the prototypes, the hydrolyzed carboxylic forms, and the total amounts, after intravenous administration of GDLI in beagle dogs. It was shown that ginkgolides primarily existed in the hydrolyzed form in plasma, and the ratio of hydrolysates to prototype forms of GA and GB decreased gradually to a homeostatic ratio. All of the three forms of the three ginkgolides showed linear exposure of AUC to the dosages. GA, GB, and GK showed a constant half-life approximately 2.7, 3.4, and 1.2 h, respectively, which were consistent for the forms at three dose levels (0.3, 1.0, and 3.0 mg·kg -1 ) and after a consecutive injection of GDLI for 7 days (1.0 mg·kg -1 ). Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Test results of a pumped two-phase mounting plate with ammonia. [designed for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Swanson, T. D.; Mccabe, M. E., Jr.; Grote, M. G.

    1987-01-01

    The design, fabrication, and testing of full-scale prototype units of a two-phase mounting plate (TPMP), which will be used in a two-phase ammonia-based thermal control system for a large spacecraft, are described. The mounting plate uses an evaporator design in which liquid is mechanically pumped through porous feed tubes within the plate. The prototype TPMPs were tested with ammonia at heat loads over 3000 W (3.2 W/sq cm) and local heat fluxes of up to 4 W/sq cm. Calculated total heat transfer coefficients from these tests were between 0.8 and 1.0 W/sq cm per C. This represents a better than twenty-fold improvement over comparable single-phase heat transfer coefficients. Design diagrams are included.

  5. Experiment neutrino-4 on searching for a sterile neutrino with multisection detector model

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Polyushkin, A. O.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.

    2017-02-01

    A laboratory for searching for oscillations of reactor antineutrinos has been created based on the SM-3 reactor in order to approach the problem of the possible existence of a sterile neutrino. The multisection detector prototype with a liquid scintillator volume of 350 L was installed in mid-2015. This detector can move inside the passive shield in a range of 6-11 m from the active core of the reactor. The antineutrino flux was measured for the first time at these short distances from the active core of the reactor by the movable detector. The measurements with the multisection detector prototype demonstrated that it is possible to measure the antineutrino flux from the reactor in the complicated conditions of cosmic background on the Earth's surface.

  6. Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector

    NASA Astrophysics Data System (ADS)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-09-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.

  7. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less

  8. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  9. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Nedil, M.; Habib, M. A.; Haddad, E.; Jamroz, W.; Therriault, D.; Coulibaly, Y.; Rosei, F.

    2013-08-01

    This letter describes the fabrication and characterization of a fluidic patch antenna operating at the S-band frequency (4 GHz). The antenna prototype is composed of a nanocomposite material made by a liquid metal alloy (eutectic gallium indium) blended with single-wall carbon-nanotube (SWNTs). The nanocomposite is then enclosed in a polymeric substrate by employing the UV-assisted direct-writing technology. The fluidic antennas specimens feature excellent performances, in perfect agreement with simulations, showing an increase in the electrical conductivity and reflection coefficient with respect to the SWNTs concentration. The effect of the SWNTs on the long-term stability of antenna's mechanical properties is also demonstrated.

  10. Cyrogenic Life Support Technology Development Project

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  11. Heat Sponge: A Concept for Mass-Efficient Heat Storage

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2008-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a re-entry vehicle to reduce thermal- protection-system requirements. The heat sponge consists of a liquid/vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat-storage capacity of the liquid/vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over a temperature range of 200 F to 700 F. The use of pure ammonia as the working fluid provides a range of application between 432 deg R and 730 deg R, or the use of the more practical water-ammonia solution provides a range of application between 432 deg R and 1160 deg R or in between that of water and pure ammonia. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0-inch-diameter, hollow, stainless-steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water and a water-ammonia solution. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat-storage capacity calculated from measured temperature histories is compared to numerical predictions.

  12. A world-to-chip socket for microfluidic prototype development.

    PubMed

    Yang, Zhen; Maeda, Ryutaro

    2002-10-01

    We report a prototype for a standard connector between a microfluidic chip and the macroworld. This prototype is the first to demonstrate a fully functioning socket for a microchip to access the outside world by means of fluids, data, and energy supply, as well as providing process visibility. It has 20 channels for the input and output of liquids or gases, as well as compressed air or vacuum lines for pneumatic power lines. It also contains 42 pins for electrical signals and power. All these connections were designed in a planar configuration with linear orthogonal arrays. The vertical space was opened for optical measurement and evaluation. The die (29.1 mm x 27.5 mm x 0.9 mm) can be easily mounted and dismounted from the socket. No adhesives or solders are used at any contact points. The pressure limit for the connection of working fluids was 0.2 MPa and the current limit for the electrical connections was 1 A. This socket supports both serial and parallel processing applications. It exhibits great potential for developing microfluidic systems efficiently.

  13. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  14. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  15. Eddy Current Flow Measurements in the FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less

  16. The ArDM experiment

    DOE PAGES

    Harańczyk, M.; Amsler, C.; Badertscher, A.; ...

    2010-08-24

    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R & D program, including a 3 l prototype developed to test the charge readout system.

  17. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    NASA Kennedy Space Center's Engineering Directorate held a banner signing event in the Prototype Development Laboratory to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it to support cryogenic testing at Johnson Space Center's White Stands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  18. Readout and Data Acquisition for a Liquid Radiator Radiation Exposure Test

    NASA Astrophysics Data System (ADS)

    Lantz, Chad

    2017-09-01

    The ATLAS Zero Degree Calorimeter (ZDC) prototype is a tungsten-sampling, oil/quartz radiating calorimeter placed on each side of the interaction point. The ZDC is used in heavy ion runs for centrality measurements. The UIUC group develops a ZDC that is significantly more radiation hard than the currently employed detector. The current ZDC uses scintillating quartz rods placed directly in the beamline whose optical transmission is known to degrade as a function of radiation dosage. Our prototype uses organic wavelength shifters (WLS) dissolved in oil in two stages to take Cherenkov light produced in the oil by the particle shower and guide it to a photodetector. This design allows the quartz rods be located away from the beam center to experience a lower radiation dose, and the oil containing WLS can be replaced periodically to negate radiation damage. Quantum dots are studied as a more radiation hard alternative to WLS. This increase in radiation hardness will allow ATLAS to operate the ZDC after the luminosity upgrades planned for the LHC. A test setup has been developed for the study of radiation hardness of liquid Cherenkov radiators and wavelength shifters. The setup will be described in this presentation with a focus on the readout electronics and data acquisition.

  19. The Initial Atmospheric Transport (IAT) Code: Description and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, Charles W.; Bartel, Timothy James

    The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34Dmore » accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.« less

  20. The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca O.; Peterson, Per F.

    2014-01-01

    The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.

  1. Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy

    2017-01-01

    A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments.

  2. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  3. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  4. Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic 'liquid diode'.

    PubMed

    Comanns, Philipp; Buchberger, Gerda; Buchsbaum, Andreas; Baumgartner, Richard; Kogler, Alexander; Bauer, Siegfried; Baumgartner, Werner

    2015-08-06

    Moisture-harvesting lizards such as the Texas horned lizard (Iguanidae: Phrynosoma cornutum) live in arid regions. Special skin adaptations enable them to access water sources such as moist sand and dew: their skin is capable of collecting and transporting water directionally by means of a capillary system between the scales. This fluid transport is passive, i.e. requires no external energy, and directs water preferentially towards the lizard's snout. We show that this phenomenon is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, we used these principles to develop a technical prototype design. Building upon the Young-Laplace equation, we derived a theoretical model for the local behaviour of the liquid in such capillaries. We present a global model for the penetration velocity validated by experimental data. Artificial surfaces designed in accordance with this model prevent liquid flow in one direction while sustaining it in the other. Such passive directional liquid transport could lead to process improvements and reduction of resources in many technical applications. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Structural design of liquid oxygen/liquid methane robotic lander JANUS

    NASA Astrophysics Data System (ADS)

    Chaidez, Mariana

    As the attempt to send humans to Mars has gained momentum in the last decade, the need to find alternative propellants that are safer, less toxic, and yields a better performance has become apparent [1]. Liquid methane and oxygen have emerged as a suitable alternative. In addition, the incorporation of liquid methane/liquid oxygen into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the propulsion system. In an attempt to further understand the technologies that are possible to develop using liquid oxygen (LO 2) and liquid methane (LCH4), a preliminary design of a robotic lander JANUS is being completed by the Center for Space Exploration and Technology Research (cSTER). The structural design of the vehicle is important because it acts as the skeleton of the vehicle and dictates the maneuverability of the robotic lander. To develop the structure of the robotic lander, six different design vehicle concepts with varying tank configurations were considered. Finite Element Analysis (FEA) was completed on each model to optimize each vehicle. Trade studies were completed to choose the best design for JANUS. Upon completion of the trade studies the design for the first prototype of JANUS was initiated in which the tank and thrust modules were designed. This thesis will describe the design process for the structural design of the JANUS.

  6. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties.

    PubMed

    Costa, Luciano T; Ribeiro, Mauro C C

    2006-05-14

    Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.

  7. Ground operations demonstration unit for liquid hydrogen initial test results

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-12-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fei; He, Yadong; Huang, Jingsong

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  9. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  10. Microscopic aspects of wetting using classical density functional theory

    NASA Astrophysics Data System (ADS)

    Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.

    2018-07-01

    Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.

  11. Multicomponent Gas Storage in Organic Cage Molecules

    DOE PAGES

    Zhang, Fei; He, Yadong; Huang, Jingsong; ...

    2017-05-18

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  12. Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenterly, S W; Zhang, Y.; Pleva, Ed

    2010-01-01

    Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuuminsulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less

  13. Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenterly, S W; Zhang, Y.; Pleva, E. F.

    Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less

  14. The use of a block diagram simulation language for rapid model prototyping

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    1995-01-01

    The research performed this summer focussed on the development of a predictive model for the loading of liquid oxygen (LO2) into the external tank (ET) of the shuttle prior to launch. A predictive model can greatly aid the operational personnel since instrumentation aboard the orbiter and ET is limited due to weight constraints. The model, which focuses primarily on the orbiter section of the system was developed using a block diagram based simulation language known as VisSim. Simulations were run on LO2 loading data for shuttle flights STS50 and STS55 and the model was demonstrated to accurately predict the sensor data recorded for these flights. As a consequence of the simulation results, it can be concluded that the software tool can be very useful for rapid prototyping of complex models.

  15. Green Liquid Monopropellant Thruster

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.

    2015-01-01

    Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.

  16. Performance of NCAP projection displays

    NASA Astrophysics Data System (ADS)

    Jones, Philip J.; Tomita, Akira; Wartenberg, Mark

    1991-08-01

    Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.

  17. The Stability of Particulate Ladden Laminar Boundary-Layer Flows

    NASA Technical Reports Server (NTRS)

    Acrivos, Andreas

    1996-01-01

    During the course of this investigation, the following two topics were studied theoretically: (1) forced convection and sedimentation past a flat plate, and (2) the effect of rain on airfoil performance. The prototype of the first topic is that of air flowing past the wing section of an aircraft under heavy rain and high windshear. The long-range objective of this project was to identify the various factors determining the dynamics of the flow and then to develop a theoretical framework for modeling such systems. The second topic focused on the idea that the presence of the gas-liquid interface (being the air flow around the airfoil and the thin liquid film created by the rain) accelerates flow separation and thus induces performance losses.

  18. A disposable sampling device to collect volume-measured DBS directly from a fingerprick onto DBS paper.

    PubMed

    Lenk, Gabriel; Sandkvist, Sören; Pohanka, Anton; Stemme, Göran; Beck, Olof; Roxhed, Niclas

    2015-01-01

    DBS samples collected from a fingerprick typically vary in volume and homogeneity and hence make an accurate quantitative analysis of DBS samples difficult. We report a prototype which first defines a precise liquid volume and subsequently stores it to a conventional DBS matrix. Liquid volumes of 2.2 µl ± 7.1% (n = 21) for deionized water and 6.1 µl ± 8.8% (n = 15) for whole blood have been successfully metered and stored in DBS paper. The new method of collecting a defined volume of blood by DBS sampling has the potential to reduce assay bias for the quantitative evaluation of DBS samples while maintaining the simplicity of conventional DBS sampling.

  19. Vape Factor Fast Find-Adult (VF3-A): a prototype survey method for recording brand-specific vaping factors in adult populations.

    PubMed

    Ross, Craig S; Zhang, Tancy C; DeJong, William; Siegel, Michael

    2018-03-23

    In population studies, vaping is often treated as a dichotomous exposure (present/absent) without consideration of specific vaping devices and materials being used. A survey instrument is needed to record specific vaping devices and materials. We developed a database of 613 vaping device models and 3196 vaping liquid products, indexed by device brand, device type, liquid brand, liquid name and liquid flavour type. We developed a survey instrument to allow participants to report their vaping device and liquid from the indexed lists. The survey was pilot tested with a convenience sample of 208 adults (≥age 21). We validated the vaping device and liquid responses with a recontact survey. We report the proportion of respondents finding their products, characteristics of people finding their products and survey response times. Devices used most frequently in the past 30 days were electronic cigarettes (33% of respondents), vaping pens (28%) and vaping mods (16%). Fifty-seven per cent used liquids containing nicotine most frequently in the past 30 days, followed by liquids without nicotine (20%) and marijuana or hashish (10%). Most (85%) participants found their vaping device successfully (median 19.7 s) and 74% found their vaping liquid (median 19.8 s). Females and older adults were less likely to find their devices and liquids. Responses were validated for 91% and 76% of devices and e-liquids, respectively. This study demonstrated the feasibility of an internet-based survey instrument to record specific vaping factors for use in studies of vaping and health. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Physics Flash December 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    This is the December 2016 issue of Physics Flash, the newsletter of the Physics Division of Los Alamos National Laboratory (LANL). In this issue, the following topics are covered: Novel liquid helium technique to aid highly sensitive search for a neutron electrical dipole moment; Silverleaf: Prototype Red Sage experiments performed at Q-site; John L. Kline named 2016 APS Fellow; Physics students in the news; First Entropy Engine quantum random number generator hits the market; and celebrating service.

  1. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Workers sign the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  2. MAGMA: A Liquid Software Approach to Fault Tolerance, Computer Network Security, and Survivable Networking

    DTIC Science & Technology

    2001-12-01

    and Lieutenant Namik Kaplan , Turkish Navy. Maj Tiefert’s thesis, “Modeling Control Channel Dynamics of SAAM using NS Network Simulation”, helped lay...DEC99] Deconinck , Dr. ir. Geert, Fault Tolerant Systems, ESAT / Division ACCA , Katholieke Universiteit Leuven, October 1999. [FRE00] Freed...Systems”, Addison-Wesley, 1989. [KAP99] Kaplan , Namik, “Prototyping of an Active and Lightweight Router,” March 1999 [KAT99] Kati, Effraim

  3. Lessons Learned about Liquid Metal Reactors from FFTF Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Omberg, Ronald P.

    2016-09-20

    The Fast Flux Test Facility (FFTF) is the most recent liquid-metal reactor (LMR) to operate in the United States, from 1982 to 1992. FFTF is located on the DOE Hanford Site near Richland, Washington. The 400-MWt sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission test reactor was designed specifically to irradiate Liquid Metal Fast Breeder Reactor (LMFBR) fuel and components in prototypical temperature and flux conditions. FFTF played a key role in LMFBR development and testing activities. The reactor provided extensive capability for in-core irradiation testing, including eight core positions that could be used with independent instrumentation for the test specimens.more » In addition to irradiation testing capabilities, FFTF provided long-term testing and evaluation of plant components and systems for LMFBRs. The FFTF was highly successful and demonstrated outstanding performance during its nearly 10 years of operation. The technology employed in designing and constructing this reactor, as well as information obtained from tests conducted during its operation, can significantly influence the development of new advanced reactor designs in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor operations. The FFTF complex included the reactor, as well as equipment and structures for heat removal, containment, core component handling and examination, instrumentation and control, and for supplying utilities and other essential services. The FFTF Plant was designed using a “system” concept. All drawings, specifications and other engineering documentation were organized by these systems. Efforts have been made to preserve important lessons learned during the nearly 10 years of reactor operation. A brief summary of Lessons Learned in the following areas will be discussed: Acceptance and Startup Testing of FFTF FFTF Cycle Reports« less

  4. First beam test of a liquid Cherenkov detector prototype for a future TOF measurements at the Super-FRS

    NASA Astrophysics Data System (ADS)

    Kuzminchuk-Feuerstein, Natalia; Ferber, Nadine; Rozhkova, Elena; Kaufeld, Ingo; Voss, Bernd

    2017-09-01

    In order to separate and identify fragmentation products with the Super-Fragment Separator (SuperFRS) at FAIR a high resolving power detector system is required for position and Time-Of-Flight (TOF) measurements. The TOF detector is used to measure the velocity of the particles and hence, in conjunction with their momentum or energy, to determine their mass and hence their identity. Aiming to develop a system with a precision down to about 50 ps in time and resistant to a high radiation rate of relativistic heavy ions of up to 107 per spill (at the second focal plane), we have shown a conceptual design for a Cherenkov detector envisioned for the future TOF measurements employing Iodine Naphthalene (C10H7I) as a fluid radiator. The application of a liquid radiator allows the circulation of the active material and therefore to greatly reduce the effects of the degradation of the optical performance expected after exposure to the high ion rates at the Super-FRS. The prototype of a TOF-Cherenkov detector was designed, constructed and its key-properties have been investigated in measurements with heavy ions at CaveC at GSI. These measurements were performed with nickel ions at 300-1500 MeV/u and ion-beam intensities of up to 4 × 106 ions/spill of 8 s. As a first result a maximum detection efficiency of 70% and a timing resolution of 267 ps (σ) was achieved. We report the first attempt of time measurements with a Cherenkov detector based on a liquid radiator. Further optimization is required.

