Wu, Heyu; Tai, Yuan-Chuan
2011-09-07
To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.
Development of a Hybrid Gas Detector/Phoswich for Hard X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Pimperl, M. M.; Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.
1994-01-01
A hybrid detector is under development for use as a balloon-borne instrument in hard x-ray astronomy. The detector provides broad band coverage by coupling an optical avalanche chamber to a phoswich. The optical avalanche chamber yields superior instrument response at low energies while the scintillator takes over at the higher energies where the gas becomes transparent: at 25 keV, the addition of the gas chamber improves the energy resolution by a factor of 2.5 and the spatial resolution by a factor of 10 as compared to the stand-alone response of the phoswich. A half-scale prototype instrument is being constructed for test purposes and to help resolve a number of design questions involving the coupling of the two components.
NASA Astrophysics Data System (ADS)
Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.
2016-07-01
Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.
NASA Astrophysics Data System (ADS)
Kobayashi, Takahiro; Yamamoto, Seiichi; Yeom, Jung-Yeol; Kamada, Kei; Yoshikawa, Akira
2017-12-01
To correct for parallax error in positron emission tomography (PET), phoswich depth-of-interaction (DOI) detector using multiple scintillators with different decay times is a practical approach. However not many scintillator combinations suitable for phoswich DOI detector have been reported. Ce doped Gd3Ga3Al2O12 (GFAG) is a newly developed promising scintillator for PET detector, which has high density, high light output, appropriate light emission wavelength for silicon-photomultiplier (Si-PM) and faster decay time than that of Ce doped Gd3Al2Ga3O12 (GAGG). In this study, we developed a Si-PM based phoswich DOI block detector of GFAG with GAGG crystal arrays and evaluated its performance. We assembled a GFAG block and a GAGG block and they were optically coupled in depth direction to form a phoswich detector block. The phoswich block was optically coupled to a Si-PM array with a 1 mm thick light guide. The sizes of the GFAG and GAGG pixels were 0.9 mm x 0.9 mm x 7.5 mm and they were arranged into 24 x 24 matrix with 0.1 mm thick BaSO4 as reflector. We conducted the performance evaluation for two types of configurations; GFAG block arranged in upper layer (GFAG/GAGG) and GAGG arranged in upper layer (GAGG/GFAG). The measured two dimensional position histograms of these block detectors showed good separation and pulse shape spectra produced two distinct peaks for both configurations although some difference in energy spectra were observed. These results indicate phoswich block detectors composed of GFAG and GAGG are promising for high resolution DOI PET systems.
A phoswich detector design for improved spatial sampling in PET
NASA Astrophysics Data System (ADS)
Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.
2018-02-01
Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector.
Chang, Chen-Ming; Cates, Joshua W; Levin, Craig S
2017-01-07
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising [Formula: see text] mm LYSO:Ce crystal optically coupled to [Formula: see text] mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was [Formula: see text]% and [Formula: see text]% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.
Langenbrunner, James R.
1996-01-01
An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.
Langenbrunner, J.R.
1996-05-07
An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.
NASA Astrophysics Data System (ADS)
White, Travis L.; Miller, William H.
1999-02-01
Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.
Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems
NASA Astrophysics Data System (ADS)
Kobayashi, Takahiro; Yamamoto, Seiichi; Okumura, Satoshi; Yeom, Jung Yeol; Kamada, Kei; Yoshikawa, Akira
2017-01-01
Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd3Ga3Al2O12 (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd3Al2Ga3O12 (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator -GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector
Chang, Chen-Ming; Cates, Joshua W.; Levin, Craig S.
2016-01-01
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising 3 mm × 3 mm × 10 mm LYSO:Ce crystal optically coupled to 3 mm × 3 mm × 10 mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was 9.7 ± 0.2% and 11.3 ± 0.2% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics. PMID:27991437
Characterization of ParTI Phoswiches Using Charged Pion Beams
NASA Astrophysics Data System (ADS)
Churchman, Emily; Zarrella, Andrew; Youngs, Michael; Yennello, Sherry
2017-09-01
The Partial Truncated Icosahedron (ParTI) detector array consists of 15 phoswiches. Each phoswich is made of two scintillating components - a thallium-doped cesium iodide (CsI(Tl)) crystal and an EJ-212 scintillating plastic - coupled to a photomultiplier tube. Both materials have different scintillation times and are sensitive to both charged and neutral particles. The type of particle and amount of energy deposited determine the shape of the scintillation pulse as a function of time. By integrating the fast and slow signals of the scintillation pulses, a ``Fast vs. Slow Integration'' plot can be created that produces particle identification lines based on the energy deposited in the scintillating materials. Four of these phoswiches were taken to the Paul Scherrer Institute (PSI) in Switzerland where π + , π-, and proton beams were scattered onto the phoswiches to demonstrate their particle identification (PID) capabilities. Using digitizers to record the detector response waveforms, pions can also be identified by the characteristic decay pulse of the muon daughters.
de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L
2008-10-01
A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.
Study of pulse shape discrimination for a neutron phoswich detector
NASA Astrophysics Data System (ADS)
Hartman, Jessica; Barzilov, Alexander
2017-09-01
A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.
A Hybrid Gas Detector/Phoswich for Hard X-ray Astronomy
NASA Technical Reports Server (NTRS)
Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.
1993-01-01
A hybrid detector, which combines an optical avalanche chamber with a phoswich, is currently under development. The optical avalanche chamber - a proportional counter designed to give large quantities of light photons during charge multiplication, mounts on the front of the scintillator and gives response at low energies, while the solid scintillator takes over at energies where the gas becomes transparent (greater than 90 keV). Both sections of the hybrid will be read out by a common set of photomultipliers under the phoswich. The addition of the gas section to the phoswich improves the energy resolution of the instrument by a factor of 2.5 at 25 keV and the spatial resolution by a factor of 10 at the same energy. The net result is an instrument with broad band coverage and high sensitivity which will be used for coded aperture imaging on long duration balloon flights.
NASA Astrophysics Data System (ADS)
Takada, M.; Taniguchi, S.; Nakamura, T.; Nakao, N.; Uwamino, Y.; Shibata, T.; Fujitaka, K.
2001-06-01
We have developed a phoswich neutron detector consisting of an NE213 liquid scintillator surrounded by an NE115 plastic scintillator to distinguish photon and neutron events in a charged-particle mixed field. To obtain the energy spectra by unfolding, the response functions to neutrons and photons were obtained by the experiment and calculation. The response functions to photons were measured with radionuclide sources, and were calculated with the EGS4-PRESTA code. The response functions to neutrons were measured with a white neutron source produced by the bombardment of 135 MeV protons onto a Be+C target using a TOF method, and were calculated with the SCINFUL code, which we revised in order to calculate neutron response functions up to 135 MeV. Based on these experimental and calculated results, response matrices for photons up to 20 MeV and neutrons up to 132 MeV could finally be obtained.
{sup 25}Na and {sup 25}Mg fragmentation on {sup 12}C at 9.23 MeV per nucleon at TRIUMF
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Onge, Patrick; Boisjoli, Mark; Fregeau, Marc-Olivier
2012-10-20
HERACLES is a multidetector that is used to study heavy-ion collisions, with ion beams with an energy range between 8 to 15 MeV per nucleon. It has 78 detectors axially distributed around the beam axis in 6 rings allowing detection of multiple charged fragments from nuclear reactions. HERACLES has 4 different types of detectors, BC408/BaF{sub 2} phoswich, Si/CsI(Tl) telescope, BC408/BC444 phoswich and CsI(Tl) detectors. The multidetector has been run with a radioactive {sup 25}Na beam and a stable {sup 25}Mg beam at 9.23 MeV per nucleon on a carbon target.
Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks
NASA Astrophysics Data System (ADS)
Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger
2015-02-01
The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.
A phoswich detector for simultaneous alpha-gamma spectroscopy
NASA Astrophysics Data System (ADS)
Moghadam, S. Rajabi; Feghhi, S. A. H.; Safari, M. J.
2015-11-01
Phoswich detectors are of value for radiation spectroscopy, especially in cases where a low-cost solution for a mixed radiation field is desired. Meanwhile, simultaneous spectroscopy of alpha particles and gamma-rays has many applications in quantification and distinguishing the alpha-emitting radionuclides which usually occur in the analysis of environmental solid samples. Here, we have developed a system for detection of radioactive actinides (e.g., 241Am) based on the alpha-gamma coincidence technique. The underlying concept, is to assemble two appropriately selected scintillators (i.e., a fast and a slow one) together with a discriminating unit for analysis of their data. Detailed Monte Carlo simulation procedure has been developed using the GEANT4 toolkit to design and find enough knowledge about the response of the system in the studied radiation field. Various comparisons were made between experimental and simulation data which showed appropriate agreement between them. The calibration was performed and the MDA was estimated as 60 mBq for the phoswich system.
A review of the developments of radioxenon detectors for nuclear explosion monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.
Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.
NASA Astrophysics Data System (ADS)
de Celis, B.; de la Fuente, R.; Williart, A.; de Celis Alonso, B.
2007-09-01
A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2(Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis.
Hamby, David M [Corvallis, OR; Farsoni, Abdollah T [Corvallis, OR; Cazalas, Edward [Corvallis, OR
2011-06-21
A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.
Development of a mercuric iodide solid state spectrometer for X-ray astronomy
NASA Technical Reports Server (NTRS)
Vallerga, J.
1983-01-01
Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.
Measurement of low to middle energy neutron spectra in aircraft at aviation altitude
NASA Astrophysics Data System (ADS)
Yajima, Kazuaki; Goka, Tateo; Yasuda, Hiroshi; Takada, Masashi; Nakamura, Takashi
Neutron energy spectra ranging from thermal to 10 MeV were measured at aviation altitude (9.1-11 km) with Bonner-Boll-type neutron spectral measurement system named BBND which has been developed for use on board the International Space Station (ISS) by NASDA (currently JAXA). The BBND was set and manipulated in a business jet chartered for observation experiments, and 4 flights were carried out around the Nagoya Airport, which located in the middle of Japan. It is found that the variation of neutron flux on the flight traced the altitude variation. The estimated energy spectra will be incorporated into the determination of whole energy spectra of cosmic neutrons from thermal to hundreds MeV using the prototype neutron monitor based on the phoswich-type detector.
A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector
NASA Astrophysics Data System (ADS)
Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.
Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.
A High Resolution Phoswich Detector: LaBr{sub 3}(Ce) Coupled With LaCl{sub 3}(Ce)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmona-Gallardo, M.; Borge, M. J. G.; Briz, J. A.
2010-04-26
An innovative solution for the forward end-cap CALIFA calorimeter of R{sup 3}B is under investigation consisting of two scintillation crystals, LaBr{sub 3} and LaCl{sub 3}, stacked together in a phoswich configuration with one readout only. This dispositive should be capable of a good determination of the energy of protons and gamma radiation. This composite detector allows to deduce the initial energy of charged particles by DELTAE1+DELTAE2 identification. For gammas, the simulations show that there is a high probability that the first interaction occurs inside the scintillator at few centimeters, with a second layer, the rest of the energy is absorbed,more » or it can be used as veto event in case of no deposition in the first layer. One such a detector has been tested at the Centro de MicroAnalisis de Materiales (CMAM) in Madrid. Good resolution and time signal separation have been achieved.« less
NASA Astrophysics Data System (ADS)
Sarantites, D. G.; Reviol, W.; Elson, J. M.; Kinnison, J. E.; Izzo, C. J.; Manfredi, J.; Liu, J.; Jung, H. S.; Goerres, J.
2015-08-01
A high-efficiency, forward-hemisphere detector system for light charged particles and low-Z heavy ions, as obtained in an accelerator experiment, is described. It consists of four 8×8 pixel multianode photomultiplier tubes with 2.2-mm thick CsI(Tl) and 12 -μm thick fast-plastic scintillation detectors. Its phoswich structure allows individual Z resolution for 1H, 4He, 7Li, 4He+4He, 9Be, 11B, 12C, and 14N ions, which are target-like fragments detected in strongly inverse kinematics. The device design has been optimized for use with a 4π γ-ray array, and the main applications are transfer reactions and Coulomb excitation. A high-angular resolution for the detection of the target-like fragments is achieved which permits angular distributions to be measured in the rest frame of the projectile-like fragment with a resolution of ~ 2 °.
A Phoswich Detector System to Measure Sub-Second Half-Lives using ICF Reactions
NASA Astrophysics Data System (ADS)
Coats, Micah; Cook, Katelyn; Yuly, Mark; Padalino, Stephen; Sangster, Craig; Regan, Sean
2017-10-01
The 3H(t,γ)6He cross section has not been measured at any bombarding energy due to the difficulties of simultaneously producing both a tritium beam and target at accelerator labs. An alternative technique may be to use an ICF tt implosion at the OMEGA Laser Facility. The 3H(t,γ)6He cross section could be determined in situ by measuring the beta decay of 6He beginning a few milliseconds after the shot along with other ICF diagnostics. A dE-E phoswich system capable of surviving in the OMEGA target chamber was tested using the SUNY Geneseo pelletron to create neutrons via 2H(d,n)3He and subsequently 6He via 9Be(n,α)6He in a beryllium target. The phoswich dE-E detector system was used to select beta decay events and measure the 807 ms half-life of 6He. It is composed of a thin, 2 ns decay time dE scintillator optically coupled to a thick, 285 ns E scintillator, with a linear gate to separate the short dE pulse from the longer E tail. Funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.
Investigations of Nuclear Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarantites, Demetrios; Reviol, W.
The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less
Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S
2015-12-01
Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zarrella, Andrew; Yennello, Sherry
2017-09-01
Pionic fusion is the process by which two nuclei fuse and then deexcite by the exclusive emission of a pion. These reactions represent the most extreme examples of deep subthreshold pion production and provide evidence for an unknown, collective mechanism for pion production. An experiment was performed at the Texas A&M University Cyclotron Institute to measure the cross section of the 4He +12 C -> 16N +π+ reaction. The Momentum Achromat Recoil Spectrometer (MARS) was used to separate and identify the 16N fusion residues and the newly constructed Partial Truncated Icosahedron (ParTI) phoswich array was used to identify charged pions. The detector responses for each phoswich unit were recorded using fast-sampling ADCs which allow all light charged particles in the ParTI phoswiches to be identified using ``fast vs. slow'' pulse shape discrimination. By writing the waveform responses, pions can also be identified by the presence of a characteristic muon decay pulse. The combination of the residue-pion coincidence and the two independent pion identification techniques represent a highly sensitive experimental design for studying pionic fusion reactions.
Design and Modeling of a Compton-Suppressed Phoswich Detector for Radioxenon Monitoring
2010-09-01
radioisotopes. There are three boxed areas (in the absence of any radon daughters ) from which the concentration of four xenon radioisotopes can be...The high-energy gamma-rays could originate from either external or internal (from radon daughters or radioxenon itself in the gas sample) gamma-ray
A Two-Channel Phoswich Detector for Dual and Triple Coincidence Measurements of Radioxenon Isotopes
2007-09-01
radon daughters in a two-dimensional beta/gamma coincidence energy distribution (McIntyre et al., 2004). This eliminates the need for additional...gamma spectrum is used to monitor xenon radioisotopes in the ARSA system (Figure 1). There are three boxed areas (in the absence of any radon daughters ) from
Preliminary Experiments with a Triple-Layer Phoswich Detector for Radioxenon Detection
2008-09-01
Figure 7b; with a significant attenuation which was predicted by our MCNP modeling (Farsoni et al., 2007). The 81 keV peak in the NaI spectrum has a...analysis technique and confirmed our previous MCNP modeling. Our future work includes use of commercially available radioxenon gas (133Xe) to test
Calibration of phoswich-based lung counting system using realistic chest phantom.
Manohari, M; Mathiyarasu, R; Rajagopal, V; Meenakshisundaram, V; Indira, R
2011-03-01
A phoswich detector, housed inside a low background steel room, coupled with a state-of-art pulse shape discrimination (PSD) electronics is recently established at Radiological Safety Division of IGCAR for in vivo monitoring of actinides. The various parameters of PSD electronics were optimised to achieve efficient background reduction in low-energy regions. The PSD with optimised parameters has reduced steel room background from 9.5 to 0.28 cps in the 17 keV region and 5.8 to 0.3 cps in the 60 keV region. The Figure of Merit for the timing spectrum of the system is 3.0. The true signal loss due to PSD was found to be less than 2 %. The phoswich system was calibrated with Lawrence Livermore National Laboratory realistic chest phantom loaded with (241)Am activity tagged lung set. Calibration factors for varying chest wall composition and chest wall thickness in terms of muscle equivalent chest wall thickness were established. (241)Am activity in the JAERI phantom which was received as a part of IAEA inter-comparison exercise was estimated. This paper presents the optimisation of PSD electronics and the salient results of the calibration.
Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy
NASA Astrophysics Data System (ADS)
Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.
1993-11-01
We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.
OPERATING THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. GRUETZMACHER; ET AL
2001-01-01
Two prototype systems for low-density Green is Clean (GIC) waste at Los Alamos National Laboratory (LANL) have been in operation for three years at the Solid Waste Operation's (SWOs) non-destructive assay (NDA) building. The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) are used to verify the waste generator's acceptable knowledge (AK) that low-density waste is nonradioactive. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAs) that has been actively segregated as ''clean'' (i.e., nonradioactive) through the use of waste generator AK. GIC waste that is verifiedmore » clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from RCAs at LANL might be free of contamination. To date, with pilot programs at five facilities at LANL, 3000 cubic feet of GIC waste has been verified clean by these two prototype systems. Both the WAND and HERCULES systems are highly sensitive measurement systems optimized to detect very small quantities of common LANL radionuclides. Both of the systems use a set of phoswich scintillation detectors in close proximity to the waste, which have the capability of detecting plutonium-239 concentrations below 3 pCi per gram of low density waste. Both systems detect low-energy x-rays and a broad range of gamma rays (10-2000 keV), while the WAND system also detects high energy beta particles (>100 keV). The WAND system consists of a bank of six shielded detectors which screen low density shredded waste or stacked sheets of paper moving under the detectors in a twelve inch swath on a conveyor belt. The WAND system was developed and tested at the Los Alamos Plutonium Facility in conjunction with instrument system designers from the Los Alamos Safeguards Science and Technology group. The HERCULES system consists of a bank of three shielded detectors which screen low-density waste in two cubic foot cardboard boxes or in bags sitting on a turntable. Waste that does not pass the verification process can be examined within the facility to determine the type and quantity of the contamination and its origin within a waste container. The paper discusses lessons learned that have helped generators improve their AK segregation.« less
Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devol, Timothy A.
2005-06-01
Comparison of different pulse shape discrimination methods was performed under two different experimental conditions and the best method was identified. Beta/gamma discrimination of 90Sr/90Y and 137Cs was performed using a phoswich detector made of BC400 (2.5 cm OD x 1.2 cm) and BGO (2.5 cm O.D. x 2.5 cm ) scintillators. Alpha/gamma discrimination of 210Po and 137Cs was performed using a CsI:Tl (2.8 x 1.4 x 1.4 cm3) scintillation crystal. The pulse waveforms were digitized with a DGF-4c (X-Ray Instrumentation Associates) and analyzed offline with IGOR Pro software (Wavemetrics, Inc.). The four pulse shape discrimination methods that were compared include:more » rise time discrimination, digital constant fraction discrimination, charge ratio, and constant time discrimination (CTD) methods. The CTD method is the ratio of the pulse height at a particular time after the beginning of the pulse to the time at the maximum pulse height. The charge comparison method resulted in a Figure of Merit (FoM) of 3.3 (9.9 % spillover) and 3.7 (0.033 % spillover) for the phoswich and the CsI:Tl scintillator setups, respectively. The CTD method resulted in a FoM of 3.9 (9.2 % spillover) and 3.2 (0.25 % spillover), respectively. Inverting the pulse shape data typically resulted in a significantly higher FoM than conventional methods, but there was no reduction in % spillover values. This outcome illustrates that the FoM may not be a good scheme for the quantification of a system to perform pulse shape discrimination. Comparison of several pulse shape discrimination (PSD) methods was performed as a means to compare traditional analog and digital PSD methods on the same scintillation pulses. The X-ray Instrumentation Associates DGF-4C (40 Msps, 14-bit) was used to digitize waveforms from a CsI:Tl crystal and BC400/BGO phoswich detector.« less
High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources
NASA Technical Reports Server (NTRS)
Lin, R. P.
1983-01-01
A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.
Simultaneous beta and gamma spectroscopy
Farsoni, Abdollah T.; Hamby, David M.
2010-03-23
A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.
A gamma and neutron phoswich read out with SiPM for SPRD
NASA Astrophysics Data System (ADS)
Huang, Tuchen; Fu, Qibin; Yuan, Cenxi; Lin, Shaopeng
2018-02-01
A gamma and neutron phoswich was developed for spectroscopic personal radiation detectors (SPRDs). It consisted of a Φ25 × 25 mm NaI(Tl) crystal for gamma detection and a Φ25 × 3 mm LiI(Eu) crystal for neutron detection. The phoswich was read out by 8 × 8 ch SiPM array (24 × 24 mm2). Radiations in NaI(Tl) and LiI(Eu) were discriminated by pulse shape, while gammas and neutrons in LiI(Eu) were separated by pulse amplitude. For the LiI(Eu), the gamma equivalent energy for thermal neutrons was measured as 3.6 ± 0.1 MeV, providing satisfactory gamma rejection. For NaI(Tl), the response of SiPM array was well linear in the energy range up to 1408 keV, at which a deviation less than 2% was measured. Digital pulse shape discrimination (PSD) was implemented with an 8-bit digitizer running at 50 MSPS sampling rate and offline analysis. The signal pulses from NaI(Tl) and LiI(Eu) showed significant difference in falling edge allowing effective PSD. The best figure of merit (FOM) was measured as 4.4 ± 0.2 with optimized parameters, providing excellent PSD performance. The energy resolutions for 661.6 keV gamma rays in NaI(Tl) and thermal neutrons in LiI(Eu) were measured as 7.0 ± 0.2% and 11.2 ± 0.2% respectively, with selected PSD threshold.
Measurement of Continuous-Energy Neutron-Incident Neutron-Production Cross Section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigyo, Nobuhiro; Kunieda, Satoshi; Watanabe, Takehito
Continuous energy neutron-incident neutron-production double differential cross sections were measured at the Weapons Neutron Research (WNR) facility of the Los Alamos Neutron Science Center. The energy of emitted neutrons was derived from the energy deposition in a detector. The incident-neutron energy was obtained by the time-of-flight method between the spallation target of WNR and the emitted neutron detector. Two types of detectors were adopted to measure the wide energy range of neutrons. The liquid organic scintillators covered up to 100 MeV. The recoil proton detectors that constitute the recoil proton radiator and phoswich type NaI (Tl) scintillators were used formore » neutrons above several tens of MeV. Iron and lead were used as sample materials. The experimental data were compared with the evaluated nuclear data, the results of GNASH, JQMD, and PHITS codes.« less
NASA Astrophysics Data System (ADS)
Qi, L.; Wilson, J. N.; Lebois, M.; Al-Adili, A.; Chatillon, A.; Choudhury, D.; Gatera, A.; Georgiev, G.; Göök, A.; Laurent, B.; Maj, A.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Rose, S. J.; Schmitt, C.; Wasilewska, B.; Zeiser, F.
2018-03-01
Prompt fission gamma-ray spectra (PFGS) have been measured for the 239Pu(n,f) reaction using fast neutrons at Ēn=1.81 MeV produced by the LICORNE directional neutron source. The setup makes use of LaBr3 scintillation detectors and PARIS phoswich detectors to measure the emitted prompt fission gamma rays (PFG). The mean multiplicity, average total energy release per fission and average energy of photons are extracted from the unfolded PFGS. These new measurements provide complementary information to other recent work on thermal neutron induced fission of 239Pu and spontaneous fission of 252Cf.
Development of a miniature phoswich-based detector for 1-10 MeV solar neutrons
NASA Astrophysics Data System (ADS)
McKibben, R. Bruce; Connell, James; Bancroft, Christopher M.; Bravar, Ulisse; Pirard, Benoit; Wood, Joshua R.
We report on the initial development and test of a simple miniaturized detector for 1-10 MeV neutrons using phoswich techniques to isolate neutrons from background caused by energetic charged particles. The basic concept consists of a small plastic scintillator completely surrounded by an inorganic scintillator (CsI(Tl)) and viewed by a single compact PM tube. An incident neutron usually passes through the CsI(Tl) without producing a signal and then, through elastic scattering with a proton in the plastic, can produce a scintillation signal in the plastic. An energetic charged particle, on the other hand, would always produce scintillation in both the plastic and CsI(Tl). Making use of the pronounced difference in scintillation speeds between the plastic scintillator (nano-seconds) and the CsI(Tl) scintillator (microseconds), we exclude energetic charged particles by rejecting any signal that lasts more than a few 10s of nanoseconds. The amplitude of the signal from the plastic provides information about the energy of the scattered neutron which, though not definitive event-by-event, can be used to derive information about the neutron spectrum by applying a fitting procedure to the distribution of pulse sizes. The ultimate goal is to develop a detector that will enable studies of low energy solar neutrons on severely mass and power constrained deep space missions that approach the Sun. At energies below 10 MeV, neutrons produced at the Sun do not survive in significant numbers to reach a radius of 1 AU, and are therefore measurable only from observation points well inside the orbit of Earth. These low energy neutrons provide unique information on fluxes of energetic protons and helium nuclei interacting with the denser regions of the lower corona and chromosphere, whether or not these accelerated particles escape the strong magnetic fields in the lower corona to reach interplanetary space. Our efforts to date have consisted of design and construction of a proto-type sensor, including breadboard front-end electronics to make the pulse-shape discrimination, simulation of its response to mono-energetic neutrons using the GEANT-4 Monte Carlo code, and experimental studies of the response of the sensor to radioactive sources and to nearly monoenergetic beams of neutrons produced at the Crocker Nuclear Laboratory at the University of California at Davis. We report the results of our efforts to date, and discuss further work that remains to be done, as well as possible alternative applications for the sensor. This work was supported in part by NASA Grant NNG06GD56G. We are grateful for many useful discussions with James Ryan of the University of New Hampshire and members of his group.
Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.
1998-04-01
An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.
Gu, Z; Prout, D L; Silverman, R W; Herman, H; Dooraghi, A; Chatziioannou, A F
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm 3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm 3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm 2 ) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm 2 ), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-01-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system. PMID:26478600
NASA Astrophysics Data System (ADS)
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass lightguide and a light detector. The annihilation photon entrance (top) layer is a 48×48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
NASA Technical Reports Server (NTRS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-01-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
NASA Astrophysics Data System (ADS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-08-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector
NASA Technical Reports Server (NTRS)
Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.
1991-01-01
The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.
NASA Astrophysics Data System (ADS)
Yousefzadeh, Hoorvash Camilia; Lecomte, Roger; Fontaine, Réjean
2012-06-01
A fast Wiener filter-based crystal identification (WFCI) algorithm was recently developed to discriminate crystals with close scintillation decay times in phoswich detectors. Despite the promising performance of WFCI, the influence of various physical factors and electrical noise sources of the data acquisition chain (DAQ) on the crystal identification process was not fully investigated. This paper examines the effect of different noise sources, such as photon statistics, avalanche photodiode (APD) excess multiplication noise, and front-end electronic noise, as well as the influence of different shaping filters on the performance of the WFCI algorithm. To this end, a PET-like signal simulator based on a model of the LabPET DAQ, a small animal APD-based digital PET scanner, was developed. Simulated signals were generated under various noise conditions with CR-RC shapers of order 1, 3, and 5 having different time constants (τ). Applying the WFCI algorithm to these simulated signals showed that the non-stationary Poisson photon statistics is the main contributor to the identification error of WFCI algorithm. A shaping filter of order 1 with τ = 50 ns yielded the best WFCI performance (error 1%), while a longer shaping time of τ = 100 ns slightly degraded the WFCI performance (error 3%). Filters of higher orders with fast shaping time constants (10-33 ns) also produced good WFCI results (error 1.4% to 1.6%). This study shows the advantage of the pulse simulator in evaluating various DAQ conditions and confirms the influence of the detection chain on the WFCI performance.
Color sensitive silicon photomultiplers with micro-cell level encoding for DOI PET detectors
NASA Astrophysics Data System (ADS)
Shimazoe, Kenji; Koyama, Akihiro; Takahashi, Hiroyuki; Ganka, Thomas; Iskra, Peter; Marquez Seco, Alicia; Schneider, Florian; Wiest, Florian
2017-11-01
There have been many studies on Depth Of Interaction (DOI) identification for high resolution Positron Emission Tomography (PET) systems, including those on phoswich detectors, double-sided readout, light sharing methods, and wavelength discrimination. The wavelength discrimination method utilizes the difference in wavelength of stacked scintillators and requires a color sensitive photodetector. Here, a new silicon photomultiplier (SiPM) coupled to a color filter (colorSiPM) was designed and fabricated for DOI detection. The fabricated colorSiPM has two anode readouts that are sensitive to blue and green color. The colorSiPM's response and DOI identification capability for stacked GAGG and LYSO crystals are characterized. The fabricated colorSiPM is sensitive enough to detect a peak of 662 keV from a 137 Cs source.
Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants
NASA Astrophysics Data System (ADS)
Beer, S.; Streun, M.; Hombach, T.; Buehler, J.; Jahnke, S.; Khodaverdi, M.; Larue, H.; Minwuyelet, S.; Parl, C.; Roeb, G.; Schurr, U.; Ziemons, K.
2010-02-01
Positron emitters such as 11C, 13N and 18F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is 11CO2 since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET™ system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements.
Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants.
Beer, S; Streun, M; Hombach, T; Buehler, J; Jahnke, S; Khodaverdi, M; Larue, H; Minwuyelet, S; Parl, C; Roeb, G; Schurr, U; Ziemons, K
2010-02-07
Positron emitters such as (11)C, (13)N and (18)F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is (11)CO(2) since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements.
High resolution hard X-ray spectra of solar and cosmic sources. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Schwartz, R. A.
1984-01-01
High resolution hard X-ray observations of a large solar flare and the Crab Nebula were obtained during balloon flights using an array of cooled germanium planar detectors. In addition, high time resolution high sensitivity measurements were obtained with a 300 square cm NaI/CsI phoswich scintillator. The Crab spectrum from both flights was searched without finding evidence of line emission below 200 keV. In particular, for the 73 keV line previously reported a 3 sigma upper limit for a narrow (1 keV FWHM) line .0019 and .0014 ph square cm/sec for the 1979 and 1980 flights, respectively was obtained.
Performance assessment study of the balloon-borne astronomical soft gamma-ray polarimeter PoGOLite
NASA Astrophysics Data System (ADS)
Arimoto, M.; Kanai, Y.; Ueno, M.; Kataoka, J.; Kawai, N.; Tanaka, T.; Yamamoto, K.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Axelsson, M.; Kiss, M.; Marini Bettolo, C.; Carlson, P.; Klamra, W.; Pearce, M.; Chen, P.; Craig, B.; Kamae, T.; Madejski, G.; Ng, J. S. T.; Rogers, R.; Tajima, H.; Thurston, T. S.; Saito, Y.; Takahashi, T.; Gunji, S.; Bjornsson, C.-I.; Larsson, S.; Ryde, F.; Bogaert, G.; Varner, G.
2007-12-01
Measurements of polarization play a crucial role in the understanding of the dominant emission mechanism of astronomical sources. Polarized Gamma-ray Observer-Light version (PoGOLite) is a balloon-borne astronomical soft gamma-ray polarimeter at the 25 80 keV band. The PoGOLite detector consists of a hexagonal close-packed array of 217 Phoswich detector cells (PDCs) and side anti-coincidence shields (SASs) made of BGO crystals surrounding PDCs. Each PDC consists of a slow hollow scintillator, a fast scintillator and a BGO crystal that connects to a photomultiplier tube at the end. To examine the PoGOLite's capability and estimate the performance, we conducted experiments with the PDC using radioisotope 241Am. In addition, we compared this result with performance expected by Monte Carlo simulation with Geant4. As a result, we found that the actual PDC has the capability to detect a 100 m Crab source until 80 keV.
NASA Astrophysics Data System (ADS)
Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.
2013-05-01
We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.
35t Prototype Detector for Experiment at Long Base Line Neutrino Facility (ELBNF) Far Detector
NASA Astrophysics Data System (ADS)
Santucci, Gabriel; Elbnf Collaboration
2015-04-01
The 35ton prototype detector is a Liquid Argon Time Projection Chamber (LAr TPC) utilizing a membrane cryostat. It serves as a prototype for testing technology proposed for the ELBNF far detector. The construction of the prototype is an essential part of the ELBNF project due to the large amount of new technologies introduced for the far detector. In early 2014, it was shown that the membrane cryostat technology was able to reach and maintain the required LAr purity and an electron lifetime of 2.5 ms was achieved. The goals for the next phase include the installation of a fully functional TPC using the novel designs for the ELBNF far detector as much as possible. This includes the installation of the cold electronics, scintillation photon detectors and multiple Anode Plane Arrays with wrapped wires. In this talk I will review the status of the 35t prototype detector and describe what has been accomplished during 2014 and early 2015, including the commissioning phase and the early stages of data taking from cosmic-rays.
Electronics for a highly segmented electromagnetic calorimeter prototype
NASA Astrophysics Data System (ADS)
Fehlker, D.; Alme, J.; van den Brink, A.; de Haas, A. P.; Nooren, G.-J.; Reicher, M.; Röhrich, D.; Rossewij, M.; Ullaland, K.; Yang, S.
2013-03-01
A prototype of a highly segmented electromagnetic calorimeter has been developed. The detector tower is made of 24 layers of PHASE2/MIMOSA23 silicon sensors sandwiched between tungsten plates, with 4 sensors per layer, a total of 96 MIMOSA sensors, resulting in 39 MPixels for the complete prototype detector tower. The paper focuses on the electronics of this calorimeter prototype. Two detector readout and control systems are used, each containing two Spartan 6 and one Virtex 6 FPGA, running embedded Linux, each system serving 12 detector layers. In 550 ms a total of 4 Gbytes of data is read from the detector, stored in memory on the electronics and then shipped to the DAQ system via Gigabit ethernet.
Yamamoto, Seiichi
2013-07-01
The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.
SiPM application for a detector for UHE neutrinos tested at Sphinx station
NASA Astrophysics Data System (ADS)
Iori, M.; Atakisi, I. O.; Chiodi, G.; Denizli, H.; Ferrarotto, F.; Kaya, M.; Yilmaz, A.; Recchia, L.; Russ, J.
2014-04-01
We present the preliminary test results of the prototype detector, working at Sphinx Observatory Center, Jungfraujoch (~3800 m a.s.l.) HFSJG - Switzerland. This prototype detector is designed to measure large zenith angle showers produced by high energy neutrino interactions in the Earth crust. This station provides us an opportunity to understand if the prototype detector works safely (or not) under hard environmental conditions (the air temperature changes between -25 °C and -5 °C). The detector prototype is using silicon photomultiplier (SiPM) produced by SensL and DRS4 chip as read-out part. Measurements at different temperature at fixed bias voltage (~29.5 V) were performed to reconstruct tracks by Time Of Flight.
Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite
NASA Astrophysics Data System (ADS)
Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.
2017-08-01
The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.