  5. KSC-2013-4316

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  6. KSC-2013-4370

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2013-4367

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2013-4369

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Engineers and technicians prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2013-4318

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  10. KSC-2013-4315

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Preparations are underway to prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  11. KSC-2013-4368

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2013-4319

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  13. KSC-2013-4366

    NASA Image and Video Library

    2013-12-17

    CAPE CANAVERAL, Fla. -- Preparations are underway to prepare the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2013-4320

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the lander’s engine fires at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  15. KSC-2013-4317

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – Technicians and engineers prepare the Project Morpheus prototype lander for its first free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  16. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.

  17. IS-EPOS - a prototype of EPOS Thematic Core Service for seismic processes induced by human operations

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanislaw; Leptokaropoulos, Konstantinos

    2014-05-01

    The community focused on seismic processes induced by human operations has been organized within EPOS Integration Program as Working Group 10 Infrastructure for Georesources. This group has brought together representatives from the scientific community and industry from 13 European countries. WG10 aims to integrate the research infrastructure (RI) in the area of seismicity induced (IS) by human activity: tremors and rockbursts in underground mines, seismicity associated with conventional and unconventional oil and gas production, induced by geothermal energy extraction and by underground reposition and storage of liquids (e.g. water disposal associated with energy extraction) and gases (CO2 sequestration, inter alia) and triggered by filling surface water reservoirs, etc. WG10 priority is to create new research opportunities in the field responding to global challenges connected with exploitation of georesources. WG10 has prepared the model of integration fulfilling the scientific mission and raising the visibility of stakeholders. The end-state Induced Seismicity Thematic Core Service (IS TCS) has been designed together with key metrics for TCS benefits in four areas: scientific, societal, economic and capacity building. IS-EPOS project, funded by National Centre for Research and Development, Poland within the program "Innovative Economy Operational Program Priority Axis 2 - R&D Infrastructure", aims at building a prototype of IS TCS. The prototype will implement fully the designed logic of IS TCS. Research infrastructure integrated within the prototype will comprise altogether seven comprehensive data cases of seismicity linked to deep mining related, associating geothermal production and triggered by reservoir impoundment. The implemented thematic services will enable studies within the use-case "Clustering of induced earthquakes". The IS TCS prototype is expected to reach full functionality by the end of 2014.

  18. Self-Organizing Hierarchical Particle Swarm Optimization with Time-Varying Acceleration Coefficients for Economic Dispatch with Valve Point Effects and Multifuel Options

    NASA Astrophysics Data System (ADS)

    Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc

    2011-06-01

    This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.

  19. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  20. Stratified Charge Rotary Engine Critical Technology Enablement, Volume 1

    NASA Technical Reports Server (NTRS)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This report summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation, and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems.

  1. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  2. Current situation of development of petroleum substituting energies (USA)

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Trends in development of petroleum substituting energies in the U.S.A. are described. Among non-fossil fuel based energies currently available, nuclear power generation (7%), biomass power generation (4%), and hydraulic power generation (3%) account for a large part. The future for the nuclear energy is opaque. Biomasses are anticipated to be the largest regenerative energy source. Solar energy was regarded to be a future energy source, but its cost effect is not still good. While geothermal power generation produces 0.1% of the entire energy, its future is bright. Ocean energies of all types of form such as sea water thermal energy conversion and wave energy were not treated as a substituting energy in the U.S.A. Multi-fuel vehicles using gasoline, methanol, and ethanol are estimated to account for 25% of vehicle operations in the U.S.A. by 2000. Electric vehicles for practical use would be a hybrid type combining electric motors and gasoline engines.

  3. Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.

    The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.

  4. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  5. Dynamic acid/base equilibrium in single component switchable ionic liquids and consequences on viscosity

    DOE PAGES

    Cantu, David C.; Lee, Juntaek; Lee, Mal -Soon; ...

    2016-03-28

    The deployment of transformational non-aqueous CO 2-capture solvent systems is encumbered by high viscosity even at intermediate uptakes. Using single-molecule CO 2 binding organic liquids as a prototypical example, we identify the key molecular features controlling bulk liquid viscosity and CO 2 uptake kinetics. Fast uptake kinetics arise from close proximity of the alcohol and amine sites that are involved in CO 2 binding. This process results in the concerted formation of a Zwitterion containing both an alkylcarbonate and a protonated amine. The hydrogen bonding between the two functional groups ultimately determines the solution viscosity. Based on molecular simulation, thismore » work reveals options to significantly reduce viscosity with molecular modifications that shift the proton transfer equilibrium towards a neutral acid/amine species as opposed to the ubiquitously accepted Zwitterionic state. Lastly, the molecular design concepts proposed here, for the alkyl-carbonate systems, are readily extensible to other CO 2 capture technologies, such as the carbamate- or imidazole-based solvent chemistries.« less

  6. A “dry and wet hybrid” lithography technique for multilevel replication templates: Applications to microfluidic neuron culture and two-phase global mixing

    PubMed Central

    Paul, Debjani; Saias, Laure; Pedinotti, Jean-Cedric; Chabert, Max; Magnifico, Sebastien; Pallandre, Antoine; De Lambert, Bertrand; Houdayer, Claude; Brugg, Bernard; Peyrin, Jean-Michel; Viovy, Jean-Louis

    2011-01-01

    A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a “dry and wet hybrid” technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid. PMID:21559239

  7. Layerless fabrication with continuous liquid interface production.

    PubMed

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  8. Layerless fabrication with continuous liquid interface production

    PubMed Central

    Janusziewicz, Rima; Tumbleston, John R.; Quintanilla, Adam L.; Mecham, Sue J.; DeSimone, Joseph M.

    2016-01-01

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology. PMID:27671641

  9. Additive Construction with Mobile Emplacement (ACME) / Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS)

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.

    2018-01-01

    The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.

  10. Interaction and dynamics of ionic liquids based on choline and amino acid anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campetella, M.; Bodo, E., E-mail: enrico.bodo@uniroma1.it; Caminiti, R., E-mail: ruggero.caminiti@uniroma1.it

    2015-06-21

    The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial inmore » establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.« less

  11. Interaction and dynamics of ionic liquids based on choline and amino acid anions

    NASA Astrophysics Data System (ADS)

    Campetella, M.; Bodo, E.; Caminiti, R.; Martino, A.; D'Apuzzo, F.; Lupi, S.; Gontrani, L.

    2015-06-01

    The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial in establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.

  12. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    NASA Astrophysics Data System (ADS)

    Cronert, T.; Dabruck, J. P.; Doege, P. E.; Bessler, Y.; Klaus, M.; Hofmann, M.; Zakalek, P.; Rücker, U.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.

    2016-09-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D2O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement.

  13. Direct correlation between adsorption energetics and nuclear spin relaxation in liquid-saturated catalyst material.

    PubMed

    Robinson, Neil; Robertson, Christopher; Gladden, Lynn F; Jenkins, Stephen J; D'Agostino, Carmine

    2018-06-20

    The ratio of NMR relaxation time constants T1/T2 provides a non-destructive indication of the relative surface affinities exhibited by adsorbates within liquid-saturated mesoporous catalysts. In the present work we provide supporting evidence for the existence of a quantitative relationship between such measurements and adsorption energetics. As a prototypical example with relevance to green chemical processes we examine and contrast the relaxation characteristics of primary alcohols and cyclohexane within an industrial silica catalyst support. T1/T2 values obtained at intermediate magnetic field strength are in good agreement with DFT adsorption energy calculations performed on single molecules interacting with an idealised silica surface. Our results demonstrate the remarkable ability of this metric to quantify surface affinities within systems of relevance to liquid-phase heterogeneous catalysis, and highlight NMR relaxation as a powerful method for the determination of adsorption phenomena within mesoporous solids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Adams, J. J., E-mail: jjadams2@ncsu.edu; Trlica, C.

    2015-05-21

    We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surface oxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antenna tunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltagesmore » to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.« less

  15. Electrical Properties of Reactive Liquid Crystal Semiconductors

    NASA Astrophysics Data System (ADS)

    McCulloch, Iain; Coelle, Michael; Genevicius, Kristijonas; Hamilton, Rick; Heckmeier, Michael; Heeney, Martin; Kreouzis, Theo; Shkunov, Maxim; Zhang, Weimin

    2008-01-01

    Fabrication of display products by low cost printing technologies such as ink jet, gravure offset lithography and flexography requires solution processable semiconductors for the backplane electronics. The products will typically be of lower performance than polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal displays (AMLCD's), and flexible organic light-emitting diode (OLED) displays. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the initial evaluation of reactive mesogen semiconductors, which can polymerise within mesophase temperatures, “freezing in” the order in crosslinked domains. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. Both time-of-flight and field effect transistor devices were prepared and their electrical characterisation reported.

  16. A pixelated charge readout for Liquid Argon Time Projection Chambers

    NASA Astrophysics Data System (ADS)

    Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C. Rudolf; Sinclair, J.; Stocker, F.; Tognina, C.; Weber, M.

    2018-02-01

    Liquid Argon Time Projection Chambers (LArTPCs) are ideally suited to perform long-baseline neutrino experiments aiming to measure CP violation in the lepton sector, and determine the ordering of the three neutrino mass eigenstates. LArTPCs have used projective wire readouts for charge detection since their conception in 1977. However, wire readouts are notoriously fragile and therefore a limiting factor in the design of any large mass detectors. Furthermore, a wire readout also introduces intrinsic ambiguities in event reconstruction. Within the ArgonCube concept—the liquid argon component of the DUNE near detector—we are developing a pixelated charge readout for LArTPCs. Pixelated charge readout systems represent the single largest advancement in the sensitivity of LArTPCs. They are mechanically robust and provide direct 3D readout, serving to minimise reconstruction ambiguities, enabling more advanced triggers, further reducing event pile-up and improving background rejection. This article presents first results from a pixelated LArTPC prototype built and operated in Bern.

  17. Development open source microcontroller based temperature data logger

    NASA Astrophysics Data System (ADS)

    Abdullah, M. H.; Che Ghani, S. A.; Zaulkafilai, Z.; Tajuddin, S. N.

    2017-10-01

    This article discusses the development stages in designing, prototyping, testing and deploying a portable open source microcontroller based temperature data logger for use in rough industrial environment. The 5V powered prototype of data logger is equipped with open source Arduino microcontroller for integrating multiple thermocouple sensors with their module, secure digital (SD) card storage, liquid crystal display (LCD), real time clock and electronic enclosure made of acrylic. The program for the function of the datalogger is programmed so that 8 readings from the thermocouples can be acquired within 3 s interval and displayed on the LCD simultaneously. The recorded temperature readings at four different points on both hydrodistillation show similar profile pattern and highest yield of extracted oil was achieved on hydrodistillation 2 at 0.004%. From the obtained results, this study achieved the objective of developing an inexpensive, portable and robust eight channels temperature measuring module with capabilities to monitor and store real time data.

  18. An Ultrasonic Scanning Technique for In-Situ `Bowing' Measurement of Prototype Fast Breeder Reactor Fuel Sub-Assembly

    NASA Astrophysics Data System (ADS)

    Swaminathan, K.; Asokane, C.; Sylvia, J. I.; Kalyanasundaram, P.; Swaminathan, P.

    2012-02-01

    An ultrasonic under-sodium scanner has been developed for deployment in Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India. Its purpose is to scan the above-core plenum for detection, if any, of displacement of sub-assemblies. During its burn-up in the reactor, the head of a Fuel Sub-Assembly (FSA) may undergo a lateral shift from its original position (called `bowing') due to the fast neutron induced damage on its structural material. A simple scanning technique has been developed for measuring the extent of bowing in-situ. This paper describes a PC-controlled mock-up of the scanner used to implement the scanning technique and the results obtained of scanning a mock-up FSA head under water. The details of the liquid-sodium proof transducer developed for use in the PFBR scanner and its performance are also discussed.

  19. On-sky tests of a polarization grating for visible astronomy

    NASA Astrophysics Data System (ADS)

    Millar-Blanchaer, Maxwell A.; Moon, Dae-Sik; Graham, James R.; Williams, Michael

    2016-08-01

    Polarization gratings (PGs) are a type of diffraction grating that take advantage of birefringent liquid crystal polymers to simultaneously act as a polarizing beam splitter and as a spectral dispersive element. Furthermore, PGs are capable of providing high diffraction efficiency (>90%) over a very broad wavelength range. These properties make PGs ideal for spectropolarimetry and/or high throughput, broad wavelength observations for a range of astronomical objects. Here we report on the design and on-sky testing of a prototype spectropolarimeter instrument that employs a PG optimized for operation from 500 nm to 900 nm. The prototype was mounted on a 16-inch telescope at the University of Toronto, where we carried out observations of the polarized twilight sky, a polarized standard star and two spectroscopic standard stars. Using these observations we demonstrate the PG's ability to measure linear polarization fraction and position angle, as well as recover spectra from astronomical objects.

  20. Design and the parametric testing of the space station prototype integrated vapor compression distillation water recovery module

    NASA Technical Reports Server (NTRS)

    Reveley, W. F.; Nuccio, P. P.

    1975-01-01

    Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.

  1. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-22

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  2. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  3. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-03-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier.

  4. Promoting the Synthesis of Methanol: Understanding the Requirements for an Industrial Catalyst for the Conversion of CO2.

    PubMed

    Behrens, Malte

    2016-11-21

    The hydrogenation of CO 2 to methanol is a potential process for the sustainable production of synthetic liquid fuels. The Cu/ZnO catalyst employed for this reaction has been studied extensively for many years, and recent progress now has the potential to turn it into a prototype for complex promotional interactions in heterogeneous catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    A liquid oxygen test tank was completed in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. A banner signing event marked the successful delivery of the tank called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  6. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, workers in the lab hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. Engineers and technicians worked together to develop the tank to build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  7. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    NASA Kennedy Space Center's Engineering Director Pat Simpkins signs the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it to support cryogenic testing at Johnson Space Center's White Stands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  8. Identification of compounds in an anti-fibrosis Chinese medicine (Fufang Biejia Ruangan Pill) and its absorbed components in rat biofluids and liver by UPLC-MS.

    PubMed

    Dong, Qin; Qiu, Ling-Ling; Zhang, Cong-En; Chen, Long-Hu; Feng, Wu-Wen; Ma, Li-Na; Yan, Dan; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He

    2016-07-15

    Liver fibrosis represents a major public health problem worldwide. To date, antifibrotic treatment of fibrosis still remains an unconquered area for western medicine. Fufang Biejia Ruangan Pill (FFBJ) is the first anti-fibrosis drug approved by the China State Food and Drug Administration, and has been demonstrated to have a good antifibrotic efficacy in China. However, the chemical constituents of FFBJ and the absorption and distribution of it in vivo remain unclear, which restricts its research on bioactive components identification and mechanisms of action. In this study, ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) combined with ultra-performance liquid chromatography/triple quadrupole mass spectrometry (UPLC/QqQ-MS) was applied to identify compounds in FFBJ and its absorbed components in rat serum, liver and urine samples after intragastric administration of FFBJ. As a result, a total of 32 Chinese material medica components including organic acids, terpenoids, flavonoids, phenylpropanoids and alkaloids, were identified or tentatively characterized, while the distribution of 10 prototype compounds in rat serum, liver and urine were discovered. The identified constituents in FFBJ and the distribution of prototype compounds in rat serum, liver and urine are help for understanding the material bases of its therapeutic effects. Copyright © 2016. Published by Elsevier B.V.

  9. A framework for in vitro systems toxicology assessment of e-liquids

    PubMed Central

    Iskandar, Anita R.; Gonzalez-Suarez, Ignacio; Majeed, Shoaib; Marescotti, Diego; Sewer, Alain; Xiang, Yang; Leroy, Patrice; Guedj, Emmanuel; Mathis, Carole; Schaller, Jean-Pierre; Vanscheeuwijck, Patrick; Frentzel, Stefan; Martin, Florian; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2016-01-01

    Abstract Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air–liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols. PMID:27117495

  10. A framework for in vitro systems toxicology assessment of e-liquids.

    PubMed

    Iskandar, Anita R; Gonzalez-Suarez, Ignacio; Majeed, Shoaib; Marescotti, Diego; Sewer, Alain; Xiang, Yang; Leroy, Patrice; Guedj, Emmanuel; Mathis, Carole; Schaller, Jean-Pierre; Vanscheeuwijck, Patrick; Frentzel, Stefan; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2016-07-01

    Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.

  11. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    PubMed

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  13. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  14. Neutron scattering in the proximate quantum spin liquid α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.

    2017-06-01

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

  15. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  16. Unsteady jet in designing innovative drug delivery system

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Mazur, Paul; Cosse, Julia; Rider, Stephanie; Gharib, Morteza

    2014-11-01

    Micro-needle injections, a promising pain-free drug delivery method, is constrained by its limited penetration depth. This deficiency can be overcome by implementing fast unsteady jet that can penetrate sub-dermally. The development of a faster liquid jet would increase the penetration depth and delivery volume of micro-needles. In this preliminary work, the nonlinear transient behavior of an elastic tube balloon in providing fast discharge is analyzed. A physical model that combines the Mooney Rivlin Material model and Young-Lapalce's Law was developed and used to investigate the fast discharging dynamic phenomenon. A proof of concept prototype was constructed to demonstrate the feasibility of a simple thumb-sized delivery system to generate liquid jet with desired speed in the range of 5-10 m/s. This work is supported by ZCUBE Corporation.

  17. Large membrane deflection via capillary force actuation

    NASA Astrophysics Data System (ADS)

    Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.

    2018-06-01

    Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.

  18. Heat transfer characteristics of a surface type direct contact boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeds, R.S.; Jacobs, H.R.; Boehm, R.F.

    1976-03-01

    Two direct contact heat exchangers were constructed and test results were obtained using water and refrigerant 113 as the working fluids. The heat exchangers were operated in a three-phase mode; the water remained liquid throughout the vessel and the liquid refrigerant 113 underwent vaporization following direct injection into the water. The effect of important operational parameters--operating heights, refrigerant 113 injection techniques, mass flow ratios, and temperatures--was studied to determine generalized trends important in the design and operation of a prototype three-phase direct contact heat exchanger. The primary system used in this study performed well overall. The initial favorable results ofmore » this study warrant further investigation of direct contact heat exchange as a means of utilizing geothermal energy.« less

  19. Development of an advanced rocket propellant handler's suit.

    PubMed

    Doerr, D F

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit. c 2001. Elsevier Science Ltd. All rights reserved.

  20. Development of an advanced rocket propellant handler's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit. c 2001. Elsevier Science Ltd. All rights reserved.

  1. Development of an advanced rocket propellant handler's suit

    NASA Astrophysics Data System (ADS)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or ˜1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comprobable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability, and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit.

  2. Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation

    NASA Astrophysics Data System (ADS)

    Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.

    Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.

  3. Ligament Mediated Fragmentation of Viscoelastic Liquids

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; Houze, Eric C.; Moore, John R.; Koerner, Michael R.; McKinley, Gareth H.

    2016-10-01

    The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with nmin=4 . The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.

  4. Ligament Mediated Fragmentation of Viscoelastic Liquids.

    PubMed

    Keshavarz, Bavand; Houze, Eric C; Moore, John R; Koerner, Michael R; McKinley, Gareth H

    2016-10-07

    The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with n_{min}=4. The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.

  5. Towards High-Frequency Shape Memory Alloy Actuators Incorporating Liquid Metal Energy Circuits

    NASA Astrophysics Data System (ADS)

    Hartl, Darren; Mingear, Jacob; Bielefeldt, Brent; Rohmer, John; Zamarripa, Jessica; Elwany, Alaa

    2017-12-01

    Large shape memory alloy (SMA) actuators are currently limited to applications with low cyclic actuation frequency requirements due to their generally poor heat transfer rates. This limitation can be overcome through the use of distributed body heating methods such as induction heating or by accelerated cooling methods such as forced convection in internal cooling channels. In this work, a monolithic SMA beam actuator containing liquid gallium-indium alloy-filled channels is fabricated through additive manufacturing. These liquid metal channels enable a novel multi-physical thermal control system, allowing for increased heating and cooling rates to facilitate an increased cyclic actuation frequency. Liquid metal flowing in the channels performs the dual tasks of inductively heating the surrounding SMA material and then actively cooling the SMA via forced internal fluid convection. A coupled thermoelectric model, implemented in COMSOL, predicts a possible fivefold increase in the cyclic actuation frequency due to these increased thermal transfer rates when compared to conventional SMA forms having external heating coils and being externally cooled via forced convection. The first ever experimental prototype SMA actuator of this type is described and, even at much lower flow rates, is shown to exhibit a decrease in cooling time of 40.9%.

  6. The Eckhaus and the Benjamin-Feir instability near a weakly inverted bifurcation

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1991-01-01

    We investigate how the criteria for two prototype instabilities in one dimensional pattern forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation, to a spatially periodic or spatially and/or time periodic state, to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two dimensional patterns in systems with anisotropy as they arise from hydrodynamic instabilities in nematic liquid crystals.

  7. Eckhaus and Benjamin-Feir instabilities near a weakly inverted bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, H.R.; Deissler, R.J.

    1992-03-15

    We investigate how the criteria for two prototype instabilities in one-dimensional pattern-forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation to a spatially periodic or spatially and/or time-periodic state to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two-dimensional patterns in systems with anisotropy as they arise, for example, for hydrodynamic instabilities in nematic liquid crystals.

  8. Symposium on Using Mechanics to Discover New Materials. Annual Technical Meeting of the Society of Engineering Science (45th) held in Urbana-Champaign, Illinois on 12-15 October 2008

    DTIC Science & Technology

    2008-12-21

    celled Nitinol has recently become possiblevia a (newly discovered by Profs. D. Grummon at Michigan State Univ. and J.Shaw at Univ. of Michigan...transient-liquid reactive brazing system for creating robust metallurgical Nitinol Nitinol bonds. With this technique, prototype sparse cellularhoneycomb...Brian.Berg@bsci.com Nitinol has become a frequently used medical implant material despite its notorious complexity; especiallywith respect to fatigue [1

  9. Two-Phase Flow Instrumentation Review Group Meeting. Proceedings of Meeting Held in Silver Spring, Maryland on January 13-14, 1977

    DTIC Science & Technology

    1978-03-01

    ADWRESS OInclud Zip Code) 10. PROJECTfTASK/WORK UNI1 VO. Same as 9. above. I1. CONTRACT NO. 13. TYPE OF REPORT PERIOD COVERED (inclusive dews ) Meeting...Discussion of basic principles. c. Lists of y-emitling tracers for gas ; for liquid; commercially available radioisotope milking systems; elements easily...factors) - single phase loops, full flow, (2) prototype calibration (a) gas -water loop, (b) geometry effect. (c) scaling. (3) proof testing - simulation of

  10. Development of a trash handling subsystem for a manned spacecraft

    NASA Technical Reports Server (NTRS)

    Burnett, M.

    1980-01-01

    A prototype laboratory system to shred and transport trash material within a spacecraft was designed and demonstrated. In addition to handling the normal trash materials, the system demonstrated the ability to handle or reject (if it is too tough) glass, metal and ceramics without damaging the system. The system is not dependent on liquids for the shredding and transportation and can transport slurried, damp or dry material. The resulting system offers a greater system flexibility with operational reliability.

  11. The onset of shear modes in the high frequency spectrum of simple disordered systems: Current knowledge and perspectives

    DOE PAGES

    Cunsolo, Alessandro; Suvorov, Alexey; Cai, Yong Q.

    2015-10-20

    In this study, nearly two decades of thorough Inelastic X Ray Scattering (IXS) studies of transverse-like excitation in the spectrum simple amorphous materials are reviewed. A particular attention is given to the case of liquid water and other prototypical samples, through a discussion of both solved and still open issues. Finally, the perspectives opened up by the development of next generation IXS instruments with unprecedented contrast and resolution bandwidth are briefly illustrated.

  12. Multileg Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  13. Application of Ultra-performance Liquid Chromatography with Time-of-Flight Mass Spectrometry for the Rapid Analysis of Constituents and Metabolites from the Extracts of Acanthopanax senticosus Harms Leaf

    PubMed Central

    Zhang, Yingzhi; Zhang, Aihua; Zhang, Ying; Sun, Hui; Meng, Xiangcai; Yan, Guangli; Wang, Xijun

    2016-01-01

    Acanthopanax senticosus (Rupr and Maxim) Harms (AS), a member of Araliaceae family, is a typical folk medicinal herb, which is widely distributed in the Northeastern part of China. Due to lack of this resource caused by the extensive use of its root, this work studied the chemical constituents of leaves of this plant with the purpose of looking for an alternative resource. In this work, a fast and optimized ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) has been developed for the analysis of constituents in leaves extracts. A total of 131 compounds were identified or tentatively characterized including triterpenoid saponins, phenols, flavonoids, lignans, coumarins, polysaccharides, and other compounds based on their fragmentation behaviors. Besides, a total of 21 metabolites were identified in serum in rats after oral administration, among which 12 prototypes and 9 metabolites through the metabolic pathways of reduction, methylation, sulfate conjugation, sulfoxide to thioether and deglycosylation. The coupling of UPLC-QTOF-MS led to the in-depth characterization of the leaves extracts of AS both in vitro and in vivo on the basis of retention time, mass accuracy, and tandem MS/MS spectra. It concluded that this analytical tool was very valuable in the study of complex compounds in medicinal herb. HIGHLIGHT OF PAPER A fast UPLC-QTOF-MS has been developed for analysis of constituents in leaves extractsA total of 131 compounds were identified in leaves extractsA total of 21 metabolites including 12 prototypes and 9 metabolites were identified in vivo. SUMMARY Constituent’s analysis of Acanthopanax senticosus Harms leaf by ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry. Abbreviations used: AS: Acanthopanax senticosus (Rupr and Maxim) Harms, TCHM: Traditional Chinese herbal medicine, UPLC-QTOF-MS: Ultra-performance liquid chromatography method with time-of-flight mass spectrometry, MS/MS: Tandem mass spectrometry, PCA: Principal component analysis, PLS-DA: Partial least squared discriminant analysis, OPLS-DA: Orthogonal projection to latent structure-discriminant analysis. PMID:27076752

  14. Dynamics and Stability of Capillary Surfaces: Liquid Switches at Small Scales

    NASA Technical Reports Server (NTRS)

    Steen, Paul H.; Bhandar, Anand; Vogel, Michael J.; Hirsa, Amir H.

    2004-01-01

    The dynamics and stability of systems of interfaces is central to a range of technologies related to the Human Exploration and Development of Space (HEDS). Our premise is that dramatic shape changes can be manipulated to advantage with minimal input, if the system is near instability. The primary objective is to develop the science base to allow novel approaches to liquid management in low-gravity based on this premise. HEDS requires efficient, reliable and lightweight technologies. Our poster will highlight our progress toward this goal using the capillary switch as an example. A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. For typical liquids (e.g., water) against gas on earth, capillary surfaces occur on the millimeterscale and smaller where shape deformation due to gravity is unimportant. In low gravity, they can occur on the centimeter scale. Capillary surfaces can be combined to make a switch a system with multiple stable states. A capillary switch can generate motion or effect force. To be practical, the energy barriers of such a switch must be tunable, its switching time (kinetics) short and its triggering mechanism reliable. We illustrate these features with a capillary switch that consists of two droplets, coupled by common pressure. As long as contact lines remained pinned, motions are inviscid, even at sub-millimeter scales, with consequent promise of low-power consumption at the device level. Predictions of theory are compared to experiment on i) a soap-film prototype at centimeter scale and ii) a liquid droplet switch at millimeter-scale.

  15. Science Using an Electrostatic Levitation Furnace in the MUCAT Sector at the APS

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Kelton, K. F.; Rogers, J. R.

    2004-01-01

    The original motivation for the construction of the BESL prototype was to obtain the first proof of a 50-year-old hypothesis regarding the solidification of liquid metals. Since the 1950s it has been known that under proper conditions liquid metals can be cooled below their melting temperature (undercooled) without crystallizing to the stable solid phase. In 1952 Frank proposed that this was because the atoms in the metallic liquid were arranged with the symmetry of an icosahedron, a Platonic solid consisting of 20 tetrahedra (4-sided pyramid-shaped polyhedra) arranged around a common center. Since this local atomic order is incompatible with the long-range translational periodicity of crystal phases, a barrier is formed to the formation of small regions of the crystal phase, the nucleation barrier. A proof of Frank's hypothesis required a direct correlation between measured icosahedral order in the undercooled liquid and the nucleation barrier. The tendency of sample containers to catalyze nucleation obscured this relation, requiring containerless techniques. Combining containerless processing techniques for electrostatically levitated droplets (ESL) with x-ray synchrotron methods, a team from Washington University, St. Louis, MO, NASA Marshall Space Flight Center, and MUCAT at the APS demonstrated an increasing icosahedral order in TiZrNi liquids with decreasing temperature below the melting temperature. The increased icosahedral order caused the transformation of the liquid to a metastable icosahedral quasicrystal phase, instead of the stable tetrahedrally-coordinated crystal intermetallic, giving the first clear demonstration of the connection between the nucleation barrier and the local structure of the liquid, verifying Frank's hypothesis for this alloy.

  16. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  17. KSC-2013-4322

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the engine fires and the lander lifts off at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  18. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is transported to a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  19. KSC-2013-4321

    NASA Image and Video Library

    2013-12-10

    CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander begins as the engine fires and the lander begins to lift off at the north of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett

  20. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is being lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  1. Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei

    2013-11-01

    This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.

  2. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  3. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    NASA Astrophysics Data System (ADS)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2017-04-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  4. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer.

    PubMed

    Shen, Bailey Y; Mukai, Shizuo

    2017-01-01

    Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm × 91mm × 45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient.

  5. A Portable, Inexpensive, Nonmydriatic Fundus Camera Based on the Raspberry Pi® Computer

    PubMed Central

    Shen, Bailey Y.

    2017-01-01

    Purpose. Nonmydriatic fundus cameras allow retinal photography without pharmacologic dilation of the pupil. However, currently available nonmydriatic fundus cameras are bulky, not portable, and expensive. Taking advantage of recent advances in mobile technology, we sought to create a nonmydriatic fundus camera that was affordable and could be carried in a white coat pocket. Methods. We built a point-and-shoot prototype camera using a Raspberry Pi computer, an infrared-sensitive camera board, a dual infrared and white light light-emitting diode, a battery, a 5-inch touchscreen liquid crystal display, and a disposable 20-diopter condensing lens. Our prototype camera was based on indirect ophthalmoscopy with both infrared and white lights. Results. The prototype camera measured 133mm × 91mm × 45mm and weighed 386 grams. The total cost of the components, including the disposable lens, was $185.20. The camera was able to obtain good-quality fundus images without pharmacologic dilation of the pupils. Conclusion. A fully functional, inexpensive, handheld, nonmydriatic fundus camera can be easily assembled from a relatively small number of components. With modest improvements, such a camera could be useful for a variety of healthcare professionals, particularly those who work in settings where a traditional table-mounted nonmydriatic fundus camera would be inconvenient. PMID:28396802

  6. Selective laser sintering: application of a rapid prototyping method in craniomaxillofacial reconstructive surgery.

    PubMed

    Aung, S C; Tan, B K; Foo, C L; Lee, S T

    1999-09-01

    Advances in technology have benefited the medical world in many ways and a new generation of computed tomography (CT) scanners and three-dimensional (3-D) model making rapid prototyping systems (RPS) have taken craniofacial surgical planning and management to new heights. With the development of new rapid prototyping systems and the improvements in CT scan technology, such as the helical scanner, biomedical modelling has improved considerably and accurate 3-D models can now be fabricated to allow surgeons to visualise and physically handle a 3-D model on which simulation surgery can be performed. The principle behind this technology is to first acquire digital data (CT scan data) which is then imported to the RPS to fabricate fine layers or cuts of the model which are gradually built up to form the 3-D models. Either liquid resin or nylon powder or special paper may be used to make these models using the various RPS available today. Selective laser sintering (SLS), which employs a CO2 laser beam to solidify special nylon powder and build up the model in layers is described in this case report, where a 23-year old Chinese female with panfacial fracture and a skull defect benefited from SLS biomodelling in the preoperative workup.

  7. Vapor compression distillation module

    NASA Technical Reports Server (NTRS)

    Nuccio, P. P.

    1975-01-01

    A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.

  8. Experimental study of temperature sensor for an ocean-going liquid hydrogen (LH2) carrier

    NASA Astrophysics Data System (ADS)

    Nakano, A.; Shimazaki, T.; Sekiya, M.; Shiozawa, H.; Aoyagi, A.; Ohtsuka, K.; Iwakiri, T.; Mikami, Z.; Sato, M.; Kinoshita, K.; Matsuoka, T.; Takayama, Y.; Yamamoto, K.