A system to measure isomeric state half-lives in the 10 ns to 10 μs range
NASA Astrophysics Data System (ADS)
Toufen, D. L.; Allegro, P. R. P.; Medina, N. H.; Oliveira, J. R. B.; Cybulska, E. W.; Seale, W. A.; Linares, R.; Silveira, M. A. G.; Ribas, R. V.
2014-07-01
The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: 54Fe, 10+ state (E = 6527.1 (11) keV, T1/2 = 364(7) ns) and the 5/2+ state of 19F (E = 197.143 (4) keV, T1/2 = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10+ state was T1/2 = 365(14) ns and for the 5/2+ state, 100(36) ns.
A system to measure isomeric state half-lives in the 10 ns to 10 μs range.
Toufen, D L; Allegro, P R P; Medina, N H; Oliveira, J R B; Cybulska, E W; Seale, W A; Linares, R; Silveira, M A G; Ribas, R V
2014-07-01
The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: (54)Fe, 10(+) state (E = 6527.1 (11) keV, T(1/2) = 364(7) ns) and the 5/2(+) state of (19)F (E = 197.143 (4) keV, T(1/2) = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10(+) state was T(1/2) = 365(14) ns and for the 5/2(+) state, 100(36) ns.
Green, Michael V.; Ostrow, Harold G.; Seidel, Jurgen; Pomper, Martin G.
2013-01-01
Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This “depth-of-interaction” (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling. PMID:21084028
Green, Michael V; Ostrow, Harold G; Seidel, Jurgen; Pomper, Martin G
2010-12-01
Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This "depth-of-interaction" (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling.
Summary Scientific Performance of EUCLID Detector Prototypes
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.
2011-01-01
NASA and the European Space Agency (ESA) plan to partner to build the EUCLID mission. EUCLID is a mission concept for studying the Dark Energy that is hypothesized to account for the accelerating cosmic expansion. For the past year, NASA has been building detector prototypes at Teledyne Imaging Sensors. This talk will summarize the measured scientific performance of these detector prototypes for astrophysical and cosmological applications.
Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)
NASA Astrophysics Data System (ADS)
Takahashi, Hiromitsu; Chauvin, Maxime; Fukazawa, Yasushi; Jackson, Miranda; Kamae, Tuneyoshi; Kawano, Takafumi; Kiss, Mozsi; Kole, Merlin; Mikhalev, Victor; Mizuno, Tsunefumi; Moretti, Elena; Pearce, Mark; Rydström, Stefan
2014-07-01
The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The "pathfinder" flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kunieda, S.; Shigyo, N.
The experimental technique for measurement of (n, xn) double differential cross sections for incident neutron energy above 100 MeV has been attempted to be developed with continuous-energy neutrons up to 400 MeV. Neutrons were produced in the spallation reaction by the 800 MeV proton beam, which was incident on a thick, heavily shielded tungsten target at the WNR facility at Los Alamos National Laboratory. The energies of incident neutrons were determined by the time-of-flight method. Emitted neutrons were detected by the recoil proton method. A phoswich detector consisting of NaI(Tl) and NE102A plastic scintillators was used for detecting recoil protons.more » We compared the preliminary experimental cross section data with the calculations by PHITS and QMD codes.« less
First Results from the DUNE 35-ton Prototype using Cosmics
NASA Astrophysics Data System (ADS)
Insler, Jonathan; DUNE Collaboration
2016-03-01
The 35-ton prototype for the Deep Underground Neutrino Experiment (DUNE) Far Detector is a single-phase liquid argon time projection chamber (LAr-TPC) integrated detector that will take cosmics data for a two month run beginning in February 2016. The 35-ton prototype will characterize DUNE's Far Detector technology performance and provide a sample of real data for DUNE reconstruction algorithms. The 35-ton prototype has two drift volumes of lengths 2.23 m and 0.23 m on either side of its anode plane assembly (APA) and makes use of wire planes with wrapped wires and a photon detection system (PDS) utilizing photon detection panels read out by silicon photomultipliers (SiPMs). Data from the 35-ton LAr detector are expected to provide rich information on scintillation light and charged particle tracks. We present a preliminary analysis of cosmics data taken with the 35-ton detector with a focus on stopping muons.
NASA Astrophysics Data System (ADS)
Rountree, S. Derek
2013-04-01
The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.
Development and Prototyping of the PROSPECT Antineutrino Detector
NASA Astrophysics Data System (ADS)
Commeford, Kelley; Prospect Collaboration
2017-01-01
The PROSPECT experiment will make the most precise measurement of the 235U reactor antineutrino spectrum as well as search for sterile neutrinos using a segmented Li-loaded liquid scintillator neutrino detector. Several prototype detectors of increasing size, complexity, and fidelity have been constructed and tested as part of the PROSPECT detector development program. The challenges to overcome include the efficient rejection of cosmogenic background and collection of optical photons in a compact volume. Design choices regarding segment structure and layout, calibration source deployment, and optical collection methods are discussed. Results from the most recent multi-segment prototype, PROSPECT-50, will also be shown.
A system to measure isomeric state half-lives in the 10 ns to 10 μs range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toufen, D. L., E-mail: dennis@if.usp.br; Federal Institute of Education, Science and Technology of São Paulo - IFSP, 07115-000 Guarulhos, São Paulo; Allegro, P. R. P.
2014-07-15
The Isomeric State Measurement System (SISMEI) was developed to search for isomeric nuclear states produced by fusion-evaporation reactions. The SISMEI consists of 10 plastic phoswich telescopes, two lead shields, one NaI(Tl) scintillation detector, two Compton suppressed HPGe γ-ray detectors, and a cone with a recoil product catcher. The new system was tested at the 8 UD Pelletron tandem accelerator of the University of São Paulo with the measurement of two known isomeric states: {sup 54}Fe, 10{sup +} state (E = 6527.1 (11) keV, T{sub 1/2} = 364(7) ns) and the 5/2{sup +} state of {sup 19}F (E = 197.143 (4)more » keV, T{sub 1/2} = 89.3 (10) ns). The results indicate that the system is capable of identifying delayed transitions, of measuring isomeric state lifetimes, and of identifying the feeding transitions of the isomeric state through the delayed γ-γ coincidence method. The measured half-life for the 10{sup +} state was T{sub 1/2} = 365(14) ns and for the 5/2{sup +} state, 100(36) ns.« less
NASA Technical Reports Server (NTRS)
Rothschild, R. E.
1981-01-01
Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.
Cat-eye effect target recognition with single-pixel detectors
NASA Astrophysics Data System (ADS)
Jian, Weijian; Li, Li; Zhang, Xiaoyue
2015-12-01
A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.
NASA Astrophysics Data System (ADS)
Kasiński, Krzysztof; Szczygieł, Robert; Gryboś, Paweł
2011-10-01
This paper presents the prototype detector readout electronics for the STS (Silicon Tracking System) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The emphasis has been put on the strip detector readout chip and its interconnectivity with detector. Paper discusses the impact of the silicon strip detector and interconnection cable construction on the overall noise of the system and architecture of the TOT02 readout ASIC. The idea and problems of the double-sided silicon detector usage are also presented.
A novel electron tunneling infrared detector
NASA Technical Reports Server (NTRS)
Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.
1990-01-01
The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly.
NASA Astrophysics Data System (ADS)
Charpak, G.; Benaben, P.; Breuil, P.; Martinengo, P.; Nappi, E.; Peskov, V.
2011-02-01
We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes.
The LUX prototype detector: Heat exchanger development
Akerib, D. S.; Bai, X.; Bedikian, S.; ...
2013-01-24
The LUX (large underground xenon) detector is a two-phase xenon time projection chamber (TPC) designed to search for WIMP–nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large (> 1 ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. Here, we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94%more » up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 m to be achieved in approximately 2 days and sustained for the duration of the testing period.« less
Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector
Hasegawa, S.
2016-04-23
The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less
Neutron Measurements for Radiation Protection in Low Earth Orbit - History and Future
NASA Technical Reports Server (NTRS)
Golightly, M. J.; Se,pmes. E/
2003-01-01
The neutron environment inside spacecraft has been of interest from a scientific and radiation protection perspective since early in the history of manned spaceflight. With 1:.1e exception of a few missions which carried plutonium-fueled radioisotope thermoelectric generators, all of the neutrons inside the spacecraft are secondary radiations resulting from interactions of high-energy charged particles with nuclei in the Earth's atmosphere, spacecraft structural materials, and the astronaut's own bodies. Although of great interest, definitive measurements of the spacecraft neutron field have been difficult due to the wide particle energy range and the limited available volume and power for traditional techniques involving Bonner spheres. A multitude of measurements, however, have been made of the neutron environment inside spacecraft. The majority of measurements were made using passive techniques including metal activation fo ils, fission foils, nuclear photoemulsions, plastic track detectors, and thermoluminescent detectors. Active measurements have utilized proton recoil spectrometers (stilbene), Bonner Spheres eRe proportional counter based), and LiI(Eu)phoswich scintillation detectors. For the International Space Station (ISS), only the plastic track! thermoluminescent detectors are used with any regularity. A monitoring program utilizing a set of active Bonner spheres was carried out in the ISS Lab module from March - December 200l. These measurements provide a very limited look at the crew neutron exposure, both in time coverage and neutron energy coverage. A review of the currently published data from past flights will be made and compared with the more recent results from the ISS. Future measurement efforts using currently available techniques and those in development will be also discussed.
2016-01-01
neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr
NASA Astrophysics Data System (ADS)
Abt, I.; Caldwell, A.; Gutknecht, D.; Kröninger, K.; Lampert, M.; Liu, X.; Majorovits, B.; Quirion, D.; Stelzer, F.; Wendling, P.
2007-07-01
The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut für Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented.
Hit efficiency study of CMS prototype forward pixel detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongwook; /Johns Hopkins U.
2006-01-01
In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.
System design of a small OpenPET prototype with 4-layer DOI detectors.
Yoshida, Eiji; Kinouchi, Shoko; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Yamaya, Taiga
2012-01-01
We have proposed an OpenPET geometry which consists of two axially separated detector rings. The open gap is suitable for in-beam PET. We have developed the small prototype of the OpenPET especially for a proof of concept of in-beam imaging. This paper presents an overview of the main features implemented in this prototype. We also evaluated the detector performance. This prototype was designed with 2 detector rings having 8 depth-of-interaction detectors. Each detector consisted of 784 Lu(2x)Gd(2(1-x))SiO₅:Ce (LGSO) which were arranged in a 4-layer design, coupled to a position-sensitive photomultiplier tube (PS-PMT). The size of the LGSO array was smaller than the sensitive area of the PS-PMT, so that we could obtain sufficient LGSO identification. Peripheral LGSOs near the open gap directly detect the gamma rays on the side face in the OpenPET geometry. Output signals of two detectors stacked axially were projected onto one 2-dimensional position histogram for reduction of the scale of a coincidence processor. Front-end circuits were separated from the detector head by 1.2-m coaxial cables for the protection of electronic circuits from radiation damage. The detectors had sufficient crystal identification capability. Cross talk between the combined two detectors could be ignored. The timing and energy resolutions were 3.0 ns and 14%, respectively. The coincidence window was set 20 ns, because the timing histogram showed that not only the main peak, but also two small shifted peaks were caused by the coaxial cable. However, the detector offers the promise of sufficient performance, because random coincidences are at a nearly undetectable level for in-beam PET experiments.
Tests of a Roman Pot prototype for the TOTEM experiment
NASA Astrophysics Data System (ADS)
Deile, M.; Alagoz, E.; Anelli, G.; Antchev, G.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.; Eggert, K.; Escourrou, J.L; Fochler, O.; Gill, K.; Grabit, R.; Haung, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Niewiadomski, H.; Mirabito, L.; Noschis, E.P.; Oriunno, M.; Park, a.; Perrot, A.-L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; sSouissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Da Vià, C.; Hasi, J.; Kok, A.; Watts, S.; Kašpar, J.; Kundrát, V.; Lokajíček, M.V.; Smotlacha, J.; Avati, V.; Järvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Österberg, K.; Palmieri, V.; Saarikko, H.; Soininen, A.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macrí, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; sBerardi, V.; Catanesi, M.G.; Radicioni, E.
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.
Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment
NASA Astrophysics Data System (ADS)
Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.
2018-05-01
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.
Detector evaluation of a prototype amorphous selenium-based full field digital mammography system
NASA Astrophysics Data System (ADS)
Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.
2005-04-01
This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.
Construction of the TH-GEM detector components for metrology of low energy ionizing radiation
NASA Astrophysics Data System (ADS)
Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.
2018-03-01
The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.
Digital pulse-shape analysis with a TRACE early silicon prototype
NASA Astrophysics Data System (ADS)
Mengoni, D.; Dueñas, J. A.; Assié, M.; Boiano, C.; John, P. R.; Aliaga, R. J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzáles, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V. V.; Perez-Vidal, R.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente Dobón, J. J.
2014-11-01
A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 μm thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
Development of a three-layer phoswich alpha-beta-gamma imaging detector
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ishibashi, Hiroyuki
2015-06-01
For radiation monitoring at the sites of such nuclear power plant accidents as Fukushima Daiichi, radiation detectors are needed not only for gamma photons but also for alpha and beta particles because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. In some applications, imaging detectors are required to detect the distribution of plutonium particles that emit alpha particles and radiocesium in foods that emits beta particles and gamma photons. To solve these requirements, we developed an imaging detector that can measure the distribution of alpha and beta particles as well as gamma photons. The imaging detector consists of three-layer scintillators optically coupled to each other and to a position sensitive photomultiplier tube (PSPMT). The first layer, which is made of a thin plastic scintillator (decay time: 5 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol% Ce (decay time: 70 ns) detects gamma photons. Using pulse shape discrimination, the images of these layers can be separated. The position information is calculated by the Anger principle from 8×8 anode signals from the PSPMT. The images for the alpha and beta particles and the gamma photons are individually formed by the pulse shape discriminations for each layer. We detected alpha particle images in the first layer and beta particle images in the second layer. Gamma photon images were detected in the second and third layers. The spatial resolution for the alpha and beta particles was 1.25 mm FWHM and less than 2 mm FWHM for the gamma photons. We conclude that our developed alpha-beta-gamma imaging detector is promising for imaging applications not only for the environmental monitoring of radionuclides but also for medical and molecular imaging.
DAMPE prototype and its beam test results at CERN
NASA Astrophysics Data System (ADS)
Wu, Jian; Hu, Yiming; Chang, Jin
The first Chinese high energy cosmic particle detector(DAMPE) aims to detect electron/gamma at the range between 5GeV and 10TeV in space. A prototype of this detector is made and tested using both cosmic muons and test beam at CERN. Energy and space resolution as well as strong separation power for electron and proton are shown in the results. The detector structure is illustrated as well.
NASA Astrophysics Data System (ADS)
Bisconti, Francesca; JEM-EUSO Collaboration
2016-07-01
EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.
Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.
2016-07-01
The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.
Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R
2010-10-01
A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.
Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT
NASA Astrophysics Data System (ADS)
Gaison, Jeremy; Prospect Collaboration
2016-09-01
PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.
Design and prototype results of the FAST detector
NASA Astrophysics Data System (ADS)
Mozzanica, A.; Basset, M.; Caccia, M.; Corradini, M.; Leali, M.; Lodi Rizzini, E.; Prest, M.; Venturelli, L.; Vallazza, E.; Zurlo, N.
2006-11-01
A new fiber tracker is being developed for the ASACUSA experiment at the Antiproton Decelerator at CERN. The detector is based on 1 mm diameter scintillating fibers readout by HAMAMATSU 64 channel multianode photomultipliers (MA-PMTs) connected to a dedicated electronic chain. The paper gives a description of the testing procedures for time resolution, spatial resolution and efficiency measurements performed with standard NIM electronics and a commercial TDC and reports the results for different prototype detectors.
Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipenko, M.; Ripani, M.; Ricco, G.
2015-07-01
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based onmore » conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)« less
Integration of the ATLAS FE-I4 Pixel Chip in the Mini Time Projection Chamber
NASA Astrophysics Data System (ADS)
Lopez-Thibodeaux, Mayra; Garcia-Sciveres, Maurice; Kadyk, John; Oliver-Mallory, Kelsey
2013-04-01
This project deals with development of readout for a Time Projection Chamber (TPC) prototype. This is a type of detector proposed for direct detection of dark matter (WIMPS) with direction information. The TPC is a gaseous charged particle tracking detector composed of a field cage and a gas avalanche detector. The latter is made of two Gas Electron Multipliers in series, illuminating a pixel readout integrated circuit, which measures the distribution in position and time of the output charge. We are testing the TPC prototype, filled with ArCO2 gas, using a Fe-55 x-ray source and cosmic rays. The present prototype uses an FE-I3 chip for readout. This chip was developed about 10 years ago and is presently in use within the ATLAS pixel detector at the LHC. The aim of this work is to upgrade the TPC prototype to use an FE-I4 chip. The FE-I4 has an active area of 336 mm^2 and 26880 pixels, over nine times the number of pixels in the FE-I3 chip, and an active area about six times as much. The FE-I4 chip represents the state of the art of pixel detector readout, and is presently being used to build an upgrade of the ATLAS pixel detector.
Construction of the optical part of a time-of-flight detector prototype for the AFP detector
Nozka, L.; Adamczyk, L.; Avoni, G.; ...
2016-11-22
We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from themore » ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. Finally, the emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics.« less
Construction of the optical part of a time-of-flight detector prototype for the AFP detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozka, L.; Adamczyk, L.; Avoni, G.
We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from themore » ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. Finally, the emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics.« less
MIND performance and prototyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervera-Villanueva, A.
2008-02-21
The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10{sup -3}. A first look has been given into the detector optimisation and prototyping.
The Full-Scale Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes
NASA Astrophysics Data System (ADS)
Fujii, T.; Malacari, M.; Bellido, J. A.; Farmer, J.; Galimova, A.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Matalon, A.; Matthews, J. N.; Merolle, M.; Ni, X.; Nozka, L.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Thomas, S. B.; Travnicek, P.
The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design concept for the next generation of ultrahigh-energy cosmic ray (UHECR) observatories, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. Motivated by the successful detection of UHECRs using a prototype comprised of a single 200 mm photomultiplier-tube and a 1 m2 Fresnel lens system, we have developed a new "full-scale" prototype consisting of four 200 mm photomultiplier-tubes at the focus of a segmented mirror of 1.6 m in diameter. We report on the status of the full-scale prototype, including test measurements made during first light operation at the Telescope Array site in central Utah, U.S.A.
Large format array controller (aLFA-C): tests and characterisation at ESA
NASA Astrophysics Data System (ADS)
Lemmel, Frédéric; ter Haar, Jörg; van der Biezen, John; Duvet, Ludovic; Nelms, Nick; Blommaert, Sander; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Smit, Hans; Visser, Ivo
2016-08-01
For future near infrared astronomy missions, ESA is developing a complete detection and conversion chain (photon to SpaceWire chain system): Large Format Array (aLFA-N) based on MCT type detectors. aLFA-C (Astronomy Large Format Array Controller): a versatile cryogenic detector controller. An aLFA-C prototype was developed by Caeleste (Belgium) under ESA contract (400106260400). To validate independently the performances of the aLFA-C prototype and consolidate the definition of the follow-on activity, a dedicated test bench has been designed and developed in ESTEC/ESA within the Payload Technology Validation group. This paper presents the test setup and the performance validation of the first prototype of this controller at room and cryogenic temperature. Test setup and software needed to test the HAWAII-2RG and aLFA-N detectors with the aLFA-C prototype at cryogenic temperature will be also presented.
A Water Cherenkov Detector prototype for the HAWC Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel; Salesa Greus, Francisco; Warner, David
2011-10-01
A full-size Water Cherenkov Detector (WCD) prototype for the High Altitude Water Cherenkov (HAWC) gamma-ray Observatory was deployed, and is currently being operated at Colorado State University (CSU). The HAWC Observatory will consist of 300 WCDs at the very high altitude (4100m) site in Sierra Negra, Mexico. Each WCD will have 4 baffled upward-facing Photomultiplier Tubes (PMTs) anchored to the bottom of a self made multilayer hermetic plastic bag containing 200,000 liters of purified water, inside a 5m deep by 7.3m diameter steel container. The full size WCD at CSU is the only full size prototype outside of the HAWC site. It is equipped with seven HAWC PMTs and has scintillators both under and above the volume of water. It has been in operation since March 1, 2011. This prototype also has the same laser calibration system that the detectors deployed at the HAWC site will have. The CSU WCD serves as a testbed for the different subsystems before deployment at high altitude, and for optimizing the location of the PMTs, the design of the light collectors, deployment procedures, etc. Simulations of the light inside the detectors and the expected signals in the PMTs can also be benchmarked with this prototype.
A logarithmic detection system suitable for a 4π array
NASA Astrophysics Data System (ADS)
Westfall, G. D.; Yurkon, J. E.; van der Plicht, J.; Koenig, Z. M.; Jacak, B. V.; Fox, R.; Crawley, G. M.; Maier, M. R.; Hasselquist, B. E.; Tickle, R. S.; Horn, D.
1985-08-01
A low pressure multiwire proportional counter, a Bragg curve counter, and an array of CaF2/plastic scintillator telescopes have been developed in a geometry suitable for close packing into a 4π detector designed to study nucleus-nucleus reactions at 100-200 MeV/nucleon. The multiwire counter is hexagonal in shape and gives X-Y position information using resistive charge division from nichrome-coated stretched polypropylene foils. The Bragg curve counter is a hexagonal pyramid with the charge taken from a Frisch gridded anode. A field shaping grid gives the Bragg curve counter a radial field. The scintillator telescopes are shaped as truncated triangular pyramids such that when stacked together they form a truncated hexagonal pyramid. The light signal of the CaF2-plastic combination is read with one phototube using a phoswich technique to separate the ΔE signal from the E signal. The entire system has been tested so far for particles with 1 <= Z <= 18 and gives good position, charge, and time resolution.
Prototype Compton imager for special nuclear material
NASA Astrophysics Data System (ADS)
Wulf, Eric A.; Phlips, Bernard F.; Kurfess, James D.; Novikova, Elena I.; Fitzgerald, Carrie
2006-05-01
Compton imagers offer a method for passive detection of nuclear material over background radiation. A prototype Compton imager has been constructed using 8 layers of silicon detectors. Each layer consists of a 2×2 array of 2 mm thick cross-strip double-sided silicon detectors with active areas of 5.7 × 5.7 cm2 and 64 strips per side. The detectors are daisy-chained together in the array so that only 256 channels of electronics are needed to read-out each layer of the instrument. This imager is a prototype for a large, high-efficiency Compton imager that will meet operational requirements of Homeland Security for detection of shielded uranium. The instrument can differentiate between different radioisotopes using the reconstructed gamma-ray energy and can also show the location of the emissions with respect to the detector location. Results from the current instrument as well as simulations of the next generation instrument are presented.
Characterization of a prototype neutron portal monitor detector
NASA Astrophysics Data System (ADS)
Nakhoul, Nabil
The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.
NASA Astrophysics Data System (ADS)
Woody, Craig; Azmoun, Babak; Majka, Richard; Phipps, Michael; Purschke, Martin; Smirnov, Nikolai
2018-02-01
A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ˜ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.
NASA Astrophysics Data System (ADS)
Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Wang, Xinxin; Geng, Tianru; Yang, Hang; Liu, Shengquan; Han, Liang; Jin, Ge
2017-06-01
A front-end electronics prototype for the ATLAS small-strip Thin Gap Chamber (sTGC) based on gigabit Ethernet has been developed. The prototype is designed to read out signals of pads, wires, and strips of the sTGC detector. The prototype includes two VMM2 chips developed to read out the signals of the sTGC, a Xilinx Kintex-7 field-programmable gate array (FPGA) used for the VMM2 configuration and the events storage, and a gigabit Ethernet transceiver PHY chip for interfacing with a computer. The VMM2 chip is designed for the readout of the Micromegas detector and sTGC detector, which is composed of 64 linear front-end channels. Each channel integrates a charge-sensitive amplifier, a shaper, several analog-to-digital converters, and other digital functions. For a bunch-crossing interval of 25 ns, events are continuously read out by the FPGA and forwarded to the computer. The interface between the computer and the prototype has been measured to reach an error-free rate of 900 Mb/s, therefore making a very effective use of the available bandwidth. Additionally, the computer can control several prototypes of this kind simultaneously via the Ethernet interface. At present, the prototype will be used for the sTGC performance test. The features of the prototype are described in detail.
Status of the EDDA experiment at COSY
NASA Astrophysics Data System (ADS)
Scobel, W.; EDDA Collaboration; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.
1993-07-01
The EDDA experiment is designed to study p + p excitation functions with high energy resolution and narrow step size in the kinetic energy range from 250 MeV to 2500 MeV at the Cooler Synchrotron COSY. Measurements during the accelertion phase in conjunction with internal targets will allow to achieve a fast and precise energy variation. Prototypes of the detector elements and the fiber target have been extensively tested with proton and electron beams; the detector performance and trigger efficiency have been studied in Monte Carlo simulations. In this contribution, results concerning detector design, prototype studies, Monte Carlo simulations and the anticipated detector resolutions will be reported.
Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Nanjo, H.; Bi, X. J.
2008-12-24
We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the undergroundmore » water Cherenkov muon detector.« less
Speidel, Michael A; Tomkowiak, Michael T; Raval, Amish N; Dunkerley, David A P; Slagowski, Jordan M; Kahn, Paul; Ku, Jamie; Funk, Tobias
Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3-4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.
Observational capabilities of solar satellite "Coronas-Photon"
NASA Astrophysics Data System (ADS)
Kotov, Yu.
Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT
Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon
NASA Astrophysics Data System (ADS)
Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly
Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.
Recent developments in PET detector technology
Lewellen, Tom K
2010-01-01
Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301
The water Cherenkov detectors of the HAWC Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel
2012-10-01
The High Altitude Water Cherenkov (HAWC) observatory is a very high-energy gamma-ray detector which is currently under construction at 4100 m in Sierra Negra, Mexico. The observatory will be composed of an array of 300 Water Cherenkov Detectors (WCDs). Each WCD consists of a 5 m tall by 7.3 m wide steel tank containing a hermetically sealed plastic bag, called a bladder, which is filled with 200,000 liters of purified water. The detectors are each equipped with four upward-facing photomultiplier tubes (PMTs), anchored to the bottom of the bladder. At Colorado State University (CSU) we have the only full-size prototype outside of the HAWC site. It serves as a testbed for installation and operation procedures for the HAWC observatory. The WCD at CSU has been fully operational since March 2011, and has several components not yet present at the HAWC site. In addition to the four HAWC position PMTs, our prototype has three additional PMTs, including one shrouded (dark) PMT. We also have five scintillator paddles, four buried underneath the HAWC position PMTs, and one freely moving paddle above the volume of water. These extra additions will allow us to work on muon reconstruction with a single WCD. We will describe the analysis being done with the data taken with the CSU prototype, its impact on the HAWC detector, and future plans for the prototype.
Prototyping of MWIR MEMS-based optical filter combined with HgCdTe detector
NASA Astrophysics Data System (ADS)
Kozak, Dmitry A.; Fernandez, Bautista; Velicu, Silviu; Kubby, Joel
2010-02-01
In the past decades, there have been several attempts to create a tunable optical detector with operation in the infrared. The drive for creating such a filter is its wide range of applications, from passive night vision to biological and chemical sensors. Such a device would combine a tunable optical filter with a wide-range detector. In this work, we propose using a Fabry-Perot interferometer centered in the mid-wave infrared (MWIR) spectrum with an HgCdTe detector. Using a MEMS-based interferometer with an integrated Bragg stack will allow in-plane operation over a wide range. Because such devices have a tendency to warp, creating less-than-perfect optical surfaces, the Fabry-Perot interferometer is prototyped using the SOI-MUMPS process to ensure desirable operation. The mechanical design is aimed at optimal optical flatness of the moving membranes and a low operating voltage. The prototype is tested for these requirements. An HgCdTe detector provides greater performance than a pyroelectic detector used in some previous work, allowing for lower noise, greater detection speed and higher sensitivity. Both a custom HgCdTe detector and commercially available pyroelectric detector are tested with commercial optical filter. In previous work, monolithic integration of HgCdTe detectors with optical filters proved to be problematic. Part of this work investigates the best approach to combining these two components, either monolithically in HgCdTe or using a hybrid packaging approach where a silicon MEMS Fabry-Perot filter is bonded at low temperature to a HgCdTe detector.
New prototype scintillator detector for the Tibet ASγ experiment
NASA Astrophysics Data System (ADS)
Zhang, Y.; Gou, Q.-B.; Cai, H.; Chen, T.-L.; Danzengluobu; Feng, C.-F.; Feng, Y.-L.; Feng, Z.-Y.; Gao, Q.; Gao, X.-J.; Guo, Y.-Q.; Guo, Y.-Y.; Hou, Y.-Y.; Hu, H.-B.; Jin, C.; Li, H.-J.; Liu, C.; Liu, M.-Y.; Qian, X.-L.; Tian, Z.; Wang, Z.; Xue, L.; Zhang, X.-Y.; Zhang, Xi-Ying
2017-11-01
The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m2 underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m2 as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for γ-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m2 by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. {This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of ~2.2 ns, and dynamic range from 1 to 500 minimum ionization particles}.
UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting
NASA Astrophysics Data System (ADS)
Sottile, G.; Russo, F.; Agnetta, G.; Belluso, M.; Billotta, S.; Biondo, B.; Bonanno, G.; Catalano, O.; Giarrusso, S.; Grillo, A.; Impiombato, D.; La Rosa, G.; Maccarone, M. C.; Mangano, A.; Marano, D.; Mineo, T.; Segreto, A.; Strazzeri, E.; Timpanaro, M. C.
2013-06-01
UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320-900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.
Experiment neutrino-4 on searching for a sterile neutrino with multisection detector model
NASA Astrophysics Data System (ADS)
Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Polyushkin, A. O.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.
2017-02-01
A laboratory for searching for oscillations of reactor antineutrinos has been created based on the SM-3 reactor in order to approach the problem of the possible existence of a sterile neutrino. The multisection detector prototype with a liquid scintillator volume of 350 L was installed in mid-2015. This detector can move inside the passive shield in a range of 6-11 m from the active core of the reactor. The antineutrino flux was measured for the first time at these short distances from the active core of the reactor by the movable detector. The measurements with the multisection detector prototype demonstrated that it is possible to measure the antineutrino flux from the reactor in the complicated conditions of cosmic background on the Earth's surface.
Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector
NASA Astrophysics Data System (ADS)
Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.
2017-09-01
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.
Design and prototype studies of the TOTEM Roman pot detectors
NASA Astrophysics Data System (ADS)
Oriunno, Marco; Battistin, Michele; David, Eric; Guglielmini, Paolo; Joram, Christian; Radermacher, Ernst; Ruggiero, Gennaro; Wu, Jihao; Vacek, Vaclav; Vins, Vaclav
2007-10-01
The Roman pots of the TOTEM experiment at LHC will be equipped with edgeless silicon micro-strip detectors. A detector package consists of 10 detector planes cooled at -15C in vacuum. The detector resolution is 20 μm, the overall alignment precision has to be better than 30 μm. The detector planes are composed of a kapton hybrid glued on a substrate made of low expansion alloy, CE07 with 70% Si and 30% Al. An evaporative cooling system based on the fluorocarbon C3F8 with oil-free compressors has been adopted. The throttling of the fluid is done locally through capillaries. A thermo-mechanical prototype has been assembled. The results fully match the requirements and the expectations of calculations. They show a low thermal gradient on the cards and a uniform temperature distribution over the 10 planes.
NASA Astrophysics Data System (ADS)
Kuehn, S.; Benítez, V.; Fernández-Tejero, J.; Fleta, C.; Lozano, M.; Ullán, M.; Lacker, H.; Rehnisch, L.; Sperlich, D.; Ariza, D.; Bloch, I.; Díez, S.; Gregor, I.; Keller, J.; Lohwasser, K.; Poley, L.; Prahl, V.; Zakharchuk, N.; Hauser, M.; Jakobs, K.; Mahboubi, K.; Mori, R.; Parzefall, U.; Bernabéu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz Contell, C.; Soldevila Serrano, U.; Affolder, T.; Greenall, A.; Gallop, B.; Phillips, P. W.; Cindro, V.
2018-03-01
In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.
Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation
NASA Astrophysics Data System (ADS)
Connell, J. J.; Lopate, C.; McLaughlin, K. R.
2008-12-01
In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, Aleksey; Cui, Yonggang; Vernon, Emerson
This document presents motivations, goals and the current status of this project; development (fabrication, performance) of position-sensitive virtual Frisch-grid detectors proposed for nanoRaider, an instrument commonly used by nuclear inspectors; ASIC developments for CZT detectors; and the electronics development for the detector prototype..
Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments
NASA Astrophysics Data System (ADS)
Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.
2017-11-01
A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.
NASA Astrophysics Data System (ADS)
Inoue, Keisuke; Kobayashi, Yasuhiro; Yoda, Yoshitaka; Koshimizu, Masanori; Nishikido, Fumihiko; Haruki, Rie; Kishimoto, Shunji
2018-02-01
We developed a new scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We report on the nuclear forward scattering measurement on 61Ni with a prototype detector using a lead-loaded plastic scintillator (EJ-256, 3 mm in diameter and 2 mm in thickness), mounted on a proportional-mode Si-APD. Using synchrotron X-rays of 67.41 keV, we successfully measured the time spectra of nuclear forward scattering on 61Ni enriched metal foil and 61Ni86V14 alloy. The prototype detector confirmed the expected dynamical beat structure with a time resolution of 0.53 ns (FWHM).
Large-format high resolution microchannel plate detectors for ultraviolet astronomy
NASA Technical Reports Server (NTRS)
Martin, Christopher
1995-01-01
This report includes work on two types of two-dimensional position-sensitive detectors that were developed in this lab under this award. We worked to develop and optimize the wire-wound helical delay line detector (HDL) in the first and second years. Some early work on the HDL is contained in a paper included as Appendix A. In the second and third years we developed the concept for, then successfully designed and tested, both a lab prototype, and a flight prototype of the first, crossed delay line detector based on two orthogonal serpentine delay lines (SDL). Some of the work on the SDL is contained in a paper included as Appendix B. Appendix C contains copies of the invention report and record.
NeuRad detector prototype pulse shape study
NASA Astrophysics Data System (ADS)
Muzalevsky, I.; Chudoba, V.; Belogurov, S.; Kiselev, O.; Bezbakh, A.; Fomichev, A.; Krupko, S.; Slepnev, R.; Kostyleva, D.; Gorshkov, A.; Ovcharenko, E.; Schetinin, V.
2018-04-01
The EXPERT setup located at the Super-FRS facility, the part of the FAIR complex in Darmstadt, Germany, is intended for investigation of properties of light exotic nuclei. One of its modules, the high granularity neutron detector NeuRad assembled from a large number of the scintillating fiber is intended for registration of neutrons emitted by investigated nuclei in low-energy decays. Feasibility of the detector strongly depends on its timing properties defined by the spatial distribution of ionization, light propagation inside the fibers, light emission kinetics and transition time jitter in the multi-anode photomultiplier tube. The first attempt of understanding the pulse formation in the prototype of the NeuRad detector by comparing experimental results and Monte Carlo (MC) simulations is reported in this paper.