    2018-04-01

    The prototype temperature sensors for an ocean-going liquid hydrogen (LH2) carrier were manufactured by way of trial. All of the sensors adopted Platinum 1000 (PT-1000) resistance thermometer elements. Various configurations of preproduction temperature sensors were tested in AIST's LH2 test facility. In the experiments, a PT-1000 resistance thermometer, calibrated at the National Metrology Institute of Japan at AIST, was used as the standard thermometer. The temperatures measured by the preproduction sensors were compared with the temperatures measured by the standard thermometer, and the measurement accuracy of the temperature sensors in LH2 was investigated and discussed. It was confirmed that the measurement accuracies of the preproduction temperature sensors were within ±50 mK, which is the required measurement accuracy for a technical demonstration ocean-going LH2 carrier.

  9. Status of Experiment NEUTRINO-4 Search for Sterile Neutrino

    NASA Astrophysics Data System (ADS)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-01-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The measurements with full-scale detector with liquid scintillator volume of 3m3 (5x10 sections) was started only in June, 2016. The today available data is presented in the article.

  10. Simultaneous dielectric monitoring of microfluidic channels at microwaves utilizing a metamaterial transmission line structure.

    PubMed

    Schüßler, M; Puentes, M; Dubuc, D; Grenier, K; Jakoby, R

    2012-01-01

    The paper presents a technique that allows the simultaneous monitoring of the dielectric properties of liquids in microfluidic channels at microwave frequencies. It is capable of being integrated within the lab-on-a-chip concept and uses a composite right/left-handed transmission line resonator which is detuned by the dielectric loading of the liquids in the channels. By monitoring the change in the resonance spectrum of the resonator the loading profile can be derived with the multi-resonant perturbation method. From the value of the dielectric constant inference on the substances like cells or chemicals in the channels can be drawn. The paper presents concept, design, fabrication and characterization of prototype sensors. The sensors have been designed to operate between 20 and 30 GHz and were tested with water and water ethanol mixtures.

  11. Thermal Analysis of the ILC Superconductin Quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototypemore » setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.« less

  12. Helium gas bubble trapped in liquid helium in high magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, H.; Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-01

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T2/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  13. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.

    PubMed

    Wouters, Sam; De Vos, Jelle; Dores-Sousa, José Luís; Wouters, Bert; Desmet, Gert; Eeltink, Sebastiaan

    2017-11-10

    The present paper discusses practical aspects of prototyping of microfluidic chips using cyclic olefin copolymer as substrate and the application in high-performance liquid chromatography. The developed chips feature a 60mm long straight separation channel with circular cross section (500μm i.d.) that was created using a micromilling robot. To irreversibly seal the top and bottom chip substrates, a solvent-vapor-assisted bonding approach was optimized, allowing to approximate the ideal circular channel geometry. Four different approaches to establish the micro-to-macro interface were pursued. The average burst pressure of the microfluidic chips in combination with an encasing holder was established at 38MPa and the maximum burst pressure was 47MPa, which is believed to be the highest ever report for these polymer-based microfluidic chips. Porous polymer monolithic frits were synthesized in-situ via UV-initiated polymerization and their locations were spatially controlled by the application of a photomask. Next, high-pressure slurry packing was performed to introduce 3μm silica reversed-phase particles as the stationary phase in the separation channel. Finally, the application of the chip technology is demonstrated for the separation of alkyl phenones in gradient mode yielding baseline peak widths of 6s by applying a steep gradient of 1.8min at a flow rate of 10μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of a systematic strategy for the global identification and classification of the chemical constituents and metabolites of Kai-Xin-San based on liquid chromatography with quadrupole time-of-flight mass spectrometry combined with multiple data-processing approaches.

    PubMed

    Wang, Xiaotong; Liu, Jing; Yang, Xiaomei; Zhang, Qian; Zhang, Yiwen; Li, Qing; Bi, Kaishun

    2018-03-30

    To rapidly identify and classify complicated components and metabolites for traditional Chinese medicines, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with multiple data-processing approaches was established. In this process, Kai-Xin-San, a widely used classic traditional Chinese medicine preparation, was chosen as a model prescription. Initially, the fragmentation patterns, diagnostic product ions and neutral loss of each category of compounds were summarized by collision-induced dissociation analysis of representative standards. In vitro, the multiple product ions filtering technique was utilized to identify the chemical constituents for globally covering trace components. With this strategy, 108 constituents were identified, and compounds database was successfully established. In vivo, the prototype compounds were extracted based on the established database, and the neutral loss filtering technique combined with the drug metabolism reaction rules was employed to identify metabolites. Overall, 69 constituents including prototype and metabolites were characterized in rat plasma and nine constituents were firstly characterized in rat brain, which may be the potential active constituents resulting in curative effects by synergistic interaction. In conclusion, this study provides a generally applicable strategy to global metabolite identification for the complicated components in complex matrix and a chemical basis for further pharmacological research of Kai-Xin-San. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  16. Design of Force Sensor Leg for a Rocket Thrust Detector

    NASA Astrophysics Data System (ADS)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  17. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado

    2005-01-01

    Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.

  18. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid

    NASA Astrophysics Data System (ADS)

    Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  19. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems.

    PubMed

    van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix

    2013-08-07

    Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.

  20. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  1. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  2. Development of a prototype two-phase thermal bus system for Space Station

    NASA Technical Reports Server (NTRS)

    Myron, D. L.; Parish, R. C.

    1987-01-01

    This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRISC is a developmental prototype for a nextgeneration “systems-level” integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled “burner” nuclear reactor. For example, the RIO Fluid Flow and Heat transfer code developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfermore » in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less

  4. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  5. A rapid, maskless 3D prototyping for fabrication of capillary circuits: Toward urinary protein detection.

    PubMed

    Yan, Sheng; Zhu, Yuanqing; Tang, Shi-Yang; Li, Yuxing; Zhao, Qianbin; Yuan, Dan; Yun, Guolin; Zhang, Jun; Zhang, Shiwu; Li, Weihua

    2018-04-01

    Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point-of-care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving. The capillary circuits can be fabricated in a short amount of time (<10 min) without the requirements of clean-room facilities and photomasks. The advanced capillary components (e.g., trigger valves, retention valves and retention bursting valves) were fabricated, enabling the sequential liquid delivery and sample-reagent mixing. With the integration of smartphone-based detection platform, the microfluidic device can quantify the urinary protein via a colorimetric analysis. By eliminating the bulky and expensive equipment, this smartphone-based detection platform is portable for on-site quantitative detection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches

    NASA Astrophysics Data System (ADS)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cline, D.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghag, C.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Shields, E.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Maricic, J.; Martoff, C. J.; Meng, Y.; Meroni, E.; Meyers, P. D.; Mohayai, T.; Montanari, D.; Montuschi, M.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, N.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Teymourian, A.; Thompson, J.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-09-01

    As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get light yields averaging 8.887±0.003(stat)±0.444(sys) p.e./keVee. With additional purification, the light yield measured at 511 keV increased to 9.142±0.006(stat) p.e./keVee.

  7. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less

  8. An Autonomous System for Experimental Evolution of Microbial Cultures: Test Results Using Ultraviolet-C Radiation and Escherichia Coli.

    NASA Technical Reports Server (NTRS)

    Ouandji, Cynthia; Wang, Jonathan; Arismendi, Dillon; Lee, Alonzo; Blaich, Justin; Gentry, Diana

    2017-01-01

    At its core, the field of microbial experimental evolution seeks to elucidate the natural laws governing the history of microbial life by understanding its underlying driving mechanisms. However, observing evolution in nature is complex, as environmental conditions are difficult to control. Laboratory-based experiments for observing population evolution provide more control, but manually culturing and studying multiple generations of microorganisms can be time consuming, labor intensive, and prone to inconsistency. We have constructed a prototype, closed system device that automates the process of directed evolution experiments in microorganisms. It is compatible with any liquid microbial culture, including polycultures and field samples, provides flow control and adjustable agitation, continuously monitors optical density (OD), and can dynamically control environmental pressures such as ultraviolet-C (UV-C) radiation and temperature. Here, the results of the prototype are compared to iterative exposure and survival assays conducted using a traditional hood, UV-C lamp, and shutter system.

  9. Synthesis and analytical follow-up of the mineralization of a new fluorosurfactant prototype.

    PubMed

    Peschka, M; Fichtner, N; Hierse, W; Kirsch, P; Montenegro, E; Seidel, M; Wilken, R D; Knepper, T P

    2008-08-01

    Fluorinated surfactants have become essential in numerous technical applications due to their unparalleled effectiveness and efficiency. The environmental persistence of the non-biodegradable perfluorinated alkyl moiety has become a matter of concern. Therefore, it was searched for new molecules with chemically stable fluorinated end groups which can be microbially transformed into labile fluorinated substances. One prototype substance, 10-(trifluoromethoxy)decane-1-sulfonate, has shown biomineralization. Monitoring the formation of metabolites over time elucidated the mechanism of biotransformation. Analysis was performed utilizing liquid chromatography-single quadrupole mass spectrometry (LC-MS) and quadrupole-time of flight tandem mass spectrometry (QqTOF-MS). It was possible to distinguish between two major degradation pathways of the fluorinated alkylsulfonate derivative: (i) a desulfonation and subsequent oxidation and degradation of the alkyl chain being predominant and (ii) an insertion of oxygen with a subsequent cleavage and degradation of the molecule. The utilized trifluoromethoxy-endgroup resulted in instable trifluoromethanol after degradation of the alkyl chain, which led to a high degree of mineralization of the molecule.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuta, H.; Imura, A.; Furuta, Y.

    Recently, technique of Gadolinium loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and 'nuclear Gain (GA)' for IAEA safeguards. For the practical use, R and D of the 1 ton class compact detector, which is measurable above ground, is necessary. Especially, it is important to reduce much amount of fast neutron background induced by cosmic muons with data analysis for the measurement above ground. We developed a prototype of the Gd-LS detector with 200 L of the target volume, which has Pulse Shape Discrimination (PSD) ability for the fast neutronmore » reduction with data analysis. Usually, it is well known that it is difficult to keep high fast neutron reduction power of PSD with the large volume size such as the neutrino reactor monitor. We evaluated the PSD ability of our prototype with real fast neutrons induced by the muons in our laboratory above ground, and we could confirm to keep the high fast neutron reduction power with even our large detector size. (authors)« less

  11. Comparison of technologies for nano device prototyping with a special focus on ion beams: A review

    NASA Astrophysics Data System (ADS)

    Bruchhaus, L.; Mazarov, P.; Bischoff, L.; Gierak, J.; Wieck, A. D.; Hövel, H.

    2017-03-01

    Nano device prototyping (NDP) is essential for realizing and assessing ideas as well as theories in the form of nano devices, before they can be made available in or as commercial products. In this review, application results patterned similarly to those in the semiconductor industry (for cell phone, computer processors, or memory) will be presented. For NDP, some requirements are different: thus, other technologies are employed. Currently, in NDP, for many applications direct write Gaussian vector scan electron beam lithography (EBL) is used to define the required features in organic resists on this scale. We will take a look at many application results carried out by EBL, self-organized 3D epitaxy, atomic probe microscopy (scanning tunneling microscope/atomic force microscope), and in more detail ion beam techniques. For ion beam techniques, there is a special focus on those based upon liquid metal (alloy) ion sources, as recent developments have significantly increased their applicability for NDP.

  12. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  13. Self-healing Li-Bi liquid metal battery for grid-scale energy storage

    NASA Astrophysics Data System (ADS)

    Ning, Xiaohui; Phadke, Satyajit; Chung, Brice; Yin, Huayi; Burke, Paul; Sadoway, Donald R.

    2015-02-01

    In an assessment of the performance of a Li|LiCl-LiF|Bi liquid metal battery, increasing the current density from 200 to 1250 mA cm-2 results in a less than 30% loss in specific discharge capacity at 550 °C. The charge and discharge voltage profiles exhibit two distinct regions: one corresponding to a Li-Bi liquid alloy and one corresponding to the two-phase mixture of Li-Bi liquid alloy and the intermetallic solid compound, Li3Bi. Full cell prototypes of 0.1 Ah nameplate capacity have been assembled and cycled at 3 C rate for over a 1000 cycles with only 0.004% capacity fade per cycle. This is tantamount to retention of over 85% of original capacity after 10 years of daily cycling. With minimal changes in design, cells of 44.8 Ah and 134 Ah capacity have been fabricated and cycled at C/3 rate. After a hundred cycles and over a month of testing, no capacity fade is observed. The coulombic efficiency of 99% and energy efficiency of 70% validate the ease of scalability of this battery chemistry. Post mortem cross sections of the cells in various states of charge demonstrate the total reversibility of the Li3Bi solid phase formed at high degrees of lithiation.

  14. Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication.

    PubMed

    Zhang, Min; Li, Songjing

    2016-01-01

    In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future.

  15. Switching off hydrogen-bond-driven excitation modes in liquid methanol

    DOE PAGES

    Bellissima, Stefano; González, Miguel A.; Bafile, Ubaldo; ...

    2017-08-30

    Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic propertiesmore » of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.« less

  16. The hydrogen-bond collective dynamics in liquid methanol

    DOE PAGES

    Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; ...

    2016-12-20

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HBmore » dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.« less

  17. Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Akanksha; Ganesh, Rajaraman, E-mail: ganesh@ipr.res.in; Joy, Ashwin

    2016-07-15

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamicsmore » of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.« less

  18. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    NASA Astrophysics Data System (ADS)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W.

    2017-04-01

    The production of liquid fuel products via electrochemical reduction of CO2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O2) from reaching the cathode. Ion-conducting membranes have been applied in CO2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.

  19. Vortex-ultrasound-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the analysis of volatile bioactive components and comparative pharmacokinetic study of the herb-herb interactions in Guanxin Shutong Capsule.

    PubMed

    Mu, Jingqing; Gao, Xun; Li, Qing; Yang, Xiaomei; Yang, Wenling; Sun, Xu; Bi, Kaishun; Zhang, Huifen

    2017-08-01

    Guanxin Shutong Capsule, an effective traditional Chinese medicine, is widely used for coronary heart disease clinically. Volatile components are one of its important bioactive constituents. To better understand the material basis for the therapeutic effects, the components of Guanxin Shutong Capsule absorbed into the blood and their metabolites were identified based on gas chromatography with mass spectrometry coupled with vortex-ultrasound-assisted dispersive liquid-liquid microextraction. As a result, three prototypes and 15 metabolites were identified or tentatively characterized in rat plasma. Subsequently, a pharmacokinetic study was carried out to monitor the concentrations of the main bioactive constituents and metabolites (isoborneol, borneol, eugenol, and camphor) by gas chromatography with mass spectrometry in rat plasma following oral administration of single herb extract and different combinations of herbs in this prescription. Compared to other groups, a statistically significant difference of the pharmacokinetic properties was obtained when the total complex prescription was administered, indicating possible drug-drug interactions among the complex ingredients of Guanxin Shutong Capsule. These findings provided an experimental basis concerning the clinical application and medicinal efficacy of Guanxin Shutong Capsule in the treatment of coronary heart disease. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    PubMed

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  1. NiAl Coatings Investigated for Use in Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Ghosn, Louis J.; Barrett, Charles A.

    2003-01-01

    As part of its major investment in the area of advanced space transportation, NASA is developing new technologies for use in the second- and third-generation designs of reusable launch vehicles. Among the prototype rocket engines being considered for these launch vehicles are those designed to use liquid hydrogen as the fuel and liquid oxygen as the oxidizer. Advanced copper alloys, such as copper-chromium-niobium (Cu-8(at.%)Cr- 4(at.%)Nb, also referred to as GRCop-84), which was invented at the NASA Glenn Research Center, are being considered for use as liner materials in the combustion chambers and nozzle ramps of these engines. However, previous experience has shown that, in rocket engines using liquid hydrogen and liquid oxygen, copper alloys are subject to a process called blanching, where the material undergoes environmental attack under the action of the combustion gases. In addition, the copper alloy liners undergo thermomechanical fatigue, which often results in an initially square cooling channel deforming into a dog-house shape. Clearly, there is an urgent need to develop new coatings to protect copper liners from environmental attack inside rocket chambers and to lower the temperature of the liners to reduce the probability of deformation and failure by thermomechanical fatigue.

  2. Evaluation of an improved fiberoptics luminescence skin monitor with background correction.

    PubMed

    Vo-Dinh, T

    1987-06-01

    In this work, an improved version of a fiberoptics luminescence monitor, the prototype luminoscope II, is evaluated for in situ quantitative measurements. The instrument was developed to detect traces of luminescing organic contaminants on skin. An electronic background-nulling system was designed and incorporated into the instrument to compensate for various skin background emissions. A dose-response curve for a coal liquid spotted on mouse skin was established. The results illustrated the usefulness of the instrument for in vivo detection of organic materials on laboratory mouse skin.

  3. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  4. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  5. Toward broadband mechanical spectroscopy.

    PubMed

    Hecksher, Tina; Torchinsky, Darius H; Klieber, Christoph; Johnson, Jeremy A; Dyre, Jeppe C; Nelson, Keith A

    2017-08-15

    Diverse material classes exhibit qualitatively similar behavior when made viscous upon cooling toward the glass transition, suggesting a common theoretical basis. We used seven different measurement methods to determine the mechanical relaxation kinetics of a prototype molecular glass former over a temporal range of 13 decades and over a temperature range spanning liquid to glassy states. The data conform to time-temperature superposition for the main (alpha) process and to a scaling relation of schematic mode-coupling theory. The broadband mechanical measurements demonstrated have fundamental and practical applications in polymer science, geophysics, multifunctional materials, and other areas.

  6. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  7. Progress toward hydrogen peroxide micropulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  8. Prototype apparatus for the measurement of tritium in expired air using plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Ito, Takeshi

    2018-02-01

    A new apparatus for measuring tritiated water in expired air was developed using plastic scintillator (PS) pellets and a low-background liquid scintillation counter. The sensitivity of the apparatus was sufficient when a large adapted Teflon vial was used. The measurement method generated low amounts of organic waste because the PS pellets were reusable by rinsing, and had adequate detection limits. The apparatus is useful for the safety management of workers that are exposed to radioactive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Experimental evaluation of a 600 lbf spacecraft rocket engine.

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1972-01-01

    Experimental results are presented for a long-duration-capability (1000-sec), space-storable, bipropellant liquid rocket motor burning fluorine/hydrazine or FLOX/monomethylhydrazine. The interrelationship between injected mixture ratio and the per cent film cooling on vacuum specific impulse performance and chamber heat transfer is given. Experimental sea level measurements are used to predict space vacuum performance based upon simplified JANNAF reference procedures. Dynamic combustion stability is demonstrated over a wide range of operating conditions. Analytical results of char penetration, erosion, and ablative wall temperature distributions are presented for prototype chamber designs.

  10. Exploring excited eigenstates of many-body systems using the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph

    2018-05-01

    We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.

  11. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcoholmore » fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)« less

  12. Multi-fuel driven Janus micromotors.

    PubMed

    Gao, Wei; D'Agostino, Mattia; Garcia-Gradilla, Victor; Orozco, Jahir; Wang, Joseph

    2013-02-11

    Here the first example of a chemically powered micromotor that harvests its energy from the reactions of three different fuels is presented. The new Al/Pd Janus microspheres-prepared by depositing a Pd layer on one side of Al microparticles-are propelled efficiently by the thrust of hydrogen bubbles generated from different reactions of Al in strong acidic and alkaline environments, and by an oxygen bubble thrust produced at their partial Pd coating in hydrogen peroxide media. High speeds and long lifetimes of 200 μm s(-1) and 8 min are achieved in strong alkaline media and acidic media, respectively. The ability to autonomously adapt to the presence of a new fuel (surrounding environment), without compromising the propulsion behavior is illustrated. These data also represent the first example of a chemically powered micromotor that propels autonomously and efficiently in alkaline environments (pH > 11) without additional fuels. The ability to use multiple fuel sources to power the same micromotor offers a broader scope of operation and considerable promise for diverse applications of micromotors in different chemical environments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-fuel combustor for gas turbine engines: Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melconian, J.O.; Marden, W.W., III

    An innovative can combustor configuration has been developed for gas turbine engines which has the potential of burning fuels ranging from gasoline to coal/water slurries at high efficiencies. The design is based on a Variable Residence Time (VRT) concept which allows large and agglomerated fuel particles adequate time to completely burn. High durability of the combustor is achieved by dual function use of the incoming air. For applications which require the burning of coal/water slurries, the design has the capability of removing the ash particles directly from the primary zone of the combustor. It is anticipated that because of themore » small size requirement of this combustor design, existing gas turbine engines could be retrofitted within the confines of the current engine envelope. In Phase 1, the feasibility of the concept was successfully demonstrated by three-dimensional mathematical modeling and water analogue tests. The Plexiglas model used in the water analogue tests was designed to fit the current production engine of a major manufacturer. 19 figs., 2 tabs.« less

  14. Software for real-time control of a tidal liquid ventilator.

    PubMed

    Heckman, J L; Hoffman, J; Shaffer, T H; Wolfson, M R

    1999-01-01

    The purpose of this project was to develop and test computer software and control algorithms designed to operate a tidal liquid ventilator. The tests were executed on a 90-MHz Pentium PC with 16 MB RAM and a prototype liquid ventilator. The software was designed using Microsoft Visual C++ (Ver. 5.0) and the Microsoft Foundation Classes. It uses a graphic user interface, is multithreaded, runs in real time, and has a built-in simulator that facilitates user education in liquid-ventilation principles. The operator can use the software to specify ventilation parameters such as the frequency of ventilation, the tidal volume, and the inspiratory-expiratory time ratio. Commands are implemented via control of the pump speed and by setting the position of two two-way solenoid-controlled valves. Data for use in monitoring and control are gathered by analog-to-digital conversion. Control strategies are implemented to maintain lung volumes and airway pressures within desired ranges, according to limits set by the operator. Also, the software allows the operator to define the shape of the flow pulse during inspiration and expiration, and to optimize perfluorochemical liquid transfer while minimizing airway pressures and maintaining the desired tidal volume. The operator can stop flow during inspiration and expiration to measure alveolar pressures. At the end of expiration, the software stores all user commands and 30 ventilation parameters into an Excel spreadsheet for later review and analysis. Use of these software and control algorithms affords user-friendly operation of a tidal liquid ventilator while providing precise control of ventilation parameters.

  15. Fire and Ice - Safety, Comfort, and Getting the Firefighters' Job Done

    NASA Technical Reports Server (NTRS)

    Foley, Tico; Butzer, Melissa

    1999-01-01

    Daily life for firefighters consists of working with life-threatening hazards in hostile environments. A major hazard is excessive ambient heat. New hazards have arisen from protective gear that was intended to increase survival time of firefighters while finding and rescuing victims. The insulation is so good now that a firefighter's metabolic heat buildup cannot escape. This forces body core temperatures to life threatening levels in about 20 minutes of moderate activity. Using NASA space suit technology, Oceaneering Space Systems developed a liquid cooling garment prototype that will remove up to 250 watts of metabolic heat. After testing and certification as an approved accessory for firefighter use, this garment will be available for use by any individual encapsulated in protective clothing. This demonstration will present a high surface area circulated liquid cooling garment displayed on a mannequin and available for attendees to try on to experience the effects of active cooling.

  16. Neutron scattering in the proximate quantum spin liquid α-RuCl3.

    PubMed

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A; Stone, Matthew B; Lumsden, Mark D; Mandrus, David G; Tennant, David A; Moessner, Roderich; Nagler, Stephen E

    2017-06-09

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl 3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl 3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials. Copyright © 2017, American Association for the Advancement of Science.

  17. An air-liquid contactor for large-scale capture of CO2 from air.

    PubMed

    Holmes, Geoffrey; Keith, David W

    2012-09-13

    We present a conceptually simple method for optimizing the design of a gas-liquid contactor for capture of carbon dioxide from ambient air, or 'air capture'. We apply the method to a slab geometry contactor that uses components, design and fabrication methods derived from cooling towers. We use mass transfer data appropriate for capture using a strong NaOH solution, combined with engineering and cost data derived from engineering studies performed by Carbon Engineering Ltd, and find that the total costs for air contacting alone-no regeneration-can be of the order of $60 per tonne CO(2). We analyse the reasons why our cost estimate diverges from that of other recent reports and conclude that the divergence arises from fundamental design choices rather than from differences in costing methodology. Finally, we review the technology risks and conclude that they can be readily addressed by prototype testing.

  18. An electrically tunable plenoptic camera using a liquid crystal microlens array.

    PubMed

    Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng

    2015-05-01

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.

  19. An electrically tunable plenoptic camera using a liquid crystal microlens array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Yu; School of Automation, Huazhong University of Science and Technology, Wuhan 430074; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074

    2015-05-15

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated withmore » an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.« less

  20. An electrically tunable plenoptic camera using a liquid crystal microlens array

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Ji, An; Xie, Changsheng

    2015-05-01

    Plenoptic cameras generally employ a microlens array positioned between the main lens and the image sensor to capture the three-dimensional target radiation in the visible range. Because the focal length of common refractive or diffractive microlenses is fixed, the depth of field (DOF) is limited so as to restrict their imaging capability. In this paper, we propose a new plenoptic camera using a liquid crystal microlens array (LCMLA) with electrically tunable focal length. The developed LCMLA is fabricated by traditional photolithography and standard microelectronic techniques, and then, its focusing performance is experimentally presented. The fabricated LCMLA is directly integrated with an image sensor to construct a prototyped LCMLA-based plenoptic camera for acquiring raw radiation of targets. Our experiments demonstrate that the focused region of the LCMLA-based plenoptic camera can be shifted efficiently through electrically tuning the LCMLA used, which is equivalent to the extension of the DOF.

  1. DEAP-3600 Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Kuźniak, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Dering, K.; DiGioseffo, J.; Duncan, F.; Flower, T.; Ford, R.; Giampa, P.; Gorel, P.; Graham, K.; Grant, D. R.; Guliyev, E.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Jillings, C. J.; Lawson, I.; Li, O.; Liimatainen, P.; Majewski, P.; McDonald, A. B.; McElroy, T.; McFarlane, K.; Monroe, J.; Muir, A.; Nantais, C.; Ng, C.; Noble, A. J.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Seeburn, N.; Singhrao, K.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.; DEAP Collaboration

    2016-04-01

    The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing β / γ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related α backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10-46cm2 will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.

  2. Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids

    DOE PAGES

    Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; ...

    2016-04-21

    In this paper, we report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ~0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changesmore » in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Finally, our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.« less

  3. Dual Ionic and Organic Nature of Ionic Liquids

    PubMed Central

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  4. Latest developments in a multi-user 3D display

    NASA Astrophysics Data System (ADS)

    Surman, Phil; Sexton, Ian; Bates, Richard; Lee, Wing Kai; Hopf, Klaus; Koukoulas, Triantaffilos

    2005-11-01

    De Montfort University, in conjunction with the Heinrich Hertz Institute, is developing a 3D display that is targeted specifically at the television market. It is capable of supplying 3D to several viewers who do not have to wear special glasses, and who are able to move freely over a room-sized area. The display consists of a single liquid crystal display that presents the same stereo pair to every viewer by employing spatial multiplexing. This presents a stereo pair on alternate pixel rows, with the conventional backlight replaced by novel steering optics controlled by the output of a head position tracker. Illumination is achieved using arrays of coaxial optical elements in conjunction with high-density white light emitting diode arrays. The operation of the steering and multiplexing optics in the prototype display are explained. The results obtained from a prototype built under the European Union-funded ATTEST 3D television project are described. The performance of this model was not optimum, but was sufficient to prove that the principle of operation is viable for a 3D television display. A second prototype, incorporating improvements based on experience gained, is currently under construction and this is also described. The prototype is capable of being developed into a display appropriate for a production model that will enable 3D television to come to market within the next ten years. With the current widespread usage of flat panel displays it is likely that customer preference will be for a hang-on-the-wall 3D display, and this challenge will be met by reconfiguring the optics and incorporating novel optical addressing techniques.

  5. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected into the dilute acid stream. The HVAM system provides two measurement ranges (threshold limit value (TLV): 10 to 1000 parts per billion (ppb)/LEAK: 100 ppb to 10 parts per million (ppm)). The LEAK range is created by dilution of the sulfuric acid/hydrazine liquid sample with pure water. This dual range capability permits the analyzer to quantify ambient air samples whose hydrazine concentrations range from 10 ppb to as high as 10 ppm. The laboratory and field prototypes have demonstrated total system response times on the order of 10 to 12 minutes for samples ranging from 10 to 900 ppb in the lLV mode and is greater than 2 minutes for samples ranging from 100 to 1300 ppb in the LEAK mode. Service intervals of over 3 months have been demonstrated for continuous 24 hour/day, 7 day/week usage. The HVAM is made up of a purged cabinet that contains power supplies, RS422 signal transmission capabilities, a UPS, an on-site warning system, and a Line Replaceable Unit (LRU). The LRU includes all of the liquid flow system, the analyzer, the control/data system microprocessor and assorted flow and liquid-level sensors. The LRU is mounted on a track slide system so it can be serviced inplace or totally removed and quickly exchanged with another calibrated unit, thus minimizing analyzer downtime. Once an LRU is removed from an analyzer enclosure, it can be brought to a laboratory facility for complete calibration and periodic maintenance.

  6. Progress in magnetic sensor technology for sea mine detection

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.

    1997-07-01

    A superconducting magnetic-field gradiometer developed in the 1980's has been demonstrated infusion with acoustic sensors to enhance shallow water sea mine detection and classification, especially for buried mine detection and the reduction of acoustic false alarm rates. This sensor incorporated niobium bulk and wire superconducting components cooled by liquid helium to a temperature of 4 degrees K. An advanced superconducting gradiometer prototype is being developed to increase sensitivity and detection range. This sensor features all thin film niobium superconducting components and a new liquid helium cooling concept. In the late 1980's, a new class of 'high Tc' superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen. The use of liquid nitrogen refrigeration offers new opportunities for this sensor technology, providing significant reduction in the size of sensor packages and in the requirements for cryogenic support and logistics. As a result of this breakthrough, a high Tc sensor concept using liquid nitrogen refrigeration has been developed for mine reconnaissance applications and a test article of that concept is being fabricated and evaluated. In addition to these developments in sensor technology, new signal processing approaches and recent experimental results have ben obtained to demonstrate an enhanced D/C capability. In this paper, these recent advances in sensor development and new results for an enhanced D/C capability will be reviewed and a current perspective on the role of magnetic sensors for mine detection and classification will be addressed.

  7. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – Technicians monitor the progress as a crane lowers the Project Morpheus prototype for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  8. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – Technicians and engineers monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  9. Morpheus Trailered to the SLF

    NASA Image and Video Library

    2014-01-21

    CAPE CANAVERAL, Fla. – Technicians monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston

  10. Virtobot 2.0: the future of automated surface documentation and CT-guided needle placement in forensic medicine.

    PubMed

    Ebert, Lars Christian; Ptacek, Wolfgang; Breitbeck, Robert; Fürst, Martin; Kronreif, Gernot; Martinez, Rosa Maria; Thali, Michael; Flach, Patricia M

    2014-06-01

    In this paper we present the second prototype of a robotic system to be used in forensic medicine. The system is capable of performing automated surface documentation using photogrammetry, optical surface scanning and image-guided, post-mortem needle placement for tissue sampling, liquid sampling, or the placement of guide wires. The upgraded system includes workflow optimizations, an automatic tool-change mechanism, a new software module for trajectory planning and a fully automatic computed tomography-data-set registration algorithm. We tested the placement accuracy of the system by using a needle phantom with radiopaque markers as targets. The system is routinely used for surface documentation and resulted in 24 surface documentations over the course of 11 months. We performed accuracy tests for needle placement using a biopsy phantom, and the Virtobot placed introducer needles with an accuracy of 1.4 mm (±0.9 mm). The second prototype of the Virtobot system is an upgrade of the first prototype but mainly focuses on streamlining the workflow and increasing the level of automation and also has an easier user interface. These upgrades make the Virtobot a potentially valuable tool for case documentation in a scalpel-free setting that uses purely imaging techniques and minimally invasive procedures and is the next step toward the future of virtual autopsy.

  11. Collecting Ground Samples for Balloon-Borne Instruments

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Zimmerman, Wayne; Wu, Jiunn Jenq

    2009-01-01

    A proposed system in a gondola containing scientific instruments suspended by a balloon over the surface of the Saturn moon Titan would quickly acquire samples of rock or ice from the ground below. Prototypes of a sample-collecting device that would be a major part of the system have been tested under cryogenic and non-cryogenic conditions on Earth. Systems like this one could also be used in non-cryogenic environments on Earth to collect samples of rock, soil, ice, mud, or other ground material from such inaccessible or hazardous locations as sites of suspected chemical spills or biological contamination. The sample-collecting device would be a harpoonlike device that would be connected to the balloon-borne gondola by a tether long enough to reach the ground. The device would be dropped from the gondola to acquire a sample, then would be reeled back up to the gondola, where the sample would be analyzed by the onboard instruments. Each prototype of the sample-collecting device has a sharp front (lower) end, a hollow core for retaining a sample, a spring for holding the sample in the hollow core, and a rear (upper) annular cavity for retaining liquid sample material. Aerodynamic fins at the rear help to keep the front end pointed downward. In tests, these prototype devices were dropped from various heights and used to gather samples of dry sand, moist sand, cryogenic water ice, and warmer water ice.

  12. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nancy; Yee, J.; Zheng, B.

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. Our study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. This study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS processmore » control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. Our current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.« less

  13. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  14. Development of a compressive sampling hyperspectral imager prototype

    NASA Astrophysics Data System (ADS)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2013-10-01

    Compressive sensing (CS) is a new technology that investigates the chance to sample signals at a lower rate than the traditional sampling theory. The main advantage of CS is that compression takes place during the sampling phase, making possible significant savings in terms of the ADC, data storage memory, down-link bandwidth, and electrical power absorption. The CS technology could have primary importance for spaceborne missions and technology, paving the way to noteworthy reductions of payload mass, volume, and cost. On the contrary, the main CS disadvantage is made by the intensive off-line data processing necessary to obtain the desired source estimation. In this paper we summarize the CS architecture and its possible implementations for Earth observation, giving evidence of possible bottlenecks hindering this technology. CS necessarily employs a multiplexing scheme, which should produce some SNR disadvantage. Moreover, this approach would necessitate optical light modulators and 2-dim detector arrays of high frame rate. This paper describes the development of a sensor prototype at laboratory level that will be utilized for the experimental assessment of CS performance and the related reconstruction errors. The experimental test-bed adopts a push-broom imaging spectrometer, a liquid crystal plate, a standard CCD camera and a Silicon PhotoMultiplier (SiPM) matrix. The prototype is being developed within the framework of the ESA ITI-B Project titled "Hyperspectral Passive Satellite Imaging via Compressive Sensing".