SuperCDMS Prototype Detector Design and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Allison Blair
A substantial amount of astrophysical evidence indicates that approximately a quarter of all energy in the universe is composed of a nonluminous, and nonbaryonic \\dark" matter. Of the potential dark matter particle candidates, Weakly Interacting Massive Particles, or WIMPs, is particularly well motivated. As a means to directly detect WIMP interactions with baryonic matter, the Cryogenic Dark Matter Search (CDMS) project was established, operating at the Soudan Underground Laboratory from 2003 - 2015, under the CDMS II and SuperCDMS Soudan experiments. CDMS detectors simultaneously measure the ionization and phonon energies of recoil events in Si and Ge crystals kept atmore » cryogenic temperatures in a low-background environment. The ratio of ionization energy to recoil energy serves as a discrimination parameter to separate nuclear recoil events from the electron-recoil background. The next installation, SuperCDMS SNOLAB, is preparing for future operation, with an initial payload of eighteen Ge and six Si, 100 mm diameter, 33 mm thick detectors. Of this initial payload, eight Ge and four Si detectors will operate in a high-voltage ( 100 V) mode, which have an increased sensitivity to low-mass WIMPs due to decreased energy thresholds. The SuperCDMS test facility at University of Minnesota aids in the detector R&D and characterization of prototype detectors, as part of the scale-up eort for Super- CDMS SNOLAB. This thesis presents the rst full ionization and phonon characterization study of a 100 mm diameter, 33 mm thick prototype Ge detector with interleaved phonon and ionization channels. Measurements include ionization collection eciency, surface event rejection capabilities, and successful demonstration of nuclear recoil event discrimination. Results indicate that 100 mm diameter, interleaved Ge detectors show potential for use in SuperCDMS SNOLAB. As part of detector R&D, the Minnesota test facility also looks beyond the next stage of SuperCDMS, investigating larger individual detectors as a means to easily scale up the sensitive mass of future searches. This thesis presents the design and initial testing results of a prototype 150 mm diameter, 33 mm thick silicon ionization detector, which is 5.2 times larger than those used in SuperCDMS at Soudan and 2.25 times larger than those planned for use at SuperCDMS SNOLAB. In addition, the detector was operated with contact-free ionization electrodes to minimize bias leakage currents, which can limit operation at high bias voltages. The results show promise for the operation of both large volume silicon detectors and contact-free ionization electrodes for scaling up detector mass and bias.« less
Characterizing X-ray detectors for prototype digital breast tomosynthesis systems
NASA Astrophysics Data System (ADS)
Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.
2016-03-01
The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray detectors for commercial DBT systems. Our findings suggest that the Dexela detector can be applied to the DBT system with regard to its high imaging performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Enrique Arrieta
2014-01-01
The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactionsmore » with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 10 20 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70 +0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, S.
The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is duemore » to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature ($-$20 °C).« less
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.
2016-05-01
Silicon detectors have been used in astrophysics satellites and particle detectors for high energy physics (HEP) experiments. For HEP applications, EMC studies have been conducted in silicon detectors to characterize the impact of external noise on the system. They have shown that problems associated with the new generation of silicon detectors are related with interferences generated by the power supplies and auxiliary equipment connected to the device. Characterization of these interferences along with the coupling and their propagation into the susceptible front-end circuits is required for a successful integration of these systems. This paper presents the analysis of the sensitivity curves and coupling mechanisms between the noise and the front-end electronics that have been observed during the characterization of two silicon detector prototypes: the CMS-Silicon tracker detector (CMS-ST) and Silicon Vertex Detector (Belle II-SVD). As a result of these studies, it is possible to identify critical elements in prototypes to take corrective actions in the design and improve the front-end electronics performance.
A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.
2015-01-01
The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.
Alayed, Mrwan; Deen, M Jamal
2017-09-14
Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.
NASA Astrophysics Data System (ADS)
Ko, Guen Bae; Lee, Jae Sung
2017-03-01
We propose a novel single transmission-line readout method for whole-body time-of-flight positron emission tomography applications, without compromising on performance. The basic idea of the proposed multiplexing method is the addition of a specially prepared tag signal ahead of the scintillation pulse. The tag signal is a square pulse that encodes photon arrival time and channel information. The 2D position of a silicon photomultiplier (SiPM) array is encoded by the specific width and height of the tag signal. A summing amplifier merges the tag and scintillation signals of each channel, and the final output signal can be acquired with a one-channel digitizer. The feasibility and performance of the proposed method were evaluated using a 1:1 coupled detector consisting of 4 × 4 array of LGSO crystals and 16 channel SiPM. The sixteen 3 mm LGSO crystals were clearly separated in the crystal-positioning map with high reliability. The average energy resolution and coincidence resolving time were 11.31 ± 0.55% and 264.7 ± 10.7 ps, respectively. We also proved that the proposed method does not degrade timing performance with increasing multiplexing ratio. The two types of LGSO crystals (L0.95GSO and L0.20GSO) in phoswich detector were also clearly identified with the high-reliability using pulse shape discrimination, thanks to the well-preserved pulse shape information. In conclusion, the proposed multiplexing method allows decoding of the 3D interaction position of gamma rays in the scintillation detector with single-line readout.
Ko, Guen Bae; Lee, Jae Sung
2017-03-21
We propose a novel single transmission-line readout method for whole-body time-of-flight positron emission tomography applications, without compromising on performance. The basic idea of the proposed multiplexing method is the addition of a specially prepared tag signal ahead of the scintillation pulse. The tag signal is a square pulse that encodes photon arrival time and channel information. The 2D position of a silicon photomultiplier (SiPM) array is encoded by the specific width and height of the tag signal. A summing amplifier merges the tag and scintillation signals of each channel, and the final output signal can be acquired with a one-channel digitizer. The feasibility and performance of the proposed method were evaluated using a 1:1 coupled detector consisting of 4 × 4 array of LGSO crystals and 16 channel SiPM. The sixteen 3 mm LGSO crystals were clearly separated in the crystal-positioning map with high reliability. The average energy resolution and coincidence resolving time were 11.31 ± 0.55% and 264.7 ± 10.7 ps, respectively. We also proved that the proposed method does not degrade timing performance with increasing multiplexing ratio. The two types of LGSO crystals (L 0.95 GSO and L 0.20 GSO) in phoswich detector were also clearly identified with the high-reliability using pulse shape discrimination, thanks to the well-preserved pulse shape information. In conclusion, the proposed multiplexing method allows decoding of the 3D interaction position of gamma rays in the scintillation detector with single-line readout.
Performance and results of the LBNE 35 ton membrane cryostat prototype
Montanari, David; Adamowski, Mark; Hahn, Alan; ...
2015-07-15
We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less
Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2017-11-01
For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.
Development of a small single-ring OpenPET prototype with a novel transformable architecture.
Tashima, Hideaki; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Nitta, Munetaka; Kinouchi, Shoko; Suga, Mikio; Haneishi, Hideaki; Inaniwa, Taku; Yamaya, Taiga
2016-02-21
The single-ring OpenPET (SROP), for which the detector arrangement has a cylinder shape cut by two parallel planes at a slant angle to form an open space, is our original proposal for in-beam PET. In this study, we developed a small prototype of an axial-shift type SROP (AS-SROP) with a novel transformable architecture for a proof-of-concept. In the AS-SROP, detectors originally forming a cylindrical PET are axially shifted little by little. We designed the small AS-SROP prototype for 4-layer depth-of-interaction detectors arranged in a ring diameter of 250 mm. The prototype had two modes: open and closed. The open mode formed the SROP with the open space of 139 mm and the closed mode formed a conventional cylindrical PET. The detectors were simultaneously moved by a rotation handle allowing them to be transformed between the two modes. We evaluated the basic performance of the developed prototype and carried out in-beam imaging tests in the HIMAC using (11)C radioactive beam irradiation. As a result, we found the open mode enabled in-beam PET imaging at a slight cost of imaging performance; the spatial resolution and sensitivity were 2.6 mm and 5.1% for the open mode and 2.1 mm and 7.3% for the closed mode. We concluded that the AS-SROP can minimize the decrease of resolution and sensitivity, for example, by transforming into the closed mode immediately after the irradiation while maintaining the open space only for the in-beam PET measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukhanin, Gennadiy; Biery, Kurt; Foulkes, Stephen
In the NO A experiment, the Detector Controls System (DCS) provides a method for controlling and monitoring important detector hardware and environmental parameters. It is essential for operating the detector and is required to have access to roughly 370,000 independent programmable channels via more than 11,600 physical devices. In this paper, we demonstrate an application of Control System Studio (CSS), developed by Oak Ridge National Laboratory, for the NO A experiment. The application of CSS for the DCS of the NO A experiment has been divided into three phases: (1) user requirements and concept prototype on a test-stand, (2) smallmore » scale deployment at the prototype Near Detector on the Surface, and (3) a larger scale deployment at the Far Detector. We also give an outline of the CSS integration with the NO A online software and the alarm handling logic for the Front-End electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, D.L.; et al.
The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less
NASA Astrophysics Data System (ADS)
Ghosh, P.
2016-01-01
The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.
Software Geometry in Simulations
NASA Astrophysics Data System (ADS)
Alion, Tyler; Viren, Brett; Junk, Tom
2015-04-01
The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).
Study of a Large Prototype TPC for the ILC using Micro-Pattern Gas Detectors
NASA Astrophysics Data System (ADS)
Münnich, A.; LCTPC Collaboration
2016-04-01
In the last decade, R&D for detectors for the future International Linear Collider (ILC) has been performed by the community. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its tracking system consists of a Si vertex detector, forward tracking disks and a large volume Time Projection Chamber (TPC). Within the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. Its endplate is able to house up to seven identical modules with Micro-Pattern Gas Detectors (MPGD) amplification. Recently, the LP has been equipped with resistive anode Micromegas (MM) or Gas Electron Multiplier (GEM) modules. Both the MM and GEM technologies have been studied with an electron beam up to 6 GeV in a 1 Tesla solenoid magnet. After introducing the current R&D status, recent results will be presented including field distortions, ion gating and spatial resolution as well as future plans of the LCTPC R&D.
Modular focusing ring imaging Cherenkov detector for electron–ion collider experiments
Wong, C. P.; Alfred, M.; Allison, L.; ...
2017-07-16
Here, a powerful new electron–ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility. EIC detectors are currently under development, all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper,more » the results from a beam test of a prototype device at Fermilab are reported.« less
NASA Astrophysics Data System (ADS)
Koopman, B. J.; Cothard, N. F.; Choi, S. K.; Crowley, K. T.; Duff, S. M.; Henderson, S. W.; Ho, S. P.; Hubmayr, J.; Gallardo, P. A.; Nati, F.; Niemack, M. D.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Wollack, E. J.
2018-05-01
Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as {˜ } 1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.
Prototype detection unit for the CHIPS experiment
NASA Astrophysics Data System (ADS)
Pfützner, Maciej M.
2017-09-01
CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective neutrino detectors, focused on measuring the CP-violating neutrino mixing phase (δ CP). A single detector module, containing an enclosed volume of purified water, would be submerged in an existing lake, located in a neutrino beam. A staged approach is proposed with first detectors deployed in a flooded mine pit in Northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. One of the instruments submerged on board of CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef. The unit contains hardware borrowed from the KM3NeT experiment, including 16 3 inch photomultiplier tubes and readout electronics. In addition to testing the mechanical design and data acquisition, the detector was used to record a large sample of cosmic ray muon events. The collected data is valuable for characterising the cosmic muon background and validating a Monte Carlo simulation used to optimise future designs. This paper introduces the CHIPS project, describes the design of the prototype unit, and presents the results of a preliminary data analysis.
The 150 ns detector project: Prototype preamplifier results
NASA Astrophysics Data System (ADS)
Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.
1994-08-01
The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.
The cosmic ray muon tomography facility based on large scale MRPC detectors
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping
2015-06-01
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.
Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation
NASA Astrophysics Data System (ADS)
Connell, J. J.; Lopate, C.; McLaughlin, K. R.
2009-12-01
In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. These data show a charge peak resolution of 0.18 ± 0.01 e at Br (Z = 35), excellent for such a simple instrument. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).
Clinical performance of a prototype flat-panel digital detector for general radiography
NASA Astrophysics Data System (ADS)
Huda, Walter; Scalzetti, Ernest M.; Roskopf, Marsha L.; Geiger, Robert
2001-08-01
Digital radiographs obtained using a prototype Digital Radiography System (Stingray) were compared with those obtained using conventional screen-film. Forty adult volunteers each had two identical radiographs taken at the same level of radiation exposure, one using screen-film and the other the digital detector. Each digital image was processed by hand to ensure that the printed quality was optimal. Ten radiologists compared the diagnostic image quality of the digital images with the corresponding film radiographs using a seven point ranking scheme.
NASA Astrophysics Data System (ADS)
Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro
2018-01-01
Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single emission. Material cost of this system is, 0.2M for HGR La-GPS, 0.03M for WLSF, 0.03M for 600 units of 6 by 6 mm SiPM's, 0.12M for 12000 units of 1 by 1 mm SiPM's, and 0.09M for 1800 channel of signal readout circuits. Considering total cost, price of this PET will be set 1M or less. This idea was confirmed with numerical simulation and experimentation. In experimentation, position resolution in photoelectric absorption was 0.2 mm, and minimum distance that this detector could recognize plural emission in Compton scattering was 1 mm. In parallel, three kinds of model were made: a prototype detector, all the signals readout method, and resistance delay method. Simulation setting was 2 MBq/L in normal tissue and 10 MBq/L in cancer. As a result of simulation, a prototype detector identified 3 mm cancer, however the others made unclear image and was not able to identified cancer. That is to say, the prototype detector is able to reject Compton scattering events and inexpensive. Therefore, whole-body PET system with this detector must diagnose cancer with a diameter of 3 mm or more and be priced 1M or less
Wide-Field Gamma-Spectrometer BDRG: GRB Monitor On-Board the Lomonosov Mission
NASA Astrophysics Data System (ADS)
Svertilov, S. I.; Panasyuk, M. I.; Bogomolov, V. V.; Amelushkin, A. M.; Barinova, V. O.; Galkin, V. I.; Iyudin, A. F.; Kuznetsova, E. A.; Prokhorov, A. V.; Petrov, V. L.; Rozhkov, G. V.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Jeong, S.; Kim, M. B.
2018-02-01
The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the wide-field optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90° from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ˜ 2°. Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of \\varnothing 130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities. The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ˜ 500 Mb per day, including ˜ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ˜ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.
NASA Astrophysics Data System (ADS)
Würl, M.; Reinhardt, S.; Rosenfeld, A.; Petasecca, M.; Lerch, M.; Tran, L.; Karsch, S.; Assmann, W.; Schreiber, J.; Parodi, K.
2017-01-01
Laser-accelerated proton beams exhibit remarkably different beam characteristics as compared to conventionally accelerated ion beams. About 105 to 107 particles per MeV and msr are accelerated quasi-instantaneously within about 1 ps. The resulting energy spectrum typically shows an exponentially decaying distribution. Our planned approach to determine the energy spectrum of the particles generated in each pulse is to exploit the time-of-flight (TOF) difference of protons with different kinetic energies at 1 m distance from the laser-target interaction. This requires fast and sensitive detectors. We therefore tested two prototype silicon detectors, developed at the Centre for Medical Radiation Physics at the University of Wollongong with a current amplifier, regarding their suitability for TOF-spectrometry in terms of sensitivity and timing properties. For the latter, we illuminated the detectors with short laser pulses, measured the signal current and compared it to the signal of a fast photodiode. The comparison revealed that the timing properties of both prototypes are not yet sufficient for our purpose. In contrast, our results regarding the detectors’ sensitivity are promising. The lowest detectable proton flux at 10 MeV was found to be 25 protons per ns on the detector. With this sensitivity and with a smaller pixelation of the detectors, the timing properties can be improved for new prototypes, making them potential candidates for TOF-spectrometry of laser-accelerated particle beams.
Alayed, Mrwan
2017-01-01
Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system. PMID:28906462
Construction and test of a fine-grained liquid argon preshower prototype
NASA Astrophysics Data System (ADS)
Davis, R. A.; Gingrich, D. M.; Pinfold, J. L.; Rodning, N. L.; Boos, E.; Zhautykov, B. O.; Aubert, B.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Colas, J.; Eynard, G.; Jezequel, S.; Leflour, T.; Linossier, O.; Nicoleau, S.; Rival, F.; Sauvage, G.; Thion, J.; VanDenPlas, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y. P.; Chmeissani, M.; Fernandez, E.; Garrido, Ll.; Martinez, M.; Padilla, C.; Gordon, H. A.; Radeka, V.; Rahm, D.; Stephani, D.; Baisin, L.; Berset, J. C.; Chevalley, J. L.; Gianotti, F.; Gildemeister, O.; Marin, C. P.; Nessi, M.; Poggioli, L.; Richter, W.; Vuillemin, V.; Baze, J. M.; Gosset, L.; Lavocat, P.; Lottin, J. P.; Mansoulié, B.; Meyer, J. P.; Renardy, J. F.; Schwindling, J.; Teiger, J.; Collot, J.; de Saintignon, P.; Dzahini, D.; Hostachy, J. Y.; Hoummada, A.; Laborie, G.; Mahout, G.; Hervas, L.; Chekhtman, A.; Cousinou, M. C.; Dargent, P.; Dinkespiller, B.; Etienne, F.; Fassnacht, P.; Fouchez, D.; Martin, L.; Miotto, A.; Monnier, E.; Nagy, E.; Olivetto, C.; Tisserant, S.; Battistoni, G.; Camin, D. V.; Cavalli, D.; Costa, G.; Cozzi, L.; Fedyakin, N.; Ferrari, A.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Sala, P.; Beaudoin, G.; Depommier, P.; León-Florián, E.; Leroy, C.; Roy, P.; Augé, E.; Chase, R.; Chollet, J. C.; de La Taille, C.; Fayard, L.; Fournier, D.; Hrisoho, A.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Schaffer, A.; Seguin-Moreau, N.; Serin, L.; Tisserand, V.; Vichou, I.; Canton, B.; David, J.; Genat, J. F.; Imbault, D.; Le Dortz, O.; Savoy-Navarro, A.; Schwemling, P.; Eek, L. O.; Lund-Jensen, B.; Söderqvist, J.; Lefebvre, M.; Robertson, S.; RD3 Collaboration
1997-02-01
A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5 × 10 -3 was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9° in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150 GeV the space resolution for electrons is better than 250 μm in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50 GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider.
NASA Astrophysics Data System (ADS)
Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.
2018-02-01
Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.
Prototype active scanner for nighttime oil spill mapping and classification
NASA Technical Reports Server (NTRS)
Sandness, G. A.; Ailes, S. B.
1977-01-01
A prototype, active, aerial scanner system was constructed for nighttime water pollution detection and nighttime multispectral imaging of the ground. An arc lamp was used to produce the transmitted light and four detector channels provided a multispectral measurement capability. The feasibility of the design concept was demonstrated by laboratory and flight tests of the prototype system.
NASA Astrophysics Data System (ADS)
Panchal, N.; Mohanraj, S.; Kumar, A.; Dey, T.; Majumder, G.; Shinde, R.; Verma, P.; Satyanarayana, B.; Datar, V. M.
2017-11-01
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction, through the assembly and testing of a ~1 m × 1 m × 0.3 m plastic scintillator based detector, is described. The plan for making a CMV detector for a smaller prototype mini-ICAL is also outlined.
Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope
NASA Astrophysics Data System (ADS)
Limousin, O.; Meuris, A.; Lugiez, F.; Gevin, Olivier; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.; Penquer, A.; Billot, M.
2017-11-01
In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event timetagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of 65 electrons rms over the 64 channels. For the first prototypes, we chose Pt//CdTe//Al/Ti/Au Schottky detectors because of their very low dark current and excellent spectroscopic performances. Recently a Caliste 64 prototype has been also equipped with a 2 mm thick Au//CdZnTe//Au detector. This paper presents the performances of these four prototypes and demonstrates spectral performances better than 1 keV fwhm at 59.54 keV when the samples are moderately cooled down to -10°C.
Practical application of HgI2 detectors to a space-flight scanning electron microscope
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.
1989-01-01
Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
Basic Performance Test of a Prototype PET Scanner Using CdTe Semiconductor Detectors
NASA Astrophysics Data System (ADS)
Ueno, Y.; Morimoto, Y.; Tsuchiya, K.; Yanagita, N.; Kojima, S.; Ishitsu, T.; Kitaguchi, H.; Kubo, N.; Zhao, S.; Tamaki, N.; Amemiya, K.
2009-02-01
A prototype positron emission tomography (PET) scanner using CdTe semiconductor detectors was developed, and its initial evaluation was conducted. The scanner was configured to form a single detector ring with six separated detector units, each having 96 detectors arranged in three detector layers. The field of view (FOV) size was 82 mm in diameter. Basic physical performance indicators of the scanner were measured through phantom studies and confirmed by rat imaging. The system-averaged energy resolution and timing resolution were 5.4% and 6.0 ns (each in FWHM) respectively. Spatial resolution measured at FOV center was 2.6 mm FWHM. Scatter fraction was measured and calculated in a National Electrical Manufacturers Association (NEMA)-fashioned manner using a 3-mm diameter hot capillary in a water-filled 80-mm diameter acrylic cylinder. The calculated result was 3.6%. Effect of depth of interaction (DOI) measurement was demonstrated by comparing hot-rod phantom images reconstructed with and without DOI information. Finally, images of a rat myocardium and an implanted tumor were visually assessed, and the imaging performance was confirmed.
A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.
Imaging hadron calorimetry for future Lepton Colliders
NASA Astrophysics Data System (ADS)
Repond, José
2013-12-01
To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.
The GlueX central drift chamber: Design and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Haarlem, Y; Barbosa, F; Dey, B
2010-10-01
Tests and studies concerning the design and performance of the GlueX Central Drift Chamber (CDC) are presented. A full-scale prototype was built to test and steer the mechanical and electronic design. Small scale prototypes were constructed to test for sagging and to do timing and resolution studies of the detector. These studies were used to choose the gas mixture and to program a Monte Carlo simulation that can predict the detector response in an external magnetic field. Particle identification and charge division possibilities were also investigated.
High-performance IR detectors at SCD present and future
NASA Astrophysics Data System (ADS)
Nesher, O.; Klipstein, P. C.
2005-09-01
For over 27 years, SCD has been manufacturing and developing a wide range of high performance infra-red detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, Time Delay Integration scanning systems, Hand-Held cameras, Missile Warning Systems and many others. SCD's technology for the MWIR wavelength range is based on its well established 2-D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD's analogue or digital signal processors, all of which have been designed in-house. The 2-D Focal Plane Array (FPA) detectors have a format of 320×256 elements for a 30 μm pitch and 480×384 or 640×512 elements for a 20 μm pitch. Typical operating temperatures are around 77-85K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of Antimonide Based Compound Semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wave-length range SCD manufactures both linear Hg1-xCdxTe (MCT) detectors with a line of 250 elements and Time Delay and Integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype un-cooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm and a typical NETD of 50mK at F/1. In this paper we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.
High-performance IR detectors at SCD present and future
NASA Astrophysics Data System (ADS)
Nesher, O.; Klipstein, P. C.
2006-03-01
For over 27 years, SCD has been manufacturing and developing a wide range of high performance infrared detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, time delay integration scanning systems, hand-held cameras, missile warning systems and many others. SCD's technology for the MWIR wavelength range is based on its well established 2D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD's analogue or digital signal processors, all of which have been designed in-house. The 2D focal plane array (FPA) detectors have a format of 320×256 elements for a 30-μm pitch and 480×384 or 640×512 elements for a 20-μm pitch. Typical operating temperatures are around 77-85 K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of antimonide based compound semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wavelength range SCD manufactures both linear Hg1-xCdxTe (MCT) detectors with a line of 250 elements and time delay and integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype uncooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm, and a typical NETD of 50 mK at F/1. In this paper, we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.
Neutron detection with plastic scintillators coupled to solid state photomultiplier detectors
NASA Astrophysics Data System (ADS)
Christian, James F.; Johnson, Erik B.; Fernandez, Daniel E.; Vogel, Samuel; Frank, Rebecca; Stoddard, Graham; Stapels, Christopher; Pereira, Jorge; Zegers, Remco
2017-09-01
The recent reduction of dark current in Silicon Solid-state photomultipliers (SiSSPMs) makes them an attractive alternative to conventional photomultiplier tubes (PMTs) for scintillation detection applications. Nuclear Physics experiments often require large detector volumes made using scintillation materials, which require sensitive photodetectors, such as a PMTs. PMTs add to the size, fragility, and high-voltage requirements as well as distance requirements for experiments using magnetic fields. This work compares RMD's latest detector modules, denoted as the "year 2 prototype", of plastic scintillators that discriminate gamma and high-energy particle events from neutron events using pulse shape discrimination (PSD) coupled to a SiSSPM to the following two detector modules: a similar "year 1 prototype" and a scintillator coupled to a PMT module. It characterizes the noise floor, relative signal-to-noise ratio (SNR), the timing performance, the PSD figure-of-merit (FOM) and the neutron detection efficiency of RMD's detectors. This work also evaluates the scaling of SiSSPM detector modules to accommodate the volumes needed for many Nuclear Physics experiments. The Si SSPM detector module provides a clear advantage in Nuclear Physics experiments that require the following attributes: discrimination of neutron and gamma-ray events, operation in or near strong magnetic fields, and segmentation of the detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.
In this work we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system of themore » detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less
Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.; ...
2016-02-16
In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.
In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less
Initial results from a prototype whole-body photon-counting computed tomography system.
Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H
X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .
Initial results from a prototype whole-body photon-counting computed tomography system
NASA Astrophysics Data System (ADS)
Yu, Z.; Leng, S.; Jorgensen, S. M.; Li, Z.; Gutjahr, R.; Chen, B.; Duan, X.; Halaweish, A. F.; Yu, L.; Ritman, E. L.; McCollough, C. H.
2015-03-01
X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×1011 photons per cm2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo.
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity measurements with 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...
2015-01-27
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
NASA Astrophysics Data System (ADS)
Sabol, John M.; Avinash, Gopal B.; Nicolas, Francois; Claus, Bernhard E. H.; Zhao, Jianguo; Dobbins, James T., III
2001-06-01
Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE RevolutionTM XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality. Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dual-energy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts. In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.
Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI
NASA Astrophysics Data System (ADS)
Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.
2014-09-01
We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.
Development of a multi-element microdosimetric detector based on a thick gas electron multiplier
NASA Astrophysics Data System (ADS)
Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.
2017-03-01
A prototype multi-element gaseous microdosimetric detector was developed using the Thick Gas Electron Multiplier (THGEM) technique. The detector aims at measuring neutron and gamma-ray dose rates for weak neutron-gamma radiation fields. The multi-element design was employed to increase the neutron detection efficiency. The prototype THGEM multi-element detector consists of three layers of tissue equivalent plastic hexagons and each layer houses a hexagonal array of seven cylindrical gas cavity elements with equal heights and diameters of 17 mm. The final detector structure incorporates 21 gaseous volumes. Owing to the absence of wire electrodes, the THGEM multi-element detector offers flexible and convenient fabrication. The detector responses to neutron and gamma-ray were investigated using the McMaster Tandetron 7Li(p,n) neutron source. The dosimetric performance of the detector is presented in contrast to the response of a commercial tissue equivalent proportional counter. Compared to the standard TEPC response, the detector gave a consistent microdosimetric response with an average discrepancy of 8 % in measured neutron absorbed dose. An improvement of a factor of 3.0 in neutron detection efficiency has been accomplished with only a small degradation in energy resolution. However, its low energy cut off is about 6 keV/μm, which is not sufficient to measure the gamma-ray dose. This problem will be addressed by increasing the electron multiplication gain using double THGEM layers.
Beam tracking with micromegas & wire chambers in secondary electron detection configuration
NASA Astrophysics Data System (ADS)
Voštinar, M.; Fernández, B.; Pancin, J.; Alvarez, M. A. G.; Chaminade, T.; Damoy, S.; Doré, D.; Drouart, A.; Druillole, F.; Frémont, G.; Kebbiri, M.; Materna, T.; Monmarthe, E.; Panebianco, S.; Papaevangelou, T.; Riallot, M.; Savajols, H.; Spitaels, C.
2013-12-01
The focal plane of S3 (Super Separator Spectrometer), a new experimental area of SPIRAL2 at GANIL, will be used for identification of nuclei, and requires the reconstruction of their trajectories and velocities by the Time Of Flight (TOF) method. Classical tracking detectors used in-beam would generate a lot of angular and energy straggling due to their thickness. One solution is the use of a SED (Secondary Electron Detection), which consists of a thin emissive foil in beam coupled to a low pressure gaseous detector out of the beam, for the detection of secondary electrons ejected from the foil. Moreover, this type of detector can be used for classical beam tracking at low energies, or for example at NFS (GANIL) for the FALSTAFF experiment for the reconstruction of fission fragments trajectories. Several low pressure gaseous detectors such as wire chambers and Micromegas have been constructed and tested since 2008. High counting rate capabilities and good time resolution obtained in previous tests motivated the construction of a new real-size 2D prototype wire chamber and a 2D bulk Micromegas at low pressure. For the first time, spatial resolution of the Micromegas at low pressure (below 20 mbar) in the SED configuration was measured. Different tests have been performed in order to characterize time and spatial properties of both prototypes, giving spatial resolution in the horizontal (X) direction of 0.90(0.02) mm FWHM for the real size prototype and 0.72(0.08) mm FWHM for Micromegas, and a time resolution of ~ 110(25) ps for the real size prototype.
Polarimetric performance of a Laue lens gamma-ray CdZnTe focal plane prototype
NASA Astrophysics Data System (ADS)
Curado da Silva, R. M.; Caroli, E.; Stephen, J. B.; Pisa, A.; Auricchio, N.; Del Sordo, S.; Frontera, F.; Honkimäki, V.; Schiavone, F.; Donati, A.; Trindade, A. M. F.; Ventura, G.
2008-10-01
A gamma-ray telescope mission concept [gamma ray imager (GRI)] based on Laue focusing techniques has been proposed in reply to the European Space Agency call for mission ideas within the framework of the next decade planning (Cosmic Vision 2015-2025). In order to optimize the design of a focal plane for this satellite mission, a CdZnTe detector prototype has been tested at the European Synchrotron Radiation Facility under an ~100% polarized gamma-ray beam. The spectroscopic, imaging, and timing performances were studied and in particular its potential as a polarimeter was evaluated. Polarization has been recognized as being a very important observational parameter in high energy astrophysics (>100 keV) and therefore this capability has been specifically included as part of the GRI mission proposal. The prototype detector tested was a 5 mm thick CdZnTe array with an 11×11 active pixel matrix (pixel area of 2.5×2.5 mm2). The detector was irradiated by a monochromatic linearly polarized beam with a spot diameter of about 0.5 mm over the energy range between 150 and 750 keV. Polarimetric Q factors of 0.35 and double event relative detection efficiency of 20% were obtained. Further measurements were performed with a copper Laue monochromator crystal placed between the beam and the detector prototype. In this configuration we have demonstrated that a polarized beam does not change its polarization level and direction after undergoing a small angle (<1°) Laue diffraction inside a crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reviol, W.; Sarantites, D. G.; Elson, J. M.
2016-09-08
Excited states in 137Xe have been studied by using the near-barrier single-neutron transfer reactions 13C( 136Xe, 12C ) 137Xe and 9Be( 136Xe, 8Be ) 137Xe in inverse kinematics.Particle- and particle- coincidence measurements have been performed with the Phoswich Wall and Digital Gammasphere detector arrays. Evidence is found for a 13/2 + 2 level (E = 3137 keV) and for additional high-lying 3/2 – and 5/2 – states. The results are discussed in the framework of realistic shell-model calculations. These calculations are also extended to the 13/2 + 1 and 13/2 + 2 levels in the N = 83 isotonic chain.more » Furthermore, they indicate that there is a need for a value of the neutron 0i 13/2 single-particle energy (E SPE = 2366 keV) lower than the one proposed in the literature. It is also demonstrated that the population patterns of the j = l ± 1/2 single-particle states in 137Xe are different for the two targets used in these measurements and the implications of this effect are addressed.« less
The interference of medical radionuclides with occupational in vivo gamma spectrometry.
Kol, R; Pelled, O; Canfi, A; Gilad, Y; German, U; Laichter, Y; Lantsberg, S; Fuksbrauner, R; Gold, B
2003-06-01
Radiation workers undergo routine monitoring for the evaluation of external and internal radiation exposures. The monitoring of internal exposures involves gamma spectrometry of the whole body (whole body counting) and measurements of excreta samples. Medical procedures involving internal administration of radioactive radionuclides are widely and commonly used. Medical radionuclides are typically short-lived, but high activities are generally administered, whereas occupational radionuclides are mostly long-lived and, if present, are found generally in relatively smaller quantities. The aim of the present work was to study the interference of some common medical radionuclides (201Tl, 9mTc, 57Co, and 131I) with the detection of internal occupational exposures to natural uranium and to 137Cs. Workers having undergone a medical procedure with one of the radionuclides mentioned above were asked to give frequent urine samples and to undergo whole body and thyroid counting with phoswich detectors operated at the Nuclear Research Center Negev. Urine and whole body counting monitoring were continued as long as radioactivity was detectable by gamma spectrometry. The results indicate that the activity of medical radionuclides may interfere with interpretation of occupational intakes for months after administration.
Test Plan for Cask Identification Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton
2016-09-29
This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.
Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.
2017-01-01
The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.
NASA Astrophysics Data System (ADS)
Ikeda, Hirokazu; Ikeda, Mitsuo; Inaba, Susumu; Tanaka, Manobu
1993-06-01
We describe a prototype data acquisition system for a silicon strip detector, which has been developed in terms of a digital readout scheme. The system consists of a master timing generator, readout controller, and a detector emulator card on which we use custom VLSI shift registers with operating clock frequency of 30 MHz.
Helical cone beam CT with an asymmetrical detector.
Zamyatin, Alexander A; Taguchi, Katsuyuki; Silver, Michael D
2005-10-01
If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions.
Silicon Drift Detectors - A Novel Technology for Vertex Detectors
NASA Astrophysics Data System (ADS)
Lynn, D.
1996-10-01
Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (< 10 μm), to handle large particle occupancy, and to require a small fraction of the number of electronic channels of an equivalent pixel detector. The Silicon Vertex Tracker (SVT) for the STAR experiment at RHIC is based on this new technology. The SVT will consist of 216 SDD's, each 6.3 cm by 6.3 cm, arranged in a three layer barrel design, covering 2 π in azimuth and ±1 in pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.
Characterization of a high-energy in-line phase contrast tomosynthesis prototype.
Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong
2015-05-01
In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis prototype. In addition, the PAD-based method of phase retrieval was combined with tomosynthesis imaging for the first time, which demonstrated its capability in significantly improving the contrast-to-noise ratios in the images.
Characterisation of a neutron diffraction detector prototype based on the Trench-MWPC technology
NASA Astrophysics Data System (ADS)
Buffet, J. C.; Clergeau, J. F.; Cuccaro, S.; Guérard, B.; Mandaroux, N.; Marchal, J.; Pentenero, J.; Platz, M.; Van Esch, P.
2017-12-01
The Trench Multi-Wire-Proportional-Chamber is a new type of MWPC which has been designed to fulfill the requirements of the 2D curved neutron detector under development for the XtremeD neutron diffractometer, under construction at ILL. In this design, anode wires are mounted orthogonally to a stack of metallic cathode plates which are insulated from each other by ceramic spacers. A row of teeth is spark-eroded along the edge of the cathode plates so that anode wires appear to be stretched along trenches machined across a segmented cathode plane. This design was tested on a prototype detector module mounted in a vessel filled with a mixture of 3He-Ar-CO2 at 7 bar. The detector configuration as well as measurements performed on this prototype at ILL neutron test beam line are presented. Results show that the Trench-MWPC design provides uniform amplification gain across the detection area despite the absence of the top cathode wires used to balance the electric field in standard Cathode-Anode-Cathode MWPC configurations. The presence of cathode trench side-walls surrounding anode wires minimises the spread of neutron-induced charge across electrodes, allowing for detector operation at reduced amplification gain without compromising the signal to noise per electrode. Pulse-height spectra acquired under various neutron flux conditions demonstrated that the Trench-MWPC design minimises space-charge effects, thanks to its low amplification gain combined with the fast collection of ions by cathode trench side-walls surrounding anode wires. Measurements also showed that this space-charge effect reduction results in a high local count-rate of ~100 kHz at 10% count loss when irradiating the detector with a small 5 mm × 5 mm neutron beam.
NASA Astrophysics Data System (ADS)
Ambrosino, F.; Anastasio, A.; Bross, A.; Béné, S.; Boivin, P.; Bonechi, L.; Cârloganu, C.; Ciaranfi, R.; Cimmino, L.; Combaret, Ch.; D'Alessandro, R.; Durand, S.; Fehr, F.; Français, V.; Garufi, F.; Gailler, L.; Labazuy, Ph.; Laktineh, I.; Lénat, J.-F.; Masone, V.; Miallier, D.; Mirabito, L.; Morel, L.; Mori, N.; Niess, V.; Noli, P.; Pla-Dalmau, A.; Portal, A.; Rubinov, P.; Saracino, G.; Scarlini, E.; Strolin, P.; Vulpescu, B.
2015-11-01
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy threshold of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m-2 d-1 deg-2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m-2 d-1 deg-2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. The MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.
Ambrosino, F.; Anastasio, A.; Bross, A.; ...
2015-11-14
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m 2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy thresholdmore » of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m –2 d –1 deg –2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m –2 d –1 deg –2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. As a result, the MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosino, F.; Anastasio, A.; Bross, A.
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m 2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy thresholdmore » of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m –2 d –1 deg –2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m –2 d –1 deg –2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. As a result, the MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.
Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less
Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.; ...
2017-08-22
Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less
Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.
Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T
2009-06-11
In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.
Fission-fragment detector for DANCE based on thin scintillating films
NASA Astrophysics Data System (ADS)
Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.
2015-12-01
A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.
Gracanin, V; Guatelli, S; Prokopovich, D; Rosenfeld, A B; Berry, A
2017-01-01
The Bonner Sphere Spectrometer (BSS) system is a well-established technique for neutron dosimetry that involves detection of thermal neutrons within a range of hydrogenous moderators. BSS detectors are often used to perform neutron field surveys in order to determine the ambient dose equivalent H*(10) and estimate health risk to personnel. There is a potential limitation of existing neutron survey techniques, since some detectors do not consider the direction of the neutron field, which can result in overly conservative estimates of dose in neutron fields. This paper shows the development of a Geant4 simulation application to characterise a prototype neutron detector based on three orthogonal 3 He tubes inside a single HDPE sphere built at the Australian Nuclear Science and Technology Organisation (ANSTO). The Geant4 simulation has been validated with respect to experimental measurements performed with an Am-Be source. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Description of a prototype emission-transmission computed tomography imaging system
NASA Technical Reports Server (NTRS)
Lang, T. F.; Hasegawa, B. H.; Liew, S. C.; Brown, J. K.; Blankespoor, S. C.; Reilly, S. M.; Gingold, E. L.; Cann, C. E.
1992-01-01
We have developed a prototype imaging system that can perform simultaneous x-ray transmission CT and SPECT phantom studies. This system employs a 23-element high-purity-germanium detector array. The detector array is coupled to a collimator with septa angled toward the focal spot of an x-ray tube. During image acquisition, the x-ray fan beam and the detector array move synchronously along an arc pivoted at the x-ray source. Multiple projections are obtained by rotating the object, which is mounted at the center of rotation of the system. The detector array and electronics can count up to 10(6) cps/element with sufficient energy-resolution to discriminate between x-rays at 100-120 kVp and gamma rays from 99mTc. We have used this device to acquire x-ray CT and SPECT images of a three-dimensional Hoffman brain phantom. The emission and transmission images may be superimposed in order to localize the emission image on the transmission map.
High Performance Thermoelectric Cryocoolers Based on II-VI Low Dimensional Structures
2015-05-26
around 210-250K and where the requirement of noise reduction and improving the signal resolution is crucial, such as in case of infrared detectors ...Development of TEC Integrated HOT MWIR detector for Tactical applications .................... 12 SECTION III – DISSEMINATION OF RESULTS...Integrated Dewar- Detector Cooler Assembly (IDDCA). The IDDCA will incorporate the prototype TEC into a typical Long Range thermal Imager dewar package
Results from a Prototype Multi-Element CdZnTe Gamma-Ray Detector for Planetary Missions
NASA Technical Reports Server (NTRS)
Moss, C. E.; Browne, M. C.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.
2001-01-01
We present high energy results for a 2 x 2 x 2 array of eight 10 mm x 10 mm x 5 mm coplanar grid CdZnTe detectors. We conclude that such an array can provide a room-temperature detector with good resolution and efficiency for planetary missions. Additional information is contained in the original extended abstract.
A simultaneous beta and coincidence-gamma imaging system for plant leaves
NASA Astrophysics Data System (ADS)
Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J.; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A.; Tai, Yuan-Chuan
2016-05-01
Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules. The tracers, such as 11CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ({β+} ) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively.
A simultaneous beta and coincidence-gamma imaging system for plant leaves.
Ranjbar, Homayoon; Wen, Jie; Mathews, Aswin J; Komarov, Sergey; Wang, Qiang; Li, Ke; O'Sullivan, Joseph A; Tai, Yuan-Chuan
2016-05-07
Positron emitting isotopes, such as (11)C, (13)N, and (18)F, can be used to label molecules. The tracers, such as (11)CO2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have a higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to poor positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (simultaneous beta-gamma imager). The imager can simultaneously detect positrons ([Formula: see text]) and coincidence-gamma rays (γ). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs beta and gamma images independently to estimate the thickness component of the beta forward model and afterward jointly estimates the radioactivity distribution in the object. We have validated the physics model and reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed (11)CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the structural similarity (SSIM) index for comparing the leaf images from the simultaneous beta-gamma imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively.
Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Wang, Yi; Li, Yixin; Du, Hong; Perna, Louis
2006-04-01
Modern-day radiotherapy relies on highly sophisticated forms of image guidance in order to implement increasingly conformal treatment plans and achieve precise dose delivery. One of the most important goals of such image guidance is to delineate the clinical target volume from surrounding normal tissue during patient setup and dose delivery, thereby avoiding dependence on surrogates such as bony landmarks. In order to achieve this goal, it is necessary to integrate highly efficient imaging technology, capable of resolving soft-tissue contrast at very low doses, within the treatment setup. In this paper we report on the development of one such modality, which comprises a nonoptimized, prototype electronic portal imaging device (EPID) based on a 40 mm thick, segmented crystalline CsI(Tl) detector incorporated into an indirect-detection active matrix flat panel imager (AMFPI). The segmented detector consists of a matrix of 160 x 160 optically isolated, crystalline CsI(Tl) elements spaced at 1016 microm pitch. The detector was coupled to an indirect detection-based active matrix array having a pixel pitch of 508 microm, with each detector element registered to 2 x 2 array pixels. The performance of the prototype imager was evaluated under very low-dose radiotherapy conditions and compared to that of a conventional megavoltage AMFPI based on a Lanex Fast-B phosphor screen. Detailed quantitative measurements were performed in order to determine the x-ray sensitivity, modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). In addition, images of a contrast-detail phantom and an anthropomorphic head phantom were also acquired. The prototype imager exhibited approximately 22 times higher zero-frequency DQE (approximately 22%) compared to that of the conventional AMFPI (approximately 1%). The measured zero-frequency DQE was found to be lower than theoretical upper limits (approximately 27%) calculated from Monte Carlo simulations, which were based solely on the x-ray energy absorbed in the detector-indicating the presence of optical Swank noise. Moreover, due to the nonoptimized nature of this prototype, the spatial resolution was observed to be significantly lower than theoretical expectations. Nevertheless, due to its high quantum efficiency (approximately 55%), the prototype imager exhibited significantly higher DQE than that of the conventional AMFPI across all spatial frequencies. In addition, the frequency-dependent DQE was observed to be relatively invariant with respect to the amount of incident radiation, indicating x-ray quantum limited behavior. Images of the contrast-detail phantom and the head phantom obtained using the prototype system exhibit good visualization of relatively large, low-contrast features, and appear significantly less noisy compared to similar images from a conventional AMFPI. Finally, Monte Carlo-based theoretical calculations indicate that, with proper optimization, further, significant improvements in the DQE performance of such imagers could be achieved. It is strongly anticipated that the realization of optimized versions of such very high-DQE EPIDs would enable megavoltage projection imaging at very low doses, and tomographic imaging from a "beam's eye view" at clinically acceptable doses.
ADC interface for data server with data preselection for luminosity detector in AIDA-2020 project
NASA Astrophysics Data System (ADS)
Daniluk, W.; Dziedzic, B.; Korcyl, G.; Wojtoń, T.; Zawiejski, L.
2017-08-01
Main aim of the AIDA-2020 project is development of detectors for future accelerators. In FCAL Colaboration we are working on forward subdetectors for ILC and CLIC accelerators. My team is developing prototype module which receives data from ADC, provides the data preselection, and transmits them as packages to the data server for further their analysis. Common prototype is based on AC701 evaluation board which contains Artix-7 FPGA and is equipped with SMA connectors for gigabit transceivers and ethernet connector. In my talk I will describe architecture of the device and current state of module development.
Portable microcontroller-based instrument for near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Giardini, Mario E.; Corti, Mario; Lago, Paolo; Gelmetti, Andrea
2000-05-01
Near IR Spectroscopy (NIRS) can be employed to noninvasively and continuously measure in-vivo local changes in haemodynamics and oxygenation of human tissues. In particular, the technique can be particularly useful for muscular functional monitoring. We present a portable NIRS research-grade acquisition system prototype, strictly dedicate to low-noise measurements during muscular exercise. The prototype is able to control four LED sources and a detector. Such a number of sources allows for multipoint measurements or for multi-wavelength spectroscopy of tissue constituents other than oxygen, such as cytochrome aa3 oxidation. The LEDs and the detector are mounted on separate probes, which carry also the relevant drivers and preamplifiers. By employing surface-mount technologies, probe size and weight are kept to a minimum. A single-chip mixed-signal RISC microcontroller performs source-to- detector multiplexing with a digital correlation technique. The acquired data are stored on an on-board 64 K EEPROM bank, and can be subsequently uploaded to a personal computer via serial port for further analysis. The resulting instrument is compact and lightweight. Preliminary test of the prototype on oxygen consumption during tourniquet- induced forearm ischaemia show adequate detectivity and time response.
Development of a 3D CZT detector prototype for Laue Lens telescope
NASA Astrophysics Data System (ADS)
Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano; Abbene, Leonardo; Budtz-Jørgensen, Carl; Casini, Fabio; Curado da Silva, Rui M.; Kuvvetlli, Irfan; Milano, Luciano; Natalucci, Lorenzo; Quadrini, Egidio M.; Stephen, John B.; Ubertini, Pietro; Zanichelli, Massimiliano; Zappettini, Andrea
2010-07-01
We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coordinate. The 3D prototype will be made by packing 8 linear modules, each composed by one basic sensitive unit, bonded on a ceramic layer. The linear modules readout is provided by a custom front end electronics implementing a set of three RENA-3 for a total of 128 channels. The front-end electronics and the operating logics (in particular coincidence logics for polarisation measurements) are handled by a versatile and modular multi-parametric back end electronics developed using FPGA technology.
Harańczyk, M.; Amsler, C.; Badertscher, A.; ...
2010-08-24
The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R & D program, including a 3 l prototype developed to test the charge readout system.
Position-sensitive ``movie'' in situ neutron detector for the UCN τ experiment
NASA Astrophysics Data System (ADS)
Weaver, Hannah; UCNTau Collaboration
2016-09-01
Precision measurements of neutron β-decay parameters provide tests of fundamental theories in elementary particle physics and cosmology such as the Standard Model and Big Bang nucleosynthesis. In particular, the UCN τ experiment aims to measure the mean lifetime of ultracold neutrons confined in an asymmetric magneto-gravitational trap using an in situ neutron detector. This detector consists of a 20 nm film of 10B on top of a ZnS:Ag scintillating screen. The screen is readout using two photomultipliers which view an array of wavelength shifting fibers optically coupled to the scintillator. When the detector is lowered into the loaded trap, light is emitted due to the charged particles recoiling into the ZnS:Ag when neutrons absorb on the 10B. Phase space evolution in the stored neutron population can lead to apparent shifts in the measured neutron lifetime with the detector height. In order to quantify this systematic uncertainty, we are implementing a supplemental 64-channel position-sensitive PMT module with high quantum efficiency and fast time response to image the entire detector in situ during measurements. We have characterized a prototype using a ZnS screen and an α-particle source along with a prototype lens system and will report the results and future plans.
NASA Technical Reports Server (NTRS)
Vallerga, J.; Vanderspek, R. K.; Ricker, G. R.
1982-01-01
To establish the expected sensitivity of a new hard X-ray telescope design, an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate (Bi4Ge3O12) scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, Texas. The second flight of this instrument established a differential background counting rate of 4.2 O.7 x 10-5 counts/sec cm keV over the energy range of 40 to 80 keV. This measurement was within 50% of the predicted value. The measured rate is approx 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range. The prediction was based on a Monte Carlo simulation of the detector assembly in the radiation environment at float altitude.
The low energy detector of Simbol-X
NASA Astrophysics Data System (ADS)
Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.
2008-07-01
Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA
NASA Technical Reports Server (NTRS)
Gong, Qian; McElwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Hilton, George; Perrin, Marshall; Sayson, Llop; Domingo, Jorge;
2015-01-01
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a prototype lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey TelescopeAstrophysics Focused Telescope Assets (WFIRSTAFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC). We will present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the compatibility to upgrade from the current 1k x 1k detector array to 4k x 4k detector array. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.
Reliability issues for a bolometer detector for ITER at high operating temperatures.
Meister, H; Kannamüller, M; Koll, J; Pathak, A; Penzel, F; Trautmann, T; Detemple, P; Schmitt, S; Langer, H
2012-10-01
The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 μm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Carter D.
A position sensitive neutron detector was designed and fabricated with bundles of individual detector elements with diameters of 120 mm. These neutron scintillating fibers were coupled with optoelectronic arrays to produce a ''Fiber Detector.'' A fiber position sensitive detector was completed and tested with scattered and thermal neutrons. Deployment of improved 2D PSDs with high signal to noise ratios at lower costs per area was the overall objective of the project.
NASA Technical Reports Server (NTRS)
Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.
1983-01-01
To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, Keith R; Elliott, Steven R; Boswell, Melissa
2010-12-13
The MAJORANA Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in {sup 76}Ge. Initially, MAJORANA aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype DEMONSTRATOR module are presented. Our proposed method uses the well-established technique of searching for neutrinoless double-beta decay in high purity Ge-diode radiation detectors that play both roles of source and detector. The use of P-PC Ge detectors present advances in background rejection and a Significantly lower energy threshold than conventional Ge detector technologies. The lower energymore » threshold opens up a broader and exciting physics program including searches for dark matter and axions concurrent with the double-beta decay search. The DEMONSTRATOR should establish that the backgrounds are low enough to justify scaling to tonne-scale experiment, probe the neutrino effective mass region above 100 meV, and search the low energy region with a sensitivity to dark matter. The DEMONSTRATOR will be sited at the 4850-ft level (4200 m.w.e) of the Sanford Underground Laboratory at Homestake and preparations for construction are currently underway.« less
Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga
2015-01-01
Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.
Development of FARICH detector for particle identification system at accelerators
NASA Astrophysics Data System (ADS)
Finogeev, D. A.; Kurepin, A. B.; Razin, V. I.; Reshetin, A. I.; Usenko, E. A.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kasyanenko, P. V.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Podgornov, N. A.; Talyshev, A. A.; Danilyuk, A. F.
2018-01-01
Aerogel has been successfully used as a radiator in Cherenkov detectors. In 2004, a multilayer aerogel providing Cherenkov ring focusing was proposed and produced. FARICH (Focusing Aerogel Rich Imaging CHerenkov) detectors such as ARICH for Belle-II (KEK, Japan), Forward RICH for PANDA detector (FAIR, Germany), and FARICH for the Super Charm-Tau factory project (BINP, Novosibirsk) have been developed based on this aerogel. Prototypes of FARICH detector based on MRS APD and Philips DPC photosensors were developed and tested in the framework of this project. An angular resolution for Cherenkov rings of 3.6 mrad was achieved.
Optimization and Characterization of a Novel Self Powered Solid State Neutron Detector
NASA Astrophysics Data System (ADS)
Clinton, Justin
There is a strong interest in detecting both the diversion of special nuclear material (SNM) from legitimate, peaceful purposes and the transport of illicit SNM across domestic and international borders and ports. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion layer that converts incident neutrons into detectable charged particles, such as protons, alpha-particles, and heavier ions. Although simple planar devices can act as highly portable, low cost detectors, they have historically been limited to relatively low detection efficiencies; ˜10% and ˜0.2% for thermal and fast detectors, respectively. To increase intrinsic detection efficiency, the incorporation of 3D microstructures into p-i-n silicon devices was proposed. In this research, a combination of existing and new types of detector microstructures were investigated; Monte Carlo models, based on analytical calculations, were constructed and characterized using the GEANT4 simulation toolkit. The simulation output revealed that an array of etched hexagonal holes arranged in a honeycomb pattern and filled with either enriched (99% 10B) boron or parylene resulted in the highest intrinsic detection efficiencies of 48% and 0.88% for thermal and fast neutrons, respectively. The optimal parameters corresponding to each model were utilized as the basis for the fabrication of several prototype detectors. A calibrated 252Cf spontaneous fission source was utilized to generate fast neutrons, while thermal neutrons were created by placing the 252Cf in an HDPE housing designed and optimized using the MCNP simulation software. Upon construction, thermal neutron calibration was performed via activation analysis of gold foils and measurements from a 6Li loaded glass scintillator. Experimental testing of the prototype detectors resulted in maximum intrinsic efficiencies of 4.5 and 0.12% for the thermal and fast devices, respectively. The prototype thermal device was filled with natural (19% 10B) boron; scaling the response to 99% 10B enriched boron resulted in an intrinsic efficiency of 22.5%, one of the highest results in the literature. A comparison of simulated and experimental detector responses demonstrated a high degree of correlation, validating the conceptual models.
NASA Astrophysics Data System (ADS)
Proper, Megan Longo
I present an indirect search for Dark Matter using the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. There is significant evidence for dark matter within the known Universe, and we can set constraints on the dark matter annihilation cross-section using dark matter rich sources. Dwarf spheroidal galaxies (dSphs) are low luminosity galaxies with little to no gas or dust, or recent star formation. In addition, the total mass of a dwarf spheroidal galaxy, as inferred from gravitational effects observed within the galaxy, is many times more than the luminous mass, making them extremely dark matter rich. For these reasons dSphs are prime targets for indirect dark matter searches with gamma rays. Dark matter annihilation cross-section limits are presented for 14 dSphs within the HAWC field of view, as well as a combined limit with all sources. The limits presented here are for dark matter masses ranging from 0.5 TeV to 1000 TeV. At lower dark matter masses, the HAWC-111 limits are not competitive with other gamma-ray experiments, however it will be shown that HAWC is currently dominating in the higher dark matter mass range. The HAWC observatory is a water Cherenkov detector and consists of 300 Water Cherenkov Detectors (WCDs). The detector is located at 4100 m above sea level in the Sierra Negra region of Mexico at latitude 18°59'41" N and longitude 97°18'28" W. Each WCD is instrumented with three 8 inch photomultiplier tubes (PMTs) and one 10 inch high efficiency PMT, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank. The tank contains a multilayer hermetic plastic bag, called a bladder, which holds 200,000 L of ultra-purified water. I will also present the design, deployment, and operation of a WCD prototype for HAWC built at Colorado State University (CSU). The CSU WCD was the only full-size prototype outside of the HAWC site. It was instrumented with 7 HAWC PMTs and scintillator paddles both under and above the volume of water. In addition, the CSU WCD was equipped with the same laser calibration system that is deployed at the HAWC site, as well as the same electronics and data acquisition system. The WCD prototype served as a testbed for the different subsystems of the HAWC observatory. During the three different installations of the prototype, many aspects of the detector design and performance were tested including: tank construction, bladder installation and performance, PMT installation and performance, roof design, water filtration and filling, muon coincidence measurements and calibration system. The experience gained from the CSU prototype was invaluable to the overall design and installation of the HAWC detector.
Open ISEmeter: An open hardware high-impedance interface for potentiometric detection.
Salvador, C; Mesa, M S; Durán, E; Alvarez, J L; Carbajo, J; Mozo, J D
2016-05-01
In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA(+)-DS(-)). The experimental measures of emf indicate Nernstian behaviour with the CTA(+) content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation.
Optical characterization of ultra-sensitive TES bolometers for SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gerhard; Gao, Jian-Rong; Khosropanah, Pourya; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen; Withington, Stafford
2014-07-01
We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2'×2' field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors.
The prototype of the Micro Vertex Detector of the CBM Experiment
NASA Astrophysics Data System (ADS)
Koziel, Michal; Amar-Youcef, Samir; Bialas, Norbert; Deveaux, Michael; Fröhlich, Ingo; Li, Qiyan; Michel, Jan; Milanović, Borislav; Müntz, Christian; Neumann, Bertram; Schrader, Christoph; Stroth, Joachim; Tischler, Tobias; Weirich, Roland; Wiebusch, Michael
2013-12-01
The Compressed Baryonic Matter (CBM) Experiment is one of the core experiments of the future FAIR facility at Darmstadt, Germany. This fixed-target experiment will explore the phase diagram of strongly interacting matter in the regime of highest net baryon densities with numerous probes, among them open charm. Reconstructing those short lived particles requires a vacuum compatible Micro Vertex Detector (MVD) with unprecedented properties. Its sensor technology has to feature a spatial resolution of <5 μm, a non-ionizing radiation tolerance of >1013 neq/cm2, an ionizing radiation tolerance of >3 Mrad and a time resolution of a few 10 μs. The MVD-prototype project aimed to study the integration the CMOS Monolithic Active Pixel Sensors foreseen for the MVD into an ultra light (0.3% X0) and a vacuum compatible detector system based on a cooling support made of CVD-diamond.
Muon data from a water Cherenkov detector prototype at Colorado State University
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel
2013-04-01
The High Altitude Water Cherenkov (HAWC) Observatory is a very high energy gamma-ray experiment currently under construction in Sierra Negra in the state of Puebla, Mexico, at an altitude of 4,100 m a.s.l. The HAWC Observatory will consist of 300 water Cherenkov detectors (WCDs), each instrumented with three 8'' photomultiplier tubes (PMTs) and one 10'' high efficiency (HE) PMT. The PMTs are upward facing, anchored to the bottom of a 5 m deep by 7.3 m diameter steel tank, containing a multilayer hermetic plastic bag holding 200,000 L of purified water. The only full size WCD prototype outside of the HAWC site is located at Colorado State University (CSU) in Fort Collins, CO at an altitude of 1,525 m a.s.l. This prototype is instrumented with six 8'' PMTs, one 10'' HE PMT, and the same laser calibration system, electronics, and data acquisition system as the WCDs at the HAWC site. The CSU prototype is additionally equipped with scintillator paddles both under and above the volume of water, temperature probes (in the water, outside, and in the DAQ room), and one covered PMT. Preliminary results for muon rates and their temperature dependance using data collected with the CSU prototype will be presented.
Characterization of a high-energy in-line phase contrast tomosynthesis prototype
Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D.; Zheng, Bin; Wu, Xizeng; Liu, Hong
2015-01-01
Purpose: In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. Methods: The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. Results: The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. Conclusions: This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis prototype. In addition, the PAD-based method of phase retrieval was combined with tomosynthesis imaging for the first time, which demonstrated its capability in significantly improving the contrast-to-noise ratios in the images. PMID:25979035
Optical properties of Argonne/KICP TES bolometers for CMB polarimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crites, A. T.; Bleem, L. E.; Carlstrom, J. E.
2009-01-01
We present optical data on prototype polarization sensitive Argonne/KICP detectors fabricated at Argonne National Labs which are designed to be installed on the South Pole Telescope and used to measure the polarization of the Cosmic Microwave Background radiation. The detectors are Mo/Au transition edge sensors (TES) suspended on silicon nitride, with radiation coupled to the TES using a gold bar absorber. Two stacked detectors with bars in orthogonal directions will be used to measure both polarizations. We discuss measurements of the optical bandpass, time constants and cross-polarization of the detectors.
Design of T-GEM detectors for X-ray diagnostics on JET
NASA Astrophysics Data System (ADS)
Rzadkiewicz, J.; Dominik, W.; Scholz, M.; Chernyshova, M.; Czarski, T.; Czyrkowski, H.; Dabrowski, R.; Jakubowska, K.; Karpinski, L.; Kasprowicz, G.; Kierzkowski, K.; Pozniak, K.; Salapa, Z.; Zabolotny, W.; Blanchard, P.; Tyrrell, S.; Zastrow, K.-D.; JET EFDA Contributors
2013-08-01
Upgraded high-resolution X-ray diagnostics on JET is expected to monitor the plasma radiation emitted by W46+ and Ni26+ ions at 2.4 keV and 7.8 keV photon energies, respectively. Both X-ray lines will be monitored by new generation energy-resolved micropattern gas detectors with 1-D position reconstruction capability. The detection structure is based on triple GEM (T-GEM) amplification structure followed by the strip readout electrode. This article presents a design of new detectors and prototype detector tests.
Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector
NASA Astrophysics Data System (ADS)
Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.
2018-02-01
Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.
Optical Properties of Argonne/KICP TES Bolometers for CMB Polarimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crites, A. T.; Bleem, L. E.; Carlstrom, J. E.
2009-12-16
We present optical data on prototype polarization sensitive Argonne/KICP detectors fabricated at Argonne National Labs which are designed to be installed on the South Pole Telescope and used to measure the polarization of the Cosmic Microwave Background radiation. The detectors are Mo/Au transition edge sensors (TES) suspended on silicon nitride, with radiation coupled to the TES using a gold bar absorber. Two stacked detectors with bars in orthogonal directions will be used to measure both polarizations. We discuss measurements of the optical bandpass, time constants and cross-polarization of the detectors.
Safeguards Technology Development Program 1st Quarter FY 2018 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, Manoj K.
LLNL will evaluate the performance of a stilbene-based scintillation detector array for IAEA neutron multiplicity counting (NMC) applications. This effort will combine newly developed modeling methodologies and recently acquired high-efficiency stilbene detector units to quantitatively compare the prototype system performance with the conventional He-3 counters and liquid scintillator alternatives.
The Simbol-X Low Energy Detector
NASA Astrophysics Data System (ADS)
Lechner, Peter
2009-05-01
For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.
The AGILE silicon tracker: testbeam results of the prototype silicon detector
NASA Astrophysics Data System (ADS)
Barbiellini, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Prest, M.; Tavani, M.; Vallazza, E.
2002-09-01
AGILE (Light Imager for Gamma-ray Astrophysics) is a small scientific satellite for the detection of cosmic γ-ray sources in the energy range 30MeV-50GeV with a very large field of view (1/4 of the sky). It is planned to be operational in the years 2003-2006, a period in which no other γ-ray mission in the same energy range is foreseen. The heart of the AGILE scientific instrument is a silicon-tungsten tracker made of 14 planes of single sided silicon detectors for a total of 43000 readout channels. Each detector has a dimension of 9.5×9.5cm2 and a thickness of 410μm. We present here a detailed description of the performance of the detector prototype during a testbeam period at the CERN PS in May 2000. The Tracker performance is described in terms of position resolution and signal-to-noise ratio for on and off-axis incident charged particles. The measured 40μm resolution for a large range of incident angles will provide an excellent angular resolution for cosmic γ-ray imaging.
A beam monitor based on MPGD detectors for hadron therapy
NASA Astrophysics Data System (ADS)
Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.
2018-02-01
Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.
Technical Note: Detective quantum efficiency simulation of a-Se imaging detectors using ARTEMIS.
Fang, Yuan; Ito, Takaaki; Nariyuki, Fumito; Kuwabara, Takao; Badano, Aldo; Karim, Karim S
2017-08-01
This work studies the detective quantum efficiency (DQE) of a-Se-based solid state x-ray detectors for medical imaging applications using ARTEMIS, a Monte Carlo simulation tool for modeling x-ray photon, electron and charged carrier transport in semiconductors with the presence of applied electric field. ARTEMIS is used to model the signal formation process in a-Se. The simulation model includes x-ray photon and high-energy electron interactions, and detailed electron-hole pair transport with applied detector bias taking into account drift, diffusion, Coulomb interactions, recombination and trapping. For experimental validation, the DQE performance of prototype a-Se detectors is measured following IEC Testing Standard 62220-1-3. Comparison of simulated and experimental DQE results show reasonable agreement for RQA beam qualities. Experimental validation demonstrated within 5% percentage difference between simulation and experimental DQE results for spatial frequency above 0.25 cycles/mm using uniform applied electric field for RQA beam qualities (RQA5, RQA7 and RQA9). Results include two different prototype detectors with thicknesses of 240 μm and 1 mm. ARTEMIS can be used to model the DQE of a-Se detectors as a function of x-ray energy, detector thickness, and spatial frequency. The ARTEMIS model can be used to improve understanding of the physics of x-ray interactions in a-Se and in optimization studies for the development of novel medical imaging applications. © 2017 American Association of Physicists in Medicine.
Wilman, Edward S; Gardiner, Sara H; Nomerotski, Andrei; Turchetta, Renato; Brouard, Mark; Vallance, Claire
2012-01-01
A new type of ion detector for mass spectrometry and general detection of low energy ions is presented. The detector consists of a scintillator optically coupled to a single-photon avalanche photodiode (SPAD) array. A prototype sensor has been constructed from a LYSO (Lu(1.8)Y(0.2)SiO(5)(Ce)) scintillator crystal coupled to a commercial SPAD array detector. As proof of concept, the detector is used to record the time-of-flight mass spectra of butanone and carbon disulphide, and the dependence of detection sensitivity on the ion kinetic energy is characterised.
Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability
NASA Technical Reports Server (NTRS)
Baird, J.; Havemann, R. H.; Fults, R. D.
1973-01-01
The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.
Weaver, Mitchell T; Lynch, Kyle B; Zhu, Zaifang; Chen, Huang; Lu, Joann J; Pu, Qiaosheng; Liu, Shaorong
2017-04-01
Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-micrometer capillary on-column detection are not commercially available. In this paper, we describe in details how to construct a confocal LIF detector to address this issue. We characterize the detector by determining its limit of detection (LOD), linear dynamic range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a small background signal drift (~1.2-fold of the root mean square noise) are obtained. For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper alignment is essential. We present a simple protocol to align the capillary with the optical system and use the position-lock capability of a translation stage to fix the capillary in position during the experiment. To demonstrate the feasibility of using this detector for narrow capillary systems, we build a 2-μm-i.d. capillary flow injection analysis (FIA) system using the newly developed LIF prototype as a detector and obtain an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by bare narrow capillary - hydrodynamic chromatography and use the LIF prototype to monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also the quantitative information of all DNA fragments. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bianco, M.; Martoiu, S.; Sidiropoulou, O.; Zibell, A.
2015-12-01
A Micromegas (MM) quadruplet prototype with an active area of 0.5 m2 that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible Read Out Driver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Software, a dedicated Micromegas segment has been implemented, in order to include the detector inside the main ATLAS DAQ partition. A full set of tests, on the hardware and software aspects, is presented.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.
2017-03-01
X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.
Si:Bi switched photoconducttor infrared detector array
NASA Technical Reports Server (NTRS)
Eakin, C. E.
1983-01-01
A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.
Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R
2014-11-01
To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found.
NASA Astrophysics Data System (ADS)
Ingram, Russ; Sikes, John
2010-04-01
This paper shall demonstrate the results of a prototype system to detect explosive objects and obscured contaminated targets. By combining a high volume sampling nozzle with an inline 2-stage preconcentrator and a Fido, greater standoff is achieved than with the Fido alone. The direct application of this system is on the Autonomous Mine Detection System (AMDS) but could be deployed on a large variety of robotic platforms. It is being developed under the auspices of the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate, Countermine Division. This device is one of several detection tools and technologies to be used on the AMDS. These systems will have multiple, and at times, overlapping objectives. One objective is trace detection on the surface of an unknown potential target. By increasing the standoff capabilities of the detector, the fine manipulation of the robot deploying the detector is less critical. Current detectors used on robotic systems must either be directly in the vapor plume or make direct contact with the target. By increasing the standoff, detection is more easily and quickly achieved. The end result detector must overcome cross-contamination, sample throughput, and environmental issues. The paper will provide preliminary results of the prototype system to include data, and where feasible, video of testing results.
Performance of a large size triple GEM detector at high particle rate for the CBM Experiment at FAIR
NASA Astrophysics Data System (ADS)
Adak, Rama Prasad; Kumar, Ajit; Dubey, Anand Kumar; Chattopadhyay, Subhasis; Das, Supriya; Raha, Sibaji; Samanta, Subhasis; Saini, Jogender
2017-02-01
In CBM Experiment at FAIR, dimuons will be detected by a Muon Chamber (MUCH) consisting of segmented absorbers of varying widths and tracking chambers sandwiched between the absorber-pairs. In this fixed target heavy-ion collision experiment, operating at highest interaction rate of 10 MHz for Au+Au collision, the inner region of the 1st detector will face a particle rate of 1 MHz/cm2. To operate at such a high particle density, GEM technology based detectors have been selected for the first two stations of MUCH. We have reported earlier the performance of several small-size GEM detector prototypes built at VECC for use in MUCH. In this work, we report on a large GEM prototype tested with proton beam of momentum 2.36 GeV/c at COSY-Jülich Germany. The detector was read out using nXYTER operated in self-triggering mode. An efficiency higher than 96% at ΔVGEM = 375.2 V was achieved. The variation of efficiency with the rate of incoming protons has been found to vary within 2% when tested up to a maximum rate of 2.8 MHz/cm2. The gain was found to be stable at high particle rate with a maximum variation of ∼9%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St James, S; Argento, D; DeWitt, D
Purpose: Fast neutron therapy is offered at the University of Washington Medical Center for treatment of selected cancers. The hardware and control systems of the UW Clinical Neutron Therapy System are undergoing upgrades to enable delivery of IMNT. To clinically implement IMNT, dose verification tools need to be developed. We propose a portal imaging system that relies on the creation of positron emitting isotopes ({sup 11}C and {sup 15}O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects the annihilationmore » photons. The pattern of activity produced in the plate provides information to reconstruct the neutron fluence map that can be compared to fluence maps from Monte Carlo (MCNP) simulations to verify treatment delivery. We have previously performed Monte Carlo simulations of the portal imaging system (GATE simulations) and the beam line (MCNP simulations). In this work, initial measurements using a prototype system are presented. Methods: Custom electronics were developed for BGO detectors read out with photomultiplier tubes (previous generation PET detectors from a CTI ECAT 953 scanner). Two detectors were placed in coincidence, with a detector separation of 2 cm. Custom software was developed to create the crystal look up tables and perform a limited angle planar reconstruction with a stochastic normalization. To test the initial capabilities of the system, PMMA squares were irradiated with neutrons at a depth of 1.5 cm and read out using the prototype system. Doses ranging from 10–200 cGy were delivered. Results: Using the prototype system, dose differences in the therapeutic range could be determined. Conclusion: The prototype portal imaging system is capable of detecting neutron doses as low as 10–50 cGy and shows great promise as a patient QA tool for IMNT.« less
Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro
2016-03-01
KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported.