  15. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    DOE PAGES

    Yang, Nancy; Yee, J.; Zheng, B.; ...

    2016-12-08

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. Our study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. This study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS processmore » control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. Our current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.« less

  16. Proceedings of the Eleventh International Conference on Calorimetry in Particle Physics

    NASA Astrophysics Data System (ADS)

    Cecchi, Claudia

    The Pamela silicon tungsten calorimeter / G. Zampa -- Design and development of a dense, fine grained silicon tungsten calorimeter with integrated electronics / D. Strom -- High resolution silicon detector for 1.2-3.1 eV (400-1000 nm) photons / D. Groom -- The KLEM high energy cosmic rays collector for the NUCLEON satellite mission / M. Merkin (contribution not received) -- The electromagnetic calorimeter of the Hera-b experiment / I. Matchikhilian -- The status of the ATLAS tile calorimeter / J. Mendes Saraiva -- Design and mass production of Scintillator Pad Detector (SPD) / Preshower (PS) detector for LHC-b experiment / E. Gushchin -- Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC / O. Grachov -- The CMS hadron calorimeter / D. Karmgard (contribution not received) -- Test beam study of the KOPIO Shashlyk calorimeter prototype / A. Poblaguev -- The Shashlik electro-magnetic calorimeter for the LHCb experiment / S. Barsuk -- Quality of mass produced lead-tungstate crystals / R. Zhu -- Status of the CMS electromagnetic calorimeter / J. Fay -- Scintillation detectors for radiation-hard electromagnetic calorimeters / H. Loehner -- Energy, timing and two-photon invariant mass resolution of a 256-channel PBWO[symbol] calorimeter / M. Ippolitov -- A high performance hybrid electromagnetic calorimeter at Jefferson Lab / A. Gasparian -- CsI(Tl) calorimetry on BESHI / T. Hu (contribution not received) -- The crystal ball and TAPS detectors at the MAMI electron beam facility / D. Watts -- Front-end electronics of the ATLAS tile calorimeter / R. Teuscher -- The ATLAS tilecal detector control system / A. Gomes -- Performance of the liquid argon final calibration board / C. de la Taille -- Overview of the LHCb calorimeter electronics / F. Machefert -- LHCb preshower photodetector and electronics / S. Monteil -- The CMS ECAL readout architecture and the clock and control system / K. Kloukinas -- Test of the CMS-ECAL trigger primitive generation / N. Regnault -- Optical data links for the CMS ECAL / J. Grahl (contribution not received) -- CMS ECAL off-detector electronics / R. Alemany Fernandez -- Performance of a low noise readout ASIC for the W-Si calorimeter physics prototype for the future linear collider / C. de la Taille -- Properties of a sampling calorimeter with warm-liquid ionization chambers / S. Plewnia -- Calorimetry and the DO experiment / R. Zitoun (contribution not received) -- Data quality monitoring for the DØ calorimeter / V. Shary -- Status of the construction of the ATLAS electromagnetic liquid argon calorimeter, overview of beam test performance studies / L. Serin -- Uniformity of response of ATLAS liquid argon EM calorimeter / O. Gaunter -- Status of the ATLAS liquid argon hadronic endcap calorimeter construction / M. Vincter -- Results from particle beam tests of the ATLAS liquid argon endcap calorimeters / M. Lefebvre -- First results of the DREAM project / R. Wigmans -- Electron and muon detection with a dual-readout (DREAM) calorimeter / N. Akchurin -- The neutron zero degree calorimeter for the ALICE experiment / M. Gallio -- The liquid xenon scintillation calorimeter of the MEG experiment: operation of a large prototype / G. Signorelli -- Detection of high energy particles using radio frequency signals / C. Hebert -- Hadronic shower simulation / J.-P. Wellisch -- E.M. and hadronic shower simulation with FLUKA / G. Battistoni -- Simulation of the LHCb electromagnetic calorimeter response with GEANT4 / P. Robbe -- Comparison of beam test results of the combined ATLAS liquid argon endcap calorimeters with GEANT3 and GEANT4 simulations / D. Salihagić -- GEANT4 hadronic physics validation with LHC test-beam data / C. Alexa -- The full simulation of the GLAST LAT high energy gamma ray telescope / F. Longo -- Response of the KLOE electromagnetic calorimeter to low-energy particles / T. Spadaro -- Calorimeter algorithms for DØ; / S. Trincaz-Duvoid -- Identification of low P[symbol] muon with the ATLAS tile calorimeter / G. Usai -- Electron and photon reconstruction with fully simulated events in the CMS experiment / G. Daskalakis -- Expected performance of Jet, [symbol] and [symbol] reconstruction in ATLAS / I. Vivarelli -- LHCb calorimeter from trigger to physics / O. Deschamps -- The calibration strategy of CMS electromagnetic calorimeter / P. Meridiani -- Energy and impact point reconstruction in the CMS ECAL (testbeam results from 2003) / I. B. van Vulpen -- The jet energy scale and resolution in the DO calorimeter / A. Kupco (contribution not received) -- Precision linearity studies of the ATLAS liquid argon EM calorimeter / G. Graziani -- Calibration of the ATLAS tile calorimeter / F. Sarri -- Performance of the CMS ECAL laser monitoring source in the test beam / A. Bornheim -- Energy reconstruction algorithms and their influence on the ATLAS tile calorimeter / E. Fullana -- Study of the biological effectiveness of ionizing radiations for a more realistic evaluation of the radiation quality in hadrontherapy / R. Cherubini (contribution not received) -- New dosimetry technologies for IMRT (Intensity Modulated Radio Therapy) / A. Piermattei -- Photon neutron radiotherapy / G. Giannini (contribution not received) -- Recent developments in molecular imaging / G. Zavattini (contribution not received) -- Performance goals and design considerations for a linear collider calorimeter / F. Sefkow -- Improving the jet reconstruction with the particle flow method; an introduction / J.-C. Brient -- Fine grained SiW ECAL for a linear collider detector / D. Strom (in the silicon session) -- Silicon-tungsten sampling electromagnetic calorimeter for the TeV electron-positron linear collider / J.-C. Brient -- LCCAL: a calorimeter prototype for future linear colliders / S. Miscetti -- Analog vs digital hadron calorimetry at a future electron-positron linear collider / S. Magill -- Toward a scintillator based heal and tail catcher for the LC calorimeter / M. Martin (contribution not received) -- Minical options, description in MC, calibration, plans for test beam prototype / G. Eigen (contribution not received) -- Photodetector options for a scintillator heal / E. Popova (contribution not received) -- Very low background scintillators in DAMA project: results and perspectives / R. Bernabei -- EDELWEISS Ge cryogenics detectors: main performance and physics results / X. Navick (contribution not received) -- Review of massive underground detectors / A. Rubbia -- Review of neutrino telescopes underwater and under ice / A. Capone (contribution not received) -- The fluorescence detector of the Pierre Auger Observatory / R. Caruso -- The EUSO mission for the observation of ultra high energy cosmic rays from space / A. Petrolini -- Performance of a 3D imaging electromagnetic calorimeter for the AMSO2 space experiment / C. Adloff -- Beam test calibration of the balloon borne imaging calorimeter for the CREAM experiment / P. Maestro.

  17. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance and on the performance of the prototype boards in the demonstrator system based on various measurements with the 13 TeV collision data. Results of the high-speed link test with the prototypes of the final electronic boards will be also reported.

  18. Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency (final report NFE-12-03876)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Luo, Huimin; Toops, Todd J.

    This ORNL-Shell CRADA developed and investigated ionic liquids (ILs) as multifunctional additives for next-generation low-viscosity engine oils. Several groups of oil-miscible ILs were successfully designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Synergistic effects between the common anti-wear additive zinc dialkyldithiophosphate (ZDDP) and a particular group of ILs were discovered with > 30% friction reduction and 70% wear reduction compared with using ZDDP or IL alone. The IL+ZDDP tribofilm distinguishes itself from the IL or ZDDP tribofilms with substantially higher contents of metal phosphates but less metal oxides andmore » sulfur compounds. Notably, it was revealed that the actual concentrations of functional elements on the droplet surface of the oil containing IL+ZDDP are one order magnitude higher than their nominal values. Such significantly increased concentrations of anti-wear agents are presumably expected for the oilsolid interface and believed to be responsible for the superior lubricating performance. A prototype SAE 0W-16 engine oil using a synergistic IL+ZDDP pair as the anti-wear additive has been formulated based on the compatibility between the IL and other additives. Sequence VIE full-scale engine dynamometer tests demonstrated fuel economy improvement (FEI) for this prototype oil and revealed the individual contributions from the lower oil viscosity and reduced boundary friction. The impact of IL and IL+ZDDP on exhaust emission catalyst was investigated using an accelerated small engine aging test and results were benchmarked against ZDDP.« less

  19. Catalytic decomposition of nitrous oxide monopropellant for hybrid motor ignition

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew

    Nitrous oxide (N2O) is an inexpensive and readily available non-toxic rocket motor oxidizer. It is the most commonly used oxidizer for hybrid bipropellant rocket systems, and several bipropellant liquid rocket designs have also used nitrous oxide. In liquid form, N2O is highly stable, but in vapor form it has the potential to decompose exothermically, releasing up to 1865 Joules per gram of vapor as it dissociates into nitrogen and oxygen. Consequently, it has long been considered as a potential "green" replacement for existing highly toxic and dangerous monopropellants. This project investigates the feasibility of using the nitrous oxide decomposition reaction as a monopropellant energy source for igniting liquid bipropellant and hybrid rockets that already use nitrous oxide as the primary oxidizer. Because nitrous oxide is such a stable propellant, the energy barrier to dissociation is quite high; normal thermal decomposition of the vapor phase does not occur until temperatures are above 800 C. The use of a ruthenium catalyst decreases the activation energy for this reaction to allow rapid decomposition below 400 C. This research investigates the design for a prototype device that channels the energy of dissociation to ignite a laboratory scale hybrid rocket motor.

  20. Utilizing of inner porous structure in injection moulds for application of special cooling method

    NASA Astrophysics Data System (ADS)

    Seidl, M.; Bobek, J.; Šafka, J.; Habr, J.; Nováková, I.; Běhálek, L.

    2016-04-01

    The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellissima, Stefano; González, Miguel A.; Bafile, Ubaldo

    Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic propertiesmore » of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.« less

  2. Effects of Viscosity on the Performance of Air-Powered Liquid Jet Injectors

    NASA Astrophysics Data System (ADS)

    Portaro, Rocco; Jaber, Hadi; Ng, Hoi Dick

    2017-11-01

    Drug delivery without the use of hypodermic needles has been a long-term objective within the medical field. This study focuses on observing the effects of drug viscosity on injector performance for air-powered liquid jet injectors, as well as the viability of using this technology for delivering viscous-type medications such as monoclonal antibodies. The experiments are conducted through the use of a prototype injector which allows key parameters such as driver pressure, injection volume and nozzle size to be varied. Different viscosities which range from 0.9 cP to 87 cP are obtained by using a water-glycerol mix. The liquid jets emanating from the injector are assessed using high speed photography as well as a pressure transducer. Experimental findings are then compared to a CFD model which considered experimental geometry and parameters. The results of this study highlight the effect of viscosity on the operating pressure of the injector and the reduction in jet stagnation pressure. It also illustrates improved jet confinement as viscosity is increased, a finding which is in line with the numerical model, and should play a key role in improving the device's characteristics for puncturing skin.

  3. Monte Carlo study of the coincidence resolving time of a liquid xenon PET scanner, using Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Gomez-Cadenas, J. J.; Benlloch-Rodríguez, J. M.; Ferrario, P.

    2017-08-01

    In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending on the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes.

  4. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, E. F., E-mail: borra@phy.ulaval.ca

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror usesmore » a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.« less

  5. Feasibility study of tuned liquid column damper for ocean wave energy extraction

    NASA Astrophysics Data System (ADS)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han

    2017-04-01

    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  6. A micro-machined piezoelectric flexural-mode hydrophone with air backing: a hydrostatic pressure-balancing mechanism for integrity preservation.

    PubMed

    Choi, Sungjoon; Lee, Haksue; Moon, Wonkyu

    2010-09-01

    Although an air-backed thin plate is an effective sound receiver structure, it is easily damaged via pressure unbalance caused by external hydrostatic pressure. To overcome this difficulty, a simple pressure-balancing module is proposed. Despite its small size and relative simplicity, with proper design and operation, micro-channel structure provides a solution to the pressure-balancing problem. If the channel size is sufficiently small, the gas-liquid interface may move back and forth without breach by the hydrostatic pressure since the surface tension can retain the interface surface continuously. One input port of the device is opened to an intermediate liquid, while the other port is connected to the air-backing chamber. As the hydrostatic pressure increases, the liquid in the micro-channel compresses the air, and the pressure in the backing chamber is then equalized to match the external hydrostatic pressure. To validate the performance of the proposed mechanism, a micro-channel prototype is designed and integrated with the piezoelectric micro-machined flexural sensor developed in our previous work. The working principle of the mechanism is experimentally verified. In addition, the effect of hydrostatic pressure on receiving sensitivity is evaluated and compared with predicted behavior.

  7. Self-healing Li-Bi liquid metal battery for grid-scale energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, XH; Phadke, S; Chung, B

    In an assessment of the performance of a Li vertical bar LiCl-LiF vertical bar Bi liquid metal battery, increasing the current density from 200 to 1250 mA cm(-2) results in a less than 30% loss in specific discharge capacity at 550 degrees C. The charge and discharge voltage profiles exhibit two distinct regions: one corresponding to a Li-Bi liquid alloy and one corresponding to the two-phase mixture of Li-Bi liquid alloy and the intermetallic solid compound, Li3Bi. Full cell prototypes of 0.1 Ah nameplate capacity have been assembled and cycled at 3 C rate for over a 1000 cycles withmore » only 0.004% capacity fade per cycle. This is tantamount to retention of over 85% of original capacity after 10 years of daily cycling. With minimal changes in design, cells of 44.8 Ah and 134 Ah capacity have been fabricated and cycled at C/3 rate. After a hundred cycles and over a month of testing, no capacity fade is observed. The coulombic efficiency of 99% and energy efficiency of 70% validate the ease of scalability of this battery chemistry. Post mortem cross sections of the cells in various states of charge demonstrate the total reversibility of the Li3Bi solid phase formed at high degrees of lithiation. (C) 2014 Elsevier B.V. All rights reserved.« less

  8. High-flux neutron source based on a liquid-lithium target

    NASA Astrophysics Data System (ADS)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  9. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.

    PubMed

    Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2018-02-19

    Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

  10. Membraneless laminar flow cell for electrocatalytic CO 2 reduction with liquid product separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flowmore » cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.« less

  11. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  12. Membraneless laminar flow cell for electrocatalytic CO 2 reduction with liquid product separation

    DOE PAGES

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; ...

    2017-03-16

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flowmore » cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.« less

  13. High-flux neutron source based on a liquid-lithium target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Paul, M.

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less

  14. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  15. Applications using high-Tc superconducting terahertz emitters

    PubMed Central

    Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2016-01-01

    Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed. PMID:26983905

  16. The Single-Phase ProtoDUNE Technical Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abi, B.

    2017-06-21

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  17. Raman spectroscopic study of reaction dynamics

    NASA Astrophysics Data System (ADS)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  18. Development of deep drawn aluminum piston tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  19. Design, fabrication, and structural testing of a lightweight shadow shield for deep-space application

    NASA Technical Reports Server (NTRS)

    Miao, D.; Barber, J. R.; Dewitt, R. L.

    1977-01-01

    Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.

  20. Space LOX vent system. [for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Erickson, R. C.

    1975-01-01

    This is the final report summarizing the work completed under contract NAS8-26972. Concept selection, design, fabricating and testing of a prototype compact heat exchanger thermodynamic vent system are discussed. The system is designed to operate in a 2.7m (9 foot) spherical liquid oxygen tank with a heating rate of 32.2 - 35.2 watts (110-120 Btu/hr) and to control pressure to 310 + or - 13.8 kN/sq m (45 + or - 2.0 psia.) the design mission is of 2,590 ks (30 days) duration on board a space shuttle orbiter.

  1. NE TARDIS Banner Event

    NASA Image and Video Library

    2017-12-08

    NASA Kennedy Space Center's Engineering Director Pat Simpkins, at left, talks with Michael E. Johnson, a project engineer; and Emilio Cruz, deputy division chief in the Laboratories, Development and Testing Division, inside the Prototype Development Laboratory. A banner signing event was held to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.