Reproducibility and calibration of MMC-based high-resolution gamma detectors
Bates, C. R.; Pies, C.; Kempf, S.; ...
2016-07-15
Here, we describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.
Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Mount, G. H.; Bybee, R. L.
1979-01-01
The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.
Small Pixel Hybrid CMOS X-ray Detectors
NASA Astrophysics Data System (ADS)
Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell
2018-01-01
Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).
A flexible, small positron emission tomography prototype for resource-limited laboratories
NASA Astrophysics Data System (ADS)
Miranda-Menchaca, A.; Martínez-Dávalos, A.; Murrieta-Rodríguez, T.; Alva-Sánchez, H.; Rodríguez-Villafuerte, M.
2015-05-01
Modern small-animal PET scanners typically consist of a large number of detectors along with complex electronics to provide tomographic images for research in the preclinical sciences that use animal models. These systems can be expensive, especially for resource-limited educational and academic institutions in developing countries. In this work we show that a small-animal PET scanner can be built with a relatively reduced budget while, at the same time, achieving relatively high performance. The prototype consists of four detector modules each composed of LYSO pixelated crystal arrays (individual crystal elements of dimensions 1 × 1 × 10 mm3) coupled to position-sensitive photomultiplier tubes. Tomographic images are obtained by rotating the subject to complete enough projections for image reconstruction. Image quality was evaluated for different reconstruction algorithms including filtered back-projection and iterative reconstruction with maximum likelihood-expectation maximization and maximum a posteriori methods. The system matrix was computed both with geometric considerations and by Monte Carlo simulations. Prior to image reconstruction, Fourier data rebinning was used to increase the number of lines of response used. The system was evaluated for energy resolution at 511 keV (best 18.2%), system sensitivity (0.24%), spatial resolution (best 0.87 mm), scatter fraction (4.8%) and noise equivalent count-rate. The system can be scaled-up to include up to 8 detector modules, increasing detection efficiency, and its price may be reduced as newer solid state detectors become available replacing the traditional photomultiplier tubes. Prototypes like this may prove to be very valuable for educational, training, preclinical and other biological research purposes.
Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J
2012-02-01
Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using monochromatic x-rays above and below the K-edge of selenium. The MTF is poorer above the K-edge by an amount consistent with theoretical expectations.
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2014-09-01
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.
NASA Astrophysics Data System (ADS)
de Asmundis, R.; Barbarino, G.; Barbato, F. C. T.; Campajola, L.; De Rosa, G.; Fiorillo, G.; Migliozzi, P.; Mollo, C. M.; Rossi, B.; Vivolo, D.
2014-04-01
We invented (2007) the VSiPMT, a novel, high-gain, photo detector device and we publically proposed this idea in an International Conference for the first time at the 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08) in Siena, triggering deep discussions on the feasibility of the device itself and on the convenience of such a solution. After several years spent in designing, evaluation, tests and eventually negotiations with some suppliers, we finally got a couple of prototypes of the Vacuum Silicon Photo Multiplier Tube (VSiPMT) made under our specifications by Hamamatsu. We present in this paper the most important results of characterization tests of the first prototypes of the VSiPMT.
First results of the front-end ASIC for the strip detector of the PANDA MVD
NASA Astrophysics Data System (ADS)
Quagli, T.; Brinkmann, K.-T.; Calvo, D.; Di Pietro, V.; Lai, A.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Wheadon, R.; Zambanini, A.
2017-03-01
PANDA is a key experiment of the future FAIR facility and the Micro Vertex Detector (MVD) is the innermost part of its tracking system. PASTA (PAnda STrip ASIC) is the readout chip for the strip part of the MVD. The chip is designed to provide high resolution timestamp and charge information with the Time over Threshold (ToT) technique. Its architecture is based on Time to Digital Converters with analog interpolators, with a time bin width of 50 ps. The chip implements Single Event Upset (SEU) protection techniques for its digital parts. A first full-size prototype with 64 channels was produced in a commercial 110 nm CMOS technology and the first characterizations of the prototype were performed.
Test of the CLAS12 RICH large-scale prototype in the direct proximity focusing configuration
Anefalos Pereira, S.; Baltzell, N.; Barion, L.; ...
2016-02-11
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed withmore » the hadron beam of the CERN T9 experimental hall for the direct detection configuration. As a result, the tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.« less
Precision Timing with shower maximum detectors based on pixelated micro-channel plates
NASA Astrophysics Data System (ADS)
Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Spiropulu, M.; Trevor, J.; Pena, C.; Presutti, F.; Los, S.
2017-11-01
Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. In this report we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beam measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.
The NEW detector: construction, commissioning and first results
NASA Astrophysics Data System (ADS)
Nebot-Guinot, M.;
2017-09-01
NEXT (Neutrino Experiment with a Xenon TPC) is a neutrinoless double-beta (ββ0ν) decay experiment at the Canfranc Underground Laboratory (LSC). It seeks to detect the ββ0ν decay of Xe-136 using a high pressure xenon gas TPC with electroluminescent (EL) amplification. The NEXT-White (NEW) detector, with an active xenon mass of about 10 kg at 15 bar, is the first NEXT prototype installed at LSC. It implements the NEXT detector concept tested in smaller prototypes using the same radiopure sensors and materials that will be used in the future NEXT-100, serving as a benchmark for technical solutions as well as for the signal selection and background rejection algorithms. NEW is currently under commissioning at the LSC. In this poster proceedings we describe the technical solutions adopted for NEW construction, the lessons learned from the commissioning phase, and the first results on energy calibration and energy resolution obtained with low-energy radioactive source data.
NASA Astrophysics Data System (ADS)
Staib, Michael; Bhopatkar, Vallary; Bittner, William; Hohlmann, Marcus; Locke, Judson; Twigger, Jessie; Gnanvo, Kondo
2012-03-01
Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and are operating a compact Muon Tomography Station (MTS) that tracks muons with eight 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a cubic-foot imaging volume. A point-of-closest-approach algorithm applied to reconstructed incident and exiting tracks is used to create a tomographic reconstruction of the material within the active volume. We discuss the performance of this MTS prototype including characterization and commissioning of the GEM detectors and the data acquisition systems. We also present experimental tomographic images of small high-Z objects including depleted uranium with and without shielding and discuss the performance of material discrimination using this method.
Precision Timing with shower maximum detectors based on pixelated micro-channel plates
Bornheim, A.; Apresyan, A.; Ronzhin, A.; ...
2017-11-27
Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less
Fast-Neutron Survey With Compact Plastic Scintillation Detectors.
Preston, Rhys M; Tickner, James R
2017-07-01
With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, H.; Imura, A.; Furuta, Y.
Recently, technique of Gadolinium loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and 'nuclear Gain (GA)' for IAEA safeguards. For the practical use, R and D of the 1 ton class compact detector, which is measurable above ground, is necessary. Especially, it is important to reduce much amount of fast neutron background induced by cosmic muons with data analysis for the measurement above ground. We developed a prototype of the Gd-LS detector with 200 L of the target volume, which has Pulse Shape Discrimination (PSD) ability for the fast neutronmore » reduction with data analysis. Usually, it is well known that it is difficult to keep high fast neutron reduction power of PSD with the large volume size such as the neutrino reactor monitor. We evaluated the PSD ability of our prototype with real fast neutrons induced by the muons in our laboratory above ground, and we could confirm to keep the high fast neutron reduction power with even our large detector size. (authors)« less
Open ISEmeter: An open hardware high-impedance interface for potentiometric detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvador, C.; Carbajo, J.; Mozo, J. D., E-mail: jdaniel.mozo@diq.uhu.es
In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA{sup +}-DS{supmore » −}). The experimental measures of emf indicate Nernstian behaviour with the CTA{sup +} content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation.« less
Precision Timing with shower maximum detectors based on pixelated micro-channel plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornheim, A.; Apresyan, A.; Ronzhin, A.
Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less
NASA Astrophysics Data System (ADS)
Coppola, M.; Bezzecchi, F.; Gulisano, A. M.; Masías-Meza, J. J.; Areso, O.; Ramelli, M.; Dasso, S.; LAGO Collaboration
2016-08-01
The study of low energy cosmic particles allows to analyze several aspects of major interest for space weather. Ground detectors permit to observe secundary particles produced during the cascades developed in the atmosphere. The characterization of a prototype for a water Cherenkov radiation particles detector, in the frame of the LAGO collaboration (Latin American Giant Observatory), is presented in this work. The collaboration plans to install this detector at the LAGO antarctic site. The developed acquisition system and the method used to make the energy callibration of the detector are detailed here, as also corrections for atmospheric effects.
The High Energy Detector of Simbol-X
NASA Astrophysics Data System (ADS)
Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Le Mer, I.; Pinsard, F.; Cara, C.; Goetschy, A.; Martignac, J.; Tauzin, G.; Hervé, S.; Laurent, P.; Chipaux, R.; Rio, Y.; Fontignie, J.; Horeau, B.; Authier, M.; Ferrando, P.
2009-05-01
The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.
Modular detector for deep underwater registration of muons and muon groups
NASA Technical Reports Server (NTRS)
Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.
1985-01-01
Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.
Development of a new first-aid biochemical detector
NASA Astrophysics Data System (ADS)
Hu, Jingfei; Liao, Haiyang; Su, Shilin; Ding, Hao; Liu, Suquan
2016-10-01
The traditional biochemical detector exhibits poor adaptability, inconvenient carrying and slow detection, which can't meet the needs of first-aid under field condition like natural or man-made disasters etc. Therefore a scheme of first-aid biochemical detector based on MOMES Micro Spectrometer, UV LED and Photodiode was proposed. An optical detection structure combined continuous spectrum sweep with fixed wavelength measurement was designed, which adopted mobile detection optical path consisting of Micro Spectrometer and Halogen Lamp to detect Chloride (Cl-), Creatinine (Cre), Glucose (Glu), Hemoglobin (Hb). The UV LED and Photodiode were designed to detect Potassium (K-), Carbon dioxide (CO2), Sodium (Na+). According to the field diagnosis and treatment requirements, we designed the embedded control hardware circuit and software system, the prototype of first-aid biochemical detector was developed and the clinical trials were conducted. Experimental results show that the sample's absorbance repeatability is less than 2%, the max coefficient of variation (CV) in the batch repeatability test of all 7 biochemical parameters in blood samples is 4.68%, less than the clinical requirements 10%, the correlation coefficient (R2) in the clinical contrast test with AU5800 is almost greater than 0.97. To sum up, the prototype meets the requirements of clinical application.
Timing resolution studies of the optical part of the AFP Time-of-flight detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chytka, L.; Avoni, G.; Brandt, A.
We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV π + particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgroundsmore » that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics.« less
Timing resolution studies of the optical part of the AFP Time-of-flight detector
Chytka, L.; Avoni, G.; Brandt, A.; ...
2018-04-02
We present results of the timing performance studies of the optical part and front-end electronics of the time-of-flight subdetector prototype for the ATLAS Forward Proton (AFP) detector obtained during the test campaigns at the CERN-SPS test-beam facility (120 GeV π + particles) in July 2016 and October 2016. The time-of-flight (ToF) detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p → p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgroundsmore » that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for the measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through them. The emitted Cherenkov photons are detected by a multi-anode micro-channel plate photomultiplier tube (MCP-PMT) and processed by fast electronics.« less
Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Oleksiy
2006-04-01
The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5˜TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bonding operation, the component testing is done to reject the non-functional or poorly performing chips and hybrids. The LabView-controlled test station for this operation has been built at Utrecht University and was successfully used for mass production acceptance tests of chips and hybrids at three production labs. The functionality of the chip registers, bonding quality and analogue functionality of the chips and hybrids are addressed in the test. The test routines were optimized to minimize the testing time to make sure that testing is not a bottleneck of the mass production. For testing of complete modules the laser scanning station with 1060 nm diode laser has been assembled at Utrecht University. The testing method relies of the fact that a response of the detector module to a short collimated laser beam pulse resembles a response to a minimum ionizing particle. A small beam spot size (˜7 μm ) allows to deposit the charge in a narrow region and measure the response of individual detector channels. First several module prototypes have been studied with this setup, the strip gain and charge sharing function have been measured, the later is compared with the model predictions. It was also shown that for a laser beam of a high monochromaticity, interference in the sensor bulk significantly modulates the deposited charge and introduces a systematic error of the gain measurement. Signatures of disconnected strips and pinholes defects have been observed, the response of the disconnected strips to the laser beam has been correlated with the noise measurements. Beam test of four prototype modules have been carried out at PS accelerator at CERN using 7 GeV/c pions. It was demonstrated that the modules provide an excellent signal-to-noise ratio in the range 40-75. The estimated spatial resolution for the normally incident tracks is about 18 μm using the center-of-gravity cluster reconstruction method. A non-iterative method for spatial resolution determination was developed, it was shown that in order to determine the resolution of each individual detector in the telescope, the telescope should consist of at least 5 detectors. The detectors showed high detection efficiency, in the order 99%. It was shown that the particle loss occurs mostly in the defected regions near the noisy strips or strips with a very low gain. The efficiency of the sensor area with nominal characteristics is consistent with 100%.
Design and characterization of a small muon tomography system
NASA Astrophysics Data System (ADS)
Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun
2015-02-01
Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.
Independent Testing of JWST Detector Prototypes
NASA Technical Reports Server (NTRS)
Figer, D. F.; Rauscher, B. J.; Regan, M. W.; Balleza, J.; Bergeron, L.; Morse, E.; Stockman, H. S.
2003-01-01
The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (MU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors under a NASA Grant. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z approx. 10 - 20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6 - 5 approx. mum bandpass and in an ultra-low background (less than 0.01 e'/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the IDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.
Independent Testing of JWST Detector Prototypes
NASA Technical Reports Server (NTRS)
Figer, Donald F.; Rauscher, Bernie J.; Regan, Michael W.; Morse, Ernie; Balleza, Jesus; Bergeron, Louis; Stockman, H. S.
2004-01-01
The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (JHU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z is approximately 10-20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6-5 micron bandpass and in an ultra-low background (less than 0.01 e(-)/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the LDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolison, L; Samant, S; Baciak, J
Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection inmore » industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is based upon work supported under an Integrated University Program Graduate Fellowship sponsored by the Department of Energy Office of Nuclear Energy.« less
CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)
NASA Astrophysics Data System (ADS)
Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.
2016-11-01
A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.
Performance evaluation of a modular detector unit for X-ray computed tomography.
Guo, Zhe; Tang, Zhiwei; Wang, Xinzeng; Deng, Mingliang; Hu, Guangshu; Zhang, Hui
2013-04-18
A research prototype CT scanner is currently under development in our lab. One of the key components in this project is the CT detector. This paper describes the design and performance evaluation of the modular CT detector unit for our proposed scanner. It consists of a Photodiode Array Assembly which captures irradiating X-ray photons and converts the energy into electrical current, and a mini Data Acquisition System which performs current integration and converts the analog signal into digital samples. The detector unit can be easily tiled together to form a CT detector. Experiments were conducted to characterize the detector performance both at the single unit level and system level. The noise level, linearity and uniformity of the proposed detector unit were reported and initial imaging studies were also presented which demonstrated the potential application of the proposed detector unit in actual CT scanners.
Ning, Ruola; Tang, Xiangyang; Conover, David; Yu, Rongfeng
2003-07-01
Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using different phantoms mainly in the central plane of the cone beam reconstruction. Finally, the reconstruction accuracy of using the circle-plus-two-arcs orbit and its related filtered backprojection cone beam volume CT reconstruction algorithm was evaluated with a specially designed disk phantom. The results obtained using the new cone beam acquisition orbit and the related reconstruction algorithm were compared to those obtained using a single-circle cone beam geometry and Feldkamp's algorithm in terms of reconstruction accuracy. The results of the study demonstrate that the circle-plus-two-arcs cone beam orbit is achievable in practice. Also, the reconstruction accuracy of cone beam reconstruction is significantly improved with the circle-plus-two-arcs orbit and its related exact CB-FPB algorithm, as compared to using a single circle cone beam orbit and Feldkamp's algorithm.
Studies of prototype DEPFET sensors for the Wide Field Imager of Athena
NASA Astrophysics Data System (ADS)
Treberspurg, Wolfgang; Andritschke, Robert; Bähr, Alexander; Behrens, Annika; Hauser, Günter; Lechner, Peter; Meidinger, Norbert; Müller-Seidlitz, Johannes; Treis, Johannes
2017-08-01
The Wide Field Imager (WFI) of ESA's next X-ray observatory Athena will combine a high count rate capability with a large field of view, both with state-of-the-art spectroscopic performance. To meet these demands, specific DEPFET active pixel detectors have been developed and operated. Due to the intrinsic amplification of detected signals they are best suited to achieve a high speed and low noise performance. Different fabrication technologies and transistor geometries have been implemented on a dedicated prototype production in the course of the development of the DEPFET sensors. The main modifications between the sensors concern the shape of the transistor gate - regarding the layout - and the thickness of the gate oxide - regarding the technology. To facilitate the fabrication and testing of the resulting variety of sensors the presented studies were carried out with 64×64 pixel detectors. The detector comprises a control ASIC (Switcher-A), a readout ASIC (VERITAS- 2) and the sensor. In this paper we give an overview on the evaluation of different prototype sensors. The most important results, which have been decisive for the identification of the optimal fabrication technology and transistor layout for subsequent sensor productions are summarized. It will be shown that the developments result in an excellent performance of spectroscopic X-ray DEPFETs with typical noise values below 2.5 ENC at 2.5 μs/row.
Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.
Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D
2004-09-01
A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.
Characterization of the ETEL D784UKFLB 11 in. photomultiplier tube
NASA Astrophysics Data System (ADS)
Barros, N.; Kaptanoglu, T.; Kimelman, B.; Klein, J. R.; Moore, E.; Nguyen, J.; Stavreva, K.; Svoboda, R.
2017-04-01
Water Cherenkov and scintillator detectors are a critical tool for neutrino physics. Their large size, low threshold, and low operational cost make them excellent detectors for long baseline neutrino oscillations, proton decay, supernova and solar neutrinos, double beta decay, and ultra-high energy astrophysical neutrinos. Proposals for a new generation of large detectors rely on the availability of large format, fast, cost-effective photomultiplier tubes. The Electron Tubes Enterprises, Ltd (ETEL) D784KFLB 11 in. Photomultiplier Tube has been developed for large neutrino detectors. We have measured the timing characteristics, relative efficiency, and magnetic field sensitivity of the first fifteen prototypes.
A T0/Trigger detector for the External Target Experiment at CSR
NASA Astrophysics Data System (ADS)
Hu, D.; Shao, M.; Sun, Y.; Li, C.; Chen, H.; Tang, Z.; Zhang, Y.; Zhou, J.; Zeng, H.; Zhao, X.; You, W.; Song, G.; Deng, P.; Lu, J.; Zhao, L.
2017-06-01
A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the external target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision. Monte-Carlo simulation shows a time resolution of several tens of picosecond can be achieved at central collisions. The experimental tests have been performed for this prototype detector at the CSR-ETE. The preliminary results are shown to demonstrate the performance of the T0/Trigger detector.
Observation of Air Shower in Uijeongbu Area using the COREA Prototype Detector System
NASA Astrophysics Data System (ADS)
Cho, Wooram; Shin, Jae-ik; Kwon, Youngjoon; Yang, Jongmann; Nam, Shinwoo; Park, Il H.; Cheon, ByungGu; Kim, Hang Bae; Bhang, Hyoung Chan; Park, Cheolyoung; Kim, Gyhyuk; Choi, Wooseok; Hwang, MyungJin; Shin, Gwangsik
2018-06-01
We report the study of high energy cosmic rays in Uijeongbu area using a cosmic-ray detector array system. The array consists of three detector stations, each of which contains a set of three scintillators and PMTs, a GPS antenna along with data acquisition system. To identify air shower signals originating from a single cosmic ray, time coincidence information is used. We devised a method for estimating the energy range of air shower data detected by an array of only three detectors, using air shower simulation and citing already known energy spectrum. Also, Fast Fourier Transform(FFT) was applied to study isotropy.
Belle II silicon vertex detector
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration
2016-09-01
The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.
Development of the ARICH monitor system for the Belle II experiment
NASA Astrophysics Data System (ADS)
Hataya, K.; Adachi, I.; Dolenec, R.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.
2017-12-01
The Belle II detector is under construction at KEK in Japan. In the forward endcap region of the Belle II detector, particle identification (PID) is performed by the Aerogel Ring Imaging Cherenkov (ARICH) counter composed of aerogel tiles and 144-channel Hybrid Avalanche Photo-Detectors (HAPDs). The photon detection efficiency of the photosensor is important for a stable operation of the ARICH. To examine the performance of the HAPDs periodically, a monitor system using scattered photons injected by optical fibers is being developed. In this paper, we report the test using the prototype monitor system and the tests with a partially built ARICH detector.
NASA Astrophysics Data System (ADS)
Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.
2018-04-01
We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at < 1 mm position resolution and O(10) eV energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.
Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science
Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Huthwelker, T.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.
2016-01-01
JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e− electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a ‘software mask’ or a ‘cluster finding’ algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system. PMID:26917124
Scintillator tiles read out with silicon photomultipliers
NASA Astrophysics Data System (ADS)
Pooth, O.; Radermacher, T.; Weingarten, S.; Weinstock, L.
2015-10-01
A detector prototype based on a fast plastic scintillator read out with silicon photomultipliers is presented. All studies have been done with cosmic muons and focus on parameter optimization such as coupling the SiPM to the scintillator or wrapping the scintillator with reflective material. The prototype shows excellent results regarding the light-yield and offers a detection efficiency of 99.5% with a signal purity of 99.9% for cosmic muons.
NASA Astrophysics Data System (ADS)
Nishimura, K.; Dey, B.; Aston, D.; Leith, D. W. G. S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G. S.; Va'vra, J.
2013-02-01
We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from 384 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ∼2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ∼1.5 mrad angular resolution and muon energy of Emuon> 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of reconstruction ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.
J-PET detector system for studies of the electron-positron annihilations
NASA Astrophysics Data System (ADS)
Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2016-11-01
Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.
Technical instrumentation R&D for ILD SiW ECAL large scale device
NASA Astrophysics Data System (ADS)
Balagura, V.
2018-03-01
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e‑ ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu
2014-09-15
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less
Design and Prototyping of a High Granularity Scintillator Calorimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zutshi, Vishnu
A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.
The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.
Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.; ...
2016-12-28
The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.
A low-power CMOS readout IC design for bolometer applications
NASA Astrophysics Data System (ADS)
Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar
2017-02-01
A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.
NASA Astrophysics Data System (ADS)
Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.
2016-12-01
The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.
OSIRIS-REx OCAMS detector assembly characterization
NASA Astrophysics Data System (ADS)
Hancock, J.; Crowther, B.; Whiteley, M.; Burt, R.; Watson, M.; Nelson, J.; Fellows, C.; Rizk, B.; Kinney-Spano, E.; Perry, M.; Hunten, M.
2013-09-01
The OSIRIS-REx asteroid sample return mission carries a suite of three cameras referred to as OCAMS. The Space Dynamics Laboratory (SDL) at Utah State University is providing the CCD-based detector assemblies for OCAMS to the Lunar Planetary Lab (LPL) at the University of Arizona. Working with the LPL, SDL has designed the electronics to operate a 1K by 1K frame transfer Teledyne DALSA Multi-Pinned Phase (MPP) CCD. The detector assembly electronics provides the CCD clocking, biasing, and digital interface with the OCAMS payload Command Control Module (CCM). A prototype system was built to verify the functionality of the detector assembly design and to characterize the detector system performance at the intended operating temperatures. The characterization results are described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendenhall, M.; Bowden, N.; Brodsky, J.
Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculatingmore » generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.« less
Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman
2014-12-01
The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra- and postoperative follow-up imaging.
ECLAIRs detection plane: current state of development
NASA Astrophysics Data System (ADS)
Lacombe, K.; Pons, R.; Amoros, C.; Atteia, J.-L.; Barret, D.; Billot, M.; Bordon, S.; Cordier, B.; Gevin, O.; Godet, O.; Gonzalez, F.; Houret, B.; Mercier, K.; Mandrou, P.; Marty, W.; Nasser, G.; Rambaud, D.; Ramon, P.; Rouaix, G.; Waegebaert, V.
2014-07-01
ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate Gamma-ray bursts (GRBs) in near real time in the 4-150 keV energy band. The design of ECLAIRs has been mainly driven by the objective of achieving a low-energy threshold of 4 keV, unprecedented for this type of instrument. The detection plane is an assembly of 6400 Schottky CdTe semiconductor detectors of size 4x4x1 mm3 organized on elementary hybrid matrices of 4x8 detectors. The detectors will be polarized from -300V to -500V and operated at -20°C to reduce both the leakage current and the polarization effect induced by the Schottky contact. The remarkable low-energy threshold homogeneity required for the detection plane has been achieved thanks to: i) an extensive characterization and selection of the detectors, ii) the development of a specific low-noise 32-channel ASIC, iii) the realization of an innovative hybrid module composed of a thick film ceramic (holding 32 CdTe detectors with their high voltage grid), associated to an HTCC ceramic (housing the ASIC chip within an hermetic enclosure). In this paper, we start describing a complete hybrid matrix, and then the manufacturing of a first set of 50 matrices (representing 1600 detectors, i.e. a quarter of ECLAIRs detector's array). We show how this manufacturing allowed to validate the different technologies used for this hybridization, as well as the industrialization processes. During this phase, we systematically measured the leakage current on Detector Ceramics after an outgassing, and the Equivalent Noise Charge (ENC) for each of the 32 channels on ASIC Ceramics, in order to optimize the coupling of the two ceramics. Finally, we performed on each hybrid module, spectral measurements at -20°C in our vacuum chamber, using several calibrated radioactive sources (241Am and 55Fe), to check the performance homogeneity of the 50 modules. The results demonstrated that the 32-detector hybrid matrices presented homogeneous spectral properties and that a lowenergy threshold of 4 keV for each detector could be reached. In conclusion, our hybrid module has obtained the performance required at the SVOM mission level and successfully withstood the space environment tests (TRL 6/7). This development phase has given us the opportunity to build a detector's array prototype (Engineering Model) equipped with 50 hybrid modules. Thanks to this prototype we are in the process of validating a complete detection chain (from the detectors to the backend electronics) and checking the performance. In addition it enables us to consolidate the instrument's mechanical and thermal design, and to write preliminary versions of the quality procedures required for integration, functional tests and calibration steps. At the end of this prototype development and testing, we will be ready to start the detailed design of the detection plane Flight Model.
First scientific application of the membrane cryostat technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, David; Adamowski, Mark; Baller, Bruce R.
2014-01-29
We report on the design, fabrication, performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with IHI Corporation (IHI). Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon, and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation and using only a controlled gaseous argon purge; to demonstrate that we canmore » achieve and maintain the purity requirements of the liquid argon during filling, purification, and maintenance mode using mole sieve and copper filters from the Liquid Argon Purity Demonstrator (LAPD) R and D project. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion oxygen equivalent. This paper gives the requirements, design, construction, and performance of the LBNE membrane cryostat prototype, with experience and results important to the development of the LBNE detector.« less
Recent development on the realization of a 1-inch VSiPMT prototype
NASA Astrophysics Data System (ADS)
Barbato, F. C. T.; Barbarino, G.; Campajola, L.; Di Capua, F.; Mollo, C. M.; Valentini, A.; Vivolo, D.
2017-03-01
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design for a revolutionary hybrid photodetector. The idea, born with the purpose to use a SiPM for large detection volumes, consists in replacing the classical dynode chain with a SiPM. In this configuration, we match the large sensitive area of a photocathode with the performances of the SiPM technology, which therefore acts like an electron detector and so like a current amplifier. The excellent photon counting capability, fast response, low power consumption and great stability are among the most attractive features of the VSiPMT. In order to realize such a device we first studied the feasibility of this detector both from theoretical and experimental point of view, by implementing a Geant4-based simulation and studying the response of a special non-windowed MPPC by Hamamatsu with an electron beam. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes with a photocathode of 3mm diameter. We present the progress on the realization of a 1-inch prototype and the preliminary tests we are performing on it.
Novel scintillation detector design and performance for proton radiography and computed tomography.
Bashkirov, V A; Schulte, R W; Hurley, R F; Johnson, R P; Sadrozinski, H F-W; Zatserklyaniy, A; Plautz, T; Giacometti, V
2016-02-01
Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0-260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs.
Novel scintillation detector design and performance for proton radiography and computed tomography
Schulte, R. W.; Hurley, R. F.; Johnson, R. P.; Sadrozinski, H. F.-W.; Zatserklyaniy, A.; Plautz, T.; Giacometti, V.
2016-01-01
Purpose: Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. Methods: A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. Results: The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0–260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. Conclusions: The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs. PMID:26843230
Silicon technologies for the CLIC vertex detector
NASA Astrophysics Data System (ADS)
Spannagel, S.
2017-06-01
CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C.G.; De Geronimo, G.; Kirkham, R.
2009-11-13
The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less
Performance of BEBE-prototype: A BEam-BEam counter prototype for the MPD-NICA experiment at JINR
NASA Astrophysics Data System (ADS)
Fernández, Cristian Heber Zepeda
2018-01-01
In this work we show the arrival time resolution for the Beam Monitoring Detector (BMD). We made the study for Au+Au collision at √s = 8 Gev and a smearing of σ = 300 cm. The arrival time resolution we found is Δσ = 57.982 ± 0.509 ps. We show preliminary results of the time resolution for a cell of the BMD.
Event reconstruction for the CBM-RICH prototype beamtest data in 2014
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2017-12-01
The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net baryon densities and moderate temperatures in A+A collisions from 2 to 11 AGeV (SIS100). Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). A real size prototype of the RICH detector was tested together with other CBM groups at the CERN PS/T9 beam line in 2014. For the first time the data format used the FLESnet protocol from CBM delivering free streaming data. The analysis was fully performed within the CBMROOT framework. In this contribution the data analysis and the event reconstruction methods which were used for obtained data are discussed. Rings were reconstructed using an algorithm based on the Hough Transform method and their parameters were derived with high accuracy by circle and ellipse fitting procedures. We present results of the application of the presented algorithms. In particular we compare results with and without Wavelength shifting (WLS) coating.
Prototype AEGIS: A Pixel-Array Readout Circuit for Gamma-Ray Imaging.
Barber, H Bradford; Augustine, F L; Furenlid, L; Ingram, C M; Grim, G P
2005-07-31
Semiconductor detector arrays made of CdTe/CdZnTe are expected to be the main components of future high-performance, clinical nuclear medicine imaging systems. Such systems will require small pixel-pitch and much larger numbers of pixels than are available in current semiconductor-detector cameras. We describe the motivation for developing a new readout integrated circuit, AEGIS, for use in hybrid semiconductor detector arrays, that may help spur the development of future cameras. A basic design for AEGIS is presented together with results of an HSPICE ™ simulation of the performance of its unit cell. AEGIS will have a shaper-amplifier unit cell and neighbor pixel readout. Other features include the use of a single input power line with other biases generated on-board, a control register that allows digital control of all thresholds and chip configurations and an output approach that is compatible with list-mode data acquisition. An 8×8 prototype version of AEGIS is currently under development; the full AEGIS will be a 64×64 array with 300 μm pitch.
In-beam PET data characterization with the large area DoPET prototype
NASA Astrophysics Data System (ADS)
Sportelli, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Molinelli, S.; Pullia, M.; Zaccaro, E.; Del Guerra, A.; Rosso, V.
2016-02-01
Range verification with in-beam PET techniques is a powerful tool for monitoring the correctness of dose delivery in particle therapy. Among the major limitations of in-beam PET systems are the limited detectors size due to the constrained space in which they can be placed to allow the irradiation, and the necessity of a high read-out modularization, due to high activity rates during the irradiation. In this work we present the data acquired at the CNAO (Centro Nazionale di Adroterapia Oncologica) treatment center in Pavia, Italy, with the new DoPET system, specifically designed to operate in in-beam conditions. The new prototype consists of two planar 15cm × 15cm LYSO-based detectors, read out by 9 PMT detector modules each. In particular, we test the capability of our system to determine particle range in various irradiation conditions. Several plastic phantoms were irradiated at the CNAO treatment centre with protons and carbon ions of various energies. The used dose in treatment plans is 2 Gy and the monitoring feedback is produced in a few minutes after the end of the treatment.
Development and Testing of the AMEGO Silicon Tracker System
NASA Astrophysics Data System (ADS)
Griffin, Sean; Amego Team
2018-01-01
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe-class mission in consideration for the 2020 decadal review designed to operate at energies from ˜ 200 keV to > 10 GeV. Operating a detector in this energy regime is challenging due to the crossover in the interaction cross-section for Compton scattering and pair production. AMEGO is made of four major subsystems: a plastic anticoincidence detector for rejecting cosmic-ray events, a silicon tracker for measuring the energies of Compton scattered electrons and pair-production products, a CZT calorimeter for measuring the energy and location of Compton scattered photons, and a CsI calorimeter for measuring the energy of the pair-production products at high energies. The tracker comprises layers of dual-sided silicon strip detectors which provide energy and localization information for Compton scattering and pair-production events. A prototype tracker system is under development at GSFC; in this contribution we provide details on the verification, packaging, and testing of the prototype tracker, as well as present plans for the development of the front-end electronics, beam tests, and a balloon flight.
MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yiping
Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less
Large Area Coverage of a TPC Endcap with GridPix Detectors
NASA Astrophysics Data System (ADS)
Kaminski, Jochen
2018-02-01
The Large Prototype TPC at DESY, Hamburg, was built by the LCTPC collaboration as a testbed for new readout technologies of Time Projection Chambers. Up to seven modules of about 400 cm2 each can be placed in the endcap. Three of these modules were equipped with a total of 160 GridPix detectors. This is a combination of a highly pixelated readout ASIC and a Micromegas built on top. GridPix detectors have a very high efficiency of detecting primary electrons, which leads to excellent spatial and energy resolutions. For the first time a large number of GridPix detectors has been operated and long segments of tracks have been recorded with excellent precision.
NASA Technical Reports Server (NTRS)
Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.
1989-01-01
A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.
High-dose neutron detector project update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menlove, Howard Olsen; Henzlova, Daniela
These are the slides for a progress review meeting by the sponsor. This is an update on the high-dose neutron detector project. In summary, improvements in both boron coating and signal amplification have been achieved; improved boron coating materials and procedures have increased efficiency by ~ 30-40% without the corresponding increase in the detector plate area; low dead-time via thin cell design (~ 4 mm gas gaps) and fast amplifiers; prototype PDT 8” pod has been received and testing is in progress; significant improvements in efficiency and stability have been verified; use commercial PDT 10B design and fabrication to obtainmore » a faster path from the research to practical high-dose neutron detector.« less
A segmented, enriched N-type germanium detector for neutrinoless double beta-decay experiments
NASA Astrophysics Data System (ADS)
Leviner, L. E.; Aalseth, C. E.; Ahmed, M. W.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V. B.; Chan, Y.-D.; Egorov, V. G.; Elliott, S. R.; Gehman, V. M.; Hossbach, T. W.; Kephart, J. D.; Kidd, M. F.; Konovalov, S. I.; Lesko, K. T.; Li, Jingyi; Mei, D.-M.; Mikhailov, S.; Miley, H.; Radford, D. C.; Reeves, J.; Sandukovsky, V. G.; Umatov, V. I.; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A. R.
2014-01-01
We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6×2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the MAJORANA collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the MAJORANA resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.
Large area silicon drift detectors for x-rays -- New results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, J.S.; Patt, B.E.; Tull, C.R.
Large area silicon drift detectors, consisting of 8 mm and 12 mm diameter hexagons, were fabricated on 0.35 mm thick high resistivity n-type silicon. An external FET and a low-noise charge sensitive preamplifier were used for testing the prototype detectors. The detector performance was measured in the range 75 to 25 C using Peltier cooling, and from 0.125 to 6 {micro}s amplifier shaping time. Measured energy resolutions were 159 eV FWHM and 263 eV FWHM for the 0.5 cm{sup 2} and 1 cm{sup 2} detectors, respectively (at 5.9 keV, {minus}75 C, 6 {micro}s shaping time). The uniformity of the detectormore » response over the entire active area (measured using 560 nm light) was < 0.5%.« less
The RICH detector of the CBM experiment
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2017-12-01
The CBM-RICH detector is designed to identify electrons with momenta up to 8 GeV/c and high purity as this is essential for the CBM physics program. The detector consist of a CO2-gaseous radiator, a spherical mirror system, and Multi-Anode PhotoMultiplier Tubes (MAPMT) of type H12700 from Hamamatsu as photon detectors. The detector concept was verified through R&D studies and a laterally scaled prototype. The results were summarized in a TDR, in which open issues were defined concerning the readout electronics, the shielding of the magnetic stray field in the MAPMT region, the radiation hardness of the MAPMT sensors, and the mechanical holding structure of the mirror system. In this article an overview is given on the CBM RICH development with focus on those open issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maj, Piotr; Grybos, P.; Szczgiel, R.
2013-11-07
We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 μm. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e ₋rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largestmore » charge deposition. The chip architecture and preliminary measurements are reported.« less
NASA Astrophysics Data System (ADS)
Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.
2018-04-01
The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .
CCD-based vertex detector for ILC
NASA Astrophysics Data System (ADS)
Stefanov, Konstantin D.
2006-12-01
Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide a superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last few years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips, to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. The first set of prototype devices have been successfully designed, manufactured and tested, with second generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype has been manufactured.
Optical delay encoding for fast timing and detector signal multiplexing in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford
2015-08-15
Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less
Precision tracking with a single gaseous pixel detector
NASA Astrophysics Data System (ADS)
Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.
2015-09-01
The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.
Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.
Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno
2015-04-07
We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.
Performance study of SKIROC2/A ASIC for ILD Si-W ECAL
NASA Astrophysics Data System (ADS)
Suehara, T.; Sekiya, I.; Callier, S.; Balagura, V.; Boudry, V.; Brient, J.-C.; de la Taille, C.; Kawagoe, K.; Irles, A.; Magniette, F.; Nanni, J.; Pöschl, R.; Yoshioka, T.
2018-03-01
The ILD Si-W ECAL is a sampling calorimeter with tungsten absorber and highly segmented silicon layers for the International Large Detector (ILD), one of the two detector concepts for the International Linear Collider. SKIROC2 is an ASIC for the ILD Si-W ECAL. To investigate the issues found in prototype detectors, we prepared dedicated ASIC evaluation boards with either BGA sockets or directly soldered SKIROC2. We report a performance study with the evaluation boards, including signal-to-noise ratio and TDC performance with comparing SKIROC2 and an updated version, SKIROC2A.
The Single-Phase ProtoDUNE Technical Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abi, B.
2017-06-21
ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.
The CUORE cryostat and its bolometric detector
Santone, D.; Alduino, C.; Alfonso, K.; ...
2017-02-16
CUORE is a cryogenic detector that will be operated at LNGS to search for neutrinoless double beta decay (0νββ) of 130Te. The detector installation was completed in summer 2016. Before the installation, several cold runs were done to test the cryogenic system performance. In the last cold run the base temperature of 6.3 mK was reached in stable condition. CUORE-0, a CUORE prototype, has proven the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV/kg/y and the energy resolution of 5 keV are within reach.
NASA Astrophysics Data System (ADS)
Rasco, B. C.
2012-03-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.
The Goals and Status of SoLid Experiment
NASA Astrophysics Data System (ADS)
Park, Jaewon
2016-09-01
SoLid is a short baseline sterile neutrino oscillation search experiment using the BR2 compact core reactor in Belgium. Ruling out or confirming sterile neutrino is one of main interests in the neutrino physics field. Highly segmented scintillator cube detector with 6LiF:ZnS(Ag) neutron screen provides high purity neutron tagging by pulse shape discrimination (PSD), and capture position identification. These capabilities from this novel detector are critical to isolate neutrino interactions in a high background environment. The prototype detector (SM1) provides important feedback for validating the performance of the detector design. Recent results from SM1 will be presented. Construction of the SoLid Phase-1 detector is underway. The three-ton detector with three years running will allow us to reach the sterile neutrino exclusion limit of sin2 2 θ < 0 . 03 at Δm2 2eV2 at the 99% confidence level.
CALDER: Cryogenic light detectors for background-free searches
NASA Astrophysics Data System (ADS)
Di Domizio, S.; Bellini, F.; Cardani, L.; Casali, N.; Castellano, M. G.; Colantoni, I.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Martinez, M.; Minutolo, L.; Tomei, C.; Vignati, M.
2018-01-01
CALDER is a R&D project for the development of cryogenic light detectors with an active surface of 5x5cm2 and an energy resolution of 20 eV RMS for visible and UV photons. These devices can enhance the sensitivity of next generation large mass bolometric detectors for rare event searches, providing an active background rejection method based on particle discrimination. A CALDER detector is composed by a large area Si absorber substrate with superconducting kinetic inductance detectors (KIDs) deposited on it. The substrate converts the incoming light into athermal phonons, that are then sensed by the KIDs. KID technology combine fabrication simplicity with natural attitude to frequency-domain multiplexing, making it an ideal candidate for a large scale bolometric experiments. We will give an overview of the CALDER project and show the performances obtained with prototype detectors both in terms of energy resolution and efficiency.
A new design using GEM-based technology for the CMS experiment
NASA Astrophysics Data System (ADS)
Ressegotti, M.
2017-07-01
The muon system of the Compact Muon Solenoid (CMS) experiment at the LHC is currently not instrumented for pseudorapidity higher than |η|> 2.4. The main challenges to the installation of a detector in that position are the high particle flux to be sustained, a high level of radiation, and the ability to accomodate a multilevel detector into the small available space (less than 30 cm). A new back-to-back configuration of a Gas Electron Multiplier (GEM) detector is presented with the aim of developing a compact, multi-layer GEM detector. It is composed of two independent stacked triple-GEM detectors, positioned with the anodes toward the outside and sharing the same cathode plane, which is located at the center of the chamber, to reduce the total detector's thickness. A first prototype has been produced and tested with an X-Ray source and muon beam. First results on its performance are presented.
NASA Astrophysics Data System (ADS)
Nam, Sae Woo
1999-10-01
Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and nuclear recoil discrimination. Furthermore, early results from running the 100g detector in the Stanford Underground Facility (SUF) indicate that competitive dark matter results are achievable with the current detector design. Much of the design and testing of the experimental apparatus and instrumentation is described as well.
NASA Astrophysics Data System (ADS)
Kuzminchuk-Feuerstein, Natalia; Ferber, Nadine; Rozhkova, Elena; Kaufeld, Ingo; Voss, Bernd
2017-09-01
In order to separate and identify fragmentation products with the Super-Fragment Separator (SuperFRS) at FAIR a high resolving power detector system is required for position and Time-Of-Flight (TOF) measurements. The TOF detector is used to measure the velocity of the particles and hence, in conjunction with their momentum or energy, to determine their mass and hence their identity. Aiming to develop a system with a precision down to about 50 ps in time and resistant to a high radiation rate of relativistic heavy ions of up to 107 per spill (at the second focal plane), we have shown a conceptual design for a Cherenkov detector envisioned for the future TOF measurements employing Iodine Naphthalene (C10H7I) as a fluid radiator. The application of a liquid radiator allows the circulation of the active material and therefore to greatly reduce the effects of the degradation of the optical performance expected after exposure to the high ion rates at the Super-FRS. The prototype of a TOF-Cherenkov detector was designed, constructed and its key-properties have been investigated in measurements with heavy ions at CaveC at GSI. These measurements were performed with nickel ions at 300-1500 MeV/u and ion-beam intensities of up to 4 × 106 ions/spill of 8 s. As a first result a maximum detection efficiency of 70% and a timing resolution of 267 ps (σ) was achieved. We report the first attempt of time measurements with a Cherenkov detector based on a liquid radiator. Further optimization is required.
Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M
2015-06-01
We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm 3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.
NASA Astrophysics Data System (ADS)
Townsend, D. W.
1988-06-01
In 1982 the first prototype high density avalanche chamber (HIDAC) positron camera became operational in the Division of Nuclear Medicine of Geneva University Hospital. The camera consisted of dual 20 cm × 20 cm HIDAC detectors mounted on a rotating gantry. In 1984, these detectors were replaced by 30 cm × 30 cm detectors with improved performance and reliability. Since then, the larger detectors have undergone clinical evaluation. This article discusses certain aspects of the evaluation program and the conclusions that can be drawn from the results. The potential of the HIDAC camera for quantitative positron emission tomography (PET) is critically examined, and its performance compared with a state-of-the-art, commercial ring camera. Guidelines for the design of a future HIDAC camera are suggested.
Directional Antineutrino Detection
NASA Astrophysics Data System (ADS)
Safdi, Benjamin R.; Suerfu, Burkhant
2015-02-01
We propose the first event-by-event directional antineutrino detector using inverse beta decay (IBD) interactions on hydrogen, with potential applications including monitoring for nuclear nonproliferation, spatially mapping geoneutrinos, characterizing the diffuse supernova neutrino background and searching for new physics in the neutrino sector. The detector consists of adjacent and separated target and capture scintillator planes. IBD events take place in the target layers, which are thin enough to allow the neutrons to escape without scattering elastically. The neutrons are detected in the thicker boron-loaded capture layers. The location of the IBD event and the momentum of the positron are determined by tracking the positron's trajectory through the detector. Our design is a straightforward modification of existing antineutrino detectors; a prototype could be built with existing technology.
Designing a Modern Low Cost Muon Detector to Teach Nuclear Physics
NASA Astrophysics Data System (ADS)
Press, Carly; Kotler, Julia
2016-09-01
In an effort to make it possible for small institutions to train students in nuclear physics, an attempt is made to design a low cost cosmic ray muon detector (perhaps under 600 dollars) capable of measuring flux vs. solid angle and muon lifetime. In order to expose students to current particle detection technologies, silicon photomultipliers will be coupled with plastic scintillator to provide the signals, and an Arduino, Raspberry Pi, or National Instruments device will interface with the detector. Once designed and built, prototypes of the detector will be used in outreach to K-12 students in the Allentown, PA area. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.
The CAPTAIN liquid argon neutrino experiment
Liu, Qiuguang
2015-01-01
The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menlove, Howard Olsen; Henzlova, Daniela
This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. Themore » comparison data is presented in this report.« less
Large area silicon drift detectors for x-rays -- New results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, J.S.; Patt, B.E.; Tull, C.R.
Large area silicon drift detectors, consisting of 8 mm and 12 mm diameter hexagons, were fabricated on 0.35 mm thick high resistivity n-type silicon. An external FET and a low-noise charge sensitive preamplifier were used for testing the prototype detectors. The detector performance was measured in the range {minus}75 to 25 C using Peltier cooling, and from 0.125 to 6 {micro}s amplifier shaping time. Measured energy resolutions were 159 eV FWHM and 263 eV FWHM for the 0.5 cm{sup 2} and 1 cm{sup 2} detectors, respectively (at 5.9 keV, {minus}75 C, 6 {micro}s shaping time). The uniformity of the detectormore » response over the entire active area (measured using 560 nm light) was <0.5%.« less
NASA Astrophysics Data System (ADS)
Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen
2017-07-01
The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.
Scaduto, David A; Tousignant, Olivier; Zhao, Wei
2017-08-01
Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Flower, M. A.; Ott, R. J.; Webb, S.; Leach, M. O.; Marsden, P. K.; Clack, R.; Khan, O.; Batty, V.; McCready, V. R.; Bateman, J. E.
1988-06-01
Two clinical trials of the prototype RAL multiwire proportional chamber (MWPC) positron camera were carried out prior to the development of a clinical system with large-area detectors. During the first clinical trial, the patient studies included skeletal imaging using 18F, imaging of brain glucose metabolism using 18F FDG, bone marrow imaging using 52Fe citrate and thyroid imaging with Na 124I. Longitudinal tomograms were produced from the limited-angle data acquisition from the static detectors. During the second clinical trial, transaxial, coronal and sagittal images were produced from the multiview data acquisition. A more detailed thyroid study was performed in which the volume of the functioning thyroid tissue was obtained from the 3D PET image and this volume was used in estimating the radiation dose achieved during radioiodine therapy of patients with thyrotoxicosis. Despite the small field of view of the prototype camera, and the use of smaller than usual amounts of activity administered, the PET images were in most cases comparable with, and in a few cases visually better than, the equivalent planar view using a state-of-the-art gamma camera with a large field of view and routine radiopharmaceuticals.
NASA Astrophysics Data System (ADS)
Quast, Thorben
2018-02-01
As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including position resolution as well as precision timing-measurements. Furthermore, the extended setup in 2017 is discussed and first results from beam tests with electrons and pions are shown.
Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardani, L., E-mail: laura.cardani@roma1.infn.it; Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey; Colantoni, I.
The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patternedmore » on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.« less
A novel muon detector for borehole density tomography
NASA Astrophysics Data System (ADS)
Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.
2017-04-01
Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.
A novel muon detector for borehole density tomography
Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; ...
2017-02-01
Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in densitymore » – a proxy for fluid migration – at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. Lastly, a satisfactory comparison with a large drift tube-based muon detector is also presented.« less
DEPFET detectors for future electron-positron colliders
NASA Astrophysics Data System (ADS)
Marinas, C.
2015-11-01
The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future electron-positron collider experiments. A DEPFET sensor, by the integration of a field effect transistor on a fully depleted silicon bulk, provides simultaneous position sensitive detector capabilities and in pixel amplification. The characterization of the latest DEPFET prototypes has proven that a adequate signal-to-noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 micrometers. The close to final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the required read-out speed. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a prime candidate for the ILC. Therefore, in this contribution, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future electron-positron collider.
Development of an Electron-capture Technique Specific for Explosives Detection
DOT National Transportation Integrated Search
1974-07-01
This document contains information on the design, fabrication, and testing of a prototype detector specific for explosives which employs electron-capture sensors. The technique used exploits the observation that the electronegative vapors from explos...
Home - Deep Underground Neutrino ExperimentDeep Underground Neutrino
understanding of neutrinos and their role in the universe. DUNE prototype detectors are under construction at understanding of neutrinos and their role in the universe. DUNE_Forces_011116_FINAL Unification of Forces With
TADIR: ElOp's high-resolution second-generation 480 x 4 TDI thermal imager
NASA Astrophysics Data System (ADS)
Sarusi, Gabby; Ziv, Natan; Zioni, O.; Gaber, J.; Shechterman, Mark S.; Wiess, I.; Friedland, Igor V.; Lerner, M.; Friedenberg, Abraham
1998-10-01
'TADIR' is a new high-end thermal imager, developed in El-Op under contract with the Israeli MOD during the last three years. This new second generation thermal imager is based on 480 X 4 TDI MCT detector operated in the 8 - 12 micrometer spectral range. Although the prototype configuration of TADIR was design for the highly demanded light weight low volume and low power air applications, TADIR can be considered as a generic modular technology of which the future El-Op's FLIR applications such as ground fire control system and surveillance systems will be derived from. Besides the detector, what puts the system in the high-end category are the state of the art features implemented in each system's components. This paper describes the system concept and design considerations as well as the anticipated performances. TADIRs fist prototype was demonstrated at the beginning of 1998 and is currently under evaluation.
NASA Astrophysics Data System (ADS)
Bugiel, Sz.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kuczynska, M.; Moron, J.; Swientek, K.; Szumlak, T.
2016-02-01
The Upstream Tracker (UT) silicon strip detector, one of the central parts of the tracker system of the modernised LHCb experiment, will use a new 128-channel readout ASIC called SALT. It will extract and digitise analogue signals from the UT sensors, perform digital signal processing and transmit a serial output data. The SALT is being designed in CMOS 130 nm process and uses a novel architecture comprising of analog front-end and fast (40 MSps) ultra-low power (<0.5 mW) 6-bit ADC in each channel. The prototype ASICs of important functional blocks, like analogue front-end, 6-bit SAR ADC, PLL, and DLL, were designed, fabricated and tested. A prototype of an 8-channel version of the SALT chip, comprising all important functionalities was also designed and fabricated. The architecture and design of the SALT, together with the selected preliminary tests results, are presented.
Low Noise Double-Sided Silicon Strip Detector for Multiple-Compton Gamma-ray Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, Hiroyasu
2002-12-03
A Semiconductor Multiple-Compton Telescope (SMCT) is being developed to explore the gamma-ray universe in an energy band 0.1-20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of the SMCT is the high energy resolution that is crucial for high angular resolution and high background rejection capability. We have developed prototype modules for a low noise Double-sided Silicon Strip Detector (DSSD) system which is an essential element of the SMCT. The geometry of the DSSD is optimized to achieve the lowest noise possible. A new front-end VLSI device optimized for low noise operationmore » is also developed. We report on the design and test results of the prototype system. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV and 122 keV at 0 C.« less
NASA Astrophysics Data System (ADS)
Cooper, R. J.; Amman, M.; Vetter, K.
2018-04-01
High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.
NASA Astrophysics Data System (ADS)
Kharlamov, Petr; Dementev, Dmitrii; Shitenkov, Mikhail
2017-10-01
High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.
Descamps, Elodie C T; Meunier, Damien; Brutesco, Catherine; Prévéral, Sandra; Franche, Nathalie; Bazin, Ingrid; Miclot, Bertrand; Larosa, Philippe; Escoffier, Camille; Fantino, Jean-Raphael; Garcia, Daniel; Ansaldi, Mireille; Rodrigue, Agnès; Pignol, David; Cholat, Pierre; Ginet, Nicolas
2017-01-01
The use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits. The water analyzer prototype resulting from the COMBITOX project can be situated at level 4 on the Technology Readiness Level (TRL) scale and this technical advance paves the way to the use of biosensors on-site.
Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates
2007-01-01
D1 D2 Fig. 3. (a) Setup for testing different arrangements of InGaAs SPAD assemblies; (b) three different InGaAs SPAD assemblies; ( c ) schematic of...presently available, either commercial or prototype, the deadtimes range from ≈50 ns for actively quenched single photon avalanche detectors ( SPADs ...to ≈10 µs for passively quenched SPADs , although even actively quenched SPADs sometimes employ µs deadtimes to avoid excessive afterpulsing rates. In
Mod 1 ICS TI Report: ICS Conversion of a 140% HPGe Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bounds, John Alan
This report evaluates the Mod 1 ICS, an electrically cooled 140% HPGe detector. It is a custom version of the ORTEC Integrated Cooling System (ICS) modified to make it more practical for us to use in the field. Performance and operating characteristics of the Mod 1 ICS are documented, noting both pros and cons. The Mod 1 ICS is deemed a success. Recommendations for a Mod 2 ICS, a true field prototype, are provided.
Development of absorber coupled TES polarimeter at millimeter wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.; Yefremenko, V.; Novosad, V.
2009-06-01
We report an absorber coupled TES bolometric polarimeter, consisting of an absorptive metal grid and a Mo/Au bi-layer TES on a suspended silicon nitride membrane disk. The electromagnetic design of the polarization sensitive absorbers, the heat transport modeling of the detector, the thermal response of the TES, and the micro-fabrication processes are presented. We also report the results of laboratory tests of a single pixel prototype detector, and compare with theoretical expectations.
Wire Chambers and Cherenkov Detectors at Fermilab Test Beam Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tame Narvaez, Karla
2017-01-01
Fermilab Test Beam Facility (FTBF) is dedicated to helping scientists test their prototypes. For this, FTBF has instrumentation that is very useful for the users. However, before a user can test a detector, it is necessary to ensure the facility has the characteristics they need. During this summer, we studied beam properties by collecting Cherenkov and wire chamber data. Analyzed data will be used for updating the general information that FTBF posts on a web page.
A Prototype {sup 212}Pb Medical Dose Calibrator for Alpha Radioimmunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, W.F.; Patil, A.; Russ, W.R.
AREVA Med, an AREVA group subsidiary, is developing innovative cancer-fighting therapies involving the use of {sup 212}Pb for alpha radioimmunotherapy. Canberra Industries, the nuclear measurement subsidiary of AREVA, has been working with AREVA Med to develop a prototype measurement system to assay syringes containing a {sup 212}Pb solution following production by an elution system. The relative fraction of emitted radiation from the source associated directly with the {sup 212}Pb remains dynamic for approximately 6 hours after the parent is chemically purified. A significant challenge for this measurement application is that the short half-life of the parent nuclide requires assay priormore » to reaching equilibrium with progeny nuclides. A gross counting detector was developed to minimize system costs and meet the large dynamic range of source activities. Prior to equilibrium, a gross counting system must include the period since the {sup 212}Pb was pure to calculate the count rate attributable to the parent rather than the progeny. The dynamic state is determined by solving the set of differential equations, or Bateman equations, describing the source decay behavior while also applying the component measurement efficiencies for each nuclide. The efficiencies were initially estimated using mathematical modeling (MCNP) but were then benchmarked with source measurements. The goal accuracy of the system was required to be within 5%. Independent measurements of the source using a high resolution spectroscopic detector have shown good agreement with the prototype system results. The prototype design was driven by cost, compactness and simplicity. The detector development costs were minimized by using existing electronics and firmware with a Geiger-Mueller tube derived from Canberra's EcoGamma environmental monitoring product. The acquisition electronics, communications and interface were controlled using Python with the EcoGamma software development kit on a Raspberry Pi Linux computer mounted inside a standard project box. The results of initial calibration measurements are presented. (authors)« less
The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji
2014-11-01
The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.
MWPC prototyping and performance test for the STAR inner TPC upgrade
NASA Astrophysics Data System (ADS)
Shen, Fuwang; Wang, Shuai; Kong, Fangang; Bai, Shiwei; Li, Changyu; Videbæk, Flemming; Xu, Zhangbu; Zhu, Chengguang; Xu, Qinghua; Yang, Chi
2018-07-01
A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. The test results show that the constructed iTPC prototype meets all project requirements.
First Results of an “Artificial Retina” Processor Prototype
Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro; ...
2016-11-15
We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. Also, the prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHzmore » crossing rate.« less
First Results of an “Artificial Retina” Processor Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro
We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. Also, the prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHzmore » crossing rate.« less
The new Heavy-ion MCP-based Ancillary Detector DANTE for the CLARA-PRISMA Setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiente-Dobon, J. J.; Gadea, A.; Corradi, L.
2006-08-14
The CLARA-PRISMA setup is a powerful tool for spectroscopic studies of neutron-rich nuclei produced in multi-nucleon transfer and deep-inelastic reactions. It combines the large acceptance spectrometer PRISMA with the {gamma}-ray array CLARA. At present, the ancillary heavy-ion detector DANTE, based on Micro-Channel Plates to be installed at the CLARA-PRISMA setup, is being constructed at LNL. DANTE will open the possibility of measuring {gamma}-{gamma} Doppler-corrected coincidences for the events outside the acceptance of PRISMA. In this presentation, it is described the heavy-ion detector DANTE, as well as the performances of the first prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose, J. M.; Čermák, P.; Fajt, L.
The SPT collaboration has been investigating the applicability of pixel detectors in the detection of two neutrino double electron capture (2νEC/EC) in{sup 106}Cd. The collaboration has proposed a Silicon Pixel Telescope (SPT) where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. The Pixel detector gives spatial information along with energy of the particle, thus helps to identify and remove the background signals. Four units of SPT prototype (using 0.5 and 1 mm Si sensors) were fabricated and installed in the LSM underground laboratory, France. Recent progress in the SPT experiment and preliminarymore » results from background measurements are presented.« less
Beam test results of the BTeV silicon pixel detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriele Chiodini et al.
2000-09-28
The authors have described the results of the BTeV silicon pixel detector beam test. The pixel detectors under test used samples of the first two generations of Fermilab pixel readout chips, FPIX0 and FPIX1, (indium bump-bonded to ATLAS sensor prototypes). The spatial resolution achieved using analog charge information is excellent for a large range of track inclination. The resolution is still very good using only 2-bit charge information. A relatively small dependence of the resolution on bias voltage is observed. The resolution is observed to depend dramatically on the discriminator threshold, and it deteriorates rapidly for threshold above 4000e{sup {minus}}.
Multi-pinhole SPECT Imaging with Silicon Strip Detectors
Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.
2010-01-01
Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300
Prototype Ge:Ga detectors for the NASA-Ames cooled grating spectrometer
NASA Technical Reports Server (NTRS)
Houck, J. R.
1981-01-01
The detectors were fabricated from a Ge:Ga wafer from Eagle-Pitcher with a room temperature resistivity of approx. 12ohms cm. The wafer is approximately 2 inches in diameter and 0.061 inches thick. The contact material was ion implanted with Boron using 10 to the 14th power ions/sq cm at 25 Kev and 2 x10 to the 14th power ions/sq cm at 50 Kev. The crystal was then sputter-cleaned and metallized first with sputtered Ti and then sputter Au. In addition to the usual infrared measurements of responsivity and noise, measurements were made of the detectors' response to ionizing radiation.
The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C. G.; School of Physics, University of Melbourne, Parkville VIC; CODES Centre of Excellence, University of Tasmania, Hobart TAS
2010-04-06
Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.
The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C.G.; Siddons, D.P.; Kirkham, R.
2010-05-25
Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.
NASA Technical Reports Server (NTRS)
Lowitz, Amy E.; Brown, Ari David; Stevenson, Thomas R.; Timbie, Peter T.; Wollack, Edward J.
2014-01-01
Kinetic inductance detectors (KIDs) are a promising technology for low-noise, highly-multiplexible mm- and submm-wave detection. KIDs have a number of advantages over other detector technologies, which make them an appealing option in the cosmic microwave background B-mode anisotropy search, including passive frequency domain multiplexing and relatively simple fabrication, but have suffered from challenges associated with noise control. Here we describe design and fabrication of a 20-pixel prototype array of lumped element molybdenum KIDs. We show Q, frequency and temperature measurements from the array under dark conditions. We also present evidence for a double superconducting gap in molybdenum.
Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa
2018-03-02
A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Fishman, G. J.; Meegan, C. A.
1982-01-01
Observations of a cosmic gamma ray burst of about 10 to the -6 erg/sq cm, pulsed emission profiles of A0535 plus 26 and NP0532, and two solar flare events are reported for several energy intervals in 45-500 keV. The measurements were made with a NaI (Tl) detector array flown on a balloon to 4 g/sq cm residual atmosphere from Palestine, Texas Oct. 6-8, 1980 for 28 hours. The detector is a prototype of the Burst and Transient Source Experiment to be flown on the Gamma Ray Observatory.
Microchannel plate EUV detectors for the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Malina, R. F.; Coburn, K.; Werthimer, D.
1984-01-01
The design and operating characteristics of the prototype imaging microchannel plate (MCP) detector for the Extreme Ultraviolet Explorer (EUVE) Satellite are discussed. It is shown that this detector has achieved high position resolution performance (greater than 512 x 512 pixels) and has low (less than one percent) image distortion. In addition, the channel plate scheme used has tight pulse height distributions (less than 40 percent FWHM) for UV radiation and displays low (less than 0.2 cnt/sq cm-s) dark background counting rates. Work that has been done on EUV filters in relation to the envisaged filter and photocathode complement is also described.
NASA Astrophysics Data System (ADS)
McFee, John E.; Russell, Kevin L.; Chesney, Robert H.; Faust, Anthony A.; Das, Yogadhish
2006-05-01
The Improved Landmine Detection System (ILDS) is intended to meet Canadian military mine clearance requirements in rear area combat situations and peacekeeping on roads and tracks. The system consists of two teleoperated vehicles and a command vehicle. The teleoperated protection vehicle precedes, clearing antipersonnel mines and magnetic and tilt rod-fuzed antitank mines. It consists of an armoured personnel carrier with a forward looking infrared imager, a finger plow or roller and a magnetic signature duplicator. The teleoperated detection vehicle follows to detect antitank mines. The purpose-built vehicle carries forward looking infrared and visible imagers, a 3 m wide, down-looking sensitive electromagnetic induction detector array and a 3 m wide down-looking ground probing radar, which scan the ground in front of the vehicle. Sensor information is combined using navigation sensors and custom navigation, registration, spatial correspondence and data fusion algorithms. Suspicious targets are then confirmed by a thermal neutron activation detector. The prototype, designed and built by Defence R&D Canada, was completed in October 1997. General Dynamics Canada delivered four production units, based on the prototype concept and technologies, to the Canadian Forces (CF) in 2002. ILDS was deployed in Afghanistan in 2003, making the system the first militarily fielded, teleoperated, multi-sensor vehicle-mounted mine detector and the first with a fielded confirmation sensor. Performance of the prototype in Canadian and independent US trials is summarized and recent results from the production version of the confirmation sensor are discussed. CF operations with ILDS in Afghanistan are described.
Development of a timing detector for the TOTEM experiment at the LHC
NASA Astrophysics Data System (ADS)
Minafra, Nicola
2017-09-01
The upgrade program of the TOTEM experiment will include the installation of timing detectors inside vertical Roman Pots to allow the reconstruction of the longitudinal vertex position in the presence of event pile-up in high- β^{\\ast} dedicated runs. The small available space inside the Roman Pot, optimized for high-intensity LHC runs, and the required time precision led to the study of a solution using single crystal CVD diamonds. The sensors are read out using fast low-noise front-end electronics developed by the TOTEM Collaboration, achieving a signal-to-noise ratio larger than 20 for MIPs. A prototype was designed, manufactured and tested during a test beam campaign, proving a time precision below 100ps and an efficiency above 99%. The geometry of the detector has been designed to guarantee uniform occupancy in the expected running conditions keeping, at the same time, the number of channels below 12. The read-out electronics was developed during an extensive campaign of beam tests dedicated first to the characterization of existing solution and then to the optimization of the electronics designed within the Collaboration. The detectors were designed to be read out using the SAMPIC chip, a fast sampler designed specifically for picosecond timing measurements with high-rate capabilities; later, a modified version was realized using the HPTDC to achieve the higher trigger rates required for the CT-PPS experiment. The first set of prototypes was successfully installed and tested in the LHC in November 2015; moreover the detectors modified for CT-PPS are successfully part of the global CMS data taking since October 2016.
Tests of the MICE Electron Muon Ranger frontend electronics with a small scale prototype
NASA Astrophysics Data System (ADS)
Bolognini, D.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Giannini, G.; Graulich, J. S.; Lietti, D.; Masciocchi, F.; Prest, M.; Rothenfusser, K.; Vallazza, E.; Wisting, H.
2011-08-01
The MICE experiment is being commissioned at RAL to demonstrate the feasibility of the muon ionization cooling technique for future applications such as the Neutrino Factory and the Muon Collider. The cooling will be evaluated by measuring the emittance before and after the cooling channel with two 4 T spectrometers; to distinguish muons from the background, a multi-detector particle identification system is foreseen: three Time of Flight stations, two Cherenkov counters and a calorimetric system consisting of a pre-shower layer and a fully active scintillator detector (EMR) are used to discriminate muons from pions and electrons. EMR consists of 48 planes of triangular scintillating bars coupled to WLS fibers readout by single PMTs on one side and MAPMTs on the other; each plane sensible area is 1 m 2. This article deals with a small scale prototype of the EMR detector which has been used to test the MAPMT frontend electronics based on the MAROC ASIC; the tests with cosmic rays using both an analog mode and a digital readout mode are presented. A very preliminary study on the cross talk problem is also shown.
The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment
NASA Astrophysics Data System (ADS)
Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petrucci, F.; Riedler, P.; Aglieri Rinella, G.; Rivetti, A.; Tiuraniemi, S.
2011-02-01
The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly ( <0.5% X0 per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 μm CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction technique. The current status of the R&D program is overviewed and results from the prototype read-out chips test are presented.
NASA Astrophysics Data System (ADS)
Janzen, Kathryn Louise
Largely because of their resistance to magnetic fields, silicon photomultipliers (SiPMs) are being considered as the readout for the GlueX Barrel Calorimeter, a key component of the GlueX detector located immediately inside a 2.2 T superconducting solenoid. SiPMs with active area 1 x 1 mm2 have been investigated for use in other experiments, but detectors with larger active areas are required for the GlueX BCAL. This puts the GlueX collaboration in the unique position of being pioneers in the use of this frontend detection revolution by driving the technology for larger area sensors. SensL, a photonics research and development company in Ireland, has been collaborating with the University of Regina GlueX group to develop prototype large area SiPMs comprising 16 - 3x3 mm2 cells assembled in a close-packed matrix. Performance parameters of individual SensL 1x1 mm2 and 3x3 mm2 SiPMs along with prototype SensL SiPM arrays are tested, including current versus voltage characteristics, photon detection efficiency, and gain uniformity, in an effort to determine the suitability of these detectors to the GlueX BCAL readout.
First Tests of Prototype SCUBA-2 Superconducting Bolometer Array
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike
2006-09-01
We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.
NASA Astrophysics Data System (ADS)
Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.
The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.
Reconstruction and Analysis for the DUNE 35-ton Liquid Argon Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallbank, Michael James
Neutrino physics is approaching the precision era, with current and future experiments aiming to perform highly accurate measurements of the parameters which govern the phenomenon of neutrino oscillations. The ultimate ambition with these results is to search for evidence of CP-violation in the lepton sector, currently hinted at in the world-leading analyses from present experiments, which may explain the dominance of matter over antimatter in the Universe. The Deep Underground Neutrino Experiment (DUNE) is a future long-baseline experiment based at Fermi National Accelerator Laboratory (FNAL), with a far detector at the Sanford Underground Research Facility (SURF) and a baseline ofmore » 1300 km. In order to make the required precision measurements, the far detector will consist of 40 kton liquid argon and an embedded time projection chamber. This promising technology is still in development and, since each detector module is around a factor 15 larger than any previous experiment employing this design, prototyping the detector and design choices is critical to the success of the experiment. The 35-ton experiment was constructed for this purpose and will be described in detail in this thesis. The outcomes of the 35-ton prototype are already influencing DUNE and, following the successes and lessons learned from the experiment, confidence can be taken forward to the next stage of the DUNE programme. The main oscillation signal at DUNE will be electron neutrino appearance from the muon neutrino beam. High-precision studies of these νe interactions requires advanced processing and event reconstruction techniques, particularly in the handling of showering particles such as electrons and photons. Novel methods developed for the purposes of shower reconstruction in liquid argon are presented with an aim to successfully develop a selection to use in a νe charged-current analysis, and a first-generation selection using the new techniques is presented.« less
Electrometer Amplifier With Overload Protection
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Alexander, R.