  2. Exit Presentation

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2016-01-01

    Skills Acquired: Tensile Testing: Prepare materials and setting up the tensile tests; Collect and interpret (messy) data. Outgassing Testing: Understand TML (Total Mass Loss) and CVCM (Collected Volatile Condensable Material); Collaboration with other NASA centers. Z2 (NASA's Prototype Space Suit Development) Support: Hands on building mockups of components; Analyze data; Work with others, understanding what both parties need in order to make a run successful. LCVG (Liquid Cooling and Ventilation Garment) Flush and Purge Console: Both formal design and design review process; How to determine which components to use - flow calculations, pressure ratings, size, etc.; Hazard Analysis; How to make design tradeoffs.

  3. Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation.

    NASA Technical Reports Server (NTRS)

    Mir, L.; Simard, C.; Grana, D.

    1973-01-01

    Ferrofluids are colloidal dispersions of subdomain magnetic solids in carrier liquids. In the presence of a non-homogeneous magnetic field, ferrofluids exert a pressure on immersed nonmagnetic objects in the opposite sense of the field gradient. This pressure force can, when opposite to gravity, levitate objects of higher density than the ferrofluid. This levitation technique can be used to separate solids according to density. Its application to the separation of nonferrous metals from shredded automobiles has been demonstrated on a prototype of a full-scale separator. Its use to recover nonferrous metals from municipal solid wastes also seems practical.

  4. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    PubMed

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  5. A prototypic small molecule database for bronchoalveolar lavage-based metabolomics

    NASA Astrophysics Data System (ADS)

    Walmsley, Scott; Cruickshank-Quinn, Charmion; Quinn, Kevin; Zhang, Xing; Petrache, Irina; Bowler, Russell P.; Reisdorph, Richard; Reisdorph, Nichole

    2018-04-01

    The analysis of bronchoalveolar lavage fluid (BALF) using mass spectrometry-based metabolomics can provide insight into lung diseases, such as asthma. However, the important step of compound identification is hindered by the lack of a small molecule database that is specific for BALF. Here we describe prototypic, small molecule databases derived from human BALF samples (n=117). Human BALF was extracted into lipid and aqueous fractions and analyzed using liquid chromatography mass spectrometry. Following filtering to reduce contaminants and artifacts, the resulting BALF databases (BALF-DBs) contain 11,736 lipid and 658 aqueous compounds. Over 10% of these were found in 100% of samples. Testing the BALF-DBs using nested test sets produced a 99% match rate for lipids and 47% match rate for aqueous molecules. Searching an independent dataset resulted in 45% matching to the lipid BALF-DB compared to<25% when general databases are searched. The BALF-DBs are available for download from MetaboLights. Overall, the BALF-DBs can reduce false positives and improve confidence in compound identification compared to when general databases are used.

  6. KSC-2014-2642

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  7. KSC-2014-2641

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Jon Olansen, Morpheus project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Olansen is the Project Morpheus prototype lander. Project Morpheus tests NASA’s autonomous landing and hazard avoidance technology, or ALHAT, sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  8. KSC-2014-2643

    NASA Image and Video Library

    2014-05-21

    CAPE CANAVERAL, Fla. – Chirold Epp, the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, project manager, speaks to members of the media inside a facility near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Behind Epp is the Project Morpheus prototype lander. Project Morpheus tests NASA’s ALHAT sensors and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin

  9. Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators

    NASA Astrophysics Data System (ADS)

    Luo, E.; Gong, M.; Wu, J.; Zhou, Y.

    2004-06-01

    The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.

  10. Mass tracking and material accounting in the integral fast reactor (IFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    This paper reports on the Integral Fast Reactor (IFR) which is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory. There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure with compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstratedmore » in the facilities at ANL-West, utilizing Experimental Breeder Reactor II and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations.« less

  11. Ferromagnetic Swimmers - Devices and Applications

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  12. Personal communicator.

    PubMed

    Stephens, Michael; Weber, Erica; Barrett, Steven F

    2006-01-01

    An assistive technology (AT) device was originally created for a young child who has difficulty communicating. The child is not able to talk and is not old enough to read yet. This rules out conventional communication devices that this child could use to communicate. A device was requested by the child's educator that would talk for the child. Originally it needed to be wristwatch size and able to visually cue the child so that the child would know what was going to be said. The project's first prototype was built by a senior design student. Although the basic features of the prototype functioned properly, it was not practical for day to day use. Originally a rebuild was requested by the educator but after further investigation it was decided that a new design was needed so that it could better cue the child. A new device was built using a high resolution graphic liquid crystal display (LCD), a voice recording chip and a microcontroller. The wristwatch size requirement was changed to meet available technology and the device was packaged to be used on a lanyard.

  13. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  14. Koster van Groos, A F

    NASA Astrophysics Data System (ADS)

    Guggenheim, S.

    2008-12-01

    The deep-ocean environment, including the ocean floor and crust, represents one of the last scientific frontiers on earth. The surprising lack of information on the mineralogy, the geochemical processes, or the biota of the ocean floor is the result of the inability to simulate ocean-floor conditions and to study geochemical systems at these conditions. A proto-type high-pressure environmental chamber (HPEC) has been constructed for use on a transmission- mode X-ray diffractometer to study geochemical processes at the deep-ocean sediment cover and crust. The HPEC has a designed pressure range to 1000 bars and temperature range from -20 oC to 200 oC. In this chamber, a liquid (e.g., sea water) plus sample in suspension can be pressurized either by gas or liquid. A cell-pump system continuously agitates the liquid to keep particles in suspension, thereby allowing the examination of mineral phases, including clays minerals. A major feature of the HPEC is that the mineral component moves freely and can react with its environment while being illuminated by the X-ray beam. The cell-pump also allows applied gas, such as CH4 or CO2, or O2, to interact efficiently with the aqueous liquid so that the system may rapidly reach equilibrium. In addition, mixing these gases with inert gases, e.g. He or Ar, allows control of the fugacity of these gas components. The design components and how data are manipulated to remove X-ray dispersion effects caused by the liquid will be discussed, along with examples showing the effects of temperature, pressure, and salt content on smectite clay.

  15. An acoustic sensor for monitoring airflow in pediatric tracheostomy patients.

    PubMed

    Ruscher, Thomas; Wicks Phd, Alexandrina; Muelenaer Md, Andre

    2012-01-01

    Without proper monitoring, patients with artificial airways in the trachea are at high risk for complications or death. Despite routine maintenance of the tube, dislodged or copious mucus can obstruct the airway. Young children ( 3yrs) have difficulty tending to their own tubes and are particularly vulnerable to blockages. They require external respiratory sensors. In a hospital environment, ventilators, end-tidal CO2 monitors, thermistors, and other auxiliary equipment provide sufficient monitoring of respiration. However, outpatient monitoring methods, such as thoracic impedance and pulse oximetry, are indirect and prone to false positives. Desensitization of caregivers to frequent false alarms has been cited in medical literature as a contributing factor in cases of child death. Ultrasonic time-of-flight (TOF) is a technique used in specialized industrial applications to non-invasively measure liquid and gas flow. Two transducers are oriented at a diagonal across a flow channel. Velocity measurement is accomplished by detecting slight variations in transit time of contra-propagating acoustic signals with a directional component parallel to air flow. Due to the symmetry of acoustic pathway between sensors, velocity measurements are immune to partial fouling in the tube from mucus, saliva, and condensation. A first generation proof of concept prototype was constructed to evaluate the ultrasonic TOF technique for medical tracheostomy monitoring. After successful performance, a second generation prototype was designed with a smaller form factor and more advanced electronics. This prototype was tested and found to measure inspired volume with a root-mean-square error < 2% during initial trials.

  16. Laboratory and balloon flight performance of the liquid xenon gamma ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Curioni, Alessandro

    2004-10-01

    This thesis presents the laboratory calibration and in- flight performance of the liquid xenon γ-ray imaging telescope (LXeGRIT). LXeGRIT is the prototype of a novel concept of Compton telescope, based on a liquid xenon time projection chamber (LXeTPC), developed through several years by Prof. Aprile and collaborators at Columbia. When I joined the collaboration in Spring 1999, LXeGRIT was getting ready for a balloon borne experiment with the goal of performing the key measurement of the background at balloon altitude. After the 1999 balloon flight, a good deal of work was devoted to a thorough calibration of LXeGRIT, both through several tests in the laboratory and through improving the analysis software and developing Monte Carlo simulations. After substantial advancements in our understanding of the detector performance, LXeGRIT was improved and calibrated before a long duration balloon campaign in the Fall of 2000. Data gathered in this flight have allowed a detailed study of the background at balloon altitude and of the sensitivity to celestial γ-ray sources, the focus of the second part of my thesis. As this dissertation is intended to show, “the LXeGRIT phase”—defined as the prototype work, the experimental demonstration of the LXeTPC concept as a Compton telescope, the measurement of the background and of the detection sensitivity—has been now successfully completed. We are now ready for future implementations of the LXeTPC technology for astrophysics observations. The detailed calibration of LXeGRIT, both as an imaging calorimeter and as a Compton telescope is described in Chapters 2, 3 and 4. In Chapter 5 more details are given of LXeGRIT as a balloon borne instrument and its flight performance in year 2000. The measurement of the background at balloon altitude, based on the data collected in year 2000, is presented in Chapter 6 and the sensitivity of the instrument is derived in Chapter 7. An overview of future developments for the LXeTPC technology in the field of γ-ray astronomy is given in Chapter 8. The main results from the 1999 balloon flight are summarized in Appendix A.

  17. Development of a liquid xenon time projection chamber for the XENON dark matter search

    NASA Astrophysics Data System (ADS)

    Ni, Kaixuan

    This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, between scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detecting very low energy events. Two major quantities related to the dark matter detection, the scintillation efficiency and ionization yield of nuclear recoils in LXe, have been established. A prototype dual phase detector (XENON3) has been built and tested extensively in above ground laboratory. The 3D position sensitivity, as well as the background discrimination potential demonstrated from the XENON3 prototype, allows the construction of a 10 kg scale detector (XENON10), to be deployed underground in early 2006. With 99.5% electron recoil rejection efficiency and 16 keVr nuclear recoil energy threshold, XENON10 will be able to probe the WIMP-nucleon cross-section down to 2 x 10-44 cm2 in the supersymmetry parameter space, after one month operation in the Gran Sasso underground laboratory.

  18. Heat Entrapment Effects Within Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Chato, D. J.; Doherty, M. P.

    2010-01-01

    We introduce a model problem to address heat entrapment effects or the local accumulation of thermal energy within liquid acquisition devices. We show that the parametric space consists of six parameters, namely the Rayleigh and Prandtl numbers, the aspect ratio, and heat flux ratios for the bottom, side, and top boundaries of the enclosure. For the range of Ra considered 1 to 10(sup 9), beyond Ra on the order of 10(sup 5), convective instability is the dominant mode of convection in comparison to natural convection. The flow field transitions to asymmetric modes at Ra on the order of 10(sup 7). Direct numerical simulation of a large geometric length scale prototype for Ra on the order of 10(sup 9) shows that the flow field evolves from small wavelength instability which gives rise to nonlinear growth of thermals, propagation of the instability occurs via growth of secondary and tertiary modes, and a travelling wave mode occurs prior to asymmetry. The effect of a large aspect ratio is to increase the number of modes in the vertical direction. Due to the slow diffusion of heat in the prototype, asymptotic states are not readily attained, we show that dynamical similarity can be used for a model which allows the attainment of asymptotic states and that transition to a chaotic state occurs for Ra on the order of 10(sup 9) via a broadband power spectrum. These dynamical events show that for the baseline condition in which heat is absorbed from background laboratory environment, higher heat flux is absorbed at the top and bottom boundaries of the enclosure than a nominal value of 34.9 ergs per square centimeter -second.

  19. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    NASA Astrophysics Data System (ADS)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  20. Prototype methodology for obtaining cloud seeding guidance from HRRR model data

    NASA Astrophysics Data System (ADS)

    Dawson, N.; Blestrud, D.; Kunkel, M. L.; Waller, B.; Ceratto, J.

    2017-12-01

    Weather model data, along with real time observations, are critical to determine whether atmospheric conditions are prime for super-cooled liquid water during cloud seeding operations. Cloud seeding groups can either use operational forecast models, or run their own model on a computer cluster. A custom weather model provides the most flexibility, but is also expensive. For programs with smaller budgets, openly-available operational forecasting models are the de facto method for obtaining forecast data. The new High-Resolution Rapid Refresh (HRRR) model (3 x 3 km grid size), developed by the Earth System Research Laboratory (ESRL), provides hourly model runs with 18 forecast hours per run. While the model cannot be fine-tuned for a specific area or edited to provide cloud-seeding-specific output, model output is openly available on a near-real-time basis. This presentation focuses on a prototype methodology for using HRRR model data to create maps which aid in near-real-time cloud seeding decision making. The R programming language is utilized to run a script on a Windows® desktop/laptop computer either on a schedule (such as every half hour) or manually. The latest HRRR model run is downloaded from NOAA's Operational Model Archive and Distribution System (NOMADS). A GRIB-filter service, provided by NOMADS, is used to obtain surface and mandatory pressure level data for a subset domain which greatly cuts down on the amount of data transfer. Then, a set of criteria, identified by the Idaho Power Atmospheric Science Group, is used to create guidance maps. These criteria include atmospheric stability (lapse rates), dew point depression, air temperature, and wet bulb temperature. The maps highlight potential areas where super-cooled liquid water may exist, reasons as to why cloud seeding should not be attempted, and wind speed at flight level.

  1. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S.; Narumanchi, S.; Moreno, G.

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and weremore » used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.« less

  2. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F

    2018-06-07

    Major obstacles to formulating a simple retention mechanism for reversed-phase liquid chromatography have a direct impact on the development of experimental methods for column characterization as they limit our capability to understand observed differences in retention at a system level. These problems arise from the heterogeneous composition of the stationary phase, the difficulty of providing a working definition for the phase ratio, and uncertainty as to whether the distribution mechanism for varied compounds is a partition, adsorption or mixed (combination) of these models. Retention factor and separation factor measurements offer little guidance as they represent an average of various and variable contributing factors that can only be interpreted by assuming a specific model. Column characterization methods have tended to ignore these difficulties by inventing a series of terms to describe column properties, such as hydrophobicity, hydrophilicity, silanol activity, steric resistance, etc., without proper definition. This has allowed multiple scales to be proposed for the same property which generally are only weakly correlated. Against this background we review the major approaches for the characterization of alkylsiloxane-bonded silica stationary phases employing prototypical compounds, the hydrophobic-subtraction model and the solvation parameter model. Those methods using prototypical compounds are limited by the lack of compounds with a singular dominant interaction. The multivariate approaches that extract column characteristic properties from the retention of varied compounds are more hopeful but it is important to be more precise in defining the characteristic column properties and cognizant that general interpretation of these properties for varied columns cannot escape the problem of a poor understanding of the distribution mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  4. Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.

    2006-01-01

    A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  5. A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldiges, Olaf; Blenski, Hans-Juergen

    2003-02-27

    Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less

  6. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production

    PubMed Central

    Johnson, Ashley R.; Caudill, Cassie L.; Tumbleston, John R.; Bloomquist, Cameron J.; Moga, Katherine A.; Ermoshkin, Alexander; Shirvanyants, David; Mecham, Sue J.; Luft, J. Christopher; DeSimone, Joseph M.

    2016-01-01

    Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing (“3D printing”) technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing). This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine. PMID:27607247

  7. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  8. Advanced Automotive Diesel Assessment Program, executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  9. Local Criticality and non-Fermi Liquid Behavior in Heavy Fermions

    NASA Astrophysics Data System (ADS)

    Si, Qimiao

    2002-03-01

    Quantum criticality provides a means to understand the apparent non-Fermi liquid phenomena in strongly correlated metals. Heavy fermion metals have emerged as a prototype system; many of them explicitly display a magnetic QCP. Experiments have shown that the quantum critical behavior is much richer than expected. One surprise came from neutron scattering, which found that the spin dynamics is anomalous not only near the antiferromagnetic wavevectors but also essentially everywhere in the Brillouin zone. In this talk, I will review the experiments and describe our theoretical work on the subject [1,2,3]. The notion of "local criticality" will be introduced and will be argued to apply to the heavy fermions. Some broader implications of the results will also be discussed. [1] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001). [2] Q. Si, J. L. Smith and K. Ingersent, Int. Journ. Mod. Phys. B13, 2331 (1999). [3] J. L. Smith and Q. Si, Phys. Rev. B61, 5184 (2000).