1986-01-01
Circuit features low noise, input offset, and high linearity. Input preamplifier includes input-overload protection and nulling circuit to subtract dc offset from output. Prototype dc amplifier designed for use with ion detector has features desirable in general laboratory and field instrumentation.
Ultrasonic scanning system for in-place inspection of brazed-tube joints
NASA Technical Reports Server (NTRS)
Haralson, H. S.; Haynes, J. L.; Wages, C. G.
1971-01-01
System detects defects of .051 cm in diameter and larger. System incorporates scanning head assembly including boot enclosed transducer, slip ring assembly, drive mechanism, and servotransmitter. Ultrasonic flaw detector, prototype recorder, and special recorder complete system.
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhichao; Guo Liang; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900
2010-07-15
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photonmore » energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.« less
NASA Astrophysics Data System (ADS)
Labare, Mathieu
2017-09-01
SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.
NASA Astrophysics Data System (ADS)
He, X.
In the proposed Electron-Ion Collider (EIC) experiments, particle identification (PID) of the final state hadrons in the semi-inclusive deep inelastic scattering allows the measurement of flavor-dependent gluon and quark distributions inside nucleons and nuclei. The EIC PID consortium (eRD14 Collaboration) has been formed for identifying and developing PID detectors using Ring Imaging Cherenkov (RICH) techniques for the EIC experiments. A modular Ring Imaging Cherenkov (mRICH) detector has been designed for particle identification in the momentum coverage from 3 GeV/c to 10 GeV/c. The mRICH detector consists of an aerogel radiator block, a Fresnel lens, a mirror-wall and a photosensor plane. The first prototype of this detector was successfully tested at Fermi National Accelerator Laboratory in April 2016 for verifying the detector working principles. This talk will highlight the mRICH beam test results and their comparison with GEANT4-based detector simulations. An implementation of the mRICH detector concept in the Forward Angle sPHENIX spectrometer at BNL will also be mentioned in this talk.
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.
Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun
2010-07-01
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.
Advanced testing of the DEPFET minimatrix particle detector
NASA Astrophysics Data System (ADS)
Andricek, L.; Kodyš, P.; Koffmane, C.; Ninkovic, J.; Oswald, C.; Richter, R.; Ritter, A.; Rummel, S.; Scheirich, J.; Wassatsch, A.
2012-01-01
The DEPFET (DEPleted Field Effect Transistor) is an active pixel particle detector with a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) integrated in each pixel, providing first amplification stage of readout electronics. Excellent signal over noise performance is gained this way. The DEPFET sensor will be used as a vertex detector in the Belle II experiment at SuperKEKB, electron-positron collider in Japan. The vertex detector will be composed of two layers of pixel detectors (DEPFET) and four layers of strip detectors. The DEPFET sensor requires switching and current readout circuits for its operation. These circuits have been designed as ASICs (Application Specific Integrated Circuits) in several different versions, but they provide insufficient flexibility for precise detector testing. Therefore, a test system with a flexible control cycle range and minimal noise has been designed for testing and characterizing of small detector prototypes (Minimatrices). Sensors with different design layouts and thicknesses are produced in order to evaluate and select the one with the best performance for the Belle II application. Description of the test system as well as measurement results are presented.
Angular resolution of stacked resistive plate chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel, Deepak; Onikeri, Pratibha B.; Murgod, Lakshmi P., E-mail: deepaksamuel@cuk.ac.in, E-mail: pratibhaonikeri@gmail.com, E-mail: lakshmipmurgod@gmail.com
We present here detailed derivations of mathematical expressions for the accuracy in the arrival direction of particles estimated using a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). We also present a theoretical estimate of angular resolution of such a setup. In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.
Performance evaluation of multiple (32 channels) sub-nanosecond TDC implemented in low-cost FPGA
NASA Astrophysics Data System (ADS)
Lichard, P.; Konstantinou, G.; Villar Vilanueva, A.; Palladino, V.
2014-03-01
NA62 experiment Straw tracker frontend board serves as a gas-tight detector cover and integrates two CARIOCA chips, a low cost FPGA (Cyclon III, Altera) and a set of 400Mbit/s links to the backend. The FPGA houses 16 pairs of sub-nanosecond resolution TDCs with derandomizers and an output link serializer. Evaluation methods, including simulations, and performance results of the system in the lab and on a detector prototype are presented.
Scintillator Detector Development at Central Michigan University
NASA Astrophysics Data System (ADS)
McClain, David; Estrade, Alfredo; Neupane, Shree
2017-09-01
Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.
A high-performance electric field detector for space missions
NASA Astrophysics Data System (ADS)
Badoni, D.; Ammendola, R.; Bertello, I.; Cipollone, P.; Conti, L.; De Santis, C.; Diego, P.; Masciantonio, G.; Picozza, P.; Sparvoli, R.; Ubertini, P.; Vannaroni, G.
2018-04-01
We present the prototype of an Electric Field Detector (EFD) for space applications, that has been developed in the framework of the Chinese-Italian collaboration on the CSES (China Seismo-Electromagnetic Satellite) forthcoming missions. In particular CSES-1 will be placed in orbit in the early 2018. The detector consists of spherical probes designed to be installed at the tips of four booms deployed from a 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as ionospheric waves, lithosphere-atmosphere-ionosphere-magnetosphere coupling and anthropogenic electromagnetic emissions. The detector allows to measure electric fields in a wide band of frequencies extending from quasi-DC up to about 4 MHz , with a sensitivity of the order of 1 μV / m in the ULF band. With these bandwidth and sensitivity, the described electric field detector represents a very performing and updated device for electric field measurements in space.
A Detector for Cosmic Microwave Background Polarimetry
NASA Technical Reports Server (NTRS)
Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.
2008-01-01
We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.
High Frequency Amplitude Detector for GMI Magnetic Sensors
Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul
2014-01-01
A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003
Timing and tracking for the Crystal Barrel detector
NASA Astrophysics Data System (ADS)
Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer
2017-01-01
The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.
Angular resolution of the gaseous micro-pixel detector Gossip
NASA Astrophysics Data System (ADS)
Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.
2011-06-01
Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.
Modeling Charge Collection in Detector Arrays
NASA Technical Reports Server (NTRS)
Hardage, Donna (Technical Monitor); Pickel, J. C.
2003-01-01
A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).
A Segmented Neutron Detector with a High Position Resolution for the (p,pn) Reactions
NASA Astrophysics Data System (ADS)
Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro; Dozono, Masanori; Itoh, Masatoshi; Kawase, Shoichiro; Kobayashi, Motoki; Lee, CheongSoo; Matsubara, Hiroaki; Miki, Kenjiro; Miya, Hiroyuki; Ota, Shinsuke; Sekiguchi, Kimiko; Shima, Tatsushi; Taguchi, Takahiro; Tamii, Atsushi; Tang, Tsz Leung; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yasuda, Jumpei; Zenihiro, Juzo
We are developing a neutron detector with a high position resolution to study the single particle properties of nuclei by the knockout (p,pn) reaction at intermediate energies. We constructed a prototype detector consisting of plastic scintillating fibers and multi-anode photomultiplier tubes (PMTs). Test experiments using 200- and 70-MeV proton and 199-, 188-, 68-, and 50-MeV neutron were performed for characterizing its performance. Preliminary results show that a position resolution of about 3 mm at full-width at half-maximum (FWHM) is realized as designed. The resulting separation-energy resolution to be obtained for (p,pn) measurement would be 1 MeV in FWHM, when the detector is used at a distance of 2 m from the target for measuring the neutron momentum.
[Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].
Li, Zhan-feng; Wang, Shu-rong; Huang, Yu
2012-03-01
Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.
Adaptive Optics for the Thirty Meter Telescope
NASA Astrophysics Data System (ADS)
Ellerbroek, Brent
2013-12-01
This paper provides an overview of the progress made since the last AO4ELT conference towards developing the first-light AO architecture for the Thirty Meter Telescope (TMT). The Preliminary Design of the facility AO system NFIRAOS has been concluded by the Herzberg Institute of Astrophysics. Work on the client Infrared Imaging Spectrograph (IRIS) has progressed in parallel, including a successful Conceptual Design Review and prototyping of On-Instrument WFS (OIWFS) hardware. Progress on the design for the Laser Guide Star Facility (LGSF) continues at the Institute of Optics and Electronics in Chengdu, China, including the final acceptance of the Conceptual Design and modest revisions for the updated TMT telescope structure. Design and prototyping activities continue for lasers, wavefront sensing detectors, detector readout electronics, real-time control (RTC) processors, and deformable mirrors (DMs) with their associated drive electronics. Highlights include development of a prototype sum frequency guide star laser at the Technical Institute of Physics and Chemistry (Beijing); fabrication/test of prototype natural- and laser-guide star wavefront sensor CCDs for NFIRAOS by MIT Lincoln Laboratory and W.M. Keck Observatory; a trade study of RTC control algorithms and processors, with prototyping of GPU and FPGA architectures by TMT and the Dominion Radio Astrophysical Observatory; and fabrication/test of a 6x60 actuator DM prototype by CILAS. Work with the University of British Columbia LIDAR is continuing, in collaboration with ESO, to measure the spatial/temporal variability of the sodium layer and characterize the sodium coupling efficiency of several guide star laser systems. AO performance budgets have been further detailed. Modeling topics receiving particular attention include performance vs. computational cost tradeoffs for RTC algorithms; optimizing performance of the tip/tilt, plate scale, and sodium focus tracking loops controlled by the NGS on-instrument wavefront sensors, sky coverage, PSF reconstruction for LGS MCAO, and precision astrometry for the galactic center and other observations.
A prototype table-top inverse-geometry volumetric CT system.
Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J
2006-06-01
A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.
Calibration and tests of commercial wireless infrared thermometers
USDA-ARS?s Scientific Manuscript database
Applications of infrared thermometers (IRTs) in large agricultural fields require wireless data transmission, and IRT target temperature should have minimal sensitivity to internal detector temperature. To meet these objectives, a prototype wireless IRT system was developed at USDA Agricultural Rese...
A new timing detector for the CT-PPS project
NASA Astrophysics Data System (ADS)
Arcidiacono, R.; Cms; TOTEM Collaborations
2017-02-01
The CT-PPS detector will be installed close to the beam line on both sides of CMS, 200 m downstream the interaction point. This detector will measure forward scattered protons, allowing detailed studies of diffractive hadron physics and Central Exclusive Production. The main components of the CT-PPS detector are a silicon tracking system and a timing system. In this contribution we present the proposal of an innovative solution for the timing system, based on Ultra-Fast Silicon Detectors (UFSD). UFSD are a novel concept of silicon detectors potentially able to obtain the necessary time resolution (∼20 ps on the proton arrival time). The use of UFSD has also other attractive features as its material budget is small and the pixel geometries can be tailored to the precise physics distribution of protons. UFSD prototypes for CT-PPS have been designed by CNM (Barcelona) and FBK (Trento): we will present the status of the sensor productions and of the low-noise front-end electronics currently under development and test.
Development of 10B-Based 3He Replacement Neutron Detectors
NASA Astrophysics Data System (ADS)
King, Michael J.; Gozani, Tsahi; Hilliard, Donald B.
2011-12-01
Radiation portal monitors (RPM) are currently deployed at United States border crossings to passively inspect vehicles and persons for any emission of neutrons and/or gamma rays, which may indicate the presence of unshielded nuclear materials. The RPM module contains an organic scintillator with 3He proportional counters to detect gamma rays and thermalized neutrons, respectively. The supply of 3He is rapidly dwindling, requiring alternative detectors to provide the same function and performance. Our alternative approach is one consisting of a thinly-coated 10B flat-panel ionization chamber neutron detector that can be deployed as a direct drop-in replacement for current RPM 3He detectors. The uniqueness of our approach in providing a large-area detector is in the simplicity of construction, scalability of the unit cell detector, ease of adaptability to a variety of applications and low cost. Currently, Rapiscan Laboratories and Helicon Thin Film Systems have designed and developed an operational 100 cm2 multi-layer prototype 10BB-based ionization chamber.
Users guide to E859 phoswich analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costales, J.B.
1992-11-30
In this memo the authors describe the analysis path used to transform the phoswich data from raw data banks into cross sections suitable for publication. The primary purpose of this memo is not to document each analysis step in great detail but rather to point the reader to the fortran code used and to point out the essential features of the analysis path. A flow chart which summarizes the various steps performed to massage the data from beginning to end is given. In general, each step corresponds to a fortran program which was written to perform that particular task. Themore » automation of the data analysis has been kept purposefully minimal in order to ensure the highest quality of the final product. However, tools have been developed which ease the non--automated steps. There are two major parallel routes for the data analysis: data reduction and acceptance determination using detailed GEANT Monte Carlo simulations. In this memo, the authors will first describe the data reduction up to the point where PHAD banks (Pass 1-like banks) are created. They the will describe the steps taken in the GEANT Monte Carlo route. Note that a detailed memo describing the methodology of the acceptance corrections has already been written. Therefore the discussion of the acceptance determination will be kept to a minimum and the reader will be referred to the other memo for further details. Finally, they will describe the cross section formation process and how final spectra are extracted.« less
Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee
2015-07-01
To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater than 0.89 ± 0.07 for μCas larger than 120 μm in diameter at a MGD of 3 mGy. The experimental results using a 1.6 cm diameter breast phantom showed that the prototype system can achieve an average AUC greater than 0.98 ± 0.01 for μCas larger than 140 μm in diameter using an entrance exposure of 1.2 mGy. The proposed photon-counting breast CT system based on a Si strip detector can potentially offer superior image quality to detect μCa with a lower dose level than a standard two-view mammography.
8-channel prototype of SALT readout ASIC for Upstream Tracker in the upgraded LHCb experiment
NASA Astrophysics Data System (ADS)
Abellan Beteta, C.; Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kane, C.; Moron, J.; Swientek, K.; Wang, J.
2017-02-01
SALT is a new 128-channel readout ASIC for silicon strip detectors in the upgraded Upstream Tracker of the LHCb experiment. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of an analogue front-end and an ultra-low power (<0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. An 8-channel prototype (SALT8), comprising all important functionalities was designed, fabricated and tested. A full 128-channel version was also submitted. The design and test results of the SALT8 prototype are presented showing its full functionality.
Study of the dE/dx resolution of a GEM Readout Chamber prototype for the upgrade of the ALICE TPC
NASA Astrophysics Data System (ADS)
Mathis, Andreas
2018-02-01
The ALICE Collaboration is planning a major upgrade of its central barrel detectors to be able to cope with the increased LHC luminosity beyond 2020. For the TPC, this implies a replacement of the currently used gated MWPCs (Multi-Wire Proportional Chamber) by GEM (Gas Electron Multiplier) based readout chambers. In order to prove, that the present particle identification capabilities via measurement of the specific energy loss are retained after the upgrade, a prototype of the ALICE IROC (Inner Readout Chamber) has been evaluated in a test beam campaign at the CERN PS. The dE/dx resolution of the prototype has been proven to be fully compatible with the current MWPCs.
Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system
NASA Astrophysics Data System (ADS)
Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin
2007-08-01
The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.
MWPC prototyping and performance test for the STAR inner TPC upgrade
Shen, Fuwang; Wang, Shuai; Kong, Fangang; ...
2018-04-16
A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. Furthermore, the test resultsmore » show that the constructed iTPC prototype meets all project requirements.« less
MWPC prototyping and performance test for the STAR inner TPC upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Fuwang; Wang, Shuai; Kong, Fangang
A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. Furthermore, the test resultsmore » show that the constructed iTPC prototype meets all project requirements.« less
Commutated automatic gain control system
NASA Technical Reports Server (NTRS)
Yost, S. R.
1982-01-01
The commutated automatic gain control (AGC) system was designed and built for the prototype Loran-C receiver is discussed. The current version of the prototype receiver, the Mini L-80, was tested initially in 1980. The receiver uses a super jolt microcomputer to control a memory aided phase loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The AGC control adjusts the level of each station signal, such that the early portion of each envelope rise is about at the same amplitude in the receiver envelope detector.
A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebreton, Lena; Bachaalany, Mario; Husson, Daniel
The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that usemore » CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with its new geometry will increase the telescopes efficiency by a factor of 1.5. It will also cover some of the most important points in metrology; repeatability, reproducibility and sustainability. (authors)« less
High-pressure 4He drift tubes for fissile material detection
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Morris, Christopher L.; Gray, F. E.; Bacon, J. D.; Brockwell, M. I.; Chang, D. Y.; Chung, K.; Dai, W. G.; Greene, S. J.; Hogan, G. E.; Lisowski, P. W.; Makela, M. F.; Mariam, F. G.; McGaughey, P. L.; Mendenhall, M.; Milner, E. C.; Miyadera, H.; Murray, M. M.; Perry, J. O.; Roybal, J. D.; Saunders, A.; Spaulding, R. J.; You, Z.
2013-03-01
A detector efficiency model based on energy extraction from neutrons is described and used to compare 4He detectors with liquid scintillators (EJ301/NE-213). Detector efficiency can be divided into three regimes: single neutron scattering, multiple neutron scattering, and a transition regime in-between. For an average fission neutron of 2 MeV, the amount of 4He needed would be about 1/4 of the amount of the mass of EJ301/NE-213 in the single-scattering regime. For about 50% neutron energy extraction (1 MeV out of 2 MeV), the two types of detectors (4He in the transition regime, EJ301 still in the single-scattering regime) have comparable mass, but 4He detectors can be much larger depending on the number density. A six-tube 11-bar-pressure 4He detector prototype is built and tested. Individual electrical pulses from the detector are recorded using a 12-bit digitizer. Differences in pulse rise time and amplitudes, due to different energy loss of neutrons and gamma rays, are used for neutron/gamma separation. Several energy spectra are also obtained and analyzed.
Research on a Neutron Detector With a Boron-Lined Honeycomb Neutron Converter
NASA Astrophysics Data System (ADS)
Fang, Zhujun; Yang, Yigang; Li, Yulan; Zhang, Zhi; Wang, Xuewu
2017-04-01
A new design of the boron-lined gaseous neutron detector composed of a boron-lined honeycomb neutron converter and an electron multiplier is proposed in this paper. The motivation for this research was to decrease the manufacturing difficulty and improve the robustness of the boron-lined gaseous neutron detector. The numerous anode wires in the traditional designs were removed, and the gas electron multiplier (GEM) was used as the electron multiplier. To drive the ionized electrons produced inside the honeycomb structure out to the incident surface of the GEM, a drift electric field was applied inside the holes of the honeycomb structure. The design principles of this detector were discussed. Geant4, Maxwell11, and Garfield9 were used to estimate the neutron absorption efficiency and the electron migration process. A prototype detector was constructed and experimentally evaluated. Both the simulation and experimental results indicate that this detector has the potential to be used in the applications of small angle neutron scattering for scientific research, and to replace the currently used 3He detectors, which have the trouble of very limited supply of 3He gas.
DEPFET pixel detector for future e-e+ experiments
NASA Astrophysics Data System (ADS)
Boronat, M.; DEPFET Collaboration
2016-04-01
The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future e+e- collider experiments. A DEPFET sensor provides, simultaneously, position sensitive detector capabilities and in-pixel amplification by the integration of a field effect transistor on a fully depleted silicon bulk. The characterization of the latest DEPFET prototypes has proven that a comfortable signal to noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 μm. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. The close to Belle related final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the Belle II required read-out speed. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a solid candidate for the International Linear Collider (ILC). Therefore, in this paper, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future e+e- collider.
Results of neutron irradiation of GEM detector for plasma radiation detection
NASA Astrophysics Data System (ADS)
Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.
2015-09-01
The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.
Miller, M E; Mariani, L E; Gonçalves-Carralves, M L Sztejnberg; Skumanic, M; Thorp, S I
2004-11-01
A novel system to determine thermal neutron flux in real time during NCT treatments was developed in the National Atomic Energy Commission of Argentina. The system is based on a special self-powered detector that can be implanted in patients owing to its small size and biocompatibility. High voltage is not required to operate this kind of detectors, which is a considerable advantage in terms of medical uses. By choosing the appropriate materials, it was possible to obtain a prototype with thermal neutron sensitivity providing for an adequate signal level in typical NCT thermal fluxes. It was also possible to minimize gamma response in order to neglect its contribution.
Optimizing Floating Guard Ring Designs for FASPAX N-in-P Silicon Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Kyung-Wook; Bradford, Robert; Lipton, Ronald
2016-10-06
FASPAX (Fermi-Argonne Semiconducting Pixel Array X-ray detector) is being developed as a fast integrating area detector with wide dynamic range for time resolved applications at the upgraded Advanced Photon Source (APS.) A burst mode detector with intendedmore » $$\\mbox{13 $$MHz$}$ image rate, FASPAX will also incorporate a novel integration circuit to achieve wide dynamic range, from single photon sensitivity to $$10^{\\text{5}}$$ x-rays/pixel/pulse. To achieve these ambitious goals, a novel silicon sensor design is required. This paper will detail early design of the FASPAX sensor. Results from TCAD optimization studies, and characterization of prototype sensors will be presented.« less
Recent Results on Gridpix Detectors:. AN Integrated Micromegas Grid and a Micromegas Ageing Test
NASA Astrophysics Data System (ADS)
Chefdeville, M.; Aarts, A.; van der Graaf, H.; van der Putten, S.
2006-04-01
A new gas-filled detector combining a Micromegas with a CMOS pixel chip has been recently tested. A procedure to integrate the Micromegas grid onto silicon wafers (‘wafer post processing’) has been developed. We aim to eventually integrate the grid on top of wafers of CMOS pixel chips. The first part of this contribution describes an application in vertex detection (GOSSIP). Then tests of the first detector prototype of a grid integrated on a bare silicon wafer are shown. Finally an ageing test of a Micromegas chamber is presented. After verifying the chambers' proportionality at a very high dose rates, the device was irradiated until ageing became apparent.
Development of a novel micro pattern gaseous detector for cosmic ray muon tomography
NASA Astrophysics Data System (ADS)
Biglietti, M.; Canale, V.; Franchino, S.; Iengo, P.; Iodice, M.; Petrucci, F.
2016-07-01
We propose a novel detector (Thick Groove Detector, TGD) designed for cosmic ray tomography with a spatial resolution of 500 μm, trying to keep the construction procedure as simple as possible and to reduce the operating costs. The TGD belongs to the category of MPGDs with an amplification region less than 1 mm wide formed by alternate anode/cathode microstrips layers at different heights. A first 10×10 cm2 prototype has been built, divided in four sections with different test geometries. We present the construction procedure and the first results in terms of gain and stability. Preliminary studies with cosmic rays are also reported.
Characterization of the VEGA ASIC coupled to large area position-sensitive Silicon Drift Detectors
NASA Astrophysics Data System (ADS)
Campana, R.; Evangelista, Y.; Fuschino, F.; Ahangarianabhari, M.; Macera, D.; Bertuccio, G.; Grassi, M.; Labanti, C.; Marisaldi, M.; Malcovati, P.; Rachevski, A.; Zampa, G.; Zampa, N.; Andreani, L.; Baldazzi, G.; Del Monte, E.; Favre, Y.; Feroci, M.; Muleri, F.; Rashevskaya, I.; Vacchi, A.; Ficorella, F.; Giacomini, G.; Picciotto, A.; Zuffa, M.
2014-08-01
Low-noise, position-sensitive Silicon Drift Detectors (SDDs) are particularly useful for experiments in which a good energy resolution combined with a large sensitive area is required, as in the case of X-ray astronomy space missions and medical applications. This paper presents the experimental characterization of VEGA, a custom Application Specific Integrated Circuit (ASIC) used as the front-end electronics for XDXL-2, a large-area (30.5 cm2) SDD prototype. The ASICs were integrated on a specifically developed PCB hosting also the detector. Results on the ASIC noise performances, both stand-alone and bonded to the large area SDD, are presented and discussed.
Development problem analysis of correlation leak detector’s software
NASA Astrophysics Data System (ADS)
Faerman, V. A.; Avramchuk, V. S.; Marukyan, V. M.
2018-05-01
In the article, the practical application and the structure of the correlation leak detectors’ software is studied and the task of its designing is analyzed. In the first part of the research paper, the expediency of the facilities development of correlation leak detectors for the following operating efficiency of public utilities exploitation is shown. The analysis of the functional structure of correlation leak detectors is conducted and its program software tasks are defined. In the second part of the research paper some development steps of the software package – requirement forming, program structure definition and software concept creation – are examined in the context of the usage experience of the hardware-software prototype of correlation leak detector.
First Dark Matter Constraints from SuperCDMS Single-Charge Sensitive Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnese, R.; et al.
We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/more » $$\\mathrm{c^2}$$. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.« less
Development of a real-time digital radiography system using a scintillator-type flat-panel detector
NASA Astrophysics Data System (ADS)
Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Okajima, Kenichi
2001-06-01
In order to study the advantage and remaining problems of FPD (flat panel detector) for clinical use by the real-time DR (digital radiography) system, we developed a prototype system using a scintillator type FPD and which was compared with previous I.I.-CCD type real-time DR. We replaced the X- ray detector of DR-2000X from I.I.-4M (4 million pixels)-CCD camera to the scintillator type dynamic FPD(7' X 9', 127 micrometers ), which can take both radiographic and fluoroscopic images. We obtained the images of head and stomach phantoms, and discussed about the image quality with medical doctors.
Observations of a gamma-ray burst and other sources with a large-area, balloon-borne detector
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Fishman, G. J.; Meegan, C. A.
1982-01-01
Observations of a weak cosmic gamma ray burst of integrated intensity 2 x 10 to the -6th erg/sq cm, two solar flare events, and pulsed emission profiles of A0535+26 and NP0532 are reported for several energy intervals in the energy range from 45 to 520 keV. The measurements were made with a NaI(Tl) detector array flown on a balloon to 4 g/sq cm residual atmosphere from Palestine, Texas, on October 6-8, 1980, for 28 hours. The detector is a prototype of the Burst and Transient Source Experiment (BATSE) to be flown on the Gamma-Ray Observatory (GRO).
Prism-assembly for dual-band short-wave infrared region line-scan camera
NASA Astrophysics Data System (ADS)
Chassagne, Bruno; de Laulanié, Lucie; Pommiès, Matthieu
2018-02-01
A simple dichroic splitter for dual-band line scanning is described. It comprises prisms elements that enable cheapness of the whole prototype by using only one linear detector. Validity of the design is demonstrated via in-line moisture measurement.
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff
2016-01-01
We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
Prototype of a gigabit data transmitter in 65 nm CMOS for DEPFET pixel detectors at Belle-II
NASA Astrophysics Data System (ADS)
Kishishita, T.; Krüger, H.; Hemperek, T.; Lemarenko, M.; Koch, M.; Gronewald, M.; Wermes, N.
2013-08-01
This paper describes the recent development of a gigabit data transmitter for the Belle-II pixel detector (PXD). The PXD is an innermost detector currently under development for the upgraded KEK-B factory in Japan. The PXD consists of two layers of DEPFET sensor modules located at 1.8 and 2.2 cm radii. Each module is equipped with three different ASIC types mounted on the detector substrate with a flip-chip technique: (a) SWITCHER for generating steering signals for the DEPFET sensors, (b) DCD for digitizing the signal currents, and (c) DHP for performing data processing and sending the data off the module to the back-end data handling hybrid via ∼ 40 cm Kapton flex and 12-15 m twisted pair (TWP) cables. To meet the requirements of the PXD data transmission, a prototype of the DHP data transmitter has been developed in a 65-nm standard CMOS technology. The transmitter test chip consists of current-mode logic (CML) drivers and a phase-locked loop (PLL) which generates a clock signal for a 1.6 Gbit/s output data stream from an 80 cm reference clock. A programmable pre-emphasis circuit is also implemented in the CML driver to compensate signal losses in the long cable by shaping the transmitted pulse response. The jitter performance was measured as 25 ps (1 σ distribution) by connecting the chip with 38 cm flex and 10 m TWP cables.
Recent progress on monolithic fiber amplifiers for next generation of gravitational wave detectors
NASA Astrophysics Data System (ADS)
Wellmann, Felix; Booker, Phillip; Hochheim, Sven; Theeg, Thomas; de Varona, Omar; Fittkau, Willy; Overmeyer, Ludger; Steinke, Michael; Weßels, Peter; Neumann, Jörg; Kracht, Dietmar
2018-02-01
Single-frequency fiber amplifiers in MOPA configuration operating at 1064 nm (Yb3+) and around 1550 nm (Er3+ or Er3+:Yb3+) are promising candidates to fulfill the challenging requirements of laser sources of the next generation of interferometric gravitational wave detectors (GWDs). Most probably, the next generation of GWDs is going to operate not only at 1064 nm but also at 1550 nm to cover a broader range of frequencies in which gravitational waves are detectable. We developed an engineering fiber amplifier prototype at 1064 nm emitting 215 W of linearly-polarized light in the TEM00 mode. The system consists of three modules: the seed source, the pre-amplifier, and the main amplifier. The modular design ensures reliable long-term operation, decreases system complexity and simplifies repairing and maintenance procedures. It also allows for the future integration of upgraded fiber amplifier systems without excessive downtimes. We also developed and characterized a fiber amplifier prototype at around 1550 nm that emits 100 W of linearly-polarized light in the TEM00 mode. This prototype uses an Er3+:Yb3+ codoped fiber that is pumped off-resonant at 940 nm. The off-resonant pumping scheme improves the Yb3+-to-Er3+ energy transfer and prevents excessive generation of Yb3+-ASE.
MIXS on BepiColombo and its DEPFET based focal plane instrumentation
NASA Astrophysics Data System (ADS)
Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R. H.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Stefanescu, A.; Strüder, L.; de Vita, G.
2010-12-01
Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300×300μm2. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5×0.5 mm2. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.
Results from the UK 3rd generation programme: Albion
NASA Astrophysics Data System (ADS)
McEwen, R. K.; Axcell, C.; Knowles, P.; Hoade, K. P.; Wilson, M.; Dennis, P. N. J.; Backhouse, P.; Gordon, N. T.
2008-10-01
Following the development of 1st Generation systems in the 1970s, thermal imaging has been in service with the UK armed forces for over 25 years and has proven itself to be a battle winning technology. More recently the wider accessibility to similar technologies within opposing forces has reduced the military advantage provided by these 1st Generation systems and a clear requirement has been identified by the UK MOD for thermal imaging sensors providing increased detection, recognition and identification (DRI) ranges together with a simplified logistical deployment burden and reduced through-life costs. In late 2005, the UK MOD initiated a programme known as "Albion" to develop high performance 3rd Generation single waveband infrared detectors to meet this requirement. At the same time, under a separate programme supporting higher risk technology, a dual waveband infrared detector was also developed. The development phase of the Albion programme has now been completed and prototype detectors are now available and have been integrated into demonstration thermal imaging cameras. The Albion programme has now progressed into the second phase, incorporating both single and dual waveband devices, focussing on low rate initial production (LRIP) and qualification of the devices for military applications. All of the detectors have been fabricated using cadmium mercury telluride material (CMT), grown by metal organic vapour phase epitaxy (MOVPE) on low cost, gallium arsenide (GaAs) substrates and bump bonded to the silicon read out circuit (ROIC). This paper discusses the design features of the 3rd Generation detectors developed in the UK together with the results obtained from the prototype devices both in the laboratory and when integrated into field deployable thermal imaging cameras.
Development of a liquid xenon time projection chamber for the XENON dark matter search
NASA Astrophysics Data System (ADS)
Ni, Kaixuan
This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, between scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detecting very low energy events. Two major quantities related to the dark matter detection, the scintillation efficiency and ionization yield of nuclear recoils in LXe, have been established. A prototype dual phase detector (XENON3) has been built and tested extensively in above ground laboratory. The 3D position sensitivity, as well as the background discrimination potential demonstrated from the XENON3 prototype, allows the construction of a 10 kg scale detector (XENON10), to be deployed underground in early 2006. With 99.5% electron recoil rejection efficiency and 16 keVr nuclear recoil energy threshold, XENON10 will be able to probe the WIMP-nucleon cross-section down to 2 x 10-44 cm2 in the supersymmetry parameter space, after one month operation in the Gran Sasso underground laboratory.
Sensitivity of the DANSS detector to short range neutrino oscillations
NASA Astrophysics Data System (ADS)
Danilov, Mikhail; DANSS Collaboration
2016-04-01
DANSS is a highly segmented 1 m3 plastic scintillator detector. Its 2500 scintillator strips have a Gd loaded reflective cover. Light is collected with 3 wave length shifting fibers per strip and read out with 50 PMTs and 2500 SiPMs. The DANSS will be installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant at distances varying from 9.7 m to 12.2 m from the reactor core. PMTs and SiPMs collect about 30 photo electrons per MeV distributed approximately equally between two types of the readout. Light collection non-uniformity across and along the strip is about ±13% from maximum to minimum. The resulting energy resolution is modest, σ / E = 15% at 5 MeV. This leads to a smearing of the oscillation pattern comparable with the smearing due to the large size of the reactor core. Nevertheless because of the large counting rate (˜10000/day), small background (< 1%) and good control of systematic uncertainties due to frequent changes of positions, the DANSS is quite sensitive to reactor antineutrino oscillations to hypothetical sterile neutrinos with a mass in eV ballpark suggested recently to explain a so-called reactor anomaly. DANSS will have an elaborated calibration system. The high granularity of the detector allows calibration of every strip with about 40 thousand cosmic muons every day. The expected systematic effects do not reduce much the sensitivity region. Tests of the detector prototype DANSSino demonstrated that in spite of a small size (4% of DANSS), it is quite sensitive to reactor antineutrinos, detecting about 70 Inverse Beta Decay events per day with the signal-to-background ratio of about unity. The prototype tests have demonstrated feasibility to reach the design performance of the DANSS detector.
Mirandola, Alfredo; Magro, Giuseppe; Lavagno, Marco; Mairani, Andrea; Molinelli, Silvia; Russo, Stefania; Mastella, Edoardo; Vai, Alessandro; Maestri, Davide; La Rosa, Vanessa; Ciocca, Mario
2018-05-01
To dosimetrically characterize a multilayer ionization chamber (MLIC) prototype for quality assurance (QA) of pristine integral ionization curves (ICs) and spread-out-Bragg-peaks (SOBPs) for scanning light ion beams. QUBE (De.Tec.Tor., Torino, Italy) is a modular detector designed for QA in particle therapy (PT). Its main module is a MLIC detector, able to evaluate particle beam relative depth ionization distributions at different beam energies and modulations. The charge collecting electrodes are made of aluminum, for a nominal water equivalent thickness (WET) of ~75 mm. The detector prototype was calibrated by acquiring the signals in the initial plateau region of a pristine BP and in terms of WET. Successively, it was characterized in terms of repeatability response, linearity, short-term stability and dose rate dependence. Beam-induced measurements of activation in terms of ambient dose equivalent rate were also performed. To increase the detector coarse native spatial resolution (~2.3 mm), several consecutive acquisitions with a set of certified 0.175-mm-thick PMMA sheets (Goodfellow, Cambridge Limited, UK), placed in front of the QUBE mylar entrance window, were performed. The ICs/SOBPs were achieved as the result of the sum of the set of measurements, made up of a one-by-one PMMA layer acquisition. The newly obtained detector spatial resolution allowed the experimental measurements to be properly comparable against the reference curves acquired in water with the PTW Peakfinder. Furthermore, QUBE detector was modeled in the FLUKA Monte Carlo (MC) code following the technical design details and ICs/SOBPs were calculated. Measurements showed a high repeatability: mean relative standard deviation within ±0.5% for all channels and both particle types. Moreover, the detector response was linear with dose (R 2 > 0.998) and independent on the dose rate. The mean deviation over the channel-by-channel readout respect to the reference beam flux (100%) was equal to 0.7% (1.9%) for the 50% (20%) beam flux level. The short-term stability of the gain calibration was very satisfying for both particle types: the channel mean relative standard deviation was within ±1% for all the acquisitions performed at different times. The ICs obtained with the MLIC QUBE at improved resolution satisfactorily matched both the MC simulations and the reference curves acquired with Peakfinder. Deviations from the reference values in terms of BP position, peak width and distal fall-off were submillimetric for both particle types in the whole investigated energy range. For modulated SOBPs, a submillimetric deviation was found when comparing both experimental MLIC QUBE data against the reference values and MC calculations. The relative dose deviations for the experimental MLIC QUBE acquisitions, with respect to Peakfinder data, ranged from ~1% to ~3.5%. Maximum value of 14.1 μSv/h was measured in contact with QUBE entrance window soon after a long irradiation with carbon ions. MLIC QUBE appears to be a promising detector for accurately measuring pristine ICs and SOBPs. A simple procedure to improve the intrinsic spatial resolution of the detector is proposed. Being the detector very accurate, precise, fast responding, and easy to handle, it is therefore well suited for daily checks in PT. © 2018 American Association of Physicists in Medicine.
Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors
NASA Astrophysics Data System (ADS)
Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu
2016-06-01
In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e- at zero farad plus 8.2 e- per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).
NASA Technical Reports Server (NTRS)
Cook, William
1999-01-01
Measuring and understanding the distribution of ozone through the lower levels of Earth's atmosphere are high priorities in global change and climate research. Of particular interest now is the global distribution of ozone in the upper troposphere and lower stratosphere. Global coverage of the stratospheric ozone is feasible only via remote sensing instruments on a space-based platform. And though extensive monitoring tropospheric ozone is possible using instruments flown aboard conventional aircraft, a space-based system would be significantly less costly and provide information over a much broader area and produce more uniform coverage. Here we describe the prototype of an instrument being developed to monitor, from an orbiting spacecraft, the ozone found in Earth's upper troposphere and lower stratosphere. Our new spectrometer is an infrared Fabry-Perot interferometer which uses two synchrounously tuned etalons: a high resolution narrow band device and a lower resolution broader band filtering etalon. The prototype is a scanning device making use of nearly collimated input radiation and a single element detector. As presently configured, it is capable of providing a resolution better than 0.07/cm with a spectral band width approximately 5/cm wide and centered at 1054.7/cm. For the future space-based emission device a modification of the the prototype was to be made to employ innovative circle-to-line detector optics, those developed or in development at UM/SPRL, and a focal plane array detector. These enhancements would enable a simultaneous recording of the entire spectral range of interest, but with simple detection electronics and a significant gain in signal-to-noise over that of the scanning version.
H4DAQ: a modern and versatile data-acquisition package for calorimeter prototypes test-beams
NASA Astrophysics Data System (ADS)
Marini, A. C.
2018-02-01
The upgrade of the particle detectors for the HL-LHC or for future colliders requires an extensive program of tests to qualify different detector prototypes with dedicated test beams. A common data-acquisition system, H4DAQ, was developed for the H4 test beam line at the North Area of the CERN SPS in 2014 and it has since been adopted in various applications for the CMS experiment and AIDA project. Several calorimeter prototypes and precision timing detectors have used our system from 2014 to 2017. H4DAQ has proven to be a versatile application and has been ported to many other beam test environments. H4DAQ is fast, simple, modular and can be configured to support various kinds of setup. The functionalities of the DAQ core software are split into three configurable finite state machines: data readout, run control, and event builder. The distribution of information and data between the various computers is performed using ZEROMQ (0MQ) sockets. Plugins are available to read different types of hardware, including VME crates with many types of boards, PADE boards, custom front-end boards and beam instrumentation devices. The raw data are saved as ROOT files, using the CERN C++ ROOT libraries. A Graphical User Interface, based on the python gtk libraries, is used to operate the H4DAQ and an integrated data quality monitoring (DQM), written in C++, allows for fast processing of the events for quick feedback to the user. As the 0MQ libraries are also available for the National Instruments LabVIEW program, this environment can easily be integrated within H4DAQ applications.
A prototype scintillating fibre beam profile monitor for Ion Therapy beams
NASA Astrophysics Data System (ADS)
Leverington, B. D.; Dziewiecki, M.; Renner, L.; Runze, R.
2018-05-01
A prototype plastic scintillating fibre based beam profile monitor was tested at the Heidelberg Ion Therapy Centre/Heidelberg Ionenstrahl Therapiezentrum (HIT) in 2016 to determine its beam property reconstruction performance and the feasibility of further developing an expanded system. At HIT protons, helium, carbon, and oxygen ions are available for therapy and experiments. The beam can be scanned in two dimensions using fast deflection magnets. A tracking system is used to monitor beam position and to adjust scanning magnet currents online. A new detector system with a finer granularity and without the drift time delay of the current MWPC system with a similar amount of material along the beamline would prove valuable in patient treatment. The sensitive detector components in the tested prototype detector are double-clad Kuraray SCSF-78MJ scintillating fibres with a diameter of 0.250 mm wound as a thin multi-layer ribbon. The scintillation light is detected at the end of the ribbon with Hamamatsu S11865-64 photodiode arrays with a pitch of 0.8 mm. Commercial or readily available readout electronics have been used to evaluate the system feasibility. The results shown in this paper include the linearity with respect to beam intensity, the RMS of the beam intensity as measured by two planes, along with the RMS of the mean position, and the measured beam width RMS. The Signal-to-Noise ratio of the current system is also measured as an indicator of potential performance. Additionally, the non-linear light yield of the scintillating fibres as measured by the photodiode arrays is compared to two models which describe the light yield as a function of the ion stopping power and Lorentz β.
NASA Astrophysics Data System (ADS)
Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh
2016-07-01
Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
NASA Astrophysics Data System (ADS)
Aiello, S.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Battaglieri, M.; Bazzotti, M.; Bersani, A.; Beverini, N.; Biagi, S.; Bonori, M.; Bouhadef, B.; Brunoldi, M.; Cacopardo, G.; Capone, A.; Caponetto, L.; Carminati, G.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Ruvo, G.; De Vita, R.; Distefano, C.; Falchini, E.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galatà, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Giovanetti, G.; Grimaldi, A.; Habel, R.; Imbesi, M.; Kulikovsky, V.; Lattuada, D.; Leonora, E.; Lonardo, A.; Lo Presti, D.; Lucarelli, F.; Marinelli, A.; Margiotta, A.; Martini, A.; Masullo, R.; Migneco, E.; Minutoli, S.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Papaleo, R.; Pappalardo, V.; Piattelli, P.; Piombo, D.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sciliberto, D.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Trasatti, L.; Urso, S.; Vecchi, M.; Vicini, P.; Wischnewski, R.
2010-05-01
The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km 3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km 3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared to Monte Carlo simulations.
Measured and simulated performance of Compton-suppressed TIGRESS HPGe clover detectors
NASA Astrophysics Data System (ADS)
Schumaker, M. A.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.
2007-01-01
Tests of the performance of a 32-fold segmented HPGe clover detector coupled to a 20-fold segmented Compton-suppression shield, which form a prototype element of the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS), have been made. Peak-to-total ratios and relative efficiencies have been measured for a variety of γ-ray energies. These measurements were used to validate a GEANT4 simulation of the TIGRESS detectors, which was then used to create a simulation of the full 12-detector array. Predictions of the expected performance of TIGRESS are presented. These predictions indicate that TIGRESS will be capable, for single 1 MeV γ rays, of absolute detection efficiencies of 17% and 9.4%, and peak-to-total ratios of 54% and 61% for the "high-efficiency" and "optimized peak-to-total" configurations of the array, respectively.
Status of Experiment NEUTRINO-4 Search for Sterile Neutrino
NASA Astrophysics Data System (ADS)
Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.
2017-01-01
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The measurements with full-scale detector with liquid scintillator volume of 3m3 (5x10 sections) was started only in June, 2016. The today available data is presented in the article.
Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.
Pöllänen, R; Siiskonen, T
2014-08-01
The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. Copyright © 2014 Elsevier Ltd. All rights reserved.
The COBRA demonstrator at the LNGS underground laboratory
NASA Astrophysics Data System (ADS)
Ebert, J.; Fritts, M.; Gehre, D.; Gößling, C.; Göpfert, T.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Köttig, T.; Kröninger, K.; Michel, T.; Neddermann, T.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Reinecke, O.; Rohatsch, K.; Schulz, O.; Sörensen, A.; Stekl, I.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wester, T.; Wonsak, B.; Zatschler, S.; Zuber, K.
2016-01-01
The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380 g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250 kg d of data have been collected. This paper describes the technical details of the experimental setup and the hardware components.
Test results of a new detector system for gamma ray isotopic measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcom, J.E.; Bonner, C.A.; Hurd, J.R.
1993-08-01
A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ``Duo detector`` array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticizedmore » NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product.« less
Development of a mercuric iodide detector array for in-vivo x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.
A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalkmore » between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.« less
Zhang, Qiushi; Zhang, Congzhe; Lu, Yanye; Yang, Kun; Ren, Qiushi
2013-01-01
CdZnTe detectors have been under development for the past two decades, providing good stopping power for gamma rays, lightweight camera heads and improved energy resolution. However, the performance of this type of detector is limited primarily by incomplete charge collection problems resulting from charge carriers trapping. This paper is a review of the progress in the development of CdZnTe unipolar detectors with some data correction techniques for improving performance of the detectors. We will first briefly review the relevant theories. Thereafter, two aspects of the techniques for overcoming the hole trapping issue are summarized, including irradiation direction configuration and pulse shape correction methods. CdZnTe detectors of different geometries are discussed in detail, covering the principal of the electrode geometry design, the design and performance characteristics, some detector prototypes development and special correction techniques to improve the energy resolution. Finally, the state of art development of 3-D position sensing and Compton imaging technique are also discussed. Spectroscopic performance of CdZnTe semiconductor detector will be greatly improved even to approach the statistical limit on energy resolution with the combination of some of these techniques. PMID:23429509
A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging.
Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S; Farrell, Richard; Qi, Jinyi; Cherry, Simon R
2016-07-01
We developed a prototype small-animal PET scanner based on depth-encoding detectors using dual-ended readout of small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. The scanner consists of 16 tapered dual-ended-readout detectors arranged in a 61-mm-diameter ring. The axial field of view (FOV) is 7 mm, and the transaxial FOV is 30 mm. The scintillator arrays consist of 14 × 14 lutetium oxyorthosilicate elements, with a crystal size of 0.43 × 0.43 mm at the front end and 0.80 × 0.43 mm at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8 × 8 mm and 13 × 8 mm position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear-instrumentation-module electronics and a custom-designed multiplexer are used for signal processing. The detector performance was measured, and all but the crystals at the very edge could be clearly resolved. The average intrinsic spatial resolution in the axial direction was 0.61 mm. A depth-of-interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at the center of the FOV was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a FOV that can accommodate the entire mouse brain was approximately 0.6 mm using a 3-dimensional maximum-likelihood expectation maximization reconstruction. Images of a hot-rod microphantom showed that rods with a diameter of as low as 0.5 mm could be resolved. The first in vivo studies were performed using (18)F-fluoride and confirmed that a 0.6-mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with (18)F-FDG were also performed. We developed a prototype PET scanner that can achieve a spatial resolution approaching the physical limits of a small-bore PET scanner set by positron range and detector interaction. We plan to add more detector rings to extend the axial FOV of the scanner and increase sensitivity. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A high resolution prototype small-animal PET scanner dedicated to mouse brain imaging
Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S.; Farrell, Richard; Qi, Jinyi; Cherry, Simon R.
2017-01-01
A prototype small-animal PET scanner was developed based on depth-encoding detectors using dual-ended readout of very small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. Methods The scanner consists of 16 tapered dual-ended readout detectors arranged in a ring of diameter 61 mm. The axial field of view is 7 mm and the transaxial field of view is 30 mm. The scintillator arrays consist of 14×14 lutetium oxyorthosilicate (LSO) elements, with a crystal size of 0.43×0.43 mm2 at the front end and 0.80×0.43 mm2 at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8×8 mm2 and a 13×8 mm2 position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear instrumentation module (NIM) electronics and a custom designed multiplexer are used for signal processing. Results The detector performance was measured and all except the very edge crystals could be clearly resolved. The average detector intrinsic spatial resolution in the axial direction was 0.61 mm. A depth of interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at center of the field of view was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a field of view that can accommodate the entire mouse brain was ~0.6 mm using a 3D Maximum Likelihood-Expectation Maximization (ML-EM) reconstruction algorithm. Images of a micro hot-rod phantom showed that rods with diameter down to 0.5 mm could be resolved. First in vivo studies were obtained using 18F-fluoride and confirmed that 0.6 mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with 18F-fluorodeoxyglucose were also acquired. Conclusion A prototype PET scanner achieving a spatial resolution approaching the physical limits for a small-bore PET scanner set by positron range and acolinearity was developed. Future plans are to add more detector rings to extend the axial field of view of the scanner and increase sensitivity. PMID:27013696
NASA Technical Reports Server (NTRS)
Sarto, Anthony; VanZeghbroeck, Bart; Vanderbilt, Vern C.
1996-01-01
Electrical and optical designs for the prototype plant canopy architecture measurement system, including specified component and parts lists, are presented. Six single Metal-Semiconductor-Metal (MSM) detectors are mounted in high-speed packages.
NASA Astrophysics Data System (ADS)
Radulescu, A.; Arend, N.; Drochner, M.; Ioffe, A.; Kemmerling, G.; Ossovyi, V.; Staringer, S.; Vehres, G.; McKinny, K.; Olechnowicz, B.; Yen, D.
2016-09-01
A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF.
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Bilki, B.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Boona, S.; Chakraborty, D.; Dyshkant, A.; Hedin, D.; Lima, J. G. R.; Powell, J.; Rykalin, V.; Scurti, N.; Smith, M.; Tran, N.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Dietrich, J.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Frey, A.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.
2012-04-01
A prototype module for an International Linear Collider (ILC) detector was built, installed, and tested between 2006 and 2009 at CERN and Fermilab as part of the CALICE test beam program, in order to study the possibilities of extending energy sampling behind a hadronic calorimeter and to study the possibilities of providing muon tracking. The ``tail catcher/muon tracker'' (TCMT) is composed of 320 extruded scintillator strips (dimensions 1000 × 50 × 5 mm3) packaged in 16 one-meter square planes interleaved between steel plates. The scintillator strips were read out with wavelength shifting fibers and silicon photomultipliers. The planes were arranged with alternating horizontal and vertical strip orientations. Data were collected for muons and pions in the energy range 6 GeV to 80 GeV. Utilizing data taken in 2006, this paper describes the design and construction of the TCMT, performance characteristics, and a beam-based evaluation of the ability of the TCMT to improve hadronic energy resolution in a prototype ILC detector. For a typical configuration of an ILC detector with a coil situated outside a calorimeter system with a thickness of 5.5 nuclear interaction lengths, a TCMT would improve relative energy resolution by 6-16% for pions between 20 and 80 GeV.
An asynchronous data-driven readout prototype for CEPC vertex detector
NASA Astrophysics Data System (ADS)
Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li
2017-12-01
The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.
Review of the development of diamond radiation sensors
NASA Astrophysics Data System (ADS)
Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration
1999-09-01
Diamond radiation sensors produced by chemical vapour deposition are studied for the application as tracking detectors in high luminosity experiments. Sensors with a charge collection distance up to 250 μm have been manufactured. Their radiation hardness has been studied with pions, proton and neutrons up to fluences of 1.9×10 15 π cm -2, 5×10 15 p cm -2 and 1.35×10 15 n cm -2, respectively. Diamond micro-strip detectors with 50 μm pitch have been exposed in a high-energy test beam in order to investigate their charge collection properties. The measured spatial resolution using a centre-of-gravity position finding algorithm corresponds to the digital resolution for this strip pitch. First results from a strip tracker with a 2×4 cm 2 surface area are reported as well as the performance of a diamond tracker read out by radiation-hard electronics with 25 ns shaping time. Diamond pixel sensors have been prepared to match the geometries of the recently available read-out chip prototypes for ATLAS and CMS. Beam test results are shown from a diamond detector bump-bonded to an ATLAS prototype read-out. They demonstrate a 98% bump-bonding efficiency and a digital resolution in both dimensions.
Soft gamma-ray detector for the ASTRO-H Mission
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki
2012-09-01
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.
Wireless data transmission for high energy physics applications
NASA Astrophysics Data System (ADS)
Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming
2017-08-01
Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.
An artificial retina processor for track reconstruction at the LHC crossing rate
Bedeschi, F.; Cenci, R.; Marino, P.; ...
2017-11-23
The goal of the INFN-RETINA R&D project is to develop and implement a computational methodology that allows to reconstruct events with a large number (> 100) of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus matching the requirements for processing LHC events at the full bunch-crossing frequency. Our approach relies on a parallel pattern-recognition algorithm, dubbed artificial retina, inspired by the early stages of image processing by the brain. In order to demonstrate that a track-processing system based on this algorithm is feasible, we built a sizable prototype of a tracking processor tuned to 3 000more » patterns, based on already existing readout boards equipped with Altera Stratix III FPGAs. The detailed geometry and charged-particle activity of a large tracking detector currently in operation are used to assess its performances. Here, we report on the test results with such a prototype.« less
Analog front-end design of the STS/MUCH-XYTER2—full size prototype ASIC for the CBM experiment
NASA Astrophysics Data System (ADS)
Kleczek, Rafal
2017-01-01
The design of the analog front-end of the STS/MUCH-XYTER2 ASIC, a full-size prototype chip for the Silicon Tracking System (STS, based on double-sided silicon strip sensors) and Muon Chamber (MUCH, based on gas sensors) detectors is presented. The ASIC contains 128 charge processing channels, each built of a charge sensitive amplifier, a polarity selection circuit and two pulse shaping amplifiers forming two parallel signal paths. The first path is used for timing measurement with a fast discriminator. The second path allows low-noise amplitude measurement with a 5-bit continuous-time flash ADC. Different operating conditions and constraints posed by two target detectors' applications require front-end electronics flexibility to meet extended system-wise requirements. The presented circuit implements switchable shaper peaking time, gain switching and trimming, input amplifier pulsed reset circuit, fail-safe measures. The power consumption is scalable (for the STS and the MUCH modes), but limited to 10 mW/channel.
MAPS development for the ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.
2015-03-01
Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.
MICROROC: MICRO-mesh gaseous structure Read-Out Chip
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.
2012-01-01
MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.
An artificial retina processor for track reconstruction at the LHC crossing rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedeschi, F.; Cenci, R.; Marino, P.
The goal of the INFN-RETINA R&D project is to develop and implement a computational methodology that allows to reconstruct events with a large number (> 100) of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus matching the requirements for processing LHC events at the full bunch-crossing frequency. Our approach relies on a parallel pattern-recognition algorithm, dubbed artificial retina, inspired by the early stages of image processing by the brain. In order to demonstrate that a track-processing system based on this algorithm is feasible, we built a sizable prototype of a tracking processor tuned to 3 000more » patterns, based on already existing readout boards equipped with Altera Stratix III FPGAs. The detailed geometry and charged-particle activity of a large tracking detector currently in operation are used to assess its performances. Here, we report on the test results with such a prototype.« less
NASA Astrophysics Data System (ADS)
Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.
2014-12-01
A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.
Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation
NASA Astrophysics Data System (ADS)
Lacy, Jeffrey L.; Martin, Christopher S.; Athanasiades, Athanasios; Regmi, Murari; Vazquez-Flores, Gerson J.; Davenport, Stephen; King, Nicholas S.; Lyons, Tom
2017-07-01
We have developed a large-area, low-cost, high-efficiency neutron detector for vehicle-mounted operation. The detector, which has overall dimensions 12.7 cm x 91.4 cm x 102 cm (5”x36”x40”), a sensitive area equal to 0.85 m2 (1320 in2), and weight of 110 kg (242 lbs), employs an array of 90 boron-coated straw (BCS) detectors. PTI has also developed electronics to minimize cost and space while providing low-noise signal conditioning for both neutron and gamma detection channels, as well as low energy Bluetooth communication with handheld devices. Extremely low power consumption allows continuous use for 225 hours (-.10 days) using three AAA lithium-ion rechargeable batteries. We present radiological, mechanical, and environmental tests, collected from four full-scale prototypes. Outdoor neutron-counting tests with a moderated 252Cf source 2 m away from the center of the detector face showed an average detection rate of 5.5 cps/ng with a standard deviation of 0.09 cps/ng over the four individual detector measurements. Measurements showed a gamma rejection ratio of 1.0 x 10-8, and gamma absolute rejection ratio (GARRn) of 0.93. The prototypes were also operated successfully onboard a moving vehicle for high-speed tests and a long-range 1433-mile, two-day road trip from Houston, TX, USA, to Laurel, MD, USA. Using auxiliary DARPA SIGMA equipment, the GPS, timestamp, gamma and neutron data were transmitted over the cellular network with 10 Hz resolution to a server and real-time tracking website. Mechanical impact and electrostatic discharge testing produced no spurious counts in either the neutron or gamma channels. Ambient environmental temperature testing showed less than ±1% response variation over the range from -30°C to +55°C.
An "artificial retina" processor for track reconstruction at the full LHC crossing rate
NASA Astrophysics Data System (ADS)
Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Cusimano, A.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.
2016-07-01
We present the latest results of an R&D study for a specialized processor capable of reconstructing, in a silicon pixel detector, high-quality tracks from high-energy collision events at 40 MHz. The processor applies a highly parallel pattern-recognition algorithm inspired to quick detection of edges in mammals visual cortex. After a detailed study of a real-detector application, demonstrating that online reconstruction of offline-quality tracks is feasible at 40 MHz with sub-microsecond latency, we are implementing a prototype using common high-bandwidth FPGA devices.
Arachne—A web-based event viewer for MINERνA
NASA Astrophysics Data System (ADS)
Tagg, N.; Brangham, J.; Chvojka, J.; Clairemont, M.; Day, M.; Eberly, B.; Felix, J.; Fields, L.; Gago, A. M.; Gran, R.; Harris, D. A.; Kordosky, M.; Lee, H.; Maggi, G.; Maher, E.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Mislivec, A.; Mousseau, J.; Osmanov, B.; Osta, J.; Paolone, V.; Perdue, G.; Ransome, R. D.; Ray, H.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Walding, J.; Walton, T.; Wolcott, J.; Zhang, D.; Ziemer, B. P.; MinerνA Collaboration
2012-06-01
Neutrino interaction events in the MINERνA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERνA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.
Arachne - A web-based event viewer for MINERvA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagg, N.; /Otterbein Coll.; Brangham, J.
2011-11-01
Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERvA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.
An "artificial retina" processor for track reconstruction at the full LHC crossing rate
Abba, A.; F. Bedeschi; Caponio, F.; ...
2015-10-23
Here, we present the latest results of an R&D; study for a specialized processor capable of reconstructing, in a silicon pixel detector, high-quality tracks from high-energy collision events at 40 MHz. The processor applies a highly parallel pattern-recognition algorithm inspired to quick detection of edges in mammals visual cortex. After a detailed study of a real-detector application, demonstrating that online reconstruction of offline-quality tracks is feasible at 40 MHz with sub-microsecond latency, we are implementing a prototype using common high-bandwidth FPGA devices.
Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon
NASA Astrophysics Data System (ADS)
Di Giovanni, A.
2018-03-01
This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.
Lacroix, Fréderic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A Sam; Beaulieu, Luc
2008-08-01
A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility (+/-0.8%) in-field and good accuracy (+/-1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.
Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J.-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.
2014-11-01
A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45×10×3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
Construction of a technological semi-digital hadronic calorimeter using GRPC
NASA Astrophysics Data System (ADS)
Laktineh, I.
2011-04-01
A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.
Deliver a set of tools for resolving bad inductive loops and correcting bad data.
DOT National Transportation Integrated Search
2012-04-01
This project prototyped and demonstrated procedures to find and mitigate loop detector errors, and to derive more valuable data from loops. Specifically, methods were developed to find and isolate out loop data which is "bad" or invalid, so that miti...
Deliver a set of tools for resolving bad inductive loops and correcting bad data
DOT National Transportation Integrated Search
2012-04-10
This project prototyped and demonstrated procedures to find and mitigate loop detector errors, and to derive more valuable data from loops. Specifically, methods were developed to find and isolate out loop data which is "bad" or invalid, so that miti...
Technological aspects of GEM detector design and assembling for soft x-ray application
NASA Astrophysics Data System (ADS)
Kowalska-Strzeciwilk, E.; Chernyshova, M.
2016-09-01
Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.
Development of a thin scintillation films fission-fragment detector and a novel neutron source
NASA Astrophysics Data System (ADS)
Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.
2015-08-01
Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.
Tanlock loop noise reduction using an optimised phase detector
NASA Astrophysics Data System (ADS)
Al-kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh
2013-06-01
This article proposes a time-delay digital tanlock loop (TDTL), which uses a new phase detector (PD) design that is optimised for noise reduction making it amenable for applications that require wide lock range without sacrificing the level of noise immunity. The proposed system uses an improved phase detector design which uses two phase detectors; one PD is used to optimise the noise immunity whilst the other is used to control the acquisition time of the TDTL system. Using the modified phase detector it is possible to reduce the second- and higher-order harmonics by at least 50% compared with the conventional TDTL system. The proposed system was simulated and tested using MATLAB/Simulink using frequency step inputs and inputs corrupted with varying levels of harmonic distortion. A hardware prototype of the system was implemented using a field programmable gate array (FPGA). The practical and simulation results indicate considerable improvement in the noise performance of the proposed system over the conventional TDTL architecture.
Reactor antineutrino detector iDREAM.
NASA Astrophysics Data System (ADS)
Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.
2017-09-01
Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.
Feasibility of in situ beta ray measurements in underwater environment.
Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik
2017-09-01
We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Campana, R.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Bellutti, P.; Evangelista, Y.; Elmi, I.; Feroci, M.; Ficorella, F.; Frontera, F.; Picciotto, A.; Piemonte, C.; Rachevski, A.; Rashevskaya, I.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Zorzi, N.
2016-07-01
A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.
NASA Astrophysics Data System (ADS)
Barbosa, F.; Bessuille, J.; Chudakov, E.; Dzhygadlo, R.; Fanelli, C.; Frye, J.; Hardin, J.; Kelsey, J.; Patsyuk, M.; Schwarz, C.; Schwiening, J.; Stevens, J.; Shepherd, M.; Whitlatch, T.; Williams, M.
2017-12-01
The GlueX DIRC (Detection of Internally Reflected Cherenkov light) detector is being developed to upgrade the particle identification capabilities in the forward region of the GlueX experiment at Jefferson Lab. The GlueX DIRC will utilize four existing decommissioned BaBar DIRC bar boxes, which will be oriented to form a plane roughly 4 m away from the fixed target of the experiment. A new photon camera has been designed that is based on the SuperB FDIRC prototype. The full GlueX DIRC system will consist of two such cameras, with the first planned to be built and installed in 2017. We present the current status of the design and R&D, along with the future plans of the GlueX DIRC detector.
Real-time computational photon-counting LiDAR
NASA Astrophysics Data System (ADS)
Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles
2018-03-01
The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izaguirre, E; Pokhrel, S; Knewtson, T
2016-06-15
Purpose: Current precision of small animal and cell micro-irradiators has continuously increased during the past years. Currently, preclinical irradiators can deliver sub-millimeter fields with micrometric precision but there are no water equivalent dosimeters to determine small field profiles and dose in the orthovoltage range of energies with micrometric resolution and precision. We have developed a fiber based micro-dosimeter with the resolution and dosimetric accuracy required for radiobiological research. Methods: We constructed two prototypes of micro-dosimeters based on different compositions of fiber scintillators to study the spatial resolution and dosimetric precision of small animal and cell micro-irradiators. The first has greenmore » output and the second has blue output. The blue output dosimeter has the highest sensitivity because it matches the spectral sensitivity of silicon photomultipliers. A blue detector with 500um cross section was built and tested respect to a CC01 ion chamber, film, and the 1500um green output detector. Orthovoltage fields from 1×1mm2 to 5×5mm2 were used for detector characteristics comparison. Results: The blue fiber dosimeter shows great agreement with films and matches dose measurements with the gold-standard ion chamber for 5×5mm2 fields. The detector has the appropriate sensitivity to measure fields from 1×1mm2 to larger sizes with a 1% dosimetric accuracy. The spatial resolution is in the sub-millimeter range and the spectral matching with the photomultiplier allows reducing the sensor cross section even further than the presented prototype. These results suggest that scintillating fibers combined with silicon photomultipliers is the appropriate technology to pursue micro-dosimetry for small animals and disperse cell samples. Conclusion: The constructed detectors establish a new landmark for the resolution and sensitivity of fiber based microdetectors. The validation of the detector in our small animal and cell irradiator shows that they are appropriate for preclinical and micro single cell irradiation quality assurance and dosimetry.« less
Development of a prototype Open-close positron emission tomography system
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Okumura, Satoshi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Toshito, Toshiyuki; Komori, Masataka; Ogata, Yoshimune; Kato, Katsuhiko; Hatazawa, Jun
2015-08-01
We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of 18F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.
Development of a high-resolution liquid xenon detector for gamma-ray astrophysics
NASA Astrophysics Data System (ADS)
Mukherjee, Reshmi
It has been shown here that liquid xenon is one of the most promising detector media for future gamma-ray detectors, owing to an excellent combination of physical properties. The feasibility of the construction of a high resolution liquid xenon detector as a gamma-ray detector for astrophysics has been demonstrated. Up to 3.5 liters of liquid xenon has been successfully purified and using both small and large volume prototypes, the charge and the energy resolution response of such detectors to gamma-rays, internal conversion electrons and alpha particles have been measured. The best energy resolution measured was 4.5 percent FWHM at 1 MeV. Cosmic ray tracks have been imaged using a 2-dimensional liquid xenon multiwire imaging chamber. The spatial resolution along the direction of the drifting electrons was 180 microns rms. Experiments have been performed to study the scintillation light in liquid xenon, as the prompt scintillation signal in the liquid is an electron-ion pair in liquid krypton was measured for the first time with a pulsed ionization chamber to be 18.4 plus or minus 0.3 eV.
NASA Astrophysics Data System (ADS)
Lv, Hongkui; He, Huihai; Sheng, Xiangdong; Liu, Jia; Chen, Songzhan; Liu, Ye; Hou, Chao; Zhao, Jing; Zhang, Zhongquan; Wu, Sha; Wang, Yaping; Lhaaso Collaboration
2018-07-01
In the Large High Altitude Air Shower Observatory (LHAASO), one square kilometer array (KM2A), with 5242 electromagnetic particle detectors (EDs) and 1171 muon detectors (MDs), is designed to study ultra-high energy gamma-ray astronomy and cosmic ray physics. The remoteness and numerous detectors extremely demand a robust and automatic calibration procedure. In this paper, a self-calibration method which relies on the measurement of charged particles within the extensive air showers is proposed. The method is fully validated by Monte Carlo simulation and successfully applied in a KM2A prototype array experiment. Experimental results show that the self-calibration method can be used to determine the detector time offset constants at the sub-nanosecond level and the number density of particles collected by each ED with an accuracy of a few percents, which are adequate to meet the physical requirements of LHAASO experiment. This software calibration also offers an ideal method to realtime monitor the detector performances for next generation ground-based EAS experiments covering an area above square kilometers scale.
A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryemadhi, A.; Barner, L.; Grove, A.
Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less
NASA Astrophysics Data System (ADS)
Bleile, A.; Egelhof, P.; Kluge, H.-J.; Liebisch, U.; Mc Cammon, D.; Meier, H. J.; Sebastián, O.; Stahle, C. K.; Stöhlker, T.; Weber, M.
2000-06-01
The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of QED in very strong Coulomb fields, not accessible otherwise, and has also the potential to deduce nuclear charge radii. A brief overview on the present status of such experiments, performed at the storage ring ESR at GSI Darmstadt, is given. For the investigation of the Lyman-α transitions in Au78+- or U91+- ions with improved accuracy a high resolving calorimetric low temperature detector for hard x-rays (E⩽100 keV) is presently developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/4He dilution refrigerator which fits to the geometry of the ESR target. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector an energy resolution of ΔEFWHM=75 eV is obtained for 60 keV x-rays.
NASA Astrophysics Data System (ADS)
Bleile, A.; Egelhof, P.; Kraft, S.; McCammon, D.; Meier, H. J.; Shrivastava, A.; Stahle, C. K.; Weber, M.
2002-02-01
The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208Pb81+ or 238U91+ with sufficient accuracy, a high resolution calorimetric detector for hard x-rays (E<=100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/4He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm2×47 μm Pb absorber an energy resolution of ΔEFWHM=65 eV is obtained for 60 keV x-rays. .
Low-temperature X-ray detectors for precise Lamb shift measurements on hydrogen-like heavy ions
NASA Astrophysics Data System (ADS)
Bleile, A.; Egelhof, P.; Kluge, H.-J.; Liebisch, U.; McCammon, D.; Meier, H. J.; Sebastián, O.; Stahle, C. K.; Weber, M.
2000-04-01
The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman- α transitions in 208Pb81+ or 238U91+ with sufficient accuracy a high resolving calorimetric detector for hard X-rays ( E⩽100 keV) is presently developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/ 4He dilution refrigerator with a side arm which fits to the geometry of the internal target of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.3 mm 2×66 μm Sn absorber an energy resolution of Δ EFWHM=75 eV is obtained for 60 keV X-rays.
Photoacoustic projection imaging using an all-optical detector array
NASA Astrophysics Data System (ADS)
Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.
2018-02-01
We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.
Design of a muonic tomographic detector to scan travelling containers
NASA Astrophysics Data System (ADS)
Pugliatti, C.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A. A.; Bonanno, D. L.; Bonanno, G.; Costa, A.; Fallica, G.; Garozzo, S.; Indelicato, V.; La Rocca, P.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Massimino, P.; Petta, C.; Pistagna, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Valvo, G.; Vitello, F.; Zaia, A.; Zappalà, G.
2014-05-01
The Muon Portal Project aims at the construction of a large volume detector to inspect the content of travelling containers for the identification of high-Z hidden materials (U, Pu or other fissile samples), exploiting the secondary cosmic-ray muon radiation. An image of these materials is achieved reconstructing the deviations of the muons from their original trajectories inside the detector volume, by means of two particle trackers, placed one below and one above the container. The scan is performed without adding any external radiation, in a few minutes and with a high spatial and angular resolution. The detector consists of 4800 scintillating strips with two wavelength shifting (WLS) fibers inside each strip, coupled to Silicon photomultipliers (SiPMs). A smart strategy for the read out system allows a considerable reduction of the number of the read-out channels. Actually, an intense measurement campaign is in progress to carefully characterize any single component of the detector. A prototype of one of the 48 detection modules (1 × 3 m2) is actually under construction. This paper presents the detector architecture and the preliminary results.
A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications
Kryemadhi, A.; Barner, L.; Grove, A.; ...
2017-10-31
Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less