  10. Three dimensional measurement with an electrically tunable focused plenoptic camera

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Tong, Qing; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2017-03-01

    A liquid crystal microlens array (LCMLA) with an arrayed microhole pattern electrode based on nematic liquid crystal materials using a fabrication method including traditional UV-photolithography and wet etching is presented. Its focusing performance is measured under different voltage signals applied between the electrodes of the LCMLA. The experimental outcome shows that the focal length of the LCMLA can be tuned easily by only changing the root mean square value of the voltage signal applied. The developed LCMLA is further integrated with a main lens and an imaging sensor to construct a LCMLA-based focused plenoptic camera (LCFPC) prototype. The focused range of the LCFPC can be shifted electrically along the optical axis of the imaging system. The principles and methods for acquiring several key parameters such as three dimensional (3D) depth, positioning, and motion expression are given. The depth resolution is discussed in detail. Experiments are carried out to obtain the static and dynamic 3D information of objects chosen.

  11. Three dimensional measurement with an electrically tunable focused plenoptic camera.

    PubMed

    Lei, Yu; Tong, Qing; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2017-03-01

    A liquid crystal microlens array (LCMLA) with an arrayed microhole pattern electrode based on nematic liquid crystal materials using a fabrication method including traditional UV-photolithography and wet etching is presented. Its focusing performance is measured under different voltage signals applied between the electrodes of the LCMLA. The experimental outcome shows that the focal length of the LCMLA can be tuned easily by only changing the root mean square value of the voltage signal applied. The developed LCMLA is further integrated with a main lens and an imaging sensor to construct a LCMLA-based focused plenoptic camera (LCFPC) prototype. The focused range of the LCFPC can be shifted electrically along the optical axis of the imaging system. The principles and methods for acquiring several key parameters such as three dimensional (3D) depth, positioning, and motion expression are given. The depth resolution is discussed in detail. Experiments are carried out to obtain the static and dynamic 3D information of objects chosen.

  12. A Novel Device Addressing Design Challenges for Passive Fluid Phase Separations Aboard Spacecraft

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Thomas, E. A.; Graf, J. C.

    2009-07-01

    Capillary solutions have long existed for the control of liquid inventories in spacecraft fluid systems such as liquid propellants, cryogens and thermal fluids for temperature control. Such large length scale, `low-gravity,' capillary systems exploit container geometry and fluid properties—primarily wetting—to passively locate or transport fluids to desired positions for a variety of purposes. Such methods have only been confidently established if the wetting conditions are known and favorable. In this paper, several of the significant challenges for `capillary solutions' to low-gravity multiphase fluids management aboard spacecraft are briefly reviewed in light of applications common to life support systems that emphasize the impact of the widely varying wetting properties typical of aqueous systems. A restrictive though no less typifying example of passive phase separation in a urine collection system is highlighted that identifies key design considerations potentially met by predominately capillary solutions. Sample results from novel scale model prototype testing aboard a NASA low-g aircraft are presented that support the various design considerations.

  13. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Ya-yun, Ding; Zhi-yong, Zhang

    2010-05-01

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results show that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.

  14. LCLS-II 1.3 GHz cryomodule design - lessons learned from testing at Fermilab

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Hurd, J.; Orlov, Y.; He, Y.; Bossert, R.; Grimm, C.; Schappert, W.; Atassi, O. Al; Wang, R.; Arkan, T.; Theilacker, J.; Klebaner, A.; White, M.; Wu, G.; Makara, J.; Ginsburg, C.; Pei, L.; Holzbauer, J.; Hansen, B.; Stanek, R.; Peterson, T.; Harms, E.

    2017-12-01

    Fermilab’s 1.3 GHz prototype cryomodule for the Linac Coherent Light Source Upgrade (LCLS-II) has been tested at Fermilab’s Cryomodule Test Facility (CMTF). Aspects of the cryomodule design have been studied and tested. The cooldown circuit was used to quickly cool the cavities through the transition temperature, and a heater on the circuit was used to heat incoming helium for warmup. Due to the 0.5% slope of the cryomodule, the liquid level is not constant along the length of the cryomodule. This slope as well as the pressure profile caused liquid level management to be a challenge. The microphonics levels in the cryomodule were studied and efforts were made to reduce them throughout testing. Some of the design approaches and studies performed on these aspects will be presented. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. This work was supported, in part, by the LCLS-II Project.

  15. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations.

    PubMed

    Lee, Mal-Soon; Peter McGrail, B; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2015-10-12

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity.

  16. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm.

    PubMed

    Witinski, Mark F; Blanchard, Romain; Pfluegl, Christian; Diehl, Laurent; Li, Biao; Krishnamurthy, Kalyani; Pein, Brandt C; Azimi, Masud; Chen, Peili; Ulu, Gokhan; Vander Rhodes, Greg; Howle, Chris R; Lee, Linda; Clewes, Rhea J; Williams, Barry; Vakhshoori, Daryoosh

    2018-04-30

    This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.

  17. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316Lmore » target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.« less

  18. Development of the Brican TD100 Small Uas and Payload Trials

    NASA Astrophysics Data System (ADS)

    Eggleston, B.; McLuckie, B.; Koski, W. R.; Bird, D.; Patterson, C.; Bohdanov, D.; Liu, H.; Mathews, T.; Gamage, G.

    2015-08-01

    The Brican TD100 is a high performance, small UAS designed and made in Brampton Ontario Canada. The concept was defined in late 2009 and it is designed for a maximum weight of 25 kg which is now the accepted cut-off defining small civil UASs. A very clean tractor propeller layout is used with a lightweight composite structure and a high aspect ratio wing to obtain good range and endurance. The design features and performance of the initial electrically powered version are discussed and progress with developing a multifuel engine version is described. The system includes features enabling operation beyond line of sight (BLOS) and the proving missions are described. The vehicle has been used for aerial photography and low cost mapping using a professional grade Nikon DSLR camera. For forest fire research a FLIR A65 IR camera was used, while for georeferenced mapping a new Applanix AP20 system was calibrated with the Nikon camera. The sorties to be described include forest fire research, wildlife photography of bowhead whales in the Arctic and surveys of endangered caribou in a remote area of Labrador, with all these applications including the DSLR camera.

  19. Empirical measurement and model validation of infrared spectra of contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean; Gartley, Michael; Kerekes, John; Cosofret, Bogdon; Giblin, Jay

    2015-05-01

    Liquid-contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model utilizes radiative transfer modeling to generate synthetic imagery. Within DIRSIG, a micro-scale surface property model (microDIRSIG) was used to calculate numerical bidirectional reflectance distribution functions (BRDF) of geometric surfaces with applied concentrations of liquid contamination. Simple cases where the liquid contamination was well described by optical constants on optically at surfaces were first analytically evaluated by ray tracing and modeled within microDIRSIG. More complex combinations of surface geometry and contaminant application were then incorporated into the micro-scale model. The computed microDIRSIG BRDF outputs were used to describe surface material properties in the encompassing DIRSIG simulation. These DIRSIG generated outputs were validated with empirical measurements obtained from a Design and Prototypes (D&P) Model 102 FTIR spectrometer. Infrared spectra from the synthetic imagery and the empirical measurements were iteratively compared to identify quantitative spectral similarity between the measured data and modeled outputs. Several spectral angles between the predicted and measured emissivities differed by less than 1 degree. Synthetic radiance spectra produced from the microDIRSIG/DIRSIG combination had a RMS error of 0.21-0.81 watts/(m2-sr-μm) when compared to the D&P measurements. Results from this comparison will facilitate improved methods for identifying spectral features and detecting liquid contamination on a variety of natural surfaces.

  20. Experimental investigation and numerical simulation of a copper micro-channel heat exchanger with HFE-7200 working fluid

    NASA Astrophysics Data System (ADS)

    Borquist, Eric

    Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to 5microm above the heated copper plate. Reinforcing the simulation results, including location and movement of phase interfaces, was accomplished through a thorough ten dimensionless number analyses. These specialized ratios indicated dominant fluid and heat transfer behavior including phase change conditions. Thus, fabrication and empirical results for the heat energy harvesting prototype were successful and computational modeling provided understanding of applicable internal system behavior.

  1. On the effectiveness of incorporating shear thickening fluid with fumed silica particles in hip protectors

    NASA Astrophysics Data System (ADS)

    Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.

    2018-01-01

    The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.

  2. Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.

    2010-08-01

    The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.

  3. Analysis of High Speed Jets Produced by a Servo Tube Driven Liquid Jet Injector

    NASA Astrophysics Data System (ADS)

    Portaro, Rocco; Ng, Hoi Dick

    2017-11-01

    In today's healthcare environment many types of medication must be administered through the use of hypodermic needles. Although this practice has been in use for many years, drawbacks such as accidental needle stick injuries, transmission of deadly viruses and bio-hazardous waste are still present. This study focuses on improving a needle free technology known as liquid jet injection, through the implementation of a linear servo tube actuator for the construction of a fully closed loop liquid jet injection system. This device has the ability to deliver both micro- and macro- molecules, high viscosity fluids whilst providing real time control of the jet pressure profile for accurate depth and dispersion control. The experiments are conducted using a prototype that consists of a 3 kW servo tube actuator, coupled to a specially designed injection head allowing nozzle size and injection volume to be varied. The device is controlled via a high speed servo amplifier and FPGA. The high speed jets emanating from the injector are assessed via high speed photography and through the use of a force transducer. Preliminary results indicate that the system allows for accurate shaping of the jet pressure profile, making it possible to target different tissue depths/types accurately.

  4. Compact touchless fingerprint reader based on digital variable-focus liquid lens

    NASA Astrophysics Data System (ADS)

    Tsai, C. W.; Wang, P. J.; Yeh, J. A.

    2014-09-01

    Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.

  5. Direct energy conversion using liquid metals

    NASA Astrophysics Data System (ADS)

    Onea, Alexandru; Diez de los Rios Ramos, Nerea; Hering, Wolfgang; Stieglitz, Robert; Moster, Peter

    2014-12-01

    Liquid metals have excellent properties to be used as heat transport fluids due to their high thermal conductivity and their wide applicable temperature range. The latter issue can be used to go beyond limitations of existing thermal solar energy systems. Furthermore, the direct energy converter Alkali Metal Thermo Electric Converter (AMTEC) can be used to make intangible areas of energy conversion suitable for a wide range of applications. One objective is to investigate AMTEC as a complementary cycle for the next generation of concentrating solar power (CSP) systems. The experimental research taking place in the Karlsruhe Institute of Technology (KIT) is focused on the construction of a flexible AMTEC test facility, development, test and improvement of liquid-anode and vapor-anode AMTEC devices as well as the coupling of the AMTEC cold side to the heat storage tank proposed for the CSP system. Within this project, the investigations foreseen will focus on the analyses of BASE-metal interface, electrode materials and deposition techniques, corrosion and erosion of materials brought in contact with high temperature sodium. This prototype demonstrator is planned to be integrated in the KArlsruhe SOdium LAboratory (KASOLA), a flexible closed mid-size sodium loop, completely in-house designed, presently under construction at the Institute for Neutron Physics and Reactor Technology (INR) within KIT.

  6. Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.

  7. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on real-world tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  8. Thin Aerogel as a Spacer in Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  9. Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Stephen; Mahan, Cody; Kuhn, Michael J

    2013-01-01

    This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system wasmore » developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.« less

  10. Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors.

    PubMed

    McCulloch, Iain; Bailey, Clare; Genevicius, Kristijonas; Heeney, Martin; Shkunov, Maxim; Sparrowe, David; Tierney, Steven; Zhang, Weimin; Baldwin, Rodney; Kreouzis, Theo; Andreasen, Jens W; Breiby, Dag W; Nielsen, Martin M

    2006-10-15

    Organic electronics technology, in which at least the semiconducting component of the integrated circuit is an organic material, offers the potential for fabrication of electronic products by low-cost printing technologies, such as ink jet, gravure offset lithography and flexography. The products will typically be of lower performance than those using the present state of the art single crystal or polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal (LC) displays, flexible organic light emitting diode displays, low frequency radio frequency identification tag and other low performance electronics. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the development of reactive mesogen semiconductors, which form large crosslinked LC domains on polymerization within mesophases. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. The organization and alignment of the mesogens, both before and after crosslinking, were probed by grazing incidence wide-angle X-ray scattering of thin films. Both time-of-flight and field effect transistor devices were prepared and their electrical characterization reported.

  11. Molecular Analyzer for Complex Refractory Organic-Rich Surfaces (MACROS)

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.; Cook, Jamie E.; Balvin, Manuel; Brinckerhoff, William B.; Li, Xiang; Grubisic, Andrej; Cornish, Timothy; Ferrance, Jerome; Southard, Adrian

    2017-01-01

    The Molecular Analyzer for Complex Refractory Organic-rich Surfaces, MACROS, is a novel instrument package being developed at NASA Goddard Space Flight Center. MACROS enables the in situ characterization of a sample's composition by coupling two powerful techniques into one compact instrument package: (1) laser desorption/ionization time-of-flight mass spectrometry (LDMS) for broad detection of inorganic mineral composition and non-volatile organics, and (2) liquid-phase extraction methods to gently isolate the soluble organic and inorganic fraction of a planetary powder for enrichment and detailed analysis by liquid chromatographic separation coupled to LDMS. The LDMS is capable of positive and negative ion detection, precision mass selection, and fragment analysis. Two modes are included for LDMS: single laser LDMS as the broad survey mode and two step laser mass spectrometry (L2MS). The liquid-phase extraction will be done in a newly designed extraction module (EM) prototype, providing selectivity in the analysis of a complex sample. For the sample collection, a diamond drill front end will be used to collect rock/icy powder. With all these components and capabilities together, MACROS offers a versatile analytical instrument for a mission targeting an icy moon, carbonaceous asteroid, or comet, to fully characterize the surface composition and advance our understanding of the chemical inventory present on that body.

  12. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    PubMed

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Support of the eight-foot high-temperature tunnel modifications project

    NASA Technical Reports Server (NTRS)

    Hodges, Donald Y.; Shebalin, John V.

    1987-01-01

    An ultrasonic level sensor was developed to measure the liquid level in a storage vessel under high pressures, namely up to 6000 psi. The sensor is described. A prototype sensor was installed in the cooling-water storage vessel of the Eight-Foot High-Temperature Tunnel. Plans are being made to install the readout instrument in the control room, so that tunnel operators can monitor the water level during the course of a tunnel run. It was discovered that the sensor will operate at cryogenic temperatures. Consequently, a sensor will be installed in the modified Eight-Foot High-Temperature Tunnel to measure the sound speed of liquid oxygen (LOX) as it is transferred from a storage vessel to the tunnel combustor at pressure of about 3000 psi. The sound speed is known to be a reliable indicator of contamination of LOX by pressurized gaseous nitrogen, which will be used to effect the transfer. Subjecting the sensor to a temperature cycle from room temperature to liquid nitrogen temperature and back again several times revealed no deterioration in sensor performance. The method using this sensor is superior to the original method, which was to bleed samples of LOX from the storage vessel to an independent chamber for measurement of the sound speed.

  14. Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling

    NASA Astrophysics Data System (ADS)

    Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.

  15. A Surface Science Paradigm for a Post-Huygens Titan Mission

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Lunine, Jonathan; Lorenz, Ralph

    2004-01-01

    With the Cassini-Huygens atmospheric probe drop-off mission fast approaching, it is essential that scientists and engineers start scoping potential follow-on surface science missions. This paper provides a summary of the first year of a two year design study which examines in detail the desired surface science measurements and resolution, potential instrument suite, and complete payload delivery system. Also provided are design concepts for both an aerial inflatable mobility platform and deployable instrument sonde. The tethered deployable sonde provides the capability to sample nearsurface atmosphere, sub-surface liquid (if it exists), and surface solid material. Actual laboratory tests of the amphibious sonde prototype are also presented.

  16. The NASA hypersonic research engine program

    NASA Technical Reports Server (NTRS)

    Rubert, Kennedy F.; Lopez, Henry J.

    1992-01-01

    An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.

  17. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.

  18. Transducer Modules for Dry-Coupled Ultrasonic Inspection of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-02-01

    Several types of transducer modules have been developed at Northwestern University to overcome the problems that are associated with the application of liquid or gel couplants. The modules deploy polymer films to transmit the ultrasound through a dry interface. These films are very flexible, so even with a low pressure they can be adapted to the irregular inspection surfaces. The dry-coupled transducer modules may be used for transmission and reception of both longitudinal and transverse ultrasonic waves in the MHz frequency range. The prototype modules have been integrated with the portable ultrasonic inspection units and tested on a number of aircraft structures.

  19. Fiber-optic interconnection networks for spacecraft

    NASA Technical Reports Server (NTRS)

    Powers, Robert S.

    1992-01-01

    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself.

  20. A Surface Science Paradigm for a Post-Huygens Titan Mission

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne F.; Lunine, Jonathan; Lorenz, Ralph

    2005-01-01

    With the Cassini-Huygens atmospheric probe drop-off mission fast approaching, it is essential that scientists and engineers start scoping potential follow-on surface science missions. This paper provides a summary of the first year of a two year design study which examines in detail the desired surface science measurements and resolution, potential instrument suite, and complete payload delivery system. Also provided are design concepts for both an aerial inflatable mobility platform and deployable instrument sonde. The tethered deployable sonde provides the capability to sample near surface atmosphere, sub-surface liquid (if it exists), and surface solid material. Actual laboratory tests of the amphibious sonde prototype are also presented.

Top